WorldWideScience

Sample records for video image correlation

  1. Video Toroid Cavity Imager

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  2. Video library for video imaging detection at intersection stop lines.

    Science.gov (United States)

    2010-04-01

    The objective of this activity was to record video that could be used for controlled : evaluation of video image vehicle detection system (VIVDS) products and software upgrades to : existing products based on a list of conditions that might be diffic...

  3. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  4. Radiation effects on video imagers

    International Nuclear Information System (INIS)

    Yates, G.J.; Bujnosek, J.J.; Jaramillo, S.A.; Walton, R.B.; Martinez, T.M.; Black, J.P.

    1985-01-01

    Radiation sensitivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analyzing stored photocharge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented

  5. Multimedia image and video processing

    CERN Document Server

    Guan, Ling

    2012-01-01

    As multimedia applications have become part of contemporary daily life, numerous paradigm-shifting technologies in multimedia processing have emerged over the last decade. Substantially updated with 21 new chapters, Multimedia Image and Video Processing, Second Edition explores the most recent advances in multimedia research and applications. This edition presents a comprehensive treatment of multimedia information mining, security, systems, coding, search, hardware, and communications as well as multimodal information fusion and interaction. Clearly divided into seven parts, the book begins w

  6. Computational multispectral video imaging [Invited].

    Science.gov (United States)

    Wang, Peng; Menon, Rajesh

    2018-01-01

    Multispectral imagers reveal information unperceivable to humans and conventional cameras. Here, we demonstrate a compact single-shot multispectral video-imaging camera by placing a micro-structured diffractive filter in close proximity to the image sensor. The diffractive filter converts spectral information to a spatial code on the sensor pixels. Following a calibration step, this code can be inverted via regularization-based linear algebra to compute the multispectral image. We experimentally demonstrated spectral resolution of 9.6 nm within the visible band (430-718 nm). We further show that the spatial resolution is enhanced by over 30% compared with the case without the diffractive filter. We also demonstrate Vis-IR imaging with the same sensor. Because no absorptive color filters are utilized, sensitivity is preserved as well. Finally, the diffractive filters can be easily manufactured using optical lithography and replication techniques.

  7. Enhancement system of nighttime infrared video image and visible video image

    Science.gov (United States)

    Wang, Yue; Piao, Yan

    2016-11-01

    Visibility of Nighttime video image has a great significance for military and medicine areas, but nighttime video image has so poor quality that we can't recognize the target and background. Thus we enhance the nighttime video image by fuse infrared video image and visible video image. According to the characteristics of infrared and visible images, we proposed improved sift algorithm andαβ weighted algorithm to fuse heterologous nighttime images. We would deduced a transfer matrix from improved sift algorithm. The transfer matrix would rapid register heterologous nighttime images. And theαβ weighted algorithm can be applied in any scene. In the video image fusion system, we used the transfer matrix to register every frame and then used αβ weighted method to fuse every frame, which reached the time requirement soft video. The fused video image not only retains the clear target information of infrared video image, but also retains the detail and color information of visible video image and the fused video image can fluency play.

  8. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  9. Correlated diffusion imaging

    International Nuclear Information System (INIS)

    Wong, Alexander; Glaister, Jeffrey; Cameron, Andrew; Haider, Masoom

    2013-01-01

    Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization. In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities. Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland. A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer

  10. Effect of out-of-plane specimen movement on strain measurement using digital-image-correlation-based video measurement in 2D and 3D

    DEFF Research Database (Denmark)

    Poling, Joel; Desai, Niranjan; Fischer, Gregor

    2018-01-01

    This study determined the effect of specimen out-of-plane movement relative to the sensor, on the accuracy of strains measured made applying 2D and 3D measurement approaches employing the state-of-the-art digital-image-correlation (DIC)-based tool iMETRUM. DIC provides a convenient and inexpensive...

  11. Progress in video immersion using Panospheric imaging

    Science.gov (United States)

    Bogner, Stephen L.; Southwell, David T.; Penzes, Steven G.; Brosinsky, Chris A.; Anderson, Ron; Hanna, Doug M.

    1998-09-01

    Having demonstrated significant technical and marketplace advantages over other modalities for video immersion, PanosphericTM Imaging (PI) continues to evolve rapidly. This paper reports on progress achieved since AeroSense 97. The first practical field deployment of the technology occurred in June-August 1997 during the NASA-CMU 'Atacama Desert Trek' activity, where the Nomad mobile robot was teleoperated via immersive PanosphericTM imagery from a distance of several thousand kilometers. Research using teleoperated vehicles at DRES has also verified the exceptional utility of the PI technology for achieving high levels of situational awareness, operator confidence, and mission effectiveness. Important performance enhancements have been achieved with the completion of the 4th Generation PI DSP-based array processor system. The system is now able to provide dynamic full video-rate generation of spatial and computational transformations, resulting in a programmable and fully interactive immersive video telepresence. A new multi- CCD camera architecture has been created to exploit the bandwidth of this processor, yielding a well-matched PI system with greatly improved resolution. While the initial commercial application for this technology is expected to be video tele- conferencing, it also appears to have excellent potential for application in the 'Immersive Cockpit' concept. Additional progress is reported in the areas of Long Wave Infrared PI Imaging, Stereo PI concepts, PI based Video-Servoing concepts, PI based Video Navigation concepts, and Foveation concepts (to merge localized high-resolution views with immersive views).

  12. Video stereopsis of cardiac MR images

    International Nuclear Information System (INIS)

    Johnson, R.F. Jr.; Norman, C.

    1988-01-01

    This paper describes MR images of the heart acquired using a spin-echo technique synchronized to the electrocardiogram. Sixteen 0.5-cm-thick sections with a 0.1-cm gap between each section were acquired in the coronal view to cover all the cardiac anatomy including vasculature. Two sets of images were obtained with a subject rotation corresponding to the stereoscopic viewing angle of the eyes. The images were digitized, spatially registered, and processed by a three-dimensional graphics work station for stereoscopic viewing. Video recordings were made of each set of images and then temporally synchronized to produce a single video image corresponding to the appropriate eye view

  13. Structural image and video understanding

    NARCIS (Netherlands)

    Lou, Z.

    2016-01-01

    In this thesis, we have discussed how to exploit the structures in several computer vision topics. The five chapters addressed five computer vision topics using the image structures. In chapter 2, we proposed a structural model to jointly predict the age, expression and gender of a face. By modeling

  14. Video-based noncooperative iris image segmentation.

    Science.gov (United States)

    Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig

    2011-02-01

    In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.

  15. Image and Video for Hearing Impaired People

    Directory of Open Access Journals (Sweden)

    Aran Oya

    2007-01-01

    Full Text Available We present a global overview of image- and video-processing-based methods to help the communication of hearing impaired people. Two directions of communication have to be considered: from a hearing person to a hearing impaired person and vice versa. In this paper, firstly, we describe sign language (SL and the cued speech (CS language which are two different languages used by the deaf community. Secondly, we present existing tools which employ SL and CS video processing and recognition for the automatic communication between deaf people and hearing people. Thirdly, we present the existing tools for reverse communication, from hearing people to deaf people that involve SL and CS video synthesis.

  16. Video dosimetry: evaluation of X-radiation dose by video fluoroscopic image

    International Nuclear Information System (INIS)

    Nova, Joao Luiz Leocadio da; Lopes, Ricardo Tadeu

    1996-01-01

    A new methodology to evaluate the entrance surface dose on patients under radiodiagnosis is presented. A phantom is used in video fluoroscopic procedures in on line video signal system. The images are obtained from a Siemens Polymat 50 and are digitalized. The results show that the entrance surface dose can be obtained in real time from video imaging

  17. GPM GROUND VALIDATION PRECIPITATION VIDEO IMAGER (PVI) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Precipitation Video Imager (PVI) GCPEx dataset collected precipitation particle images and drop size distribution data from November 2011...

  18. Practical image and video processing using MATLAB

    CERN Document Server

    Marques, Oge

    2011-01-01

    "The book provides a practical introduction to the most important topics in image and video processing using MATLAB (and its Image Processing Toolbox) as a tool to demonstrate the most important techniques and algorithms. The contents are presented in a clear, technically accurate, objective way, with just enough mathematical detail. Most of the chapters are supported by figures, examples, illustrative problems, MATLAB scripts, suggestions for further reading, bibliographical references, useful Web sites, and exercises and computer projects to extend the understanding of their contents"--

  19. Multimodal location estimation of videos and images

    CERN Document Server

    Friedland, Gerald

    2015-01-01

    This book presents an overview of the field of multimodal location estimation, i.e. using acoustic, visual, and/or textual cues to estimate the shown location of a video recording. The authors' sample research results in this field in a unified way integrating research work on this topic that focuses on different modalities, viewpoints, and applications. The book describes fundamental methods of acoustic, visual, textual, social graph, and metadata processing as well as multimodal integration methods used for location estimation. In addition, the text covers benchmark metrics and explores the limits of the technology based on a human baseline. ·         Discusses localization of multimedia data; ·         Examines fundamental methods of establishing location metadata for images and videos (other than GPS tagging); ·         Covers Data-Driven as well as Semantic Location Estimation.

  20. Objective analysis of image quality of video image capture systems

    Science.gov (United States)

    Rowberg, Alan H.

    1990-07-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give

  1. Grid Portal for Image and Video Processing

    International Nuclear Information System (INIS)

    Dinitrovski, I.; Kakasevski, G.; Buckovska, A.; Loskovska, S.

    2007-01-01

    Users are typically best served by G rid Portals . G rid Portals a re web servers that allow the user to configure or run a class of applications. The server is then given the task of authentication of the user with the Grid and invocation of the required grid services to launch the user's application. PHP is a widely-used general-purpose scripting language that is especially suited for Web development and can be embedded into HTML. PHP is powerful and modern server-side scripting language producing HTML or XML output which easily can be accessed by everyone via web interface (with the browser of your choice) and can execute shell scripts on the server side. The aim of our work is development of Grid portal for image and video processing. The shell scripts contains gLite and globus commands for obtaining proxy certificate, job submission, data management etc. Using this technique we can easily create web interface to the Grid infrastructure. The image and video processing algorithms are implemented in C++ language using various image processing libraries. (Author)

  2. Dynamic Image Stitching for Panoramic Video

    Directory of Open Access Journals (Sweden)

    Jen-Yu Shieh

    2014-10-01

    Full Text Available The design of this paper is based on the Dynamic image titching for panoramic video. By utilizing OpenCV visual function data library and SIFT algorithm as the basis for presentation, this article brings forward Gaussian second differenced MoG which is processed basing on DoG Gaussian Difference Map to reduce order in synthesizing dynamic images and simplify the algorithm of the Gaussian pyramid structure. MSIFT matches with overlapping segmentation method to simplify the scope of feature extraction in order to enhance speed. And through this method traditional image synthesis can be improved without having to take lots of time in calculation and being limited by space and angle. This research uses four normal Webcams and two IPCAM coupled with several-wide angle lenses. By using wide-angle lenses to monitor over a wide range of an area and then by using image stitching panoramic effect is achieved. In terms of overall image application and control interface, Microsoft Visual Studio C# is adopted to a construct software interface. On a personal computer with 2.4-GHz CPU and 2-GB RAM and with the cameras fixed to it, the execution speed is three images per second, which reduces calculation time of the traditional algorithm.

  3. Multimodal interaction in image and video applications

    CERN Document Server

    Sappa, Angel D

    2013-01-01

    Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existi...

  4. Video Vortex reader II: moving images beyond YouTube

    NARCIS (Netherlands)

    Lovink, G.; Somers Miles, R.

    2011-01-01

    Video Vortex Reader II is the Institute of Network Cultures' second collection of texts that critically explore the rapidly changing landscape of online video and its use. With the success of YouTube ('2 billion views per day') and the rise of other online video sharing platforms, the moving image

  5. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    Science.gov (United States)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  6. Despeckle filtering for ultrasound imaging and video II selected applications

    CERN Document Server

    Loizou, Christos P

    2015-01-01

    In ultrasound imaging and video visual perception is hindered by speckle multiplicative noise that degrades the quality. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image/video segmentation, texture analysis and encoding in ultrasound imaging and video. The goal of the first book (book 1 of 2 books) was to introduce the problem of speckle in ultrasound image and video as well as the theoretical background, algorithmic steps, and the MatlabTM for the following group of despeckle filters:

  7. Computer simulation of orthognathic surgery with video imaging

    Science.gov (United States)

    Sader, Robert; Zeilhofer, Hans-Florian U.; Horch, Hans-Henning

    1994-04-01

    Patients with extreme jaw imbalance must often undergo operative corrections. The goal of therapy is to harmonize the stomatognathic system and an aesthetical correction of the face profile. A new procedure will be presented which supports the maxillo-facial surgeon in planning the operation and which also presents the patient the result of the treatment by video images. Once an x-ray has been digitized it is possible to produce individualized cephalometric analyses. Using a ceph on screen, all current orthognathic operations can be simulated, whereby the bony segments are moved according to given parameters, and a new soft tissue profile can be calculated. The profile of the patient is fed into the computer by way of a video system and correlated to the ceph. Using the simulated operation the computer calculates a new video image of the patient which presents the expected postoperative appearance. In studies of patients treated between 1987-91, 76 out of 121 patients were able to be evaluated. The deviation in profile change varied between .0 and 1.6mm. A side effect of the practical applications was an increase in patient compliance.

  8. Video encryption using chaotic masks in joint transform correlator

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2015-03-01

    A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.

  9. Video encryption using chaotic masks in joint transform correlator

    International Nuclear Information System (INIS)

    Saini, Nirmala; Sinha, Aloka

    2015-01-01

    A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest–Shamir–Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique. (paper)

  10. Advanced methods for image registration applied to JET videos

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Murari, Andrea [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Gelfusa, Michela [Associazione EURATOM-ENEA – University of Rome “Tor Vergata”, Roma (Italy); Tiseanu, Ion; Zoita, Vasile [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Arnoux, Gilles [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2015-10-15

    Graphical abstract: - Highlights: • Development of an image registration method for JET IR and fast visible cameras. • Method based on SIFT descriptors and coherent point drift points set registration technique. • Method able to deal with extremely noisy images and very low luminosity images. • Computation time compatible with the inter-shot analysis. - Abstract: The last years have witnessed a significant increase in the use of digital cameras on JET. They are routinely applied for imaging in the IR and visible spectral regions. One of the main technical difficulties in interpreting the data of camera based diagnostics is the presence of movements of the field of view. Small movements occur due to machine shaking during normal pulses while large ones may arise during disruptions. Some cameras show a correlation of image movement with change of magnetic field strength. For deriving unaltered information from the videos and for allowing correct interpretation an image registration method, based on highly distinctive scale invariant feature transform (SIFT) descriptors and on the coherent point drift (CPD) points set registration technique, has been developed. The algorithm incorporates a complex procedure for rejecting outliers. The method has been applied for vibrations correction to videos collected by the JET wide angle infrared camera and for the correction of spurious rotations in the case of the JET fast visible camera (which is equipped with an image intensifier). The method has proved to be able to deal with the images provided by this camera frequently characterized by low contrast and a high level of blurring and noise.

  11. VLSI-based video event triggering for image data compression

    Science.gov (United States)

    Williams, Glenn L.

    1994-02-01

    Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.

  12. Markerless registration for image guided surgery. Preoperative image, intraoperative video image, and patient

    International Nuclear Information System (INIS)

    Kihara, Tomohiko; Tanaka, Yuko

    1998-01-01

    Real-time and volumetric acquisition of X-ray CT, MR, and SPECT is the latest trend of the medical imaging devices. A clinical challenge is to use these multi-modality volumetric information complementary on patient in the entire diagnostic and surgical processes. The intraoperative image and patient integration intents to establish a common reference frame by image in diagnostic and surgical processes. This provides a quantitative measure during surgery, for which we have been relied mostly on doctors' skills and experiences. The intraoperative image and patient integration involves various technologies, however, we think one of the most important elements is the development of markerless registration, which should be efficient and applicable to the preoperative multi-modality data sets, intraoperative image, and patient. We developed a registration system which integrates preoperative multi-modality images, intraoperative video image, and patient. It consists of a real-time registration of video camera for intraoperative use, a markerless surface sampling matching of patient and image, our previous works of markerless multi-modality image registration of X-ray CT, MR, and SPECT, and an image synthesis on video image. We think these techniques can be used in many applications which involve video camera like devices such as video camera, microscope, and image Intensifier. (author)

  13. VICAR - VIDEO IMAGE COMMUNICATION AND RETRIEVAL

    Science.gov (United States)

    Wall, R. J.

    1994-01-01

    VICAR (Video Image Communication and Retrieval) is a general purpose image processing software system that has been under continuous development since the late 1960's. Originally intended for data from the NASA Jet Propulsion Laboratory's unmanned planetary spacecraft, VICAR is now used for a variety of other applications including biomedical image processing, cartography, earth resources, and geological exploration. The development of this newest version of VICAR emphasized a standardized, easily-understood user interface, a shield between the user and the host operating system, and a comprehensive array of image processing capabilities. Structurally, VICAR can be divided into roughly two parts; a suite of applications programs and an executive which serves as the interfaces between the applications, the operating system, and the user. There are several hundred applications programs ranging in function from interactive image editing, data compression/decompression, and map projection, to blemish, noise, and artifact removal, mosaic generation, and pattern recognition and location. An information management system designed specifically for handling image related data can merge image data with other types of data files. The user accesses these programs through the VICAR executive, which consists of a supervisor and a run-time library. From the viewpoint of the user and the applications programs, the executive is an environment that is independent of the operating system. VICAR does not replace the host computer's operating system; instead, it overlays the host resources. The core of the executive is the VICAR Supervisor, which is based on NASA Goddard Space Flight Center's Transportable Applications Executive (TAE). Various modifications and extensions have been made to optimize TAE for image processing applications, resulting in a user friendly environment. The rest of the executive consists of the VICAR Run-Time Library, which provides a set of subroutines (image

  14. Extended image differencing for change detection in UAV video mosaics

    Science.gov (United States)

    Saur, Günter; Krüger, Wolfgang; Schumann, Arne

    2014-03-01

    Change detection is one of the most important tasks when using unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. We address changes of short time scale, i.e. the observations are taken in time distances from several minutes up to a few hours. Each observation is a short video sequence acquired by the UAV in near-nadir view and the relevant changes are, e.g., recently parked or moved vehicles. In this paper we extend our previous approach of image differencing for single video frames to video mosaics. A precise image-to-image registration combined with a robust matching approach is needed to stitch the video frames to a mosaic. Additionally, this matching algorithm is applied to mosaic pairs in order to align them to a common geometry. The resulting registered video mosaic pairs are the input of the change detection procedure based on extended image differencing. A change mask is generated by an adaptive threshold applied to a linear combination of difference images of intensity and gradient magnitude. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed size of shadows, and compression or transmission artifacts. The special effects of video mosaicking such as geometric distortions and artifacts at moving objects have to be considered, too. In our experiments we analyze the influence of these effects on the change detection results by considering several scenes. The results show that for video mosaics this task is more difficult than for single video frames. Therefore, we extended the image registration by estimating an elastic transformation using a thin plate spline approach. The results for mosaics are comparable to that of single video frames and are useful for interactive image exploitation due to a larger scene coverage.

  15. Mass-storage management for distributed image/video archives

    Science.gov (United States)

    Franchi, Santina; Guarda, Roberto; Prampolini, Franco

    1993-04-01

    The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.

  16. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation.

    Science.gov (United States)

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-15

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  17. Adaptive distributed video coding with correlation estimation using expectation propagation

    Science.gov (United States)

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-01

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  18. Rapid, low-cost, image analysis through video processing

    International Nuclear Information System (INIS)

    Levinson, R.A.; Marrs, R.W.; Grantham, D.G.

    1976-01-01

    Remote Sensing now provides the data necessary to solve many resource problems. However, many of the complex image processing and analysis functions used in analysis of remotely-sensed data are accomplished using sophisticated image analysis equipment. High cost of this equipment places many of these techniques beyond the means of most users. A new, more economical, video system capable of performing complex image analysis has now been developed. This report describes the functions, components, and operation of that system. Processing capability of the new video image analysis system includes many of the tasks previously accomplished with optical projectors and digital computers. Video capabilities include: color separation, color addition/subtraction, contrast stretch, dark level adjustment, density analysis, edge enhancement, scale matching, image mixing (addition and subtraction), image ratioing, and construction of false-color composite images. Rapid input of non-digital image data, instantaneous processing and display, relatively low initial cost, and low operating cost gives the video system a competitive advantage over digital equipment. Complex pre-processing, pattern recognition, and statistical analyses must still be handled through digital computer systems. The video system at the University of Wyoming has undergone extensive testing, comparison to other systems, and has been used successfully in practical applications ranging from analysis of x-rays and thin sections to production of color composite ratios of multispectral imagery. Potential applications are discussed including uranium exploration, petroleum exploration, tectonic studies, geologic mapping, hydrology sedimentology and petrography, anthropology, and studies on vegetation and wildlife habitat

  19. Correlates of video games playing among adolescents in an Islamic country

    OpenAIRE

    Allahverdipour, Hamid; Bazargan, Mohsen; Farhadinasab, Abdollah; Moeini, Babak

    2010-01-01

    Abstract Background No study has ever explored the prevalence and correlates of video game playing among children in the Islamic Republic of Iran. This study describes patterns and correlates of excessive video game use in a random sample of middle-school students in Iran. Specifically, we examine the relationship between video game playing and psychological well-being, aggressive behaviors, and adolescents' perceived threat of video-computer game playing. Methods This cross-sectional study w...

  20. Communicating pictures a course in image and video coding

    CERN Document Server

    Bull, David R

    2014-01-01

    Communicating Pictures starts with a unique historical perspective of the role of images in communications and then builds on this to explain the applications and requirements of a modern video coding system. It draws on the author's extensive academic and professional experience of signal processing and video coding to deliver a text that is algorithmically rigorous, yet accessible, relevant to modern standards, and practical. It offers a thorough grounding in visual perception, and demonstrates how modern image and video compression methods can be designed in order to meet the rate-quality performance levels demanded by today's applications, networks and users. With this book you will learn: Practical issues when implementing a codec, such as picture boundary extension and complexity reduction, with particular emphasis on efficient algorithms for transforms, motion estimators and error resilience Conflicts between conventional video compression, based on variable length coding and spatiotemporal prediction,...

  1. On-board processing of video image sequences

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    and evaluated. On-board there are six video cameras each capturing images of 1024times1024 pixels of 12 bpp at a frame rate of 15 fps, thus totalling 1080 Mbits/s. In comparison the average downlink data rate for these images is projected to be 50 kbit/s. This calls for efficient on-board processing to select...

  2. Video-rate optical flow corrected intraoperative functional fluorescence imaging

    NARCIS (Netherlands)

    Koch, Maximilian; Glatz, Juergen; Ermolayev, Vladimir; de Vries, Elisabeth G. E.; van Dam, Gooitzen M.; Englmeier, Karl-Hans; Ntziachristos, Vasilis

    Intraoperative fluorescence molecular imaging based on targeted fluorescence agents is an emerging approach to improve surgical and endoscopic imaging and guidance. Short exposure times per frame and implementation at video rates are necessary to provide continuous feedback to the physician and

  3. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  4. The art of assessing quality for images and video

    International Nuclear Information System (INIS)

    Deriche, M.

    2011-01-01

    The early years of this century have witnessed a tremendous growth in the use of digital multimedia data for di?erent communication applications. Researchers from around the world are spending substantial research efforts in developing techniques for improving the appearance of images/video. However, as we know, preserving high quality is a challenging task. Images are subject to distortions during acquisition, compression, transmission, analysis, and reconstruction. For this reason, the research area focusing on image and video quality assessment has attracted a lot of attention in recent years. In particular, compression applications and other multimedia applications need powerful techniques for evaluating quality objectively without human interference. This tutorial will cover the di?erent faces of image quality assessment. We will motivate the need for robust image quality assessment techniques, then discuss the main algorithms found in the literature with a critical perspective. We will present the di?erent metrics used for full reference, reduced reference and no reference applications. We will then discuss the difference between image and video quality assessment. In all of the above, we will take a critical approach to explain which metric can be used for which application. Finally we will discuss the different approaches to analyze the performance of image/video quality metrics, and end the tutorial with some perspectives on newly introduced metrics and their potential applications.

  5. Digital Image Correlation for Performance Monitoring

    Science.gov (United States)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  6. Toward brain correlates of natural behavior: fMRI during violent video games.

    Science.gov (United States)

    Mathiak, Klaus; Weber, René

    2006-12-01

    Modern video games represent highly advanced virtual reality simulations and often contain virtual violence. In a significant amount of young males, playing video games is a quotidian activity, making it an almost natural behavior. Recordings of brain activation with functional magnetic resonance imaging (fMRI) during gameplay may reflect neuronal correlates of real-life behavior. We recorded 13 experienced gamers (18-26 years; average 14 hrs/week playing) while playing a violent first-person shooter game (a violent computer game played in self-perspective) by means of distortion and dephasing reduced fMRI (3 T; single-shot triple-echo echo-planar imaging [EPI]). Content analysis of the video and sound with 100 ms time resolution achieved relevant behavioral variables. These variables explained significant signal variance across large distributed networks. Occurrence of violent scenes revealed significant neuronal correlates in an event-related design. Activation of dorsal and deactivation of rostral anterior cingulate and amygdala characterized the mid-frontal pattern related to virtual violence. Statistics and effect sizes can be considered large at these areas. Optimized imaging strategies allowed for single-subject and for single-trial analysis with good image quality at basal brain structures. We propose that virtual environments can be used to study neuronal processes involved in semi-naturalistic behavior as determined by content analysis. Importantly, the activation pattern reflects brain-environment interactions rather than stimulus responses as observed in classical experimental designs. We relate our findings to the general discussion on social effects of playing first-person shooter games. (c) 2006 Wiley-Liss, Inc.

  7. Image ranking in video sequences using pairwise image comparisons and temporal smoothing

    CSIR Research Space (South Africa)

    Burke, Michael

    2016-12-01

    Full Text Available The ability to predict the importance of an image is highly desirable in computer vision. This work introduces an image ranking scheme suitable for use in video or image sequences. Pairwise image comparisons are used to determine image ‘interest...

  8. Recent advances in intelligent image search and video retrieval

    CERN Document Server

    2017-01-01

    This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring. Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant conte...

  9. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    Science.gov (United States)

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  10. Image processor for high resolution video

    International Nuclear Information System (INIS)

    Pessoa, P.P.; Assis, J.T.; Cardoso, S.B.; Lopes, R.T.

    1989-01-01

    In this paper, we discuss an image presentation and processing system developed in Turbo Pascal 5.0 Language. Our system allows the visualization and processing of images in 16 different colors, taken at a time from a set of 64 possible ones. Digital filters of the mean, mediam Laplacian, gradient and histograms equalization type have been implemented, so as to allow a better image quality. Possible applications of our system are also discussed e.g., satellites, computerized tomography, medicine, microscopes. (author) [pt

  11. American video peak store gives fuel a better image

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    A new American image enhancement system using a video peak frame store aims to overcome the common problems of viewing serial numbers on irradiated fuel assemblies within the reactor core whilst reducing operator exposure at the same time. Other nuclear plant inspection applications are envisaged. (author)

  12. The advantages of using photographs and video images in ...

    African Journals Online (AJOL)

    Background: The purpose of this study was to evaluate the advantages of a telephone consultation with a specialist in paediatric surgery after taking photographs and video images by a general practitioner for the diagnosis of some diseases. Materials and Methods: This was a prospective study of the reliability of paediatric ...

  13. Can social tagged images aid concept-based video search?

    NARCIS (Netherlands)

    Setz, A.T.; Snoek, C.G.M.

    2009-01-01

    This paper seeks to unravel whether commonly available social tagged images can be exploited as a training resource for concept-based video search. Since social tags are known to be ambiguous, overly personalized, and often error prone, we place special emphasis on the role of disambiguation. We

  14. Applying Image Matching to Video Analysis

    Science.gov (United States)

    2010-09-01

    image groups, classified by the background scene, are the flag, the kitchen, the telephone, the bookshelf , the title screen, the...Kitchen 136 Telephone 3 Bookshelf 81 Title Screen 10 Map 1 24 Map 2 16 command line. This implementation of a Bloom filter uses two arbitrary...with the Bookshelf images. This scene is a much closer shot than the Kitchen scene so the host occupies much of the background. Algorithms for face

  15. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  16. Thermal imagers: from ancient analog video output to state-of-the-art video streaming

    Science.gov (United States)

    Haan, Hubertus; Feuchter, Timo; Münzberg, Mario; Fritze, Jörg; Schlemmer, Harry

    2013-06-01

    The video output of thermal imagers stayed constant over almost two decades. When the famous Common Modules were employed a thermal image at first was presented to the observer in the eye piece only. In the early 1990s TV cameras were attached and the standard output was CCIR. In the civil camera market output standards changed to digital formats a decade ago with digital video streaming being nowadays state-of-the-art. The reasons why the output technique in the thermal world stayed unchanged over such a long time are: the very conservative view of the military community, long planning and turn-around times of programs and a slower growth of pixel number of TIs in comparison to consumer cameras. With megapixel detectors the CCIR output format is not sufficient any longer. The paper discusses the state-of-the-art compression and streaming solutions for TIs.

  17. Guided filtering for solar image/video processing

    Directory of Open Access Journals (Sweden)

    Long Xu

    2017-06-01

    Full Text Available A new image enhancement algorithm employing guided filtering is proposed in this work for enhancement of solar images and videos, so that users can easily figure out important fine structures imbedded in the recorded images/movies for solar observation. The proposed algorithm can efficiently remove image noises, including Gaussian and impulse noises. Meanwhile, it can further highlight fibrous structures on/beyond the solar disk. These fibrous structures can clearly demonstrate the progress of solar flare, prominence coronal mass emission, magnetic field, and so on. The experimental results prove that the proposed algorithm gives significant enhancement of visual quality of solar images beyond original input and several classical image enhancement algorithms, thus facilitating easier determination of interesting solar burst activities from recorded images/movies.

  18. Mutiple LDPC Decoding using Bitplane Correlation for Transform Domain Wyner-Ziv Video Coding

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    Distributed video coding (DVC) is an emerging video coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. This paper considers a Low Density Parity Check (LDPC) based Transform Domain Wyner-Ziv (TDWZ) video...... codec. To improve the LDPC coding performance in the context of TDWZ, this paper proposes a Wyner-Ziv video codec using bitplane correlation through multiple parallel LDPC decoding. The proposed scheme utilizes inter bitplane correlation to enhance the bitplane decoding performance. Experimental results...

  19. Simulating Optical Correlation on a Digital Image Processing

    Science.gov (United States)

    Denning, Bryan

    1998-04-01

    Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.

  20. Video retrieval by still-image analysis with ImageMiner

    Science.gov (United States)

    Kreyss, Jutta; Roeper, M.; Alshuth, Peter; Hermes, Thorsten; Herzog, Otthein

    1997-01-01

    The large amount of available multimedia information (e.g. videos, audio, images) requires efficient and effective annotation and retrieval methods. As videos start playing a more important role in the frame of multimedia, we want to make these available for content-based retrieval. The ImageMiner-System, which was developed at the University of Bremen in the AI group, is designed for content-based retrieval of single images by a new combination of techniques and methods from computer vision and artificial intelligence. In our approach to make videos available for retrieval in a large database of videos and images there are two necessary steps: First, the detection and extraction of shots from a video, which is done by a histogram based method and second, the construction of the separate frames in a shot to one still single images. This is performed by a mosaicing-technique. The resulting mosaiced image gives a one image visualization of the shot and can be analyzed by the ImageMiner-System. ImageMiner has been tested on several domains, (e.g. landscape images, technical drawings), which cover a wide range of applications.

  1. Biased lineup instructions and face identification from video images.

    Science.gov (United States)

    Thompson, W Burt; Johnson, Jaime

    2008-01-01

    Previous eyewitness memory research has shown that biased lineup instructions reduce identification accuracy, primarily by increasing false-positive identifications in target-absent lineups. Because some attempts at identification do not rely on a witness's memory of the perpetrator but instead involve matching photos to images on surveillance video, the authors investigated the effects of biased instructions on identification accuracy in a matching task. In Experiment 1, biased instructions did not affect the overall accuracy of participants who used video images as an identification aid, but nearly all correct decisions occurred with target-present photo spreads. Both biased and unbiased instructions resulted in high false-positive rates. In Experiment 2, which focused on video-photo matching accuracy with target-absent photo spreads, unbiased instructions led to more correct responses (i.e., fewer false positives). These findings suggest that investigators should not relax precautions against biased instructions when people attempt to match photos to an unfamiliar person recorded on video.

  2. Geometrical optics in correlated imaging systems

    International Nuclear Information System (INIS)

    Cao Dezhong; Xiong Jun; Wang Kaige

    2005-01-01

    We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding, respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the different features in the second-order spatial correlation, the two sources obey different imaging equations. The quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-conjugate mirror in the correlated imaging

  3. Prevalence and Correlates of Video and Internet Gaming Addiction among Hong Kong Adolescents: A Pilot Study

    OpenAIRE

    Wang, Chong-Wen; Chan, Cecilia L. W.; Mak, Kwok-Kei; Ho, Sai-Yin; Wong, Paul W. C.; Ho, Rainbow T. H.

    2014-01-01

    This pilot study investigated the patterns of video and internet gaming habits and the prevalence and correlates of gaming addiction in Hong Kong adolescents. A total of 503 students were recruited from two secondary schools. Addictive behaviors of video and internet gaming were assessed using the Game Addiction Scale. Risk factors for gaming addiction were examined using logistical regression. An overwhelming majority of the subjects (94%) reported using video or internet games, with one in ...

  4. Video Game Addiction among High School Students in Hordaland; Prevalence and Correlates

    OpenAIRE

    Bjordal, Sunniva Alsvik; Skumsnes, Toril; Ørland, Anette

    2011-01-01

    The aim of this study was to estimate the prevalence and correlates of video game addiction among high school students (N = 531) in Hordaland county, Norway. Video game addiction measured by the Game Addiction Scale for Adolescents was estimated both by a monothetic and a polythetic format. The prevalence was found to be 2.5% and 12.5%, respectively. Regression analyses were conducted where video game addiction comprised the dependent variable. Demographic variables, depression, anxiety, lone...

  5. Mechanical shape correlation : a novel integrated digital image correlation approach

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Hoefnagels, J.P.M.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    Mechanical Shape Correlation (MSC) is a novel integrated digital image correlation technique, used to determine the optimal set of constitutive parameters to describe the experimentally observed mechanical behavior of a test specimen, based on digital images taken during the experiment. In contrast

  6. Turbulent structure of concentration plumes through application of video imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dabberdt, W.F.; Martin, C. [National Center for Atmospheric Research, Boulder, CO (United States); Hoydysh, W.G.; Holynskyj, O. [Environmental Science & Services Corp., Long Island City, NY (United States)

    1994-12-31

    Turbulent flows and dispersion in the presence of building wakes and terrain-induced local circulations are particularly difficult to simulate with numerical models or measure with conventional fluid modeling and ambient measurement techniques. The problem stems from the complexity of the kinematics and the difficulty in making representative concentration measurements. New laboratory video imaging techniques are able to overcome many of these limitations and are being applied to study a range of difficult problems. Here the authors apply {open_quotes}tomographic{close_quotes} video imaging techniques to the study of the turbulent structure of an ideal elevated plume and the relationship of short-period peak concentrations to long-period average values. A companion paper extends application of the technique to characterization of turbulent plume-concentration fields in the wake of a complex building configuration.

  7. Registration and recognition in images and videos

    CERN Document Server

    Battiato, Sebastiano; Farinella, Giovanni

    2014-01-01

    Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art  research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems.  The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year.This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview o...

  8. A kind of video image digitizing circuit based on computer parallel port

    International Nuclear Information System (INIS)

    Wang Yi; Tang Le; Cheng Jianping; Li Yuanjing; Zhang Binquan

    2003-01-01

    A kind of video images digitizing circuit based on parallel port was developed to digitize the flash x ray images in our Multi-Channel Digital Flash X ray Imaging System. The circuit can digitize the video images and store in static memory. The digital images can be transferred to computer through parallel port and can be displayed, processed and stored. (authors)

  9. A study of time management: the correlation between video game usage and academic performance markers.

    Science.gov (United States)

    Anand, Vivek

    2007-08-01

    This study analyzes the correlation between video game usage and academic performance. Scholastic Aptitude Test (SAT) and grade-point average (GPA) scores were used to gauge academic performance. The amount of time a student spends playing video games has a negative correlation with students' GPA and SAT scores. As video game usage increases, GPA and SAT scores decrease. A chi-squared analysis found a p value for video game usage and GPA was greater than a 95% confidence level (0.005 video game usage also returned a p value that was significant (0.01 video games may have a detrimental effect on an individual's GPA and possibly on SAT scores. Although these results show statistical dependence, proving cause and effect remains difficult, since SAT scores represent a single test on a given day. The effects of video games maybe be cumulative; however, drawing a conclusion is difficult because SAT scores represent a measure of general knowledge. GPA versus video games is more reliable because both involve a continuous measurement of engaged activity and performance. The connection remains difficult because of the complex nature of student life and academic performance. Also, video game usage may simply be a function of specific personality types and characteristics.

  10. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Glaser, A [Dartmouth College, Hanover, NH - New Hampshire (United States); Jarvis, L [Dartmouth-Hitchcock Medical Center, City Of Lebanon, New Hampshire (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon); Andreozzi, J; Hitchcock, W; Pogue, B [Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  11. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ibrahim

    2014-01-01

    Full Text Available Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  12. Video multiple watermarking technique based on image interlacing using DWT.

    Science.gov (United States)

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  13. Large-Scale Query-by-Image Video Retrieval Using Bloom Filters

    OpenAIRE

    Araujo, Andre; Chaves, Jason; Lakshman, Haricharan; Angst, Roland; Girod, Bernd

    2016-01-01

    We consider the problem of using image queries to retrieve videos from a database. Our focus is on large-scale applications, where it is infeasible to index each database video frame independently. Our main contribution is a framework based on Bloom filters, which can be used to index long video segments, enabling efficient image-to-video comparisons. Using this framework, we investigate several retrieval architectures, by considering different types of aggregation and different functions to ...

  14. Videos and images from 25 years of teaching compressible flow

    Science.gov (United States)

    Settles, Gary

    2008-11-01

    Compressible flow is a very visual topic due to refractive optical flow visualization and the public fascination with high-speed flight. Films, video clips, and many images are available to convey this in the classroom. An overview of this material is given and selected examples are shown, drawn from educational films, the movies, television, etc., and accumulated over 25 years of teaching basic and advanced compressible-flow courses. The impact of copyright protection and the doctrine of fair use is also discussed.

  15. Evaluation of video-printer images as secondary CT images for clinical use

    International Nuclear Information System (INIS)

    Doi, K.; Rubin, J.

    1983-01-01

    Video-printer (VP) images of 24 abnormal views from a body CT scanner were made. Although the physical quality of printer images was poor, a group of radiologists and clinicians found that VP images are adequate to confirm the lesion described in the radiology report. The VP images can be used as secondary images, and they can be attached to a report as a part of the radiology service to increase communication between radiologists and clinicians and to prevent the loss of primary images from the radiology file

  16. Correlation Between Arthroscopy Simulator and Video Game Performance: A Cross-Sectional Study of 30 Volunteers Comparing 2- and 3-Dimensional Video Games.

    Science.gov (United States)

    Jentzsch, Thorsten; Rahm, Stefan; Seifert, Burkhardt; Farei-Campagna, Jan; Werner, Clément M L; Bouaicha, Samy

    2016-07-01

    To investigate the association between arthroscopy simulator performance and video game skills. This study compared the performances of 30 volunteers without experience performing arthroscopies in 3 different tasks of a validated virtual reality knee arthroscopy simulator with the video game experience using a questionnaire and actual performances in 5 different 2- and 3-dimensional (D) video games of varying genres on 2 different platforms. Positive correlations between knee arthroscopy simulator and video game performances (ρ = 0.63, P video game skills, they show a correlation with 2-D tile-matching puzzle games only for easier tasks with a rather limited focus, and highly correlate with 3-D sports and first-person shooter video games. These findings show that experienced and good 3-D gamers are better arthroscopists than nonexperienced and poor 3-D gamers. Level II, observational cross-sectional study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Correlates and consequences of exposure to video game violence: hostile personality, empathy, and aggressive behavior.

    Science.gov (United States)

    Bartholow, Bruce D; Sestir, Marc A; Davis, Edward B

    2005-11-01

    Research has shown that exposure to violent video games causes increases in aggression, but the mechanisms of this effect have remained elusive. Also, potential differences in short-term and long-term exposure are not well understood. An initial correlational study shows that video game violence exposure (VVE) is positively correlated with self-reports of aggressive behavior and that this relation is robust to controlling for multiple aspects of personality. A lab experiment showed that individuals low in VVE behave more aggressively after playing a violent video game than after a nonviolent game but that those high in VVE display relatively high levels of aggression regardless of game content. Mediational analyses show that trait hostility, empathy, and hostile perceptions partially account for the VVE effect on aggression. These findings suggest that repeated exposure to video game violence increases aggressive behavior in part via changes in cognitive and personality factors associated with desensitization.

  18. Image correlation method for DNA sequence alignment.

    Science.gov (United States)

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  19. High-speed holographic correlation system for video identification on the internet

    Science.gov (United States)

    Watanabe, Eriko; Ikeda, Kanami; Kodate, Kashiko

    2013-12-01

    Automatic video identification is important for indexing, search purposes, and removing illegal material on the Internet. By combining a high-speed correlation engine and web-scanning technology, we developed the Fast Recognition Correlation system (FReCs), a video identification system for the Internet. FReCs is an application thatsearches through a number of websites with user-generated content (UGC) and detects video content that violates copyright law. In this paper, we describe the FReCs configuration and an approach to investigating UGC websites using FReCs. The paper also illustrates the combination of FReCs with an optical correlation system, which is capable of easily replacing a digital authorization sever in FReCs with optical correlation.

  20. Parallel iterative decoding of transform domain Wyner-Ziv video using cross bitplane correlation

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    decoding scheme is proposed to improve the coding efficiency of TDWZ video codecs. The proposed parallel iterative LDPC decoding scheme is able to utilize cross bitplane correlation during decoding, by iteratively refining the soft-input, updating a modeled noise distribution and thereafter enhancing......In recent years, Transform Domain Wyner-Ziv (TDWZ) video coding has been proposed as an efficient Distributed Video Coding (DVC) solution, which fully or partly exploits the source statistics at the decoder to reduce the computational burden at the encoder. In this paper, a parallel iterative LDPC...

  1. Efficient image or video encryption based on spatiotemporal chaos system

    International Nuclear Information System (INIS)

    Lian Shiguo

    2009-01-01

    In this paper, an efficient image/video encryption scheme is constructed based on spatiotemporal chaos system. The chaotic lattices are used to generate pseudorandom sequences and then encrypt image blocks one by one. By iterating chaotic maps for certain times, the generated pseudorandom sequences obtain high initial-value sensitivity and good randomness. The pseudorandom-bits in each lattice are used to encrypt the Direct Current coefficient (DC) and the signs of the Alternating Current coefficients (ACs). Theoretical analysis and experimental results show that the scheme has good cryptographic security and perceptual security, and it does not affect the compression efficiency apparently. These properties make the scheme a suitable choice for practical applications.

  2. Quantification of video-taped images in microcirculation research using inexpensive imaging software (Adobe Photoshop).

    Science.gov (United States)

    Brunner, J; Krummenauer, F; Lehr, H A

    2000-04-01

    Study end-points in microcirculation research are usually video-taped images rather than numeric computer print-outs. Analysis of these video-taped images for the quantification of microcirculatory parameters usually requires computer-based image analysis systems. Most software programs for image analysis are custom-made, expensive, and limited in their applicability to selected parameters and study end-points. We demonstrate herein that an inexpensive, commercially available computer software (Adobe Photoshop), run on a Macintosh G3 computer with inbuilt graphic capture board provides versatile, easy to use tools for the quantification of digitized video images. Using images obtained by intravital fluorescence microscopy from the pre- and postischemic muscle microcirculation in the skinfold chamber model in hamsters, Photoshop allows simple and rapid quantification (i) of microvessel diameters, (ii) of the functional capillary density and (iii) of postischemic leakage of FITC-labeled high molecular weight dextran from postcapillary venules. We present evidence of the technical accuracy of the software tools and of a high degree of interobserver reliability. Inexpensive commercially available imaging programs (i.e., Adobe Photoshop) provide versatile tools for image analysis with a wide range of potential applications in microcirculation research.

  3. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    Science.gov (United States)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory

  4. Correlates of video games playing among adolescents in an Islamic country

    Directory of Open Access Journals (Sweden)

    Moeini Babak

    2010-05-01

    Full Text Available Abstract Background No study has ever explored the prevalence and correlates of video game playing among children in the Islamic Republic of Iran. This study describes patterns and correlates of excessive video game use in a random sample of middle-school students in Iran. Specifically, we examine the relationship between video game playing and psychological well-being, aggressive behaviors, and adolescents' perceived threat of video-computer game playing. Methods This cross-sectional study was performed with a random sample of 444 adolescents recruited from eight middle schools. A self-administered, anonymous questionnaire covered socio-demographics, video gaming behaviors, mental health status, self-reported aggressive behaviors, and perceived side effects of video game playing. Results Overall, participants spent an average of 6.3 hours per week playing video games. Moreover, 47% of participants reported that they had played one or more intensely violent games. Non-gamers reported suffering poorer mental health compared to excessive gamers. Both non-gamers and excessive gamers overall reported suffering poorer mental health compared to low or moderate players. Participants who initiated gaming at younger ages were more likely to score poorer in mental health measures. Participants' self-reported aggressive behaviors were associated with length of gaming. Boys, but not girls, who reported playing video games excessively showed more aggressive behaviors. A multiple binary logistic regression shows that when controlling for other variables, older students, those who perceived less serious side effects of video gaming, and those who have personal computers, were more likely to report that they had played video games excessively. Conclusion Our data show a curvilinear relationship between video game playing and mental health outcomes, with "moderate" gamers faring best and "excessive" gamers showing mild increases in problematic behaviors

  5. Correlates of video games playing among adolescents in an Islamic country

    Science.gov (United States)

    2010-01-01

    Background No study has ever explored the prevalence and correlates of video game playing among children in the Islamic Republic of Iran. This study describes patterns and correlates of excessive video game use in a random sample of middle-school students in Iran. Specifically, we examine the relationship between video game playing and psychological well-being, aggressive behaviors, and adolescents' perceived threat of video-computer game playing. Methods This cross-sectional study was performed with a random sample of 444 adolescents recruited from eight middle schools. A self-administered, anonymous questionnaire covered socio-demographics, video gaming behaviors, mental health status, self-reported aggressive behaviors, and perceived side effects of video game playing. Results Overall, participants spent an average of 6.3 hours per week playing video games. Moreover, 47% of participants reported that they had played one or more intensely violent games. Non-gamers reported suffering poorer mental health compared to excessive gamers. Both non-gamers and excessive gamers overall reported suffering poorer mental health compared to low or moderate players. Participants who initiated gaming at younger ages were more likely to score poorer in mental health measures. Participants' self-reported aggressive behaviors were associated with length of gaming. Boys, but not girls, who reported playing video games excessively showed more aggressive behaviors. A multiple binary logistic regression shows that when controlling for other variables, older students, those who perceived less serious side effects of video gaming, and those who have personal computers, were more likely to report that they had played video games excessively. Conclusion Our data show a curvilinear relationship between video game playing and mental health outcomes, with "moderate" gamers faring best and "excessive" gamers showing mild increases in problematic behaviors. Interestingly, "non-gamers" clearly

  6. Correlates of video games playing among adolescents in an Islamic country.

    Science.gov (United States)

    Allahverdipour, Hamid; Bazargan, Mohsen; Farhadinasab, Abdollah; Moeini, Babak

    2010-05-27

    No study has ever explored the prevalence and correlates of video game playing among children in the Islamic Republic of Iran. This study describes patterns and correlates of excessive video game use in a random sample of middle-school students in Iran. Specifically, we examine the relationship between video game playing and psychological well-being, aggressive behaviors, and adolescents' perceived threat of video-computer game playing. This cross-sectional study was performed with a random sample of 444 adolescents recruited from eight middle schools. A self-administered, anonymous questionnaire covered socio-demographics, video gaming behaviors, mental health status, self-reported aggressive behaviors, and perceived side effects of video game playing. Overall, participants spent an average of 6.3 hours per week playing video games. Moreover, 47% of participants reported that they had played one or more intensely violent games. Non-gamers reported suffering poorer mental health compared to excessive gamers. Both non-gamers and excessive gamers overall reported suffering poorer mental health compared to low or moderate players. Participants who initiated gaming at younger ages were more likely to score poorer in mental health measures. Participants' self-reported aggressive behaviors were associated with length of gaming. Boys, but not girls, who reported playing video games excessively showed more aggressive behaviors. A multiple binary logistic regression shows that when controlling for other variables, older students, those who perceived less serious side effects of video gaming, and those who have personal computers, were more likely to report that they had played video games excessively. Our data show a curvilinear relationship between video game playing and mental health outcomes, with "moderate" gamers faring best and "excessive" gamers showing mild increases in problematic behaviors. Interestingly, "non-gamers" clearly show the worst outcomes. Therefore

  7. Ultrasonic Detection Using Correlation Images (Preprint)

    National Research Council Canada - National Science Library

    Cepel, Raini; Ho, K. C; Rinker, Brett A; Palmer, Donald D; Neal, Steven P

    2006-01-01

    .... In this paper, we describe an amplitude independent approach for imaging and detection based on the similarity of adjacent signals, quantified by the correlation coefficient calculated between A-scans...

  8. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    Science.gov (United States)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  9. Neutron imaging system based on a video camera

    International Nuclear Information System (INIS)

    Dinca, M.

    2004-01-01

    The non-destructive testing with cold, thermal, epithermal or fast neutrons is nowadays more and more useful because the world-wide level of industrial development requires considerably higher standards of quality of manufactured products and reliability of technological processes especially where any deviation from standards could result in large-scale catastrophic consequences or human loses. Thanks to their properties, easily obtained and very good discrimination of the materials that penetrate, the thermal neutrons are the most used probe. The methods involved for this technique have advanced from neutron radiography based on converter screens and radiological films to neutron radioscopy based on video cameras, that is, from static images to dynamic images. Many neutron radioscopy systems have been used in the past with various levels of success. The quality of an image depends on the quality of the neutron beam and the type of the neutron imaging system. For real time investigations there are involved tube type cameras, CCD cameras and recently CID cameras that capture the image from an appropriate scintillator through the agency of a mirror. The analog signal of the camera is then converted into digital signal by the signal processing technology included into the camera. The image acquisition card or frame grabber from a PC converts the digital signal into an image. The image is formatted and processed by image analysis software. The scanning position of the object is controlled by the computer that commands the electrical motors that move horizontally, vertically and rotate the table of the object. Based on this system, a lot of static image acquisitions, real time non-destructive investigations of dynamic processes and finally, tomographic investigations of the small objects are done in a short time. A system based on a CID camera is presented. Fundamental differences between CCD and CID cameras lie in their pixel readout structure and technique. CIDs

  10. Neurocysticercosis: Correlative pathomorphology and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, J.; Hewlett, R.; Alheit, B.; Bowen, R.

    1988-02-01

    CT and MR images of 32 patients with neurocysticercosis were correlated with pathomorphology. Gross morphological features of cystic larvae, complex arachnoid cysts, granulomatous abscesses, basal meningitis and mineralised nodules correlated closely with the images obtained, especially on MR, where resolution permitted visualisation of larval protoscolices. Our material indicates three forms of the natural history of neurocysticercosis related chiefly to anatomic location, and provides details of the evolution of large, complex arachnoid cysts.

  11. Neurocysticercosis: Correlative pathomorphology and MR imaging

    International Nuclear Information System (INIS)

    Lotz, J.; Hewlett, R.; Alheit, B.; Tygerberg Hospital, Stellenbosch; Bowen, R.

    1988-01-01

    CT and MR images of 32 patients with neurocysticercosis were correlated with pathomorphology. Gross morphological features of cystic larvae, complex arachnoid cysts, granulomatous abscesses, basal meningitis and mineralised nodules correlated closely with the images obtained, especially on MR, where resolution permitted visualisation of larval protoscolices. Our material indicates three forms of the natural history of neurocysticercosis related chiefly to anatomic location, and provides details of the evolution of large, complex arachnoid cysts. (orig.)

  12. An introduction to video image compression and authentication technology for safeguards applications

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1995-01-01

    Verification of a video image has been a major problem for safeguards for several years. Various verification schemes have been tried on analog video signals ever since the mid-1970's. These schemes have provided a measure of protection but have never been widely adopted. The development of reasonably priced complex video processing integrated circuits makes it possible to digitize a video image and then compress the resulting digital file into a smaller file without noticeable loss of resolution. Authentication and/or encryption algorithms can be more easily applied to digital video files that have been compressed. The compressed video files require less time for algorithm processing and image transmission. An important safeguards application for authenticated, compressed, digital video images is in unattended video surveillance systems and remote monitoring systems. The use of digital images in the surveillance system makes it possible to develop remote monitoring systems that send images over narrow bandwidth channels such as the common telephone line. This paper discusses the video compression process, authentication algorithm, and data format selected to transmit and store the authenticated images

  13. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    Science.gov (United States)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  14. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  15. Cryptanalysis of a spatiotemporal chaotic image/video cryptosystem

    International Nuclear Information System (INIS)

    Rhouma, Rhouma; Belghith, Safya

    2008-01-01

    This Letter proposes two different attacks on a recently proposed chaotic cryptosystem for images and videos in [S. Lian, Chaos Solitons Fractals (2007), (doi: 10.1016/j.chaos.2007.10.054)]. The cryptosystem under study displays weakness in the generation of the keystream. The encryption is made by generating a keystream mixed with blocks generated from the plaintext and the ciphertext in a CBC mode design. The so obtained keystream remains unchanged for every encryption procedure. Guessing the keystream leads to guessing the key. Two possible attacks are then able to break the whole cryptosystem based on this drawback in generating the keystream. We propose also to change the description of the cryptosystem to be robust against the described attacks by making it in a PCBC mode design

  16. Degraded visual environment image/video quality metrics

    Science.gov (United States)

    Baumgartner, Dustin D.; Brown, Jeremy B.; Jacobs, Eddie L.; Schachter, Bruce J.

    2014-06-01

    A number of image quality metrics (IQMs) and video quality metrics (VQMs) have been proposed in the literature for evaluating techniques and systems for mitigating degraded visual environments. Some require both pristine and corrupted imagery. Others require patterned target boards in the scene. None of these metrics relates well to the task of landing a helicopter in conditions such as a brownout dust cloud. We have developed and used a variety of IQMs and VQMs related to the pilot's ability to detect hazards in the scene and to maintain situational awareness. Some of these metrics can be made agnostic to sensor type. Not only are the metrics suitable for evaluating algorithm and sensor variation, they are also suitable for choosing the most cost effective solution to improve operating conditions in degraded visual environments.

  17. Digital Path Approach Despeckle Filter for Ultrasound Imaging and Video

    Directory of Open Access Journals (Sweden)

    Marek Szczepański

    2017-01-01

    Full Text Available We propose a novel filtering technique capable of reducing the multiplicative noise in ultrasound images that is an extension of the denoising algorithms based on the concept of digital paths. In this approach, the filter weights are calculated taking into account the similarity between pixel intensities that belongs to the local neighborhood of the processed pixel, which is called a path. The output of the filter is estimated as the weighted average of pixels connected by the paths. The way of creating paths is pivotal and determines the effectiveness and computational complexity of the proposed filtering design. Such procedure can be effective for different types of noise but fail in the presence of multiplicative noise. To increase the filtering efficiency for this type of disturbances, we introduce some improvements of the basic concept and new classes of similarity functions and finally extend our techniques to a spatiotemporal domain. The experimental results prove that the proposed algorithm provides the comparable results with the state-of-the-art techniques for multiplicative noise removal in ultrasound images and it can be applied for real-time image enhancement of video streams.

  18. Image quality assessment for video stream recognition systems

    Science.gov (United States)

    Chernov, Timofey S.; Razumnuy, Nikita P.; Kozharinov, Alexander S.; Nikolaev, Dmitry P.; Arlazarov, Vladimir V.

    2018-04-01

    Recognition and machine vision systems have long been widely used in many disciplines to automate various processes of life and industry. Input images of optical recognition systems can be subjected to a large number of different distortions, especially in uncontrolled or natural shooting conditions, which leads to unpredictable results of recognition systems, making it impossible to assess their reliability. For this reason, it is necessary to perform quality control of the input data of recognition systems, which is facilitated by modern progress in the field of image quality evaluation. In this paper, we investigate the approach to designing optical recognition systems with built-in input image quality estimation modules and feedback, for which the necessary definitions are introduced and a model for describing such systems is constructed. The efficiency of this approach is illustrated by the example of solving the problem of selecting the best frames for recognition in a video stream for a system with limited resources. Experimental results are presented for the system for identity documents recognition, showing a significant increase in the accuracy and speed of the system under simulated conditions of automatic camera focusing, leading to blurring of frames.

  19. ATR/OTR-SY Tank Camera Purge System and in Tank Color Video Imaging System

    International Nuclear Information System (INIS)

    Werry, S.M.

    1995-01-01

    This procedure will document the satisfactory operation of the 101-SY tank Camera Purge System (CPS) and 101-SY in tank Color Camera Video Imaging System (CCVIS). Included in the CPRS is the nitrogen purging system safety interlock which shuts down all the color video imaging system electronics within the 101-SY tank vapor space during loss of nitrogen purge pressure

  20. Real-time UAV trajectory generation using feature points matching between video image sequences

    Science.gov (United States)

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  1. Skeletal MR imaging: Correlation with skeletal scintigraphy

    International Nuclear Information System (INIS)

    Colletti, P.M.; Raval, J.K.; Ford, P.V.; Benson, R.C.; Kerr, R.M.; Boswell, W.D.; Siegel, M.E.; Ralls, P.W.

    1987-01-01

    Skeletal MR images bone marrow while skeletal scintigraphy uses bone metabolism to demonstrate abnormalities. The purpose of this paper is to correlate these MR and scintigraphic findings. T1 and T2 MR images at 0.5 T were correlated with planar bone scintigraphy (RN) using Tc-99m MDP in 56 patients. Of 23 cases with suspected spinal metastases, 19 were positive by MR imaging, 16 by RN. Individual lesions were shown better by MR imaging in five and by RN in two. These two cases had scoliosis, a potential difficulty with MR imaging. In 14 cases of suspected avascular necrosis (AVN), MR imaging was positive in 13 while RN was positive in ten. One negative case by RN had bilateral AVN by MR imaging. Four skull lesions shown easily by RN were seen only in retrospect on MR images. MR imaging is advantageous in evaluating bones with predominant marrow such as vertebrae or the femoral head, while RN is superior in areas primarily composed of cortical bone such as the skull

  2. Blur Quantification of Medical Images: Dicom Media, Whole Slide Images, Generic Images and Videos

    Directory of Open Access Journals (Sweden)

    D. Ameisen

    2016-10-01

    platform. The focus map may be displayed on the web interface next to the thumbnail link to the WSI, or in the viewer as a semi-transparent layer over the WSI, or over the WSI map. During the test phase and first integrations in laboratories and hospitals as well as in the FlexMIm project, more than 5000 whole slide images of multiple formats (Hamamatsu NDPI, Aperio SVS, Mirax MRXS, JPEG2000 … as well as hundreds of thousands of images of various formats (DICOM, TIFF, PNG, JPEG ... and videos (H264 have been analyzed using our standalone software or our C, C++, Java and Python libraries. Using default or customizable thresholds’ profiles, WSI are sorted as “accepted”, “to review”, “to rescan”. In order to target the samples contained inside each WSI, special attention was paid to detecting blank tiles. Dynamic blank tile detection based on statistical analysis of each WSI was built and successfully validated for all our samples. Results More than 20 trillion pixels have been analyzed at a 3.5 billion pixels per quad-core processor per minute speed rate. Quantified results can be stored in JSON formatted logs or inside a MySQL or MongoDB database or converted to any chosen data structure to be interoperable with existing software, each tile’s result being accessible in addition to the quality map and the global quality results. This solution is easily scalable as images can be stored at different locations, analysis can be distributed amongst local or remote servers, and quantified results can be stored in remote databases.

  3. Ghost imaging based on Pearson correlation coefficients

    International Nuclear Information System (INIS)

    Yu Wen-Kai; Yao Xu-Ri; Liu Xue-Feng; Li Long-Zhen; Zhai Guang-Jie

    2015-01-01

    Correspondence imaging is a new modality of ghost imaging, which can retrieve a positive/negative image by simple conditional averaging of the reference frames that correspond to relatively large/small values of the total intensity measured at the bucket detector. Here we propose and experimentally demonstrate a more rigorous and general approach in which a ghost image is retrieved by calculating a Pearson correlation coefficient between the bucket detector intensity and the brightness at a given pixel of the reference frames, and at the next pixel, and so on. Furthermore, we theoretically provide a statistical interpretation of these two imaging phenomena, and explain how the error depends on the sample size and what kind of distribution the error obeys. According to our analysis, the image signal-to-noise ratio can be greatly improved and the sampling number reduced by means of our new method. (paper)

  4. Heterogeneity image patch index and its application to consumer video summarization.

    Science.gov (United States)

    Dang, Chinh T; Radha, Hayder

    2014-06-01

    Automatic video summarization is indispensable for fast browsing and efficient management of large video libraries. In this paper, we introduce an image feature that we refer to as heterogeneity image patch (HIP) index. The proposed HIP index provides a new entropy-based measure of the heterogeneity of patches within any picture. By evaluating this index for every frame in a video sequence, we generate a HIP curve for that sequence. We exploit the HIP curve in solving two categories of video summarization applications: key frame extraction and dynamic video skimming. Under the key frame extraction frame-work, a set of candidate key frames is selected from abundant video frames based on the HIP curve. Then, a proposed patch-based image dissimilarity measure is used to create affinity matrix of these candidates. Finally, a set of key frames is extracted from the affinity matrix using a min–max based algorithm. Under video skimming, we propose a method to measure the distance between a video and its skimmed representation. The video skimming problem is then mapped into an optimization framework and solved by minimizing a HIP-based distance for a set of extracted excerpts. The HIP framework is pixel-based and does not require semantic information or complex camera motion estimation. Our simulation results are based on experiments performed on consumer videos and are compared with state-of-the-art methods. It is shown that the HIP approach outperforms other leading methods, while maintaining low complexity.

  5. Reliability-guided digital image correlation for image deformation measurement

    International Nuclear Information System (INIS)

    Pan Bing

    2009-01-01

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness

  6. Frequency identification of vibration signals using video camera image data.

    Science.gov (United States)

    Jeng, Yih-Nen; Wu, Chia-Hung

    2012-10-16

    This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  7. Frequency Identification of Vibration Signals Using Video Camera Image Data

    Directory of Open Access Journals (Sweden)

    Chia-Hung Wu

    2012-10-01

    Full Text Available This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  8. Prevalence and Correlates of Video and Internet Gaming Addiction among Hong Kong Adolescents: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chong-Wen Wang

    2014-01-01

    Full Text Available This pilot study investigated the patterns of video and internet gaming habits and the prevalence and correlates of gaming addiction in Hong Kong adolescents. A total of 503 students were recruited from two secondary schools. Addictive behaviors of video and internet gaming were assessed using the Game Addiction Scale. Risk factors for gaming addiction were examined using logistical regression. An overwhelming majority of the subjects (94% reported using video or internet games, with one in six (15.6% identified as having a gaming addiction. The risk for gaming addiction was significantly higher among boys, those with poor academic performance, and those who preferred multiplayer online games. Gaming addiction was significantly associated with the average time spent gaming per week, frequency of spending money on gaming, period of spending money on gaming, perceived family disharmony, and having more close friends. These results suggest that effective educational and preventative programs or strategies are needed.

  9. Prevalence and correlates of video and internet gaming addiction among Hong Kong adolescents: a pilot study.

    Science.gov (United States)

    Wang, Chong-Wen; Chan, Cecilia L W; Mak, Kwok-Kei; Ho, Sai-Yin; Wong, Paul W C; Ho, Rainbow T H

    2014-01-01

    This pilot study investigated the patterns of video and internet gaming habits and the prevalence and correlates of gaming addiction in Hong Kong adolescents. A total of 503 students were recruited from two secondary schools. Addictive behaviors of video and internet gaming were assessed using the Game Addiction Scale. Risk factors for gaming addiction were examined using logistical regression. An overwhelming majority of the subjects (94%) reported using video or internet games, with one in six (15.6%) identified as having a gaming addiction. The risk for gaming addiction was significantly higher among boys, those with poor academic performance, and those who preferred multiplayer online games. Gaming addiction was significantly associated with the average time spent gaming per week, frequency of spending money on gaming, period of spending money on gaming, perceived family disharmony, and having more close friends. These results suggest that effective educational and preventative programs or strategies are needed.

  10. Quality Assessment of Adaptive Bitrate Videos using Image Metrics and Machine Learning

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Forchhammer, Søren; Brunnström, Kjell

    2015-01-01

    Adaptive bitrate (ABR) streaming is widely used for distribution of videos over the internet. In this work, we investigate how well we can predict the quality of such videos using well-known image metrics, information about the bitrate levels, and a relatively simple machine learning method...

  11. Enhancing Perceived Quality of Compressed Images and Video with Anisotropic Diffusion and Fuzzy Filtering

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Korhonen, Jari; Forchhammer, Søren

    2013-01-01

    and subjective results on JPEG compressed images, as well as MJPEG and H.264/AVC compressed video, indicate that the proposed algorithms employing directional and spatial fuzzy filters achieve better artifact reduction than other methods. In particular, robust improvements with H.264/AVC video have been gained...

  12. Potential usefulness of a video printer for producing secondary images from digitized chest radiographs

    Science.gov (United States)

    Nishikawa, Robert M.; MacMahon, Heber; Doi, Kunio; Bosworth, Eric

    1991-05-01

    Communication between radiologists and clinicians could be improved if a secondary image (copy of the original image) accompanied the radiologic report. In addition, the number of lost original radiographs could be decreased, since clinicians would have less need to borrow films. The secondary image should be simple and inexpensive to produce, while providing sufficient image quality for verification of the diagnosis. We are investigating the potential usefulness of a video printer for producing copies of radiographs, i.e. images printed on thermal paper. The video printer we examined (Seikosha model VP-3500) can provide 64 shades of gray. It is capable of recording images up to 1,280 pixels by 1,240 lines and can accept any raster-type video signal. The video printer was characterized in terms of its linearity, contrast, latitude, resolution, and noise properties. The quality of video-printer images was also evaluated in an observer study using portable chest radiographs. We found that observers could confirm up to 90 of the reported findings in the thorax using video- printer images, when the original radiographs were of high quality. The number of verified findings was diminished when high spatial resolution was required (e.g. detection of a subtle pneumothorax) or when a low-contrast finding was located in the mediastinal area or below the diaphragm (e.g. nasogastric tubes).

  13. What do we do with all this video? Better understanding public engagement for image and video annotation

    Science.gov (United States)

    Wiener, C.; Miller, A.; Zykov, V.

    2016-12-01

    Advanced robotic vehicles are increasingly being used by oceanographic research vessels to enable more efficient and widespread exploration of the ocean, particularly the deep ocean. With cutting-edge capabilities mounted onto robotic vehicles, data at high resolutions is being generated more than ever before, enabling enhanced data collection and the potential for broader participation. For example, high resolution camera technology not only improves visualization of the ocean environment, but also expands the capacity to engage participants remotely through increased use of telepresence and virtual reality techniques. Schmidt Ocean Institute is a private, non-profit operating foundation established to advance the understanding of the world's oceans through technological advancement, intelligent observation and analysis, and open sharing of information. Telepresence-enabled research is an important component of Schmidt Ocean Institute's science research cruises, which this presentation will highlight. Schmidt Ocean Institute is one of the only research programs that make their entire underwater vehicle dive series available online, creating a collection of video that enables anyone to follow deep sea research in real time. We encourage students, educators and the general public to take advantage of freely available dive videos. Additionally, other SOI-supported internet platforms, have engaged the public in image and video annotation activities. Examples of these new online platforms, which utilize citizen scientists to annotate scientific image and video data will be provided. This presentation will include an introduction to SOI-supported video and image tagging citizen science projects, real-time robot tracking, live ship-to-shore communications, and an array of outreach activities that enable scientists to interact with the public and explore the ocean in fascinating detail.

  14. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    International Nuclear Information System (INIS)

    Jarvis, Lesley A.; Zhang, Rongxiao; Gladstone, David J.; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael; Pogue, Brian W.

    2014-01-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy

  15. Do Stereotypic Images in Video Games Affect Attitudes and Behavior? Adolescents' Perspectives.

    Science.gov (United States)

    Henning, Alexandra; Brenick, Alaina; Killen, Melanie; O'Connor, Alexander; Collins, Michael J

    This study examined adolescents' attitudes about video games along with their self-reported play frequency. Ninth and eleventh grade students (N = 361), approximately evenly divided by grade and gender, were surveyed about whether video games have stereotypic images, involve harmful consequences or affect one's attitudes, whether game playing should be regulated by parents or the government, and whether game playing is a personal choice. Adolescents who played video games frequently showed decreased concern about the effects that games with negatively stereotyped images may have on the players' attitudes compared to adolescents who played games infrequently or not at all. With age, adolescents were more likely to view images as negative, but were also less likely to recognize stereotypic images of females as harmful and more likely to judge video-game playing as a personal choice. The paper discusses other findings in relation to research on adolescents' social cognitive judgments.

  16. A video-image study of electrolytic flow structure in parallel electric-magnetic fields

    International Nuclear Information System (INIS)

    Gu, Z.H.; Fahidy, T.Z.

    1987-01-01

    The structure of free convective flow propagating from a vertical cathode into the electrolyte bulk has been studied via video-imaging. The enhancing effect of imposed horizontal uniform magnetic fields is manifest by vortex propagation and bifurcating flow

  17. Overview of image processing tools to extract physical information from JET videos

    Science.gov (United States)

    Craciunescu, T.; Murari, A.; Gelfusa, M.; Tiseanu, I.; Zoita, V.; EFDA Contributors, JET

    2014-11-01

    In magnetic confinement nuclear fusion devices such as JET, the last few years have witnessed a significant increase in the use of digital imagery, not only for the surveying and control of experiments, but also for the physical interpretation of results. More than 25 cameras are routinely used for imaging on JET in the infrared (IR) and visible spectral regions. These cameras can produce up to tens of Gbytes per shot and their information content can be very different, depending on the experimental conditions. However, the relevant information about the underlying physical processes is generally of much reduced dimensionality compared to the recorded data. The extraction of this information, which allows full exploitation of these diagnostics, is a challenging task. The image analysis consists, in most cases, of inverse problems which are typically ill-posed mathematically. The typology of objects to be analysed is very wide, and usually the images are affected by noise, low levels of contrast, low grey-level in-depth resolution, reshaping of moving objects, etc. Moreover, the plasma events have time constants of ms or tens of ms, which imposes tough conditions for real-time applications. On JET, in the last few years new tools and methods have been developed for physical information retrieval. The methodology of optical flow has allowed, under certain assumptions, the derivation of information about the dynamics of video objects associated with different physical phenomena, such as instabilities, pellets and filaments. The approach has been extended in order to approximate the optical flow within the MPEG compressed domain, allowing the manipulation of the large JET video databases and, in specific cases, even real-time data processing. The fast visible camera may provide new information that is potentially useful for disruption prediction. A set of methods, based on the extraction of structural information from the visual scene, have been developed for the

  18. Overview of image processing tools to extract physical information from JET videos

    International Nuclear Information System (INIS)

    Craciunescu, T; Tiseanu, I; Zoita, V; Murari, A; Gelfusa, M

    2014-01-01

    In magnetic confinement nuclear fusion devices such as JET, the last few years have witnessed a significant increase in the use of digital imagery, not only for the surveying and control of experiments, but also for the physical interpretation of results. More than 25 cameras are routinely used for imaging on JET in the infrared (IR) and visible spectral regions. These cameras can produce up to tens of Gbytes per shot and their information content can be very different, depending on the experimental conditions. However, the relevant information about the underlying physical processes is generally of much reduced dimensionality compared to the recorded data. The extraction of this information, which allows full exploitation of these diagnostics, is a challenging task. The image analysis consists, in most cases, of inverse problems which are typically ill-posed mathematically. The typology of objects to be analysed is very wide, and usually the images are affected by noise, low levels of contrast, low grey-level in-depth resolution, reshaping of moving objects, etc. Moreover, the plasma events have time constants of ms or tens of ms, which imposes tough conditions for real-time applications. On JET, in the last few years new tools and methods have been developed for physical information retrieval. The methodology of optical flow has allowed, under certain assumptions, the derivation of information about the dynamics of video objects associated with different physical phenomena, such as instabilities, pellets and filaments. The approach has been extended in order to approximate the optical flow within the MPEG compressed domain, allowing the manipulation of the large JET video databases and, in specific cases, even real-time data processing. The fast visible camera may provide new information that is potentially useful for disruption prediction. A set of methods, based on the extraction of structural information from the visual scene, have been developed for the

  19. Improved Side Information Generation for Distributed Video Coding by Exploiting Spatial and Temporal Correlations

    Directory of Open Access Journals (Sweden)

    Ye Shuiming

    2009-01-01

    Full Text Available Distributed video coding (DVC is a video coding paradigm allowing low complexity encoding for emerging applications such as wireless video surveillance. Side information (SI generation is a key function in the DVC decoder, and plays a key-role in determining the performance of the codec. This paper proposes an improved SI generation for DVC, which exploits both spatial and temporal correlations in the sequences. Partially decoded Wyner-Ziv (WZ frames, based on initial SI by motion compensated temporal interpolation, are exploited to improve the performance of the whole SI generation. More specifically, an enhanced temporal frame interpolation is proposed, including motion vector refinement and smoothing, optimal compensation mode selection, and a new matching criterion for motion estimation. The improved SI technique is also applied to a new hybrid spatial and temporal error concealment scheme to conceal errors in WZ frames. Simulation results show that the proposed scheme can achieve up to 1.0 dB improvement in rate distortion performance in WZ frames for video with high motion, when compared to state-of-the-art DVC. In addition, both the objective and perceptual qualities of the corrupted sequences are significantly improved by the proposed hybrid error concealment scheme, outperforming both spatial and temporal concealments alone.

  20. Moving object detection in top-view aerial videos improved by image stacking

    Science.gov (United States)

    Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen

    2017-08-01

    Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.

  1. A no-reference image and video visual quality metric based on machine learning

    Science.gov (United States)

    Frantc, Vladimir; Voronin, Viacheslav; Semenishchev, Evgenii; Minkin, Maxim; Delov, Aliy

    2018-04-01

    The paper presents a novel visual quality metric for lossy compressed video quality assessment. High degree of correlation with subjective estimations of quality is due to using of a convolutional neural network trained on a large amount of pairs video sequence-subjective quality score. We demonstrate how our predicted no-reference quality metric correlates with qualitative opinion in a human observer study. Results are shown on the EVVQ dataset with comparison existing approaches.

  2. Personal, social and game-related correlates of active and non-active video gaming among Dutch gaming adolescents

    NARCIS (Netherlands)

    Simons, M.; Vet, de E.W.M.L.; Chinapaw, M.; Boer, de M.R.; Seidell, J.C.; Brug, J.

    2014-01-01

    Background: Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games—active games—seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of

  3. Comparative study of image registration techniques for bladder video-endoscopy

    Science.gov (United States)

    Ben Hamadou, Achraf; Soussen, Charles; Blondel, Walter; Daul, Christian; Wolf, Didier

    2009-07-01

    Bladder cancer is widely spread in the world. Many adequate diagnosis techniques exist. Video-endoscopy remains the standard clinical procedure for visual exploration of the bladder internal surface. However, video-endoscopy presents the limit that the imaged area for each image is about nearly 1 cm2. And, lesions are, typically, spread over several images. The aim of this contribution is to assess the performance of two mosaicing algorithms leading to the construction of panoramic maps (one unique image) of bladder walls. The quantitative comparison study is performed on a set of real endoscopic exam data and on simulated data relative to bladder phantom.

  4. The correlation between playing violent video games and bullying among adolescents in Serbia

    Directory of Open Access Journals (Sweden)

    Jevtić Ana

    2013-01-01

    Full Text Available The aim of this study was to determine the frequency of playing video games among Serbian adolescents, the video game violence and the quality of parental control. We wanted to relate the frequency of playing, the video game violence, the bullying behaviour in schools, and GPA. The study involved boys and girls (N = 578 from four age groups (12, 14, 16, 18 years. Research results have shown that most participants play video games (75.1%. There are significantly more boys than girls among them, as well as more older than younger participants. Parental control is weak; a very small percentage of the sample (4.4% reported that their parents had forbidden them to play a game because of its content. The parents mostly never check which games their children play (50.2 %, and the majority (40.6 % do not even talk with the children about the games they play. GPA is negatively correlated with the frequency of playing (r = -0.228, p<.01 and the frequency remains a significant predictor of GPA even when controlling for age and gender. Those who play more violent games display more bullying behaviour (r=0.403, p<.01. This effect remains significant even when controlling for gender, age, the amount of TV violence and frequency of watching TV. The amount of violence in video games as a predictor has a unique contribution to the explanation of individual differences in bullying; the factor has a small but significant contribution to the explanation of this form of aggressive behaviour.

  5. Video deraining and desnowing using temporal correlation and low-rank matrix completion.

    Science.gov (United States)

    Kim, Jin-Hwan; Sim, Jae-Young; Kim, Chang-Su

    2015-09-01

    A novel algorithm to remove rain or snow streaks from a video sequence using temporal correlation and low-rank matrix completion is proposed in this paper. Based on the observation that rain streaks are too small and move too fast to affect the optical flow estimation between consecutive frames, we obtain an initial rain map by subtracting temporally warped frames from a current frame. Then, we decompose the initial rain map into basis vectors based on the sparse representation, and classify those basis vectors into rain streak ones and outliers with a support vector machine. We then refine the rain map by excluding the outliers. Finally, we remove the detected rain streaks by employing a low-rank matrix completion technique. Furthermore, we extend the proposed algorithm to stereo video deraining. Experimental results demonstrate that the proposed algorithm detects and removes rain or snow streaks efficiently, outperforming conventional algorithms.

  6. Idiopathic interstitial pneumonias: imaging-pathology correlation

    International Nuclear Information System (INIS)

    Ellis, Stephen M.; Hansell, David M.

    2002-01-01

    The terminology related to idiopathic interstitial pneumonia (IIP) remains confusing and in some cases wholly inaccurate. In addition, a greater understanding of the correlation between high-resolution computed tomography (HRCT) appearances and the corresponding histopathological changes found in the interstitial pneumonias has resulted in a crucial role for HRCT in the investigation of IIPs. The role of the radiologist is becoming increasingly important with a strong emphasis on establishing a diagnosis without resorting to lung biopsy. We aim to clarify the current classification of the IIPs highlighting their clinical, pathological and imaging characteristics in order to assist the radiologist in performing their increasingly important diagnostic role. (orig.)

  7. Image and video compression for multimedia engineering fundamentals, algorithms, and standards

    CERN Document Server

    Shi, Yun Q

    2008-01-01

    Part I: Fundamentals Introduction Quantization Differential Coding Transform Coding Variable-Length Coding: Information Theory Results (II) Run-Length and Dictionary Coding: Information Theory Results (III) Part II: Still Image Compression Still Image Coding: Standard JPEG Wavelet Transform for Image Coding: JPEG2000 Nonstandard Still Image Coding Part III: Motion Estimation and Compensation Motion Analysis and Motion Compensation Block Matching Pel-Recursive Technique Optical Flow Further Discussion and Summary on 2-D Motion Estimation Part IV: Video Compression Fundam

  8. Fast Orientation of Video Images of Buildings Acquired from a UAV without Stabilization

    Science.gov (United States)

    Kedzierski, Michal; Delis, Paulina

    2016-01-01

    The aim of this research was to assess the possibility of conducting an absolute orientation procedure for video imagery, in which the external orientation for the first image was typical for aerial photogrammetry whereas the external orientation of the second was typical for terrestrial photogrammetry. Starting from the collinearity equations, assuming that the camera tilt angle is equal to 90°, a simplified mathematical model is proposed. The proposed method can be used to determine the X, Y, Z coordinates of points based on a set of collinearity equations of a pair of images. The use of simplified collinearity equations can considerably shorten the processing tine of image data from Unmanned Aerial Vehicles (UAVs), especially in low cost systems. The conducted experiments have shown that it is possible to carry out a complete photogrammetric project of an architectural structure using a camera tilted 85°–90° (φ or ω) and simplified collinearity equations. It is also concluded that there is a correlation between the speed of the UAV and the discrepancy between the established and actual camera tilt angles. PMID:27347954

  9. Fast Orientation of Video Images of Buildings Acquired from a UAV without Stabilization

    Directory of Open Access Journals (Sweden)

    Michal Kedzierski

    2016-06-01

    Full Text Available The aim of this research was to assess the possibility of conducting an absolute orientation procedure for video imagery, in which the external orientation for the first image was typical for aerial photogrammetry whereas the external orientation of the second was typical for terrestrial photogrammetry. Starting from the collinearity equations, assuming that the camera tilt angle is equal to 90°, a simplified mathematical model is proposed. The proposed method can be used to determine the X, Y, Z coordinates of points based on a set of collinearity equations of a pair of images. The use of simplified collinearity equations can considerably shorten the processing tine of image data from Unmanned Aerial Vehicles (UAVs, especially in low cost systems. The conducted experiments have shown that it is possible to carry out a complete photogrammetric project of an architectural structure using a camera tilted 85°–90° ( φ or ω and simplified collinearity equations. It is also concluded that there is a correlation between the speed of the UAV and the discrepancy between the established and actual camera tilt angles.

  10. Video Surveillance of Epilepsy Patients using Color Image Processing

    DEFF Research Database (Denmark)

    Bager, Gitte; Vilic, Kenan; Alving, Jørgen

    2007-01-01

    This report introduces a method for tracking of patients under video surveillance based on a marker system. The patients are not restricted in their movements, which requires a tracking system that can overcome non-ideal scenes e.g. occlusions, very fast movements, lightning issues and other movi...

  11. Video surveillance of epilepsy patients using color image processing

    DEFF Research Database (Denmark)

    Bager, Gitte; Vilic, Kenan; Vilic, Adnan

    2014-01-01

    This paper introduces a method for tracking patients under video surveillance based on a color marker system. The patients are not restricted in their movements, which requires a tracking system that can overcome non-ideal scenes e.g. occlusions, very fast movements, lighting issues and other mov...

  12. Thinking Images: Doing Philosophy in Film and Video

    Science.gov (United States)

    Parkes, Graham

    2009-01-01

    Over the past several decades film and video have been steadily infiltrating the philosophy curriculum at colleges and universities. Traditionally, teachers of philosophy have not made much use of "audiovisual aids" in the classroom beyond the chalk board or overhead projector, with only the more adventurous playing audiotapes, for example, or…

  13. Video image processor on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    Science.gov (United States)

    Lindgren, R. W.; Tarbell, T. D.

    1981-01-01

    The SOUP instrument is designed to obtain diffraction-limited digital images of the sun with high photometric accuracy. The Video Processor originated from the requirement to provide onboard real-time image processing, both to reduce the telemetry rate and to provide meaningful video displays of scientific data to the payload crew. This original concept has evolved into a versatile digital processing system with a multitude of other uses in the SOUP program. The central element in the Video Processor design is a 16-bit central processing unit based on 2900 family bipolar bit-slice devices. All arithmetic, logical and I/O operations are under control of microprograms, stored in programmable read-only memory and initiated by commands from the LSI-11. Several functions of the Video Processor are described, including interface to the High Rate Multiplexer downlink, cosmetic and scientific data processing, scan conversion for crew displays, focus and exposure testing, and use as ground support equipment.

  14. Application of video imaging for improvement of patient set-up

    International Nuclear Information System (INIS)

    Ploeger, Lennert S.; Frenay, Michel; Betgen, Anja; Bois, Josien A. de; Gilhuijs, Kenneth G.A.; Herk, Marcel van

    2003-01-01

    Background and purpose: For radiotherapy of prostate cancer, the patient is usually positioned in the left-right (LR) direction by aligning a single marker on the skin with the projection of a room laser. The aim of this study is to investigate the feasibility of a room-mounted video camera in combination with previously acquired CT data to improve patient set-up along the LR axis. Material and methods: The camera was mounted in the treatment room at the caudal side of the patient. For 22 patients with prostate cancer 127 video and portal images were acquired. The set-up error determined by video imaging was found by matching video images with rendered CT images using various techniques. This set-up error was retrospectively compared with the set-up error derived from portal images. It was investigated whether the number of corrections based on portal imaging would decrease if the information obtained from the video images had been used prior to irradiation. Movement of the skin with respect to bone was quantified using an analysis of variance method. Results: The measurement of the set-up error was most accurate for a technique where outlines and groins on the left and right side of the patient were delineated and aligned individually to the corresponding features extracted from the rendered CT image. The standard deviations (SD) of the systematic and random components of the set-up errors derived from the portal images in the LR direction were 1.5 and 2.1 mm, respectively. When the set-up of the patients was retrospectively adjusted based on the video images, the SD of the systematic and random errors decreased to 1.1 and 1.3 mm, respectively. From retrospective analysis, a reduction of the number of set-up corrections (from nine to six corrections) is expected when the set-up would have been adjusted using the video images. The SD of the magnitude of motion of the skin of the patient with respect to the bony anatomy was estimated to be 1.1 mm. Conclusion: Video

  15. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    International Nuclear Information System (INIS)

    Wright, R.; Zander, M.; Brown, S.; Sandoval, D.; Gilpatrick, D.; Gibson, H.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) is discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. (Author) (3 figs., 4 refs.)

  16. Evaluation of video capture equipment for secondary image acquisition in the PACS.

    Science.gov (United States)

    Sukenobu, Yoshiharu; Sasagaki, Michihiro; Hirabuki, Norio; Naito, Hiroaki; Narumi, Yoshifumi; Inamura, Kiyonari

    2002-01-01

    There are many cases in which picture archiving and communication systems (PACS) are built with old-type existing modalities with no DICOM output. One of the methods for interfacing them to the PACS is to implement video capture (/ frame grabber) equipment. This equipment takes analog video signal output from medical imaging modalities, and amplitude of the video signal is A/D converted and supplied to the PACS. In this report, we measured and evaluated the accuracy at which this video capture equipment could capture the image. From the physical evaluation, we found the pixel values of an original image and its captured image were almost equal in gray level from 20%-90%. The change in the pixel values of a captured image was +/-3 on average. The change of gray level concentration was acceptable and had an average standard deviation of around 0.63. As for resolution, the degradation was observed at the highest physical level. In a subjective evaluation, the evaluation value of the CT image had a grade of 2.81 on the average (the same quality for a reference image was set to a grade of 3.0). Abnormalities in heads, chests, and abdomens were judged not to influence diagnostic accuracy. Some small differences were seen when comparing captured and reference images, but they are recognized as having no influence on the diagnoses.

  17. Analysis of two dimensional charged particle scintillation using video image processing techniques

    International Nuclear Information System (INIS)

    Sinha, A.; Bhave, B.D.; Singh, B.; Panchal, C.G.; Joshi, V.M.; Shyam, A.; Srinivasan, M.

    1993-01-01

    A novel method for video recording of individual charged particle scintillation images and their offline analysis using digital image processing techniques for obtaining position, time and energy information is presented . Results of an exploratory experiment conducted using 241 Am and 239 Pu alpha sources are presented. (author). 3 figs., 4 tabs

  18. Moving object detection in video satellite image based on deep learning

    Science.gov (United States)

    Zhang, Xueyang; Xiang, Junhua

    2017-11-01

    Moving object detection in video satellite image is studied. A detection algorithm based on deep learning is proposed. The small scale characteristics of remote sensing video objects are analyzed. Firstly, background subtraction algorithm of adaptive Gauss mixture model is used to generate region proposals. Then the objects in region proposals are classified via the deep convolutional neural network. Thus moving objects of interest are detected combined with prior information of sub-satellite point. The deep convolution neural network employs a 21-layer residual convolutional neural network, and trains the network parameters by transfer learning. Experimental results about video from Tiantuo-2 satellite demonstrate the effectiveness of the algorithm.

  19. Music video shot segmentation using independent component analysis and keyframe extraction based on image complexity

    Science.gov (United States)

    Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun

    2012-04-01

    In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.

  20. APPLICABILITY ANALYSIS OF THE PHASE CORRELATION ALGORITHM FOR STABILIZATION OF VIDEO FRAMES SEQUENCES FOR CAPILLARY BLOOD FLOW

    Directory of Open Access Journals (Sweden)

    K. A. Karimov

    2016-05-01

    Full Text Available Videocapillaroscopy is a convenient and non-invasive method of blood flow parameters recovery in the capillaries. Capillaries position can vary at recorded video sequences due to the registration features of capillary blood flow. Stabilization algorithm of video capillary blood flow based on phase correlation is proposed and researched. This algorithm is compared to the known algorithms of video frames stabilization with full-frame superposition and with key points. Programs, based on discussed algorithms, are compared under processing the experimentally recorded video sequences of human capillaries and under processing of computer-simulated sequences of video frames with the specified offset. The full-frame superposition algorithm provides high quality of stabilization; however, the program based on this algorithm requires significant computational resources. Software implementation of the algorithm based on the detection of the key points is characterized by good performance, but provides low quality of stabilization for video sequences capillary blood flow. Algorithm based on phase correlation method provides high quality of stabilization and program realization of this algorithm requires minimal computational resources. It is shown that the phase correlation algorithm is the most useful for stabilization of video sequences for capillaries blood flow. Obtained findings can be used in the software for biomedical diagnostics.

  1. Self-calibrated correlation imaging with k-space variant correlation functions.

    Science.gov (United States)

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  3. Digital video image processing applications to two phase flow measurements

    International Nuclear Information System (INIS)

    Biscos, Y.; Bismes, F.; Hebrard, P.; Lavergne, G.

    1987-01-01

    Liquid spraying is common in various fields (combustion, cooling of hot surfaces, spray drying,...). For two phase flows modeling, it is necessary to test elementary laws (vaporizing drops, equation of motion of drops or bubbles, heat transfer..). For example, the knowledge of the laws related to the behavior of vaporizing liquid drop in a hot airstream and impinging drops on a hot surface is important for two phase flow modeling. In order to test these different laws in elementary cases, the authors developed different measurement techniques, associating video and microcomputers. The test section (built in perpex or glass) is illuminated with a thin sheet of light generated by a 15mW He-Ne laser and appropriate optical arrangement. Drops, bubbles or liquid film are observed at right angle by a video camera synchronised with a microcomputer either directly or with an optical device (lens, telescope, microscope) providing sufficient magnification. Digitizing the video picture in real time associated with an appropriate numerical treatment allows to obtain, in a non interfering way, a lot of informations relative to the pulverisation and the vaporization as function of space and time (drop size distribution; Sauter mean diameter as function of main flow parameters: air velocity, surface tension, temperature; isoconcentration curves, size evolution relative to vaporizing drops, film thickness evolution spreading on a hot surface...)

  4. Assessing the Content of YouTube Videos in Educating Patients Regarding Common Imaging Examinations.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Won, Eugene; Doshi, Ankur M

    2016-12-01

    To assess the content of currently available YouTube videos seeking to educate patients regarding commonly performed imaging examinations. After initial testing of possible search terms, the first two pages of YouTube search results for "CT scan," "MRI," "ultrasound patient," "PET scan," and "mammogram" were reviewed to identify educational patient videos created by health organizations. Sixty-three included videos were viewed and assessed for a range of features. Average views per video were highest for MRI (293,362) and mammography (151,664). Twenty-seven percent of videos used a nontraditional format (eg, animation, song, humor). All videos (100.0%) depicted a patient undergoing the examination, 84.1% a technologist, and 20.6% a radiologist; 69.8% mentioned examination lengths, 65.1% potential pain/discomfort, 41.3% potential radiation, 36.5% a radiology report/results, 27.0% the radiologist's role in interpretation, and 13.3% laboratory work. For CT, 68.8% mentioned intravenous contrast and 37.5% mentioned contrast safety. For MRI, 93.8% mentioned claustrophobia, 87.5% noise, 75.0% need to sit still, 68.8% metal safety, 50.0% intravenous contrast, and 0.0% contrast safety. For ultrasound, 85.7% mentioned use of gel. For PET, 92.3% mentioned radiotracer injection, 61.5% fasting, and 46.2% diabetic precautions. For mammography, unrobing, avoiding deodorant, and possible additional images were all mentioned by 63.6%; dense breasts were mentioned by 0.0%. Educational patient videos on YouTube regarding common imaging examinations received high public interest and may provide a valuable patient resource. Videos most consistently provided information detailing the examination experience and less consistently provided safety information or described the presence and role of the radiologist. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Fuzzy logic and optical correlation-based face recognition method for patient monitoring application in home video surveillance

    Science.gov (United States)

    Elbouz, Marwa; Alfalou, Ayman; Brosseau, Christian

    2011-06-01

    Home automation is being implemented into more and more domiciles of the elderly and disabled in order to maintain their independence and safety. For that purpose, we propose and validate a surveillance video system, which detects various posture-based events. One of the novel points of this system is to use adapted Vander-Lugt correlator (VLC) and joint-transfer correlator (JTC) techniques to make decisions on the identity of a patient and his three-dimensional (3-D) positions in order to overcome the problem of crowd environment. We propose a fuzzy logic technique to get decisions on the subject's behavior. Our system is focused on the goals of accuracy, convenience, and cost, which in addition does not require any devices attached to the subject. The system permits one to study and model subject responses to behavioral change intervention because several levels of alarm can be incorporated according different situations considered. Our algorithm performs a fast 3-D recovery of the subject's head position by locating eyes within the face image and involves a model-based prediction and optical correlation techniques to guide the tracking procedure. The object detection is based on (hue, saturation, value) color space. The system also involves an adapted fuzzy logic control algorithm to make a decision based on information given to the system. Furthermore, the principles described here are applicable to a very wide range of situations and robust enough to be implementable in ongoing experiments.

  6. VQone MATLAB toolbox: A graphical experiment builder for image and video quality evaluations: VQone MATLAB toolbox.

    Science.gov (United States)

    Nuutinen, Mikko; Virtanen, Toni; Rummukainen, Olli; Häkkinen, Jukka

    2016-03-01

    This article presents VQone, a graphical experiment builder, written as a MATLAB toolbox, developed for image and video quality ratings. VQone contains the main elements needed for the subjective image and video quality rating process. This includes building and conducting experiments and data analysis. All functions can be controlled through graphical user interfaces. The experiment builder includes many standardized image and video quality rating methods. Moreover, it enables the creation of new methods or modified versions from standard methods. VQone is distributed free of charge under the terms of the GNU general public license and allows code modifications to be made so that the program's functions can be adjusted according to a user's requirements. VQone is available for download from the project page (http://www.helsinki.fi/psychology/groups/visualcognition/).

  7. PIZZARO: Forensic analysis and restoration of image and video data

    Czech Academy of Sciences Publication Activity Database

    Kamenický, Jan; Bartoš, Michal; Flusser, Jan; Mahdian, Babak; Kotera, Jan; Novozámský, Adam; Saic, Stanislav; Šroubek, Filip; Šorel, Michal; Zita, Aleš; Zitová, Barbara; Šíma, Z.; Švarc, P.; Hořínek, J.

    2016-01-01

    Roč. 264, č. 1 (2016), s. 153-166 ISSN 0379-0738 R&D Projects: GA MV VG20102013064; GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Image forensic analysis * Image restoration * Image tampering detection * Image source identification Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.989, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/kamenicky-0459504.pdf

  8. From image captioning to video summary using deep recurrent networks and unsupervised segmentation

    Science.gov (United States)

    Morosanu, Bogdan-Andrei; Lemnaru, Camelia

    2018-04-01

    Automatic captioning systems based on recurrent neural networks have been tremendously successful at providing realistic natural language captions for complex and varied image data. We explore methods for adapting existing models trained on large image caption data sets to a similar problem, that of summarising videos using natural language descriptions and frame selection. These architectures create internal high level representations of the input image that can be used to define probability distributions and distance metrics on these distributions. Specifically, we interpret each hidden unit inside a layer of the caption model as representing the un-normalised log probability of some unknown image feature of interest for the caption generation process. We can then apply well understood statistical divergence measures to express the difference between images and create an unsupervised segmentation of video frames, classifying consecutive images of low divergence as belonging to the same context, and those of high divergence as belonging to different contexts. To provide a final summary of the video, we provide a group of selected frames and a text description accompanying them, allowing a user to perform a quick exploration of large unlabeled video databases.

  9. On-line video image processing system for real-time neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Fujine, S; Yoneda, K; Kanda, K [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1983-09-15

    The neutron radiography system installed at the E-2 experimental hole of the KUR (Kyoto University Reactor) has been used for some NDT applications in the nuclear field. The on-line video image processing system of this facility is introduced in this paper. A 0.5 mm resolution in images was obtained by using a super high quality TV camera developed for X-radiography viewing a NE-426 neutron-sensitive scintillator. The image of the NE-426 on a CRT can be observed directly and visually, thus many test samples can be sequentially observed when necessary for industrial purposes. The video image signals from the TV camera are digitized, with a 33 ms delay, through a video A/D converter (ADC) and can be stored in the image buffer (32 KB DRAM) of a microcomputer (Z-80) system. The digitized pictures are taken with 16 levels of gray scale and resolved to 240 x 256 picture elements (pixels) on a monochrome CRT, with the capability also to display 16 distinct colors on a RGB video display. The direct image of this system could be satisfactory for penetrating the side plates to test MTR type reactor fuels and for the investigation of moving objects.

  10. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  11. Artifact reduction of compressed images and video combining adaptive fuzzy filtering and directional anisotropic diffusion

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Forchhammer, Søren; Korhonen, Jari

    2011-01-01

    and ringing artifacts, we have applied directional anisotropic diffusion. Besides that, the selection of the adaptive threshold parameter for the diffusion coefficient has also improved the performance of the algorithm. Experimental results on JPEG compressed images as well as MJPEG and H.264 compressed......Fuzzy filtering is one of the recently developed methods for reducing distortion in compressed images and video. In this paper, we combine the powerful anisotropic diffusion equations with fuzzy filtering in order to reduce the impact of artifacts. Based on the directional nature of the blocking...... videos show improvement in artifact reduction of the proposed algorithm over other directional and spatial fuzzy filters....

  12. Correlation between two-dimensional video analysis and subjective assessment in evaluating knee control among elite female team handball players

    DEFF Research Database (Denmark)

    Stensrud, Silje; Myklebust, Grethe; Kristianslund, Eirik

    2011-01-01

    . The present study investigated the correlation between a two-dimensional (2D) video analysis and subjective assessment performed by one physiotherapist in evaluating knee control. We also tested the correlation between three simple clinical tests using both methods. A cohort of 186 female elite team handball...

  13. Progress in passive submillimeter-wave video imaging

    Science.gov (United States)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Peiselt, Katja; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Bauer, Frank; Meyer, Hans-Georg

    2014-06-01

    Since 2007 we are developing passive submillimeter-wave video cameras for personal security screening. In contradiction to established portal-based millimeter-wave scanning techniques, these are suitable for stand-off or stealth operation. The cameras operate in the 350GHz band and use arrays of superconducting transition-edge sensors (TES), reflector optics, and opto-mechanical scanners. Whereas the basic principle of these devices remains unchanged, there has been a continuous development of the technical details, as the detector array, the scanning scheme, and the readout, as well as system integration and performance. The latest prototype of this camera development features a linear array of 128 detectors and a linear scanner capable of 25Hz frame rate. Using different types of reflector optics, a field of view of 1×2m2 and a spatial resolution of 1-2 cm is provided at object distances of about 5-25m. We present the concept of this camera and give details on system design and performance. Demonstration videos show its capability for hidden threat detection and illustrate possible application scenarios.

  14. Sub-component modeling for face image reconstruction in video communications

    Science.gov (United States)

    Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.

    2008-08-01

    Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.

  15. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  16. Quantum Correlated Multi-Fragment Reaction Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Feagin, James M. [California State Univ., Fullerton, CA (United States)

    2017-06-30

    This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms with particles and fields. This report will focus on the 12 year period from 2004 to 2017, although the DOE–BES has supported my research every year since 1986. All of the support from the grant was used to pay summer salaries of the PI and students and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals as well as conference invited talks and colloquiums. There were 12 peer reviewed publications in these 12+ years. Innovations in few-body science at molecular and nano levels are a critical component of on- going efforts to establish sustainable environmental and energy resources. The varied research paths taken will require the development of basic science on broad fronts with increasing flexi- bility to crossover technologies. We thus worked to extract understanding and quantum control of few-body microscopic systems based on our long-time experience with more conventional studies of correlated electrons and ions. Given the enormous advances over the past 20 years to our understanding of quantum cor- relations with photon interferometry, AMO collision science generally is ready to move beyond the one-particle, single-port momentum detection that has dominated collision physics since Rutherford. Nevertheless, our familiar theoretical tools for collision theory need to be up- graded to incorporate these more generalized measurement formalisms and ultimately to give incentive for a new generation of experiments. Our interest in these topics remains motivated by the recent surge in and success of exper- iments involving few-body atomic and molecular fragmentation and the detection of all the fragments. The research described here thus involved two parallel efforts with (i) emphasis on reaction imaging while (ii) pursuing longtime work on quantum correlated collective excitations.

  17. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    Science.gov (United States)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  18. The next generation borescope -- Video imaging measurement systems as portable as a fiberscope

    International Nuclear Information System (INIS)

    Boyd, C.E.

    1994-01-01

    Today, Remote Visual Inspection (RVI) techniques routinely save industry the significant costs associated with unscheduled shutdowns and equipment disassembly by enabling visual inspection of otherwise inaccessible equipment surfaces with instruments called borescopes. Specific applications in the nuclear industry include heat exchangers, condensers, boiler tubes, steam generators, headers, and other general interior surface inspections. While borescope inspections have achieved widespread utility, their potential applicability and value have been limited by their inability to provide dimensional information about the objects seen. This paper presents a simple, but very accurate measurement technique that enables the inspector to make measurements of objects directly from the borescope image. While used effectively since 1990, the technique is designed for a video imaging borescope and has, therefore, not been available for the shorter length fiberscope applications--until now. On June 6, 1993 Welch Allyn introduced the VideoProbe XL, a video imaging borescope that is as portable and affordable as a one meter fiberscope. This breakthrough not only extends video imaging into the rest of the fiberscope world, but opens the door for them to this measurement capability as well

  19. Sequential error concealment for video/images by weighted template matching

    DEFF Research Database (Denmark)

    Koloda, Jan; Østergaard, Jan; Jensen, Søren Holdt

    2012-01-01

    In this paper we propose a novel spatial error concealment algorithm for video and images based on convex optimization. Block-based coding schemes in packet loss environment are considered. Missing macro blocks are sequentially reconstructed by filling them with a weighted set of templates...

  20. Computerized video interaction self-instruction of MR imaging fundamentals utilizing laser disk technology

    International Nuclear Information System (INIS)

    Genberg, R.W.; Javitt, M.C.; Popky, G.L.; Parker, J.A.; Pinkney, M.N.

    1986-01-01

    Interactive computer-assisted self-instruction is emerging as a recognized didactic modality and is now being introduced to teach physicians the physics of MR imaging. The interactive system consists of a PC-compatible computer, a 12-inch laser disk drive, and a high-resolution monitor. The laser disk, capable of storing 54,000 images, is pressed from a previously edited video tape of MR and video images. The interactive approach is achieved through the use of the computer and appropriate software. The software is written to include computer graphics overlays of the laser disk images, to select interactive branching paths (depending on the user's response to directives or questions), and to provide feedback to the user so that he can assess his performance. One of their systems is available for use in the scientific exhibit area

  1. Class Energy Image Analysis for Video Sensor-Based Gait Recognition: A Review

    Directory of Open Access Journals (Sweden)

    Zhuowen Lv

    2015-01-01

    Full Text Available Gait is a unique perceptible biometric feature at larger distances, and the gait representation approach plays a key role in a video sensor-based gait recognition system. Class Energy Image is one of the most important gait representation methods based on appearance, which has received lots of attentions. In this paper, we reviewed the expressions and meanings of various Class Energy Image approaches, and analyzed the information in the Class Energy Images. Furthermore, the effectiveness and robustness of these approaches were compared on the benchmark gait databases. We outlined the research challenges and provided promising future directions for the field. To the best of our knowledge, this is the first review that focuses on Class Energy Image. It can provide a useful reference in the literature of video sensor-based gait representation approach.

  2. Development of a Video Network for Efficient Dissemination of the Graphical Images in a Collaborative Environment.

    Directory of Open Access Journals (Sweden)

    Anatoliy Gordonov

    1999-01-01

    Full Text Available Video distribution inside a local area network can impede or even paralyze normal data transmission activities. The problem can be solved, at least for a while, by compression and by increasing bandwidth, but that solution can become excessively costly or otherwise impractical. Moreover, experience indicates that usage quickly expands to test the limits of bandwidth. In this paper we introduce and analyze the architecture of a Hybrid AnalogDigital Video Network (ADViNet which separates video distribution from standard data handling functions. The network preserves the features of a standard digital network and, in addition, provides efficient real-time full-screen video transmission through a separate analog communication medium. A specially developed control and management protocol is discussed. For all practical purposes ADViNet may be used when graphical images have to be distributed among many nodes of a local area network. It relieves the burden of video distribution and allows users to combine efficient video data transmission with normal regular network activities.

  3. Exploring inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video

    Science.gov (United States)

    Li, Jia; Tian, Yonghong; Gao, Wen

    2008-01-01

    In recent years, the amount of streaming video has grown rapidly on the Web. Often, retrieving these streaming videos offers the challenge of indexing and analyzing the media in real time because the streams must be treated as effectively infinite in length, thus precluding offline processing. Generally speaking, captions are important semantic clues for video indexing and retrieval. However, existing caption detection methods often have difficulties to make real-time detection for streaming video, and few of them concern on the differentiation of captions from scene texts and scrolling texts. In general, these texts have different roles in streaming video retrieval. To overcome these difficulties, this paper proposes a novel approach which explores the inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video. In our approach, the inter-frame correlation information is used to distinguish caption texts from scene texts and scrolling texts. Moreover, wavelet-domain Generalized Gaussian Models (GGMs) are utilized to automatically remove non-text regions from each frame and only keep caption regions for further processing. Experiment results show that our approach is able to offer real-time caption detection with high recall and low false alarm rate, and also can effectively discern caption texts from the other texts even in low resolutions.

  4. System and method for image registration of multiple video streams

    Science.gov (United States)

    Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton

    2018-02-06

    Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.

  5. Laser Imaging Video Camera Sees Through Fire, Fog, Smoke

    Science.gov (United States)

    2015-01-01

    Under a series of SBIR contracts with Langley Research Center, inventor Richard Billmers refined a prototype for a laser imaging camera capable of seeing through fire, fog, smoke, and other obscurants. Now, Canton, Ohio-based Laser Imaging through Obscurants (LITO) Technologies Inc. is demonstrating the technology as a perimeter security system at Glenn Research Center and planning its future use in aviation, shipping, emergency response, and other fields.

  6. Image scale measurement with correlation filters in a volume holographic optical correlator

    Science.gov (United States)

    Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2013-08-01

    A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.

  7. LIDAR-INCORPORATED TRAFFIC SIGN DETECTION FROM VIDEO LOG IMAGES OF MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-06-01

    Full Text Available Mobile Mapping System (MMS simultaneously collects the Lidar points and video log images in a scenario with the laser profiler and digital camera. Besides the textural details of video log images, it also captures the 3D geometric shape of point cloud. It is widely used to survey the street view and roadside transportation infrastructure, such as traffic sign, guardrail, etc., in many transportation agencies. Although many literature on traffic sign detection are available, they only focus on either Lidar or imagery data of traffic sign. Based on the well-calibrated extrinsic parameters of MMS, 3D Lidar points are, the first time, incorporated into 2D video log images to enhance the detection of traffic sign both physically and visually. Based on the local elevation, the 3D pavement area is first located. Within a certain distance and height of the pavement, points of the overhead and roadside traffic signs can be obtained according to the setup specification of traffic signs in different transportation agencies. The 3D candidate planes of traffic signs are then fitted using the RANSAC plane-fitting of those points. By projecting the candidate planes onto the image, Regions of Interest (ROIs of traffic signs are found physically with the geometric constraints between laser profiling and camera imaging. The Random forest learning of the visual color and shape features of traffic signs is adopted to validate the sign ROIs from the video log images. The sequential occurrence of a traffic sign among consecutive video log images are defined by the geometric constraint of the imaging geometry and GPS movement. Candidate ROIs are predicted in this temporal context to double-check the salient traffic sign among video log images. The proposed algorithm is tested on a diverse set of scenarios on the interstate highway G-4 near Beijing, China under varying lighting conditions and occlusions. Experimental results show the proposed algorithm enhances the

  8. Digital Correlation based on Wavelet Transform for Image Detection

    International Nuclear Information System (INIS)

    Barba, L; Vargas, L; Torres, C; Mattos, L

    2011-01-01

    In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.

  9. Disembodied perspective: third-person images in GoPro videos

    OpenAIRE

    Bédard, Philippe

    2015-01-01

    Used as much in extreme-sports videos and professional productions as in amateur and home videos, GoPro wearable cameras have become ubiquitous in contemporary moving image culture. During its swift and ongoing rise in popularity, GoPro has also enabled the creation of new and unusual points of view, among which are “third-person images”. This article introduces and defines this particular phenomenon through an approach that deals with both the aesthetic and technical characteristics of the i...

  10. Low-complexity video encoding method for wireless image transmission in capsule endoscope.

    Science.gov (United States)

    Takizawa, Kenichi; Hamaguchi, Kiyoshi

    2010-01-01

    This paper presents a low-complexity video encoding method applicable for wireless image transmission in capsule endoscopes. This encoding method is based on Wyner-Ziv theory, in which side information available at a transmitter is treated as side information at its receiver. Therefore complex processes in video encoding, such as estimation of the motion vector, are moved to the receiver side, which has a larger-capacity battery. As a result, the encoding process is only to decimate coded original data through channel coding. We provide a performance evaluation for a low-density parity check (LDPC) coding method in the AWGN channel.

  11. Preliminary study on effects of 60Co γ-irradiation on video quality and the image de-noising methods

    International Nuclear Information System (INIS)

    Yuan Mei; Zhao Jianbin; Cui Lei

    2011-01-01

    There will be variable noises appear on images in video once the play device irradiated by γ-rays, so as to affect the image clarity. In order to eliminate the image noising, the affection mechanism of γ-irradiation on video-play device was studied in this paper and the methods to improve the image quality with both hardware and software were proposed by use of protection program and de-noising algorithm. The experimental results show that the scheme of video de-noising based on hardware and software can improve effectively the PSNR by 87.5 dB. (authors)

  12. Video-gaming among high school students: health correlates, gender differences, and problematic gaming.

    Science.gov (United States)

    Desai, Rani A; Krishnan-Sarin, Suchitra; Cavallo, Dana; Potenza, Marc N

    2010-12-01

    Video game playing may negatively impact youth. However, the existing literature on gaming is inconsistent and often has focused on aggression rather than the health correlates of gaming and the prevalence and correlates of problematic gaming. We anonymously surveyed 4028 adolescents about gaming and reported problems with gaming and other health behaviors. A total of 51.2% of the sample reported gaming (76.3% of boys and 29.2% of girls). There were no negative health correlates of gaming in boys and lower odds of smoking regularly; however, girls who reported gaming were less likely to report depression and more likely to report getting into serious fights and carrying a weapon to school. Among gamers, 4.9% reported problematic gaming, defined as reporting trying to cut back, experiencing an irresistible urge to play, and experiencing a growing tension that could only be relieved by playing. Boys were more likely to report these problems (5.8%) than girls (3.0%). Correlates of problematic gaming included regular cigarette smoking, drug use, depression, and serious fights. Results suggest that gaming is largely normative in boys and not associated with many health factors. In girls, however, gaming seems to be associated with more externalizing behaviors and fewer internalizing symptoms. The prevalence of problematic gaming is low but not insignificant, and problematic gaming may be contained within a larger spectrum of externalizing behaviors. More research is needed to define safe levels of gaming, refine the definition of problematic gaming, and evaluate effective prevention and intervention strategies.

  13. Color in Image and Video Processing: Most Recent Trends and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Tominaga Shoji

    2008-01-01

    Full Text Available Abstract The motivation of this paper is to provide an overview of the most recent trends and of the future research directions in color image and video processing. Rather than covering all aspects of the domain this survey covers issues related to the most active research areas in the last two years. It presents the most recent trends as well as the state-of-the-art, with a broad survey of the relevant literature, in the main active research areas in color imaging. It also focuses on the most promising research areas in color imaging science. This survey gives an overview about the issues, controversies, and problems of color image science. It focuses on human color vision, perception, and interpretation. It focuses also on acquisition systems, consumer imaging applications, and medical imaging applications. Next it gives a brief overview about the solutions, recommendations, most recent trends, and future trends of color image science. It focuses on color space, appearance models, color difference metrics, and color saliency. It focuses also on color features, color-based object tracking, scene illuminant estimation and color constancy, quality assessment and fidelity assessment, color characterization and calibration of a display device. It focuses on quantization, filtering and enhancement, segmentation, coding and compression, watermarking, and lastly on multispectral color image processing. Lastly, it addresses the research areas which still need addressing and which are the next and future perspectives of color in image and video processing.

  14. Color in Image and Video Processing: Most Recent Trends and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Konstantinos N. Plataniotis

    2008-05-01

    Full Text Available The motivation of this paper is to provide an overview of the most recent trends and of the future research directions in color image and video processing. Rather than covering all aspects of the domain this survey covers issues related to the most active research areas in the last two years. It presents the most recent trends as well as the state-of-the-art, with a broad survey of the relevant literature, in the main active research areas in color imaging. It also focuses on the most promising research areas in color imaging science. This survey gives an overview about the issues, controversies, and problems of color image science. It focuses on human color vision, perception, and interpretation. It focuses also on acquisition systems, consumer imaging applications, and medical imaging applications. Next it gives a brief overview about the solutions, recommendations, most recent trends, and future trends of color image science. It focuses on color space, appearance models, color difference metrics, and color saliency. It focuses also on color features, color-based object tracking, scene illuminant estimation and color constancy, quality assessment and fidelity assessment, color characterization and calibration of a display device. It focuses on quantization, filtering and enhancement, segmentation, coding and compression, watermarking, and lastly on multispectral color image processing. Lastly, it addresses the research areas which still need addressing and which are the next and future perspectives of color in image and video processing.

  15. Dependency of human target detection performance on clutter and quality of supporting image analysis algorithms in a video surveillance task

    Science.gov (United States)

    Huber, Samuel; Dunau, Patrick; Wellig, Peter; Stein, Karin

    2017-10-01

    Background: In target detection, the success rates depend strongly on human observer performances. Two prior studies tested the contributions of target detection algorithms and prior training sessions. The aim of this Swiss-German cooperation study was to evaluate the dependency of human observer performance on the quality of supporting image analysis algorithms. Methods: The participants were presented 15 different video sequences. Their task was to detect all targets in the shortest possible time. Each video sequence showed a heavily cluttered simulated public area from a different viewing angle. In each video sequence, the number of avatars in the area was altered to 100, 150 and 200 subjects. The number of targets appearing was kept at 10%. The number of marked targets varied from 0, 5, 10, 20 up to 40 marked subjects while keeping the positive predictive value of the detection algorithm at 20%. During the task, workload level was assessed by applying an acoustic secondary task. Detection rates and detection times for the targets were analyzed using inferential statistics. Results: The study found Target Detection Time to increase and Target Detection Rates to decrease with increasing numbers of avatars. The same is true for the Secondary Task Reaction Time while there was no effect on Secondary Task Hit Rate. Furthermore, we found a trend for a u-shaped correlation between the numbers of markings and RTST indicating increased workload. Conclusion: The trial results may indicate useful criteria for the design of training and support of observers in observational tasks.

  16. Video outside versus video inside the web: do media setting and image size have an impact on the emotion-evoking potential of video?

    NARCIS (Netherlands)

    Verleur, R.; Verhagen, Pleunes Willem; Crawford, Margaret; Simonson, Michael; Lamboy, Carmen

    2001-01-01

    To explore the educational potential of video-evoked affective responses in a Web-based environment, the question was raised whether video in a Web-based environment is experienced differently from video in a traditional context. An experiment was conducted that studied the affect-evoking power of

  17. Comparison of Image Transform-Based Features for Visual Speech Recognition in Clean and Corrupted Videos

    Directory of Open Access Journals (Sweden)

    Seymour Rowan

    2008-01-01

    Full Text Available Abstract We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.

  18. Comparison of Image Transform-Based Features for Visual Speech Recognition in Clean and Corrupted Videos

    Directory of Open Access Journals (Sweden)

    Ji Ming

    2008-03-01

    Full Text Available We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.

  19. Bit Plane Coding based Steganography Technique for JPEG2000 Images and Videos

    Directory of Open Access Journals (Sweden)

    Geeta Kasana

    2016-02-01

    Full Text Available In this paper, a Bit Plane Coding (BPC based steganography technique for JPEG2000 images and Motion JPEG2000 video is proposed. Embedding in this technique is performed in the lowest significant bit planes of the wavelet coefficients of a cover image. In JPEG2000 standard, the number of bit planes of wavelet coefficients to be used in encoding is dependent on the compression rate and are used in Tier-2 process of JPEG2000. In the proposed technique, Tier-1 and Tier-2 processes of JPEG2000 and Motion JPEG2000 are executed twice on the encoder side to collect the information about the lowest bit planes of all code blocks of a cover image, which is utilized in embedding and transmitted to the decoder. After embedding secret data, Optimal Pixel Adjustment Process (OPAP is applied on stego images to enhance its visual quality. Experimental results show that proposed technique provides large embedding capacity and better visual quality of stego images than existing steganography techniques for JPEG2000 compressed images and videos. Extracted secret image is similar to the original secret image.

  20. Sidescan Sonar Image Matching Using Cross Correlation

    DEFF Research Database (Denmark)

    Thisen, Erik; Sørensen, Helge Bjarup Dissing; Stage, Bjarne

    2003-01-01

    When surveying an area for sea mines with a sidescan sonar, the ability to find the same object in two different sonar images is helpful to determine the nature of the object. The main problem with matching two sidescan sonar images is that a scene changes appearance when viewed from different vi...

  1. Data and videos for ultrafast synchrotron X-ray imaging studies of metal solidification under ultrasound

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2018-04-01

    Full Text Available The data presented in this article are related to the paper entitled ‘Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound’ [Wang et al., Acta Mater. 144 (2018 505-515]. This data article provides further supporting information and analytical methods, including the data from both experimental and numerical simulation, as well as the Matlab code for processing the X-ray images. Six videos constructed from the processed synchrotron X-ray images are also provided.

  2. Modeling the Color Image and Video Quality on Liquid Crystal Displays with Backlight Dimming

    DEFF Research Database (Denmark)

    Korhonen, Jari; Mantel, Claire; Burini, Nino

    2013-01-01

    Objective image and video quality metrics focus mostly on the digital representation of the signal. However, the display characteristics are also essential for the overall Quality of Experience (QoE). In this paper, we use a model of a backlight dimming system for Liquid Crystal Display (LCD......) and show how the modeled image can be used as an input to quality assessment algorithms. For quality assessment, we propose an image quality metric, based on Peak Signal-to-Noise Ratio (PSNR) computation in the CIE L*a*b* color space. The metric takes luminance reduction, color distortion and loss...

  3. Bollywood Movie Corpus for Text, Images and Videos

    OpenAIRE

    Madaan, Nishtha; Mehta, Sameep; Saxena, Mayank; Aggarwal, Aditi; Agrawaal, Taneea S; Malhotra, Vrinda

    2017-01-01

    In past few years, several data-sets have been released for text and images. We present an approach to create the data-set for use in detecting and removing gender bias from text. We also include a set of challenges we have faced while creating this corpora. In this work, we have worked with movie data from Wikipedia plots and movie trailers from YouTube. Our Bollywood Movie corpus contains 4000 movies extracted from Wikipedia and 880 trailers extracted from YouTube which were released from 1...

  4. Analysis of physiological responses associated with emotional changes induced by viewing video images of dental treatments.

    Science.gov (United States)

    Sekiya, Taki; Miwa, Zenzo; Tsuchihashi, Natsumi; Uehara, Naoko; Sugimoto, Kumiko

    2015-03-30

    Since the understanding of emotional changes induced by dental treatments is important for dentists to provide a safe and comfortable dental treatment, we analyzed physiological responses during watching video images of dental treatments to search for the appropriate objective indices reflecting emotional changes. Fifteen healthy young adult subjects voluntarily participated in the present study. Electrocardiogram (ECG), electroencephalogram (EEG) and corrugator muscle electromyogram (EMG) were recorded and changes of them by viewing videos of dental treatments were analyzed. The subjective discomfort level was acquired by Visual Analog Scale method. Analyses of autonomic nervous activities from ECG and four emotional factors (anger/stress, joy/satisfaction, sadness/depression and relaxation) from EEG demonstrated that increases in sympathetic nervous activity reflecting stress increase and decreases in relaxation level were induced by the videos of infiltration anesthesia and cavity excavation, but not intraoral examination. The corrugator muscle activity was increased by all three images regardless of video contents. The subjective discomfort during watching infiltration anesthesia and cavity excavation was higher than intraoral examination, showing that sympathetic activities and relaxation factor of emotion changed in a manner consistent with subjective emotional changes. These results suggest that measurement of autonomic nervous activities estimated from ECG and emotional factors analyzed from EEG is useful for objective evaluation of subjective emotion.

  5. The correlation between playing violent video games and bullying among adolescents in Serbia

    OpenAIRE

    Jevtić Ana; Savić Milomirka

    2013-01-01

    The aim of this study was to determine the frequency of playing video games among Serbian adolescents, the video game violence and the quality of parental control. We wanted to relate the frequency of playing, the video game violence, the bullying behaviour in schools, and GPA. The study involved boys and girls (N = 578) from four age groups (12, 14, 16, 18 years). Research results have shown that most participants play video games (75.1%). There are significantly more boys than girls among t...

  6. Performance of a video-image-subtraction-based patient positioning system

    International Nuclear Information System (INIS)

    Milliken, Barrett D.; Rubin, Steven J.; Hamilton, Russell J.; Johnson, L. Scott; Chen, George T.Y.

    1997-01-01

    Purpose: We have developed and tested an interactive video system that utilizes image subtraction techniques to enable high precision patient repositioning using surface features. We report quantitative measurements of system performance characteristics. Methods and Materials: Video images can provide a high precision, low cost measure of patient position. Image subtraction techniques enable one to incorporate detailed information contained in the image of a carefully verified reference position into real-time images. We have developed a system using video cameras providing orthogonal images of the treatment setup. The images are acquired, processed and viewed using an inexpensive frame grabber and a PC. The subtraction images provide the interactive guidance needed to quickly and accurately place a patient in the same position for each treatment session. We describe the design and implementation of our system, and its quantitative performance, using images both to measure changes in position, and to achieve accurate setup reproducibility. Results: Under clinical conditions (60 cm field of view, 3.6 m object distance), the position of static, high contrast objects could be measured with a resolution of 0.04 mm (rms) in each of two dimensions. The two-dimensional position could be reproduced using the real-time image display with a resolution of 0.15 mm (rms). Two-dimensional measurement resolution of the head of a patient undergoing treatment for head and neck cancer was 0.1 mm (rms), using a lateral view, measuring the variation in position of the nose and the ear over the course of a single radiation treatment. Three-dimensional repositioning accuracy of the head of a healthy volunteer using orthogonal camera views was less than 0.7 mm (systematic error) with an rms variation of 1.2 mm. Setup adjustments based on the video images were typically performed within a few minutes. The higher precision achieved using the system to measure objects than to reposition

  7. Image-scanning measurement using video dissection cameras

    International Nuclear Information System (INIS)

    Carson, J.S.

    1978-01-01

    A high speed dimensional measuring system capable of scanning a thin film network, and determining if there are conductor widths, resistor widths, or spaces not typical of the design for this product is described. The eye of the system is a conventional TV camera, although such devices as image dissector cameras or solid-state scanners may be used more often in the future. The analog signal from the TV camera is digitized for processing by the computer and is presented to the TV monitor to assist the operator in monitoring the system's operation. Movable stages are required when the field of view of the scanner is less than the size of the object. A minicomputer controls the movement of the stage, and communicates with the digitizer to select picture points that are to be processed. Communications with the system are maintained through a teletype or CRT terminal

  8. New method for identifying features of an image on a digital video display

    Science.gov (United States)

    Doyle, Michael D.

    1991-04-01

    The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4

  9. Health-risk correlates of video-game playing among adults.

    Science.gov (United States)

    Weaver, James B; Mays, Darren; Sargent Weaver, Stephanie; Kannenberg, Wendi; Hopkins, Gary L; Eroğlu, Doğan; Bernhardt, Jay M

    2009-10-01

    Although considerable research suggests that health-risk factors vary as a function of video-game playing among young people, direct evidence of such linkages among adults is lacking. The goal of this study was to distinguish adult video-game players from nonplayers on the basis of personal and environmental factors. It was hypothesized that adults who play video games, compared to nonplayers, would evidence poorer perceptions of their health, greater reliance on Internet-facilitated social support, more extensive media use, and higher BMI. It was further hypothesized that different patterns of linkages between video-game playing and health-risk factors would emerge by gender. A cross-sectional, Internet-based survey was conducted in 2006 with a sample of adults from the Seattle-Tacoma area (n=562), examining health risks; media use behaviors and perceptions, including those related to video-game playing; and demographics. Statistical analyses conducted in 2008 to compare video-game players and nonplayers included bivariate descriptive statistics, stepwise discriminant analysis, and ANOVA. A total of 45.1% of respondents reported playing video games. Female video-game players reported greater depression (M=1.57) and poorer health status (M=3.90) than female nonplayers (depression, M=1.13; health status, M=3.57). Male video-game players reported higher BMI (M=5.31) and more Internet use time (M=2.55) than male nonplayers (BMI, M=5.19; Internet use, M=2.36). The only determinant common to female and male video-game players was greater reliance on the Internet for social support. A number of determinants distinguished video-game players from nonplayers, and these factors differed substantially between men and women. The data illustrate the need for further research among adults to clarify how to use digital opportunities more effectively to promote health and prevent disease.

  10. High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells

    Science.gov (United States)

    Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey

    2018-05-01

    The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.

  11. Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space.

    Science.gov (United States)

    Wiseman, Paul W

    2013-01-01

    This chapter presents an overview of two recent implementations of image correlation spectroscopy (ICS). The background theory is presented for spatiotemporal image correlation spectroscopy and image cross-correlation spectroscopy (STICS and STICCS, respectively) as well as k-(reciprocal) space image correlation spectroscopy (kICS). An introduction to the background theory is followed by sections outlining procedural aspects for properly implementing STICS, STICCS, and kICS. These include microscopy image collection, sampling in space and time, sample and fluorescent probe requirements, signal to noise, and background considerations that are all required to properly implement the ICS methods. Finally, procedural steps for immobile population removal and actual implementation of the ICS analysis programs to fluorescence microscopy image time stacks are described. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Applying GA for Optimizing the User Query in Image and Video Retrieval

    OpenAIRE

    Ehsan Lotfi

    2014-01-01

    In an information retrieval system, the query can be made by user sketch. The new method presented here, optimizes the user sketch and applies the optimized query to retrieval the information. This optimization may be used in Content-Based Image Retrieval (CBIR) and Content-Based Video Retrieval (CBVR) which is based on trajectory extraction. To optimize the retrieval process, one stage of retrieval is performed by the user sketch. The retrieval criterion is based on the proposed distance met...

  13. Exploring Multi-Modal and Structured Representation Learning for Visual Image and Video Understanding

    OpenAIRE

    Xu, Dan

    2018-01-01

    As the explosive growth of the visual data, it is particularly important to develop intelligent visual understanding techniques for dealing with a large amount of data. Many efforts have been made in recent years to build highly effective and large-scale visual processing algorithms and systems. One of the core aspects in the research line is how to learn robust representations to better describe the data. In this thesis we study the problem of visual image and video understanding and specifi...

  14. A low-cost, high-resolution, video-rate imaging optical radar

    Energy Technology Data Exchange (ETDEWEB)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  15. The effect of music video clips on adolescent boys' body image, mood, and schema activation.

    Science.gov (United States)

    Mulgrew, Kate E; Volcevski-Kostas, Diana; Rendell, Peter G

    2014-01-01

    There is limited research that has examined experimentally the effects of muscular images on adolescent boys' body image, with no research specifically examining the effects of music television. The aim of the current study was to examine the effects of viewing muscular and attractive singers in music video clips on early, mid, and late adolescent boys' body image, mood, and schema activation. Participants were 180 boys in grade 7 (mean age = 12.73 years), grade 9 (mean age = 14.40 years) or grade 11 (mean age = 16.15 years) who completed pre- and post-test measures of mood and body satisfaction after viewing music videos containing male singers of muscular or average appearance. They also completed measures of schema activation and social comparison after viewing the clips. The results showed that the boys who viewed the muscular clips reported poorer upper body satisfaction, lower appearance satisfaction, lower happiness, and more depressive feelings compared to boys who viewed the clips depicting singers of average appearance. There was no evidence of increased appearance schema activation but the boys who viewed the muscular clips did report higher levels of social comparison to the singers. The results suggest that music video clips are a powerful form of media in conveying information about the male ideal body shape and that negative effects are found in boys as young as 12 years.

  16. Video on the Internet: An introduction to the digital encoding, compression, and transmission of moving image data.

    Science.gov (United States)

    Boudier, T; Shotton, D M

    1999-01-01

    In this paper, we seek to provide an introduction to the fast-moving field of digital video on the Internet, from the viewpoint of the biological microscopist who might wish to store or access videos, for instance in image databases such as the BioImage Database (http://www.bioimage.org). We describe and evaluate the principal methods used for encoding and compressing moving image data for digital storage and transmission over the Internet, which involve compromises between compression efficiency and retention of image fidelity, and describe the existing alternate software technologies for downloading or streaming compressed digitized videos using a Web browser. We report the results of experiments on video microscopy recordings and three-dimensional confocal animations of biological specimens to evaluate the compression efficiencies of the principal video compression-decompression algorithms (codecs) and to document the artefacts associated with each of them. Because MPEG-1 gives very high compression while yet retaining reasonable image quality, these studies lead us to recommend that video databases should store both a high-resolution original version of each video, ideally either uncompressed or losslessly compressed, and a separate edited and highly compressed MPEG-1 preview version that can be rapidly downloaded for interactive viewing by the database user. Copyright 1999 Academic Press.

  17. Changing image of correlation optics: introduction.

    Science.gov (United States)

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  18. Changing image of correlation optics: introduction

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.

    2016-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. (C...

  19. Video transect images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): data from 2002 (NODC Accession 0000961)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of video transect images (TIF files) from CRAMP surveys taken in 2002 at 23 sites, some of which had multiple depths. Estimates of substrate...

  20. Video transect images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): data from year 1999 (NODC Accession 0000671)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of video transect images (JPEG files) from CRAMP surveys taken in 1999 at 26 sites, some of which had multiple depths. Estimates of substrate...

  1. Video Transect Images (1999) from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP) (NODC Accession 0000671)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of video transect images (JPEG files) from CRAMP surveys taken in 1999 at 26 sites, some of which had multiple depths. Estimates of substrate...

  2. Video Transect Images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP):Data from 2003 (NODC Accession 0001732)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of video transect images (TIF files) from CRAMP surveys taken in 2003 at 15 sites, some of which had multiple depths. Estimates of substrate...

  3. Video Transect Images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): Data from 2003 (NODC Accession 0001732)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of video transect images (TIF files) from CRAMP surveys taken in 2003 at 15 sites, some of which had multiple depths. Estimates of substrate...

  4. Video Transect Images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): Data from 2000 (NODC Accession 0000728)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of video transect images (TIF files) from CRAMP surveys taken in 2000 at 23 sites, some of which had multiple depths. Estimates of substrate...

  5. Video Transect Images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): Data from 2002 (NODC Accession 0000961)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of video transect images (TIF files) from CRAMP surveys taken in 2002 at 23 sites, some of which had multiple depths. Estimates of substrate...

  6. Color in Image and Video Processing: Most Recent Trends and Future Research Directions

    OpenAIRE

    Tominaga Shoji; Plataniotis KonstantinosN; Trémeau Alain

    2008-01-01

    Abstract The motivation of this paper is to provide an overview of the most recent trends and of the future research directions in color image and video processing. Rather than covering all aspects of the domain this survey covers issues related to the most active research areas in the last two years. It presents the most recent trends as well as the state-of-the-art, with a broad survey of the relevant literature, in the main active research areas in color imaging. It also focuses on the mos...

  7. Shifting Weights: Adapting Object Detectors from Image to Video (Author’s Manuscript)

    Science.gov (United States)

    2012-12-08

    Skateboard Sewing Machine Sandwich Figure 1: Images of the “ Skateboard ”, “Sewing machine”, and “Sandwich” classes taken from (top row) ImageNet [7...InitialBL VideoPosBL Our method(nt) Our method(full) Gopalan et al. [18] (PLS) Gopalan et al. [18] (SVM) Skateboard 4.29% 2.89% 10.44% 10.44% 0.04% 0.94...belongs to no event class. We select 6 object classes to learn object detectors for because they are commonly present in selected events: “ Skateboard

  8. A real-time remote video streaming platform for ultrasound imaging.

    Science.gov (United States)

    Ahmadi, Mehdi; Gross, Warren J; Kadoury, Samuel

    2016-08-01

    Ultrasound is a viable imaging technology in remote and resources-limited areas. Ultrasonography is a user-dependent skill which depends on a high degree of training and hands-on experience. However, there is a limited number of skillful sonographers located in remote areas. In this work, we aim to develop a real-time video streaming platform which allows specialist physicians to remotely monitor ultrasound exams. To this end, an ultrasound stream is captured and transmitted through a wireless network into remote computers, smart-phones and tablets. In addition, the system is equipped with a camera to track the position of the ultrasound probe. The main advantage of our work is using an open source platform for video streaming which gives us more control over streaming parameters than the available commercial products. The transmission delays of the system are evaluated for several ultrasound video resolutions and the results show that ultrasound videos close to the high-definition (HD) resolution can be received and displayed on an Android tablet with the delay of 0.5 seconds which is acceptable for accurate real-time diagnosis.

  9. High-Performance Motion Estimation for Image Sensors with Video Compression

    Directory of Open Access Journals (Sweden)

    Weizhi Xu

    2015-08-01

    Full Text Available It is important to reduce the time cost of video compression for image sensors in video sensor network. Motion estimation (ME is the most time-consuming part in video compression. Previous work on ME exploited intra-frame data reuse in a reference frame to improve the time efficiency but neglected inter-frame data reuse. We propose a novel inter-frame data reuse scheme which can exploit both intra-frame and inter-frame data reuse for ME in video compression (VC-ME. Pixels of reconstructed frames are kept on-chip until they are used by the next current frame to avoid off-chip memory access. On-chip buffers with smart schedules of data access are designed to perform the new data reuse scheme. Three levels of the proposed inter-frame data reuse scheme are presented and analyzed. They give different choices with tradeoff between off-chip bandwidth requirement and on-chip memory size. All three levels have better data reuse efficiency than their intra-frame counterparts, so off-chip memory traffic is reduced effectively. Comparing the new inter-frame data reuse scheme with the traditional intra-frame data reuse scheme, the memory traffic can be reduced by 50% for VC-ME.

  10. Internuclear ophthalmoplegia: MR imaging and anatomic correlation

    International Nuclear Information System (INIS)

    Atlas, S.W.; Grossman, R.I.; Savino, P.J.

    1986-01-01

    Internuclear ophthalmoplegia is a gaze disorder characterized by impaired adduction of the side of a lesion in the medial longitudinal fasciculus (MLF) with dissociated nystagmus of the abducting eye. Eleven patients with internuclear ophthalmoplegia (nine with multiple sclerosis, two with infarction) were examined with spin-echo MR imaging performed at 1.5 T. Nine of the 11 patients also underwent CT. MR imaging was highly sensitive (10 of 11 cases) and CT was of no value (0 of 9 cases) in detecting clinically suspected MLF lesions. These lesions must be distinguished from ''pseudo-MLF hyperintensity,'' which appears as a thin, strictly midline, linear hyperintensity just interior to the fourth ventricle and aqueduct in healthy subjects. True MLF lesions are nodular, more prominent, and slightly off the midline, corresponding to the paramedian anatomic site of the MLF

  11. Superimpose of images by appending two simple video amplifier circuits to color television

    International Nuclear Information System (INIS)

    Kojima, Kazuhiko; Hiraki, Tatsunosuke; Koshida, Kichiro; Maekawa, Ryuichi; Hisada, Kinichi.

    1979-01-01

    Images are very useful to obtain diagnostic informations in medical fields. Also by superimposing two or three images obtained from the same patient, various informations, for example a degree of overlapping and anatomical land mark, which can not be found in only one image, can be often found. In this paper characteristics of our trial color television system for the purpose of superimposing x-ray images and/or radionuclide images are described. This color television system superimposing two images in each different color consists of two monochromatic vidicon cameras and 20 inches conventional color television in which only two simple video amplifier circuits are added. Signals from vidicon cameras are amplified about 40 dB and are directly applied to cathode terminals of color CRT in the television. This system is very simple and economical color displays, and enhance a degree of overlapping and displacement between images. As one of typical clinical applications, pancreas images were superimposed in color by this method. As a result, size and position of pancreas was enhanced. Also x-ray image and radionuclide image were superimposed to find exactly the position of tumors. Furthermore this system was very useful for color display of multinuclides scintigraphy. (author)

  12. Superimpose of images by appending two simple video amplifier circuits to color television

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, K; Hiraki, T; Koshida, K; Maekawa, R [Kanazawa Univ. (Japan). School of Paramedicine; Hisada, K

    1979-09-01

    Images are very useful to obtain diagnostic informations in medical fields. Also by superimposing two or three images obtained from the same patient, various informations, for example a degree of overlapping and anatomical land mark, which can not be found in only one image, can be often found. In this paper characteristics of our trial color television system for the purpose of superimposing x-ray images and/or radionuclide images are described. This color television system superimposing two images in each different color consists of two monochromatic vidicon cameras and 20 inches conventional color television in which only two simple video amplifier circuits are added. Signals from vidicon cameras are amplified about 40 dB and are directly applied to cathode terminals of color CRT in the television. This system is very simple and economical color displays, and enhance a degree of overlapping and displacement between images. As one of typical clinical applications, pancreas images were superimposed in color by this method. As a result, size and position of pancreas was enhanced. Also x-ray image and radionuclide image were superimposed to find exactly the position of tumors. Furthermore this system was very useful for color display of multinuclides scintigraphy.

  13. Availability and performance of image/video-based vital signs monitoring methods: a systematic review protocol.

    Science.gov (United States)

    Harford, Mirae; Catherall, Jacqueline; Gerry, Stephen; Young, Duncan; Watkinson, Peter

    2017-10-25

    For many vital signs, monitoring methods require contact with the patient and/or are invasive in nature. There is increasing interest in developing still and video image-guided monitoring methods that are non-contact and non-invasive. We will undertake a systematic review of still and video image-based monitoring methods. We will perform searches in multiple databases which include MEDLINE, Embase, CINAHL, Cochrane library, IEEE Xplore and ACM Digital Library. We will use OpenGrey and Google searches to access unpublished or commercial data. We will not use language or publication date restrictions. The primary goal is to summarise current image-based vital signs monitoring methods, limited to heart rate, respiratory rate, oxygen saturations and blood pressure. Of particular interest will be the effectiveness of image-based methods compared to reference devices. Other outcomes of interest include the quality of the method comparison studies with respect to published reporting guidelines, any limitations of non-contact non-invasive technology and application in different populations. To the best of our knowledge, this is the first systematic review of image-based non-contact methods of vital signs monitoring. Synthesis of currently available technology will facilitate future research in this highly topical area. PROSPERO CRD42016029167.

  14. Availability and performance of image/video-based vital signs monitoring methods: a systematic review protocol

    Directory of Open Access Journals (Sweden)

    Mirae Harford

    2017-10-01

    Full Text Available Abstract Background For many vital signs, monitoring methods require contact with the patient and/or are invasive in nature. There is increasing interest in developing still and video image-guided monitoring methods that are non-contact and non-invasive. We will undertake a systematic review of still and video image-based monitoring methods. Methods We will perform searches in multiple databases which include MEDLINE, Embase, CINAHL, Cochrane library, IEEE Xplore and ACM Digital Library. We will use OpenGrey and Google searches to access unpublished or commercial data. We will not use language or publication date restrictions. The primary goal is to summarise current image-based vital signs monitoring methods, limited to heart rate, respiratory rate, oxygen saturations and blood pressure. Of particular interest will be the effectiveness of image-based methods compared to reference devices. Other outcomes of interest include the quality of the method comparison studies with respect to published reporting guidelines, any limitations of non-contact non-invasive technology and application in different populations. Discussion To the best of our knowledge, this is the first systematic review of image-based non-contact methods of vital signs monitoring. Synthesis of currently available technology will facilitate future research in this highly topical area. Systematic review registration PROSPERO CRD42016029167

  15. INTEGRATION OF VIDEO IMAGES AND CAD WIREFRAMES FOR 3D OBJECT LOCALIZATION

    Directory of Open Access Journals (Sweden)

    R. A. Persad

    2012-07-01

    Full Text Available The tracking of moving objects from single images has received widespread attention in photogrammetric computer vision and considered to be at a state of maturity. This paper presents a model-driven solution for localizing moving objects detected from monocular, rotating and zooming video images in a 3D reference frame. To realize such a system, the recovery of 2D to 3D projection parameters is essential. Automatic estimation of these parameters is critical, particularly for pan-tilt-zoom (PTZ surveillance cameras where parameters change spontaneously upon camera motion. In this work, an algorithm for automated parameter retrieval is proposed. This is achieved by matching linear features between incoming images from video sequences and simple geometric 3D CAD wireframe models of man-made structures. The feature matching schema uses a hypothesis-verify optimization framework referred to as LR-RANSAC. This novel method improves the computational efficiency of the matching process in comparison to the standard RANSAC robust estimator. To demonstrate the applicability and performance of the method, experiments have been performed on indoor and outdoor image sequences under varying conditions with lighting changes and occlusions. Reliability of the matching algorithm has been analyzed by comparing the automatically determined camera parameters with ground truth (GT. Dependability of the retrieved parameters for 3D localization has also been assessed by comparing the difference between 3D positions of moving image objects estimated using the LR-RANSAC-derived parameters and those computed using GT parameters.

  16. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  17. Development of digital image correlation method to analyse crack ...

    Indian Academy of Sciences (India)

    samples were performed to verify the performance of the digital image correlation method. ... development cannot be measured accurately. ..... Mendelson A 1983 Plasticity: Theory and application (USA: Krieger Publishing company Malabar,.

  18. Pilomatricomas in children: imaging characteristics with pathologic correlation

    International Nuclear Information System (INIS)

    Lim, Hyun Wook; Im, Soo Ah; Lim, Gye-Yeon; Park, Hyun Jin; Lee, Heejeong; Sung, Mi Sook; Kang, Bong Joo; Kim, Jee Young

    2007-01-01

    Although pilomatricoma commonly occurs in children, there is still a poor understanding of the imaging characteristics of pilomatricoma and lack of agreement regarding its imaging findings and histopathologic features. To characterize the radiologic appearance of pilomatricomas on US, CT, and MR and to correlate the imaging findings with histopathologic features. The imaging findings of 47 pilomatricomas on US (n = 17), CT (n = 31), and MR (n = 5) were retrospectively evaluated. Pathologic specimens of all cases were reviewed and compared with imaging findings. All lesions were well-circumscribed, subcutaneous nodules with partial attachment to the overlying skin. On US, the lesions were mostly hyperechoic with posterior acoustic shadowing and hypoechoic rim. On CT, they appeared as enhancing soft-tissue masses with varying amounts of calcification. MR findings were internal reticulations and patchy areas on T2-weighted images and contrast-enhanced T1-weighted images, corresponding to edematous stroma on pathology. Peritumoral inflammatory changes and connective capsule on pathology were well correlated with imaging findings. Pilomatricoma should be considered when US or CT shows a well-defined hyperechoic or calcific nodule in subcutaneous fat attached to the skin in children. MR images may be helpful in diagnosis. Pathologic findings are well correlated with imaging findings. (orig.)

  19. A video authentication technique

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1987-01-01

    Unattended video surveillance systems are particularly vulnerable to the substitution of false video images into the cable that connects the camera to the video recorder. New technology has made it practical to insert a solid state video memory into the video cable, freeze a video image from the camera, and hold this image as long as desired. Various techniques, such as line supervision and sync detection, have been used to detect video cable tampering. The video authentication technique described in this paper uses the actual video image from the camera as the basis for detecting any image substitution made during the transmission of the video image to the recorder. The technique, designed for unattended video systems, can be used for any video transmission system where a two-way digital data link can be established. The technique uses similar microprocessor circuitry at the video camera and at the video recorder to select sample points in the video image for comparison. The gray scale value of these points is compared at the recorder controller and if the values agree within limits, the image is authenticated. If a significantly different image was substituted, the comparison would fail at a number of points and the video image would not be authenticated. The video authentication system can run as a stand-alone system or at the request of another system

  20. A hybrid correlation analysis with application to imaging genetics

    Science.gov (United States)

    Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping

    2018-03-01

    Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding

  1. Usefulness of video images from a X-ray simulator in recordings of the treatment portal of pulmonary lesion

    International Nuclear Information System (INIS)

    Nishioka, Masayuki; Sakurai, Makoto; Fujioka, Tomio; Fukuoka, Masahiro; Kusunoki, Yoko; Nakajima, Toshifumi; Onoyama, Yasuto.

    1992-01-01

    Movement of the target volume should be taken into consideration in treatment planning. Respiratory movement is the greatest motion in radiotherapy for the pulmonary lesion. We combined video with a X-ray simulator to record movement. Of 50 patients whose images were recorded, respiratory movements of 0 to 4 mm, of 5 to 9 mm, and of more than 10 mm were observed in 13, 21, and 16 patients, respectively. Discrepancies of 5 to 9 mm and of more than 10 mm between simulator films and video images were observed in 14 and 13 patients, respectively. These results show that video images are useful in recording the movement while considering respiratory motion. We recommend that video system added to a X-ray simulator is used for treatment planning, especially in radiotherapy for the pulmonary lesion. (author)

  2. A flexible software architecture for scalable real-time image and video processing applications

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2012-06-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility because they are normally oriented towards particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse and inefficient execution on multicore processors. This paper presents a novel software architecture for real-time image and video processing applications which addresses these issues. The architecture is divided into three layers: the platform abstraction layer, the messaging layer, and the application layer. The platform abstraction layer provides a high level application programming interface for the rest of the architecture. The messaging layer provides a message passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of messages. The application layer provides a repository for reusable application modules designed for real-time image and video processing applications. These modules, which include acquisition, visualization, communication, user interface and data processing modules, take advantage of the power of other well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, we present different prototypes and applications to show the possibilities of the proposed architecture.

  3. Extracting a Good Quality Frontal Face Image from a Low-Resolution Video Sequence

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2011-01-01

    Feeding low-resolution and low-quality images, from inexpensive surveillance cameras, to systems like, e.g., face recognition, produces erroneous and unstable results. Therefore, there is a need for a mechanism to bridge the gap between on one hand low-resolution and low-quality images......, we use a learning-based super-resolution algorithm applied to the result of the reconstruction-based part to improve the quality by another factor of two. This results in an improvement factor of four for the entire system. The proposed system has been tested on 122 low-resolution sequences from two...... different databases. The experimental results show that the proposed system can indeed produce a high-resolution and good quality frontal face image from low-resolution video sequences....

  4. Integration of prior knowledge into dense image matching for video surveillance

    Science.gov (United States)

    Menze, M.; Heipke, C.

    2014-08-01

    Three-dimensional information from dense image matching is a valuable input for a broad range of vision applications. While reliable approaches exist for dedicated stereo setups they do not easily generalize to more challenging camera configurations. In the context of video surveillance the typically large spatial extent of the region of interest and repetitive structures in the scene render the application of dense image matching a challenging task. In this paper we present an approach that derives strong prior knowledge from a planar approximation of the scene. This information is integrated into a graph-cut based image matching framework that treats the assignment of optimal disparity values as a labelling task. Introducing the planar prior heavily reduces ambiguities together with the search space and increases computational efficiency. The results provide a proof of concept of the proposed approach. It allows the reconstruction of dense point clouds in more general surveillance camera setups with wider stereo baselines.

  5. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    Science.gov (United States)

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  6. Differences in fMRI intersubject correlation while viewing unedited and edited videos of dance performance.

    Science.gov (United States)

    Herbec, Aleksandra; Kauppi, Jukka-Pekka; Jola, Corinne; Tohka, Jussi; Pollick, Frank E

    2015-10-01

    Intersubject correlation (ISC) analysis of functional magnetic resonance imaging (fMRI) data provides insight into how continuous streams of sensory stimulation are processed by groups of observers. Although edited movies are frequently used as stimuli in ISC studies, there has been little direct examination of the effect of edits on the resulting ISC maps. In this study we showed 16 observers two audiovisual movie versions of the same dance. In one experimental condition there was a continuous view from a single camera (Unedited condition) and in the other condition there were views from different cameras (Edited condition) that provided close up views of the feet or face and upper body. We computed ISC maps for each condition, as well as created a map that showed the difference between the conditions. The results from the Unedited and Edited maps largely overlapped in the occipital and temporal cortices, although more voxels were found for the Edited map. The difference map revealed greater ISC for the Edited condition in the Postcentral Gyrus, Lingual Gyrus, Precentral Gyrus and Medial Frontal Gyrus, while the Unedited condition showed greater ISC in only the Superior Temporal Gyrus. These findings suggest that the visual changes associated with editing provide a source of correlation in maps obtained from edited film, and highlight the utility of using maps to evaluate the difference in ISC between conditions. Copyright © 2015. Published by Elsevier Ltd.

  7. Self-adaptive isogeometric global digital image correlation and digital height correlation

    NARCIS (Netherlands)

    Hoefnagels, J. P M; Kleinendorst, S. M.; Ruybalid, A. P.; Verhoosel, C. V.; Geers, M. G D; Yoshida, S.; Lamberti, L.; Sciammarella, C.

    2017-01-01

    This work explores the full potential of isogeometric shape functions for global digital image correlation. To this end, a novel DIC and DHC (digital height correlation) methodology have been developed based on adaptive refinement of isogeometric shape functions. Non-Uniform Rational B-Spline

  8. Video-rate or high-precision: a flexible range imaging camera

    Science.gov (United States)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  9. Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video

    Science.gov (United States)

    Li, Honggui

    2017-09-01

    This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.

  10. Real-time strategy video game experience and structural connectivity - A diffusion tensor imaging study.

    Science.gov (United States)

    Kowalczyk, Natalia; Shi, Feng; Magnuski, Mikolaj; Skorko, Maciek; Dobrowolski, Pawel; Kossowski, Bartosz; Marchewka, Artur; Bielecki, Maksymilian; Kossut, Malgorzata; Brzezicka, Aneta

    2018-06-20

    Experienced video game players exhibit superior performance in visuospatial cognition when compared to non-players. However, very little is known about the relation between video game experience and structural brain plasticity. To address this issue, a direct comparison of the white matter brain structure in RTS (real time strategy) video game players (VGPs) and non-players (NVGPs) was performed. We hypothesized that RTS experience can enhance connectivity within and between occipital and parietal regions, as these regions are likely to be involved in the spatial and visual abilities that are trained while playing RTS games. The possible influence of long-term RTS game play experience on brain structural connections was investigated using diffusion tensor imaging (DTI) and a region of interest (ROI) approach in order to describe the experience-related plasticity of white matter. Our results revealed significantly more total white matter connections between occipital and parietal areas and within occipital areas in RTS players compared to NVGPs. Additionally, the RTS group had an altered topological organization of their structural network, expressed in local efficiency within the occipito-parietal subnetwork. Furthermore, the positive association between network metrics and time spent playing RTS games suggests a close relationship between extensive, long-term RTS game play and neuroplastic changes. These results indicate that long-term and extensive RTS game experience induces alterations along axons that link structures of the occipito-parietal loop involved in spatial and visual processing. © 2018 Wiley Periodicals, Inc.

  11. The architecture of a video image processor for the space station

    Science.gov (United States)

    Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.

    1987-01-01

    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.

  12. Spatial correlation genetic algorithm for fractal image compression

    International Nuclear Information System (INIS)

    Wu, M.-S.; Teng, W.-C.; Jeng, J.-H.; Hsieh, J.-G.

    2006-01-01

    Fractal image compression explores the self-similarity property of a natural image and utilizes the partitioned iterated function system (PIFS) to encode it. This technique is of great interest both in theory and application. However, it is time-consuming in the encoding process and such drawback renders it impractical for real time applications. The time is mainly spent on the search for the best-match block in a large domain pool. In this paper, a spatial correlation genetic algorithm (SC-GA) is proposed to speed up the encoder. There are two stages for the SC-GA method. The first stage makes use of spatial correlations in images for both the domain pool and the range pool to exploit local optima. The second stage is operated on the whole image to explore more adequate similarities if the local optima are not satisfied. With the aid of spatial correlation in images, the encoding time is 1.5 times faster than that of traditional genetic algorithm method, while the quality of the retrieved image is almost the same. Moreover, about half of the matched blocks come from the correlated space, so fewer bits are required to represent the fractal transform and therefore the compression ratio is also improved

  13. Real time implementation of the parametric imaging correlation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bogorodski, Piotr; Wolek, Tomasz; Wasielewski, Jaroslaw; Piatkowski, Adam [Medical and Nuclear Electronics Division, Institute of Radioelectronics, Warsaw University of Technology, 00-665 Warsaw, Nowowiejska 15/19 (Poland)

    1999-12-31

    A novel method for functional image evaluation from image set obtained in contrast aided Ultrafast Computed Tomography and Magnetic Resonance Imaging will be presented. The method converts temporal set of images of first-pass transit of injected contrast, to a single parametric image. The main difference between proposed procedure and other widely accepted methods is fast, that our method applies correlation and discrimination analysis to each concentration-time curve, instead of fitting them to the given a priori tracer kinetics model. A stress will be put on execution speed (i.e. shortening of the time required to obtain a perfusion relevant image), and easiest user interface allowing the physician to utilize the system without any technical assistance. Both execution speed and user interface should satisfy requirements in the interventional procedures. (authors)

  14. Smartphone based scalable reverse engineering by digital image correlation

    Science.gov (United States)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  15. An automated form of video image analysis applied to classification of movement disorders.

    Science.gov (United States)

    Chang, R; Guan, L; Burne, J A

    Video image analysis is able to provide quantitative data on postural and movement abnormalities and thus has an important application in neurological diagnosis and management. The conventional techniques require patients to be videotaped while wearing markers in a highly structured laboratory environment. This restricts the utility of video in routine clinical practise. We have begun development of intelligent software which aims to provide a more flexible system able to quantify human posture and movement directly from whole-body images without markers and in an unstructured environment. The steps involved are to extract complete human profiles from video frames, to fit skeletal frameworks to the profiles and derive joint angles and swing distances. By this means a given posture is reduced to a set of basic parameters that can provide input to a neural network classifier. To test the system's performance we videotaped patients with dopa-responsive Parkinsonism and age-matched normals during several gait cycles, to yield 61 patient and 49 normal postures. These postures were reduced to their basic parameters and fed to the neural network classifier in various combinations. The optimal parameter sets (consisting of both swing distances and joint angles) yielded successful classification of normals and patients with an accuracy above 90%. This result demonstrated the feasibility of the approach. The technique has the potential to guide clinicians on the relative sensitivity of specific postural/gait features in diagnosis. Future studies will aim to improve the robustness of the system in providing accurate parameter estimates from subjects wearing a range of clothing, and to further improve discrimination by incorporating more stages of the gait cycle into the analysis.

  16. Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction.

    Science.gov (United States)

    Ravì, Daniele; Szczotka, Agnieszka Barbara; Shakir, Dzhoshkun Ismail; Pereira, Stephen P; Vercauteren, Tom

    2018-06-01

    Probe-based confocal laser endomicroscopy (pCLE) is a recent imaging modality that allows performing in vivo optical biopsies. The design of pCLE hardware, and its reliance on an optical fibre bundle, fundamentally limits the image quality with a few tens of thousands fibres, each acting as the equivalent of a single-pixel detector, assembled into a single fibre bundle. Video registration techniques can be used to estimate high-resolution (HR) images by exploiting the temporal information contained in a sequence of low-resolution (LR) images. However, the alignment of LR frames, required for the fusion, is computationally demanding and prone to artefacts. In this work, we propose a novel synthetic data generation approach to train exemplar-based Deep Neural Networks (DNNs). HR pCLE images with enhanced quality are recovered by the models trained on pairs of estimated HR images (generated by the video registration algorithm) and realistic synthetic LR images. Performance of three different state-of-the-art DNNs techniques were analysed on a Smart Atlas database of 8806 images from 238 pCLE video sequences. The results were validated through an extensive image quality assessment that takes into account different quality scores, including a Mean Opinion Score (MOS). Results indicate that the proposed solution produces an effective improvement in the quality of the obtained reconstructed image. The proposed training strategy and associated DNNs allows us to perform convincing super-resolution of pCLE images.

  17. Intensity correlation imaging with sunlight-like source

    Science.gov (United States)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  18. Video event classification and image segmentation based on noncausal multidimensional hidden Markov models.

    Science.gov (United States)

    Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A

    2009-06-01

    In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.

  19. The use of digital imaging, video conferencing, and telepathology in histopathology: a national survey.

    Science.gov (United States)

    Dennis, T; Start, R D; Cross, S S

    2005-03-01

    To undertake a large scale survey of histopathologists in the UK to determine the current infrastructure, training, and attitudes to digital pathology. A postal questionnaire was sent to 500 consultant histopathologists randomly selected from the membership of the Royal College of Pathologists in the UK. There was a response rate of 47%. Sixty four per cent of respondents had a digital camera mounted on their microscope, but only 12% had any sort of telepathology equipment. Thirty per cent used digital images in electronic presentations at meetings at least once a year and only 24% had ever used telepathology in a diagnostic situation. Fifty nine per cent had received no training in digital imaging. Fifty eight per cent felt that the medicolegal implications of duty of care were a barrier to its use. A large proportion of pathologists (69%) were interested in using video conferencing for remote attendance at multidisciplinary team meetings. There is a reasonable level of equipment and communications infrastructure among histopathologists in the UK but a very low level of training. There is resistance to the use of telepathology in the diagnostic context but enthusiasm for the use of video conferencing in multidisciplinary team meetings.

  20. Low-complexity camera digital signal imaging for video document projection system

    Science.gov (United States)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  1. Cross Correlation versus Normalized Mutual Information on Image Registration

    Science.gov (United States)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  2. In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W. [Univ. of Notre Dame, IN (United States); Shrout, J. D. [Univ. of Notre Dame, IN (United States); Sweedler, J. V. [Univ. of Illinois, Urbana-Champaign, IL (United States); Farrand, S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-01-25

    This document constitutes the final technical report for DE-SC0006642, In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities, a project carried out collaboratively by investigators at Notre Dame and UIUC. The work carried out under DOE support in this project produced advances in two areas: development of new highly sophisticated correlated imaging approaches and the application of these new tools to the growth and differentiation of microbial communities under a variety of environmental conditions. A significant effort involved the creation of technical enhancements and sampling approaches to allow us to advance heterocorrelated mass spectrometry imaging (MSI) and correlated Raman microscopy (CRM) from bacterial cultures and biofilms. We then exploited these measurement advances in heterocorrelated MS/CRM imaging to determine relationship of signaling molecules and excreted signaling molecules produced by P. aeruginosa to conditions relevant to the rhizosphere. In particular, we: (1) developed a laboratory testbed mimic for the rhizosphere to enable microbial growth on slides under controlled conditions; (2) integrated specific measurements of (a) rhamnolipids, (b) quinolone/quinolones, and (c) phenazines specific to P. aeruginosa; and (3) utilized the imaging tools to probe how messenger secretion, quorum sensing and swarming behavior are correlated with behavior.

  3. Correlated statistical uncertainties in coded-aperture imaging

    International Nuclear Information System (INIS)

    Fleenor, Matthew C.; Blackston, Matthew A.; Ziock, Klaus P.

    2015-01-01

    In nuclear security applications, coded-aperture imagers can provide a wealth of information regarding the attributes of both the radioactive and nonradioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be determined in a quantitative and statistically meaningful manner. To address a deficiency of quantifiable errors in coded-aperture imaging, we present uncertainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti-mask data are included. Utilizing simulated point source data, we found that correlations arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations was heightened by the process of over-sampling, while correlations were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explored how statistics-based alarming is impacted in a radiological search scenario

  4. High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images

    Science.gov (United States)

    Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2006-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.

  5. VISDTA: A video imaging system for detection, tracking, and assessment: Prototype development and concept demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.A.

    1987-05-01

    It has been demonstrated that thermal imagers are an effective surveillance and assessment tool for security applications because: (1) they work day or night due to their sensitivity to thermal signatures; (2) penetrability through fog, rain, dust, etc., is better than human eyes; (3) short or long range operation is possible with various optics; and (4) they are strictly passive devices providing visible imagery which is readily interpreted by the operator with little training. Unfortunately, most thermal imagers also require the setup of a tripod, connection of batteries, cables, display, etc. When this is accomplished, the operator must manually move the camera back and forth searching for signs of aggressor activity. VISDTA is designed to provide automatic panning, and in a sense, ''watch'' the imagery in place of the operator. The idea behind the development of VISDTA is to provide a small, portable, rugged system to automatically scan areas and detect targets by computer processing of images. It would use a thermal imager and possibly an intensified day/night TV camera, a pan/ tilt mount, and a computer for system control. If mounted on a dedicated vehicle or on a tower, VISDTA will perform video motion detection functions on incoming video imagery, and automatically scan predefined patterns in search of abnormal conditions which may indicate attempted intrusions into the field-of-regard. In that respect, VISDTA is capable of improving the ability of security forces to maintain security of a given area of interest by augmenting present techniques and reducing operator fatigue.

  6. Method for operating video game with back-feeding a video image of a player, and a video game arranged for practicing the method.

    NARCIS (Netherlands)

    2006-01-01

    In a video gaming environment, a player is enabled to interact with the environment. Further, a score and/or performance of the player in a particular session is machine detected and fed fed back into the gaming environment and a representation of said score and/or performance is displayed in visual

  7. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  8. Video Game Addiction in Gambling Disorder: Clinical, Psychopathological, and Personality Correlates

    Directory of Open Access Journals (Sweden)

    Susana Jiménez-Murcia

    2014-01-01

    Full Text Available Objective. We studied the prevalences of video game use (VGU and addiction (VGA in gambling disorder (GD patients and compared them with subjects with non-video game use (non-VGU in relation to their gambling behavior, psychopathology, and personality characteristics. Method. A sample of 193 GD patients (121 non-VGU, 43 VGU, and 29 VGA consecutively admitted to our pathological gambling unit participated in the study. Assessment. Measures included the video game dependency test (VDT, symptom checklist-90-revised, and the temperament and character inventory-revised, as well as a number of other GD indices. Results. In GD, the observed prevalence of VG (use or addiction was 37.3% (95% CI :30.7%÷44.3,VGU 22.3% (95% CI :17.0%÷28.7, and VGA 15% (95% CI :10.7%÷20.7. Orthogonal polynomial contrast into logistic regression showed positive linear trends for VG level and GD severity and other measures of general psychopathology. After structural equation modeling, higher VG total scores were associated with younger age, general psychopathology, and specific personality traits, but not with GD severity. Patients’ sex and age were involved in the mediational pathways between personality traits and VG impairment. Conclusions. GD patients with VG are younger and present more dysfunctional personality traits, and more general psychopathology. The presence of VG did not affect the severity of GD.

  9. Video game addiction in gambling disorder: clinical, psychopathological, and personality correlates.

    Science.gov (United States)

    Jiménez-Murcia, Susana; Fernández-Aranda, Fernando; Granero, Roser; Chóliz, Mariano; La Verde, Melania; Aguglia, Eugenio; Signorelli, Maria S; Sá, Gustavo M; Aymamí, Neus; Gómez-Peña, Mónica; del Pino-Gutiérrez, Amparo; Moragas, Laura; Fagundo, Ana B; Sauchelli, Sarah; Fernández-Formoso, José A; Menchón, José M

    2014-01-01

    We studied the prevalences of video game use (VGU) and addiction (VGA) in gambling disorder (GD) patients and compared them with subjects with non-video game use (non-VGU) in relation to their gambling behavior, psychopathology, and personality characteristics. A sample of 193 GD patients (121 non-VGU, 43 VGU, and 29 VGA) consecutively admitted to our pathological gambling unit participated in the study. Assessment. Measures included the video game dependency test (VDT), symptom checklist-90-revised, and the temperament and character inventory-revised, as well as a number of other GD indices. In GD, the observed prevalence of VG (use or addiction) was 37.3% (95% CI :30.7% ÷ 44.3),VGU 22.3% (95% CI :17.0% ÷ 28.7), and VGA 15% (95% CI :10.7% ÷ 20.7). Orthogonal polynomial contrast into logistic regression showed positive linear trends for VG level and GD severity and other measures of general psychopathology. After structural equation modeling, higher VG total scores were associated with younger age, general psychopathology, and specific personality traits, but not with GD severity. Patients' sex and age were involved in the mediational pathways between personality traits and VG impairment. GD patients with VG are younger and present more dysfunctional personality traits, and more general psychopathology. The presence of VG did not affect the severity of GD.

  10. Interaction between High-Level and Low-Level Image Analysis for Semantic Video Object Extraction

    Directory of Open Access Journals (Sweden)

    Andrea Cavallaro

    2004-06-01

    Full Text Available The task of extracting a semantic video object is split into two subproblems, namely, object segmentation and region segmentation. Object segmentation relies on a priori assumptions, whereas region segmentation is data-driven and can be solved in an automatic manner. These two subproblems are not mutually independent, and they can benefit from interactions with each other. In this paper, a framework for such interaction is formulated. This representation scheme based on region segmentation and semantic segmentation is compatible with the view that image analysis and scene understanding problems can be decomposed into low-level and high-level tasks. Low-level tasks pertain to region-oriented processing, whereas the high-level tasks are closely related to object-level processing. This approach emulates the human visual system: what one “sees” in a scene depends on the scene itself (region segmentation as well as on the cognitive task (semantic segmentation at hand. The higher-level segmentation results in a partition corresponding to semantic video objects. Semantic video objects do not usually have invariant physical properties and the definition depends on the application. Hence, the definition incorporates complex domain-specific knowledge and is not easy to generalize. For the specific implementation used in this paper, motion is used as a clue to semantic information. In this framework, an automatic algorithm is presented for computing the semantic partition based on color change detection. The change detection strategy is designed to be immune to the sensor noise and local illumination variations. The lower-level segmentation identifies the partition corresponding to perceptually uniform regions. These regions are derived by clustering in an N-dimensional feature space, composed of static as well as dynamic image attributes. We propose an interaction mechanism between the semantic and the region partitions which allows to

  11. Cross-correlated imaging of distributed mode filtering rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    We analyze the modal properties of an 85μm core distributed mode filtering rod fiber using cross-correlated (C2) imaging. We evaluate suppression of higher-order modes (HOMs) under severely misaligned mode excitation and identify a single-mode regime where HOMs are suppressed by more than 20dB....

  12. Application of digital image correlation method for analysing crack ...

    Indian Academy of Sciences (India)

    centrated strain by imitating the treatment of micro-cracks using the finite element ... water and moisture to penetrate the concrete leading to serious rust of the ... The correlations among various grey values of digital images are analysed for ...

  13. Application of digital-image-correlation techniques in analysing ...

    Indian Academy of Sciences (India)

    Basis theory of strain analysis using the digital image correlation method .... Type 304N Stainless Steel (Modulus of Elasticity = 193 MPa, Tensile Yield .... also proves the accuracy of the qualitative analyses by using the DIC ... We thank the National Science Council of Taiwan for supporting this research through grant. No.

  14. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix; Xiao, Lei; Kolb, Andreas; Hullin, Matthias B.; Heidrich, Wolfgang

    2014-01-01

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  15. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix

    2014-10-17

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  16. Correlation Filters for Detection of Cellular Nuclei in Histopathology Images.

    Science.gov (United States)

    Ahmad, Asif; Asif, Amina; Rajpoot, Nasir; Arif, Muhammad; Minhas, Fayyaz Ul Amir Afsar

    2017-11-21

    Nuclei detection in histology images is an essential part of computer aided diagnosis of cancers and tumors. It is a challenging task due to diverse and complicated structures of cells. In this work, we present an automated technique for detection of cellular nuclei in hematoxylin and eosin stained histopathology images. Our proposed approach is based on kernelized correlation filters. Correlation filters have been widely used in object detection and tracking applications but their strength has not been explored in the medical imaging domain up till now. Our experimental results show that the proposed scheme gives state of the art accuracy and can learn complex nuclear morphologies. Like deep learning approaches, the proposed filters do not require engineering of image features as they can operate directly on histopathology images without significant preprocessing. However, unlike deep learning methods, the large-margin correlation filters developed in this work are interpretable, computationally efficient and do not require specialized or expensive computing hardware. A cloud based webserver of the proposed method and its python implementation can be accessed at the following URL: http://faculty.pieas.edu.pk/fayyaz/software.html#corehist .

  17. Image/video understanding systems based on network-symbolic models

    Science.gov (United States)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  18. Modeling of video traffic in packet networks, low rate video compression, and the development of a lossy+lossless image compression algorithm

    Science.gov (United States)

    Sayood, K.; Chen, Y. C.; Wang, X.

    1992-01-01

    During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.

  19. On use of image quality metrics for perceptual blur modeling: image/video compression case

    Science.gov (United States)

    Cha, Jae H.; Olson, Jeffrey T.; Preece, Bradley L.; Espinola, Richard L.; Abbott, A. Lynn

    2018-02-01

    Linear system theory is employed to make target acquisition performance predictions for electro-optical/infrared imaging systems where the modulation transfer function (MTF) may be imposed from a nonlinear degradation process. Previous research relying on image quality metrics (IQM) methods, which heuristically estimate perceived MTF has supported that an average perceived MTF can be used to model some types of degradation such as image compression. Here, we discuss the validity of the IQM approach by mathematically analyzing the associated heuristics from the perspective of reliability, robustness, and tractability. Experiments with standard images compressed by x.264 encoding suggest that the compression degradation can be estimated by a perceived MTF within boundaries defined by well-behaved curves with marginal error. Our results confirm that the IQM linearizer methodology provides a credible tool for sensor performance modeling.

  20. MR imaging of symptomatic osteochondromas with pathological correlation

    International Nuclear Information System (INIS)

    Mehta, M.; Knapp, T.; White, L.M.; Wunder, J.S.; Bell, R.S.

    1998-01-01

    Objective. To demonstrate the value of MR imaging in the diagnosis and differentiation of the various symptomatic complications of osteochondromas, providing pathological correlation with emphasis on the usefulness of MR imaging as a single imaging modality in these patients. Design. We retrospectively reviewed all MR examinations of clinically symptomatic osteochondromas (30 patients) performed at our institution between March 1990 and October 1997. Patients. Thirty patients had clinically symptomatic osteochondromas during the study period. Twenty patients were male and 10 were female. There were five cases of multiple osteochondromatosis. Pathological correlation was available in 24 patients. Results and conclusion. Symptomatic complications included fracture (7%), osseous deformity limiting range of motion (23%), vascular injury (7%), neurological compromise (10%), bursa formation (27%) and malignant transformation (27%). MR imaging was able to diagnose or suggest the etiology for the clinical symptomatology in all cases, demonstrating that it is an ideal imaging modality in the diagnostic evaluation of symptomatic complications of osteochondromas and often avoids the need for further imaging. (orig.)

  1. Fluorescence decay time imaging using an imaging photon detector with a radio frequency photon correlation system

    Science.gov (United States)

    Morgan, Christopher G.; Mitchell, A. C.; Murray, J. G.

    1990-05-01

    An imaging photon detector has been modified to incorporate fast timing electronics coupled to a custom built photon correlator interfaced to a RISC computer. Using excitation with intensity- muodulated light, fluorescence images can be readily obtained where contrast is determined by the decay time of emission, rather than by intensity. This technology is readily extended to multifrequency phase/demodulation fluorescence imaging or to differential polarised phase fluorometry. The potential use of the correlator for confocal imaging with a laser scanner is also briefly discussed.

  2. Hippocampal sclerosis: correlation of MR imaging findings with surgical outcome

    International Nuclear Information System (INIS)

    Kim, Yoon Hee; Chang, Kee Hyun; Kim, Kyung Won; Han, Moon Hee; Park, Sung Ho; Nam, Hyun Woo; Choi, Kyu Ho; Cho, Woo Ho

    2001-01-01

    Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p 0.05). Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator

  3. Correlation of angiography and MR imaging in cerebral vasculitis

    International Nuclear Information System (INIS)

    Cloft, H.J.; Phillips, C.D.; Dix, J.E.; McNulty, B.C.; Kallmes, D.F.; Zagardo, M.T.

    1999-01-01

    Purpose: MR imaging and cerebral angiography were correlated in patients with primary angiitis of the central nervous system (PACNS) to assess the relative roles of these imaging modalities in the diagnosis. Material and Methods: In 9 patients, MR imaging and angiography were compared with regard to the relative involvement of each major vascular territory. Vascular territories assessed were the anterior, middle, and posterior cerebral arteries, and the posterior fossa. Results: All patients had angiographic findings consistent with vasculitis in multiple vascular territories. MR findings ranged from normal to diffusely abnormal. One patient had a completely normal MR investigation. Of 50 territories affected by vasculitis on angiography, 17 (34%) were normal on MR. Conclusion: Relative to cerebral angiography, MR imaging is a poor indicator of the presence or absence of PACNS. Angiography is indicated when clinical suspicion of PACNS is strong, regardless of the findings on MR. (orig.)

  4. Vaginal Masses: Magnetic Resonance Imaging Features with Pathologic Correlation

    International Nuclear Information System (INIS)

    Elsayes, K.M.; Narra, V.R.; Dillman, J.R.; Velcheti, V.; Hameed, O.; Tongdee, R.; Menias, C.O.

    2007-01-01

    The detection of vaginal lesions has increased with the expanding use of cross-sectional imaging. Magnetic resonance imaging (MRI) - with its high-contrast resolution and multiplanar capabilities - is often useful for characterizing vaginal masses. Vaginal masses can be classified as congenital, inflammatory, cystic (benign), and neoplastic (benign or malignant) in etiology. Recognition of the typical MR imaging features of such lesions is important because it often determines the treatment approach and may obviate surgery. Finally, vaginal MR imaging can be used to evaluate post-treatment changes related to previous surgery and radiation therapy. In this article, we will review pertinent vaginal anatomy, vaginal and pelvic MRI technique, and the MRI features of a variety of vaginal lesions with pathological correlation

  5. Imaging pediatric magnet ingestion with surgical-pathological correlation

    International Nuclear Information System (INIS)

    Otjen, Jeffrey P.; Iyer, Ramesh S.; Rohrmann, Charles A.

    2013-01-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented. (orig.)

  6. Imaging pediatric magnet ingestion with surgical-pathological correlation.

    Science.gov (United States)

    Otjen, Jeffrey P; Rohrmann, Charles A; Iyer, Ramesh S

    2013-07-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented.

  7. Correlation and image compression for limited-bandwidth CCD.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  8. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  9. Image and video based remote target localization and tracking on smartphones

    Science.gov (United States)

    Wang, Qia; Lobzhanidze, Alex; Jang, Hyun; Zeng, Wenjun; Shang, Yi; Yang, Jingyu

    2012-06-01

    Smartphones are becoming popular nowadays not only because of its communication functionality but also, more importantly, its powerful sensing and computing capability. In this paper, we describe a novel and accurate image and video based remote target localization and tracking system using the Android smartphones, by leveraging its built-in sensors such as camera, digital compass, GPS, etc. Even though many other distance estimation or localization devices are available, our all-in-one, easy-to-use localization and tracking system on low cost and commodity smartphones is first of its kind. Furthermore, smartphones' exclusive user-friendly interface has been effectively taken advantage of by our system to facilitate low complexity and high accuracy. Our experimental results show that our system works accurately and efficiently.

  10. Photon-number correlation for quantum enhanced imaging and sensing

    Science.gov (United States)

    Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M.

    2017-09-01

    In this review we present the potentialities and the achievements of the use of non-classical photon-number correlations in twin-beam states for many applications, ranging from imaging to metrology. Photon-number correlations in the quantum regime are easily produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where losing one photon can completely compromise the state and its exploitable advantages. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon-number counting) are performed, which allow probing the transmission/absorption properties of a system, leading, for example, to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pair-wise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, such as wide-field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off single-photon regime to the linear regime in the same setup.

  11. Correlation of breast image alignment using biomechanical modelling

    Science.gov (United States)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  12. Chondrosarcoma : MR imaging findings correlated with pathologic classification and grade

    International Nuclear Information System (INIS)

    Cho, Seong Whi; Kang, Heung Sik; Kim, Sam Soo; Lee, Sang Hyun; Cho, Jeong Yeon; Yeon, Kyung Mo

    1996-01-01

    To evaluate the MR imaging findings of chondrosarcomas by correlation with pathologic classification and grade. We performed MR imaging-pathologic correlation of nineteen chondrosarcomas. Conventional chondrosarcomas accounted for 15 cases (grade I:6, II:6, III:3) and the mesenchymal and dedifferentiated types each accounted for two. MR signal intensity (SI) of the tumor on T1- and T2-weighted images (T1WI and T2WI, respectively), was classified as homogeneous or heterogeneous low-, iso- or high SI, and enhancing pattern as marginal, marginal and septal, marginal and nodular, or diffuse enhancement. Eighteen cases of chondrosarcomas (95%) showed homogeneous or heterogeneous low- or iso SI on T1WI and high SI on T2WI. Low grade conventional chondrosarcomas showed marginal and septal (n=8/10) or marginal (n=2/10) enhancement on Gd-enhanced MR images. Grade III conventional chondrosarcomas showed marginal or marginal and nodular enhancement. Dedifferentiated and mesenchymal chondrosarcomas showed marginal and nodular or diffuse enhancement. Chondrosarcomas showed iso- or low SI on T1WI and high SI on T2WI. Marginal and septal enhancement was demonstrated on Gd-enhanced MR images of grade I and II conventional chondrosarcomas. If a tumor showed a marginal and nodular or diffuse enhancing pattern, this suggested it was a of high grade chondrosarcoma

  13. Referential processing: reciprocity and correlates of naming and imaging.

    Science.gov (United States)

    Paivio, A; Clark, J M; Digdon, N; Bons, T

    1989-03-01

    To shed light on the referential processes that underlie mental translation between representations of objects and words, we studied the reciprocity and determinants of naming and imaging reaction times (RT). Ninety-six subjects pressed a key when they had covertly named 248 pictures or imaged to their names. Mean naming and imagery RTs for each item were correlated with one another, and with properties of names, images, and their interconnections suggested by prior research and dual coding theory. Imagery RTs correlated .56 (df = 246) with manual naming RTs and .58 with voicekey naming RTs from prior studies. A factor analysis of the RTs and of 31 item characteristics revealed 7 dimensions. Imagery and naming RTs loaded on a common referential factor that included variables related to both directions of processing (e.g., missing names and missing images). Naming RTs also loaded on a nonverbal-to-verbal factor that included such variables as number of different names, whereas imagery RTs loaded on a verbal-to-nonverbal factor that included such variables as rated consistency of imagery. The other factors were verbal familiarity, verbal complexity, nonverbal familiarity, and nonverbal complexity. The findings confirm the reciprocity of imaging and naming, and their relation to constructs associated with distinct phases of referential processing.

  14. Extracting flat-field images from scene-based image sequences using phase correlation

    Energy Technology Data Exchange (ETDEWEB)

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  15. Capturing and displaying microscopic images used in medical diagnostics and forensic science using 4K video resolution – an application in higher education

    NARCIS (Netherlands)

    Jan Kuijten; Ajda Ortac; Hans Maier; Gert de Heer

    2015-01-01

    To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels).

  16. Video Comparator

    International Nuclear Information System (INIS)

    Rose, R.P.

    1978-01-01

    The Video Comparator is a comparative gage that uses electronic images from two sources, a standard and an unknown. Two matched video cameras are used to obtain the electronic images. The video signals are mixed and displayed on a single video receiver (CRT). The video system is manufactured by ITP of Chatsworth, CA and is a Tele-Microscope II, Model 148. One of the cameras is mounted on a toolmaker's microscope stand and produces a 250X image of a cast. The other camera is mounted on a stand and produces an image of a 250X template. The two video images are mixed in a control box provided by ITP and displayed on a CRT. The template or the cast can be moved to align the desired features. Vertical reference lines are provided on the CRT, and a feature on the cast can be aligned with a line on the CRT screen. The stage containing the casts can be moved using a Boeckleler micrometer equipped with a digital readout, and a second feature aligned with the reference line and the distance moved obtained from the digital display

  17. Genetic relationships between carcass cut weights predicted from video image analysis and other performance traits in cattle.

    Science.gov (United States)

    Pabiou, T; Fikse, W F; Amer, P R; Cromie, A R; Näsholm, A; Berry, D P

    2012-09-01

    The objective of this study was to quantify the genetic associations between a range of carcass-related traits including wholesale cut weights predicted from video image analysis (VIA) technology, and a range of pre-slaughter performance traits in commercial Irish cattle. Predicted carcass cut weights comprised of cut weights based on retail value: lower value cuts (LVC), medium value cuts (MVC), high value cuts (HVC) and very high value cuts (VHVC), as well as total meat, fat and bone weights. Four main sources of data were used in the genetic analyses: price data of live animals collected from livestock auctions, live-weight data and linear type collected from both commercial and pedigree farms as well as from livestock auctions and weanling quality recorded on-farm. Heritability of carcass cut weights ranged from 0.21 to 0.39. Genetic correlations between the cut traits and the other performance traits were estimated using a series of bivariate sire linear mixed models where carcass cut weights were phenotypically adjusted to a constant carcass weight. Strongest positive genetic correlations were obtained between predicted carcass cut weights and carcass value (min r g(MVC) = 0.35; max r(g(VHVC)) = 0.69), and animal price at both weaning (min r(g(MVC)) = 0.37; max r(g(VHVC)) = 0.66) and post weaning (min r(g(MVC)) = 0.50; max r(g(VHVC)) = 0.67). Moderate genetic correlations were obtained between carcass cut weights and calf price (min r g(HVC) = 0.34; max r g(LVC) = 0.45), weanling quality (min r(g(MVC)) = 0.12; max r (g(VHVC)) = 0.49), linear scores for muscularity at both weaning (hindquarter development: min r(g(MVC)) = -0.06; max r(g(VHVC)) = 0.46), post weaning (hindquarter development: min r(g(MVC)) = 0.23; max r(g(VHVC)) = 0.44). The genetic correlations between total meat weight were consistent with those observed with the predicted wholesale cut weights. Total fat and total bone weights were generally negatively correlated with carcass value, auction

  18. Review of passive-blind detection in digital video forgery based on sensing and imaging techniques

    Science.gov (United States)

    Tao, Junjie; Jia, Lili; You, Ying

    2016-01-01

    Advances in digital video compression and IP communication technologies raised new issues and challenges concerning the integrity and authenticity of surveillance videos. It is so important that the system should ensure that once recorded, the video cannot be altered; ensuring the audit trail is intact for evidential purposes. This paper gives an overview of passive techniques of Digital Video Forensics which are based on intrinsic fingerprints inherent in digital surveillance videos. In this paper, we performed a thorough research of literatures relevant to video manipulation detection methods which accomplish blind authentications without referring to any auxiliary information. We presents review of various existing methods in literature, and much more work is needed to be done in this field of video forensics based on video data analysis and observation of the surveillance systems.

  19. Monitoring of civil engineering structures using Digital Image Correlation technique

    Science.gov (United States)

    Malesa, M.; Szczepanek, D.; Kujawińska, M.; Świercz, A.; Kołakowski, P.

    2010-06-01

    The Digital Image Correlation (DIC) technique enables full field, noncontact measurements of displacements and strains of a wide variety of objects. An adaptation of the DIC technique for monitoring of civil-engineering structures is presented in the paper. A general concept of the complex, automatic monitoring system, in which the DIC sensor plays an important role is described. Some new software features, which aim to facilitate outdoor measurements and speed up the correlation analysis, is also introduced. As an example of application, measurements of a railway bridge in Nieporet (Poland) are presented. The experimental results are compared with displacements of a FEM model of the bridge.

  20. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    Science.gov (United States)

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced

  1. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    Science.gov (United States)

    2016-06-14

    Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and

  2. Image denoising by exploring external and internal correlations.

    Science.gov (United States)

    Yue, Huanjing; Sun, Xiaoyan; Yang, Jingyu; Wu, Feng

    2015-06-01

    Single image denoising suffers from limited data collection within a noisy image. In this paper, we propose a novel image denoising scheme, which explores both internal and external correlations with the help of web images. For each noisy patch, we build internal and external data cubes by finding similar patches from the noisy and web images, respectively. We then propose reducing noise by a two-stage strategy using different filtering approaches. In the first stage, since the noisy patch may lead to inaccurate patch selection, we propose a graph based optimization method to improve patch matching accuracy in external denoising. The internal denoising is frequency truncation on internal cubes. By combining the internal and external denoising patches, we obtain a preliminary denoising result. In the second stage, we propose reducing noise by filtering of external and internal cubes, respectively, on transform domain. In this stage, the preliminary denoising result not only enhances the patch matching accuracy but also provides reliable estimates of filtering parameters. The final denoising image is obtained by fusing the external and internal filtering results. Experimental results show that our method constantly outperforms state-of-the-art denoising schemes in both subjective and objective quality measurements, e.g., it achieves >2 dB gain compared with BM3D at a wide range of noise levels.

  3. Three-dimensional facial digitization using advanced digital image correlation.

    Science.gov (United States)

    Nguyen, Hieu; Kieu, Hien; Wang, Zhaoyang; Le, Hanh N D

    2018-03-20

    Presented in this paper is an effective technique to acquire the three-dimensional (3D) digital images of the human face without the use of active lighting and artificial patterns. The technique is based on binocular stereo imaging and digital image correlation, and it includes two key steps: camera calibration and image matching. The camera calibration involves a pinhole model and a bundle-adjustment approach, and the governing equations of the 3D digitization process are described. For reliable pixel-to-pixel image matching, the skin pores and freckles or lentigines on the human face serve as the required pattern features to facilitate the process. It employs feature-matching-based initial guess, multiple subsets, iterative optimization algorithm, and reliability-guided computation path to achieve fast and accurate image matching. Experiments have been conducted to demonstrate the validity of the proposed technique. The simplicity of the approach and the affordable cost of the implementation show its practicability in scientific and engineering applications.

  4. The MIVS [Modular Integrated Video System] Image Processing System (MIPS) for assisting in the optical surveillance data review process

    International Nuclear Information System (INIS)

    Horton, R.D.

    1990-01-01

    The MIVS (Modular Integrated Video System) Image Processing System (MIPS) is designed to review MIVS surveillance data automatically and identify IAEA defined objects of safeguards interest. To achieve this, MIPS uses both digital image processing and neural network techniques to detect objects of safeguards interest in an image and assist an inspector in the review of the MIVS video tapes. MIPS must be ''trained'' i.e., given example images showing the objects that it must recognize, for each different facility. Image processing techniques are used to first identify significantly changed areas of the image. A neural network is then used to determine if the image contains the important object(s). The MIPS algorithms have demonstrated the capability to detect when a spent fuel shipping cask is present in an image after MIPS is properly trained to detect the cask. The algorithms have also demonstrated the ability to reject uninteresting background activities such as people and crane movement. When MIPS detects an important object, the corresponding image is stored to another media and later replayed for the inspector to review. The MIPS algorithms are being implemented in commercially available hardware: an image processing subsystem and an 80386 Personal Computer. MIPS will have a high-level easy-to-use system interface to allow inspectors to train MIPS on MIVS data from different facilities and on various safeguards significant objects. This paper describes the MIPS algorithms, hardware implementation, and system configuration. 3 refs., 10 figs

  5. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  6. Salivary gland masses. Dynamic MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Park, Jinho; Inoue, Shingo; Ishizuka, Yasuhito; Shindo, Hiroaki; Kawanishi, Masayuki; Kakizaki, Dai; Abe, Kimihiko; Ebihara, Yoshiro

    1997-01-01

    To evaluate the efficiency of dynamic contrast-enhanced magnetic resonance imaging (MRI) for the diagnosis of salivary gland masses. We retrospectively examined 19 salivary gland masses that were pathologically diagnosed by surgical operation or biopsy. We obtained T1- and T2-weighted images on MRI, performed dynamic studies on each mass and examined the correlation between enhancement patterns and pathological findings. Four enhancement patterns were recognized on contrast-enhanced MRI: type 1 showed marked, homogeneous enhancement; type 2 slights, homogeneous enhancement; type 3 marginal enhancement; and type 4 poor enhancement of the mass. Most pleomorphic adenomas had a type 1 enhancement pattern, but two had a type 2 pattern. Pathologically, each mass enhancement pattern had different tumor cell and matrix components. Warthin's tumor generally showed the type 4 pattern. Primary malignant tumors of the salivary gland all showed the type 3 pattern, and pathological specimens showed many tumor cells along the marginal portion of the tumor. One inflammatory cyst and one Warthin's tumor also showed the type 3 pattern. Except for metastatic renal cell carcinoma, the enhancement patterns of late phase images and dynamic study images were the same. Dynamic MRI added little diagnostic information about salivary gland masses, but the contrast-enhanced MR features correlated well with the pathological findings. (author)

  7. Global correlation imaging of magnetic total field gradients

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2012-01-01

    Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)

  8. Video imaging measurement of interfacial wave velocity in air-water flow through a horizontal elbow

    Science.gov (United States)

    Al-Wazzan, Amir; Than, Cheok F.; Moghavvemi, Mahmoud; Yew, Chia W.

    2001-10-01

    Two-phase flow in pipelines containing elbows represents a common situation in the oil and gas industries. This study deals with the stratified flow regime between the gas and liquid phase through an elbow. It is of interest to study the change in wave characteristics by measuring the wave velocity and wavelength at the inlet and outlet of the elbow. The experiments were performed under concurrent air-water stratified flow in a horizontal transparent polycarbonate pipe of 0.05m diameter and superficial air and water velocities up to 8.97 and 0.0778 m/s respectively. A non-intrusive video imaging technique was applied to capture the waves. For image analysis, a frame by frame direct overlapping method was used to detect for pulsating flow and a pixel shifting method based on the detection of minimum values in the overlap function was used to determine wave velocity and wavelength. Under superficial gas velocity of less than 4.44 m/s, the results suggest a regular pulsating outflow produced by the elbow. At higher gas velocities, more random pulsation was found and the emergence of localized interfacial waves was detected. Wave velocities measured by this technique were found to produce satisfactory agreement with direct measurements.

  9. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    International Nuclear Information System (INIS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-01-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution. (paper)

  10. Color, Scale, and Rotation Independent Multiple License Plates Detection in Videos and Still Images

    Directory of Open Access Journals (Sweden)

    Narasimha Reddy Soora

    2016-01-01

    Full Text Available Most of the existing license plate (LP detection systems have shown significant development in the processing of the images, with restrictions related to environmental conditions and plate variations. With increased mobility and internationalization, there is a need to develop a universal LP detection system, which can handle multiple LPs of many countries and any vehicle, in an open environment and all weather conditions, having different plate variations. This paper presents a novel LP detection method using different clustering techniques based on geometrical properties of the LP characters and proposed a new character extraction method, for noisy/missed character components of the LP due to the presence of noise between LP characters and LP border. The proposed method detects multiple LPs from an input image or video, having different plate variations, under different environmental and weather conditions because of the geometrical properties of the set of characters in the LP. The proposed method is tested using standard media-lab and Application Oriented License Plate (AOLP benchmark LP recognition databases and achieved the success rates of 97.3% and 93.7%, respectively. Results clearly indicate that the proposed approach is comparable to the previously published papers, which evaluated their performance on publicly available benchmark LP databases.

  11. The effects of prosocial video games on prosocial behaviors: international evidence from correlational, longitudinal, and experimental studies.

    Science.gov (United States)

    Gentile, Douglas A; Anderson, Craig A; Yukawa, Shintaro; Ihori, Nobuko; Saleem, Muniba; Ming, Lim Kam; Shibuya, Akiko; Liau, Albert K; Khoo, Angeline; Bushman, Brad J; Rowell Huesmann, L; Sakamoto, Akira

    2009-06-01

    Although dozens of studies have documented a relationship between violent video games and aggressive behaviors, very little attention has been paid to potential effects of prosocial games. Theoretically, games in which game characters help and support each other in nonviolent ways should increase both short-term and long-term prosocial behaviors. We report three studies conducted in three countries with three age groups to test this hypothesis. In the correlational study, Singaporean middle-school students who played more prosocial games behaved more prosocially. In the two longitudinal samples of Japanese children and adolescents, prosocial game play predicted later increases in prosocial behavior. In the experimental study, U.S. undergraduates randomly assigned to play prosocial games behaved more prosocially toward another student. These similar results across different methodologies, ages, and cultures provide robust evidence of a prosocial game content effect, and they provide support for the General Learning Model.

  12. The Effects of Prosocial Video Games on Prosocial Behaviors: International Evidence from Correlational, Longitudinal, and Experimental Studies

    Science.gov (United States)

    Gentile, Douglas A.; Anderson, Craig A.; Yukawa, Shintaro; Ihori, Nobuko; Saleem, Muniba; Ming, Lim Kam; Shibuya, Akiko; Liau, Albert K.; Khoo, Angeline; Bushman, Brad J.; Huesmann, L. Rowell; Sakamoto, Akira

    2009-01-01

    Although dozens of studies have documented a relation between violent video games and aggressive behaviors, very little attention has been paid to potential effects of prosocial games. Theoretically, games in which game characters help and support each other in nonviolent ways should increase both short-term and long-term prosocial behaviors. We report three studies conducted in three countries with three age groups to test this hypothesis. In the correlational study, Singaporean middle-school students who played more prosocial games behaved more prosocially. In the two longitudinal samples of Japanese children and adolescents, prosocial game play predicted later increases in prosocial behavior. In the experimental study, U.S. undergraduates randomly assigned to play prosocial games behaved more prosocially toward another student. These similar results across different methodologies, ages, and cultures provide robust evidence a prosocial game content effect, and provide support for the General Learning Model. PMID:19321812

  13. An image correlation procedure for digitally reconstructed radiographs and electronic portal images

    International Nuclear Information System (INIS)

    Dong, Lei; Boyer, Arthur L.

    1995-01-01

    Purpose: To study a procedure that uses megavoltage digitally reconstructed radiographs (DRRs) calculated from patient's three-dimensional (3D) computed tomography (CT) data as a reference image for correlation with on-line electronic portal images (EPIs) to detect patient setup errors. Methods and Materials: Megavoltage DRRs were generated by ray tracing through a modified volumetric CT data set in which CT numbers were converted into linear attenuation coefficients for the therapeutic beam energy. The DRR transmission image was transformed to the grayscale window of the EPI by a histogram-matching technique. An alternative approach was to calibrate the transmission DRR using a measured response curve of the electronic portal imaging device (EPID). This forces the calculated transmission fluence values to be distributed in the same range as that of the EPID image. A cross-correlation technique was used to determine the degree of alignment of the patient anatomy found in the EPID image relative to the reference DRR. Results: Phantom studies demonstrated that the correlation procedure had a standard deviation of 0.5 mm and 0.5 deg. in aligning translational shifts and in-plane rotations. Systematic errors were found between a reference DRR and a reference EPID image. The automated grayscale image-correlation process was completed within 3 s on a workstation computer or 12 s on a PC. Conclusion: The alignment procedure allows the direct comparison of a patient's treatment portal designed with a 3D planning computer with a patient's on-line portal image acquired at the treatment unit. The image registration process is automated to the extent that it requires minimal user intervention, and it is fast and accurate enough for on-line clinical applications

  14. Imaging of congenital mesoblastic nephroma with pathological correlation

    International Nuclear Information System (INIS)

    Chaudry, Gulraiz; Perez-Atayde, Antonio R.; Ngan, Bo Yee; Gundogan, Munire; Daneman, Alan

    2009-01-01

    There are a variety of imaging findings for congenital mesoblastic nephroma (CMN) and two main pathological variants: classic and cellular. To determine whether imaging findings in children can predict the likely pathological variant. We reviewed imaging in children with pathology-proven CMN. Imaging findings correlated with gross and histological appearance. In 15 boys and 15 girls with CMN, US was performed in 27, CT in 19, and MRI in 7. Cystic components were readily identified on US; central hemorrhage was better differentiated on CT. MRI demonstrated high sensitivity for both. Histology confirmed classic CMN in 13 children, cellular CMN in 14 and ''mixed'' CMN in 3. Age at presentation was significantly higher in children with the cellular variant. Of 15 solid or predominantly solid tumors and 10 lesions with a hypoechoic ring, 12 and 7, respectively, had pathology consistent with classic CMN. In contrast, five of seven with intratumoral hemorrhage and all with a large cystic/necrotic component had pathology consistent with the cellular variant. The imaging appearance of CMN is often determined by the pathological type of tumor. Findings suggestive of the classic variant include a peripheral hypoechoic ring or large solid component. In comparison, cystic/necrotic change and hemorrhage is much more common in cellular CMN. (orig.)

  15. Digital image correlation based on a fast convolution strategy

    Science.gov (United States)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  16. Measurement of spatial correlation functions using image processing techniques

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  17. Physical activity during video capsule endoscopy correlates with shorter bowel transit time.

    Science.gov (United States)

    Stanich, Peter P; Peck, Joshua; Murphy, Christopher; Porter, Kyle M; Meyer, Marty M

    2017-09-01

    Video capsule endoscopy (VCE) is limited by reliance on bowel motility for propulsion, and lack of physical activity has been proposed as a cause of incomplete studies. Our aim was to prospectively investigate the association between physical activity and VCE bowel transit.  Ambulatory outpatients receiving VCE were eligible for the study. A pedometer was attached at the time of VCE ingestion and step count was recorded at the end of the procedure. VCE completion was assessed by logistic regression models, which included step count (500 steps as one unit). Total transit time was analyzed by Cox proportional hazards models. The hazard ratios (HR) with 95 % confidence interval (CI) indicated the "hazard" of completion, such that HRs > 1 indicated a reduced transit time.  A total of 100 patients were included. VCE was completed in 93 patients (93 %). The median step count was 2782 steps. Step count was not significantly associated with VCE completion (odds ratio 1.45, 95 %CI 0.84, 2.49). Pedometer step count was significantly associated with shorter total, gastric, and small-bowel transit times (HR 1.09, 95 %CI 1.03, 1.16; HR 1.05, 95 %CI 1.00, 1.11; HR 1.07, 95 %CI 1.01, 1.14, respectively). Higher body mass index (BMI) was significantly associated with VCE completion (HR 1.87, 95 %CI 1.18, 2.97) and shorter bowel transit times (HR 1.05, 95 %CI 1.02, 1.08).  Increased physical activity during outpatient VCE was associated with shorter bowel transit times but not with study completion. In addition, BMI was a previously unreported clinical characteristic associated with VCE completion and should be included as a variable of interest in future studies.

  18. Atlantoaxial subluxation. Radiography and magnetic resonance imaging correlated to myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y.; Takahashi, M.; Sakamoto, Y.; Kojima, R.

    Twenty-nine patients with atlantoaxial subluxation (18 with rheumatoid arthritis, 2 due to trauma, 4 with os odontoideum, and one each with polyarteritis nodosa, rheumatic fever, Klippel-Feil syndrome, achondroplasia, and cause unknown) were evaluated using a 0.22 tesla resistive MRI unit. Cord compression was classified into four grades according to the degree on magnetic resonance imaging. There were 7 patients with no thecal sac compression (grade 0), 10 with a minimal degree of subarachnoid space compression without cord compression (grade 1), 7 with mild cord compression (grade 2), and 5 with severe cord compression or cord atrophy (grade 3). Although the severity of myelopathy showed poor correlation with the atlantodental interval on conventional radiography, high correlation was observed between MR grading and the degree of myelopathy. The high signal intensity foci were observed in 7 or 12 patients with cord compression (grades 2 and 3) on T2 weighted images. Other frequently observed findings in rheumatoid arthritis included soft tissue masses of low to intermediate signal intensity in the paraodontoid space, erosions of the odontoid processes, and atlanto-axial impaction on T1 and T2 weighted images.

  19. Cell Matrix Remodeling Ability Shown by Image Spatial Correlation

    Science.gov (United States)

    Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Extracellular matrix (ECM) remodeling is a critical step of many biological and pathological processes. However, most of the studies to date lack a quantitative method to measure ECM remodeling at a scale comparable to cell size. Here, we applied image spatial correlation to collagen second harmonic generation (SHG) images to quantitatively evaluate the degree of collagen remodeling by cells. We propose a simple statistical method based on spatial correlation functions to determine the size of high collagen density area around cells. We applied our method to measure collagen remodeling by two breast cancer cell lines (MDA-MB-231 and MCF-7), which display different degrees of invasiveness, and a fibroblast cell line (NIH/3T3). We found distinct collagen compaction levels of these three cell lines by applying the spatial correlation method, indicating different collagen remodeling ability. Furthermore, we quantitatively measured the effect of Latrunculin B and Marimastat on MDA-MB-231 cell line collagen remodeling ability and showed that significant collagen compaction level decreases with these treatments. PMID:23935614

  20. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    Science.gov (United States)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  1. Magnetic resonance imaging of massive bone allografts with histologic correlation

    International Nuclear Information System (INIS)

    Hoeffner, E.G.; Soulen, R.L.; Ryan, J.R.; Qureshi, F.

    1996-01-01

    The objective of this study was to better understand the MRI appearance of massive bone allografts. The MRI findings of three massive bone allografts imaged in vivo were correlated with the histologic findings following removal of the allografts. A fourth allograft, never implanted, was imaged and evaluated histologically. Allografts were placed for the treatment of primary or recurrent osteosarcoma. The in-vivo allografts have a heterogeneous appearance on MRI which we attribute to the revascularization process. Fibrovascular connective tissue grows into the graft in a patchy, focal fashion, down the medullary canal from the graft-host junction and adjacent to the periosteum. The marrow spaces are initially devoid of normal cellular elements and occupied by fat and gelatinous material. This normal postoperative appearance of massive bone allografts must not be interpreted as recurrent neoplasm or infection in the allograft. Recognition of these complications rests on features outside the marrow. (orig./MG)

  2. Accuracy evaluation of optical distortion calibration by digital image correlation

    Science.gov (United States)

    Gao, Zeren; Zhang, Qingchuan; Su, Yong; Wu, Shangquan

    2017-11-01

    Due to its convenience of operation, the camera calibration algorithm, which is based on the plane template, is widely used in image measurement, computer vision and other fields. How to select a suitable distortion model is always a problem to be solved. Therefore, there is an urgent need for an experimental evaluation of the accuracy of camera distortion calibrations. This paper presents an experimental method for evaluating camera distortion calibration accuracy, which is easy to implement, has high precision, and is suitable for a variety of commonly used lens. First, we use the digital image correlation method to calculate the in-plane rigid body displacement field of an image displayed on a liquid crystal display before and after translation, as captured with a camera. Next, we use a calibration board to calibrate the camera to obtain calibration parameters which are used to correct calculation points of the image before and after deformation. The displacement field before and after correction is compared to analyze the distortion calibration results. Experiments were carried out to evaluate the performance of two commonly used industrial camera lenses for four commonly used distortion models.

  3. Revolutionize Propulsion Test Facility High-Speed Video Imaging with Disruptive Computational Photography Enabling Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced rocket propulsion testing requires high-speed video recording that can capture essential information for NASA during rocket engine flight certification...

  4. A video imaging system and related control hardware for nuclear safeguards surveillance applications

    International Nuclear Information System (INIS)

    Whichello, J.V.

    1987-03-01

    A novel video surveillance system has been developed for safeguards applications in nuclear installations. The hardware was tested at a small experimental enrichment facility located at the Lucas Heights Research Laboratories. The system uses digital video techniques to store, encode and transmit still television pictures over the public telephone network to a receiver located in the Australian Safeguards Office at Kings Cross, Sydney. A decoded, reconstructed picture is then obtained using a second video frame store. A computer-controlled video cassette recorder is used automatically to archive the surveillance pictures. The design of the surveillance system is described with examples of its operation

  5. Neuropsychological Correlates of Diffusion Tensor Imaging in Schizophrenia

    Science.gov (United States)

    Nestor, Paul G.; Kubicki, Marek; Gurrera, Ronald J.; Niznikiewicz, Margaret; Frumin, Melissa; McCarley, Robert W.; Shenton, Martha E.

    2009-01-01

    Patients with schizophrenia (n = 41) and healthy comparison participants (n = 46) completed neuropsychological measures of intelligence, memory, and executive function. A subset of each group also completed magnetic resonance diffusion tensor imaging (DTI) studies (fractional anisotropy and cross-sectional area) of the uncinate fasciculus (UF) and cingulate bundle (CB). Patients with schizophrenia showed reduced levels of functioning across all neuropsychological measures. In addition, selective neuropsychological–DTI relationships emerged. Among patients but not controls, lower levels of declarative–episodic verbal memory correlated with reduced left UF, whereas executive function errors related to performance monitoring correlated with reduced left CB. The data suggested abnormal DTI patterns linking declarative–episodic verbal memory deficits to the left UF and executive function deficits to the left CB among patients with schizophrenia. PMID:15506830

  6. Multimodal imaging in cerebral gliomas and its neuropathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gempt, Jens, E-mail: jens.gempt@lrz.tum.de [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Soehngen, Eric [Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Förster, Stefan [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Ryang, Yu-Mi [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Schlegel, Jürgen [Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); and others

    2014-05-15

    Introduction: Concerning the preoperative clinical diagnostic work-up of glioma patients, tumor heterogeneity challenges the oncological therapy. The current study assesses the performance of a multimodal imaging approach to differentiate between areas in malignant gliomas and to investigate the extent to which such a combinatorial imaging approach might predict the underlying histology. Methods: Prior to surgical resection, patients harboring intracranial gliomas underwent MRIs (MR-S, PWI) and {sup 18}F-FET-PETs. Intratumoral and peritumoral biopsy targets were defined, by MRI only, by FET-PET only, and by MRI and FET-PET combined, and biopsied prior to surgical resection and which then received separate histopathological examinations. Results: In total, 38 tissue samples were acquired (seven glioblastomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma, one diffuse astrocytoma, and one oligoastrocytoma) and underwent histopathological analysis. The highest mean values of Mib1 and CD31 were found in the target point “T’ defined by MRI and FET-PET combined. A significant correlation between NAA/Cr and PET tracer uptake (−0.845, p < 0.05) as well as Cho/Cr ratio and cell density (0.742, p < 0.05) and NAA/Cr ratio and MIB-1 (−0761, p < 0.05) was disclosed for this target point, though not for target points defined by MRI and FET-PET alone. Conclusion: Multimodal-imaging-guided stereotactic biopsy correlated more with histological malignancy indices, such as cell density and MIB-1 labeling, than targets that were based solely on the highest amino acid uptake or contrast enhancement on MRI. The results of our study indicate that a combined PET-MR multimodal imaging approach bears potential benefits in detecting glioma heterogeneity.

  7. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... questions Clinical Studies Publications Catalog Photos and Images Spanish Language Information Grants and Funding Extramural Research Division ... Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video ...

  8. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    Directory of Open Access Journals (Sweden)

    Nakamura Satoshi

    2004-01-01

    Full Text Available We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  9. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    Science.gov (United States)

    Morishima, Shigeo; Nakamura, Satoshi

    2004-12-01

    We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  10. Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.

    Science.gov (United States)

    Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N

    2017-05-01

    This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.

  11. Persistent seizures following failed surgery - Ictal SPECT and correlation with video EEG and follow-up

    International Nuclear Information System (INIS)

    Raja, S.; Gupta, A.; Kotagal, P.

    2002-01-01

    Introduction: A significant proportion (30-70%) of seizure patients (pts) have recurrent seizures post surgically. Up to 40-60% of these pts may benefit from re-evaluation and repeat surgical resections. Follow-up MRI is generally not useful in these patients due to post-surgical changes. Recently, ictal SPECT (IC) has been shown to be useful for the localization of seizure focus. We retrospectively analyzed the utility of IC in patients with unsuccessful surgical resections. Methods: Review of medical charts of all pts with IC from 1995 to 2001 was performed to identify pts with recurrent seizures who had IC studies. A total of 15 pts (male = 6, female 9; mean age = 17.9 yrs., range 6-31 yr.) were identified. All pts received 74-140 MBq of Tc-99m ECD each within 30 sec (range 14-81 sec) of seizure onset and were imaged within 6 hr post injection. For the inter-ictal (INT) scan, they received a similar dose and were imaged within 15 min post-injection on a triple-head gamma camera (Triad Trionix, Twinsburg, Ohio). The reconstructed transverse images were co-registered and normalized to the total counts of the INT. Greater than 10% increase in counts on the IC compared to the INT was considered positive for ictally-enhanced perfusion. The ICs were classified as localizable, lateralizable, or discordant with respect to vEEG. Results: Ictal SPECT and vEEG were concordant and lateralized the seizure focus in 14/15 pts, while both modalities were concordant and localized the foci in 7/15 pts, they were discordant for laterialization in 1 pt, and for localization in 8 pts. The MRI in 13/15 pts prior to the IC, revealed post surgical changes at the resection site, while in two pts MRI showed residual/recurrent tumor. Repeat resections and post-surgical follow-up (30 days to > 2 yrs) were available in 6/15 pts, 5 of these pts with repeat surgical resections of concordantly localized seizure foci by IC and vEEG, had good post-surgical outcome (Engel's I/II), while in the

  12. EXTRACTION OF BENTHIC COVER INFORMATION FROM VIDEO TOWS AND PHOTOGRAPHS USING OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. T. L. Estomata

    2012-07-01

    Full Text Available Mapping benthic cover in deep waters comprises a very small proportion of studies in the field of research. Majority of benthic cover mapping makes use of satellite images and usually, classification is carried out only for shallow waters. To map the seafloor in optically deep waters, underwater videos and photos are needed. Some researchers have applied this method on underwater photos, but made use of different classification methods such as: Neural Networks, and rapid classification via down sampling. In this study, accurate bathymetric data obtained using a multi-beam echo sounder (MBES was attempted to be used as complementary data with the underwater photographs. Due to the absence of a motion reference unit (MRU, which applies correction to the data gathered by the MBES, accuracy of the said depth data was compromised. Nevertheless, even with the absence of accurate bathymetric data, object-based image analysis (OBIA, which used rule sets based on information such as shape, size, area, relative distance, and spectral information, was still applied. Compared to pixel-based classifications, OBIA was able to classify more specific benthic cover types other than coral and sand, such as rubble and fish. Through the use of rule sets on area, less than or equal to 700 pixels for fish and between 700 to 10,000 pixels for rubble, as well as standard deviation values to distinguish texture, fish and rubble were identified. OBIA produced benthic cover maps that had higher overall accuracy, 93.78±0.85%, as compared to pixel-based methods that had an average accuracy of only 87.30±6.11% (p-value = 0.0001, α = 0.05.

  13. Prediction of foal carcass composition and wholesale cut yields by using video image analysis.

    Science.gov (United States)

    Lorenzo, J M; Guedes, C M; Agregán, R; Sarriés, M V; Franco, D; Silva, S R

    2018-01-01

    This work represents the first contribution for the application of the video image analysis (VIA) technology in predicting lean meat and fat composition in the equine species. Images of left sides of the carcass (n=42) were captured from the dorsal, lateral and medial views using a high-resolution digital camera. A total of 41 measurements (angles, lengths, widths and areas) were obtained by VIA. The variation of percentage of lean meat obtained from the forequarter (FQ) and hindquarter (HQ) carcass ranged between 5.86% and 7.83%. However, the percentage of fat (FAT) obtained from the FQ and HQ carcass presented a higher variation (CV between 41.34% and 44.58%). By combining different measurements and using prediction models with cold carcass weight (CCW) and VIA measurement the coefficient of determination (k-fold-R 2) were 0.458 and 0.532 for FQ and HQ, respectively. On the other hand, employing the most comprehensive model (CCW plus all VIA measurements), the k-fold-R 2 increased from 0.494 to 0.887 and 0.513 to 0.878 with respect to the simplest model (only with CCW), while precision increased with the reduction in the root mean square error (2.958 to 0.947 and 1.841 to 0.787) for the hindquarter fat and lean percentage, respectively. With CCW plus VIA measurements is possible to explain the wholesale value cuts yield variation (k-fold-R 2 between 0.533 and 0.889). Overall, the VIA technology performed in the present study could be considered as an accurate method to assess the horse carcass composition which could have a role in breeding programmes and research studies to assist in the development of a value-based marketing system for horse carcass.

  14. Integrated homeland security system with passive thermal imaging and advanced video analytics

    Science.gov (United States)

    Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert

    2007-04-01

    A complete detection, management, and control security system is absolutely essential to preempting criminal and terrorist assaults on key assets and critical infrastructure. According to Tom Ridge, former Secretary of the US Department of Homeland Security, "Voluntary efforts alone are not sufficient to provide the level of assurance Americans deserve and they must take steps to improve security." Further, it is expected that Congress will mandate private sector investment of over $20 billion in infrastructure protection between 2007 and 2015, which is incremental to funds currently being allocated to key sites by the department of Homeland Security. Nearly 500,000 individual sites have been identified by the US Department of Homeland Security as critical infrastructure sites that would suffer severe and extensive damage if a security breach should occur. In fact, one major breach in any of 7,000 critical infrastructure facilities threatens more than 10,000 people. And one major breach in any of 123 facilities-identified as "most critical" among the 500,000-threatens more than 1,000,000 people. Current visible, nightvision or near infrared imaging technology alone has limited foul-weather viewing capability, poor nighttime performance, and limited nighttime range. And many systems today yield excessive false alarms, are managed by fatigued operators, are unable to manage the voluminous data captured, or lack the ability to pinpoint where an intrusion occurred. In our 2006 paper, "Critical Infrastructure Security Confidence Through Automated Thermal Imaging", we showed how a highly effective security solution can be developed by integrating what are now available "next-generation technologies" which include: Thermal imaging for the highly effective detection of intruders in the dark of night and in challenging weather conditions at the sensor imaging level - we refer to this as the passive thermal sensor level detection building block Automated software detection

  15. Neural correlates of the natural observation of an emotionally loaded video.

    Directory of Open Access Journals (Sweden)

    Melanni Nanni

    Full Text Available Studies based on a paradigm of free or natural viewing have revealed characteristics that allow us to know how the brain processes stimuli within a natural environment. This method has been little used to study brain function. With a connectivity approach, we examine the processing of emotions using an exploratory method to analyze functional magnetic resonance imaging (fMRI data. This research describes our approach to modeling stress paradigms suitable for neuroimaging environments. We showed a short film (4.54 minutes with high negative emotional valence and high arousal content to 24 healthy male subjects (36.42 years old; SD = 12.14 during fMRI. Independent component analysis (ICA was used to identify networks based on spatial statistical independence. Through this analysis we identified the sensorimotor system and its influence on the dorsal attention and default-mode networks, which in turn have reciprocal activity and modulate networks described as emotional.

  16. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.

    Directory of Open Access Journals (Sweden)

    Ken Sakaie

    Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.

  17. A generic, time-resolved, integrated digital image correlation, identification approach

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.; Neggers, J.; Blaysat, Benoît; Hild, François; Geers, M.G.D.; Jin, H.; Sciammarella, C.; Yoshida, S.; Lamberti, L.

    2015-01-01

    A generic one-step Integrated Digital Image Correlation (I-DIC) inverse parameter identification approach is introduced that enables direct identification of constitutive model parameters by intimately integrating a Finite Elements Method (FEM) with Digital Image Correlation (DIC), directly

  18. Video as a Metaphorical Eye: Images of Positionality, Pedagogy, and Practice

    Science.gov (United States)

    Hamilton, Erica R.

    2012-01-01

    Considered by many to be cost-effective and user-friendly, video technology is utilized in a multitude of contexts, including the university classroom. One purpose, although not often used, involves recording oneself teaching. This autoethnographic study focuses on the author's use of video and reflective practice in order to capture and examine…

  19. Video encoder/decoder for encoding/decoding motion compensated images

    NARCIS (Netherlands)

    1996-01-01

    Video encoder and decoder, provided with a motion compensator for motion-compensated video coding or decoding in which a picture is coded or decoded in blocks in alternately horizontal and vertical steps. The motion compensator is provided with addressing means (160) and controlled multiplexers

  20. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    Science.gov (United States)

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  1. High-speed three-frame image recording system using colored flash units and low-cost video equipment

    Science.gov (United States)

    Racca, Roberto G.; Scotten, Larry N.

    1995-05-01

    This article describes a method that allows the digital recording of sequences of three black and white images at rates of several thousand frames per second using a system consisting of an ordinary CCD camcorder, three flash units with color filters, a PC-based frame grabber board and some additional electronics. The maximum framing rate is determined by the duration of the flashtube emission, and for common photographic flash units lasting about 20 microsecond(s) it can exceed 10,000 frames per second in actual use. The subject under study is strobe- illuminated using a red, a green and a blue flash unit controlled by a special sequencer, and the three images are captured by a color CCD camera on a single video field. Color is used as the distinguishing parameter that allows the overlaid exposures to be resolved. The video output for that particular field will contain three individual scenes, one for each primary color component, which potentially can be resolved with no crosstalk between them. The output is electronically decoded into the primary color channels, frame grabbed and stored into digital memory, yielding three time-resolved images of the subject. A synchronization pulse provided by the flash sequencer triggers the frame grabbing so that the correct video field is acquired. A scheme involving the use of videotape as intermediate storage allows the frame grabbing to be performed using a monochrome video digitizer. Ideally each flash- illuminated scene would be confined to one color channel, but in practice various factors, both optical and electronic, affect color separation. Correction equations have been derived that counteract these effects in the digitized images and minimize 'ghosting' between frames. Once the appropriate coefficients have been established through a calibration procedure that needs to be performed only once for a given configuration of the equipment, the correction process is carried out transparently in software every time a

  2. Primary colorectal lymphoma: spectrum of imaging findings with pathologic correlation

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Han, Joon Koo; Kim, Tae Kyoung; Kim, Young Hoon; Kim, Ah Young; Kim, Kyoung Won; Choi, Ja Young; Choi, Byung Ihn

    2002-01-01

    Primary colorectal lymphoma is a very uncommon disease; therefore, it has received little attention in the radiology literature. Moreover, imaging features of newly described pathologic subtypes have not been reported such as low-grade B-cell lymphoma arising from mucosa-associated lymphoid tissue and peripheral T-cell lymphoma that involves colorectal area. We retrospectively reviewed double-contrast barium enema and CT scans in the patients with primary colorectal lymphoma. In this article the radiologic appearances of primary colorectal lymphoma are categorized into focal lesion and diffuse lesion. Focal lesion includes polypoid mass, circumferential infiltration with smooth mucosal surface, circumferential infiltration with extensive ulceration, cavitary mass, mucosal nodularity, and mucosal fold thickening. Diffuse lesion includes diffuse ulcerative lesion and diffuse nodular lesion. Peripheral T-cell lymphomas that involve the colon manifested as either a diffuse or focal segmental lesion and showed extensive mucosal ulceration. These findings are similar to those of Crohn's disease or tuberculous colitis and are different from those of previously reported colorectal lymphoma. Low-grade B-cell lymphoma arising from mucosa-associated lymphoid tissue manifest as multiple mucosal nodularity. The imaging features of primary colorectal lymphoma are quite variable and overlap with other colonic pathology; however, it is important for radiologists to know the imaging features of primary colorectal lymphoma with their pathologic correlation. (orig.)

  3. Quantum correlated imaging is a promising new technique in medical imaging

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Zhaohua Yang

    2017-01-01

    Cardio-cerebral vascular diseases are common and frequently occurring serious diseases that threaten humans. In recent years, Digital Subtraction Angiography (DSA) has played a vital role in the diagnosis and treatment of cardio-cerebral vascular diseases. However, DSA is not able to visualize intravascular structures in real time, and it is especially difficult to evaluate each layer of the vascular wall and the composition of atherosclerotic plaques with DSA. Quantum correlated imaging is a new technique that can be used to perform real-time online imaging of intravascular flow, vascular wall structure, and atherosclerotic plaque composition. Quantum correlated imaging is a promising new technique that will soon be used in the diagnosis and treatment of cardio-cerebral vascular diseases.

  4. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  5. A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences

    Science.gov (United States)

    Shortis, Mark R.; Ravanbakskh, Mehdi; Shaifat, Faisal; Harvey, Euan S.; Mian, Ajmal; Seager, James W.; Culverhouse, Philip F.; Cline, Danelle E.; Edgington, Duane R.

    2013-04-01

    Underwater stereo-video measurement systems are used widely for counting and measuring fish in aquaculture, fisheries and conservation management. To determine population counts, spatial or temporal frequencies, and age or weight distributions, snout to fork length measurements are captured from the video sequences, most commonly using a point and click process by a human operator. Current research aims to automate the measurement and counting task in order to improve the efficiency of the process and expand the use of stereo-video systems within marine science. A fully automated process will require the detection and identification of candidates for measurement, followed by the snout to fork length measurement, as well as the counting and tracking of fish. This paper presents a review of the techniques used for the detection, identification, measurement, counting and tracking of fish in underwater stereo-video image sequences, including consideration of the changing body shape. The review will analyse the most commonly used approaches, leading to an evaluation of the techniques most likely to be a general solution to the complete process of detection, identification, measurement, counting and tracking.

  6. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    Science.gov (United States)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  7. Effects of hyperthermia on intracellular CA/sup 2+/ monitored by digitized video image fluorescence microscopy

    International Nuclear Information System (INIS)

    Asher, C.R.; Mikkelsen, R.B.

    1987-01-01

    With digitized video image fluorescence microscopy and the fluorescent Ca/sup 2+/ dye, fuca-2, the authors examined heat effects on intracellular free Ca/sup 2+/, [Ca/sup 2/]/sub f/. HT-29 human colon cancer cells grown on coverslip were equilibrated with 2.0 μM fura-2 in RPMI 1540 (20 0 , 15 min), washed three times and incubated at 20 0 for 1 h. Coverslips were mounted in a Dvorok perfusion chamber sitting within a temperature controlled microscope stage. Fluorescence was monitored at 500 nm by epi-illumination at 385 nm, excitation maximum for free dye, and 340 nm, maximum for Ca/sup 2+/ complexed dye, with a computer controlled filter wheel. The emission intensity ratio, I/sub 340//I/sub 385/, which corrects for dye leakage, photo-bleaching and cell thickness was used to calculate [Ca/sup 2+/]/sub f/. Measurements of 200 cells at 37 0 using a bit pad and mouse to select 0.6 x 0.6 μ cytoplasmi areas indicated 3 populations of cells in terms of [Ca/sup 2+/]/sub f/ (70%, 40-60nM; 15% 70-110nM; 15%, 120-200 nM). Heating to 43 0 for 1 h resulted in an overall decrease in [Ca/sup 2+/]/sub f/ with greater than 90% cells within 30-50 nM. Not all cells responded to heat. Post-incubation for 3 h at 37 0 showed the identical cell distribution; at 24 h, cell distribution was that of non-heated cells. The relationship of these results to cell killing and thermotolerance are not understood, but these results indicated the importance of cell heterogeneity in response to heat

  8. [Microcytomorphometric video-image detection of nuclear chromatin in ovarian cancer].

    Science.gov (United States)

    Grzonka, Dariusz; Kamiński, Kazimierz; Kaźmierczak, Wojciech

    2003-09-01

    Technology of detection of tissue preparates precisious evaluates contents of nuclear chromatine, largeness and shape of cellular nucleus, indicators of mitosis, DNA index, ploidy, phase-S fraction and other parameters. Methods of detection of picture are: microcytomorphometry video-image (MCMM-VI), flow, double flow and activated by fluorescence. Diagnostic methods of malignant neoplasm of ovary are still nonspecific and not precise, that is a reason of unsatisfied results of treatment. Evaluation of microcytomorphometric measurements of nuclear chromatine histopathologic tissue preparates (HP) of ovarian cancer and comparison to normal ovarian tissue. Estimated 10 paraffin embedded tissue preparates of serous ovarian cancer, 4 preparates mucinous cancer and 2 cases of tumor Kruckenberg patients operated in Clinic of Perinatology and Gynaecology Silesian Medical Academy in Zabrze in period 2001-2002, MCMM-VI estimation based on computer aided analysis system: microscope Axioscop 20, camera tv JVCTK-C 1380, CarlZeiss KS Vision 400 rel.3.0 software. Following MCMM-VI parameters assessed: count of pathologic nucleus, diameter of nucleus, area, min/max diameter ratio, equivalent circle diameter (Dcircle), mean of brightness (mean D), integrated optical density (IOD = area x mean D), DNA index and 2.5 c exceeding rate percentage (2.5 c ER%). MCMM-VI performed on the 160 areas of 16 preparates of cancer and 100 areas of normal ovarian tissue. Statistical analysis was performed by used t-Student test. We obtained stastistically significant higher values parameters of nuclear chromatine, DI, 2.5 c ER of mucinous cancer and tumor Kruckenberg comparison to serous cancer. MCMM-VI parameters of chromatine malignant ovarian neoplasm were statistically significantly higher than normal ovarian tissue. Cytometric and karyometric parametres of nuclear chromatine estimated MCMM-VI are useful in the diagnostics and prognosis of ovarian cancer.

  9. Prediction of fracture profile using digital image correlation

    Science.gov (United States)

    Chaitanya, G. M. S. K.; Sasi, B.; Kumar, Anish; Babu Rao, C.; Purnachandra Rao, B.; Jayakumar, T.

    2015-04-01

    Digital Image Correlation (DIC) based full field strain mapping methodology is used for mapping strain on an aluminum sample subjected to tensile deformation. The local strains on the surface of the specimen are calculated at different strain intervals. Early localization of strain is observed at a total strain of 0.050ɛ; itself, whereas a visually apparent localization of strain is observed at a total strain of 0.088ɛ;. Orientation of the line of fracture (12.0°) is very close to the orientation of locus of strain maxima (11.6°) computed from the strain mapping at 0.063ɛ itself. These results show the efficacy of the DIC based method to predict the location as well as the profile of the fracture, at an early stage.

  10. Imaging of compound palmar ganglion with pathologic correlation

    Directory of Open Access Journals (Sweden)

    Sourav Talukder

    2014-12-01

    Full Text Available Compound palmar ganglion, or chronic flexor tenosynovitis, most commonly of tuberculousorigin, is a rare extrapulmonary manifestation of tuberculosis (TB. The flexor synovialsheath is not a common site for TB but, once involved, causes rapid involvement of all flexortendons. We discuss the case of a 70-year-old farmer who presented to us with pain and progressive swelling of the palmar aspect of the wrist. On clinical examination, swelling both above and below the proximal wrist crease was found, with positive cross-fluctuation. Onultrasonography and magnetic resonance imaging, features suggestive of compound palmarganglion were present. The patient underwent surgical resection (extensive tenosynovectomyand chemotherapy. Post-operative histopatholgical findings correlated with the radiological features.

  11. Benchmarking the Cultivation Approach to Video Game Effects: A Comparison of the Correlates of TV Viewing and Game Play

    Science.gov (United States)

    Van Mierlo, Jan; Van den Bulck, Jan

    2004-01-01

    This study found significant relationships between first- and second-order cultivation measures and TV viewing, but found a relationship with video game play for only two variables in a sample of 322 Flemish 3rd and 6th year secondary school children. This suggests that the absence of a relationship with video game play is not the result of the…

  12. Correlation of Imaging Findings with Pathologic Findings of Sclerosing Adenosis

    International Nuclear Information System (INIS)

    Choi, Bo Bae; Shu, Kwang Sun

    2012-01-01

    The purpose of this study was to evaluate the mammographic and sonographic findings of pure sclerosing adenosis. We retrospectively reviewed the mammographic and sonographic findings in 40 cases of pure sclerosing adenosis confirmed by core needle biopsy (n = 23), vacuum-assisted biopsy (n = 7), excision biopsy (n = 9), and lumpectomy (n = 1) from January 2002 to March 2010. All imaging findings were analyzed according to the American College of Radiology (ACR) breast imaging reporting and data system (BI-RADS). Radiologic features were correlated with pathologic findings. Although most mammograms showed negative findings (57%), calcification was the most common abnormal finding of sclerosing adenosis. On sonography, the most common finding was a circumscribed oval hypoechoic mass without posterior features (78%). Most masses showed BI-RADS category 3, (75%, 27/36). Five cases showed categories 4 or 5 (14%, 5/36). Most mammographic and sonographic findings of sclerosing adenosis are non-specific and non-pathognomonic, even though sometimes sclerosing adenosis can be radiologically or histopathologically confused with malignancy

  13. Estimating age ratios and size of pacific walrus herds on coastal haulouts using video imaging.

    Directory of Open Access Journals (Sweden)

    Daniel H Monson

    Full Text Available During Arctic summers, sea ice provides resting habitat for Pacific walruses as it drifts over foraging areas in the eastern Chukchi Sea. Climate-driven reductions in sea ice have recently created ice-free conditions in the Chukchi Sea by late summer causing walruses to rest at coastal haulouts along the Chukotka and Alaska coasts, which provides an opportunity to study walruses at relatively accessible locations. Walrus age can be determined from the ratio of tusk length to snout dimensions. We evaluated use of images obtained from a gyro-stabilized video system mounted on a helicopter flying at high altitudes (to avoid disturbance to classify the sex and age of walruses hauled out on Alaska beaches in 2010-2011. We were able to classify 95% of randomly selected individuals to either an 8- or 3-category age class, and we found measurement-based age classifications were more repeatable than visual classifications when using images presenting the correct head profile. Herd density at coastal haulouts averaged 0.88 walruses/m(2 (std. err. = 0.02, herd size ranged from 8,300 to 19,400 (CV 0.03-0.06 and we documented ∼30,000 animals along ∼1 km of beach in 2011. Within the herds, dependent walruses (0-2 yr-olds tended to be located closer to water, and this tendency became more pronounced as the herd spent more time on the beach. Therefore, unbiased estimation of herd age-ratios will require a sampling design that allows for spatial and temporal structuring. In addition, randomly sampling walruses available at the edge of the herd for other purposes (e.g., tagging, biopsying will not sample walruses with an age structure representative of the herd. Sea ice losses are projected to continue, and population age structure data collected with aerial videography at coastal haulouts may provide demographic information vital to ongoing efforts to understand effects of climate change on this species.

  14. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing

    Science.gov (United States)

    Pontin, A.; Lang, J. E.; Chowdhury, A.; Vezio, P.; Marino, F.; Morana, B.; Serra, E.; Marin, F.; Monteiro, T. S.

    2018-01-01

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  15. Correlates of Body Image in Polish Weight Trainers

    Directory of Open Access Journals (Sweden)

    Guszkowska Monika

    2015-06-01

    Full Text Available Purpose. The purpose of this study was to determine body image and body satisfaction in Polish adult men involved in resistance training and to investigate their relationships with objective anthropometric and training characteristics. Methods. The study included 176 males aged 18-31 years with 1-14 years resistance training experience. The Figure Rating Scale, Body Satisfaction Scale and a self-designed questionnaire were administered. Results. Approximately 62% of the participants would like to be more muscular, only 29% accepted their appearance and 9% would like to be less muscular. The body selected as the personal ideal (M = 5.34 was less muscular than the body considered by the participants to be ideal by other men (normative body; M = 6.07 and was more muscular than the body thought to be most attractive to women (M = 5.10. Actual and ideal body muscularity correlated positively with age and body mass, height and BMI. Dissatisfaction with trunk and motor characteristics correlated positively with ideal body and the body considered most attractive to women as well as with the discrepancy indices between the above factors and the actual body. Conclusions. Men regularly involved in resistance training were found to strive for a muscular physique. The normative body, the physique believed to be desired by other men, was more muscular than what was considered preferential to women. However, the latter constitutes a stronger determinant of the level of body satisfaction in men engaged in resistance training.

  16. Applications of three-dimensional image correlation in conformal radiotherapy

    International Nuclear Information System (INIS)

    Van Herk, M.; Gilhuijs, K.; Kwa, S.; Lebesque, J.; Muller, S.; De Munck, J.; Touw, A.; Kooy, H.

    1995-01-01

    The development of techniques for the registration of CT, MRI and SPECT creates new possibilities for improved target volume definition and quantitative image analysis. The discussed technique is based on chamfer matching and is suitable for automatic 3-D matching of CT with CT, CT with MRI, CT with SPECT and MRI with SPECT. By integrating CT with MRI, the diagnostic qualities of MRI are combined with the geometric accuracy of the planning CT. Significant differences in the delineation of the target volume for brain, head and neck and prostate tumors have been demonstrated when using integrated CT and MRI compared with using CT alone. In addition, integration of the planning CT with pre-operative scans improves knowledge of possible tumor extents. By first matching scans based on the bony anatomy and subsequently matching on an organ of study, relative motion of the organ is quantified accurately. In a study with 42 CT scans of 11 patients, magnitude and causes of prostate motion have been analysed. The most important motion of the prostate is a forward-backward rotation around a point near the apex caused by rectal volume difference. Significant correlations were also found between motion of the legs and the prostate. By integrating functional images made before and after radiotherapy with the planning CT, the relation between local change of lung function and delivered dose has been quantified accurately. The technique of chamfer matching is a convenient and more accurate alternative for the use of external markers in a CT/SPECT lung damage study. Also, damage visible in diagnostic scans can be related to radiation dose, thereby improving follow-up diagnostics. It can be concluded that 3-D image integration plays an important role in assessing and improving the accuracy of radiotherapy and is therefore indispensable for conformal therapy. However, user-friendly implementation of these techniques remains to be done to facilitate clinical application on a large

  17. Applications of three-dimensional image correlation in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Van Herk, M; Gilhuijs, K; Kwa, S; Lebesque, J; Muller, S; De Munck, J; Touw, A [Nederlands Kanker Inst. ` Antoni van Leeuwenhoekhuis` , Amsterdam (Netherlands); Kooy, H [Harvard Medical School, Boston, MA (United States)

    1995-12-01

    The development of techniques for the registration of CT, MRI and SPECT creates new possibilities for improved target volume definition and quantitative image analysis. The discussed technique is based on chamfer matching and is suitable for automatic 3-D matching of CT with CT, CT with MRI, CT with SPECT and MRI with SPECT. By integrating CT with MRI, the diagnostic qualities of MRI are combined with the geometric accuracy of the planning CT. Significant differences in the delineation of the target volume for brain, head and neck and prostate tumors were demonstrated when using integrated CT and MRI compared with using CT alone. In addition, integration of the planning CT with pre-operative scans improves knowledge of possible tumor extents. By first matching scans based on the bony anatomy and subsequently matching on an organ of study, relative motion of the organ is quantified accurately. In a study with 42 CT scans of 11 patients, magnitude and causes of prostate motion were analysed. The most important motion of the prostate is a forward-backward rotation around a point near the apex caused by rectal volume difference. Significant correlations were also found between motion of the legs and the prostate. By integrating functional images made before and after radiotherapy with the planning CT, the relation between local change of lung function and delivered dose has been quantified accurately. The technique of chamfer matching is a convenient and more accurate alternative for the use of external markers in a CT/SPECT lung damage study. Also, damage visible in diagnostic scans can be related to radiation dose, thereby improving follow-up diagnostics. It can be concluded that 3-D image integration plays an important role in assessing and improving the accuracy of radiotherapy and is therefore indispensable for conformal therapy. However, user-friendly implementation of these techniques remains to be done to facilitate clinical application on a large scale.

  18. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    Science.gov (United States)

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  19. Application of the digital image correlation method in the study of cohesive coarse soil deformations

    Science.gov (United States)

    Kogut, Janusz P.; Tekieli, Marcin

    2018-04-01

    Non-contact video measurement methods are used to extend the capabilities of standard measurement systems, based on strain gauges or accelerometers. In most cases, they are able to provide more accurate information about the material or construction being tested than traditional sensors, while maintaining a high resolution and measurement stability. With the use of optical methods, it is possible to generate a full field of displacement on the surface of the test sample. The displacement value is the basic (primary) value determined using optical methods, and it is possible to determine the size of the derivative in the form of a sample deformation. This paper presents the application of a non-contact optical method to investigate the deformation of coarse soil material. For this type of soil, it is particularly difficult to obtain basic strength parameters. The use of a non-contact optical method, followed by a digital image correlation (DIC) study of the sample obtained during the tests, effectively completes the description of the behaviour of this type of material.

  20. MR imaging of meniscal tears: correlation with history of trauma

    International Nuclear Information System (INIS)

    Choi, Jong Cheul; Yang, Seoung Oh; Choi, Sun Seob; Son, Seok Hyun; Lee, Yung Il; Chung, Duck Hwan; Kim, Kyung Taek; Sohn, Sung Keun; Lee, Jung Yoon

    1994-01-01

    The medial meniscus is injured much more than the lateral meniscus. Because the medial meniscus is much larger in diameter, is thinner in its periphery and narrower in body than the lateral meniscus, and dose not attach to either cruciate ligament. We evaluated correlations with sites of tear and history of trauma. We reviewed retrospectively in 43 patients with meniscal tears on MR(51 cases) and correlated them with history of trauma. The most common site of injury was the posterior horn of the medial meniscuc(32/51), but high incidence of lateral meniscal tear compared with previous reports was seen. In the cases which had history of trauma, the posterior horn of medial meniscus was most commonly injured(26/34) and 5 meniscal tears were combined with meniscal tear in the other site. The tear in the anterior horn of the medial meniscus was seen only in a patient which had history of trauma and combined with meniscal tear in the other site. But in the meniscal tears without definite history of trauma, the incidence of meniscal tear was different from the meniscal tear with history of trauma. The incidence of lateral meniscal tear(11/17) was higher than medial meniscal tear and the posterior horn of lateral meniscus was commonly injured. We concluded that the medial meniscus was commonly injured, especially posterior horn, but in the cases which had no definite history of trauma, the lateral meniscus was commonly injured. An awareness of prevalent site of meniscal injuries may be helpful in the diagnostic interpretation of MR imaging of knee

  1. Video image analysis as a potential grading system for Uruguayan beef carcasses.

    Science.gov (United States)

    Vote, D J; Bowling, M B; Cunha, B C N; Belk, K E; Tatum, J D; Montossi, F; Smith, G C

    2009-07-01

    A study was conducted in 2 phases to evaluate the effectiveness of 1) the VIAscan Beef Carcass System (BCSys; hot carcass system) and the CVS BeefCam (chilled carcass system), used independently or in combination, to predict Uruguayan beef carcass fabrication yields; and 2) the CVS BeefCam to segregate Uruguayan beef carcasses into groups that differ in the Warner-Bratzler shear force (WBSF) values of their LM steaks. The results from the meat yield phase of the present study indicated that the prediction of saleable meat yield percentages from Uruguayan beef carcasses by use of the BCSys or CVS BeefCam is similar to, or slightly better than, the use of USDA yield grade calculated to the nearest 0.1 and was much more effective than prediction based on Uruguay National Institute of Meat (INAC) grades. A further improvement in fabrication yield prediction could be obtained by use of a dual-component video image analysis (VIA) system. Whichever method of VIA prediction of fabrication yield is used, a single predicted value of fabrication yield for every carcass removes an impediment to the implementation of a value-based pricing system. Additionally, a VIA method of predicting carcass yield has the advantage over the current INAC classification system in that estimates would be produced by an instrument rather than by packing plant personnel, which would appeal to cattle producers. Results from the tenderness phase of the study indicated that the CVS BeefCam output variable for marbling was not (P > 0.05) able to segregate steer and heifer carcasses into groups that differed in WBSF values. In addition, the results of segregating steer and heifer carcasses according to muscle color output variables indicate that muscle maturity and skeletal maturity were useful for segregating carcasses according to differences in WBSF values of their steaks (P > 0.05). Use of VIA to predict beef carcass fabrication yields could improve accuracy and reduce subjectivity in comparison

  2. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  3. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  4. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  5. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2017-03-01

    Full Text Available Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT, speed-up robust feature (SURF, local binary patterns (LBP, histogram of oriented gradients (HOG, and weighted HOG. Recently, the convolutional neural network (CNN method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  6. Study of morphological changes in scattering and optically anisotropic medium through correlation images

    Science.gov (United States)

    Jain, Neha; Shukla, Prashant; Singh, Jai

    2018-05-01

    Correlation images are very useful in determining the morphological changes. We have investigated the correlation image analysis on depolarization and retardance matrices of polystyrene and gelatine samples respectively. We observed that that correlation images have a potential to show a significant variation with change in the concentration of samples (polystyrene and gelatine). For polystyrene microspheres the correlation value decreases with increasing scattering coefficient. In gelatine samples the correlation also decreases with sample concentration. This variation in correlation for retardance shows the change in a birefringence property of gelatine solution.

  7. Video Golf

    Science.gov (United States)

    1995-01-01

    George Nauck of ENCORE!!! invented and markets the Advanced Range Performance (ARPM) Video Golf System for measuring the result of a golf swing. After Nauck requested their assistance, Marshall Space Flight Center scientists suggested video and image processing/computing technology, and provided leads on commercial companies that dealt with the pertinent technologies. Nauck contracted with Applied Research Inc. to develop a prototype. The system employs an elevated camera, which sits behind the tee and follows the flight of the ball down range, catching the point of impact and subsequent roll. Instant replay of the video on a PC monitor at the tee allows measurement of the carry and roll. The unit measures distance and deviation from the target line, as well as distance from the target when one is selected. The information serves as an immediate basis for making adjustments or as a record of skill level progress for golfers.

  8. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system.

    Science.gov (United States)

    Moore, C S; Wood, T J; Beavis, A W; Saunderson, J R

    2013-07-01

    The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson's correlation coefficient. Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, pchest CR images acquired without an antiscatter grid. A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography.

  9. Real time three-dimensional space video rate sensors for millimeter waves imaging based very inexpensive plasma LED lamps

    Science.gov (United States)

    Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir

    2014-10-01

    In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported

  10. Towards an automated analysis of video-microscopy images of fungal morphogenesis

    Directory of Open Access Journals (Sweden)

    Diéguez-Uribeondo, Javier

    2005-06-01

    Full Text Available Fungal morphogenesis is an exciting field of cell biology and several mathematical models have been developed to describe it. These models require experimental evidences to be corroborated and, therefore, there is a continuous search for new microscopy and image analysis techniques. In this work, we have used a Canny-edge-detector based technique to automate the generation of hyphal profiles and calculation of morphogenetic parameters such as diameter, elongation rates and hyphoid fitness. The results show that the data obtained with this technique are similar to published data generated with manualbased tracing techniques and that have been carried out on the same species or genus. Thus, we show that application of edge detector-based technique to hyphal growth represents an efficient and accurate method to study hyphal morphogenesis. This represents the first step towards an automated analysis of videomicroscopy images of fungal morphogenesis.La morfogénesis de los hongos es un área de estudio de gran relevancia en la biología celular y en la que se han desarrollado varios modelos matemáticos. Los modelos matemáticos de procesos biológicos precisan de pruebas experimentales que apoyen y corroboren las predicciones teóricas y, por este motivo, existe una búsqueda continua de nuevas técnicas de microscopía y análisis de imágenes para su aplicación en el estudio del crecimiento celular. En este trabajo hemos utilizado una técnica basada en un detector de contornos llamado “Canny-edge-detectorâ€� con el objetivo de automatizar la generación de perfiles de hifas y el cálculo de parámetros morfogenéticos, tales como: el diámetro, la velocidad de elongación y el ajuste con el perfil hifoide, es decir, el perfil teórico de las hifas de los hongos. Los resultados obtenidos son similares a los datos publicados a partir de técnicas manuales de trazado de contornos, generados en la misma especie y género. De esta manera

  11. Optimal JPWL Forward Error Correction Rate Allocation for Robust JPEG 2000 Images and Video Streaming over Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Benoit Macq

    2008-07-01

    Full Text Available Based on the analysis of real mobile ad hoc network (MANET traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS to wireless clients is demonstrated.

  12. High-accuracy and robust face recognition system based on optical parallel correlator using a temporal image sequence

    Science.gov (United States)

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko

    2005-09-01

    Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.

  13. Social Evaluations of Stereotypic Images in Video Games: Unfair, Legitimate, or "Just Entertainment"?

    Science.gov (United States)

    Brenick, Alaina; Henning, Alexandra; Killen, Melanie; O'Connor, Alexander; Collins, Michael

    2007-01-01

    The aim of this study is to assess late adolescents' evaluations of and reasoning about gender stereotypes in video games. Female (n = 46) and male (n = 41) students, predominantly European American, with a mean age 19 years, are interviewed about their knowledge of game usage, awareness and evaluation of stereotypes, beliefs about the influences…

  14. Nonlinear analysis and synthesis of video images using deep dynamic bottleneck neural networks for face recognition.

    Science.gov (United States)

    Moghadam, Saeed Montazeri; Seyyedsalehi, Seyyed Ali

    2018-05-31

    Nonlinear components extracted from deep structures of bottleneck neural networks exhibit a great ability to express input space in a low-dimensional manifold. Sharing and combining the components boost the capability of the neural networks to synthesize and interpolate new and imaginary data. This synthesis is possibly a simple model of imaginations in human brain where the components are expressed in a nonlinear low dimensional manifold. The current paper introduces a novel Dynamic Deep Bottleneck Neural Network to analyze and extract three main features of videos regarding the expression of emotions on the face. These main features are identity, emotion and expression intensity that are laid in three different sub-manifolds of one nonlinear general manifold. The proposed model enjoying the advantages of recurrent networks was used to analyze the sequence and dynamics of information in videos. It is noteworthy to mention that this model also has also the potential to synthesize new videos showing variations of one specific emotion on the face of unknown subjects. Experiments on discrimination and recognition ability of extracted components showed that the proposed model has an average of 97.77% accuracy in recognition of six prominent emotions (Fear, Surprise, Sadness, Anger, Disgust, and Happiness), and 78.17% accuracy in the recognition of intensity. The produced videos revealed variations from neutral to the apex of an emotion on the face of the unfamiliar test subject which is on average 0.8 similar to reference videos in the scale of the SSIM method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Video x-ray progressive scanning: new technique for decreasing x-ray exposure without decreasing image quality during cardiac catheterization

    International Nuclear Information System (INIS)

    Holmes, D.R. Jr.; Bove, A.A.; Wondrow, M.A.; Gray, J.E.

    1986-01-01

    A newly developed video x-ray progressive scanning system improves image quality, decreases radiation exposure, and can be added to any pulsed fluoroscopic x-ray system using a video display without major system modifications. With use of progressive video scanning, the radiation entrance exposure rate measured with a vascular phantom was decreased by 32 to 53% in comparison with a conventional fluoroscopic x-ray system. In addition to this substantial decrease in radiation exposure, the quality of the image was improved because of less motion blur and artifact. Progressive video scanning has the potential for widespread application to all pulsed fluoroscopic x-ray systems. Use of this technique should make cardiac catheterization procedures and all other fluoroscopic procedures safer for the patient and the involved medical and paramedical staff

  16. Virtually transparent epidermal imagery (VTEI): on new approaches to in vivo wireless high-definition video and image processing.

    Science.gov (United States)

    Anderson, Adam L; Lin, Bingxiong; Sun, Yu

    2013-12-01

    This work first overviews a novel design, and prototype implementation, of a virtually transparent epidermal imagery (VTEI) system for laparo-endoscopic single-site (LESS) surgery. The system uses a network of multiple, micro-cameras and multiview mosaicking to obtain a panoramic view of the surgery area. The prototype VTEI system also projects the generated panoramic view on the abdomen area to create a transparent display effect that mimics equivalent, but higher risk, open-cavity surgeries. The specific research focus of this paper is on two important aspects of a VTEI system: 1) in vivo wireless high-definition (HD) video transmission and 2) multi-image processing-both of which play key roles in next-generation systems. For transmission and reception, this paper proposes a theoretical wireless communication scheme for high-definition video in situations that require extremely small-footprint image sensors and in zero-latency applications. In such situations the typical optimized metrics in communication schemes, such as power and data rate, are far less important than latency and hardware footprint that absolutely preclude their use if not satisfied. This work proposes the use of a novel Frequency-Modulated Voltage-Division Multiplexing (FM-VDM) scheme where sensor data is kept analog and transmitted via "voltage-multiplexed" signals that are also frequency-modulated. Once images are received, a novel Homographic Image Mosaicking and Morphing (HIMM) algorithm is proposed to stitch images from respective cameras, that also compensates for irregular surfaces in real-time, into a single cohesive view of the surgical area. In VTEI, this view is then visible to the surgeon directly on the patient to give an "open cavity" feel to laparoscopic procedures.

  17. An efficient HW and SW design of H.264 video compression, storage and playback on FPGA devices for handheld thermal imaging systems

    Science.gov (United States)

    Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih

    2017-05-01

    Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.

  18. MR Imaging of Rotator Cuff Tears: Correlation with Arthroscopy

    Science.gov (United States)

    Bhandary, Sudarshan; Khandige, Ganesh; Kabra, Utkarsh

    2017-01-01

    Introduction Rotator cuff tears are quite common and can cause significant disability. Magnetic Resonance Imaging (MRI) has now emerged as the modality of choice in the preoperative evaluation of patients with rotator cuff injuries, in view of its improved inherent soft tissue contrast and resolution. Aim To evaluate the diagnostic accuracy of routine MRI in the detection and characterisation of rotator cuff tears, by correlating the findings with arthroscopy. Materials and Methods This prospective study was carried out between July 2014 and August 2016 at the AJ Institute of Medical Sciences, Mangalore, Karnataka, India. A total of 82 patients were diagnosed with rotator cuff injury on MRI during this period, out of which 45 patients who underwent further evaluation with arthroscopy were included in this study. The data collected was analysed for significant correlation between MRI diagnosis and arthroscopic findings using kappa statistics. The sensitivity, specificity, predictive value and accuracy of MRI for the diagnosis of full and partial thickness tears were calculated using arthroscopic findings as the reference standard. Results There were 27 males and 18 females in this study. The youngest patient was 22 years and the oldest was 74 years. Majority of rotator cuff tears (78%) were seen in patients above the age of 40 years. MRI showed a sensitivity of 89.6%, specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3% for the diagnosis of full thickness rotator cuff tears. For partial thickness tears, MRI showed a sensitivity of 100%, specificity of 86.6%, positive predictive value of 78.9% and negative predictive value of 100%. The accuracy was 93.1% for full thickness tears and 91.1% for partial thickness tears. The p-value was less than 0.01 for both full and partial thickness tears. There was good agreement between the MRI and arthroscopic findings, with kappa value of 0.85 for full thickness tears and 0.81 for partial

  19. Full-Field Indentation Damage Measurement Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2017-07-01

    Full Text Available A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  20. Capturing and displaying microscopic images used in medical diagnostics and forensic science using 4K video resolution - an application in higher education.

    Science.gov (United States)

    Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan

    2015-11-01

    To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  1. Snapping Sharks, Maddening Mindreaders, and Interactive Images: Teaching Correlation.

    Science.gov (United States)

    Mitchell, Mark L.

    Understanding correlation coefficients is difficult for students. A free computer program that helps introductory psychology students distinguish between positive and negative correlation, and which also teaches them to understand the differences between correlation coefficients of different size is described in this paper. The program is…

  2. Video frame processor

    International Nuclear Information System (INIS)

    Joshi, V.M.; Agashe, Alok; Bairi, B.R.

    1993-01-01

    This report provides technical description regarding the Video Frame Processor (VFP) developed at Bhabha Atomic Research Centre. The instrument provides capture of video images available in CCIR format. Two memory planes each with a capacity of 512 x 512 x 8 bit data enable storage of two video image frames. The stored image can be processed on-line and on-line image subtraction can also be carried out for image comparisons. The VFP is a PC Add-on board and is I/O mapped within the host IBM PC/AT compatible computer. (author). 9 refs., 4 figs., 19 photographs

  3. Social Evaluations of Stereotypic Images in Video Games: Unfair, Legitimate, or "Just Entertainment"?

    Science.gov (United States)

    Brenick, Alaina; Henning, Alexandra; Killen, Melanie; O'Connor, Alexander; Collins, Michael

    2007-06-01

    The aim of this study was to assess adolescents' evaluations of, and reasoning about, gender stereotypes in video games. Female ( N = 46) and male ( N = 41), predominantly European-American, mean age = 19 years, were interviewed about their knowledge of game usage, awareness and evaluation of stereotypes, beliefs about the influences of games on the players, and authority jurisdiction over 3 different types of games: games with negative male stereotypes, and games with negative female stereotypes, and gender-neutral games. Gender differences were found for how participants evaluated these games. Males were more likely than females to find stereotypes acceptable. Results are discussed in terms of social reasoning, video game playing, and gender differences.

  4. Demonstrations of video processing of image data for uranium resource assessments

    International Nuclear Information System (INIS)

    Marrs, R.W.; King, J.K.

    1978-01-01

    Video processing of LANDSAT imagery was performed for nine areas in the western United States to demonstrate the applicability of such analyses for regional uranium resource assessment. The results of these tests, in areas of diverse geology, topography, and vegetation, were mixed. The best success was achieved in arid areas because vegetation cover is extremely limiting in any analysis dealing primarily with rocks and soils. Surface alteration patterns of large areal extent, involving transformation or redistribution of iron oxides, and reflectance contrasts were the only type of alteration consistently detected by video processing of LANDSAT imagery. Alteration often provided the only direct indication of mineralization. Other exploration guides, such as lithologic changes, can often be detected, even in heavily vegetated regions. Structural interpretation of the imagery proved far more successful than spectral analyses as an indicator of regions of possible uranium enrichment

  5. Concurrent Calculations on Reconfigurable Logic Devices Applied to the Analysis of Video Images

    Directory of Open Access Journals (Sweden)

    Sergio R. Geninatti

    2010-01-01

    Full Text Available This paper presents the design and implementation on FPGA devices of an algorithm for computing similarities between neighboring frames in a video sequence using luminance information. By taking advantage of the well-known flexibility of Reconfigurable Logic Devices, we have designed a hardware implementation of the algorithm used in video segmentation and indexing. The experimental results show the tradeoff between concurrent sequential resources and the functional blocks needed to achieve maximum operational speed while achieving minimum silicon area usage. To evaluate system efficiency, we compare the performance of the hardware solution to that of calculations done via software using general-purpose processors with and without an SIMD instruction set.

  6. Social Evaluations of Stereotypic Images in Video Games: Unfair, Legitimate, or “Just Entertainment”?

    Science.gov (United States)

    Brenick, Alaina; Henning, Alexandra; Killen, Melanie; O'Connor, Alexander; Collins, Michael

    2015-01-01

    The aim of this study was to assess adolescents' evaluations of, and reasoning about, gender stereotypes in video games. Female (N = 46) and male (N = 41), predominantly European-American, mean age = 19 years, were interviewed about their knowledge of game usage, awareness and evaluation of stereotypes, beliefs about the influences of games on the players, and authority jurisdiction over 3 different types of games: games with negative male stereotypes, and games with negative female stereotypes, and gender-neutral games. Gender differences were found for how participants evaluated these games. Males were more likely than females to find stereotypes acceptable. Results are discussed in terms of social reasoning, video game playing, and gender differences. PMID:25722501

  7. Social Evaluations of Stereotypic Images in Video Games: Unfair, Legitimate, or “Just Entertainment”?

    OpenAIRE

    Brenick, Alaina; Henning, Alexandra; Killen, Melanie; O'Connor, Alexander; Collins, Michael

    2007-01-01

    The aim of this study was to assess adolescents' evaluations of, and reasoning about, gender stereotypes in video games. Female (N = 46) and male (N = 41), predominantly European-American, mean age = 19 years, were interviewed about their knowledge of game usage, awareness and evaluation of stereotypes, beliefs about the influences of games on the players, and authority jurisdiction over 3 different types of games: games with negative male stereotypes, and games with negative female stereotyp...

  8. Optimum slicing of radical prostatectomy specimens for correlation between histopathology and medical images

    International Nuclear Information System (INIS)

    Chen, Li Hong; Ng, Wan Sing; Ho, Henry; Yuen, John; Cheng, Chris; Lazaro, Richie; Thng, Choon Hua

    2010-01-01

    There is a need for methods which enable precise correlation of histologic sections with in vivo prostate images. Such methods would allow direct comparison between imaging features and functional or histopathological heterogeneity of tumors. Correlation would be particularly useful for validating the accuracy of imaging modalities, developing imaging techniques, assessing image-guided therapy, etc. An optimum prostate slicing method for accurate correlation between the histopathological and medical imaging planes in terms of section angle, thickness and level was sought. Literature review (51 references from 1986-2009 were cited) was done on the various sectioning apparatus or techniques used to slice the prostate specimen for accurate correlation between histopathological data and medical imaging. Technology evaluation was performed with review and discussion of various methods used to section other organs and their possible applications for sectioning prostatectomy specimens. No consensus has been achieved on how the prostate should be dissected to achieve a good correlation. Various customized sectioning instruments and techniques working with different mechanism are used in different research institutes to improve the correlation. Some of the methods have convincingly shown significant potential for improving image-specimen correlation. However, the semisolid consistent property of prostate tissue and the lack of identifiable landmarks remain challenges to be overcome, especially for fresh prostate sectioning and microtomy without external fiducials. A standardized optimum protocol to dissect prostatectomy specimens is needed for the validation of medical imaging modalities by histologic correlation. These standards can enhance disease management by improving the comparability between different modalities. (orig.)

  9. Considerations on the correlation between real body and body image

    OpenAIRE

    Beatrice ABALAȘEI; Florin TROFIN

    2017-01-01

    very individual in the society has a representation of it’s own body in relation to the spatial cues, postural cues, time cues, etc., considered by specialists the body scheme. Throughout its development, the human being goes through different stages of organization of both the image the and body scheme. We start carrying out this study from the idea that there could be, in male individuals, a link between body representation (own image projected outwardly apparent by reference to an image pr...

  10. METHODS OF DISTANCE MEASUREMENT’S ACCURACY INCREASING BASED ON THE CORRELATION ANALYSIS OF STEREO IMAGES

    Directory of Open Access Journals (Sweden)

    V. L. Kozlov

    2018-01-01

    Full Text Available To solve the problem of increasing the accuracy of restoring a three-dimensional picture of space using two-dimensional digital images, it is necessary to use new effective techniques and algorithms for processing and correlation analysis of digital images. Actively developed tools that allow you to reduce the time costs for processing stereo images, improve the quality of the depth maps construction and automate their construction. The aim of the work is to investigate the possibilities of using various techniques for processing digital images to improve the measurements accuracy of the rangefinder based on the correlation analysis of the stereo image. The results of studies of the influence of color channel mixing techniques on the distance measurements accuracy for various functions realizing correlation processing of images are presented. Studies on the analysis of the possibility of using integral representation of images to reduce the time cost in constructing a depth map areproposed. The results of studies of the possibility of using images prefiltration before correlation processing when distance measuring by stereo imaging areproposed.It is obtained that using of uniform mixing of channels leads to minimization of the total number of measurement errors, and using of brightness extraction according to the sRGB standard leads to an increase of errors number for all of the considered correlation processing techniques. Integral representation of the image makes it possible to accelerate the correlation processing, but this method is useful for depth map calculating in images no more than 0.5 megapixels. Using of image filtration before correlation processing can provide, depending on the filter parameters, either an increasing of the correlation function value, which is useful for analyzing noisy images, or compression of the correlation function.

  11. The effects of prosocial video games on prosocial behaviors: International evidence from correlational, longitudinal, and experimental studies

    NARCIS (Netherlands)

    Gentile, D.A.; Anderson, C.A.; Yukawa, S.; Ihori, N.; Saleem, M.; Ming, L.K.; Liau, A.K.; Khoo, A.; Bushman, B.J.; Huesmann, L.R.; Sakamoto, A.

    2009-01-01

    Although dozens of studies have documented a relationship between violent video games and aggressive behaviors, very little attention has been paid to potential effects of prosocial games. Theoretically, games in which game characters help and support each other in nonviolent ways should increase

  12. Automated method and system for the alignment and correlation of images from two different modalities

    Science.gov (United States)

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  13. Video compression and DICOM proxies for remote viewing of DICOM images

    Science.gov (United States)

    Khorasani, Elahe; Sheinin, Vadim; Paulovicks, Brent; Jagmohan, Ashish

    2009-02-01

    Digital medical images are rapidly growing in size and volume. A typical study includes multiple image "slices." These images have a special format and a communication protocol referred to as DICOM (Digital Imaging Communications in Medicine). Storing, retrieving, and viewing these images are handled by DICOM-enabled systems. DICOM images are stored in central repository servers called PACS (Picture Archival and Communication Systems). Remote viewing stations are DICOM-enabled applications that can query the PACS servers and retrieve the DICOM images for viewing. Modern medical images are quite large, reaching as much as 1 GB per file. When the viewing station is connected to the PACS server via a high-bandwidth local LAN, downloading of the images is relatively efficient and does not cause significant wasted time for physicians. Problems arise when the viewing station is located in a remote facility that has a low-bandwidth link to the PACS server. If the link between the PACS and remote facility is in the range of 1 Mbit/sec, downloading medical images is very slow. To overcome this problem, medical images are compressed to reduce the size for transmission. This paper describes a method of compression that maintains diagnostic quality of images while significantly reducing the volume to be transmitted, without any change to the existing PACS servers and viewer software, and without requiring any change in the way doctors retrieve and view images today.

  14. Magnetic resonance imaging of the menisci of the knee. Normal images. Pitfalls. Meniscus degeneration. Anatomical correlation

    International Nuclear Information System (INIS)

    Helenon, O.; Laval-Jeantet, M.; Bastian, D.

    1989-01-01

    The results of a study on 5 knees of fresh corpses explored with magnetic resonance imaging are reported, including 1 examined before and after intraarticular contrast injection, and on 15 asymptomatic subjects examined with the same procedure. A very thorough study of the menisci and of their attachment, ie. The tibial insertion of the menisceal horns, the transverse ligament, and the meniscofemoral ligament, is possible with T1-weighted MR sequences. The T2-weighted sequences, either following intraarticular contrast injection or in cases of articular effusion, allow analyzing the capsular attachments of the posterior horn of the lateral meniscus and its relationships with the tendon of the popliteal muscle. Five misleading images must be known for the exploration of the menisci, in order to avoid a number of interpretation problems. Images of type I and II initial meniscus degeneration are observed in 47% of all cases (control group). One case of menisceal cyst developing in the anterior horn of the lateral meniscus, with anatomical correlation, is also reported [fr

  15. Head-motion-controlled video goggles: preliminary concept for an interactive laparoscopic image display (i-LID).

    Science.gov (United States)

    Aidlen, Jeremy T; Glick, Sara; Silverman, Kenneth; Silverman, Harvey F; Luks, Francois I

    2009-08-01

    Light-weight, low-profile, and high-resolution head-mounted displays (HMDs) now allow personalized viewing, of a laparoscopic image. The advantages include unobstructed viewing, regardless of position at the operating table, and the possibility to customize the image (i.e., enhanced reality, picture-in-picture, etc.). The bright image display allows use in daylight surroundings and the low profile of the HMD provides adequate peripheral vision. Theoretic disadvantages include reliance for all on the same image capture and anticues (i.e., reality disconnect) when the projected image remains static, despite changes in head position. This can lead to discomfort and even nausea. We have developed a prototype of interactive laparoscopic image display that allows hands-free control of the displayed image by changes in spatial orientation of the operator's head. The prototype consists of an HMD, a spatial orientation device, and computer software to enable hands-free panning and zooming of a video-endoscopic image display. The spatial orientation device uses magnetic fields created by a transmitter and receiver, each containing three orthogonal coils. The transmitter coils are efficiently driven, using USB power only, by a newly developed circuit, each at a unique frequency. The HMD-mounted receiver system links to a commercially available PC-interface PCI-bus sound card (M-Audiocard Delta 44; Avid Technology, Tewksbury, MA). Analog signals at the receiver are filtered, amplified, and converted to digital signals, which are processed to control the image display. The prototype uses a proprietary static fish-eye lens and software for the distortion-free reconstitution of any portion of the captured image. Left-right and up-down motions of the head (and HMD) produce real-time panning of the displayed image. Motion of the head toward, or away from, the transmitter causes real-time zooming in or out, respectively, of the displayed image. This prototype of the interactive HMD

  16. A study of correlation technique on pyramid processed images

    Indian Academy of Sciences (India)

    generated according to the REDUCE function, defined as gk Еi, jЖ И REDUCE ... (Intel user's guide 1985). The application program is ... As the information content in the reduced image of size is 5 ┬ 5 negligible, the 5 ┬ 5 image case is not ...

  17. Correlative neuroanatomy of computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Groot, J.

    1984-01-01

    Since the development of computed tomography (CT) more than a decade ago, still another form of imaging has become available that provides displays of normal and abnormal human structures. Magnetic resonance imaging is given complete coverage in this book. It describes both CT and MR anatomy that explains basic principles and the current status of imaging the brain and spine. The author uses three-dimensional concepts to provide the reader with a simple means to compare the main structures of the brain, skull and spine. Combining normal, gross neuroanatomic illustrations with CT and MR images of normal and abnormal conditions, the book provides diagnostic guidance. Drawings, photographs and radiologic images are used to help

  18. Four-dimensional ultrasonography of the fetal heart with spatiotemporal image correlation.

    Science.gov (United States)

    Gonçalves, Luís F; Lee, Wesley; Chaiworapongsa, Tinnakorn; Espinoza, Jimmy; Schoen, Mary Lou; Falkensammer, Peter; Treadwell, Marjorie; Romero, Roberto

    2003-12-01

    This study was undertaken to describe a new technique for the examination of the fetal heart using four-dimensional ultrasonography with spatiotemporal image correlation (STIC). Volume data sets of the fetal heart were acquired with a new cardiac gating technique (STIC), which uses automated transverse and longitudinal sweeps of the anterior chest wall. These volumes were obtained from 69 fetuses: 35 normal, 16 with congenital anomalies not affecting the cardiovascular system, and 18 with cardiac abnormalities. Dynamic multiplanar slicing and surface rendering of cardiac structures were performed. To illustrate the STIC technique, two representative volumes from a normal fetus were compared with volumes obtained from fetuses with the following congenital heart anomalies: atrioventricular septal defect, tricuspid stenosis, tricuspid atresia, and interrupted inferior vena cava with abnormal venous drainage. Volume datasets obtained with a transverse sweep were utilized to demonstrate the cardiac chambers, moderator band, interatrial and interventricular septae, atrioventricular valves, pulmonary veins, and outflow tracts. With the use of a reference dot to navigate the four-chamber view, intracardiac structures could be simultaneously studied in three orthogonal planes. The same volume dataset was used for surface rendering of the atrioventricular valves. The aortic and ductal arches were best visualized when the original plane of acquisition was sagittal. Volumes could be interactively manipulated to simultaneously visualize both outflow tracts, in addition to the aortic and ductal arches. Novel views of specific structures were generated. For example, the location and extent of a ventricular septal defect was imaged in a sagittal view of the interventricular septum. Furthermore, surface-rendered images of the atrioventricular valves were employed to distinguish between normal and pathologic conditions. Representative video clips were posted on the Journal's Web

  19. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  20. Mesenchymal Tumors of the Breast: Imaging and the Histopathologic Correlation

    International Nuclear Information System (INIS)

    Kim, Bo Mi; Kim, Eun Kyung; You, Jae Kyoung; Kim, Yee Jeong

    2011-01-01

    Various benign and malignant mesenchymal tumors can occur in the breast. Most radiologists are unfamiliar with the imaging features of these tumors and the imaging features have not been described in the radiologic literature. It is important that radiologists should be familiar with the broad spectrum of imaging features of rare mesenchymal breast tumors. In this pictorial review, we demonstrate the sonographic findings and the corresponding pathologic findings of various mesenchymal tumors of the breast as defined by the World Health Organization classification system

  1. Radiation damage assessment by digital correlation of images

    International Nuclear Information System (INIS)

    Frank, J.; Salih, S.M.; Cosslett, V.E.

    1974-01-01

    Structural changes in the electron microscopic specimen due to radiation damage are conveniently studied by electron diffraction. However, two disadvantages of this method are that it does not work for amorphous specimens and that it is not sensitive to structural changes that affect only the phase of the structure factor. It has been proposed that a series of successive images taken under minimum exposure conditions could provide additional information in those cases where the relationship between object function and image intensity can be established. In order to test the proposed method, both lattice images and diffraction patterns of coronene crystals were recorded in separate experiments at controlled levels of exposure. (author)

  2. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    Science.gov (United States)

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  3. Image pre-filtering for measurement error reduction in digital image correlation

    Science.gov (United States)

    Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing

    2015-02-01

    In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random

  4. Pleasant/Unpleasant Filtering for Affective Image Retrieval Based on Cross-Correlation of EEG Features

    Directory of Open Access Journals (Sweden)

    Keranmu Xielifuguli

    2014-01-01

    Full Text Available People often make decisions based on sensitivity rather than rationality. In the field of biological information processing, methods are available for analyzing biological information directly based on electroencephalogram: EEG to determine the pleasant/unpleasant reactions of users. In this study, we propose a sensitivity filtering technique for discriminating preferences (pleasant/unpleasant for images using a sensitivity image filtering system based on EEG. Using a set of images retrieved by similarity retrieval, we perform the sensitivity-based pleasant/unpleasant classification of images based on the affective features extracted from images with the maximum entropy method: MEM. In the present study, the affective features comprised cross-correlation features obtained from EEGs produced when an individual observed an image. However, it is difficult to measure the EEG when a subject visualizes an unknown image. Thus, we propose a solution where a linear regression method based on canonical correlation is used to estimate the cross-correlation features from image features. Experiments were conducted to evaluate the validity of sensitivity filtering compared with image similarity retrieval methods based on image features. We found that sensitivity filtering using color correlograms was suitable for the classification of preferred images, while sensitivity filtering using local binary patterns was suitable for the classification of unpleasant images. Moreover, sensitivity filtering using local binary patterns for unpleasant images had a 90% success rate. Thus, we conclude that the proposed method is efficient for filtering unpleasant images.

  5. NDVI and Panchromatic Image Correlation Using Texture Analysis

    Science.gov (United States)

    2010-03-01

    6 Figure 5. Spectral reflectance of vegetation and soil from 0.4 to 1.1 mm (From Perry...should help the classification methods to be able to classify kelp. Figure 5. Spectral reflectance of vegetation and soil from 0.4 to 1.1 mm...1988). Image processing software for imaging spectrometry analysis. Remote Sensing of Enviroment , 24: 201–210. Perry, C., & Lautenschlager, L. F

  6. Unusual cystic pancreatic neoplasms -image-pathological correlations

    International Nuclear Information System (INIS)

    Hilendarov, A.; Simova, E.; Petrova, A.; Traikova, N.; Deenichin, G.

    2013-01-01

    The aim is to present the variety of signs and symptoms from the diagnostic imaging methods of atypical neoplasms of the pancreas, presented as a type of cystic lesions. This often leads to unnecessary surgery or inappropriate tracking. In 115 patients (85 men and 30 women) with cystic lesions of the pancreas ultrasonic (US),computer tomography (CT) and magnetic resonance imaging (MRI) were performed and verified through histological and macroscopic pathology preparations. The ultrasound machines equipped with linear and convex transducers, MDCT and MRI imaging systems were used. In 14 of 115 patients atypical neoplasms of the pancreas were diagnosed: two cases with macroscopic serous cystic neoplasms, two nonmucinous cystic neoplasms, two hemorrhagic mucinous neoplasms, two ductal adenocarcinomas with cystic changes, one islet cell cystic tumor, two lymphoepithetial cysts, one lymphangioma, one solid papillary epithelial neoplasm and one mucinous adenocarcinoma. The authors take into consideration and overlapping of clinical symptoms and laboratory tests. Although much of the imaging features and morphological characteristics of cystic neoplasms of the pancreas are well known, should be known about the atypical unusual images in so-called 'typical' cystic neoplasms, cystic images in solid neoplasms and various atypical tumors with cystic lesions. (authors)

  7. Functional and Morphological Correlations before and after Video-Documented 23-Gauge Pars Plana Vitrectomy with Membrane and ILM Peeling in Patients with Macular Pucker.

    Science.gov (United States)

    Mayer, Wolfgang J; Fazekas, Clara; Schumann, Ricarda; Wolf, Armin; Compera, Denise; Kampik, Anselm; Haritoglou, Christos

    2015-01-01

    Purpose. To assess functional and morphological alterations following video-documented surgery for epiretinal membranes. Methods. Forty-two patients underwent video-documented 23-gauge vitrectomy with peeling of epiretinal (ERM) and inner limiting membrane (ILM). Patient assessment was performed before and 3 and 6 months including best corrected visual acuity (BCVA), slit lamp biomicroscopy, SD-OCT, and central 2° and 18° microperimetry. In addition, all video-documented areas of peeling on the retinal surface were evaluated postoperatively using an additional focal 2° microperimetry. Retinal sensitivity and BCVA were correlated with morphological changes (EZ and ELM) in the foveal region and in regions of membrane peeling. Results. Overall, BCVA increased from 0.6 (±0.2) to 0.2 (±0.2) logMAR after 6 months with an increase in retinal sensitivity (17.9 ± 2.7 dB to 26.8 ± 3.1 dB, p peeling areas (p peeling and overall retinal sensitivity regarding visual acuity gain could be observed after 6 months (p > 0.05). In contrast, overall postoperative retinal sensitivity was significantly decreased in patients with a visual acuity gain lower than 2 lines (p peeling due to the use of intraocular forceps may affect the outer retinal structure. Nevertheless, these changes seem to have no significant impact on postoperative functional outcome.

  8. Hydrogen peroxide plasma sterilization of a waterproof, high-definition video camera case for intraoperative imaging in veterinary surgery.

    Science.gov (United States)

    Adin, Christopher A; Royal, Kenneth D; Moore, Brandon; Jacob, Megan

    2018-06-13

    To evaluate the safety and usability of a wearable, waterproof high-definition camera/case for acquisition of surgical images by sterile personnel. An in vitro study to test the efficacy of biodecontamination of camera cases. Usability for intraoperative image acquisition was assessed in clinical procedures. Two waterproof GoPro Hero4 Silver camera cases were inoculated by immersion in media containing Staphylococcus pseudointermedius or Escherichia coli at ≥5.50E+07 colony forming units/mL. Cases were biodecontaminated by manual washing and hydrogen peroxide plasma sterilization. Cultures were obtained by swab and by immersion in enrichment broth before and after each contamination/decontamination cycle (n = 4). The cameras were then applied by a surgeon in clinical procedures by using either a headband or handheld mode and were assessed for usability according to 5 user characteristics. Cultures of all poststerilization swabs were negative. One of 8 cultures was positive in enrichment broth, consistent with a low level of contamination in 1 sample. Usability of the camera was considered poor in headband mode, with limited battery life, inability to control camera functions, and lack of zoom function affecting image quality. Handheld operation of the camera by the primary surgeon improved usability, allowing close-up still and video intraoperative image acquisition. Vaporized hydrogen peroxide sterilization of this camera case was considered effective for biodecontamination. Handheld operation improved usability for intraoperative image acquisition. Vaporized hydrogen peroxide sterilization and thorough manual washing of a waterproof camera may provide cost effective intraoperative image acquisition for documentation purposes. © 2018 The American College of Veterinary Surgeons.

  9. Evaluation of digital image correlation techniques using realistic ground truth speckle images

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2010-01-01

    Digital image correlation (DIC) has been acknowledged and widely used in recent years in the field of experimental mechanics as a contactless method for determining full field displacements and strains. Even though several sub-pixel motion estimation algorithms have been proposed in the literature, little is known about their accuracy and limitations in reproducing complex underlying motion fields occurring in real mechanical tests. This paper presents a new method for evaluating sub-pixel motion estimation algorithms using ground truth speckle images that are realistically warped using artificial motion fields that were obtained following two distinct approaches: in the first, the horizontal and vertical displacement fields are created according to theoretical formulas for the given type of experiment while the second approach constructs the displacements through radial basis function interpolation starting from real DIC results. The method is applied in the evaluation of five DIC algorithms with results indicating that the gradient-based DIC methods generally have a quality advantage when using small sized blocks and are a better choice for calculating very small displacements and strains. The Newton–Raphson is the overall best performing method with a notable quality advantage when large block sizes are employed and in experiments where large strain fields are of interest

  10. Multilocular cystic renal cell carcinoma: imaging and clinical correlation

    International Nuclear Information System (INIS)

    Xu Yong; Zhang Sheng

    2013-01-01

    Multilocular cystic renal cell carcinoma (MCRCC) is a subtype of clear cell renal cell carcinoma and has mild clinical symptoms and a favorable prognosis. Accordingly, nephron-sparing surgery is recommended as a therapeutic strategy. If histologic subtype of MCRCC can be predicted preoperatively with an acceptable level of accuracy, it may be important in predicting prognosis and make clinical management. Most MCRCCs show characteristic cross-sectional imaging findings and permit accurate diagnosis before the treatment. Cross -sectional imaging of MCRCC reveals a well -defined multilocular cystic mass with irregularly enhanced thickened septa and without enhanced intracystic solid nodule. It is often classified as Bosniak classification Ⅲ , which is significantly different from that of other renal cystic masses. The clinical, pathologic, and radiologic features of MCRCC were discussed and illustrated in this article. The role of the imaging preoperative evaluation for MCRCC, and management implications were emphasized. (authors)

  11. Using neutrosophic graph cut segmentation algorithm for qualified rendering image selection in thyroid elastography video.

    Science.gov (United States)

    Guo, Yanhui; Jiang, Shuang-Quan; Sun, Baiqing; Siuly, Siuly; Şengür, Abdulkadir; Tian, Jia-Wei

    2017-12-01

    Recently, elastography has become very popular in clinical investigation for thyroid cancer detection and diagnosis. In elastogram, the stress results of the thyroid are displayed using pseudo colors. Due to variation of the rendering results in different frames, it is difficult for radiologists to manually select the qualified frame image quickly and efficiently. The purpose of this study is to find the qualified rendering result in the thyroid elastogram. This paper employs an efficient thyroid ultrasound image segmentation algorithm based on neutrosophic graph cut to find the qualified rendering images. Firstly, a thyroid ultrasound image is mapped into neutrosophic set, and an indeterminacy filter is constructed to reduce the indeterminacy of the spatial and intensity information in the image. A graph is defined on the image and the weight for each pixel is represented using the value after indeterminacy filtering. The segmentation results are obtained using a maximum-flow algorithm on the graph. Then the anatomic structure is identified in thyroid ultrasound image. Finally the rendering colors on these anatomic regions are extracted and validated to find the frames which satisfy the selection criteria. To test the performance of the proposed method, a thyroid elastogram dataset is built and totally 33 cases were collected. An experienced radiologist manually evaluates the selection results of the proposed method. Experimental results demonstrate that the proposed method finds the qualified rendering frame with 100% accuracy. The proposed scheme assists the radiologists to diagnose the thyroid diseases using the qualified rendering images.

  12. Unattended video surveillance systems for international safeguards

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1979-01-01

    The use of unattended video surveillance systems places some unique requirements on the systems and their hardware. The systems have the traditional requirements of video imaging, video storage, and video playback but also have some special requirements such as tamper safing. The technology available to meet these requirements and how it is being applied to unattended video surveillance systems are discussed in this paper

  13. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

    Science.gov (United States)

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-10-17

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Patient positioning method based on binary image correlation between two edge images for proton-beam radiation therapy

    International Nuclear Information System (INIS)

    Sawada, Akira; Yoda, Kiyoshi; Numano, Masumi; Futami, Yasuyuki; Yamashita, Haruo; Murayama, Shigeyuki; Tsugami, Hironobu

    2005-01-01

    A new technique based on normalized binary image correlation between two edge images has been proposed for positioning proton-beam radiotherapy patients. A Canny edge detector was used to extract two edge images from a reference x-ray image and a test x-ray image of a patient before positioning. While translating and rotating the edged test image, the absolute value of the normalized binary image correlation between the two edge images is iteratively maximized. Each time before rotation, dilation is applied to the edged test image to avoid a steep reduction of the image correlation. To evaluate robustness of the proposed method, a simulation has been carried out using 240 simulated edged head front-view images extracted from a reference image by varying parameters of the Canny algorithm with a given range of rotation angles and translation amounts in x and y directions. It was shown that resulting registration errors have an accuracy of one pixel in x and y directions and zero degrees in rotation, even when the number of edge pixels significantly differs between the edged reference image and the edged simulation image. Subsequently, positioning experiments using several sets of head, lung, and hip data have been performed. We have observed that the differences of translation and rotation between manual positioning and the proposed method were within one pixel in translation and one degree in rotation. From the results of the validation study, it can be concluded that a significant reduction in workload for the physicians and technicians can be achieved with this method

  15. Neural Basis of Video Gaming: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Marc Palaus

    2017-05-01

    Full Text Available Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games.Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass.Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games.Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence.Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies.

  16. Neural Basis of Video Gaming: A Systematic Review

    Science.gov (United States)

    Palaus, Marc; Marron, Elena M.; Viejo-Sobera, Raquel; Redolar-Ripoll, Diego

    2017-01-01

    Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass. Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games. Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence. Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies. PMID:28588464

  17. Neural Basis of Video Gaming: A Systematic Review.

    Science.gov (United States)

    Palaus, Marc; Marron, Elena M; Viejo-Sobera, Raquel; Redolar-Ripoll, Diego

    2017-01-01

    Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass. Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games. Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence. Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies.

  18. An alternative effective method for verifying the multileaf collimator leaves speed by using a digital-video imaging system

    International Nuclear Information System (INIS)

    Hwang, Ing-Ming; Wu, Jay; Chuang, Keh-Shih; Ding, Hueisch-Jy

    2010-01-01

    We present an alternative effective method for verifying the multileaf collimator (MLC) leaves speed using a digital-video imaging system in daily dynamic conformal radiation therapy (DCRT) and intensity-modulation radiation therapy (IMRT) in achieving increased convenience and shorter treatment times. The horizontal leaves speed measured was within 1.76-2.08 cm/s. The mean full range of traveling time was 20 s. The initial speed-up time was within 1.5-2.0 s, and the slowing-down time was within 2.0-2.5 s. Due to gravity the maximum speed-up effect in the X1 bank was +0.10 cm/s, but the lagging effect in the X2 bank was -0.20 cm/s. This technique offered an alternative method with electronic portal imaging device (EPID), charged coupled device (CCD) or a light field for the measurement of MLC leaves speed. When time taken on the linac was kept to a minimum, the image could be processed off-line.

  19. Target recognition and scene interpretation in image/video understanding systems based on network-symbolic models

    Science.gov (United States)

    Kuvich, Gary

    2004-08-01

    Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.

  20. Correlates of Bio-Psychosocial Factors on Perceived Body Image ...

    African Journals Online (AJOL)

    DrNneka

    person's psychosocial adjustment experiences, feelings and attitudes that is ... Brogowicz (1990) reported that 90% of university students in their study said that they ... studies have focused on the issue of body weight as it relates to body image body ... boost feelings of self-mastery, increase social support, bolster feelings of ...

  1. Correlation of simulated TEM images with irradiation induced damage

    International Nuclear Information System (INIS)

    Schaeublin, R.; Almeida, P. de; Almazouzi, A.; Victoria, M.

    2000-01-01

    Crystal damage induced by irradiation is investigated using transmission electron microscopy (TEM) coupled to molecular dynamics (MD) calculations. The displacement cascades are simulated for energies ranging from 10 to 50 keV in Al, Ni and Cu and for times of up to a few tens of picoseconds. Samples are then used to perform simulations of the TEM images that one could observe experimentally. Diffraction contrast is simulated using a method based on the multislice technique. It appears that the cascade induced damage in Al imaged in weak beam exhibits little contrast, which is too low to be experimentally visible, while in Ni and Cu a good contrast is observed. The number of visible clusters is always lower than the actual one. Conversely, high resolution TEM (HRTEM) imaging allows most of the defects contained in the sample to be observed, although experimental difficulties arise due to the low contrast intensity of the smallest defects. Single point defects give rise in HTREM to a contrast that is similar to that of cavities. TEM imaging of the defects is discussed in relation to the actual size of the defects and to the number of clusters deduced from MD simulations

  2. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    International Nuclear Information System (INIS)

    Ingram, S; Rao, A; Wendt, R; Castillo, R; Court, L; Yang, J; Beadle, B

    2014-01-01

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the camera by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination

  3. Digital Image Analysis of Ultrasound B-mode images of Carotid Atherosclerotic Plaque: Correlation with Histological Examination

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Rosendal, Kim; Grønholdt, Marie-Louise Moes

    1996-01-01

    This paper reports on a study of how well texture features extracted from B-mode images of atherosclerotic plaque correlates with histological results obtained from the same plaque after carotid endarterectomy. The study reveals that a few second order texture features (diagonal moment, standard...... deviation and autocorrelation) provide good correlation within the training set (p = 0.04); However, the correlation found so far is not so high, that the method can be used in clinical prediction of plaque constituents....

  4. Fast mega pixels video imaging of a toroidal plasma in KT5D device

    International Nuclear Information System (INIS)

    Xu Min; Wang Zhijiang; Lu Ronghua; Sun Xiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu Wandong; Wang Jun; Xiao Delong; Yu Yi; Zhu Zhenghua; Hu Linyin

    2005-01-01

    A direct imaging system, viewing visible light emission from plasmas tangentially or perpendicularly, has been set up on the KT5D toroidal device to monitor the real two-dimensional profiles of purely ECR generated plasmas. This system has a typical spatial resolution of 0.2 mm (1280x1024 pixels) when imaging the whole cross section. Interesting features of ECR plasmas have been found. Different from what classical theories have expected, a resonance layer with two or three bright spots, rather than an even vertical band, has been observed. In addition, images also indicate an intermittent splitting and drifting character of the plasmas

  5. Biopolymer-based material used in optical image correlation

    Czech Academy of Sciences Publication Activity Database

    Mysliwiec, J.; Kochalska, Anna; Miniewicz, A.

    2008-01-01

    Roč. 47, č. 11 (2008), s. 1902-1906 ISSN 0003-6935 Institutional research plan: CEZ:AV0Z40500505 Keywords : biopolymer * DNA * optical correlation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.763, year: 2008

  6. Mechanical assessment of bovine pericardium using Müeller matrix imaging, enhanced backscattering and digital image correlation analysis.

    Science.gov (United States)

    Cuando-Espitia, Natanael; Sánchez-Arévalo, Francisco; Hernández-Cordero, Juan

    2015-08-01

    Mechanical characterization of tissue is an important but complex task. We demonstrate the simultaneous use of Mueller matrix imaging (MMI), enhanced backscattering (EBS) and digital image correlation (DIC) in a bovine pericardium (BP) tensile test. The interest in BP relies on its wide use as valve replacement and biological patch. We show that the mean free path (MFP), obtained through EBS measurements, can be used as an indicator of the anisotropy of the fiber ensemble. Our results further show a good correlation between retardance images and displacement vector fields, which are intrinsically related with the fiber interaction within the tissue.

  7. Toward enhancing the distributed video coder under a multiview video codec framework

    Science.gov (United States)

    Lee, Shih-Chieh; Chen, Jiann-Jone; Tsai, Yao-Hong; Chen, Chin-Hua

    2016-11-01

    The advance of video coding technology enables multiview video (MVV) or three-dimensional television (3-D TV) display for users with or without glasses. For mobile devices or wireless applications, a distributed video coder (DVC) can be utilized to shift the encoder complexity to decoder under the MVV coding framework, denoted as multiview distributed video coding (MDVC). We proposed to exploit both inter- and intraview video correlations to enhance side information (SI) and improve the MDVC performance: (1) based on the multiview motion estimation (MVME) framework, a categorized block matching prediction with fidelity weights (COMPETE) was proposed to yield a high quality SI frame for better DVC reconstructed images. (2) The block transform coefficient properties, i.e., DCs and ACs, were exploited to design the priority rate control for the turbo code, such that the DVC decoding can be carried out with fewest parity bits. In comparison, the proposed COMPETE method demonstrated lower time complexity, while presenting better reconstructed video quality. Simulations show that the proposed COMPETE can reduce the time complexity of MVME to 1.29 to 2.56 times smaller, as compared to previous hybrid MVME methods, while the image peak signal to noise ratios (PSNRs) of a decoded video can be improved 0.2 to 3.5 dB, as compared to H.264/AVC intracoding.

  8. Learning Trajectory for Transforming Teachers' Knowledge for Teaching Mathematics and Science with Digital Image and Video Technologies in an Online Learning Experience

    Science.gov (United States)

    Niess, Margaret L.; Gillow-Wiles, Henry

    2014-01-01

    This qualitative cross-case study explores the influence of a designed learning trajectory on transforming teachers' technological pedagogical content knowledge (TPACK) for teaching with digital image and video technologies. The TPACK Learning Trajectory embeds tasks with specific instructional strategies within a social metacognitive…

  9. DEVELOPMENT OF EVALUATION OF A QUANTITATIVE VIDEO-FLUORESCENCE IMAGING SYSTEM AND FLUORESCENT TRACER FOR MEASURING TRANSFER OF PESTICIDE RESIDUES FROM SURFACES TO HANDS WITH REPEATED CONTACTS

    Science.gov (United States)

    A video imaging system and the associated quantification methods have been developed for measurement of the transfers of a fluorescent tracer from surfaces to hands. The highly fluorescent compound riboflavin (Vitamin B2), which is also water soluble and non-toxic, was chosen as...

  10. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  11. Correlation of early-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Lin, Kun-Ju [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Chang Gung University, Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, Taipei (China); Huang, Chin-Chang; Hsu, Wen-Chun [Chang Gung Memorial Hospital, Department of Neurology, Taipei (China); Yen, Tzu-Chen [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Kung, Mei-Ping [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Chang Gung University, Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, Taipei (China); University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2012-04-15

    {sup 18}F-Florbetapir (AV-45/Amyvid) is a novel positron emission tomography (PET) tracer for imaging plaque pathology in Alzheimer's disease (AD), while PET images of fluorodeoxyglucose (FDG) for cerebral glucose metabolism can provide complementary information to amyloid plaque images for diagnosis of AD. The goal of this preliminary study was to investigate the perfusion-like property of relative cerebral blood flow estimates (R{sub 1}) and summed early-phase AV-45 images [perfusion AV-45 (pAV-45)] and optimize the early time frame for pAV-45. Dynamic AV-45 PET scans (0-180 min) were performed in seven subjects. pAV-45, late-phase AV-45, and FDG images were spatially normalized to the Montreal Neurological Institute template aided by individual MRI images, and the corresponding standardized uptake value ratio (SUVR) was computed. The R{sub 1} images were derived from a simplified reference tissue model. Correlations between regional and voxelwise R{sub 1} and the corresponding FDG images were calculated. An optimization of time frames of pAV-45 was conducted in terms of correlation to FDG images. The optimal early time frame was validated in a separate cohort. The regional distribution in the R{sub 1} images correlated well (R = 0.91) to that of the FDG within subjects. Consistently high correlation was noted across a long range of time frames. The maximal correlation of pAV-45 to FDG SUVR of R = 0.95 was observed at the time frame of 1-6 min, while the peak correlation of R = 0.99 happened at 0-2 min between pAV-45 and R{sub 1}. A similar result was achieved in the validation cohort. Preliminary results showed that the distribution patterns of R{sub 1} and pAV-45 images are highly correlated with normalized FDG images, and the initial 5-min early time frame of 1-6 min is potentially useful in providing complementary FDG-like information to the amyloid plaque density by late-phase AV-45 images. (orig.)

  12. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies

    International Nuclear Information System (INIS)

    Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Lin, Kun-Ju; Huang, Chin-Chang; Hsu, Wen-Chun; Yen, Tzu-Chen; Kung, Mei-Ping

    2012-01-01

    18 F-Florbetapir (AV-45/Amyvid) is a novel positron emission tomography (PET) tracer for imaging plaque pathology in Alzheimer's disease (AD), while PET images of fluorodeoxyglucose (FDG) for cerebral glucose metabolism can provide complementary information to amyloid plaque images for diagnosis of AD. The goal of this preliminary study was to investigate the perfusion-like property of relative cerebral blood flow estimates (R 1 ) and summed early-phase AV-45 images [perfusion AV-45 (pAV-45)] and optimize the early time frame for pAV-45. Dynamic AV-45 PET scans (0-180 min) were performed in seven subjects. pAV-45, late-phase AV-45, and FDG images were spatially normalized to the Montreal Neurological Institute template aided by individual MRI images, and the corresponding standardized uptake value ratio (SUVR) was computed. The R 1 images were derived from a simplified reference tissue model. Correlations between regional and voxelwise R 1 and the corresponding FDG images were calculated. An optimization of time frames of pAV-45 was conducted in terms of correlation to FDG images. The optimal early time frame was validated in a separate cohort. The regional distribution in the R 1 images correlated well (R = 0.91) to that of the FDG within subjects. Consistently high correlation was noted across a long range of time frames. The maximal correlation of pAV-45 to FDG SUVR of R = 0.95 was observed at the time frame of 1-6 min, while the peak correlation of R = 0.99 happened at 0-2 min between pAV-45 and R 1 . A similar result was achieved in the validation cohort. Preliminary results showed that the distribution patterns of R 1 and pAV-45 images are highly correlated with normalized FDG images, and the initial 5-min early time frame of 1-6 min is potentially useful in providing complementary FDG-like information to the amyloid plaque density by late-phase AV-45 images. (orig.)

  13. Global adjustment for creating extended panoramic images in video-dermoscopy

    Science.gov (United States)

    Faraz, Khuram; Blondel, Walter; Daul, Christian

    2017-07-01

    This contribution presents a fast global adjustment scheme exploiting SURF descriptor locations for constructing large skin mosaics. Precision in pairwise image registration is well-preserved while significantly reducing the global mosaicing error.

  14. High Dynamic Range Video

    CERN Document Server

    Myszkowski, Karol

    2008-01-01

    This book presents a complete pipeline forHDR image and video processing fromacquisition, through compression and quality evaluation, to display. At the HDR image and video acquisition stage specialized HDR sensors or multi-exposure techniques suitable for traditional cameras are discussed. Then, we present a practical solution for pixel values calibration in terms of photometric or radiometric quantities, which are required in some technically oriented applications. Also, we cover the problem of efficient image and video compression and encoding either for storage or transmission purposes, in

  15. Preparation of photo an video images during foot diagnostics in stress condition

    International Nuclear Information System (INIS)

    Katsarov, V; Stoyanov, K.; Panchev, P.; Belcheva, J.; Atanasov, A.

    2008-01-01

    The aim of this work is to present some practical issues concerning image scanning, processing and software application in orthopedics and traumatology for foot diagnostic purposes. Basic concepts in optical scanning, multi-position photography and technology with high informational value have been discussed. The use of Slide show, Clip and Mpeg graphic formats during preparation for capture and image processing has been also demonstrated

  16. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1985-01-01

    Westinghouse Hanford Company has designed and is constructing a nuclear fuel fabrication process line for the Department of Energy. This process line includes a pellet surface inspection system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100% basis after pellet sintering. A feeder will deliver the pellets directly to fiber optic inspection head. The inspection head will view one pellet surface at a time. The surface image of the pellet will be imaged to a closed-circuit color television camera (CCTV). The output signal of the CCTV will be input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator will visually examine the images of the pellet surfaces on a high resolution monitor and accept or reject the pellets based on visual standards. The operator will use a digitizing tablet to record the location of rejected pellets, which will then be automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  17. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1986-01-01

    Westinghouse Hanford Company has designed and is constructing a nuclear fuel fabrication process line for the Department of Energy. This process line includes a pellet surface inspection system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100 percent basis after pellet sintering. A feeder will deliver the pellets directly to a fiber optic inspection head. The inspection head will view one pellet surface at a time. The surface image of the pellet will be imaged to a closed-circuit color television camera (CCTV). The output signal of the CCTV will be input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator will visually examine the images of the pellet surfaces on a high resolution monitor and accept or reject the pellets based on visual standards. The operator will use a digitizing tablet to record the location of rejected pellets, which will then be automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  18. Imaging-pathologic correlation of multi-step hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Matsui, O.

    2012-01-01

    Full text: Approximately 80% of Japanese HCC cases are derived from HCV-associated liver cirrhosis and chronic hepatitis, and the remaining less than 20% of patients are HBV positive. Because of the introduction of this surveillance system by periodic ultrasound in these high-risk patients, the size of HCCs firstly detected during 2004 to 2005 (n=16809) was less than 2cm in 35% of all cases, 2.1-5.0 cm 48%, respectively. However, various types of hepatocellular nodules such as dysplastic nodule are also detected during screening procedures. Pathologically, human HCC often develops in a multistep fashion from dysplastic nodule to classic hyper vascular HCC. Therefore, for the early diagnosis of HCC, understanding of the sequential changes of imaging findings in accordance with multi-step hepatocarcinogenseis is important. In addition, to understand the imaging features of various types of HCC is also important for the precise characterization of HCCs. (1) Classification of hepatocellular nodules during multistep hepatocarcinogenesis; According to International Consensus Group for Hepatocellular Neoplasia, these nodules are divided into large regenerative nodule, low grade dysplastic nodule (L-DN), high-grade dysplastic nodule (H-DN), and HCC. In addition, small HCC (less than 2 cm) is divided into early HCC and progressed HCC. Early HCC has a vaguely nodular appearance and is highly well differentiated. (2) Imaging of multistep hepatocarcinogenesis; We revealed that the intranodular blood supply changes in accordance with the progression of human hepatocarcinogenesis from dyspalstic nodule to overt HCC. The intranodular portal supply relative to the surrounding liver parenchyma evaluated by CT during arterial portography (CTAP) is decreased, whereas the intranodular arterial supply evaluated by CT during hepatic arteriography (CTHA) revealed is first decreased during the early stage of hepatocarcinogenesis and then increased in parallel with increasing grade of

  19. Acute Severe Aortic Regurgitation: Imaging with Pathological Correlation.

    Science.gov (United States)

    Janardhanan, Rajesh; Pasha, Ahmed Khurshid

    2016-03-01

    Acute aortic regurgitation (AR) is an important finding associated with a wide variety of disease processes. Its timely diagnosis is of utmost importance. Delay in diagnosis could prove fatal. We describe a case of acute severe AR that was timely diagnosed using real time three-dimensional (3D) transesophageal echocardiogram (3D TEE). Not only did it diagnose but also the images obtained by 3D TEE clearly matched with the pathologic specimen. Using this sophisticated imaging modality that is mostly available at the tertiary centers helped in the timely diagnosis, which lead to the optimal management saving his life. Echocardiography and especially 3D TEE can diagnose AR very accurately. Surgical intervention is the definitive treatment but medical therapy is utilized to stabilize the patient initially.

  20. Measurement of the Young's modulus of thin or flexible specimen with digital-image correlation method

    Science.gov (United States)

    Xu, Lianyun; Hou, Zhende; Qin, Yuwen

    2002-05-01

    Because some composite material, thin film material, and biomaterial, are very thin and some of them are flexible, the classical methods for measuring their Young's moduli, by mounting extensometers on specimens, are not available. A bi-image method based on image correlation for measuring Young's moduli is developed in this paper. The measuring precision achieved is one order enhanced with general digital image correlation or called single image method. By this way, the Young's modulus of a SS301 stainless steel thin tape, with thickness 0.067mm, is measured, and the moduli of polyester fiber films, a kind of flexible sheet with thickness 0.25 mm, are also measured.

  1. Cystic synovial sarcomas: imaging features with clinical and histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hirofumi; Araki, Nobuhito [Department of Orthopedic Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3, Nakamichi, Higashinari-Ku, 537-8511, Osaka (Japan); Sawai, Yuka [Department of Radiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Kudawara, Ikuo [Department of Orthopedic Surgery, Osaka National Hospital, Osaka (Japan); Mano, Masayuki; Ishiguro, Shingo [Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ueda, Takafumi; Yoshikawa, Hideki [Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka (Japan)

    2003-12-01

    To characterize the radiological and clinicopathologic features of cystic synovial sarcoma. Seven patients with primary cystic synovial sarcoma were evaluated. Computed tomography (CT) and magnetic resonance (MR) imaging were undertaken at the first presentation. The diagnosis of synovial sarcoma was made on the basis of histological examinations followed by molecular analysis. Radiological and clinicopathologic findings were reviewed. CT showed well-defined soft tissue mass without cortical bone erosion and invasion. Calcification was seen at the periphery of the mass in three cases. T2-weighted MR images showed multilocular inhomogeneous intensity mass in all cases, five of which showed fluid-fluid levels. On gross appearance, old and/or fresh hematomas were detected in six cases. In the one remaining case, microscopic hemorrhage in the cystic lumen was proven. Four cases had poorly differentiated areas. In five cases prominent hemangiopericytomatous vasculature was observed. Histologic grade was intermediate in one tumor and high in six. One case had a history of misdiagnosis for tarsal tunnel syndrome, one for lymphadenopathy, two for sciatica and two for hematoma. All cystic synovial sarcomas demonstrated multilocularity with well-circumscribed walls and internal septae. Synovial sarcoma should be taken into consideration in patients with deeply situated multicystic mass with triple signal intensity on T2-weighted MR imaging. (orig.)

  2. Cystic synovial sarcomas: imaging features with clinical and histopathologic correlation

    International Nuclear Information System (INIS)

    Nakanishi, Hirofumi; Araki, Nobuhito; Sawai, Yuka; Kudawara, Ikuo; Mano, Masayuki; Ishiguro, Shingo; Ueda, Takafumi; Yoshikawa, Hideki

    2003-01-01

    To characterize the radiological and clinicopathologic features of cystic synovial sarcoma. Seven patients with primary cystic synovial sarcoma were evaluated. Computed tomography (CT) and magnetic resonance (MR) imaging were undertaken at the first presentation. The diagnosis of synovial sarcoma was made on the basis of histological examinations followed by molecular analysis. Radiological and clinicopathologic findings were reviewed. CT showed well-defined soft tissue mass without cortical bone erosion and invasion. Calcification was seen at the periphery of the mass in three cases. T2-weighted MR images showed multilocular inhomogeneous intensity mass in all cases, five of which showed fluid-fluid levels. On gross appearance, old and/or fresh hematomas were detected in six cases. In the one remaining case, microscopic hemorrhage in the cystic lumen was proven. Four cases had poorly differentiated areas. In five cases prominent hemangiopericytomatous vasculature was observed. Histologic grade was intermediate in one tumor and high in six. One case had a history of misdiagnosis for tarsal tunnel syndrome, one for lymphadenopathy, two for sciatica and two for hematoma. All cystic synovial sarcomas demonstrated multilocularity with well-circumscribed walls and internal septae. Synovial sarcoma should be taken into consideration in patients with deeply situated multicystic mass with triple signal intensity on T2-weighted MR imaging. (orig.)

  3. Considerations on the correlation between real body and body image

    Directory of Open Access Journals (Sweden)

    Beatrice ABALAȘEI

    2017-03-01

    Full Text Available very individual in the society has a representation of it’s own body in relation to the spatial cues, postural cues, time cues, etc., considered by specialists the body scheme. Throughout its development, the human being goes through different stages of organization of both the image the and body scheme. We start carrying out this study from the idea that there could be, in male individuals, a link between body representation (own image projected outwardly apparent by reference to an image presented through a questionnaire and anthropological parameters, such as body fat and body mass index. The study was conducted on a total of 28 subjects, aged 22.71 ± 2.62 years, height of 177.11 ± 6.76 cm and body weight of 73.56 ± 12.60 kg. For these subjects the body composition has been determined by electromagnetic bioimpendance technique and projection of the self was assesed through a questionnaire. After analyzing statistical data, our hypothesis was refuted by the lack of mathematical connections between the variables analyzed.

  4. Renal cell carcinoma: histological classification and correlation with imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Muglia, Valdair F., E-mail: fmuglia@fmrp.usp.br [Universidade de Sao Paulo (CCIFM/FMRP/USP), Ribeirao Preto, SP (Brazil). Centro de Ciencias das Imagens e Fisica Medica. Faculdade de Medicina; Prando, Adilson [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Hospital Vera Cruz, Campinas, SP (Brazil). Dept. de Imaginologia

    2015-05-15

    Renal cell carcinoma (RCC) is the seventh most common histological type of cancer in the Western world and has shown a sustained increase in its prevalence. The histological classification of RCCs is of utmost importance, considering the significant prognostic and therapeutic implications of its histological subtypes. Imaging methods play an outstanding role in the diagnosis, staging and follow-up of RCC. Clear cell, papillary and chromophobe are the most common histological subtypes of RCC, and their preoperative radiological characterization, either followed or not by confirmatory percutaneous biopsy, may be particularly useful in cases of poor surgical condition, metastatic disease, central mass in a solitary kidney, and in patients eligible for molecular targeted therapy. New strategies recently developed for treating renal cancer, such as cryo and radiofrequency ablation, molecularly targeted therapy and active surveillance also require appropriate preoperative characterization of renal masses. Less common histological types, although sharing nonspecific imaging features, may be suspected on the basis of clinical and epidemiological data. The present study is aimed at reviewing the main clinical and imaging findings of histological RCC subtypes. (author)

  5. SECRETS OF SONG VIDEO

    Directory of Open Access Journals (Sweden)

    Chernyshov Alexander V.

    2014-04-01

    Full Text Available The article focuses on the origins of the song videos as TV and Internet-genre. In addition, it considers problems of screen images creation depending on the musical form and the text of a songs in connection with relevant principles of accent and phraseological video editing and filming techniques as well as with additional frames and sound elements.

  6. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1987-01-01

    Westinghouse Hanford Company has designed and constructed a nuclear fuel fabrication process line for the U.S. Department of Energy. This process line includes a system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100% basis after pellet sintering. A feeder delivers the pellets directly to a fiber optic inspection head, which views one pellet surface at a time and images it to a closed-circuit color television camera (CCTV). The output signal of the CCTV is input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator visually examines the images of the pellet surfaces on a high resolution monitor and accepts or rejects the pellets based on visual standards. The operator uses a digitizing tablet to record the location of rejected pellets, which are then automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  7. Short Project-Based Learning with MATLAB Applications to Support the Learning of Video-Image Processing

    Science.gov (United States)

    Gil, Pablo

    2017-10-01

    University courses concerning Computer Vision and Image Processing are generally taught using a traditional methodology that is focused on the teacher rather than on the students. This approach is consequently not effective when teachers seek to attain cognitive objectives involving their students' critical thinking. This manuscript covers the development, implementation and assessment of a short project-based engineering course with MATLAB applications Multimedia Engineering being taken by Bachelor's degree students. The principal goal of all course lectures and hands-on laboratory activities was for the students to not only acquire image-specific technical skills but also a general knowledge of data analysis so as to locate phenomena in pixel regions of images and video frames. This would hopefully enable the students to develop skills regarding the implementation of the filters, operators, methods and techniques used for image processing and computer vision software libraries. Our teaching-learning process thus permits the accomplishment of knowledge assimilation, student motivation and skill development through the use of a continuous evaluation strategy to solve practical and real problems by means of short projects designed using MATLAB applications. Project-based learning is not new. This approach has been used in STEM learning in recent decades. But there are many types of projects. The aim of the current study is to analyse the efficacy of short projects as a learning tool when compared to long projects during which the students work with more independence. This work additionally presents the impact of different types of activities, and not only short projects, on students' overall results in this subject. Moreover, a statistical study has allowed the author to suggest a link between the students' success ratio and the type of content covered and activities completed on the course. The results described in this paper show that those students who took part

  8. Fuzzy-Based Segmentation for Variable Font-Sized Text Extraction from Images/Videos

    Directory of Open Access Journals (Sweden)

    Samabia Tehsin

    2014-01-01

    Full Text Available Textual information embedded in multimedia can provide a vital tool for indexing and retrieval. A lot of work is done in the field of text localization and detection because of its very fundamental importance. One of the biggest challenges of text detection is to deal with variation in font sizes and image resolution. This problem gets elevated due to the undersegmentation or oversegmentation of the regions in an image. The paper addresses this problem by proposing a solution using novel fuzzy-based method. This paper advocates postprocessing segmentation method that can solve the problem of variation in text sizes and image resolution. The methodology is tested on ICDAR 2011 Robust Reading Challenge dataset which amply proves the strength of the recommended method.

  9. Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules

    DEFF Research Database (Denmark)

    Durisic, Nela; Bachir, Alexia I; Kolin, David L

    2007-01-01

    Semiconductor nanocrystals or quantum dots (QDs) are becoming widely used as fluorescent labels for biological applications. Here we demonstrate that fluorescence fluctuation analysis of their diffusional mobility using temporal image correlation spectroscopy is highly susceptible to systematic e...

  10. Research on compression performance of ultrahigh-definition videos

    Science.gov (United States)

    Li, Xiangqun; He, Xiaohai; Qing, Linbo; Tao, Qingchuan; Wu, Di

    2017-11-01

    With the popularization of high-definition (HD) images and videos (1920×1080 pixels and above), there are even 4K (3840×2160) television signals and 8 K (8192×4320) ultrahigh-definition videos. The demand for HD images and videos is increasing continuously, along with the increasing data volume. The storage and transmission cannot be properly solved only by virtue of the expansion capacity of hard disks and the update and improvement of transmission devices. Based on the full use of the coding standard high-efficiency video coding (HEVC), super-resolution reconstruction technology, and the correlation between the intra- and the interprediction, we first put forward a "division-compensation"-based strategy to further improve the compression performance of a single image and frame I. Then, by making use of the above thought and HEVC encoder and decoder, a video compression coding frame is designed. HEVC is used inside the frame. Last, with the super-resolution reconstruction technology, the reconstructed video quality is further improved. The experiment shows that by the proposed compression method for a single image (frame I) and video sequence here, the performance is superior to that of HEVC in a low bit rate environment.

  11. Enlargement device of an image part contained in a video signal

    International Nuclear Information System (INIS)

    Bossaert, J.; Bodelet, P.; Tomietto, T.

    1994-01-01

    To filter a signal delivered in an interlaced manner, it is foreseen to introduce in series one filter on half frame having a pass-band transfer function in the horizontal plane and a pass-high transfer function in the vertical plane. This filter carries out on the global image signal a general pass-band transfer function. All is managed so that the central frequency of this pass-band filter fits with an elaborate image resolution. By acting so the contours of structures can be enhanced. The method applies particularly to medical radiography. 3 refs., 5 figs

  12. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees

    Directory of Open Access Journals (Sweden)

    Paula Jimena Ramos Giraldo

    2017-04-01

    Full Text Available Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: (i Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and (ii Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  13. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees.

    Science.gov (United States)

    Giraldo, Paula Jimena Ramos; Aguirre, Álvaro Guerrero; Muñoz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio

    2017-04-06

    Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: ( i ) Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and ( ii ) Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  14. Subjective evaluation of the accuracy of video imaging prediction following orthognathic surgery in Chinese patients

    NARCIS (Netherlands)

    Chew, Ming Tak; Koh, Chay Hui; Sandham, John; Wong, Hwee Bee

    Purpose: The aims of this retrospective study were to assess the subjective accuracy of predictions generated by a computer imaging software in Chinese patients who had undergone orthognathic surgery and to determine the influence of initial dysgnathia and complexity of the surgical procedure on

  15. Correlated topographic and spectroscopic imaging by combined atomic force microscopy and optical microscopy

    International Nuclear Information System (INIS)

    Hu Dehong; Micic, Miodrag; Klymyshyn, Nicholas; Suh, Y.D.; Lu, H.P.

    2004-01-01

    Near-field scanning microscopy is a powerful approach to obtain topographic and spectroscopic characterization simultaneously for imaging biological and nanoscale systems. To achieve optical imaging at high spatial resolution beyond the diffraction limit, aperture-less metallic scanning tips have been utilized to enhance the laser illumination local electromagnetic field at the apex of the scanning tips. In this paper, we discuss and review our work on combined fluorescence imaging with AFM-metallic tip enhancement, finite element method simulation of the tip enhancement, and their applications on AFM-tip enhanced fluorescence lifetime imaging (AFM-FLIM) and correlated AFM and FLIM imaging of the living cells

  16. MR imaging of the hip in avascular necrosis: Radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Kang, H.S.; Lee, S.H.; Lee, Y.S.; Cho, Z.H.; Han, M.C.; Kim, C.W.

    1987-01-01

    MR imaging is the most sensitive modality for diagnosing avascular necrosis (AVN), but there is no established explanation for the change of signal intensity of the osteonecrotic segment. Ten surgically removed femoral heads with AVN underwent MR imaging at 2.0 T. A combination of high gradient strength (0.1 m T/cm) and small radio frequency coil (8 cm in diameter) was used to obtain images with effective thickness of 2.0 mm and pixel dimensions as small as 200 μm. MR images were correlated with high-resolution CT and histologic findings. This paper illustrates how MR images the histologic findings of AVN

  17. Meningioangiomatosis: MR imaging and pathological correlation in two cases

    International Nuclear Information System (INIS)

    Kim, W.-Y.; Kim, W.S.; Cheon, J.-E.; Yeon, K.M.; Kim, I.-O.

    2002-01-01

    Meningioangiomatosis is a rare, benign neoplastic disorder involving the cortex and leptomeninges. The pathological findings are characterised by proliferation of meningothelial cells and leptomeningeal vessels and calcifications within the mass. We experienced two cases of pathologically confirmed meningioangiomatosis, one as a solitary cortical mass with calcification and the other as a cortical lesion manifested as extensive intracranial haemorrhage. On MRI, the first case showed an isointense cortical mass in the left frontal lobe and homogeneous enhancement on the contrast-enhanced study. The second case showed a target-like lesion with a peripheral dark signal rim on T2-weighted images accompanied by extensive haemorrhage in the adjacent frontal lobe and lateral ventricles. (orig.)

  18. Diagnosing cysts with correlation coefficient images from 2-dimensional freehand elastography.

    Science.gov (United States)

    Booi, Rebecca C; Carson, Paul L; O'Donnell, Matthew; Richards, Michael S; Rubin, Jonathan M

    2007-09-01

    We compared the diagnostic potential of using correlation coefficient images versus elastograms from 2-dimensional (2D) freehand elastography to characterize breast cysts. In this preliminary study, which was approved by the Institutional Review Board and compliant with the Health Insurance Portability and Accountability Act, we imaged 4 consecutive human subjects (4 cysts, 1 biopsy-verified benign breast parenchyma) with freehand 2D elastography. Data were processed offline with conventional 2D phase-sensitive speckle-tracking algorithms. The correlation coefficient in the cyst and surrounding tissue was calculated, and appearances of the cysts in the correlation coefficient images and elastograms were compared. The correlation coefficient in the cysts was considerably lower (14%-37%) than in the surrounding tissue because of the lack of sufficient speckle in the cysts, as well as the prominence of random noise, reverberations, and clutter, which decorrelated quickly. Thus, the cysts were visible in all correlation coefficient images. In contrast, the elastograms associated with these cysts each had different elastographic patterns. The solid mass in this study did not have the same high decorrelation rate as the cysts, having a correlation coefficient only 2.1% lower than that of surrounding tissue. Correlation coefficient images may produce a more direct, reliable, and consistent method for characterizing cysts than elastograms.

  19. Using Image Gradients to Improve Robustness of Digital Image Correlation to Non-uniform Illumination: Effects of Weighting and Normalization Choices

    KAUST Repository

    Xu, Jiangping; Moussawi, Ali; Gras, Renaud; Lubineau, Gilles

    2015-01-01

    Changes in the light condition affect the solution of intensity-based digital image correlation algorithms. One natural way to decrease the influence of illumination is to consider the gradients of the image rather than the image itself when

  20. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    Science.gov (United States)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  1. Early detection of the incidence of malignancy in mammograms using digital image correlation

    International Nuclear Information System (INIS)

    Espitia, J.; Jacome, J.; Torres, C.

    2016-01-01

    The digital image correlation has proved an effective way for Pattern Recognition, this research to identify the using Findings digitally extracted from a mammographic image, which is the means used by more specialists to determine if a person is a candidate or not, a Suffer Breast Cancer. This shown that early detection of symptom logy 'carcinogenic' is the key . (Author)

  2. Innovative Solution to Video Enhancement

    Science.gov (United States)

    2001-01-01

    Through a licensing agreement, Intergraph Government Solutions adapted a technology originally developed at NASA's Marshall Space Flight Center for enhanced video imaging by developing its Video Analyst(TM) System. Marshall's scientists developed the Video Image Stabilization and Registration (VISAR) technology to help FBI agents analyze video footage of the deadly 1996 Olympic Summer Games bombing in Atlanta, Georgia. VISAR technology enhanced nighttime videotapes made with hand-held camcorders, revealing important details about the explosion. Intergraph's Video Analyst System is a simple, effective, and affordable tool for video enhancement and analysis. The benefits associated with the Video Analyst System include support of full-resolution digital video, frame-by-frame analysis, and the ability to store analog video in digital format. Up to 12 hours of digital video can be stored and maintained for reliable footage analysis. The system also includes state-of-the-art features such as stabilization, image enhancement, and convolution to help improve the visibility of subjects in the video without altering underlying footage. Adaptable to many uses, Intergraph#s Video Analyst System meets the stringent demands of the law enforcement industry in the areas of surveillance, crime scene footage, sting operations, and dash-mounted video cameras.

  3. The Maximum Cross-Correlation approach to detecting translational motions from sequential remote-sensing images

    Science.gov (United States)

    Gao, J.; Lythe, M. B.

    1996-06-01

    This paper presents the principle of the Maximum Cross-Correlation (MCC) approach in detecting translational motions within dynamic fields from time-sequential remotely sensed images. A C program implementing the approach is presented and illustrated in a flowchart. The program is tested with a pair of sea-surface temperature images derived from Advanced Very High Resolution Radiometer (AVHRR) images near East Cape, New Zealand. Results show that the mean currents in the region have been detected satisfactorily with the approach.

  4. Remote Sensing Image Fusion Based on the Combination Grey Absolute Correlation Degree and IHS Transform

    Directory of Open Access Journals (Sweden)

    Hui LIN

    2014-12-01

    Full Text Available An improved fusion algorithm for multi-source remote sensing images with high spatial resolution and multi-spectral capacity is proposed based on traditional IHS fusion and grey correlation analysis. Firstly, grey absolute correlation degree is used to discriminate non-edge pixels and edge pixels in high-spatial resolution images, by which the weight of intensity component is identified in order to combine it with high-spatial resolution image. Therefore, image fusion is achieved using IHS inverse transform. The proposed method is applied to ETM+ multi-spectral images and panchromatic image, and Quickbird’s multi-spectral images and panchromatic image respectively. The experiments prove that the fusion method proposed in the paper can efficiently preserve spectral information of the original multi-spectral images while enhancing spatial resolution greatly. By comparison and analysis, the proposed fusion algorithm is better than traditional IHS fusion and fusion method based on grey correlation analysis and IHS transform.

  5. Motor features in posterior cortical atrophy and their imaging correlates.

    Science.gov (United States)

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A standardized imaging protocol for the endoscopic prediction of dysplasia within sessile serrated polyps (with video).

    Science.gov (United States)

    Tate, David J; Jayanna, Mahesh; Awadie, Halim; Desomer, Lobke; Lee, Ralph; Heitman, Steven J; Sidhu, Mayenaaz; Goodrick, Kathleen; Burgess, Nicholas G; Mahajan, Hema; McLeod, Duncan; Bourke, Michael J

    2018-01-01

    Dysplasia within sessile serrated polyps (SSPs) is difficult to detect and may be mistaken for an adenoma, risking incomplete resection of the background serrated tissue, and is strongly implicated in interval cancer after colonoscopy. The use of endoscopic imaging to detect dysplasia within SSPs has not been systematically studied. Consecutively detected SSPs ≥8 mm in size were evaluated by using a standardized imaging protocol at a tertiary-care endoscopy center over 3 years. Lesions suspected as SSPs were analyzed with high-definition white light then narrow-band imaging. A demarcated area with a neoplastic pit pattern (Kudo type III/IV, NICE type II) was sought among the serrated tissue. If this was detected, the lesion was labeled dysplastic (sessile serrated polyp with dysplasia); if not, it was labeled non-dysplastic (sessile serrated polyp without dysplasia). Histopathology was reviewed by 2 blinded specialist GI pathologists. A total of 141 SSPs were assessed in 83 patients. Median lesion size was 15.0 mm (interquartile range 10-20), and 54.6% were in the right side of the colon. Endoscopic evidence of dysplasia was detected in 36 of 141 (25.5%) SSPs; of these, 5 of 36 (13.9%) lacked dysplasia at histopathology. Two of 105 (1.9%) endoscopically designated non-dysplastic SSPs had dysplasia at histopathology. Endoscopic imaging, therefore, had an accuracy of 95.0% (95% confidence interval [CI], 90.1%-97.6%) and a negative predictive value of 98.1% (95% CI, 92.6%-99.7%) for detection of dysplasia within SSPs. Dysplasia within SSPs can be detected accurately by using a simple, broadly applicable endoscopic imaging protocol that allows complete resection. Independent validation of this protocol and its dissemination to the wider endoscopic community may have a significant impact on rates of interval cancer. (Clinical trial registration number: NCT03100552.). Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All

  7. Displacement measurement with nanoscale resolution using a coded micro-mark and digital image correlation

    Science.gov (United States)

    Huang, Wei; Ma, Chengfu; Chen, Yuhang

    2014-12-01

    A method for simple and reliable displacement measurement with nanoscale resolution is proposed. The measurement is realized by combining a common optical microscopy imaging of a specially coded nonperiodic microstructure, namely two-dimensional zero-reference mark (2-D ZRM), and subsequent correlation analysis of the obtained image sequence. The autocorrelation peak contrast of the ZRM code is maximized with well-developed artificial intelligence algorithms, which enables robust and accurate displacement determination. To improve the resolution, subpixel image correlation analysis is employed. Finally, we experimentally demonstrate the quasi-static and dynamic displacement characterization ability of a micro 2-D ZRM.

  8. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  9. Preliminary study on the correlation between color measurement of dyed polyester and its image files

    Science.gov (United States)

    Park, Y. K.; Park, Y. C.

    2017-10-01

    As the internet becomes more popular, buyers send image files to manufacturers instead of sending swatches. However, this method may cause problems because different from the monitor between the buyer and the manufacturer, and also there is a problem depending on the light source. In order to overcome these problems, we investigated the relationship between color measurement values of dyed fabrics and RGB values of image files. The RGB values of image files tended to decrease with increasing dye concentration in all three colors. Correlation between RGB values and a*, b* values was observed at low concentration, but there was little correlation at high concentration. In the case of yellow color, there is no correlation between the L*a*b* values obtained from the dyed fabric and RGB values obtained from the image file.

  10. Time-Course Analysis of the Neuroanatomical Correlates of Sexual Arousal Evoked by Erotic Video Stimuli in Healthy Males

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, Thirunavukkarasu; Jeong, Gwang Woo; Kim, Tae Hoon; Kim, Gwang Won; Baek, Han Su; Kang, Heoung Keun [Chonnam National University Hospital, Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2010-06-15

    To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal.

  11. Time-course analysis of the neuroanatomical correlates of sexual arousal evoked by erotic video stimuli in healthy males.

    Science.gov (United States)

    Sundaram, Thirunavukkarasu; Jeong, Gwang-Woo; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun

    2010-01-01

    To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal.

  12. Time-Course Analysis of the Neuroanatomical Correlates of Sexual Arousal Evoked by Erotic Video Stimuli in Healthy Males

    International Nuclear Information System (INIS)

    Sundaram, Thirunavukkarasu; Jeong, Gwang Woo; Kim, Tae Hoon; Kim, Gwang Won; Baek, Han Su; Kang, Heoung Keun

    2010-01-01

    To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal

  13. Film grain noise modeling in advanced video coding

    Science.gov (United States)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  14. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates

    Directory of Open Access Journals (Sweden)

    Rex Eugene Jung

    2016-04-01

    Full Text Available Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization, but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ, an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMR. Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from .76 to .79, and two factors (Implementation and Learning were significantly related to measures of Creative Achievement (Scientifific - r = .26 and Writing - r = .31 respectively, suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe. The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus. We also identified compelling evidence suggesting imagination

  15. Multisensor fusion in gastroenterology domain through video and echo endoscopic image combination: a challenge

    Science.gov (United States)

    Debon, Renaud; Le Guillou, Clara; Cauvin, Jean-Michel; Solaiman, Basel; Roux, Christian

    2001-08-01

    Medical domain makes intensive use of information fusion. In particular, the gastro-enterology is a discipline where physicians have the choice between several imagery modalities that offer complementary advantages. Among all existing systems, videoendoscopy (based on a CCD sensor) and echoendoscopy (based on an ultrasound sensor) are the most efficient. The use of each system corresponds to a given step in the physician diagnostic elaboration. Nowadays, several works aim to achieve automatic interpretation of videoendoscopic sequences. These systems can quantify color and superficial textures of the digestive tube. Unfortunately the relief information, which is important for the diagnostic, is very difficult to retrieve. On the other hand, some studies have proved that 3D information can be easily quantified using echoendoscopy image sequences. That is why the idea to combine these information, acquired from two very different points of view, can be considered as a real challenge for the medical image fusion topic. In this paper, after a review of actual works concerning numerical exploitation of videoendoscopy and echoendoscopy, the following question will be discussed: how can the use of complementary aspects of the different systems ease the automatic exploitation of videoendoscopy ? In a second time, we will evaluate the feasibility of the achievement of a realistic 3D reconstruction based both on information given by echoendoscopy (relief) and videoendoscopy (texture). Enumeration of potential applications of such a fusion system will then follow. Further discussions and perspectives will conclude this first study.

  16. Correlative studies of structural and functional imaging in primary progressive aphasia.

    Science.gov (United States)

    Panegyres, P K; McCarthy, M; Campbell, A; Lenzo, N; Fallon, M; Thompson, J

    2008-01-01

    To compare and contrast structural and functional imaging in primary progressive aphasia (PPA). A cohort of 8 patients diagnosed with PPA presenting with nonfluency were prospectively evaluated. All patients had structural imaging in the form of MRI and in 1 patient CAT scanning on account of a cardiac pacemaker. All patients had single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. SPECT and PET imaging had 100% correlation. Anatomical imaging was abnormal in only 6 of the 8 patients. Wernicke's area showed greater peak Z score reduction and extent of area affected than Broca's area (McNemar paired test: P = .008 for Z score reduction; P = .0003 for extent). PET scanning revealed significant involvement of the anterior cingulum. Functional imaging in PPA: (a) identified more patients correctly than anatomic imaging highlighting the importance of SPECT and PET in the diagnosis; and (b) demonstrated the heterogeneous involvement of disordered linguistic networks in PPA suggesting its syndromic nature.

  17. Using image processing technology and mathematical algorithm in the automatic selection of vocal cord opening and closing images from the larynx endoscopy video.

    Science.gov (United States)

    Kuo, Chung-Feng Jeffrey; Chu, Yueng-Hsiang; Wang, Po-Chun; Lai, Chun-Yu; Chu, Wen-Lin; Leu, Yi-Shing; Wang, Hsing-Won

    2013-12-01

    The human larynx is an important organ for voice production and respiratory mechanisms. The vocal cord is approximated for voice production and open for breathing. The videolaryngoscope is widely used for vocal cord examination. At present, physicians usually diagnose vocal cord diseases by manually selecting the image of the vocal cord opening to the largest extent (abduction), thus maximally exposing the vocal cord lesion. On the other hand, the severity of diseases such as vocal palsy, atrophic vocal cord is largely dependent on the vocal cord closing to the smallest extent (adduction). Therefore, diseases can be assessed by the image of the vocal cord opening to the largest extent, and the seriousness of breathy voice is closely correlated to the gap between vocal cords when closing to the smallest extent. The aim of the study was to design an automatic vocal cord image selection system to improve the conventional selection process by physicians and enhance diagnosis efficiency. Also, due to the unwanted fuzzy images resulting from examination process caused by human factors as well as the non-vocal cord images, texture analysis is added in this study to measure image entropy to establish a screening and elimination system to effectively enhance the accuracy of selecting the image of the vocal cord closing to the smallest extent. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Dashboard Videos

    Science.gov (United States)

    Gleue, Alan D.; Depcik, Chris; Peltier, Ted

    2012-01-01

    Last school year, I had a web link emailed to me entitled "A Dashboard Physics Lesson." The link, created and posted by Dale Basier on his "Lab Out Loud" blog, illustrates video of a car's speedometer synchronized with video of the road. These two separate video streams are compiled into one video that students can watch and analyze. After seeing…

  19. A Public Database of Immersive VR Videos with Corresponding Ratings of Arousal, Valence, and Correlations between Head Movements and Self Report Measures

    Directory of Open Access Journals (Sweden)

    Benjamin J. Li

    2017-12-01

    Full Text Available Virtual reality (VR has been proposed as a methodological tool to study the basic science of psychology and other fields. One key advantage of VR is that sharing of virtual content can lead to more robust replication and representative sampling. A database of standardized content will help fulfill this vision. There are two objectives to this study. First, we seek to establish and allow public access to a database of immersive VR video clips that can act as a potential resource for studies on emotion induction using virtual reality. Second, given the large sample size of participants needed to get reliable valence and arousal ratings for our video, we were able to explore the possible links between the head movements of the observer and the emotions he or she feels while viewing immersive VR. To accomplish our goals, we sourced for and tested 73 immersive VR clips which participants rated on valence and arousal dimensions using self-assessment manikins. We also tracked participants' rotational head movements as they watched the clips, allowing us to correlate head movements and affect. Based on past research, we predicted relationships between the standard deviation of head yaw and valence and arousal ratings. Results showed that the stimuli varied reasonably well along the dimensions of valence and arousal, with a slight underrepresentation of clips that are of negative valence and highly arousing. The standard deviation of yaw positively correlated with valence, while a significant positive relationship was found between head pitch and arousal. The immersive VR clips tested are available online as supplemental material.

  20. Quantifying fish swimming behavior in response to acute exposure of aqueous copper using computer assisted video and digital image analysis

    Science.gov (United States)

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.

  1. Chondroid lipoma: correlation of imaging findings and histopathology of an unusual benign lesion

    International Nuclear Information System (INIS)

    Green, R.A.R.; Cannon, S.R.; Flanagan, A.M.

    2004-01-01

    The imaging findings of soft tissue tumours are often non-specific and generally require biopsy to differentiate between benign and malignant lesions. The finding of curvilinear, annular or amorphous mineralisation in an enlarging mass has sinister connotations. In this case report, we present the imaging findings with histological correlation of a chondroid lipoma, an unusual benign soft tissue tumour, which presented with radiographic evidence of calcification, an imaging finding not previously described. We also describe the ultrasound appearance and certain MR imaging appearances that have not been previously attributed to this tumour in the few reported cases. (orig.)

  2. A New Learning Control System for Basketball Free Throws Based on Real Time Video Image Processing and Biofeedback

    Directory of Open Access Journals (Sweden)

    R. Sarang

    2018-02-01

    Full Text Available Shooting free throws plays an important role in basketball. The major problem in performing a correct free throw seems to be inappropriate training. Training is performed offline and it is often not that persistent. The aim of this paper is to consciously modify and control the free throw using biofeedback. Elbow and shoulder dynamics are calculated by an image processing technique equipped with a video image acquisition system. The proposed setup in this paper, named learning control system, is able to quantify and provide feedback of the above parameters in real time as audio signals. Therefore, it yielded to performing a correct learning and conscious control of shooting. Experimental results showed improvements in the free throw shooting style including shot pocket and locked position. The mean values of elbow and shoulder angles were controlled approximately on 89o and 26o, for shot pocket and also these angles were tuned approximately on 180o and 47o respectively for the locked position (closed to the desired pattern of the free throw based on valid FIBA references. Not only the mean values enhanced but also the standard deviations of these angles decreased meaningfully, which shows shooting style convergence and uniformity. Also, in training conditions, the average percentage of making successful free throws increased from about 64% to even 87% after using this setup and in competition conditions the average percentage of successful free throws enhanced about 20%, although using the learning control system may not be the only reason for these outcomes. The proposed system is easy to use, inexpensive, portable and real time applicable.

  3. Estimation of breathing rate in thermal imaging videos: a pilot study on healthy human subjects.

    Science.gov (United States)

    Barbosa Pereira, Carina; Yu, Xinchi; Czaplik, Michael; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen

    2017-12-01

    Diverse studies have demonstrated the importance of monitoring breathing rate (BR). Commonly, changes in BR are one of the earliest and major markers of serious complications/illness. However, it is frequently neglected due to limitations of clinically established measurement techniques, which require attachment of sensors. The employment of adhesive pads or thoracic belts in preterm infants as well as in traumatized or burned patients is an additional paramount issue. The present paper proposes a new robust approach, based on data fusion, to remotely monitor BR using infrared thermography (IRT). The algorithm considers not only temperature modulation around mouth and nostrils but also the movements of both shoulders. The data of these four sensors/regions of interest need to be further fused to reach improved accuracy. To investigate the performance of our approach, two different experiments (phase A: normal breathing, phase B: simulation of breathing disorders) on twelve healthy volunteers were performed. Thoracic effort (piezoplethysmography) was simultaneously acquired to validate our results. Excellent agreements between BR estimated with IRT and gold standard were achieved. While in phase A a mean correlation of 0.98 and a root-mean-square error (RMSE) of 0.28 bpm was reached, in phase B the mean correlation and the RMSE hovered around 0.95 and 3.45 bpm, respectively. The higher RMSE in phase B results predominantly from delays between IRT and gold standard in BR transitions: eupnea/apnea, apnea/tachypnea etc. Moreover, this study also demonstrates the capability of IRT to capture varied breathing disorders, and consecutively, to assess respiratory function. In summary, IRT might be a promising monitoring alternative to the conventional contact-based techniques regarding its performance and remarkable capabilities.

  4. Automated in-core image generation from video to aid visual inspection of nuclear power plant cores

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul, E-mail: paul.murray@strath.ac.uk [Department of Electronic and Electrical Engineering, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD (United Kingdom); West, Graeme; Marshall, Stephen; McArthur, Stephen [Dept. Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW (United Kingdom)

    2016-04-15

    Highlights: • A method is presented which improves visual inspection of reactor cores. • Significant time savings are made to activities on the critical outage path. • New information is extracted from existing data sources without additional overhead. • Examples from industrial case studies across the UK fleet of AGR stations. - Abstract: Inspection and monitoring of key components of nuclear power plant reactors is an essential activity for understanding the current health of the power plant and ensuring that they continue to remain safe to operate. As the power plants age, and the components degrade from their initial start-of-life conditions, the requirement for more and more detailed inspection and monitoring information increases. Deployment of new monitoring and inspection equipment on existing operational plant is complex and expensive, as the effect of introducing new sensing and imaging equipment to the existing operational functions needs to be fully understood. Where existing sources of data can be leveraged, the need for new equipment development and installation can be offset by the development of advanced data processing techniques. This paper introduces a novel technique for creating full 360° panoramic images of the inside surface of fuel channels from in-core inspection footage. Through the development of this technique, a number of technical challenges associated with the constraints of using existing equipment have been addressed. These include: the inability to calibrate the camera specifically for image stitching; dealing with additional data not relevant to the panorama construction; dealing with noisy images; and generalising the approach to work with two different capture devices deployed at seven different Advanced Gas Cooled Reactor nuclear power plants. The resulting data processing system is currently under formal assessment with a view to replacing the existing manual assembly of in-core defect montages. Deployment of the

  5. Video microblogging

    DEFF Research Database (Denmark)

    Bornoe, Nis; Barkhuus, Louise

    2010-01-01

    Microblogging is a recently popular phenomenon and with the increasing trend for video cameras to be built into mobile phones, a new type of microblogging has entered the arena of electronic communication: video microblogging. In this study we examine video microblogging, which is the broadcasting...... of short videos. A series of semi-structured interviews offers an understanding of why and how video microblogging is used and what the users post and broadcast....

  6. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging.

    Science.gov (United States)

    Okamoto, Yoshikazu; Okamoto, Toru; Yuka, Kujiraoka; Hirano, Yuji; Isobe, Tomonori; Minami, Manabu

    2012-12-01

    The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  7. Intrasubject correlation between static scan and distribution volume images for [11C]flumazenil PET

    International Nuclear Information System (INIS)

    Mishina, Masahiro; Senda, Michio; Kimura, Yuichi

    2000-01-01

    Accumulation of [ 11 C]flumazenil (FMZ) reflects central nervous system benzodiazepine receptor (BZR). We searched for the optimal time for a static PET scan with FMZ as semi-quantitative imaging of BZR distribution. In 10 normal subjects, a dynamic series of decay-corrected PET scans was performed for 60 minutes, and the arterial blood was sampled during the scan to measure radioactivity and labeled metabolites. We generated 13 kinds of ''static scan'' images from the dynamic scan in each subject, and analyzed the pixel correlation for these images versus distribution volume (DV) images. We also analyzed the time for the [ 11 C]FMZ in plasma and tissue to reach the equilibrium. The intra-subject pixel correlation demonstrated that the static scan'' images for the period centering around 30 minutes post-injection had the strongest linear correlation with the DV image. The ratio of radioactivity in the cortex to that in the plasma reached a peak at 40 minutes after injection. Considering the physical decay and patient burden, we conclude that the decay corrected static scan for [ 11 C]FMZ PET as semi-quantitative imaging of BZR distribution is to be optimally acquired from 20 to 40 minutes after injection. (author)

  8. Correlation of sequential MR imaging of the injured spinal cord with prognosis

    International Nuclear Information System (INIS)

    Takahashi, Mutsumasa; Izunaga, Hiroshi; Sato, Ryuichiro; Shinzato, Jintetsu; Korogi, Yukunori; Yamashita, Yasuyuki; Sakae, Terumi

    1993-01-01

    Forty-nine patients with acute spinal cord injuries were studied sequentially with MR imaging by using 0.5 Tesla superconductive units, and sequential MR changes were correlated with the prognosis of the patients. MR images were obtained within one week of the injury and then every two to six months when possible. The Frankel classification of neurologic function was correlated with MR findings. The most frequently observed types of signal intensity patterns on MR imaging were type 0 (isointensity on both T 1 - and T 2 -weighted images) and type I (isointensity on T 1 - and hyperintensity on T 2 -weighted images). In subsequent subacute and chronic stages, type II (hypointensity on T 1 and hyperintensity on T 2 ) was most frequently observed. The evolution of type 0 was to types I and II, whereas type I usually turned into type II or remained as type I. Type III (hyperintensity on T 1 and hyper-, iso- or hypointensity on T 2 images) patients were few in number. There was a good correlation between MR imaging patterns and neurologic recovery for initial and subsequent MR patterns, in that type 0 showed good recovery, whereas types I and II revealed good improvement or no recovery. In addition, the extent of the high signal intensity area on initial as well as on subsequent T 2 -weighted images was proportionally correlated to neurologic recovery. The degree of cord compression was also important for predicting recovery of neurologic function. Findings of MR imaging of acutely injured spinal cord suggested the prognosis of spinal cord injury, especially when sequential studies were obtained. (author)

  9. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  10. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes; Reed, Umbertina Conti; Rosemberg, Sergio

    2008-01-01

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  11. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  12. Gastrointestinal stromal tumours: Correlation of modified NIH risk stratification with diffusion-weighted MR imaging as an imaging biomarker

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Kim, Seong Hyun; Jang, Kyung Mi; Choi, Dongil; Ha, Sang Yun; Kim, Kyoung-Mee; Kang, Won Ki; Kim, Min Ji

    2015-01-01

    Highlights: • Except size and necrosis, conventional MR findings of GISTs were not significantly different according to the modified NIH criteria. • The ADC values of GISTs were negatively correlated with the modified NIH criteria. • The ADC value can be helpful for the determination of intermediate or high-risk GISTs. - Abstract: Purpose: To evaluate the correlation of risk grade of gastrointestinal stromal tumours (GISTs) based on modified National Institutes of Health (NIH) criteria with conventional magnetic resonance (MR) imaging and diffusion-weighted (DW) imaging. Methods: We included 22 patients with histopathologically proven GISTs in the stomach or small bowel who underwent pre-operative gadoxetic acid-enhanced MR imaging and DW imaging. We retrospectively assessed correlations between morphologic findings, qualitative (signal intensity, consensus from two observers) and quantitative (degree of dynamic enhancement using signal intensity of tumour/muscle ratio and apparent diffusion coefficient [ADC]) values, and the modified NIH criteria for risk stratification. Spearman partial correlation analysis was used to control for tumour size as a confounding factor. The optimal cut-off level of ADC values for intermediate or high risk GISTs was analyzed using a receiver operating characteristic analysis. Results: Except tumour size and necrosis, conventional MR imaging findings, including the degree of dynamic enhancement, were not significantly different according to the modified NIH criteria (p > 0.05). Tumour ADC values were negatively correlated with the modified NIH criteria, before and after adjustment of tumour size (ρ = −0.754; p < 0.001 and ρ = −0.513; p = 0.017, respectively). The optimal cut-off value for the determination of intermediate or high-risk GISTs was 1.279 × 10 −3 mm 2 /s (100% sensitivity, 69.2% specificity, 81.8% accuracy). Conclusion: Except tumour size and necrosis, conventional MR imaging findings did not correlate with

  13. Gastrointestinal stromal tumours: Correlation of modified NIH risk stratification with diffusion-weighted MR imaging as an imaging biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Seong Hyun, E-mail: kshyun@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Jang, Kyung Mi; Choi, Dongil [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Ha, Sang Yun; Kim, Kyoung-Mee [Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kang, Won Ki [Division of Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Min Ji [Biostatics Unit, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2015-01-15

    Highlights: • Except size and necrosis, conventional MR findings of GISTs were not significantly different according to the modified NIH criteria. • The ADC values of GISTs were negatively correlated with the modified NIH criteria. • The ADC value can be helpful for the determination of intermediate or high-risk GISTs. - Abstract: Purpose: To evaluate the correlation of risk grade of gastrointestinal stromal tumours (GISTs) based on modified National Institutes of Health (NIH) criteria with conventional magnetic resonance (MR) imaging and diffusion-weighted (DW) imaging. Methods: We included 22 patients with histopathologically proven GISTs in the stomach or small bowel who underwent pre-operative gadoxetic acid-enhanced MR imaging and DW imaging. We retrospectively assessed correlations between morphologic findings, qualitative (signal intensity, consensus from two observers) and quantitative (degree of dynamic enhancement using signal intensity of tumour/muscle ratio and apparent diffusion coefficient [ADC]) values, and the modified NIH criteria for risk stratification. Spearman partial correlation analysis was used to control for tumour size as a confounding factor. The optimal cut-off level of ADC values for intermediate or high risk GISTs was analyzed using a receiver operating characteristic analysis. Results: Except tumour size and necrosis, conventional MR imaging findings, including the degree of dynamic enhancement, were not significantly different according to the modified NIH criteria (p > 0.05). Tumour ADC values were negatively correlated with the modified NIH criteria, before and after adjustment of tumour size (ρ = −0.754; p < 0.001 and ρ = −0.513; p = 0.017, respectively). The optimal cut-off value for the determination of intermediate or high-risk GISTs was 1.279 × 10{sup −3} mm{sup 2}/s (100% sensitivity, 69.2% specificity, 81.8% accuracy). Conclusion: Except tumour size and necrosis, conventional MR imaging findings did not

  14. Video demystified

    CERN Document Server

    Jack, Keith

    2004-01-01

    This international bestseller and essential reference is the "bible" for digital video engineers and programmers worldwide. This is by far the most informative analog and digital video reference available, includes the hottest new trends and cutting-edge developments in the field. Video Demystified, Fourth Edition is a "one stop" reference guide for the various digital video technologies. The fourth edition is completely updated with all new chapters on MPEG-4, H.264, SDTV/HDTV, ATSC/DVB, and Streaming Video (Video over DSL, Ethernet, etc.), as well as discussions of the latest standards throughout. The accompanying CD-ROM is updated to include a unique set of video test files in the newest formats. *This essential reference is the "bible" for digital video engineers and programmers worldwide *Contains all new chapters on MPEG-4, H.264, SDTV/HDTV, ATSC/DVB, and Streaming Video *Completely revised with all the latest and most up-to-date industry standards.

  15. MR imaging and histopathologic correlations of thermal injuries induced by interstitial laser applications

    International Nuclear Information System (INIS)

    Anzai, Y.; Lufkin, R.B.; Castro, D.J.; Farahani, K.; Chen, H.W.; Hirchowiz, S.

    1991-01-01

    Interstitial laser phototherapy for deep-seated tumors may become an attractive therapeutic modality when a noninvasive, accurate monitoring system is developed. In this paper, to devaluate the ability of MR imaging to differentiate reversible and irreversible thermal injuries induced by laser therapy, the precise correlation of MR and histopathologic findings are investigated in the in vivo model. Nd:YAG lasers were applied to normal musculature of rabbits, and MR examinations were performed immediately after laser exposure and followed up for up to 10 weeks. The sequential MR images were correlated with histopathologic findings. T2-weighted MR imaging clearly showed laser-induced thermal injuries on any postoperative day. MR imaging of acute thermal injuries showed a central cavity, low-signal zone of coagulative necrosis and a peripheral high-signal layer of interstitial edema. The infiltration of neutrophils followed by fibrovascular response was identified on the marginal edema layer after 6 postoperative days

  16. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  17. Time-of-flight camera via a single-pixel correlation image sensor

    Science.gov (United States)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  18. The correlation between lacunes and microbleeds on magnetic resonance imaging in consecutive 180 patients

    International Nuclear Information System (INIS)

    Tajitsu, Kenichiro; Yokoyama, Shunichi; Taguci, Yuichiro; Kusumoto, Kazuhiro

    2006-01-01

    Microbleeds on T2 * -weighted magnetic resonance imaging (MRI) represent a hemorrhagic type of small vessel disease. Small vessel disease causes both intracerebral hemorrhages and lacunar infarctions. We studied clinical background and MRI findings of the patients to clarify the correlation between microbleeds and lacunes. This study consisted of 180 consecutive patients who underwent brain MRI using 1.5T system in our hospital for a year. We obtained T2 * -weighted gradient-echo imaging as well as T1 and T2-weighted images. We statistically identified the factors related to the presence of microbleeds in all patients. The distribution of lacunes and microbleeds on MRI was compared to clarify the correlation of the lesions in the patients who had both lesions. The overall prevalence of microbleeds was 41.1% (74 of 180 patients). Logistic regression analysis indicated that previous stroke, leukoaraiosis and lacunes were significantly correlated with microbleeds. In the patients who have both microbleeds and lacunes, lesions are tended to locate in thalamus and basal ganglia, especially incidence of lacunes are significantly greater compared with other regions. Thirty-six of 398 lesions (9.05%) diagnosed as lacunes with T1- and T2-weighted imaging were demonstrated as microbleeds with T2 * -weighted gradient-echo imaging. Lacunes, leukoaraiosis as a hypertensive change on MRI had statistically significant correlation with the presence of microbleeds. T2 * -weighted gradient-echo imaging should be included in the imaging protocol for cerebrovascular disease, because T1- and T2-weighted imaging recognizing some of the microbleeds as lacunar infarction. (author)

  19. Fast method of constructing image correlations to build a free network based on image multivocabulary trees

    Science.gov (United States)

    Zhan, Zongqian; Wang, Xin; Wei, Minglu

    2015-05-01

    In image-based three-dimensional (3-D) reconstruction, one topic of growing importance is how to quickly obtain a 3-D model from a large number of images. The retrieval of the correct and relevant images for the model poses a considerable technological challenge. The "image vocabulary tree" has been proposed as a method to search for similar images. However, a significant drawback of this approach is identified in its low time efficiency and barely satisfactory classification result. The method proposed is inspired by, and improves upon, some recent methods. Specifically, vocabulary quality is considered and multivocabulary trees are designed to improve the classification result. A marked improvement was, indeed, observed in our evaluation of the proposed method. To improve time efficiency, graphics processing unit (GPU) computer unified device architecture parallel computation is applied in the multivocabulary trees. The results of the experiments showed that the GPU was three to four times more efficient than the enumeration matching and CPU methods when the number of images is large. This paper presents a reliable reference method for the rapid construction of a free network to be used for the computing of 3-D information.

  20. 1H MR spectroscopic imaging in patients with MRI-negative extratemporal epilepsy: correlation with ictal onset zone and histopathology

    International Nuclear Information System (INIS)

    Krsek, Pavel; Komarek, Vladimir; Hajek, Milan; Dezortova, Monika; Jiru, Filip; Skoch, Antonin; Marusic, Petr; Zamecnik, Josef; Kyncl, Martin; Tichy, Michal

    2007-01-01

    Proton magnetic resonance spectroscopy ( 1 H MRS) is beneficial in the lateralization of the epileptogenic zone in temporal lobe epilepsy; however, its role in extratemporal and, especially, MRI-negative epilepsy has not been established. This study seeks to verify how 1 H MRS could help in localizing the epileptogenic zone in patients with MRI-negative extratemporal epilepsy. Seven patients (8-23 years) with MRI-negative refractory focal epilepsy were studied using 1 H MRS on a 1.5T MR system. Chemical shift imaging sequence in the transversal plane was directed towards the suspected epileptogenic zone localized by seizure semiology, scalp video/EEG, ictal SPECT and 18 FDG-PET. Spectra were evaluated using the program CULICH, and the coefficient of asymmetry was used for quantitative lateralization. MRS detected lateralization in all patients and was able to localize pathology in five. The most frequent findings were decreased ratios of N-acetylaspartate to choline compounds characterized by increasing choline concentration. The localization of the 1 H MRS abnormality correlated well with ictal SPECT and subdural mapping. In all cases, histopathological analysis revealed MRI-undetected focal cortical dysplasias. 1 H MRS could be more sensitive for the detection of discrete malformations of cortical development than conventional MRI. It is valuable in the presurgical evaluation of patients without MRI-apparent lesions. (orig.)

  1. Video pedagogy

    OpenAIRE

    Länsitie, Janne; Stevenson, Blair; Männistö, Riku; Karjalainen, Tommi; Karjalainen, Asko

    2016-01-01

    The short film is an introduction to the concept of video pedagogy. The five categories of video pedagogy further elaborate how videos can be used as a part of instruction and learning process. Most pedagogical videos represent more than one category. A video itself doesn’t necessarily define the category – the ways in which the video is used as a part of pedagogical script are more defining factors. What five categories did you find? Did you agree with the categories, or are more...

  2. Correlation of bone quality in radiographic images with clinical bone quality classification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Woo; Huh, Kyung Hoe; Kim, Jeong Hwa; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [Seoul National University, Seoul (Korea, Republic of); Park, Kwan Soo [Inje University, Seoul (Korea, Republic of)

    2006-03-15

    To investigate the validity of digital image processing on panoramic radiographs in estimating bone quality before endosseous dental implant installation by correlating bone quality in radiographic images with clinical bone quality classification. An experienced surgeon assessed and classified bone quality for implant sites with tactile sensation at the time of implant placement. Including fractal dimension eighteen morphologic features of trabecular pattern were examined in each anatomical sites on panoramic radiographs. Finally bone quality of 67 implant sites were evaluated in 42 patients. Pearson correlation analysis showed that three morphologic parameters had weak linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.276, -0.280, and -0.289, respectively (p<0.05). And other three morphologic parameters had obvious linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.346, -0.488, and -0.343 respectively (p<0.05). Fractal dimension also had a linear correlating with clinical bone quality classification with correlation coefficients -0.506 significantly (P<0.05). This study suggests that fractal and morphometric analysis using digital panoramic radiographs can be used to evaluate bone quality for implant recipient sites.

  3. Hemorrhage in pituitary adenoma: correlation of MR imaging with operative findings

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, N.; Takahashi, S.; Higano, S.; Mugikura, S.; Singh, L.N.; Furuta, S.; Tamura, H.; Ishibashi, T.; Maruoka, S.; Yamada, S. [Department of Radiology, Tohoku University School of Medicine, Sendai (Japan); Ikeda, H. [Department of Neurosurgery, Tohoku University School of Medicine, Sendai (Japan)

    1998-07-01

    The aim of this study was to correlate MR imaging and operative findings of hemorrhage in pituitary macroadenomas. We retrospectively reviewed MR images of 113 surgically proven pituitary adenomas. All patients were examined on a 1.5-T MR system. The intensity of intratumoral cystic cavities was correlated with operative findings. In 15 patients with pituitary apoplexy, we determined relationship between interval of MR examination after apoplectic event and MR signal intensity. In 8 patients with repeated preoperative MR examination, we evaluated sequential changes of intratumoral hemorrhage. There were 54 cavities at surgery: 52 were hemorrhagic and 2 were nonhemorrhagic. Twenty-nine of 52 hemorrhagic cysts demonstrated high/low signal (H/L) fluid-fluid levels on T2-weighted image (T2WI). In 19 of them, two components could be separately seen at operation: the supernatant high-intensity area represented xanthochromic fluid, and the dependent low-intensity area represented liquefied hematoma. The H/L fluid-fluid level was observed predominantly in hematomas on MR images obtained after longer intervals. In patients with repeated MR examination, follow-up MR imaging revealed additional hemorrhage or new formation of fluid-fluid levels. It was surprising that 12 of 14 cysts preoperatively judged as nonhemorrhagic in fact contained hemorrhagic components. The preoperative MR images are well correlated to the operative findings in hemorrhagic pituitary macroadenomas. It proved that 52 of 54 cystic cavities had hemorrhagic component. (orig.) With 8 figs., 3 tabs., 17 refs.

  4. Hemorrhage in pituitary adenoma: correlation of MR imaging with operative findings

    International Nuclear Information System (INIS)

    Kurihara, N.; Takahashi, S.; Higano, S.; Mugikura, S.; Singh, L.N.; Furuta, S.; Tamura, H.; Ishibashi, T.; Maruoka, S.; Yamada, S.; Ikeda, H.

    1998-01-01

    The aim of this study was to correlate MR imaging and operative findings of hemorrhage in pituitary macroadenomas. We retrospectively reviewed MR images of 113 surgically proven pituitary adenomas. All patients were examined on a 1.5-T MR system. The intensity of intratumoral cystic cavities was correlated with operative findings. In 15 patients with pituitary apoplexy, we determined relationship between interval of MR examination after apoplectic event and MR signal intensity. In 8 patients with repeated preoperative MR examination, we evaluated sequential changes of intratumoral hemorrhage. There were 54 cavities at surgery: 52 were hemorrhagic and 2 were nonhemorrhagic. Twenty-nine of 52 hemorrhagic cysts demonstrated high/low signal (H/L) fluid-fluid levels on T2-weighted image (T2WI). In 19 of them, two components could be separately seen at operation: the supernatant high-intensity area represented xanthochromic fluid, and the dependent low-intensity area represented liquefied hematoma. The H/L fluid-fluid level was observed predominantly in hematomas on MR images obtained after longer intervals. In patients with repeated MR examination, follow-up MR imaging revealed additional hemorrhage or new formation of fluid-fluid levels. It was surprising that 12 of 14 cysts preoperatively judged as nonhemorrhagic in fact contained hemorrhagic components. The preoperative MR images are well correlated to the operative findings in hemorrhagic pituitary macroadenomas. It proved that 52 of 54 cystic cavities had hemorrhagic component. (orig.)

  5. Intramuscular vascular malformations of an extremity: findings on MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Kim, E.Y.; Ahn, J.M.; Yoon, H.K.; Do, Y.S.; Kim, S.H.; Choo, S.W.; Choo, I.W.; Suh, Y.L.; Kim, S.M.; Kang, H.S.

    1999-01-01

    Objective. To analyze the findings of intramuscular vascular malformations of an extremity on MR imaging and to correlate these findings with histopathologic examination.Design and patients. The findings on MR imaging and the medical records of 14 patients with an intramuscular vascular malformation of the extremity were retrospectively studied. All patients underwent surgical excision. Diagnoses were based on the results of pathologic examination. Findings on MR imaging were noted and correlated with the histopathologic findings.Results. Intramuscular vascular malformations of an extremity showed multi-septate, honeycomb, or mixed appearance on MR imaging. Multi-septate areas correlated with dilated and communicating vascular spaces with flattened endothelium. Honeycomb areas corresponded to vascular spaces with inconspicuous small lumina and thickened vascular walls. Areas of increased signal intensity on T2-weighted images were found in all intramuscular vascular malformations. Infiltrative margins were more commonly seen in intramuscular lymphaticovenous malformations. Adherence to neurovascular structures and orientation of the lesion along the long axis of the affected muscle were more commonly seen in intramuscular venous malformations.Conclusions. Intramuscular vascular malformations showed either a multi-septate, honeycomb, or mixed appearance, reflecting the size of the vascular spaces and the thickness of the smooth muscles of the vessel walls. Prediction of the subtype of an intramuscular vascular malformation of an extremity on MR imaging seems to be difficult, although there are associated findings that may be helpful in the differential diagnosis of each subtype. (orig.)

  6. Video clip transfer of radiological images using a mobile telephone in emergency neurosurgical consultations (3G Multi-Media Messaging Service).

    Science.gov (United States)

    Waran, Vicknes; Bahuri, Nor Faizal Ahmad; Narayanan, Vairavan; Ganesan, Dharmendra; Kadir, Khairul Azmi Abdul

    2012-04-01

    The purpose of this study was to validate and assess the accuracy and usefulness of sending short video clips in 3gp file format of an entire scan series of patients, using mobile telephones running on 3G-MMS technology, to enable consultation between junior doctors in a neurosurgical unit and the consultants on-call after office hours. A total of 56 consecutive patients with acute neurosurgical problems requiring urgent after-hours consultation during a 6-month period, prospectively had their images recorded and transmitted using the above method. The response to the diagnosis and the management plan by two neurosurgeons (who were not on site) based on the images viewed on a mobile telephone were reviewed by an independent observer and scored. In addition to this, a radiologist reviewed the original images directly on the hospital's Patients Archiving and Communication System (PACS) and this was compared with the neurosurgeons' response. Both neurosurgeons involved in this study were in complete agreement with their diagnosis. The radiologist disagreed with the diagnosis in only one patient, giving a kappa coefficient of 0.88, indicating an almost perfect agreement. The use of mobile telephones to transmit MPEG video clips of radiological images is very advantageous for carrying out emergency consultations in neurosurgery. The images accurately reflect the pathology in question, thereby reducing the incidence of medical errors from incorrect diagnosis, which otherwise may just depend on a verbal description.

  7. Correlation between image quality of CT scan and amount of intravenous contrast media

    International Nuclear Information System (INIS)

    Yoon, Dae Young; Choi, Dae Seob; Kim, Seung Hyup; Han, Joon Koo; Choi, Byung Ihn; Im, Jung Gi; Han, Moon Hee; Chang, Kee Hyun; Kim, Jong Hyo; Han, Man Chung

    1993-01-01

    A blind, comparative clinical study was performed prospectively to examine the correlation between image quality of CT scan in terms of contrast enhancement effect and amount of intravenous contrast media. A total of 357 patients were randomized into two groups. Ionic high-osmolality contrast media (68% meglumine ioglicate) was administered intravenously as 100 ml bolus in one group and as 50 ml bolus in the other group. Statistically significant differences of image quality were found in CT scans of the brain, head and neck, chest and abdomen (p 0.05). We suggest that amount of contrast media may be reduced in pelvis CT without significant degradation of image quality

  8. Image motion compensation by area correlation and centroid tracking of solar surface features

    International Nuclear Information System (INIS)

    Nein, M.E.; Mcintosh, W.R.; Cumings, N.P.

    1983-07-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz

  9. Image motion compensation by area correlation and centroid tracking of solar surface features

    Science.gov (United States)

    Nein, M. E.; Mcintosh, W. R.; Cumings, N. P.

    1983-01-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated; mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz.

  10. MR imaging of pregnancy luteoma: a case report and correlation with the clinical features

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Hung Wen; Wu, Ching Jiunn; Chung, Kuo Teng; Wang, Sheng Ru; Chen, Cheng Yu [Tri-Service General Hospital, National Defense Medical Center, Taipei (Taiwan)

    2005-03-15

    We report here on a 26-year-old pregnant female who developed hirsutism and virilization during her third trimester along with a significantly elevated serum testosterone level. Abdominal US and MR imaging studies were performed, and they showed unique imaging features that may suggest the diagnosis of pregnancy luteoma in the clinical context. After the delivery, the serum testosterone level continued to decrease, and it returned to normal three weeks postpartum. The follow-up imaging findings were closely correlated with the clinical presentation.

  11. Correlation between Health Perception, Body Image, and Eating Habits in High School Students

    Directory of Open Access Journals (Sweden)

    Abdullah Ichsan

    2016-06-01

    Full Text Available Background: Mental disorders, including eating disorders, mostly begin during youth. Moreover, negative body image is found to cause unhealthy eating habits in the context of several cross-cultural settings. This study aimed to examine the correlation between health perception and body image with eating habits among high school students. Methods: A structured, anonymous questionnaire was distributed to students of a private high school in Bandung, Indonesia in June-October 2014. The questionnaire included questions about health perception, body image, eating habits, body weight and height, and also other demographic parameters. The school was selected as the study object through purposive sampling, and 140 high school students (72 male and 68 female were ramdomly selected. Results: Male and female did not show considerable differences in health perceptions. Out of 13 statements, 12 statements of male respondents showed better body image than female. While in eating habits statements, female respondents seemed to maintain healthier eating habits than male respondents. No significant correlation was observed between body image and eating habits (r=-0.015, p=0.858. There was significant correlation between health perception and eating habits (r=0.374, p<0.001. Correlation between sex and eating habits was found (p=0.020, there was not significant relationship between eating habits and Body Mass Index (BMI (p=0.368. Conclusions: The negative relationship between body image and eating habits is not significant. However there was a significant positive relationship between health perception and eating habits. Furthermore, there was correlation between sex and eating habits, while the positive relationship between eating habits and BMI was still not found.

  12. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures

    Directory of Open Access Journals (Sweden)

    Rivka Colen

    2014-10-01

    Full Text Available The National Cancer Institute (NCI Cancer Imaging Program organized two related workshops on June 26–27, 2013, entitled “Correlating Imaging Phenotypes with Genomics Signatures Research” and “Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems.” The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.

  13. A three-dimensional correlation method for registration of medical images in radiology

    International Nuclear Information System (INIS)

    Georgiou, Michalakis; Sfakianakis, George N.; Nagel, Joachim H.

    1998-01-01

    The availability of methods to register multi-modality images in order to 'fuse' them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as p olar Shells . The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors)

  14. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal operator.

    Science.gov (United States)

    Rui, Wei; Tao, Chao; Liu, Xiaojun

    2017-09-18

    Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.

  15. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    Science.gov (United States)

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized.

  16. Staff acceptance of video monitoring for coordination: a video system to support perioperative situation awareness.

    Science.gov (United States)

    Kim, Young Ju; Xiao, Yan; Hu, Peter; Dutton, Richard

    2009-08-01

    To understand staff acceptance of a remote video monitoring system for operating room (OR) coordination. Improved real-time remote visual access to OR may enhance situational awareness but also raises privacy concerns for patients and staff. Survey. A system was implemented in a six-room surgical suite to display OR monitoring video at an access restricted control desk area. Image quality was manipulated to improve staff acceptance. Two months after installation, interviews and a survey were conducted on staff acceptance of video monitoring. About half of all OR personnel responded (n = 63). Overall levels of concerns were low, with 53% rated no concerns and 42% little concern. Top two reported uses of the video were to see if cases are finished and to see if a room is ready. Viewing the video monitoring system as useful did not reduce levels of concern. Staff in supervisory positions perceived less concern about the system's impact on privacy than did those supervised (p < 0.03). Concerns for patient privacy correlated with concerns for staff privacy and performance monitoring. Technical means such as manipulating image quality helped staff acceptance. Manipulation of image quality resulted overall acceptance of monitoring video, with residual levels of concerns. OR nurses may express staff privacy concern in the form of concerns over patient privacy. This study provided suggestions for technological and implementation strategies of video monitoring for coordination use in OR. Deployment of communication technology and integration of clinical information will likely raise concerns over staff privacy and performance monitoring. The potential gain of increased information access may be offset by negative impact of a sense of loss of autonomy.

  17. Adaptive Microwave Staring Correlated Imaging for Targets Appearing in Discrete Clusters.

    Science.gov (United States)

    Tian, Chao; Jiang, Zheng; Chen, Weidong; Wang, Dongjin

    2017-10-21

    Microwave staring correlated imaging (MSCI) can achieve ultra-high resolution in real aperture staring radar imaging using the correlated imaging process (CIP) under all-weather and all-day circumstances. The CIP must combine the received echo signal with the temporal-spatial stochastic radiation field. However, a precondition of the CIP is that the continuous imaging region must be discretized to a fine grid, and the measurement matrix should be accurately computed, which makes the imaging process highly complex when the MSCI system observes a wide area. This paper proposes an adaptive imaging approach for the targets in discrete clusters to reduce the complexity of the CIP. The approach is divided into two main stages. First, as discrete clustered targets are distributed in different range strips in the imaging region, the transmitters of the MSCI emit narrow-pulse waveforms to separate the echoes of the targets in different strips in the time domain; using spectral entropy, a modified method robust against noise is put forward to detect the echoes of the discrete clustered targets, based on which the strips with targets can be adaptively located. Second, in a strip with targets, the matched filter reconstruction algorithm is used to locate the regions with targets, and only the regions of interest are discretized to a fine grid; sparse recovery is used, and the band exclusion is used to maintain the non-correlation of the dictionary. Simulation results are presented to demonstrate that the proposed approach can accurately and adaptively locate the regions with targets and obtain high-quality reconstructed images.

  18. Early evaluation of irradiated parotid glands with intravoxel incoherent motion MR imaging: correlation with dynamic contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Zhou, Nan; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Guo, Tingting; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng; Liu, Tian

    2016-01-01

    Radiation-induced parotid damage is one of the most common complications in patients with nasopharyngeal carcinoma (NPC) undergoing radiotherapy (RT). Intravoxel incoherent motion (IVIM) magnetic resonance (MR) imaging has been reported for evaluating irradiated parotid damage. However, the changes of IVIM perfusion-related parameters in irradiated parotid glands have not been confirmed by conventional perfusion measurements obtained from dynamic contrast-enhanced (DCE) MR imaging. The purposes of this study were to monitor radiation-induced parotid damage using IVIM and DCE MR imaging and to investigate the correlations between changes of these MR parameters. Eighteen NPC patients underwent bilateral parotid T1-weighted, IVIM and DCE MR imaging pre-RT (2 weeks before RT) and post-RT (4 weeks after RT). Parotid volume; IVIM MR parameters, including apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f); and DCE MR parameters, including maximum relative enhancement (MRE), time to peak (TTP), Wash in Rate, and the degree of xerostomia were recorded. Correlations of parotid MR parameters with mean radiation dose, atrophy rate and xerostomia degree, as well as the relationships between IVIM and DCE MR parameters, were investigated. From pre-RT to post-RT, all of the IVIM and DCE MR parameters increased significantly (p < 0.001 for ADC, D, f, MRE, Wash in Rate; p = 0.024 for D*; p = 0.037 for TTP). Change rates of ADC, f and MRE were negatively correlated with atrophy rate significantly (all p < 0.05). Significant correlations were observed between the change rates of D* and MRE (r = 0.371, p = 0.026) and between the change rates of D* and TTP (r = 0.396, p = 0.017). The intra- and interobserver reproducibility of IVIM and DCE MR parameters was good to excellent (intraclass correlation coefficient, 0.633–0.983). Early radiation-induced changes of parotid glands could be evaluated by IVIM and

  19. Histologic correlation of in vivo optical coherence tomography images of the human retina

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Miller, J.S.; Rubin, P. A. D.; Deschler, D. G.; Gragoudas, E. S.; de Boer, J.F.

    2006-01-01

    Purpose: To correlate in vivo human retina optical coherence tomography (OCT)3 images with histology. Design: Case series. Methods: Linear OCT3 scans through the macula and optic nerve were obtained in three eyes of three patients who then underwent exenteration surgery for orbital cancers. OCT3

  20. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    Science.gov (United States)

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.