WorldWideScience

Sample records for video enhanced fluorescence

  1. Innovative Solution to Video Enhancement

    Science.gov (United States)

    2001-01-01

    Through a licensing agreement, Intergraph Government Solutions adapted a technology originally developed at NASA's Marshall Space Flight Center for enhanced video imaging by developing its Video Analyst(TM) System. Marshall's scientists developed the Video Image Stabilization and Registration (VISAR) technology to help FBI agents analyze video footage of the deadly 1996 Olympic Summer Games bombing in Atlanta, Georgia. VISAR technology enhanced nighttime videotapes made with hand-held camcorders, revealing important details about the explosion. Intergraph's Video Analyst System is a simple, effective, and affordable tool for video enhancement and analysis. The benefits associated with the Video Analyst System include support of full-resolution digital video, frame-by-frame analysis, and the ability to store analog video in digital format. Up to 12 hours of digital video can be stored and maintained for reliable footage analysis. The system also includes state-of-the-art features such as stabilization, image enhancement, and convolution to help improve the visibility of subjects in the video without altering underlying footage. Adaptable to many uses, Intergraph#s Video Analyst System meets the stringent demands of the law enforcement industry in the areas of surveillance, crime scene footage, sting operations, and dash-mounted video cameras.

  2. Color image and video enhancement

    CERN Document Server

    Lecca, Michela; Smolka, Bogdan

    2015-01-01

    This text covers state-of-the-art color image and video enhancement techniques. The book examines the multivariate nature of color image/video data as it pertains to contrast enhancement, color correction (equalization, harmonization, normalization, balancing, constancy, etc.), noise removal and smoothing. This book also discusses color and contrast enhancement in vision sensors and applications of image and video enhancement.   ·         Focuses on enhancement of color images/video ·         Addresses algorithms for enhancing color images and video ·         Presents coverage on super resolution, restoration, in painting, and colorization.

  3. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  4. Plasmonics Enhanced Smartphone Fluorescence Microscopy.

    Science.gov (United States)

    Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan

    2017-05-18

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  5. Enhanced video display and navigation for networked streaming video and networked video playlists

    Science.gov (United States)

    Deshpande, Sachin

    2006-01-01

    In this paper we present an automatic enhanced video display and navigation capability for networked streaming video and networked video playlists. Our proposed method uses Synchronized Multimedia Integration Language (SMIL) as presentation language and Real Time Streaming Protocol (RTSP) as network remote control protocol to automatically generate a "enhanced video strip" display for easy navigation. We propose and describe two approaches - a smart client approach and a smart server approach. We also describe a prototype system implementation of our proposed approach.

  6. Video enhancement effectiveness for target detection

    Science.gov (United States)

    Simon, Michael; Fischer, Amber; Petrov, Plamen

    2011-05-01

    Unmanned aerial vehicles (UAVs) capture real-time video data of military targets while keeping the warfighter at a safe distance. This keeps soldiers out of harm's way while they perform intelligence, surveillance and reconnaissance (ISR) and close-air support troops in contact (CAS-TIC) situations. The military also wants to use UAV video to achieve force multiplication. One method of achieving effective force multiplication involves fielding numerous UAVs with cameras and having multiple videos processed simultaneously by a single operator. However, monitoring multiple video streams is difficult for operators when the videos are of low quality. To address this challenge, we researched several promising video enhancement algorithms that focus on improving video quality. In this paper, we discuss our video enhancement suite and provide examples of video enhancement capabilities, focusing on stabilization, dehazing, and denoising. We provide results that show the effects of our enhancement algorithms on target detection and tracking algorithms. These results indicate that there is potential to assist the operator in identifying and tracking relevant targets with aided target recognition even on difficult video, increasing the force multiplier effect of UAVs. This work also forms the basis for human factors research into the effects of enhancement algorithms on ISR missions.

  7. Enhancing learners’ visual search in video cases

    NARCIS (Netherlands)

    Balslev, Thomas; Jarodzka, Halszka; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2012-01-01

    Balslev, T., Jarodzka, H., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2012, May). Enhancing learners’ visual search in video cases. Poster presented at the International Child Neurology Association (ICNA) congress, Brisbane, Australia.

  8. Enhanced Video Surveillance (EVS) with speckle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Carrano, C J

    2004-01-13

    Enhanced Video Surveillance (EVS) with Speckle Imaging is a high-resolution imaging system that substantially improves resolution and contrast in images acquired over long distances. This technology will increase image resolution up to an order of magnitude or greater for video surveillance systems. The system's hardware components are all commercially available and consist of a telescope or large-aperture lens assembly, a high-performance digital camera, and a personal computer. The system's software, developed at LLNL, extends standard speckle-image-processing methods (used in the astronomical community) to solve the atmospheric blurring problem associated with imaging over medium to long distances (hundreds of meters to tens of kilometers) through horizontal or slant-path turbulence. This novel imaging technology will not only enhance national security but also will benefit law enforcement, security contractors, and any private or public entity that uses video surveillance to protect their assets.

  9. Fluorescent Penetration Enhancers for Transdermal Applications

    Science.gov (United States)

    Seto, Jennifer E.; Polat, Baris E.; VanVeller, Brett; Lopez, Renata F.V.; Langer, Robert; Blankschtein, Daniel

    2011-01-01

    Chemical penetration enhancers are often used to enhance transdermal drug delivery. However, the fundamental mechanisms that govern the interactions between penetration enhancers and skin are not fully understood. Therefore, the goal of this work was to identify naturally fluorescent penetration enhancers (FPEs) in order to utilize well-established fluorescence techniques to directly study the behavior of FPEs within skin. In this study, 12 fluorescent molecules with amphiphilic characteristics were evaluated as skin penetration enhancers. Eight of the molecules exhibited significant activity as skin penetration enhancers, determined using skin current enhancement ratios. In addition, to illustrate the novel, direct, and non-invasive visualization of the behavior of FPEs within skin, three case studies involving the use of two-photon fluorescence microscopy (TPM) are presented, including visualizing glycerol-mitigated and ultrasound-enhanced FPE skin penetration. Previous TPM studies have indirectly visualized the effect of penetration enhancers on skin by using a fluorescent dye to probe the transdermal pathways of the enhancer. These effects can now be directly visualized and investigated using FPEs. Finally, future studies are proposed for generating FPE design principles. The combination of FPEs with fluorescence techniques represents a useful novel approach for obtaining physical insights on the behavior of penetration enhancers within skin. PMID:22062691

  10. Local adaptive tone mapping for video enhancement

    Science.gov (United States)

    Lachine, Vladimir; Dai, Min (.

    2015-03-01

    As new technologies like High Dynamic Range cameras, AMOLED and high resolution displays emerge on consumer electronics market, it becomes very important to deliver the best picture quality for mobile devices. Tone Mapping (TM) is a popular technique to enhance visual quality. However, the traditional implementation of Tone Mapping procedure is limited by pixel's value to value mapping, and the performance is restricted in terms of local sharpness and colorfulness. To overcome the drawbacks of traditional TM, we propose a spatial-frequency based framework in this paper. In the proposed solution, intensity component of an input video/image signal is split on low pass filtered (LPF) and high pass filtered (HPF) bands. Tone Mapping (TM) function is applied to LPF band to improve the global contrast/brightness, and HPF band is added back afterwards to keep the local contrast. The HPF band may be adjusted by a coring function to avoid noise boosting and signal overshooting. Colorfulness of an original image may be preserved or enhanced by chroma components correction by means of saturation function. Localized content adaptation is further improved by dividing an image to a set of non-overlapped regions and modifying each region individually. The suggested framework allows users to implement a wide range of tone mapping applications with perceptional local sharpness and colorfulness preserved or enhanced. Corresponding hardware circuit may be integrated in camera, video or display pipeline with minimal hardware budget

  11. Enhanced ALA-induced fluorescence in hyperparathyroidism.

    Science.gov (United States)

    Prosst, Ruediger L; Schroeter, Lioba; Gahlen, Johannes

    2005-04-04

    Intraoperative localization of parathyroid glands can be challenging especially in minimally invasive surgery. Fluorescence diagnosis using the photosensitizer aminolevulinic acid (ALA) has been described to identify normal parathyroid glands during experimental bilateral neck exploration. The present study evaluated fluorescence differences between hyperplastic and normal parathyroid glands as a precondition for a clinical application of the technique. Polycystic kidney disease (PKD) rats with hyperparathyroidism due to hyperplastic parathyroid glands and Wistar rats with normal parathyroid glands were photosensitized by peritoneal lavage with ALA solution. After surgical exposure of thyroid and parathyroid glands the operative site was observed under blue light conditions using the d-light system to assess fluorescence characteristics of each tissue. Fluorescence intensities of parathyroid glands and surrounding thyroid tissue were measured by spectrometry. Parathyroid hormone in serum of the rats was determined by enzyme-linked immunosorbent assay (ELISA). Observation of the exposed thyroid site showed a subjectively stronger red fluorescence of the parathyroid glands in the PKD rats in comparison to the Wistar rats, whereas thyroid tissue appeared equally fluorescent. In the PKD animals, spectrometric fluorescence intensity was 10 times higher in the parathyroid glands than in the thyroid gland, whereas in the Wistar rats the ratio was 3.2:1. Fluorescence intensity in the parathyroid glands was more than twice in the PKD rats than in the Wistar rats, however slightly lower in the thyroid tissue. ELISA confirmed the pathophysiological change of a hyperparathyroidism with significantly increased serum levels of parathyroid hormone in the PKD rats. Hyperparathyroidism enhances ALA-induced fluorescence of the parathyroid glands. A combined surgical fluorescence strategy may justify a unilateral, minimally invasive approach in selected patients and serve to improve

  12. Interactive Videos Enhance Learning about Socio-Ecological Systems

    Science.gov (United States)

    Smithwick, Erica; Baxter, Emily; Kim, Kyung; Edel-Malizia, Stephanie; Rocco, Stevie; Blackstock, Dean

    2018-01-01

    Two forms of interactive video were assessed in an online course focused on conservation. The hypothesis was that interactive video enhances student perceptions about learning and improves mental models of social-ecological systems. Results showed that students reported greater learning and attitudes toward the subject following interactive video.…

  13. Expression-Enhanced Fluorescent Proteins Based on Enhanced Green Fluorescent Protein for Super-resolution Microscopy.

    Science.gov (United States)

    Duwé, Sam; De Zitter, Elke; Gielen, Vincent; Moeyaert, Benjamien; Vandenberg, Wim; Grotjohann, Tim; Clays, Koen; Jakobs, Stefan; Van Meervelt, Luc; Dedecker, Peter

    2015-10-27

    "Smart fluorophores", such as reversibly switchable fluorescent proteins, are crucial for advanced fluorescence imaging. However, only a limited number of such labels is available, and many display reduced biological performance compared to more classical variants. We present the development of robustly photoswitchable variants of enhanced green fluorescent protein (EGFP), named rsGreens, that display up to 30-fold higher fluorescence in E. coli colonies grown at 37 °C and more than 4-fold higher fluorescence when expressed in HEK293T cells compared to their ancestor protein rsEGFP. This enhancement is not due to an intrinsic increase in the fluorescence brightness of the probes, but rather due to enhanced expression levels that allow many more probe molecules to be functional at any given time. We developed rsGreens displaying a range of photoswitching kinetics and show how these can be used for multimodal diffraction-unlimited fluorescence imaging such as pcSOFI and RESOLFT, achieving a spatial resolution of ∼70 nm. By determining the first ever crystal structures of a negative reversibly switchable FP derived from Aequorea victoria in both the "on"- and "off"-conformation we were able to confirm the presence of a cis-trans isomerization and provide further insights into the mechanisms underlying the photochromism. Our work demonstrates that genetically encoded "smart fluorophores" can be readily optimized for biological performance and provides a practical strategy for developing maturation- and stability-enhanced photochromic fluorescent proteins.

  14. Energy intake during activity enhanced video game play.

    Science.gov (United States)

    Mellecker, Robin R; Lanningham-Foster, Lorraine; Levine, James A; McManus, Alison M

    2010-10-01

    The purpose of this study was to examine whether the addition of a motor component to video gaming alters energy consumption. To address this problem we used an experimental manipulation design with 9-13 year olds incorporating 'seated video game' and 'activity enhanced video game' conditions, whilst allowing snacks ad libitum. No difference in snacking between the two video gaming conditions was apparent. The children consumed 374 and 383kcalh(-1) during seated and activity enhanced video gaming, respectively. A secondary purpose was to examine consistency of energy intake during free choice video game play. We found no difference in energy intake between four 1h free choice video gaming sessions. Snacking energy intake whilst video gaming was 166% more than the calories required during resting conditions. This study has shown that the addition of a motor component to the video game environment does not alter snack energy intake. However, the high calorific consumption during both seated and activity enhanced video game play highlights the need for an active attempt to restrict snacking whilst playing video games.

  15. Cathodoluminescence and Electron-Induced Fluorescence Enhancement of Enhanced Green Fluorescent Protein.

    Science.gov (United States)

    Nagayama, Kuniaki; Onuma, Tsubasa; Ueno, Ryosuke; Tamehiro, Katsuyuki; Minoda, Hiroki

    2016-02-18

    Becaues the spatial resolution of fluorescence microscopy is not high enough to study the molecular level of relationship between the structure and function of biological specimens, correlative light and electron microscopy has been used for this purpose. Another possibility for a high-resolution light microscopy is cathodoluminescence microscopy. Here, we report a new phenomenon, the electron-induced activation of luminescence (cathodoluminescence) and electron-enhanced fluorescence for the enhanced green fluorescent protein (EGFP). This was found using our recently developed hybrid fluorescence and electron microscopy. Contrary to the past reports, which showed a degradation of organic compounds by electron irradiation, stable cathodoluminescence emitted from an organic molecule, EGFP, has been observed using the hybrid microscopy. Addition of the glycerol promoted the fluorescence enhancement of EGFP probably due to the change in the electronic state density of excitation channels from the ground to the excited state or of relaxation channels from the excited to the emission state. Stable cathodoluminescence and enhanced fluorescence of the EGFP may introduce a cathodoluminescence microscopy, which will increase the variety of the imaging to investigate the biological compounds.

  16. Action video game training for cognitive enhancement

    OpenAIRE

    Green, C Shawn; Bavelier, Daphné

    2015-01-01

    Here we review the literature examining the perceptual, attentional, and cognitive benefits of playing one sub-type of video games known as ‘action video games,’ as well as the mechanistic underpinnings of these behavioral effects. We then outline evidence indicating the potential usefulness of these commercial off-the-shelf games for practical, real-world applications such as rehabilitation or the training of job-related skills. Finally, we discuss potential core characteristics of action vi...

  17. Enhancing molecule fluorescence with asymmetrical plasmonic antennas.

    Science.gov (United States)

    Lu, Guowei; Liu, Jie; Zhang, Tianyue; Shen, Hongming; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gu, Ying; He, Yingbo; Wang, Yuwei; Gong, Qihuang

    2013-07-21

    We propose and justify by the finite-difference time-domain method an efficient strategy to enhance the spontaneous emission of a fluorophore with a multi-resonance plasmonic antenna. The custom-designed asymmetrical antenna consists of two plasmonic nanoparticles with different sizes and is able to couple efficiently to free space light through multiple localized surface plasmon resonances. This design simultaneously permits a large near-field excitation near the antenna as well as a high quantum efficiency, which results in an unusual and significant enhancement of the fluorescence of a single emitter. Such an asymmetrical antenna presents intrinsic advantages over single particle or dimer based antennas made using two identical nanostructures. This promising concept can be exploited in the large domain of light-matter interaction processes involving multiple frequencies.

  18. NIGERIAN HOME VIDEO MOVIES AND ENHANCED MUSIC ...

    African Journals Online (AJOL)

    Precious

    presented within the boundaries of acceptable standards and philosophic thought. Nigeria video films have been used to address a myriad of existing and emergent problems. Because of the distinctness and popularity, they represent a veritable tool for the deflation of anti- social practices and the installation of approved ...

  19. Video-rate two-photon excited fluorescence lifetime imaging system with interleaved digitization.

    Science.gov (United States)

    Dow, Ximeng Y; Sullivan, Shane Z; Muir, Ryan D; Simpson, Garth J

    2015-07-15

    A fast (up to video rate) two-photon excited fluorescence lifetime imaging system based on interleaved digitization is demonstrated. The system is compatible with existing beam-scanning microscopes with minor electronics and software modification. Proof-of-concept demonstrations were performed using laser dyes and biological tissue.

  20. Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission

    Science.gov (United States)

    Dake, Fumihiro; Yazawa, Hiroki

    2017-10-01

    The quantity of photons generated during fluorescence microscopy is principally determined by the quantum yield of the fluorescence dyes and the optical power of the excitation beam. However, even though low quantum yields can produce poor images, it is challenging to tune this parameter, while increasing the power of the excitation beam often results in photodamage. Here, we propose the use of stimulated emission (SE) as a means of enhancing both the signal intensity and signal-to-noise ratio during confocal fluorescence microscopy. This work experimentally confirmed that both these factors can be enhanced by SE radiation, through generating a greater number of photons than are associated with the standard fluorescence signal. We also propose the concept of stimulated emission enhancing fluorescence (SEEF) microscopy, which employs both the SE and fluorescence signals, and demonstrate that the intensity of an SEEF signal is greater than those of the individual SE and fluorescence signals.

  1. Application Of Digitized Fluorescence Microscopy And Video Photobleaching To Study Membrane Dynamics During Cell Locomotion

    Science.gov (United States)

    Jacobson, Kenneth A.; Ishihara, A.; Holifield, B.; Lee, J.

    1989-12-01

    Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. We employ digitized fluorescence microscopy (DFM) alone or in combination with fluorescence recovery after photobleaching (FRAP) to investigate individual cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to define antigens or fluorescent analogs of cellular constituents as well as ultra-sensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells.

  2. Online temporally consistent indoor depth video enhancement via static structure.

    Science.gov (United States)

    Sheng, Lu; Ngan, King Ngi; Lim, Chern-Loon; Li, Songnan

    2015-07-01

    In this paper, we propose a new method to online enhance the quality of a depth video based on the intermediary of a so-called static structure of the captured scene. The static and dynamic regions of the input depth frame are robustly separated by a layer assignment procedure, in which the dynamic part stays in the front while the static part fits and helps to update this structure by a novel online variational generative model with added spatial refinement. The dynamic content is enhanced spatially while the static region is otherwise substituted by the updated static structure so as to favor the long-range spatiotemporal enhancement. The proposed method both performs long-range temporal consistency on the static region and keeps necessary depth variations in the dynamic content. Thus, it can produce flicker-free and spatially optimized depth videos with reduced motion blur and depth distortion. Our experimental results reveal that the proposed method is effective in both static and dynamic indoor scenes and is compatible with depth videos captured by Kinect and time-of-flight camera. We also demonstrate that excellent performance can be achieved by the proposed method in comparison with the existing spatiotemporal approaches. In addition, our enhanced depth videos and static structures can act as effective cues to improve various applications, including depth-aided background subtraction and novel view synthesis, showing satisfactory results with few visual artifacts.

  3. Phallotoxin and actin binding assay by fluorescence enhancement.

    Science.gov (United States)

    Huang, Z J; Haugland, R P; You, W M; Haugland, R P

    1992-01-01

    The fluorescence of five fluorophores conjugated to phallotoxins was found to be specifically enhanced upon binding to F-actin in a polymerizing buffer. Rhodamine phalloidin had the greatest fluorescence enhancement of ninefold. The fluorescence titration of rhodamine phalloidin by actin was shown to be consistent with stoichiometric binding. The fluorescence enhancement of rhodamine phalloidin at 5 microM is linearly related to F-actin concentrations up to 2 microM and therefore can be used as an easy means of F-actin quantitation. In a competition assay, other phallotoxins reduce the fluorescence enhancement that results from the binding of rhodamine phalloidin to polymerized actin. This reduction also permits a convenient measurement of the binding constants of any competing phallotoxins.

  4. Nanoantenna array-induced fluorescence enhancement and reduced lifetimes

    DEFF Research Database (Denmark)

    Bakker, R. M.; Drachev, V. P.; Liu, Z.

    2008-01-01

    Enhanced fluorescence is observed from dye molecules interacting with optical nanoantenna arrays. Elliptical gold dimers form individual nanoantennae with tunable plasmon resonances depending upon the geometry of the two particles and the size of the gap between them. A fluorescent dye, Rhodamine...... 800, is uniformly embedded in a dielectric host that coats the nanoantennae. The nanoantennae act to enhance the dye absorption. In turn, emission from the dye drives the plasmon resonance of the antennae; the nanoantennae act to enhance the fluorescence signal and change the angular distribution...

  5. Enhancing Cognition with Video Games: A Multiple Game Training Study

    Science.gov (United States)

    Oei, Adam C.; Patterson, Michael D.

    2013-01-01

    Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be

  6. Enhancing cognition with video games: a multiple game training study.

    Science.gov (United States)

    Oei, Adam C; Patterson, Michael D

    2013-01-01

    Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.

  7. Enhancing cognition with video games: a multiple game training study.

    Directory of Open Access Journals (Sweden)

    Adam C Oei

    Full Text Available BACKGROUND: Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. METHODOLOGY/PRINCIPAL FINDINGS: We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch for one hour a day/five days a week over four weeks (20 hours. Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. CONCLUSION/SIGNIFICANCE: Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to

  8. Metallic Nanomaterials for Sensitivity Enhancement of Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Fang Xie

    2007-02-01

    Full Text Available Utrasensitive detection of trace analytes by fluorescence benefits forfluorescence amplifying substrates. We review here our recent work concerned withunderstanding of enhancement mechanisms and formation of three such substrates: silverfractals, silver coated gold nanoparticles deposited on glass and fluorescence enhancinggold colloids.

  9. Fluorescence-enhancement with different ionic inputs in a cryptand ...

    Indian Academy of Sciences (India)

    Unknown

    of N attached to the anthryl group. However, when a metal salt is added, the lone pair is engaged, thus in blocking of the PET and leading to recovery of fluorescence to different extents depending upon the nature of the metal ion. Keywords. Fluorescence enhancement; photoinduced electron transfer; cryptand receptor; ...

  10. Improving human object recognition performance using video enhancement techniques

    Science.gov (United States)

    Whitman, Lucy S.; Lewis, Colin; Oakley, John P.

    2004-12-01

    Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.

  11. Online multispectral fluorescence lifetime values estimation and overlay onto tissue white-light video frames

    Science.gov (United States)

    Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Marcu, Laura

    2016-03-01

    Fluorescence lifetime imaging has been shown to be a robust technique for biochemical and functional characterization of tissues and to present great potential for intraoperative tissue diagnosis and guidance of surgical procedures. We report a technique for real-time mapping of fluorescence parameters (i.e. lifetime values) onto the location from where the fluorescence measurements were taken. This is achieved by merging a 450 nm aiming beam generated by a diode laser with the excitation light in a single delivery/collection fiber and by continuously imaging the region of interest with a color CMOS camera. The interrogated locations are then extracted from the acquired frames via color-based segmentation of the aiming beam. Assuming a Gaussian profile of the imaged aiming beam, the segmentation results are fitted to ellipses that are dynamically scaled at the full width of three automatically estimated thresholds (50%, 75%, 90%) of the Gaussian distribution's maximum value. This enables the dynamic augmentation of the white-light video frames with the corresponding fluorescence decay parameters. A fluorescence phantom and fresh tissue samples were used to evaluate this method with motorized and hand-held scanning measurements. At 640x512 pixels resolution the area of interest augmented with fluorescence decay parameters can be imaged at an average 34 frames per second. The developed method has the potential to become a valuable tool for real-time display of optical spectroscopy data during continuous scanning applications that subsequently can be used for tissue characterization and diagnosis.

  12. A supplemental video teaching tool enhances splinting skills.

    Science.gov (United States)

    Mehrpour, Saeed Reza; Aghamirsalim, Mohamadreza; Motamedi, Seyed Mohammad Kalantar; Ardeshir Larijani, Fatemeh; Sorbi, Reza

    2013-02-01

    The ability to apply casts and splints is a technical skill that requires practice and understanding of basic principles of musculoskeletal medicine. A video in which a given procedure is simulated on a dummy can represent reality under controlled conditions. A decrease in physician competency in musculoskeletal medicine is the result of educational deficiencies at the medical school level. We asked whether (1) a supplemental video educational program enhances performance of medical students' musculoskeletal clinical skills and (2) factors such as the proportion of orthopaedic professors to students, sex, age, and previous scores of medical students affected the clinical skills of medical students. We allocated 474 medical students into one of two groups: all participants received 90 minutes of lecture instruction on how to splint and cast but one group viewed the supplemental instructional video and the other did not. There were no differences in terms of sex, age, basic science exam scores, or grade point average of the groups. Thirteen specific skills in splinting an injured limb were evaluated. We recorded grade point averages. We developed a 10-point scoring system and graded each student on their splinting skills 6 months after the lectures. The medical students who watched the video had an average score of 7.6, whereas the control group's average score was 2.0. We observed a positive association between watching the educational video and clinical exam score. A higher professor-to-student ratio was associated with lower student Objective Structured Clinical Examination score. Our observations suggest a supplemental video instructional program improved the performance of musculoskeletal clinical skills in comparison to only a traditional lecture series.

  13. Efficient Enhancement for Spatial Scalable Video Coding Transmission

    Directory of Open Access Journals (Sweden)

    Mayada Khairy

    2017-01-01

    Full Text Available Scalable Video Coding (SVC is an international standard technique for video compression. It is an extension of H.264 Advanced Video Coding (AVC. In the encoding of video streams by SVC, it is suitable to employ the macroblock (MB mode because it affords superior coding efficiency. However, the exhaustive mode decision technique that is usually used for SVC increases the computational complexity, resulting in a longer encoding time (ET. Many other algorithms were proposed to solve this problem with imperfection of increasing transmission time (TT across the network. To minimize the ET and TT, this paper introduces four efficient algorithms based on spatial scalability. The algorithms utilize the mode-distribution correlation between the base layer (BL and enhancement layers (ELs and interpolation between the EL frames. The proposed algorithms are of two categories. Those of the first category are based on interlayer residual SVC spatial scalability. They employ two methods, namely, interlayer interpolation (ILIP and the interlayer base mode (ILBM method, and enable ET and TT savings of up to 69.3% and 83.6%, respectively. The algorithms of the second category are based on full-search SVC spatial scalability. They utilize two methods, namely, full interpolation (FIP and the full-base mode (FBM method, and enable ET and TT savings of up to 55.3% and 76.6%, respectively.

  14. Underwater video enhancement using multi-camera super-resolution

    Science.gov (United States)

    Quevedo, E.; Delory, E.; Callicó, G. M.; Tobajas, F.; Sarmiento, R.

    2017-12-01

    Image spatial resolution is critical in several fields such as medicine, communications or satellite, and underwater applications. While a large variety of techniques for image restoration and enhancement has been proposed in the literature, this paper focuses on a novel Super-Resolution fusion algorithm based on a Multi-Camera environment that permits to enhance the quality of underwater video sequences without significantly increasing computation. In order to compare the quality enhancement, two objective quality metrics have been used: PSNR (Peak Signal-to-Noise Ratio) and the SSIM (Structural SIMilarity) index. Results have shown that the proposed method enhances the objective quality of several underwater sequences, avoiding the appearance of undesirable artifacts, with respect to basic fusion Super-Resolution algorithms.

  15. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Science.gov (United States)

    Ranjan Gartia, Manas; Hsiao, Austin; Sivaguru, Mayandi; Chen, Yi; Logan Liu, G.

    2011-09-01

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  16. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, Manas Ranjan [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Hsiao, Austin; Logan Liu, G [Department of Bioengineering, University of Illinois, Urbana, IL 61801 (United States); Sivaguru, Mayandi [Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 (United States); Chen Yi, E-mail: loganliu@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-09-07

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  17. Novel disposable biochip platform employing supercritical angle fluorescence for enhanced fluorescence collection.

    Science.gov (United States)

    Hill, Duncan; McDonnell, Barry; Hearty, Stephen; Basabe-Desmonts, Lourdes; Blue, Robert; Trnavsky, Michal; McAtamney, Colm; O'Kennedy, Richard; MacCraith, Brian D

    2011-08-01

    This paper presents an overview of development of a novel disposable plastic biochip for multiplexed clinical diagnostic applications. The disposable biochip is manufactured using a low-cost, rapid turn- around injection moulding process and consists of nine parabolic elements on a planar substrate. The optical elements are based on supercritical angle fluorescence (SAF) which provides substantial enhancement of the fluorescence collection efficiency but also confines the fluorescence detection volume strictly to the immediate proximity of the biochip surface, thereby having the potential to discriminate against background fluorescence from the analyte solution. An optical reader is also described that enables interrogation and fluorescence collection from the nine optical elements on the chip. The sensitivity of the system was determined with a biotin-avidin assay while its clinical utility was demonstrated in an assay for C-reactive protein (CRP), an inflammation marker.

  18. HIGH-CONDUCTIVE NANOSTRUCTURES IN BIOCHEMICAL STUDIES: FLUORESCENCE ENHANCING

    Directory of Open Access Journals (Sweden)

    V. I. Chegel

    2015-10-01

    Full Text Available This paper presents the results of experimental and theoretical studies of quenching and enhancement of fluorescence by colloidal solutions of nanoparticles and arrays of nanostructures on solid substrates — nanochips. The literature data and the results of authors’ own studies on the possibility of fluorescence signal manipulation in the presence of gold and silver nanostructures were shown. Mathematical modeling and comparative investigation of the samples with high-conductive metal nanostructures as active elements for the regulation of fluorescence signal were also performed. Nanochips samples were fabricated by thermal annealing of highly conductive gold and silver island films. Using developed novel laser-based fluorometer FluorotestNano it was shown that fluorescence intensity of Rhodamine 6G dye can be enhanced up to 23 times near gold nanostructures by spacing the dye from the nanoparticle at the distance of 20 nm using SiO2 coating. Using high-conductive metal nanostructures to adjust the fluorescence signal opens promising new directions in biochemical studies, such as increasing the sensitivity of fluorescence methods, development of new biosensors, fluorescence microscopy techniques and medical diagnostics.

  19. Enhanced localized fluorescence in plasmonic nanoantennae

    DEFF Research Database (Denmark)

    Bakker, R.M.; Yuan, H.-K.; Liu, Z.

    2008-01-01

    Pairs of gold elliptical nanoparticles form antennae, resonant in the visible. A dye, embedded in a dielectric host, coats the antennae; its emission excites plasmon resonances in the antennae and is enhanced. Far-field excitation of the dye-nanoantenna system shows a wavelength-dependent increase...

  20. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.

    2016-12-28

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  1. Video game training enhances cognitive control in older adults.

    Science.gov (United States)

    Anguera, J A; Boccanfuso, J; Rintoul, J L; Al-Hashimi, O; Faraji, F; Janowich, J; Kong, E; Larraburo, Y; Rolle, C; Johnston, E; Gazzaley, A

    2013-09-05

    Cognitive control is defined by a set of neural processes that allow us to interact with our complex environment in a goal-directed manner. Humans regularly challenge these control processes when attempting to simultaneously accomplish multiple goals (multitasking), generating interference as the result of fundamental information processing limitations. It is clear that multitasking behaviour has become ubiquitous in today's technologically dense world, and substantial evidence has accrued regarding multitasking difficulties and cognitive control deficits in our ageing population. Here we show that multitasking performance, as assessed with a custom-designed three-dimensional video game (NeuroRacer), exhibits a linear age-related decline from 20 to 79 years of age. By playing an adaptive version of NeuroRacer in multitasking training mode, older adults (60 to 85 years old) reduced multitasking costs compared to both an active control group and a no-contact control group, attaining levels beyond those achieved by untrained 20-year-old participants, with gains persisting for 6 months. Furthermore, age-related deficits in neural signatures of cognitive control, as measured with electroencephalography, were remediated by multitasking training (enhanced midline frontal theta power and frontal-posterior theta coherence). Critically, this training resulted in performance benefits that extended to untrained cognitive control abilities (enhanced sustained attention and working memory), with an increase in midline frontal theta power predicting the training-induced boost in sustained attention and preservation of multitasking improvement 6 months later. These findings highlight the robust plasticity of the prefrontal cognitive control system in the ageing brain, and provide the first evidence, to our knowledge, of how a custom-designed video game can be used to assess cognitive abilities across the lifespan, evaluate underlying neural mechanisms, and serve as a powerful tool

  2. Enhancement of Fluorescent Labeling via a Composited Thin Film

    Directory of Open Access Journals (Sweden)

    Taikei Suyama

    2014-01-01

    Full Text Available Fluorescent labeling is the prevailing imaging technique in cell biological research. When statistical investigations on a large number of cells are involved, experimental study is required for both low magnification to get a reliable statistical population and high contrast to achieve accurate diagnosis on the nature of the cells’ perturbation. As microscope objectives of low magnification generally yield low collection efficiency, such studies are limited by the fluorescence signal weakness. To overcome this technological insufficiency, Le Moal et al. proposed a method based on metal-coated substrates that enhanced the fluorescence process and improved collection efficiency in fluorescence microscope observation and that could be directly used with a common microscope setup. In this paper, we use an Ag-Si3N4-Ag multilayer film coated on the substrate and numerically analyse the optical behavior of a fluorophore which was placed above the composited film coated on the substrate. The results shows that by using an Ag-Si3N4-Ag composited film the fluorescence imaging can be enhanced remarkably.

  3. Enhancing the Therapy Experience Using Principles of Video Game Design.

    Science.gov (United States)

    Folkins, John Wm; Brackenbury, Tim; Krause, Miriam; Haviland, Allison

    2016-02-01

    This article considers the potential benefits that applying design principles from contemporary video games may have on enhancing therapy experiences. Six principles of video game design are presented, and their relevance for enriching clinical experiences is discussed. The motivational and learning benefits of each design principle have been discussed in the education literature as having positive impacts on student motivation and learning and are related here to aspects of clinical practice. The essential experience principle suggests connecting all aspects of the experience around a central emotion or cognitive connection. The discovery principle promotes indirect learning in focused environments. The risk-taking principle addresses the uncertainties clients face when attempting newly learned skills in novel situations. The generalization principle encourages multiple opportunities for skill transfer. The reward system principle directly relates to the scaffolding of frequent and varied feedback in treatment. Last, the identity principle can assist clients in using their newly learned communication skills to redefine self-perceptions. These principles highlight areas for research and interventions that may be used to reinforce or advance current practice.

  4. Gold Nanoparticle-Based Fluorescent Contrast Agent with Enhanced Sensitivity.

    Science.gov (United States)

    Kang, Kyung Aih; Nguyen, Mai-Dung

    2017-01-01

    Gold nanoparticle (GNP) based contrast agents that are highly specific and sensitive for both optical and X-ray/CT imaging modalities are being developed for detecting the cancer expressing nucleolin and matrix metallo-proteinase 14 (MMP-14) on the cell membrane: Nucleolin is normally present in the nucleus. For many cancer cells, however, it is over-expressed on the cell membrane, having it to be a good cancer marker. Aptamer AS1411 is known to be an excellent target for nucleolin and also known to treat several cancer types; and MMP-14 in cancer is involved in tumor angiogenesis, blood vessel re-organization, and metastasis. In the proposed agent, AS1411 is selected as the cancer targeting molecule; and the unique property of GNPs of modulating fluorescence are utilized to allow the agent to trigger its fluorescence upon reacting with MMP-14, at an enhanced fluorescence level. GNPs are also natural X-ray/CT contrast agent. Here, as a part of on-going development of the dual-modality contrast agent, we report that conjugating a safe, NIR fluorophore Cypate at a precisely determined distance from the GNP enhanced the Cypate fluorescence up to two times. In addition, successful conjugation of the nucleolin target AS1411 onto the GNP was confirmed and among the GNPs size range 5-30 nm tested, 10 nm GNPs showed the highest X-ray/CT enhancement.

  5. Copper spherical cavity arrays: Fluorescence enhancement in PFO films

    Energy Technology Data Exchange (ETDEWEB)

    Spada, Edna R., E-mail: edspada@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil); Valente, Gustavo T.; Pereira-da-Silva, Marcelo A. [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil); Sartorelli, Maria L. [Departamento de Física, Universidade Federal de Santa Catarina, Caixa Postal 476, 88040-900, Florianópolis, SC (Brazil); Guimarães, Francisco E.G.; Faria, Roberto M. [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil)

    2017-01-15

    This manuscript addresses the use of a well-ordered antidot copper nanostructure as a active substrate for surface enhancement fluorescence (SEF). The antidot array was produced by electrodeposition and nanosphere lithography and characterized by microscopy technique, its successful application as SEF-active substrates was verified using polyfluorene (PFO) as a probe layer. Atomic force microscopy (AFM) was used to evaluate the regularity of the metal surface as well PFO coated process and confocal laser fluorescence microscopy (CLSM) to determine the behavior exhibited by the fluorescent layer due to the existence of the nanostructured surface. No accumulation PFO in the cavities was detected and the more intense emission regions coincides with the position of the cavities and is at about one order of magnitude higher.

  6. Suggested Tips and Tricks to Enhance Surgical Video Production.

    Science.gov (United States)

    Fisher, Nina; Kaplan, Daniel; Egol, Kenneth A

    2017-08-01

    Surgical video production is an important skill that can be of valuable use as an educational tool. However, it is important that surgical videos be filmed and edited in a methodological way to maximize its potential. In this video, we describe our preference for producing quality surgical videos. There are many important factors to consider during the filming process, including vantage point of the videographer, lighting, and visualization of instruments. During the editing process, certain techniques can be used to make the video more stimulating and thus more engaging to the viewer. This video presents the filming and editing of a single case. In addition, we provide examples of acceptable and poor footage and editing techniques. Surgical videos can be a valuable educational tool when properly executed. In this video, we describe techniques to ensure quality production.

  7. Enhanced fluorescent properties of an OmpT site deleted mutant of Green Fluorescent Protein

    Directory of Open Access Journals (Sweden)

    Kumar Avijeet

    2010-04-01

    Full Text Available Abstract Background The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30°C as compared to 37°C in E. coli K12 hosts. Since OmpT levels are higher at 37°C than at 30°C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT. The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold. Results We describe the construction of two GFP variants with modified putative OmpT proteolytic sites by site directed mutagenesis (SDM. Such modified genes upon arabinose induction exhibited varied degrees of GFP fluorescence. While the mutation of K79G/R80A (SDM I resulted in dramatic loss of fluorescence activity, the modification of K214A/R215A (SDM II resulted in four fold enhanced fluorescence of GFP. Conclusions This is the first report on effect of OmpT protease site modification on GFP fluorescence. The wild type and the GFP variants showed similar growth profile in bioreactor studies

  8. Surface plasmon-enhanced and quenched two-photon excited fluorescence

    Science.gov (United States)

    Lin, C.-Y.; Lien, C.-H.; Chiu, K.-C.; Chang, C.-Y.; Chang, S.-H.; Guo, T.-F.; Chen, S.-J.

    2010-08-01

    This study investigated theoretically and experimentally that two-photon excited fluorescence is enhanced and quenched via surface plasmons (SPs) excited by total internal reflection with a silver film. The fluorescence intensity is fundamentally affected by the local electromagnetic field enhancement and the quantum yield change according to the surrounding structure and materials. By utilizing the Fresnel equation and classical dipole radiation modeling, local electric field enhancement, fluorescence quantum yield, and fluorescence emission coupling yield via SPs were theoretically analyzed at different dielectric spacer thicknesses between the fluorescence dye and the metal film. The fluorescence lifetime was also decreased substantially via the quenching effect. A two-photon excited total internal reflection fluorescence (TIRF) microscopy with a time-correlated single photon counting device has been developed to measure the fluorescence lifetimes, photostabilities, and enhancements. The experimental results demonstrate that the fluorescence lifetimes and the trend of the enhancements are consistent with the theoretical analysis. The maximum fluorescence enhancement factor in the surface plasmon-total internal reflection fluorescence (SP-TIRF) configuration can be increased up to 30 fold with a suitable thickness SiO2 spacer. Also, to compromise for the fluorescence enhancement and the fluorophore photostability, we find that the SP-TIRF configuration with a 10 nm SiO2 spacer can provide an enhanced and less photobleached fluorescent signal via the assistance of enhanced local electromagnetic field and quenched fluorescence lifetime, respectively.

  9. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2008-12-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein tumor necrosis factor-alpha (TNFalpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least 5-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/mL to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide--a decrease from 18 to 6 pg/mL. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  10. Streaming Video to Enhance Students' Reflection in Dance Education

    Science.gov (United States)

    Leijen, Ali; Lam, Ineke; Wildschut, Liesbeth; Simons, P. Robert-Jan; Admiraal, Wilfried

    2009-01-01

    This paper presents an evaluation case study that describes the experiences of 15 students and 2 teachers using a video-based learning environment, DiViDU, to facilitate students' daily reflection activities in a composition course and a ballet course. To support dance students' reflection processes streaming video was applied as follows: video…

  11. Short Videos to Enhance Student Learning in Microbiological Laboratory Exercises

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Jensen, Lars Bogø; Josefsen, Mathilde Hartmann

    This poster describes the use of short videos demonstrating basic microbiological techniques in a second semester course in Biological Chemistry at the Technical University of Denmark. Videos were a useful complement to the laboratory compendium, allowing students to focus on conceptual...

  12. Structural plasticity of green fluorescent protein to amino acid deletions and fluorescence rescue by folding-enhancing mutations.

    Science.gov (United States)

    Liu, Shu-su; Wei, Xuan; Dong, Xue; Xu, Liang; Liu, Jia; Jiang, Biao

    2015-07-25

    Green fluorescent protein (GFP) and its derivative fluorescent proteins (FPs) are among the most commonly used reporter systems for studying gene expression and protein interaction in biomedical research. Most commercially available FPs have been optimized for their oligomerization state to prevent potential structural constraints that may interfere with the native function of fused proteins. Other approach to reducing structural constraints may include minimizing the structure of GFPs. Previous studies in an enhanced GFP variant (EGFP) identified a series of deletions that can retain GFP fluorescence. In this study, we interrogated the structural plasticity of a UV-optimized GFP variant (GFP(UV)) to amino acid deletions, characterized the effects of deletions and explored the feasibility of rescuing the fluorescence of deletion mutants using folding-enhancing mutations. Transposon mutagenesis was used to screen amino acid deletions in GFP that led to fluorescent and nonfluorescent phenotypes. The fluorescent GFP mutants were characterized for their whole-cell fluorescence and fraction soluble. Fluorescent GFP mutants with internal deletions were purified and characterized for their spectral and folding properties. Folding-ehancing mutations were introduced to deletion mutants to rescue their compromised fluorescence. We identified twelve amino acid deletions that can retain the fluorescence of GFP(UV). Seven of these deletions are either at the N- or C- terminus, while the other five are located at internal helices or strands. Further analysis suggested that the five internal deletions diminished the efficiency of protein folding and chromophore maturation. Protein expression under hypothermic condition or incorporation of folding-enhancing mutations could rescue the compromised fluorescence of deletion mutants. In addition, we generated dual deletion mutants that can retain GFP fluorescence. Our results suggested that a "size-minimized" GFP may be developed by

  13. Surface Plasmon-Enhanced Nanoantenna for Localized Fluorescence

    Directory of Open Access Journals (Sweden)

    Isa Kocakarin

    2012-01-01

    Full Text Available Surface plasmon-enhanced gold nanoantenna structures on glass substrate are studied for increased localized electric field and fluorescence at the feed gap locations of the antennas. Dipole, Archimedean balanced spiral, and bowtie and double bowtie geometries are studied for surface plasmon effect. Different flare angles for bowtie geometries are compared to each other. Double bowtie geometry with dual polarization capability exhibited superior performance with almost 56 dB field enhancement factor. We also studied the effect of substrate thickness on electric field enhancement and we found that glass thickness plays a critical role for coherent addition of surface plasmons at the feed gap location. The surface plasmon effect is proven by considering perfect electric conductor model of gold instead of its modified Drude model.

  14. Introducing Player-Driven Video Analysis to Enhance Reflective Soccer Practice

    DEFF Research Database (Denmark)

    Hjort, Anders; Elbæk, Lars; Henriksen, Kristoffer

    2017-01-01

    In the present study, we investigated the introduction of a cloud-based video analysis platform called Player Universe (PU) in a Danish football club. Video analysis is not a new performance-enhancing element in sport, but PU is innovative in the way players and coaches produce footage and how...

  15. Enhanced Fluorescent Immunoassays on Silver Fractal-like Structures

    Science.gov (United States)

    Shtoyko, Tanya; Matveeva, Evgenia G.; Chang, I-Fen; Gryczynski, Zygmunt; Goldys, Ewa; Gryczynski, Ignacy

    2009-01-01

    Using the effect of the fluorescence enhancement in close proximity to metal nanostructures, we have been able to demonstrate ultrasensitive immunoassays suitable for the detection of biomarkers. Silver fractal-like structures have been grown by electrochemical reduction of silver on the surface of glass slides. A model immunoassay was performed on the slide surface with rabbit IgG (antigen) non-covalently immobilized on the slide, and Rhodamine Red-X labeled anti-rabbit IgG conjugate subsequently bound to the immobilized antigen. The fluorescence signal was measured from the glass-fractals surface using a confocal microscope, and the images were compared to the images from the same surface not coated with fractals. Our results showed significant enhancement (more than 100-fold) of the signal detected on fractals compared to bare glass. We thus demonstrate that such fractal-like structures can assist in improving the signals from assays used in medical diagnostics, especially those for analytes with molecular weight under 100 kD. PMID:18288816

  16. Photostable bipolar fluorescent probe for video tracking plasma membranes related cellular processes.

    Science.gov (United States)

    Zhang, Xinfu; Wang, Chao; Jin, Liji; Han, Zhuo; Xiao, Yi

    2014-08-13

    Plasma membranes can sense the stimulations and transmit the signals from extracellular environment and then make further responses through changes in locations, shapes or morphologies. Common fluorescent membrane markers are not well suited for long time tracking due to their shorter retention time inside plasma membranes and/or their lower photostability. To this end, we develop a new bipolar marker, Mem-SQAC, which can stably insert into plasma membranes of different cells and exhibits a long retention time over 30 min. Mem-SQAC also inherits excellent photostability from the BODIPY dye family. Large two-photon absorption cross sections and long wavelength fluorescence emissions further enhance the competitiveness of Mem-SQAC as a membrane marker. By using Mem-SQAC, significant morphological changes of plasma membranes have been monitored during heavy metal poisoning and drug induced apoptosis of MCF-7 cells; the change tendencies are so distinctly different from each other that they can be used as indicators to distinguish different cell injuries. Further on, the complete processes of endocytosis toward Staphylococcus aureus and Escherichia coli by RAW 264.7 cells have been dynamically tracked. It is discovered that plasma membranes take quite different actions in response to the two bacteria, information unavailable in previous research reports.

  17. How can video supported reflection enhance teachers' professional development?

    Science.gov (United States)

    McCullagh, John F.

    2012-03-01

    This paper responds to Eva Lundqvist, Jonas Almqvist and Leif Ostman's account of how the manner of teaching can strongly influence pupil learning by recommending video supported reflection as a means by which teachers can transform the nature of their practice. Given the complex nature of the many conditions which influence and control teachers' actions the reframing of routine practice through reflection-in-action can prove challenging. This response paper describes how video can empower teachers to take greater control of their progress and allows for a more social constructivist approach to professional development. Along with a consideration of the difficulties associated with the notion of `reflection' and a short case study, the paper uses Lev Semenovich Vygotsky's zone of proximal development and the notion of scaffolding to propose that video offers a Video Supported Zone of Proximal Development which can ease the process of teacher development. In capturing permanent and exchangeable representations of practice video encourages a collaborative approach to reflection and is consistent with the original ideas of John Dewey.

  18. From computer images to video presentation: Enhancing technology transfer

    Science.gov (United States)

    Beam, Sherilee F.

    1994-01-01

    With NASA placing increased emphasis on transferring technology to outside industry, NASA researchers need to evaluate many aspects of their efforts in this regard. Often it may seem like too much self-promotion to many researchers. However, industry's use of video presentations in sales, advertising, public relations and training should be considered. Today, the most typical presentation at NASA is through the use of vu-graphs (overhead transparencies) which can be effective for text or static presentations. For full blown color and sound presentations, however, the best method is videotape. In fact, it is frequently more convenient due to its portability and the availability of viewing equipment. This talk describes techniques for creating a video presentation through the use of a combined researcher and video professional team.

  19. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsin-chih [Los Alamos National Laboratory; Sharma, Jaswinder [Los Alamos National Laboratory; Yoo, Hyojong [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  20. Streaming video to enhance students’ reflection in dance education

    NARCIS (Netherlands)

    Leijen, A.; Lam, I.; Wildschut, L.; Simons, P.R.J.; Admiraal, W.

    2009-01-01

    This paper presents an evaluation case study that describes the experiences of 15 students and 2 teachers using a video-based learning environment, DiViDU, to facilitate students’ daily reflection activities in a composition course and a ballet course. To support dance students’ reflection processes

  1. Enhancing Secondary Science Content Accessibility with Video Games

    Science.gov (United States)

    Marino, Matthew T.; Becht, Kathleen M.; Vasquez, Eleazar, III; Gallup, Jennifer L.; Basham, James D.; Gallegos, Benjamin

    2014-01-01

    Mobile devices, including iPads, tablets, and so on, are common in high schools across the country. Unfortunately, many secondary teachers see these devices as distractions rather than tools for scaffolding instruction. This article highlights current research related to the use of video games as a means to increase the cognitive and social…

  2. Nigerian home video movies and enhanced music involvement ...

    African Journals Online (AJOL)

    The Video Film Industry in Nigeria has attracted much attention within the shores of Nigeria, Africa and beyond in Asia and in Europe. The popular acclaim trailing the industry not withstanding, there has arisen in several fora, critical assessment of the contents of the work churned out in great quantum. One such area that ...

  3. Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope

    Science.gov (United States)

    Chen, Ye; Wang, Danni; Khan, Altaz; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2015-10-01

    Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.

  4. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Woong Han, Jae; Kim, Eunsu; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-10-03

    Graphene is the 2D form of carbon that exists as a single layer of atoms arranged in a honeycomb lattice and has attracted great interest in the last decade in view of its physical, chemical, electrical, elastic, thermal, and biocompatible properties. The objective of this study was to synthesize an environmentally friendly and simple methodology for the preparation of graphene using a recombinant enhanced green fluorescent protein (EGFP). The successful reduction of GO to graphene was confirmed using UV-vis spectroscopy, and FT-IR. DLS and SEM were employed to demonstrate the particle size and surface morphology of GO and EGFP-rGO. The results from Raman spectroscopy suggest the removal of oxygen-containing functional groups from the surface of GO and formation of graphene with defects. The biocompatibility analysis of GO and EGFP-rGO in human embryonic kidney (HEK) 293 cells suggests that GO induces significant concentration-dependent cell toxicity in HEK cells, whereas graphene exerts no adverse effects on HEK cells even at a higher concentration (100 μg/mL). Altogether, our findings suggest that recombinant EGFP can be used as a reducing and stabilizing agent for the preparation of biocompatible graphene. The novelty and originality of this work is that it describes a safe, simple, and environmentally friendly method for the production of graphene using recombinant enhanced green fluorescent protein. Furthermore, the synthesized graphene shows excellent biocompatibility with HEK cells; therefore, biologically synthesized graphene can be used for biomedical applications. To the best of our knowledge, this is the first and novel report describing the synthesis of graphene using recombinant EGFP.

  5. Observation of photodynamically-induced cell destruction probed by video microscopy, laser-scanning microscopy, and fluorescence spectroscopy

    Science.gov (United States)

    Rueck, Angelika C.; Strauss, Wolfgang S. L.; Gschwend, Michael H.; Koenig, Karsten; Brunner, B.; Schneckenburger, Herbert; Walt, Heinrich; Steiner, Rudolf W.

    1993-07-01

    In order to study light-induced reactions during PDT, the fluorescence response of the photosensitizer meso-tetra(4-sulfonatophenyl)porphyrin (TPPS4) was observed in different cell systems and correlated with the sensitivity to photodynamic induced destructions. RR 1022 epithelial cells from the rat were grown on microscopic slides at a high and low cell density. Using video microscopy in combination with microspectrofluorometry we observed a different fluorescence behavior for high and low cell conditions during light exposure. A fluorescence relocalization from the cytoplasm to the nucleus and an intensity increase-- correlated with the formation of a new molecular species--could be detected only for low cell density. Moreover, cell cultures at a high density showed to be less sensitive to photodynamic destructions. In addition to cell culture-experiments, we observed the light-induced reactions of TPPS4 accumulated in multicellular tumor spheroids. For these measurements laser scanning microscopy was used. Fluorescence relocalization and intensity increase could be detected only for the peripheric parts of the spheroids. The different fluorescence response seems to reflect different metabolic and physiologic states of the cells.

  6. Introducing Player-Driven Video Analysis to Enhance Reflective Soccer Practice

    DEFF Research Database (Denmark)

    Hjort, Anders; Elbæk, Lars; Henriksen, Kristoffer

    2017-01-01

    it facilitates reflective learning. Video analysis is executed in the (PU) platform by involving the players in the analysis process, in the sense that they are encouraged to tag game actions in video-documented football matches. Following this, players can get virtual feedback from their coach. The philosophy......In the present study, we investigated the introduction of a cloud-based video analysis platform called Player Universe (PU) in a Danish football club. Video analysis is not a new performance-enhancing element in sport, but PU is innovative in the way players and coaches produce footage and how....... The implementation and evaluation of PU took place in the FC Copenhagen (FCK) School of Excellence. Findings show that PU can improve youth football players’ reflection skills through consistent video analyses and tagging, that coaches are important as role models and providers of feedback, and that the use...

  7. Video Enhancement Using Adaptive Spatio-Temporal Connective Filter and Piecewise Mapping

    Directory of Open Access Journals (Sweden)

    Shi-Qiang Yang

    2008-06-01

    Full Text Available This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC noise filter and an adaptive piecewise mapping function (APMF. For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises—Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results.

  8. Video Enhancement Using Adaptive Spatio-Temporal Connective Filter and Piecewise Mapping

    Directory of Open Access Journals (Sweden)

    Wang Chao

    2008-01-01

    Full Text Available This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC noise filter and an adaptive piecewise mapping function (APMF. For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises—Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results.

  9. Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption

    Directory of Open Access Journals (Sweden)

    Jeyamala Chandrasekaran

    2015-01-01

    Full Text Available Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES and (ii generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security.

  10. Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption.

    Science.gov (United States)

    Chandrasekaran, Jeyamala; Thiruvengadam, S J

    2015-01-01

    Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security.

  11. Using the CPU and GPU for real-time video enhancement on a mobile computer

    CSIR Research Space (South Africa)

    Bachoo, AK

    2010-09-01

    Full Text Available . In this paper, the current advances in mobile CPU and GPU hardware are used to implement video enhancement algorithms in a new way on a mobile computer. Both the CPU and GPU are used effectively to achieve realtime performance for complex image enhancement...

  12. [Research on the Fluorescence Enhancement Effect of Silver Nanoparticles on the Cholesterol].

    Science.gov (United States)

    Wang, Jing-jing; Wu, Ying; Liu, Ying; Cai, Tina-dong; Sun, Song

    2016-01-01

    Based on traditional fluorescence spectroscopy and metal nanoparticles-enhanced fluorescence technology, this research explores a method of improving the accuracy and resolution of cholesterol detected by fluorescence spectroscopy in human whole blood solution. In experiment, an adult blood with silver nanoparticles is radiated by a laser pulse with wavelength of 407 nm, the fluorescence enhancement effect of cholesterol in blood is studied. The results show that, colloidal silver nanoparticles can enhance the fluorescence intensity of cholesterol in human blood with low concentration significantly. With the increase of the amount of silver colloids, the enhanced efficiency of fluorescence peaks at different positions increases first, and then decreases. However, the strongest enhanced efficiency of fluorescence peaks is different corresponding to different amount of silver colloids. According to the experimental results and the distribution of cholesterol molecules and silver nanoparticles in solution, molecular spatial distribution model is established by theoretical analyses, and the optimal distance for efficient fluorescence enhancement between cholesterol molecules and silver nanoparticles is calculated, the range is 12.19-25 nm, and the result is in good agreement with the theoretical values in other literatures. In summary, the fluorescence intensity of cholesterol in human blood can be enhanced by colloidal silver nanoparticles, and the results also provide a valuable reference on improving the sensitivity and accuracy of cholesterol detection.

  13. Enhancement Of Penetrant-Inspection Images

    Science.gov (United States)

    Wilson, Rhonda C.

    1990-01-01

    Proposed computerized video system processes images of fluorescent dyes absorbed in flaws in welds. Video camera, held by operator or by remote manipulator, views weld illuminated by visible white and ultraviolet light. Images of penetrating dye in cracks and voids in weld joint appear on video monitor. Fluorescent features enhanced by software to facilitate identification of true flaws and record important data.

  14. Video game training enhances cognition of older adults: a meta-analytic study.

    Science.gov (United States)

    Toril, Pilar; Reales, José M; Ballesteros, Soledad

    2014-09-01

    It has been suggested that video game training enhances cognitive functions in young and older adults. However, effects across studies are mixed. We conducted a meta-analysis to examine the hypothesis that training healthy older adults with video games enhances their cognitive functioning. The studies included in the meta-analysis were video game training interventions with pre- and posttraining measures. Twenty experimental studies published between 1986 and 2013, involving 474 trained and 439 healthy older controls, met the inclusion criteria. The results indicate that video game training produces positive effects on several cognitive functions, including reaction time (RT), attention, memory, and global cognition. The heterogeneity test did not show a significant heterogeneity (I(2) = 20.69%) but this did not preclude a further examination of moderator variables. The magnitude of this effect was moderated by methodological and personal factors, including the age of the trainees and the duration of the intervention. The findings suggest that cognitive and neural plasticity is maintained to a certain extent in old age. Training older adults with video games enhances several aspects of cognition and might be a valuable intervention for cognitive enhancement. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Enhancing Astronomy Studies by Using IUCAA Video Lectures in the Student Community

    Science.gov (United States)

    Narayanasamy, N.; Bawdekar, N.

    2015-04-01

    IUCAA is one of the premier astronomy and astrophysics research institutions in India. Research at IUCAA spans a wide range of fields. Lectures delivered by eminent faculty as well as senior professors visiting IUCAA are recorded to benefit students pursuing research in astronomy and astrophysics. The recordings of lectures delivered by IUCAA faculty at other institutions are also available at the library. In order to facilitate access to these lectures by the students, both on-campus and off-campus, an effort to upload these videos to the Network Assisted Server (NAS) was taken up by the IUCAA library staff. The IUCAA library initiated this activity in the year 2010. Video production tools such as Open-EyA are used for creating classroom and blackboard lecture videos in real time. These video files are processed and stored on the server and can also be accessed online. The paper showcases the usefulness of these videos among the student community. Statistics show that the majority of IUCAA students accessing the NAS are viewing the lectures and students can view the video lectures at their convenience. Resources such as these are easy to create and can be used to enhance students' understanding of the subject. It has been observed that students all around the globe extensively use the uploaded video lectures.

  16. Radiative transport in fluorescence-enhanced frequency domain photon migration.

    Science.gov (United States)

    Rasmussen, John C; Joshi, Amit; Pan, Tianshu; Wareing, Todd; McGhee, John; Sevick-Muraca, Eva M

    2006-12-01

    Small animal optical tomography has significant, but potential application for streamlining drug discovery and pre-clinical investigation of drug candidates. However, accurate modeling of photon propagation in small animal volumes is critical to quantitatively obtain accurate tomographic images. Herein we present solutions from a robust fluorescence-enhanced, frequency domain radiative transport equation (RTE) solver with unique attributes that facilitate its deployment within tomographic algorithms. Specifically, the coupled equations describing time-dependent excitation and emission light transport are solved using discrete ordinates (SN) angular differencing along with linear discontinuous finite-element spatial differencing on unstructured tetrahedral grids. Source iteration in conjunction with diffusion synthetic acceleration is used to iteratively solve the resulting system of equations. This RTE solver can accurately and efficiently predict ballistic as well as diffusion limited transport regimes which could simultaneously exist in small animals. Furthermore, the solver provides accurate solutions on unstructured, tetrahedral grids with relatively large element sizes as compared to commonly employed solvers that use step differencing. The predictions of the solver are validated by a series of frequency-domain, phantom measurements with optical properties ranging from diffusion limited to transport limited propagation. Our results demonstrate that the RTE solution consistently matches measurements made under both diffusion and transport-limited conditions. This work demonstrates the use of an appropriate RTE solver for deployment in small animal optical tomography.

  17. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    quantum clusters are subsequently synthesized at the surface of the nanoparticles by photoactivation in presence of Ag+ cations in solution. The photogeneration of these silver quantum clusters leads to a great increase in the fluorescent signal. This photoactivated surface can then be used for sensing...... purposes. It was found, that in presence of a strong nucleophile (such as CN-), silver quantum clusters are dissolved into non-fluorescing AgCN complexes, resulting in a fast and observable decrease of the fluorescent signal....

  18. Enhancing the quality of service of video streaming over MANETs using MDC and FEC

    Science.gov (United States)

    Zang, Weihua; Guo, Rui

    2012-04-01

    Path and server diversities have been used to guarantee reliable video streaming communication over wireless networks. In this paper, server diversity over mobile wireless ad hoc networks (MANETs) is implemented. Particularly, multipoint-to-point transmission together with multiple description coding (MDC) and forward error correction (FEC) technique is used to enhance the quality of service of video streaming over the wireless lossy networks. Additionally, the dynamic source routing (DSR) protocol is used to discover maximally disjoint routes for each sender and to distribute the workload evenly within the MANETs for video streaming applications. NS-2 Simulation study demonstrates the feasibility of the proposed mechanism and it shows that the approach achieves better quality of video streaming, in terms of the playable frame rate, reliability and real-time performance on the receiving side.

  19. Video Enhancement and Dynamic Range Control of HDR Sequences for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Giovanni Ramponi

    2007-01-01

    Full Text Available CMOS video cameras with high dynamic range (HDR output are particularly suitable for driving assistance applications, where lighting conditions can strongly vary, going from direct sunlight to dark areas in tunnels. However, common visualization devices can only handle a low dynamic range, and thus a dynamic range reduction is needed. Many algorithms have been proposed in the literature to reduce the dynamic range of still pictures. Anyway, extending the available methods to video is not straightforward, due to the peculiar nature of video data. We propose an algorithm for both reducing the dynamic range of video sequences and enhancing its appearance, thus improving visual quality and reducing temporal artifacts. We also provide an optimized version of our algorithm for a viable hardware implementation on an FPGA. The feasibility of this implementation is demonstrated by means of a case study.

  20. Enhanced yellow fluorescent protein photoconversion to a cyan fluorescent protein-like species is sensitive to thermal and diffusion conditions

    Science.gov (United States)

    Raarup, Merete K.; Fjorback, Anja W.; Jensen, Stig M. R.; Müller, Heidi K.; Kjærgaard, Maj M.; Poulsen, Hanne; Wiborg, Ove; Nyengaard, Jens R.

    2009-05-01

    Ongoing research efforts into fluorescent proteins continuously generates new mutation variants, some of which can become photoactivated or photoconverted to a red-shifted color upon intense UV or blue light illumination. We report a built-in propensity for enhanced yellow fluorescent protein (EYFP) to undergo irreversible photoconversion into a cyan fluorescent protein (CFP)-like species upon green-light illumination. The photoconversion is thermally activated, happens mainly in fixed, nonsealed cell samples, and may result in a very bright and relatively photostable CFP-like species. The photoconversion efficiency depends on the sample diffusivity and is much increased in dehydrated, oxygenated samples. Given the large variations in conversion efficiency observed among samples as well as within a sample, photoconversion cannot be appropriately accounted for in the analysis of acceptor photobleaching fluorescence resonance energy transfer (pbFRET) images and should rather be completely avoided. Thus, samples should always be checked and discarded if photoconversion is observed.

  1. Fluorescence enhancement on silver nanoplates at the single- and sub-nanoparticle level

    Science.gov (United States)

    Shen, Yangbin; He, Ting; Wang, Wenhui; Zhan, Yulu; Hu, Xin; Yuan, Binfang; Zhou, Xiaochun

    2015-11-01

    The fluorescence intensity of a fluorescent molecule can be strongly enhanced when the molecule is near a metal nanoparticle. Hence, fluorescence enhancement has a lot of applications in the fields of biology and medical science. It is necessary to understand the mechanism for such an attractive effect, if we intend to develop better materials to improve the enhancement. In this paper, we directly image the diverse patterns of fluorescence enhancement on single Ag nanoplates by super-resolution microscopy. The research reveals that the edges or tips of the Ag nanoplate usually show a much higher ability of fluorescence enhancement than the mid part. The spatial distribution of fluorescence enhancement strongly depends on the size of the Ag nanoplate as well as the angle between the Ag nanoplate and the incident light. The experimental results above are essentially consistent with the simulated electric field by the theory of localized surface plasmon resonance (LSPR), but some irregularities still exist. We also find that fluorescence enhancement on small Ag nanoplates is mainly due to in-plane dipole plasmon resonance, while the enhancement on large Ag nanoplates is mainly due to in-plane quadrupole plasmon resonance. Furthermore, in-plane quadrupole resonance of large plates has a higher ability to enhance the fluorescence signal than the in-plane dipole plasmon resonance. This research provides many valuable insights into the fluorescence enhancement at the single- and sub-nanoparticle level, and will be very helpful in developing better relevant materials.The fluorescence intensity of a fluorescent molecule can be strongly enhanced when the molecule is near a metal nanoparticle. Hence, fluorescence enhancement has a lot of applications in the fields of biology and medical science. It is necessary to understand the mechanism for such an attractive effect, if we intend to develop better materials to improve the enhancement. In this paper, we directly image the

  2. On the Enhancement of Audio and Video in Mobile Equipment

    OpenAIRE

    Rossholm, Andreas

    2006-01-01

    Use of mobile equipment has increased exponentially over the last decade. As use becomes more widespread so too does the demand for new functionalities. The limited memory and computational power of many mobile devices has proven to be a challenge resulting in many innovative solutions and a number of new standards. Despite this, there is often a requirement for additional enhancement to improve quality. The focus of this thesis work has been to perform enhancement within two different areas;...

  3. Solvent-dependent fluorescence enhancement and piezochromism of a carbazole-substituted naphthopyran

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihui; Wang, Aixia [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Wang, Guang, E-mail: wangg923@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Munyentwari, Alexis [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Zhou, Yihan, E-mail: yhzhou@ciac.ac.cn [National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-09-15

    A novel carbazole-substituted naphthopyran, 3,3-bis-(4-carbazolylphenyl)-[3H]-naphtho[2,1-b]pyran (CzNP) was designed and synthesized. The new compound exhibited normal photochromism in dichloromethane solution and the UV irradiation did not influence its fluorescence. On the contrary, the fluorescence of CzNP in N,N-dimethylformamide (DMF) was intensively enhanced to 29 times after 60 min of the UV irradiation and this enhanced fluorescence can be quenched by addition of triethylamine (TEA). The study of enhanced extent of fluorescence of CzNP in solvents with different polarities and in mixed solvents demonstrated that the enhanced fluorescence is dependent on the polarity of solvents. The larger the polarity of solvent was, the stronger was the fluorescence of CzNP. CzNP also exhibited piezochromic performance and the pressure led to the cleavage of the C–O bond of pyran ring. - Highlights: • A carbazole-substituted photochromic naphthopyran was designed and synthesized. • The fluorescence was enhanced under the existence of DMF and UV irradiation. • The polarity of solvent was the dominating factor to affect the fluorescence. • The new compound also displayed piezochromic performance.

  4. Student-Designed Public Service Announcement (PSA) Videos to Enhance Motivation and Engagement

    Science.gov (United States)

    Abrams, Kenneth

    2012-01-01

    Educators often focus on enhancing student motivation and engagement. This article describes an activity with these aims, in which undergraduates (a) learn about theories and research on means of persuasion and (b) in small groups design and record a public service announcement (PSA) video, write a brief paper that outlines the theories used to…

  5. Enhancing Negotiation of Meaning through Task Familiarity Using Subtitled Videos in an Online TBLL Environment

    Science.gov (United States)

    Arslanyilmaz, Abdurrahman; Pedersen, Susan

    2010-01-01

    This study examines the effects of task familiarity through the use of subtitled videos on negotiation of meaning in an online task-based language learning (TBLL) environment. It explores the amount of negotiation of meaning produced by non-native speakers (NNSs) aimed at improving input comprehension to enhance second language acquisition. Ten…

  6. Effective and efficient learning in the operating theater with intraoperative video-enhanced surgical procedure training

    NARCIS (Netherlands)

    van Det, M.J.; Meijerink, W.J.; Hoff, C.; Middel, B.; Pierie, J.P.

    INtraoperative Video Enhanced Surgical procedure Training (INVEST) is a new training method designed to improve the transition from basic skills training in a skills lab to procedural training in the operating theater. Traditionally, the master-apprentice model (MAM) is used for procedural training

  7. Vocabulary Learning through Viewing Video: The Effect of Two Enhancement Techniques

    Science.gov (United States)

    Montero Perez, Maribel; Peters, Elke; Desmet, Piet

    2018-01-01

    While most studies on L2 vocabulary learning through input have addressed learners' vocabulary uptake from written text, this study focuses on audio-visual input. In particular, we investigate the effects of enhancing video by (1) adding different types of L2 subtitling (i.e. no captioning, full captioning, keyword captioning, and glossed keyword…

  8. Learning from Errors in Dual Vocational Education: Video-Enhanced Instructional Strategies

    Science.gov (United States)

    Cattaneo, Alberto A. P.; Boldrini, Elena

    2017-01-01

    Purpose: Starting from the identification of some theoretically driven instructional principles, this paper presents a set of empirical cases based on strategies to learn from errors. The purpose of this paper is to provide first evidence about the feasibility and the effectiveness for learning of video-enhanced error-based strategies in…

  9. Enhancing Vocabulary Learning through Captioned Video: An Eye-Tracking Study

    Science.gov (United States)

    Perez, Maribel Montero; Peters, Elke; Desmet, Piet

    2015-01-01

    This study investigates the effect of two attention-enhancing techniques on L2 students' learning and processing of novel French words (i.e., target words) through video with L2 subtitles or captions. A combination of eye-movement data and vocabulary tests was gathered to study the effects of Type of Captioning (full or keyword captioning) and…

  10. Cavity induced fluorescence enhancement of graphitic carbon nitride submicron flakes

    Science.gov (United States)

    Veluthandath, Aneesh Vincent; Reddy Bongu, Sudhakara; Ramaprabhu, Sundara; Ballabh Bisht, Prem

    2017-01-01

    Graphitic carbon nitride (g-C3N4), which is structurally analogous to graphene, shows excellent fluorescent yield. Sharp ripple structure is observed in the fluorescence spectra of g-C3N4 flakes grafted on the surface of single polymethyl methacrylate (PMMA) microspheres. The intensities and the number of modes of these structures nonlinearly vary with the size of micro-cavity and the coupled power. Theoretical simulations carried out with the help of Mie theory show that the ripple structure is due to modulation of the fluorescence by the whispering gallery modes (WGMs) of the spherical microcavity.

  11. Video Game Training Does Not Enhance Cognitive Ability: A Comprehensive Meta-Analytic Investigation.

    Science.gov (United States)

    Sala, Giovanni; Tatlidil, K Semir; Gobet, Fernand

    2017-12-14

    As a result of considerable potential scientific and societal implications, the possibility of enhancing cognitive ability by training has been one of the most influential topics of cognitive psychology in the last two decades. However, substantial research into the psychology of expertise and a recent series of meta-analytic reviews have suggested that various types of cognitive training (e.g., working memory training) benefit performance only in the trained tasks. The lack of skill generalization from one domain to different ones-that is, far transfer-has been documented in various fields of research such as working memory training, music, brain training, and chess. Video game training is another activity that has been claimed by many researchers to foster a broad range of cognitive abilities such as visual processing, attention, spatial ability, and cognitive control. We tested these claims with three random-effects meta-analytic models. The first meta-analysis (k = 310) examined the correlation between video game skill and cognitive ability. The second meta-analysis (k = 315) dealt with the differences between video game players and nonplayers in cognitive ability. The third meta-analysis (k = 359) investigated the effects of video game training on participants' cognitive ability. Small or null overall effect sizes were found in all three models. These outcomes show that overall cognitive ability and video game skill are only weakly related. Importantly, we found no evidence of a causal relationship between playing video games and enhanced cognitive ability. Video game training thus represents no exception to the general difficulty of obtaining far transfer. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Energy Conservation Using Scotopically Enhanced Fluorescent Lighting In An Office Environment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-03-01

    This study was conducted in a recently built and occupied office building to determine whether the energy savings benefits of scotopically enhanced fluorescent lighting can be achieved while maintaining user acceptability.

  13. How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps [arXiv

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Mortensen, N. Asger; Wubs, Martijn

    2017-01-01

    Nonclassical modifications of plasmon-assisted fluorescence enhancement are theoretically explored by placing dipole emitters at the narrow gaps encountered in canonical plasmonic architectures, namely dimers and trimers of different metallic nanoparticles. Through detailed simulations, in compar...

  14. Imaging of surfaces by concurrent surface plasmon resonance and surface plasmon resonance-enhanced fluorescence.

    Directory of Open Access Journals (Sweden)

    Rahber Thariani

    Full Text Available Surface plasmon resonance imaging and surface plasmon induced fluorescent are sensitive tools for surface analysis. However, existing instruments in this area have provided limited capability for concurrent detection, and may be large and expensive. We demonstrate a highly cost-effective system capable of concurrent surface plasmon resonance microscopy (SPRM and surface plasmon resonance-enhanced fluorescence (SPRF imaging, allowing for simultaneous monitoring of reflectivity and fluorescence from discrete spatial regions. The instrument allows for high performance imaging and quantitative measurements with surface plasmon resonance, and surface plasmon induced fluorescence, with inexpensive off-the-shelf components.

  15. Enhancement of Single Molecule Fluorescence Signals by Colloidal Silver Nanoparticles in Studies of Protein Translation

    Science.gov (United States)

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S.; Goldman, Yale E.

    2011-01-01

    Metal enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold respectively. Fluorescence intensity fluctuations above shot noise, at 0.1 – 5 Hz, were greater on silver particles. Overall signal to noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G. PMID:21158483

  16. Rare Earth Fluorescent Nanomaterials for Enhanced Development of Latent Fingerprints.

    Science.gov (United States)

    Wang, Meng; Li, Ming; Yu, Aoyang; Wu, Jian; Mao, Chuanbin

    2015-12-30

    The most commonly found fingerprints at crime scenes are latent and, thus, an efficient method for detecting latent fingerprints is very important. However, traditional developing techniques have drawbacks such as low developing sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we have synthesized two kinds of rare earth fluorescent nanomaterials, including the fluoresce red-emitting YVO4:Eu nanocrystals and green-emitting LaPO4:Ce,Tb nanobelts, and then used them as fluorescent labels for the development of latent fingerprints with high sensitivity, high contrast, high selectivity, high efficiency, and low background interference, on various substrates including noninfiltrating materials, semi-infiltrating materials, and infiltrating materials.

  17. Highly sensitive synchronous fluorescence measurement of danofloxacin in pharmaceutical and milk samples using aluminium (III) enhanced fluorescence.

    Science.gov (United States)

    Kaur, Kuldeep; Saini, Shivender; Singh, Baldev; Malik, Ashok Kumar

    2012-09-01

    A simple, rapid and sensitive constant wavelength synchronous fluorescence method is developed for the determination of danofloxacin (DAN) in pharmaceutical formulations and its residue in milk based on Al(III) enhanced fluorescence. The synchronous fluorescence intensity of the system is measured at 435 nm using ∆ λ = 80 nm and an excitation wavelength of 280 nm. A good linear relationship between enhanced fluorescence intensity and DAN concentration is obtained in the range of 3-100 ng mL(-1)(r (2) = 0.9991). The limit of detection (LOD, S/N = 3) of the present method is 0.9 ng mL(-1). The proposed method can be successfully applied to the determination of DAN in pharmaceutical formulations and in milk without serious interferences from common excipients, metal ions and other co-existing substances. The method can be used as a rapid screening to judge whether the DAN residues in milk exceed Maximum Residue Limits (MRLs) or not.

  18. Video Game Training Enhances Visuospatial Working Memory and Episodic Memory in Older Adults

    Science.gov (United States)

    Toril, Pilar; Reales, José M.; Mayas, Julia; Ballesteros, Soledad

    2016-01-01

    In this longitudinal intervention study with experimental and control groups, we investigated the effects of video game training on the visuospatial working memory (WM) and episodic memory of healthy older adults. Participants were 19 volunteer older adults, who received 15 1-h video game training sessions with a series of video games selected from a commercial package (Lumosity), and a control group of 20 healthy older adults. The results showed that the performance of the trainees improved significantly in all the practiced video games. Most importantly, we found significant enhancements after training in the trained group and no change in the control group in two computerized tasks designed to assess visuospatial WM, namely the Corsi blocks task and the Jigsaw puzzle task. The episodic memory and short-term memory of the trainees also improved. Gains in some WM and episodic memory tasks were maintained during a 3-month follow-up period. These results suggest that the aging brain still retains some degree of plasticity, and that video game training might be an effective intervention tool to improve WM and other cognitive functions in older adults. PMID:27199723

  19. Video game training enhances visuospatial working memory and episodic memory in older adults

    Directory of Open Access Journals (Sweden)

    Pilar eToril

    2016-05-01

    Full Text Available In this longitudinal intervention study with experimental and control groups, we investigated the effects of video game training on the visuospatial working memory and episodic memory of healthy older adults. Participants were 19 volunteer older adults, who received 15 1-hr video game training sessions with a series of video games selected from a commercial package (Lumosity, and a control group of 20 healthy older adults. The results showed that the performance of the trainees improved significantly in all the practiced video games. Most importantly, we found significant enhancements after training in the trained group and no change in the control group in two computerized tasks designed to assess visuospatial working memory, namely the Corsi blocks task and the Jigsaw puzzle task. The episodic memory and short-term memory of the trainees also improved. Gains in some working memory and episodic memory tasks were maintained during a 3-month follow-up period. These results suggest that the aging brain still retains some degree of plasticity, and that video game training might be an effective intervention tool to improve working memory and other cognitive functions in older adults.

  20. Video Game Training Enhances Visuospatial Working Memory and Episodic Memory in Older Adults.

    Science.gov (United States)

    Toril, Pilar; Reales, José M; Mayas, Julia; Ballesteros, Soledad

    2016-01-01

    In this longitudinal intervention study with experimental and control groups, we investigated the effects of video game training on the visuospatial working memory (WM) and episodic memory of healthy older adults. Participants were 19 volunteer older adults, who received 15 1-h video game training sessions with a series of video games selected from a commercial package (Lumosity), and a control group of 20 healthy older adults. The results showed that the performance of the trainees improved significantly in all the practiced video games. Most importantly, we found significant enhancements after training in the trained group and no change in the control group in two computerized tasks designed to assess visuospatial WM, namely the Corsi blocks task and the Jigsaw puzzle task. The episodic memory and short-term memory of the trainees also improved. Gains in some WM and episodic memory tasks were maintained during a 3-month follow-up period. These results suggest that the aging brain still retains some degree of plasticity, and that video game training might be an effective intervention tool to improve WM and other cognitive functions in older adults.

  1. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    KAUST Repository

    Xie, Fang

    2013-05-23

    Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based detection techniques. Metal induced fluorescence enhancement offers the possibility of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2 orders of magnitude is obtained by the nanoscale control of the Ag nanostructure dimensions and interparticle distance. These Ag nanostructures also enhanced fluorescence from a dye with very high quantum yield (7.8 fold for Alexa Fluor 488, quantum efficiency (Qy) = 0.92). A combination of greatly enhanced excitation and an increased radiative decay rate, leading to an associated enhancement of the quantum efficiency leads to the large enhancement. These results show the potential of Ag nanostructures as metal induced fluorescence enhancement (MIFE) substrates for dyes in the NIR "biological window" as well as the visible region. Ag nanostructured arrays fabricated by colloidal lithography thus show great potential for NIR dye-based biosensing applications. [Figure not available: see fulltext.] © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  2. Enhanced extraction efficiency of fluorescent SiC by surface nanostructuring

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Yakimova, Rositza

    2012-01-01

    Antireflective structures were fabricated on fluorescent 6H-SiC for white LEDs to enhance the extraction efficiency. Average surface reflectance decreased from 22.1% to 5.1% over a broad range, and luminescence intensity was enhanced by 41%.......Antireflective structures were fabricated on fluorescent 6H-SiC for white LEDs to enhance the extraction efficiency. Average surface reflectance decreased from 22.1% to 5.1% over a broad range, and luminescence intensity was enhanced by 41%....

  3. Fluorescence-enhancement with different ionic inputs in a cryptand ...

    Indian Academy of Sciences (India)

    In the absence of a metal ion, weak fluorescence is observed upon excitation of the anthryl group owing to efficient photo-induced electron transfer (PET) of the lone pair of N attached to the anthryl group. However, when a metal salt is added, the lone pair is engaged, thus in blocking of the PET and leading to recovery of ...

  4. Optimizing plasmon-enhanced fluorescence with nonlocal metallic nanospheres

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Stefanou, Nikolaos; Wubs, Martijn

    The fluorescence signal η of molecules coupled to plasmonic nanoparticles (NPs) is optimized through extended simulations, taking the metal nonlocal optical response fully into account. Solid Au and Ag nanospheres, as well as SiO2/Au(Ag) core/shell NPs (of total radius R), are engineered...

  5. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, Jörg P.; Mogensen, K. B.

    2014-01-01

    quantum clusters are subsequently synthesized at the surface of the nanoparticles by photoactivation in presence of Ag+ cations in solution. The photogeneration of these silver quantum clusters leads to a great increase in the fluorescent signal. This photoactivated surface can then be used for sensing...

  6. Real-time visual enhancement for infrared small dim targets in video

    Science.gov (United States)

    Sun, Xiaoliang; Liu, Xiaolin; Tang, Zhixuan; Long, Gucan; Yu, Qifeng

    2017-06-01

    Visual enhancement for infrared small dim targets is a standing problem in infrared image processing. Existing approaches cannot enhance the target well and suppress the background simultaneously, especially for targets which are so faint that they are hardly visible. This paper proposes a novel real-time visual enhancement algorithm for infrared small dim targets in video by introducing temporal cues. In this work, Dynamic Programming Algorithm (DPA) is used to detect the target's trajectory in the video and the target is enhanced through energy accumulation along the trajectory. The shape prior of the small dim target is adopted for background suppression and adaptive merging. Experimental results on real infrared small dim target videos indicate that the proposed algorithm can improve the visual quality of these types of images notably, especially for cases in which the target is hardly visible. In addition, the proposed algorithm takes on average 8.35 ms to process a 320 ∗ 256 image, and thus meets the needs of real-time applications.

  7. A new error resilience method for FGS video enhancement bit-stream

    Science.gov (United States)

    Ma, Ran; Zhang, Zhao-yang; An, Ping

    2006-05-01

    Video streaming over the Internet usually encounters with bandwidth variations and packet losses, which impacted badly on the reconstructed video quality. Fine Granularity Scalability (FGS) can well provide bit-rate adaptability to different bandwidth conditions over the Internet, due to its fine granular and error resilience. However, the effective solution of packet losses is Multiple Description Coding (MDC), but a great deal of redundancy information is brought up. For an FGS video bit-stream, the base layer is usually very small and of high importance, error-free transmission could be achieved through classical error resilience technique. As a result, the overall streaming quality is mostly dependent on the enhancement layer. Moreover, it is worthy of note that the different bit-planes are of different importance, which are suitable to unequal protection (UEP) strategy. So, a new joint MDC and UEP method is proposed to protect the enhancement layer in this paper. In the proposed method, the MDC encoder/decoder is embedded into the normal enhancement layer encoder/decoder. By considering of the unequal protection of bit-plane and the redundancy of MDC, the two most significant bit-planes adopt the MDC-based strategy. While, the remaining bit-planes only encoded by normal enhancement layer coding system. Experimental results are demonstrated to testify the efficiency of our proposed method.

  8. Self-assembled nanocomposite film with tunable enhanced fluorescence for the detection of DNA.

    Science.gov (United States)

    Zhu, Xi; Wang, Xiaoyu; He, Fang; Tang, Fu; Li, Lidong

    2015-01-21

    In this study, a simple and environmentally friendly, silver nanocomposite film was prepared via the in situ reduction of silver ions in self-assembled chitosan (CS)/sodium alginate film matrixes. Negatively charged DNA containing the fluorescent intercalator acriflavine (Acf) was assembled on the surface of the silver nanocomposite film, to facilitate the detection of DNA. A tunable fluorescence enhancement was achieved for the Acf in the silver nanocomposite film simply by changing the thickness of the interlayer between the DNA and the silver nanocomposite film. Using the interlayer prepared by an assembly of poly(acrylic acid) and CS, a significant enhancement in the fluorescence of Acf was obtained. Owing to the ability of Acf to intercalate into DNA, this hybrid system with an enhanced Acf fluorescence could be used to monitor the template-independent DNA elongation process in a facile, high-efficiency, label-free fashion.

  9. Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains.

    Science.gov (United States)

    Sanchez, Christopher A

    2012-02-01

    Although previous research has demonstrated that performance on visuospatial assessments can be enhanced through relevant experience, an unaddressed question is whether such experience also produces a similar increase in target domains (such as science learning) where visuospatial abilities are directly relevant for performance. In the present study, participants completed either spatial or nonspatial training via interaction with video games and were then asked to read and learn about the geologic topic of plate tectonics. Results replicate the benefit of playing appropriate video games in enhancing visuospatial performance and demonstrate that this facilitation also manifests itself in learning science topics that are visuospatial in nature. This novel result suggests that visuospatial training not only can impact performance on measures of spatial functioning, but also can affect performance in content areas in which these abilities are utilized.

  10. Engineering and characterization of an enhanced fluorescent protein voltage sensor.

    Directory of Open Access Journals (Sweden)

    Dimitar Dimitrov

    Full Text Available BACKGROUND: Fluorescent proteins have been used to generate a variety of biosensors to optically monitor biological phenomena in living cells. Among this class of genetically encoded biosensors, reporters for membrane potential have been a particular challenge. The use of presently known voltage sensor proteins is limited by incorrect subcellular localization and small or absent voltage responses in mammalian cells. RESULTS: Here we report on a fluorescent protein voltage sensor with superior targeting to the mammalian plasma membrane and high responsiveness to membrane potential signaling in excitable cells. CONCLUSIONS AND SIGNIFICANCE: This biosensor, which we termed VSFP2.1, is likely to lead to new methods of monitoring electrically active cells with cell type specificity, non-invasively and in large numbers, simultaneously.

  11. Video-Enhanced Lesson Observation as a Source of Multiple Modes of Data for School Leadership: A Videographic Approach

    Science.gov (United States)

    Hidson, Elizabeth

    2018-01-01

    A growing body of literature recognizes the affordances of video in education, especially in relation to lesson observation and reflection as part of teachers' initial teacher education and continuing professional development. Minimal attention has been paid to the outcomes of video-enhanced observation as a source of multiple modes of data for…

  12. pH-Responsive Fluorescence Enhancement in Graphene Oxide-Naphthalimide Nanoconjugates: A Fluorescence Turn-On Sensor for Acetylcholine.

    Science.gov (United States)

    Mangalath, Sreejith; Abraham, Silja; Joseph, Joshy

    2017-08-22

    A pH-sensitive, fluorescence "turn-on" sensor based on a graphene oxide-naphthalimide (GO-NI) nanoconjugate for the detection of acetylcholine (ACh) by monitoring the enzymatic activity of acetylcholinesterase (AChE) in aqueous solution is reported. These nanoconjugates were synthesized by covalently anchoring picolyl-substituted NI derivatives on the GO/reduced GO surface through a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling strategy, and the morphological and photophysical properties were studied in detail. Synergistic effects of π-π interactions between GO and the NI chromophore, and efficient photoinduced electron- and energy-transfer processes, were responsible for the strong quenching of fluorescence of these nanoconjugates, which were perturbed under acidic pH conditions, leading to significant enhancement of fluorescence emission. This nanoconjugate was successfully employed for the efficient sensing of pH changes caused by the enzymatic activity of AChE, thereby demonstrating its utility as a fluorescence turn-on sensor for ACh in the neurophysiological range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhancement of fluorescent emission in photonic crystal film and application in photocatalysis

    Science.gov (United States)

    Zhu, Cheng; Zhou, Wenying; Fang, Jiaojiao; Ni, Yaru; Fang, Liang; Lu, Chunhua; Xu, Zhongzi; Kang, Zhitao

    2018-01-01

    Fluorescent photonic crystal films composed of monodisperse NaYF4:15Yb,0.5Tm@SiO2 (where 15 and 0.5 represent the mole percentage of reactants) core–shell spheres were successfully fabricated and applied in photocatalysis. The core–shell spheres were prepared using a modified Stober method, and fluorescent photonic crystal films were fabricated via a simple self-assembly method. The morphologies, structures and upconversion fluorescent properties of the fluorescent photonic crystal films with different photonic band gaps were characterized. Moreover, their photocatalytic capability in decomposing rhodamine B using near-infrared light was studied. Results indicate that the band edge effect plays a critical role in the enhancement of short wave emission intensity of fluorescent photonic crystal films. Specifically, in comparison to the reference sample without a band edge effect, the 363 nm emission intensity was enhanced by 5.97 times, while the percentage of UV upconversion emission was improved by 6.23%. In addition, the 451 nm emission intensity was enhanced by 5.81 times, and the percentage of visible upconversion emission was improved by 8.88%. Furthermore, fluorescent photonic crystal films with enhanced short wave emission exhibited great photocatalytic performance in the degradation of rhodamine B aqueous solutions under near-infrared light.

  14. Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design

    Directory of Open Access Journals (Sweden)

    Jérôme Wenger

    2012-01-01

    Full Text Available Plasmonic antennas offer promising opportunities to control the emission of quantum objects. As a consequence, the fluorescence enhancement factor is widely used as a figure of merit for a practical antenna realization. However, the fluorescence enhancement factor is not an intrinsic property of the antenna. It critically depends on several parameters, some of which are often disregarded. In this contribution, I explore the influence of the setup collection efficiency, emitter's quantum yield, and excitation intensity. Improperly setting these parameters may significantly alter the enhancement values, leading to potential misinterpretations. The discussion is illustrated by an antenna example of a nanoaperture surrounded by plasmonic corrugations.

  15. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging

    Science.gov (United States)

    Zhu, Jinbo; Zhang, Libing; Teng, Ye; Lou, Baohua; Jia, Xiaofang; Gu, Xiaoxiao; Wang, Erkang

    2015-07-01

    Guanine proximity based fluorescence enhanced DNA-templated silver nanoclusters (AgNCs) have been reported and applied for bioanalysis. Herein, we studied the G-quadruplex enhanced fluorescence of DNA-AgNCs and gained several significant conclusions, which will be helpful for the design of future probes. Our results demonstrate that a G-quadruplex can also effectively stimulate the fluorescence potential of AgNCs. The major contribution of the G-quadruplex is to provide guanine bases, and its special structure has no measurable impact. The DNA-templated AgNCs were further analysed by native polyacrylamide gel electrophoresis and the guanine proximity enhancement mechanism could be visually verified by this method. Moreover, the fluorescence emission of C3A (CCCA)4 stabilized AgNCs was found to be easily and effectively enhanced by G-quadruplexes, such as T30695, AS1411 and TBA, especially AS1411. Benefiting from the high brightness of AS1411 enhanced DNA-AgNCs and the specific binding affinity of AS1411 for nucleolin, the AS1411 enhanced AgNCs can stain cancer cells for bioimaging.Guanine proximity based fluorescence enhanced DNA-templated silver nanoclusters (AgNCs) have been reported and applied for bioanalysis. Herein, we studied the G-quadruplex enhanced fluorescence of DNA-AgNCs and gained several significant conclusions, which will be helpful for the design of future probes. Our results demonstrate that a G-quadruplex can also effectively stimulate the fluorescence potential of AgNCs. The major contribution of the G-quadruplex is to provide guanine bases, and its special structure has no measurable impact. The DNA-templated AgNCs were further analysed by native polyacrylamide gel electrophoresis and the guanine proximity enhancement mechanism could be visually verified by this method. Moreover, the fluorescence emission of C3A (CCCA)4 stabilized AgNCs was found to be easily and effectively enhanced by G-quadruplexes, such as T30695, AS1411 and TBA, especially

  16. Surface-enhanced fluorescence in metal nanoparticle-doped polymer nanofibers via waveguiding excitation

    Science.gov (United States)

    Yu, Jiaxin; Liao, Feng; Liu, Fang; Gu, Fuxing; Zeng, Heping

    2017-04-01

    We report a waveguiding excitation-based approach for surface-enhanced fluorescence. As high as 17-fold enhanced fluorescence intensity of Rhodamine 6G molecules is realized by gold nanoparticles embedded in polymer nanofibers. The enhancement results not only from the spatial confinement of light by the nanofibers but also from the wavelength match among the excitation laser, the localized surface plasmon resonance of nanoparticles, and the absorption band of dyes. On the basis of the enhancement and high-efficient waveguiding regime, the required excitation power for detectable fluorescence is decreased to the 20 nW level, which is about 50 times lower than that by free-space excitation. These fluorophore/nanoparticle-doped nanofibers may find applications in compact and energy-efficient optical devices of chemical analysis and biosensing.

  17. Using tablet technology and instructional videos to enhance preclinical dental laboratory learning.

    Science.gov (United States)

    Gadbury-Amyot, Cynthia C; Purk, John H; Williams, Brian Joseph; Van Ness, Christopher J

    2014-02-01

    The purpose of this pilot study was to examine if tablet technology with accompanying instructional videos enhanced the teaching and learning outcomes in a preclinical dental laboratory setting. Two procedures deemed most challenging in Operative Dentistry II were chosen for the development of instructional videos. A random sample of thirty students was chosen to participate in the pilot. Comparison of faculty evaluations of the procedures between the experimental (tablet) and control (no tablet) groups resulted in no significant differences; however, there was a trend toward fewer failures in the experimental group. Examination of the ability to accurately self-assess was compared by exploring correlations between faculty and student evaluations. While correlations were stronger in the experimental group, the control group had significant correlations for all three procedures, while the experimental group had significant correlations on only two of the procedures. Students strongly perceived that the tablets and videos helped them perform better and more accurately self-assess their work products. Students did not support requiring that they purchase/obtain a specific brand of technology. As a result of this pilot study, further development of ideal and non-ideal videos are in progress, and the school will be implementing a "Bring Your Own Device" policy with incoming students.

  18. Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, Ł. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Czechowski, N. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Piatkowski, D. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Litvin, R. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Mackowski, S. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Brotosudarmo, T. H. P. [Ma Chung Univ., Malang (Indonesia). Ma Chung Research Center for Photosynthetic Pigments; Pichler, S. [Univ. of Glasgow, Scotland (United Kingdom). Inst. of Molecular, Cell and Systems Biology; Cogdell, R. J. [Univ. Linz (Austria). Inst. fur Halbleiter-und Festkorperphysik; Heiss, W. [Univ. Linz (Austria). Inst. fur Halbleiter-und Festkorperphysik

    2011-10-24

    The influence of plasmon excitations in spherical gold nanoparticles on the optical properties of a light-harvesting complex 2 (LH2) from the purple bacteria Rhodopseudomonas palustris has been studied. Systematic analysis is facilitated by controlling the thickness of a silica layer between Au nanoparticles and LH2 complexes. Fluorescence of LH2 complexes features substantial increase when these complexes are separated by 12 nm from the gold nanoparticles. At shorter distances, non-radiative quenching leads to a decrease of fluorescence emission. The enhancement of fluorescence originates predominantly from an increase of absorption of pigments comprising the LH2 complex.

  19. Fluorescence Enhancement of Fluorophores Tethered to Different Sized Silver Colloids Deposited on Glass Substrate

    Science.gov (United States)

    Lukomska, Joanna; Malicka, Joanna; Gryczynski, Ignacy; Leonenko, Zoya; Lakowicz, Joseph R.

    2009-01-01

    We studied fluorescence enhancements of fluorescein tethered to silver colloids of different size. Thiolated 23-mer oligonucleotide (ss DNA-SH) was bound selectively to silver colloids deposited on 3-aminopropyltriethoxysilane (APS)-treated quartz slides. Fluoresceinlabeled complementary oligonucleotide (ss Fl-DNA) was added in an amount significantly lower than the amount of unlabeled DNA tethered to the colloids. The hybridization kinetics, observed as an increase in fluorescence emission, on small (30-40 nm) and large (> 120 nm) colloids were similar. However, the final fluorescence intensity of the sample with large colloids was about 50% higher than that observed for the sample with small colloids. The reference sample without ss DNA-SH was used to estimate the fluorescence enhancements of fluorescein tethered to the small colloids (E = 2.7) and to the large colloids (E = 4.1) due to its steady fluorescence signal. The proposed method, based on controlled hybridization with minimal amount of fluorophore labeled ss DNA, can be used to reliably estimate the fluorescence enhancements on any silver nanostructures. PMID:15578680

  20. Distance dependent fluorescence quenching and enhancement of gold nanoclusters by gold nanoparticles.

    Science.gov (United States)

    Qin, Haiyan; Ma, Diao; Du, Jianxiu

    2018-01-15

    The interaction between fluorescent gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) has been investigated. It was observed that the fluorescence of AuNCs was remarkably quenched when direct contact with AuNPs. The fluorescence quenching of AuNCs by AuNPs was dynamic quenching and exhibited size-dependent property. A larger size of AuNPs displayed a stronger quenching effect and gave a larger quenching constant. When a silica spacer shell was introduced between AuNPs and AuNCs, a fluorescence enhancement of AuNCs by Au@SiO2 NPs was observed. The fluorescence enhancement was strongly dependent on the separation distance between the AuNPs and the AuNCs. A maximal enhancement of 3.72 times was observed when Au@SiO2 NPs have a silica shell thickness of 12nm. This nanocomposite consisting of relatively nontoxic AuNPs and AuNCs may have a potential application in developing novel fluorescent sensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The use of fluorescence enhancement to improve the microscopic diagnosis of falciparum malaria

    Directory of Open Access Journals (Sweden)

    Liu Paul

    2007-07-01

    Full Text Available Abstract Background Giemsa staining of thick blood smears remains the "gold standard" for detecting malaria. However, this method is not very good for diagnosing low-level infections. A method for the simultaneous staining of Plasmodium-parasitized culture and blood smears for both bright field and fluorescence was developed and its ability to improve detection efficiency tested. Methods A total of 22 nucleic acid-specific fluorescent dyes were tested for their ability to provide easily observable staining of Plasmodium falciparum-parasitized red blood cells following Giemsa staining. Results Of the 14 dyes that demonstrated intense fluorescence staining, only SYBR Green 1, YOYO-1 and ethidum homodimer-2 could be detected using fluorescent microscopy, when cells were first stained with Giemsa. Giemsa staining was not effective when applied after the fluorescent dyes. SYBR Green 1 provided the best staining in the presence of Giemsa, as a very high percentage of the parasitized cells were simultaneously stained. When blood films were screened using fluorescence microscopy the parasites were more readily detectable due to the sharp contrast between the dark background and the specific, bright fluorescence produced by the parasites. Conclusion The dual staining method reported here allows fluorescence staining, which enhances the reader's ability to detect parasites under low parasitaemia conditions, coupled with the ability to examine the same cell under bright field conditions to detect the characteristic morphology of Plasmodium species that is observed with Giemsa staining.

  2. A Unified Approach to Restoration, Deinterlacing and Resolution Enhancement in Decoding MPEG-2 Video

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Martins, Bo

    2002-01-01

    approach to restoration, chrominance upsampling, deinterlacing, and resolution enhancement. A decoded MPEG-2 sequence for interlaced standard definition television (SDTV) in 4:2:0 is converted to: (1) improved quality interlaced SDTV in 4:2:0; (2) interlaced SDTV in 4:4:4; (3) progressive SDTV in 4:4:4; (4......The quality and spatial resolution of video can be improved by combining multiple pictures to form a single superresolution picture. We address the special problems associated with pictures of variable but somehow parameterized quality such as MPEG-decoded video. Our algorithm provides a unified......) interlaced high-definition TV (HDTV) in 4:2:0; (5) progressive HDTV in 4:2:0. These conversions also provide features such as freeze frame and zoom. The algorithm is mainly targeted at bit rates of 4-8 Mb/s. The algorithm is based on motion-compensated spatial upsampling from multiple images and decimation...

  3. Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement

    Directory of Open Access Journals (Sweden)

    Jasinski Jacek B

    2011-05-01

    Full Text Available Abstract Background When a fluorophore is placed in the vicinity of a metal nanoparticle possessing a strong plasmon field, its fluorescence emission may change extensively. Our study is to better understand this phenomenon and predict the extent of quenching and/or enhancement of fluorescence, to beneficially utilize it in molecular sensing/imaging. Results Plasmon field intensities on/around gold nanoparticles (GNPs with various diameters were theoretically computed with respect to the distance from the GNP surface. The field intensity decreased rapidly with the distance from the surface and the rate of decrease was greater for the particle with a smaller diameter. Using the plasmon field strength obtained, the level of fluorescence alternation by the field was theoretically estimated. For experimental studies, 10 nm GNPs were coated with polymer layer(s of known thicknesses. Cypate, a near infrared fluorophore, was placed on the outermost layer of the polymer coated GNPs, artificially separated from the GNP at known distances, and its fluorescence levels were observed. The fluorescence of Cypate on the particle surface was quenched almost completely and, at approximately 5 nm from the surface, it was enhanced ~17 times. The level decreased thereafter. Theoretically computed fluorescence levels of the Cypate placed at various distances from a 10 nm GNP were compared with the experimental data. The trend of the resulting fluorescence was similar. The experimental results, however, showed greater enhancement than the theoretical estimates, in general. The distance from the GNP surface that showed the maximum enhancement in the experiment was greater than the one theoretically predicted, probably due to the difference in the two systems. Conclusions Factors affecting the fluorescence of a fluorophore placed near a GNP are the GNP size, coating material on GNP, wavelengths of the incident light and emitted light and intrinsic quantum yield of the

  4. Multiple step algorithms for fluorescence -enhanced diffuse optical tomography; Algorithmes multi-etape pour la tomographie optique diffusive de fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, A.; Planat-Chretien, A.; Dinten, J.M.; Gliere, A

    2004-07-01

    A discussion on recent works on diffusive inverse problems is presented with a special focus n three-dimensional shape-based imaging methods and their application to small animal imaging by fluorescence-enhanced Diffuse Optical Tomography (DOT). Numerical approaches (Finite Element Method) for handling problems modelled by elliptic coupled PDEs is justified by the complexity of the geometry of the system but is known to be time-and memory-consuming. The use of an 'adjoint field technique' considerably speeds up the treatment and allows a full 3D resolution. Nevertheless, because of the ill-posing of the problem, the reconstruction scheme is sensitive to a priori knowledge on the parameters to be reconstructed. Multiple modality imaging techniques (DOT coupled with CT or MRI for example) is becoming of great interest for introducing a priori knowledge of the regions of interest (ROI) and justifies the use of shape-based methods that reduces the dimension of the system, by identifying a finite number of ROI (absorption, scattering and/or, in our case, fluorescent zones), and intrinsically regularizes the reconstruction of the desired parameters. This study led to the proposal of a multiple step, self regularized, reconstruction algorithm of the bio-distribution of molecular fluorescent probes specially designed for tumour targeting. We introduce the a priori knowledge of the ROI via a segmentation of the results performed with a first rough reconstruction of the fluorescent regions. The results are then refined along iterations of the segmentation/reconstruction scheme. Measurements were performed on calibrated objects (phantoms) as well as in vivo (nude mice) with a plane parallel plate tomographer using a CCD camera as a detection scheme. (authors)

  5. Metal-Enhanced Fluorescence of Chlorophylls in Light-Harvesting Complexes Coupled to Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Dorota Kowalska

    2013-01-01

    Full Text Available We investigate metal-enhanced fluorescence of peridinin-chlorophyll protein coupled to silver nanowires using optical microscopy combined with spectrally and time-resolved fluorescence techniques. In particular we study two different sample geometries: first, in which the light-harvesting complexes are deposited onto silver nanowires, and second, where solution of both nanostructures are mixed prior deposition on a substrate. The results indicate that for the peridinin-chlorophyll complexes placed in the vicinity of the silver nanowires we observe higher intensities of fluorescence emission as compared to the reference sample, where no nanowires are present. Enhancement factors estimated for the sample where the light-harvesting complexes are mixed together with the silver nanowires prior deposition on a substrate are generally larger in comparison to the other geometry of a hybrid nanostructure. While fluorescence spectra are identical both in terms of overall shape and maximum wavelength for peridinin-chlorophyll-protein complexes both isolated and coupled to metallic nanostructures, we conclude that interaction with plasmon excitations in the latter remains neutral to the functionality of the biological system. Fluorescence transients measured for the PCP complexes coupled to the silver nanowires indicate shortening of the fluorescence lifetime pointing towards modifications of radiative rate due to plasmonic interactions. Our results can be applied for developing ways to plasmonically control the light-harvesting capability of photosynthetic complexes.

  6. Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging.

    Science.gov (United States)

    Wang, Dan; Qian, Jun; He, Sailing; Park, Jin Sun; Lee, Kwang-Sup; Han, Sihai; Mu, Ying

    2011-09-01

    We report polymeric nanomicelles doped with organic fluorophores (StCN, (Z)-2,3-bis[4-(N-4-(diphenylamino)styryl)phenyl]-acrylonitrile), which have the property of aggregation-enhanced fluorescence. The fluorescent nanomicelles have two unique features: (1) They give much brighter fluorescence emission than mono-fluorophores. (2) The nanomicelles with amphiphilic copolymers [e.g., phospholipids-PEG (polyethylene glycol)] make the encapsulated fluorophores more stable in various bio-environments and easy for further conjugation with bio-molecules. After chemical and optical characterization, these fluorescent nanomicelles are utilized as efficient optical probes for in vivo sentinel lymph node (SLN) mapping of mice. The StCN-encapsulated nanomicelles, as well as their bioconjugates with arginine-glycine-aspartic acid (RGD) peptides, are used to target subcutaneously xenografted tumors in mice, and in vivo fluorescence images demonstrate the potential to use PEGylated phospholipid nanomicelles with aggregation-enhanced fluorescence as bright nanoprobes for in vivo diagnosis of tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    2017-06-01

    Full Text Available Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  8. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R.; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training. PMID:28701989

  9. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  10. Efficient Video Transcoding from H.263 to H.264/AVC Standard with Enhanced Rate Control

    Directory of Open Access Journals (Sweden)

    Nguyen Viet-Anh

    2006-01-01

    Full Text Available A new video coding standard H.264/AVC has been recently developed and standardized. The standard represents a number of advances in video coding technology in terms of both coding efficiency and flexibility and is expected to replace the existing standards such as H.263 and MPEG-1/2/4 in many possible applications. In this paper we investigate and present efficient syntax transcoding and downsizing transcoding methods from H.263 to H.264/AVC standard. Specifically, we propose an efficient motion vector reestimation scheme using vector median filtering and a fast intraprediction mode selection scheme based on coarse edge information obtained from integer-transform coefficients. Furthermore, an enhanced rate control method based on a quadratic model is proposed for selecting quantization parameters at the sequence and frame levels together with a new frame-layer bit allocation scheme based on the side information in the precoded video. Extensive experiments have been conducted and the results show the efficiency and effectiveness of the proposed methods.

  11. Cognitive Enhancement Through Action Video Game Training: Great Expectations Require Greater Evidence

    Directory of Open Access Journals (Sweden)

    Joseph eBisoglio

    2014-02-01

    Full Text Available Action video game training may hold promise as a cognitive intervention with the potential to enhance daily functioning and remediate impairments, but this must be more thoroughly evaluated through evidence-based practices. We review current research on the effect of action video game training on visual attention and visuospatial processing, executive functions, and learning and memory. Focusing on studies that utilize strict experimental controls and synthesize behavioral and neurophysiological data, we examine whether there is sufficient evidence to support a causal relationship between action video game training and beneficial changes in cognition. Convergent lines of behavioral and neurophysiological evidence tentatively support the efficacy of training, but the magnitude and specificity of these effects remain obscure. Causal inference is thus far limited by a lack of standardized and well-controlled methodology. Considering future directions, we suggest stringent adherence to evidence based practices and collaboration modeled after clinical trial networks. Finally, we recommend the exploration of more complex causal models, such as indirect causal relationships and interactions that may be masking true effects.

  12. A System to Generate SignWriting for Video Tracks Enhancing Accessibility of Deaf People

    Directory of Open Access Journals (Sweden)

    Elena Verdú

    2017-12-01

    Full Text Available Video content has increased much on the Internet during last years. In spite of the efforts of different organizations and governments to increase the accessibility of websites, most multimedia content on the Internet is not accessible. This paper describes a system that contributes to make multimedia content more accessible on the Web, by automatically translating subtitles in oral language to SignWriting, a way of writing Sign Language. This system extends the functionality of a general web platform that can provide accessible web content for different needs. This platform has a core component that automatically converts any web page to a web page compliant with level AA of WAI guidelines. Around this core component, different adapters complete the conversion according to the needs of specific users. One adapter is the Deaf People Accessibility Adapter, which provides accessible web content for the Deaf, based on SignWritting. Functionality of this adapter has been extended with the video subtitle translator system. A first prototype of this system has been tested through different methods including usability and accessibility tests and results show that this tool can enhance the accessibility of video content available on the Web for Deaf people.

  13. Action Video Game Playing Is Reflected In Enhanced Visuomotor Performance and Increased Corticospinal Excitability.

    Science.gov (United States)

    Morin-Moncet, Olivier; Therrien-Blanchet, Jean-Marc; Ferland, Marie C; Théoret, Hugo; West, Greg L

    2016-01-01

    Action video game playing is associated with improved visuomotor performance; however, the underlying neural mechanisms associated with this increased performance are not well understood. Using the Serial Reaction Time Task in conjunction with Transcranial Magnetic Stimulation, we investigated if improved visuomotor performance displayed in action video game players (actionVGPs) was associated with increased corticospinal plasticity in primary motor cortex (M1) compared to non-video game players (nonVGPs). Further, we assessed if actionVGPs and nonVGPs displayed differences in procedural motor learning as measured by the SRTT. We found that at the behavioral level, both the actionVGPs and nonVGPs showed evidence of procedural learning with no significant difference between groups. However, the actionVGPs displayed higher visuomotor performance as evidenced by faster reaction times in the SRTT. This observed enhancement in visuomotor performance amongst actionVGPs was associated with increased corticospinal plasticity in M1, as measured by corticospinal excitability changes pre- and post- SRTT and corticospinal excitability at rest before motor practice. Our results show that aVGPs, who are known to have better performance on visual and motor tasks, also display increased corticospinal excitability after completing a novel visuomotor task.

  14. Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study.

    Science.gov (United States)

    Li, Xianchun; Cheng, Xiaojun; Li, Jiaying; Pan, Yafeng; Hu, Yi; Ku, Yixuan

    2015-01-01

    Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1) or test array (Task 2), during the retention interval in a change detection task. In Task 1, action video game players demonstrated steady performance while non-action video game players showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the test array, but to the interactions between the two processes of protection from decay and resistance from interference, or from alternative hypotheses. Implications for future studies were discussed.

  15. Action Video Game Playing Is Reflected In Enhanced Visuomotor Performance and Increased Corticospinal Excitability.

    Directory of Open Access Journals (Sweden)

    Olivier Morin-Moncet

    Full Text Available Action video game playing is associated with improved visuomotor performance; however, the underlying neural mechanisms associated with this increased performance are not well understood. Using the Serial Reaction Time Task in conjunction with Transcranial Magnetic Stimulation, we investigated if improved visuomotor performance displayed in action video game players (actionVGPs was associated with increased corticospinal plasticity in primary motor cortex (M1 compared to non-video game players (nonVGPs. Further, we assessed if actionVGPs and nonVGPs displayed differences in procedural motor learning as measured by the SRTT. We found that at the behavioral level, both the actionVGPs and nonVGPs showed evidence of procedural learning with no significant difference between groups. However, the actionVGPs displayed higher visuomotor performance as evidenced by faster reaction times in the SRTT. This observed enhancement in visuomotor performance amongst actionVGPs was associated with increased corticospinal plasticity in M1, as measured by corticospinal excitability changes pre- and post- SRTT and corticospinal excitability at rest before motor practice. Our results show that aVGPs, who are known to have better performance on visual and motor tasks, also display increased corticospinal excitability after completing a novel visuomotor task.

  16. Defining the cognitive enhancing properties of video games: Steps Towards Standardization and Translation

    OpenAIRE

    Goodwin, Shikha Jain; Dziobek, Derek

    2016-01-01

    Ever since video games were available to the general public, they have intrigued brain researchers for many reasons. There is an enormous amount of diversity in the video game research, ranging from types of video games used, the amount of time spent playing video games, the definition of video gamer versus non-gamer to the results obtained after playing video games. In this paper, our goal is to provide a critical discussion of these issues, along with some steps towards generalization using...

  17. Microbubble-enhanced ultrasound-modulated fluorescence in a turbid medium

    Science.gov (United States)

    Yuan, Baohong; Liu, Yuan; Mehl, Patrick M.; Vignola, Joseph

    2009-11-01

    The feasibility of using ultrasound to modulate fluorescence in a turbid medium is still in debate due to the difficulty of detecting the modulated signal. We have demonstrated a system that could detect the weak signals of ultrasound-modulated fluorescence (UMF) by using a broadband lock-in amplifier and microbubbles as enhancement agents. By detecting the microbubble-enhanced UMF signal, a sub-millimeter fluorescent tube submerged in a turbid medium with a depth of 2 cm has been clearly observed with an ultrasonic spatial resolution. The modulation efficiency was significantly improved by using microbubbles, and was found to linearly increase with the drive voltage applied to the ultrasound transducer and the fluorophore concentration within the range adopted in this study. Possible modulation mechanisms are discussed.

  18. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application

    Science.gov (United States)

    Liu, Ping; Zhao, Liangliang; Wu, Xia; Huang, Fei; Wang, Minqin; Liu, Xiaodan

    2014-03-01

    It is found that the plasmon effect of silver nanoparticles (AgNPs) helps to enhance the fluorescence intensity of the quercetin (Qu) and nucleic acids system. Qu exhibited strong fluorescence enhancement when it bound to nucleic acids in the presence of AgNPs. Based on this, a sensitive method for the determination of nucleic acids was developed. The detection limits for the nucleic acids (S/N = 3) were reduced to the ng mL-1 level. The interaction mechanism of the AgNPs-fish sperm DNA (fsDNA)-Qu system was also investigated in this paper. This complex system of Qu and AgNPs was also successfully used for the detection of nucleic acids in agarose gel electrophoresis analysis. Preliminary results indicated that AgNPs also helped to improve sensitivity in the fluorescence image analysis of Qu combined with cellular contents in Arabidopsis thaliana protoplasts.

  19. Increased fluorescence of PbS quantum dots in photonic crystals by excitation enhancement

    Science.gov (United States)

    Barth, Carlo; Roder, Sebastian; Brodoceanu, Daniel; Kraus, Tobias; Hammerschmidt, Martin; Burger, Sven; Becker, Christiane

    2017-07-01

    We report on the enhanced fluorescence of lead sulfide quantum dots interacting with leaky modes of slab-type silicon photonic crystals. The photonic crystal slabs were fabricated, supporting leaky modes in the near infrared wavelength range. Lead sulfite quantum dots which are resonant in the same spectral range were prepared in a thin layer above the slab. We selectively excited the leaky modes by tuning the wavelength and angle of incidence of the laser source and measured distinct resonances of enhanced fluorescence. By an appropriate experiment design, we ruled out directional light extraction effects and determined the impact of enhanced excitation. Three-dimensional numerical simulations consistently explain the experimental findings by strong near-field enhancements in the vicinity of the photonic crystal surface. Our study provides a basis for systematic tailoring of photonic crystals used in biological applications such as biosensing and single molecule detection, as well as quantum dot solar cells and spectral conversion applications.

  20. Nanoparticle Aggregate-Based Fluorescence Enhancement for Highly Sensitive and Reproducible Detection of DNA

    NARCIS (Netherlands)

    Annink, C.; Gill, Ron

    2014-01-01

    Sensitive detection of DNA at the sub picomolar range is demonstrated using a magnetic bead sandwich hybridization assay coupled with surface-enhanced fluorescence (SEF)-based amplification. Unlike enzymatic amplification, the SEF amplification step does not add any additional background to the

  1. Fluorescence-enhanced optical tomography in small volume: Telegrapher and Diffusion models

    OpenAIRE

    Ranadhyr Roy

    2011-01-01

    Small animal fluorescence-enhanced optical tomography has possibility for restructuring drug discovery and preclinical investigation of drug candidates. However, accurate modeling of photon propagation in small animals is critical to quantitatively obtain accurate tomographic images. The diffusion approximation is commonly used for biomedical optical diagnostic techniques in turbid large media where absorption is low compared to scattering system. Unfortunately, this appr...

  2. Broadband and omnidirectional light harvesting enhancement of fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Hens, Philip

    2012-01-01

    In the present work, antireflective sub-wavelength structures have been fabricated on fluorescent 6H-SiC to enhance the white light extraction efficiency by using the reactive-ion etching method. Broadband and omnidirectional antireflection characteristics show that 6H-SiC with antireflective sub...

  3. Dendritic optical antennas: scattering properties and fluorescence enhancement.

    Science.gov (United States)

    Guo, Ke; Antoncecchi, Alessandro; Zheng, Xuezhi; Sallam, Mai; Soliman, Ezzeldin A; Vandenbosch, Guy A E; Moshchalkov, Victor V; Koenderink, A Femius

    2017-07-24

    With the development of nanotechnologies, researchers have brought the concept of antenna to the optical regime for manipulation of nano-scaled light matter interactions. Most optical nanoantennas optimize optical function, but are not electrically connected. In order to realize functions that require electrical addressing, optical nanoantennas that are electrically continuous are desirable. In this article, we study the optical response of a type of electrically connected nanoantennas, which we propose to call "dendritic" antennas. While they are connected, they follow similar antenna hybridization trends to unconnected plasmon phased array antennas. The optical resonances supported by this type of nanoantennas are mapped both experimentally and theoretically to unravel their optical response. Photoluminescence measurements indicate a potential Purcell enhancement of more than a factor of 58.

  4. τFCS: multi-method global analysis enhances resolution and sensitivity in fluorescence fluctuation measurements.

    Directory of Open Access Journals (Sweden)

    Neil R Anthony

    Full Text Available Fluorescence fluctuation methods have become invaluable research tools for characterizing the molecular-level physical and chemical properties of complex systems, such as molecular concentrations, dynamics, and the stoichiometry of molecular interactions. However, information recovery via curve fitting analysis of fluctuation data is complicated by limited resolution and challenges associated with identifying accurate fit models. We introduce a new approach to fluorescence fluctuation spectroscopy that couples multi-modal fluorescence measurements with multi-modal global curve fitting analysis. This approach yields dramatically enhanced resolution and fitting model discrimination capabilities in fluctuation measurements. The resolution enhancement allows the concentration of a secondary species to be accurately measured even when it constitutes only a few percent of the molecules within a sample mixture, an important new capability that will allow accurate measurements of molecular concentrations and interaction stoichiometry of minor sample species that can be functionally important but difficult to measure experimentally. We demonstrate this capability using τFCS, a new fluctuation method which uses simultaneous global analysis of fluorescence correlation spectroscopy and fluorescence lifetime data, and show that τFCS can accurately recover the concentrations, diffusion coefficients, lifetimes, and molecular brightness values for a two component mixture over a wide range of relative concentrations.

  5. A Codon Deletion at the Beginning of Green Fluorescent Protein Genes Enhances Protein Expression.

    Science.gov (United States)

    Rodríguez-Mejía, José-Luis; Roldán-Salgado, Abigail; Osuna, Joel; Merino, Enrique; Gaytán, Paul

    2017-01-01

    Recombinant protein expression is one of the key issues in protein engineering and biotechnology. Among the different models for assessing protein production and structure-function studies, green fluorescent protein (GFP) is one of the preferred models because of its importance as a reporter in cellular and molecular studies. In this research we analyze the effect of codon deletions near the amino terminus of different GFP proteins on fluorescence. Our study includes Gly4 deletions in the enhanced GFP (EGFP), the red-shifted GFP and the red-shifted EGFP. The Gly4 deletion mutants and their corresponding wild-type counterparts were transcribed under the control of the T7 or Trc promoters and their expression patterns were analyzed. Different fluorescent outcomes were observed depending on the type of fluorescent gene versions. In silico analysis of the RNA secondary structures near the ribosome binding site revealed a direct relationship between their minimum free energy and GFP production. Integrative analysis of these results, including SDS-PAGE analysis, led us to conclude that the fluorescence improvement of cells expressing different versions of GFPs with Gly4 deleted is due to an enhancement of the accessibility of the ribosome binding site by reducing the stability of the RNA secondary structures at their mRNA leader regions. © 2016 S. Karger AG, Basel.

  6. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study

    OpenAIRE

    Ping Wang; Ping Wang; Xing-Ting Zhu; Xing-Ting Zhu; Zhigang Qi; Zhigang Qi; Silin Huang; Hui-Jie Li; Hui-Jie Li

    2017-01-01

    Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI) study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs) and twenty non-video game players (NVGPs) of 60...

  7. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  8. Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers

    Science.gov (United States)

    Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min

    2015-01-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications. PMID:25586238

  9. Fluorescence Enhancement of Fluorescein Isothiocyanate-Labeled Protein A Caused by Affinity Binding with Immunoglobulin G in Bovine Plasma

    Directory of Open Access Journals (Sweden)

    Kiyotaka Sakai

    2009-10-01

    Full Text Available Fluorescence enhancement of fluorescein isothiocyanate-labeled protein A (FITC-protein A caused by the binding with immunoglobulin G (IgG in bovine plasma was studied. FITC-protein A was immobilized onto a glass surface by covalent bonds. An increase in fluorescence intensity was dependent on IgG concentration ranging from 20 to 78 μg/mL in both phosphate buffer saline and bovine plasma. This method requires no separation procedure, and the reaction time is less than 15 min. A fluorescence enhancement assay by the affinity binding of fluorescence-labeled reagent is thus available for the rapid determination of biomolecules in plasma.

  10. 'Green mice' display limitations in enhanced green fluorescent protein expression in retina and optic nerve cells.

    Science.gov (United States)

    Caminos, Elena; Vaquero, Cecilia F; García-Olmo, Dolores C

    2014-12-01

    Characterization of retinal cells, cell transplants and gene therapies may be helped by pre-labeled retinal cells, such as those transfected with vectors for green fluorescent protein expression. The aim of this study was to analyze retinal cells and optic nerve components from transgenic green mice (GM) with the 'enhanced' green fluorescent protein (EGFP) gene under the control of the CAG promoter (a chicken β-actin promoter and a cytomegalovirus enhancer). The structural analysis and electroretinography recordings showed a normal, healthy retina. Surprisingly, EGFP expression was not ubiquitously located in the retina and optic nerve. Epithelial cells, photoreceptors and bipolar cells presented high green fluorescence levels. In contrast, horizontal cells, specific amacrine cells and ganglion cells exhibited a null EGFP expression level. The synaptic terminals of rod bipolar cells displayed a high green fluorescence level when animals were kept in the dark. Immature retinas exhibited different EGFP expression patterns to those noted in adults. Axons and glial cells in the optic nerve revealed a specific regional EGFP expression pattern, which correlated with the presence of myelin. These results suggest that EGFP expression might be related to the activity of both the CAG promoter and β-actin in mature retinal neurons and oligodendrocytes. Moreover, EGFP expression might be regulated by light in both immature and adult animals. Since GM are used in numerous retina bioassays, it is essential to know the differential EGFP expression in order to select cells of interest for each study.

  11. Unsupervised video-based lane detection using location-enhanced topic models

    Science.gov (United States)

    Sun, Hao; Wang, Cheng; Wang, Boliang; El-Sheimy, Naser

    2010-10-01

    An unsupervised learning algorithm based on topic models is presented for lane detection in video sequences observed by uncalibrated moving cameras. Our contributions are twofold. First, we introduce the maximally stable extremal region (MSER) detector for lane-marking feature extraction and derive a novel shape descriptor in an affine invariant manner to describe region shapes and a modified scale-invariant feature transform descriptor to capture feature appearance characteristics. MSER features are more stable compared to edge points or line pairs and hence provide robustness to lane-marking variations in scale, lighting, viewpoint, and shadows. Second, we proposed a novel location-enhanced probabilistic latent semantic analysis (pLSA) topic model for simultaneous lane recognition and localization. The proposed model overcomes the limitation of a pLSA model for effective topic localization. Experimental results on traffic sequences in various scenarios demonstrate the effectiveness and robustness of the proposed method.

  12. Defining the cognitive enhancing properties of video games: Steps Towards Standardization and Translation.

    Science.gov (United States)

    Goodwin, Shikha Jain; Dziobek, Derek

    2016-09-01

    Ever since video games were available to the general public, they have intrigued brain researchers for many reasons. There is an enormous amount of diversity in the video game research, ranging from types of video games used, the amount of time spent playing video games, the definition of video gamer versus non-gamer to the results obtained after playing video games. In this paper, our goal is to provide a critical discussion of these issues, along with some steps towards generalization using the discussion of an article published by Clemenson and Stark (2005) as the starting point. The authors used a distinction between 2D versus 3D video games to compare their effects on the learning and memory in humans. The primary hypothesis of the authors is that the exploration of virtual environments while playing video games is a human correlate of environment enrichment. Authors found that video gamers performed better than the non-video gamers, and if non-gamers are trained on playing video gamers, 3D games provide better environment enrichment compared to 2D video games, as indicated by better memory scores. The end goal of standardization in video games is to be able to translate the field so that the results can be used for greater good.

  13. Fluorescence enhancement of the protein-curcumin-sodium dodecyl benzene sulfonate system and protein determination.

    Science.gov (United States)

    Wang, Feng; Yang, Jinghe; Wu, Xia; Wang, Fei; Liu, Shufang

    2006-05-01

    Protein can greatly enhance the fluorescence of curcumin (CU) in the presence of sodium dodecyl benzene sulfonate (SDBS). Experiments indicate that under the optimum conditions, the enhanced intensity of fluorescence is proportional to the concentration of proteins in the range of 0.0050-20.0 microg mL(-1) for bovine serum albumin (BSA), 0.080-20.0 microg mL(-1) for human serum albumin (HSA), and 0.040-28.0 microg mL(-1) for egg albumin (EA). Their detection limits (S/N = 3) are 1.4 ng mL(-1), 20 ng mL(-1), and 16 ng mL(-1), respectively. The method has been satisfactorily used for the determination of proteins in actual samples. In comparison with most of fluorimetric methods, this method is quick and simple, has high sensitivity and good stability. The interaction mechanism is also studied.

  14. Enhancing maternal sensitivity and infant attachment security with video feedback: an exploratory study in Italy.

    Science.gov (United States)

    Cassibba, Rosalinda; Castoro, Germana; Costantino, Elisabetta; Sette, Giovanna; Van Ijzendoorn, Marinus H

    2015-01-01

    This study aims to explore whether a short-term and attachment-based video-feedback intervention, the Video-Feedback Intervention to Promote Positive Parenting With Discussions on the Representational Level (VIPP-R; F. Juffer, M.J. Bakermans-Kranenburg, & M.H. van IJzendoorn, 2008), might be effective in enhancing maternal sensitivity and in promoting infants' attachment security in an Italian sample of dyads with primiparous mothers. Moreover, we explore whether the effectiveness of VIPP-R might be different for parents with insecure attachment representations who might be most in need of preventive intervention, as compared to parents who already have a more balanced and secure state of mind. Thirty-two infants (40% female) and their mothers participated in the study. The sample was divided into an intervention group (n = 16) and a comparison group (n = 16). At 6 and 13 months of age, the Adult Attachment Interview (AAI; M. Main, N. Kaplan, & J. Cassidy, 1985) was administered. Moreover, a 30-min mother-infant play situation was videotaped and coded for maternal sensitivity with the Emotional Availability Scales (Z. Biringen, J. Robinson, & R.N. Emde, 2000). At 13 months of age, the Strange Situation Procedure (M.D.S. Ainsworth, M.D. Blehar, E. Waters, & S. Wall, 1978) was used to assess the security of mother-infant attachment. Results revealed a significant interaction effect between intervention and AAI security for infant attachment security; moreover, main effects of AAI security and intervention for maternal sensitivity were found. The VIPP-R appears effective in enhancing maternal sensitivity and infant attachment security, although only mothers with an insecure attachment representation may benefit from the intervention. © 2014 Michigan Association for Infant Mental Health.

  15. Enhancement of Handwritings on Selected Charred Documents using Video Spectral Comparator (VSC

    Directory of Open Access Journals (Sweden)

    T. Nataraja Moorthy

    2016-12-01

    Full Text Available Questioned documents are documents whose authenticity is disputed. Documents are destroyed by fires and other means to conceal criminal activities. Charred or burnt documents are a type of questioned document that are likely to contain vital information. These documents are mainly linked to ransoms, forgery, fraud, suicide and other white collar offences. This study aimed to evaluate the ability of a Video Spectral Comparator (VSC-6000 for the enhancement of writings on charred documents and to determine the effectiveness of flood light and white spot beam in VSC on charred documents. A passage was written by different types of writing instruments on different types of writing paper available in Malaysia. Then the handwritten documents were burned until the writings became invisible. The charred documents were viewed under flood light and the white beam by adjusting the wavelengths. Results showed that the writings on the charred document exhibited appreciable enhancement suitable for forensic investigation. The writings were comparatively more visible under the white spot beam than the flood light beam. These findings were recorded through photography. The present study provides a promising method and an effective alternative way to enhance writings on charred documents.

  16. Video Game Training Enhances Visuospatial Working Memory and Episodic Memory in Older Adults

    National Research Council Canada - National Science Library

    Toril, Pilar; Reales, José M; Mayas, Julia; Ballesteros, Soledad

    2016-01-01

    ...) and episodic memory of healthy older adults. Participants were 19 volunteer older adults, who received 15 1-h video game training sessions with a series of video games selected from a commercial package (Lumosity...

  17. Using Videos of Students in the Classroom to Enhance Learner Autonomy

    Science.gov (United States)

    Wachob, Phyllis

    2011-01-01

    Although the technology of digital videos is available, many classroom EFL teachers are unsure of what they can do with videos. This paper will present some reasons why teachers should consider using videos of student performance based on ideas of motivation and learner autonomy. Three activities are presented with checklists and protocols that…

  18. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna.

    Science.gov (United States)

    Kühn, Sergei; Håkanson, Ulf; Rogobete, Lavinia; Sandoghdar, Vahid

    2006-07-07

    We investigate the coupling of a single molecule to a single spherical gold nanoparticle acting as a nanoantenna. Using scanning probe technology, we position the particle in front of the molecule with nanometer accuracy and measure a strong enhancement of more than 20 times in the fluorescence intensity simultaneous to a 20-fold shortening of the excited state lifetime. Comparisons with three-dimensional calculations guide us to decipher the contributions of the excitation enhancement, spontaneous emission modification, and quenching. Furthermore, we provide direct evidence for the role of the particle plasmon resonance in the molecular excitation and emission processes.

  19. Application of Enhanced Hadamard Error Correcting Code in Video-Watermarking and his comparison to Reed-Solomon Code

    Directory of Open Access Journals (Sweden)

    Dziech Andrzej

    2017-01-01

    Full Text Available Error Correcting Codes are playing a very important role in Video Watermarking technology. Because of very high compression rate (about 1:200 normally the watermarks can barely survive such massive attacks, despite very sophisticated embedding strategies. It can only work with a sufficient error correcting code method. In this paper, the authors compare the new developed Enhanced Hadamard Error Correcting Code (EHC with well known Reed-Solomon Code regarding its ability to preserve watermarks in the embedded video. The main idea of this new developed multidimensional Enhanced Hadamard Error Correcting Code is to map the 2D basis images into a collection of one-dimensional rows and to apply a 1D Hadamard decoding procedure on them. After this, the image is reassembled, and the 2D decoding procedure can be applied more efficiently. With this approach, it is possible to overcome the theoretical limit of error correcting capability of (d-1/2 bits, where d is a Hamming distance. Even better results could be achieved by expanding the 2D EHC to 3D. To prove the efficiency and practicability of this new Enhanced Hadamard Code, the method was applied to a video Watermarking Coding Scheme. The Video Watermarking Embedding procedure decomposes the initial video trough multi-Level Interframe Wavelet Transform. The low pass filtered part of the video stream is used for embedding the watermarks, which are protected respectively by Enhanced Hadamard or Reed-Solomon Correcting Code. The experimental results show that EHC performs much better than RS Code and seems to be very robust against strong MPEG compression.

  20. Using Relevant Video Clips from Popular Media to Enhance Learning in Large Introductory Psychology Classes: A Pilot Study

    Science.gov (United States)

    Rowland-Bryant, Emily; Skinner, Amy L.; Dixon, Lee; Skinner, Christopher H.; Saudargas, Richard

    2011-01-01

    The purpose of this study was to enhance students' learning by supplementing a multimedia lesson with interesting and relevant video clips (VCs). Undergraduate students watched a target material PowerPoint (tmPP) presentation with voice-over lecture covering the Big Five trait theory of personality. Students were randomly assigned to one of four…

  1. Unequal Protection of Video Streaming through Adaptive Modulation with a Trizone Buffer over Bluetooth Enhanced Data Rate

    Directory of Open Access Journals (Sweden)

    Rouzbeh Razavi

    2007-12-01

    Full Text Available Bluetooth enhanced data rate wireless channel can support higher-quality video streams compared to previous versions of Bluetooth. Packet loss when transmitting compressed data has an effect on the delivered video quality that endures over multiple frames. To reduce the impact of radio frequency noise and interference, this paper proposes adaptive modulation based on content type at the video frame level and content importance at the macroblock level. Because the bit rate of protected data is reduced, the paper proposes buffer management to reduce the risk of buffer overflow. A trizone buffer is introduced, with a varying unequal protection policy in each zone. Application of this policy together with adaptive modulation results in up to 4 dB improvement in objective video quality compared to fixed rate scheme for an additive white Gaussian noise channel and around 10 dB for a Gilbert-Elliott channel. The paper also reports a consistent improvement in video quality over a scheme that adapts to channel conditions by varying the data rate without accounting for the video frame packet type or buffer congestion.

  2. Enhancement of hand hygiene compliance among health care workers from a hemodialysis unit using video-monitoring feedback.

    Science.gov (United States)

    Sánchez-Carrillo, Laura Arelí; Rodríguez-López, Juan Manuel; Galarza-Delgado, Dionisio Ángel; Baena-Trejo, Laura; Padilla-Orozco, Magaly; Mendoza-Flores, Lidia; Camacho-Ortiz, Adrián

    2016-08-01

    The importance of hand hygiene in the prevention of health care-associated infection is well known. Experience with hand hygiene compliance (HHC) evaluation in hemodialysis units is scarce. This study was a 3-phase, prospective longitudinal intervention study during a 5-month period in a 13-bed hemodialysis unit at a university hospital in Northern Mexico. The unit performs an average of 1,150 hemodialysis procedures per month. Compliance was evaluated by a direct observer and a video assisted observer. Feedback was given to health care workers in the form of educational sessions and confidential reports and video analysis of compliance and noncompliance. A total of 5,402 hand hygiene opportunities were registered; 5,201 during 7,820 minutes of video footage and 201 by direct observation during 1,180 minutes. Lower compliance during the baseline evaluation was observed by video monitoring compared with direct observation (P hand hygiene compliance. Video-assisted monitoring of hand hygiene is an excellent method for the evaluation of HHC in a hemodialysis unit; enhanced HHC can be achieved through a feedback program to the hemodialysis staff that includes video examples and confidential reports. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Unequal Protection of Video Streaming through Adaptive Modulation with a Trizone Buffer over Bluetooth Enhanced Data Rate

    Directory of Open Access Journals (Sweden)

    Razavi Rouzbeh

    2008-01-01

    Full Text Available Abstract Bluetooth enhanced data rate wireless channel can support higher-quality video streams compared to previous versions of Bluetooth. Packet loss when transmitting compressed data has an effect on the delivered video quality that endures over multiple frames. To reduce the impact of radio frequency noise and interference, this paper proposes adaptive modulation based on content type at the video frame level and content importance at the macroblock level. Because the bit rate of protected data is reduced, the paper proposes buffer management to reduce the risk of buffer overflow. A trizone buffer is introduced, with a varying unequal protection policy in each zone. Application of this policy together with adaptive modulation results in up to 4 dB improvement in objective video quality compared to fixed rate scheme for an additive white Gaussian noise channel and around 10 dB for a Gilbert-Elliott channel. The paper also reports a consistent improvement in video quality over a scheme that adapts to channel conditions by varying the data rate without accounting for the video frame packet type or buffer congestion.

  4. DNA abasic site-selective enhancement of sanguinarine fluorescence with a large emission shift.

    Directory of Open Access Journals (Sweden)

    Fei Wu

    Full Text Available Small molecules that can specifically bind to a DNA abasic site (AP site have received much attention due to their importance in DNA lesion identification, drug discovery, and sensor design. Herein, the AP site binding behavior of sanguinarine (SG, a natural alkaloid, was investigated. In aqueous solution, SG has a short-wavelength alkanolamine emission band and a long-wavelength iminium emission band. At pH 8.3, SG experiences a fluorescence quenching for both bands upon binding to fully matched DNAs without the AP site, while the presence of the AP site induces a strong SG binding and the observed fluorescence enhancement for the iminium band are highly dependent on the nucleobases flanking the AP site, while the alkanolamine band is always quenched. The bases opposite the AP site also exert some modifications on the SG's emission behavior. It was found that the observed quenching for DNAs with Gs and Cs flanking the AP site is most likely caused by electron transfer between the AP site-bound excited-state SG and the nearby Gs. However, the flanking As and Ts that are not easily oxidized favor the enhanced emission. This AP site-selective enhancement of SG fluorescence accompanies a band conversion in the dominate emission from the alkanolamine to iminium band thus with a large emission shift of about 170 nm. Absorption spectra, steady-state and transient-state fluorescence, DNA melting, and electrolyte experiments confirm that the AP site binding of SG occurs and the stacking interaction with the nearby base pairs is likely to prevent the converted SG iminium form from contacting with water that is thus emissive when the AP site neighbors are bases other than guanines. We expect that this fluorophore would be developed as a promising AP site binder having a large emission shift.

  5. Generation and Characterization of Virus-Enhancing Peptide Nanofibrils Functionalized with Fluorescent Labels.

    Science.gov (United States)

    Rode, Sascha; Hayn, Manuel; Röcker, Annika; Sieste, Stefanie; Lamla, Markus; Markx, Daniel; Meier, Christoph; Kirchhoff, Frank; Walther, Paul; Fändrich, Marcus; Weil, Tanja; Münch, Jan

    2017-04-19

    Retroviral gene transfer is the method of choice for the stable introduction of genetic material into the cellular genome. However, efficient gene transfer is often limited by low transduction rates of the viral vectors. We have recently described a 12-mer peptide, termed EF-C, that forms amyloid-like peptide nanofibrils (PNF), strongly increasing viral transduction efficiencies. These nanofibrils are polycationic and bind negatively charged membranes of virions and cells, thereby overcoming charge repulsions and resulting in increased rates of virion attachment and gene transfer. EF-C PNF enhance vector transduction more efficiently than other soluble additives and offer prospects for clinical applications. However, while the transduction-enhancing activity of PNF has been well-characterized, the exact mechanism and the kinetics underlying infection enhancement as well as the cellular fate of the fibrils are hardly explored. This is partially due to the fact that current labeling techniques for PNF rely on amyloid probes that cause high background staining or lose signal intensities after cellular uptake. Here, we sought to generate EF-C PNF covalently coupled with fluorescent labels. To achieve such covalent bioconjugates, the free amino groups of the EF-C peptide were coupled to the ATTO 495 or 647N NHS ester dyes. When small amounts of the labeled peptides were mixed with a 100- to 10 000-fold excess of the native peptide, PNF formed that were morphologically indistinguishable from those derived from the unlabeled peptide. The fluorescence of the fibrils could be readily detected using fluorescence spectroscopy, microscopy, and flow cytometry. In addition, labeled and nonlabeled fibrils captured viral particles and increased retroviral transduction with similar efficacy. These covalently fluorescence-labeled PNF are valuable tools with which to elucidate the mechanism(s) underlying transduction attachment and the fate of the fibrils in cells, tissues, and

  6. Trafficking of Na,K-ATPase fused to enhanced green fluorescent protein is mediated by protein kinase A or C

    DEFF Research Database (Denmark)

    Kristensen, B; Birkelund, Svend; Jørgensen, PL

    2003-01-01

    Fusion of enhanced green fluorescent protein (EGFP) to the C-terminal of rat Na,K-ATPase a1-subunit is introduced as a novel procedure for visualizing trafficking of Na,K-pumps in living COS-1 renal cells in response to PKA or PKC stimulation. Stable, functional expression of the fluorescent chim...

  7. Fluorescent lighting enhances chemically induced papilloma formation and increases susceptibility to tumor challenge in mice.

    Science.gov (United States)

    Wiskemann, A; Sturm, E; Klehr, N W

    1986-01-01

    To study whether fluorescent lighting at work might increase carcinogenesis, hairless mice were exposed to a bank of six 36 W standard fluorescent lamps (neutral-white) every workday for 8 h at an illuminance level of 1,000 lx. For comparison, other mice were exposed to UVB radiation or to simulated solar radiation. In experiment A the animals were irradiated for 6 weeks prior to the application of 7,12-dimethyl-benzanthracene once and--following an interval of 2 days--for 10 weeks after DMBA application. The number of blue nevi and papillomas was enhanced by exposure to all spectra 10 weeks after chemical tumor induction. In experiment B the animals were irradiated for 6 weeks prior to the transplantation of UV-induced fibrosarcoma cells from syngeneic mice into the dorsal and ventral skin. Within the following 4 months fibrosarcoma developed in the dorsal skin exposed to the fluorescent lighting and to the UVB radiation, as well as in the non-irradiated ventral skin of 10-20% of the mice. The results suggest that fluorescent lighting as used in certain work environments may increase carcinogenesis caused by other factors.

  8. Multisensor data fusion for enhanced respiratory rate estimation in thermal videos.

    Science.gov (United States)

    Pereira, Carina B; Xinchi Yu; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen

    2016-08-01

    Scientific studies have demonstrated that an atypical respiratory rate (RR) is frequently one of the earliest and major indicators of physiological distress. However, it is also described in the literature as "the neglected vital parameter", mainly due to shortcomings of clinical available monitoring techniques, which require attachment of sensors to the patient's body. The current paper introduces a novel approach that uses multisensor data fusion for an enhanced RR estimation in thermal videos. It considers not only the temperature variation around nostrils and mouth, but the upward and downward movement of both shoulders. In order to analyze the performance of our approach, two experiments were carried out on five healthy candidates. While during phase A, the subjects breathed normally, during phase B they simulated different breathing patterns. Thoracic effort was the gold standard elected to validate our algorithm. Our results show an excellent agreement between infrared thermography (IRT) and ground truth. While in phase A a mean correlation of 0.983 and a root-mean-square error of 0.240 bpm (breaths per minute) was obtained, in phase B they hovered around 0.995 and 0.890 bpm, respectively. In sum, IRT may be a promising clinical alternative to conventional sensors. Additionally, multisensor data fusion contributes to an enhancement of RR estimation and robustness.

  9. Quasi-resonance enhancement of laser-induced-fluorescence diagnosis of endometriosis

    Science.gov (United States)

    Hill, Ralph H., Jr.; Vancaillie, Thierry G.

    1990-05-01

    Endometriosis, a common disease in women in the reproductive age group, is defined pathologically by the presence of endometrial tissue (inner lining of the uterus) outside the uterus. The displaced tissue is histologically identical to endometrium. In addition to being a highly prevalent disease, this disease is associated with many distressing and debilitating symptoms. Motivated by the need to improve diagnosis by endoscopic imaging instrumentation, we have previously used several drugs to cause selective laser-induced fluorescence of active surgically induced endometriosis in the rabbit model in vivo using ultraviolet-wavelength (351.1 and 363.8 nm) excitation from an argon-ion laser. In the present study we have investigated methods of enhancing differentiation between normal and abnormal tissue by using other excitation wavelengths. In addition to an enhanced capability for detecting abnormal tissue, there are several other advantages associated with using visible-wavelength excitation, such as deeper penetration into the tissue, as well as increased equipment performance, reliability, versatility, and availability. The disadvantage is that because only wavelengths longer than the excitation wavelength can be used for detection, some of the spectral information is lost. Because human endomeiriosis samples were somewhat limited in quantity, as well as specimen size, we used normal ovarian tissue for the laser-induced-fluorescence differentiation-enhancement studies. Positive enhancement of the laser-induced- fluorescence differentiation was found in human ovarian tissue in vitro utilizing 514.5-nm excitation from an argonion laser. Additionally, preliminary verification of this concept was accomplished in active surgically induced endometriosis in the rabbit model in vivo with visible argon-ion laser excitation of two tetracycline-based drugs. Future experiments with other drug treatments and excitation/detection parameters are planned.

  10. Enhanced green fluorescent protein expression in Pleurotus ostreatus for in vivo analysis of fungal laccase promoters.

    Science.gov (United States)

    Amore, Antonella; Honda, Yoichi; Faraco, Vincenza

    2012-10-01

    The laccase family of Pleurotus ostreatus has been widely characterized, and studies of the genes coding for laccase isoenzymes in P. ostreatus have so far led to the identification of four different genes and the corresponding cDNAs, poxc, pox1, poxa1b and poxa3. Analyses of P. ostreatus laccase promoters poxc, pox1, poxa1b and poxa3 have allowed identification of several putative response elements, and sequences of metal-responsive elements involved in the formation of complexes with fungal proteins have been identified in poxc and poxa1b promoters. In this work, development of a system for in vivo analysis of P. ostreatus laccase promoter poxc by enhanced green fluorescent protein expression is performed, based on a poly ethylene glycol-mediated procedure for fungal transformation. A quantitative measurement of fluorescence expressed in P. ostreatus transformants is hereby reported for the first time for this fungus.

  11. Fluorescence enhancement of Er{sup 3+} ion by Glibenclamide: A practical probe

    Energy Technology Data Exchange (ETDEWEB)

    Faridbod, Farnoush [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Endocrinology and Metabolism Research Center, Medical Sciences/University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Endocrinology and Metabolism Research Center, Medical Sciences/University of Tehran, Tehran (Iran, Islamic Republic of); Larijani, Bagher [Endocrinology and Metabolism Research Center, Medical Sciences/University of Tehran, Tehran (Iran, Islamic Republic of); Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Endocrinology and Metabolism Research Center, Medical Sciences/University of Tehran, Tehran (Iran, Islamic Republic of)

    2009-10-15

    Glibenclamide, 5-chloro-N-[2-[4-(cyclohexylcarbamoyl-sulfamoyl) phenyl]ethyl]-2-methoxy-benzamide, is an important anti-diabetic drug that can enhance the erbium (Er) intrinsic fluorescence intensity. Based on that fact, Glibenclamide can be monitored using simple and sensitive fluorimetric probes. For this research, an interest arose in using lanthanides as probing biochemical reactions, and to study the interactions between Ca{sup 2+} and biologically important molecules. Methodologies employed are based on the unique fluorescence properties of lanthanides due to their unfilled 4f{sup n} electronic orbital, and formation of a complex between Er{sup 3+} and Glibenclamide. The proposed method was found to be simple, accurate and precise, thus allowing it to be used as a detector for high performance liquid chromatography in the future.

  12. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence

    Science.gov (United States)

    Wang, Xiaoyu; He, Fang; Zhu, Xi; Tang, Fu; Li, Lidong

    2014-03-01

    Metal-enhanced fluorescence of conjugated polyelectrolytes (CPs) is realized using a simple, green hybrid Ag nanocomposite film. Ag nanoparticles (Ag NPs) are pre-prepared by sodium citrate reduction and incorporated into agarose by mixing to form an Ag-containing agarose film (Ag@agarose). Through variation of the amount of Ag NPs in the Ag@agarose film as well as the thickness of the interlayer between CPs and the Ag@agarose film prepared of layer-by-layer assembly of chitosan and sodium alginate, a maximum 8.5-fold increase in the fluorescence of CPs is obtained. After introducing tyrosinase, this system also can be used to detect phenolic compounds with high sensitivity and good visualization under ultraviolet light.

  13. Establishment of Orthotopic Lung Cancer Model Expressing Enhanced Green Fluorescent Protein

    Directory of Open Access Journals (Sweden)

    Shuzhen WEI

    2010-07-01

    Full Text Available Background and objective In vivo molecular imaging with mouse model could continuously and in real-time monitor the changes of the tumor. The aim of this study is to establish stable enhanced green fluorescent protein (EGFP expressing NCI-H460 cell lines and relevant mouse model via orthotopic transplantation, and to study the characteristic of this model and the quantitative detection method of the primary tumor and metastatic lesions. Methods Human lung cancer NCI-H460 cells were transfected with retroviral vector containing the EGFP. Stable high-level expression of EGFP was maintained in the subcutaneously-growing tumors. Fragments of the subcutaneously growing tumor, which were comprised of EGFP-expressing cells, were implanted by surgical orthotopic implantation (SOI in the lung of nude mice. The dynamic growth of orthotopic tumor was observed using in vivo fluorescence imaging. The correlation of fluorescence area and tumor volume was tested. Results After the model established, green fluorescent can be observed through the flap in day 7. Tumor formation rate was 100%. Mean survival time of tumor-bearing nude mice was 34.2 days. The metastasis sites were the contralateral lung, mediastinal and hilar lymph nodes, pleura and diaphragm; metastasis rates were 87.5%, 75%, 25% and 12.5%, respectively. Tumor volume and fluorescence area was correlated (r=0.873, P=0.001. Conclusion The nude mouse model bearing orthotopic human lung cancer expressing EGFP has been successfully established. The model might be used for further molecular studies on tumor metastasis, angiogenesis and also be applied to anti-tumor drug screening in preclinical stage.

  14. Enhanced detection of PCR products through use of TOTO and YOYO intercalating dyes with laser induced fluorescence--capillary electrophoresis.

    Science.gov (United States)

    Srinivasan, K; Morris, S C; Girard, J E; Kline, M C; Reeder, D J

    1993-01-01

    Recent developments in the chemical synthesis of DNA-binding dyes have enhanced detection of polymerase chain reaction (PCR) products by capillary electrophoresis. These dyes are dimers of thiazole orange (TOTO) or oxazole orange (YOYO) and have a very high binding affinity for DNA (Haugland, 1992). These dyes show enhanced fluorescence signals when they bind to double-stranded DNA and their fluorescence in the unbound state is almost zero, making them extremely useful in detecting minute (fg) quantities of DNA. We report here the utility of these dyes in DNA typing applications using a laser-induced fluorescence detector in conjunction with a capillary electrophoresis system.

  15. Use of Active-Play Video Games to Enhance Aerobic Fitness in Schizophrenia: Feasibility, Safety, and Adherence.

    Science.gov (United States)

    Kimhy, David; Khan, Samira; Ayanrouh, Lindsey; Chang, Rachel W; Hansen, Marie C; Lister, Amanda; Ballon, Jacob S; Vakhrusheva, Julia; Armstrong, Hilary F; Bartels, Matthew N; Sloan, Richard P

    2016-02-01

    Active-play video games have been used to enhance aerobic fitness in various clinical populations, but their use among individuals with schizophrenia has been limited. Feasibility, acceptability, safety, and adherence data were obtained for use of aerobic exercise (AE) equipment by 16 individuals with schizophrenia during a 12-week AE program consisting of three one-hour exercise sessions per week. Equipment included exercise video games for Xbox 360 with Kinect motion sensing devices and traditional exercise equipment. Most participants (81%) completed the training, attending an average of 79% of sessions. The proportion of time spent playing Xbox (39%) exceeded time spent on any other type of equipment. When using Xbox, participants played 2.24±1.59 games per session and reported high acceptability and enjoyment ratings, with no adverse events. Measures of feasibility, acceptability, adherence, and safety support the integration of active-play video games into AE training for people with schizophrenia.

  16. Enhancing digital video analysis of bar kinematics in weightlifting: a case study

    OpenAIRE

    Dæhlin, Torstein Eriksen; Krosshaug, Tron; Chiu, Loren Z.F.

    2017-01-01

    Weightlifting technique can be objectively assessed from two-dimensional video recordings. Despite its importance, participants’ bar trajectories in research involving the snatch or clean exercises are often not reported, potentially due to the time required to digitize video. The purpose of this investigation was to evaluate the use of an LED-based marker, digital video and open source software to automatically track the bar end during weightlifting exercises. A former national-level weightl...

  17. Action Video Game Playing Is Reflected In Enhanced Visuomotor Performance and Increased Corticospinal Excitability

    OpenAIRE

    Morin-Moncet, Olivier; Therrien-Blanchet, Jean-Marc; Ferland, Marie C.; Th?oret, Hugo; West, Greg L.

    2016-01-01

    Action video game playing is associated with improved visuomotor performance; however, the underlying neural mechanisms associated with this increased performance are not well understood. Using the Serial Reaction Time Task in conjunction with Transcranial Magnetic Stimulation, we investigated if improved visuomotor performance displayed in action video game players (actionVGPs) was associated with increased corticospinal plasticity in primary motor cortex (M1) compared to non-video game play...

  18. Video Game Training Enhances Visuospatial Working Memory and Episodic Memory in Older Adults

    OpenAIRE

    Toril, Pilar; José M. Reales; Mayas, Julia; Ballesteros, Soledad

    2016-01-01

    In this longitudinal intervention study with experimental and control groups, we investigated the effects of video game training on the visuospatial working memory (WM) and episodic memory of healthy older adults. Participants were 19 volunteer older adults, who received 15 1-h video game training sessions with a series of video games selected from a commercial package (Lumosity), and a control group of 20 healthy older adults. The results showed that the performance of the trainees improved ...

  19. Video game training enhances visuospatial working memory and episodic memory in older adults

    OpenAIRE

    Pilar eToril; José M. eReales; Julia eMayas; Soledad eBallesteros

    2016-01-01

    In this longitudinal intervention study with experimental and control groups, we investigated the effects of video game training on the visuospatial working memory and episodic memory of healthy older adults. Participants were 19 volunteer older adults, who received 15 1-hr video game training sessions with a series of video games selected from a commercial package (Lumosity), and a control group of 20 healthy older adults. The results showed that the performance of the trainees improved sign...

  20. Enhancing Mother Infant Interactions through Video Feedback Enabled Interventions in Women with Schizophrenia: A Single Subject Research Design Study.

    Science.gov (United States)

    Reddy, Pashapu Dharma; Desai, Geehta; Hamza, Ameer; Karthik, Sheshachala; Ananthanpillai, Supraja Thirumalai; Chandra, Prabha S

    2014-10-01

    It has been shown that mother infant interactions are often impaired in mothers with schizophrenia. Contributory factors include psychotic symptoms, negative symptoms and surrogate parenting by others. This study describes the effectiveness of video feedback in enhancing mother-infant interaction in mothers with schizophrenia who have impaired interaction with their infant. Two women with schizophrenia who were admitted for persistent psychotic symptoms and poor mothering skills, participated in the intervention. Pre intervention parenting assessment was done using video recording of mother infant interaction. Six sessions of mothering intervention were provided using video feedback and a repeat recording was done. Pre-and post-intervention videos were subsequently rated in a blind fashion by an independent expert in perinatal psychiatry using the pediatric infant parent exam (PIPE) scale. Pre and post intervention comparison of PIPE scores indicating significant improvement in several areas of mothering. Video feedback is a simple and inexpensive tool which can be used for improving mothering skills among mothers with postpartum psychosis or schizophrenia even in low resource settings.

  1. Tunable Fluorescent Silica-Coated Carbon Dots: A Synergistic Effect for Enhancing the Fluorescence Sensing of Extracellular Cu²⁺ in Rat Brain.

    Science.gov (United States)

    Lin, Yuqing; Wang, Chao; Li, Linbo; Wang, Hao; Liu, Kangyu; Wang, Keqing; Li, Bo

    2015-12-16

    Carbon quantum dots (CDs) combined with self-assembly strategy have created an innovative way to fabricate novel hybrids for biological analysis. This study demonstrates a new fluorescence platform with enhanced selectivity for copper ion sensing in the striatum of the rat brain following the cerebral calm/sepsis process. Here, the fabrication of silica-coated CDs probes is based on the efficient hybridization of APTES which act as a precursor of organosilane self-assembly, with CDs to form silica-coated CDs probes. The fluorescent properties including intensity, fluorescence quantum yield, excitation-independent region, and red/blue shift of the emission wavelength of the probe are tunable through reliable regulation of the ratio of CDs and APTES, realizing selectivity and sensitivity-oriented Cu(2+) sensing. The as-prepared probes (i.e., 3.33% APTES-0.9 mg mL(-1) CDs probe) show a synergistic amplification effect of CDs and APTES on enhancing the fluorescence signal of Cu(2+) detection through fluorescent self-quenching. The underlying mechanism can be ascribed to the stronger interaction including chelation and electrostatic attraction between Cu(2+) and N and O atoms-containing as well as negatively charged silica-coated CDs than other interference. Interestingly, colorimetric assay and Tyndall effect can be observed and applied to directly distinguish the concentration of Cu(2+) by the naked eye. The proposed fluorescent platform here has been successfully applied to monitor the alteration of striatum Cu(2+) in rat brain during the cerebral calm/sepsis process. The versatile properties of the probe provide a new and effective fluorescent platform for the sensing method in vivo sampled from the rat brain.

  2. [The latex agglutination with video digital registration: the enhancement of diagnostic significance of conventional technique].

    Science.gov (United States)

    Starovoĭtova, T A; Steriopolo, N A; Zaĭko, V V; Vengerov, Iu Iu

    2012-02-01

    The rapid semiquantitative latex-tests, because of their analytic characteristics and convenient application, became widespread in the practice of laboratory diagnostics. Though, in spite of high sensitivity and specificity, their diagnostic effectiveness is lower that it could be mainly because of the impossibility to document the results of latex agglutinative re4actions and to manage the objective quality control. The application of systems of video digital registration permits to enhance the clinical significance of these analyses. By means of scanner systems (control and program complex "Expert Lab") the image of analytic objects is received with the results of latex agglutination reaction. The application of program techniques (the programs "Expert Lab - Agglutination" and "Expert Lab - Agglutination - Micros") in data processing permits to get the precise qualitative characteristics of active reactions, to ensure the automatic interpretation of results and gives an opportunity to proceed with the internal laboratory quality control. The saving of analytic object image in computer memory after termination of reaction favors the formation of data base, the implementation of retrospective evaluation of obtained results, additional consultations in dubious cases, including on-line. The application of complex "Expert Lab" permitted to develop the miniaturizes matrix systems permitting to decrease the withdrawal of latex reagents, to increase the productivity of analytical stage of operation preserving all analytical characteristics of method.

  3. Complex-formation-enhanced fluorescence quenching effect for efficient detection of picric acid.

    Science.gov (United States)

    Ding, Aixiang; Yang, Longmei; Zhang, Yuyang; Zhang, Gaobin; Kong, Lin; Zhang, Xuanjun; Tian, Yupeng; Tao, Xutang; Yang, Jiaxiang

    2014-09-15

    Amine-functionalized α-cyanostilbene derivatives (Z)-2-(4-aminophenyl)-3-(4-butoxyphenyl)acrylonitrile (ABA) and (Z)-3-(4-butoxyphenyl)-2-[4-(butylamino)phenyl]acrylonitrile (BBA) were designed for specific recognition of picric acid (PA), an environmental and biological pollutant. The 1:1 host-guest complexes formed between the chemosensors and PA enhanced fluorescence quenching, thus leading to sensitive and selective detection in aqueous media and the solid phase. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging.

    Science.gov (United States)

    Xu, Suying; Bai, Xilin; Ma, Jingwen; Xu, Minmin; Hu, Gaofei; James, Tony D; Wang, Leyu

    2016-08-02

    The use of fluorescence probes for biomedical imaging has attracted significant attention over recent years owing to their high resolution at cellular level. The probes are available in many formats including small particle size based imaging agents which are considered to be promising candidates, due to their excellent stabilities. Yet, concerns over the potential cytotoxicity effects of inorganic luminescent particles have led to questions about their suitability for imaging applications. Exploration of alternatives inspired us to use organic fluorophores with aggregation-induced emission (AIE), prepared by functionalizing the amine group on tetraphenylethene with 3,5-bis(trifluoromethyl)phenyl isocyanate. The as-synthesized novel AIE fluorophore (TPE-F) display enhanced quantum yield and longer lifetime as compared with its counterparts (4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetraaniline, TPE-AM). Furthermore, the TPE-F was encapsulated into small-size organic nanoparticles (NPs; dynamic light scattering size, ∼10 nm) with polysuccinimide (PSI). The biocompatibility, excellent stability, bright fluorescence, and selective cell targeting of these NPs enable the as-prepared TPE-F NPs to be suitable for specific fluorescence cell imaging.

  5. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy.

    Science.gov (United States)

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  6. Enhanced ultraviolet fluorescence in surface modified ZnO nanostructures: Effect of PANI

    Science.gov (United States)

    Pandiyarajan, T.; Mangalaraja, R. V.; Karthikeyan, B.

    2015-08-01

    ZnO:polyaniline nanocomposite (ZnO:PANI) films were prepared and their steady state fluorescence and time resolved photoluminescence properties were discussed. X-ray diffraction and infrared spectroscopy analyses confirmed the interaction and formation of ZnO:PANI composite films. Optical absorption spectrum of pure PANI showed two bands at 325 and 625 nm which were ascribed to π → π∗ transition in the benzoid and exciton formation in the quinoid rings, respectively. Pure ZnO nanoparticles exhibited a band at 369 nm was due to their exciton absorption and the composite films showed a broad band in the visible region and small intensity band at the UV region. Fluorescence spectra showed that the ultra violet emission of ZnO was enhanced about tenfold due to the electron transfer from PANI to ZnO nanoparticles and the suppression of visible emission was attributed to the surface passivation effect. The transfer of electron from PANI to ZnO and its decay dynamics were experimentally analyzed through time resolved fluorescence measurements.

  7. High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system.

    Science.gov (United States)

    Tan, Yafang; Tang, Tiantian; Xu, Haisheng; Zhu, Chenqi; Cunningham, Brian T

    2015-11-15

    We demonstrate a platform that integrates photonic crystal enhanced fluorescence (PCEF) detection of a surface-based microspot fluorescent assay with a microfluidic cartridge to achieve simultaneous goals of high analytic sensitivity (single digit pg/mL), high selectivity, low sample volume, and assay automation. The PC surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cyanines 5 (Cy5), was used to amplify the fluorescence signal intensity measured from a multiplexed biomarker microarray. The assay system is comprised of a plastic microfluidic cartridge for holding the PC and an assay automation system that provides a leak-free fluid interface during introduction of a sequence of fluids under computer control. Through the use of the assay automation system and the PC embedded within the microfluidic cartridge, we demonstrate pg/mL-level limits of detection by performing representative biomarker assays for interleukin 3 (IL3) and Tumor Necrosis Factor (TNF-α). The results are consistent with limits of detection achieved without the use of the microfluidic device with the exception that coefficients of variability from spot-to-spot are substantially lower than those obtained by performing assays with manual manipulation of assay liquids. The system's capabilities are compatible with the goal of diagnostic instruments for point-of-care settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A set of enhanced green fluorescent protein concatemers for quantitative determination of nuclear localization signal strength.

    Science.gov (United States)

    Böhm, Jennifer; Thavaraja, Ramya; Giehler, Susanne; Nalaskowski, Marcus M

    2017-09-15

    Regulated transport of proteins between nucleus and cytoplasm is an important process in the eukaryotic cell. In most cases, active nucleo-cytoplasmic protein transport is mediated by nuclear localization signal (NLS) and/or nuclear export signal (NES) motifs. In this study, we developed a set of vectors expressing enhanced GFP (EGFP) concatemers ranging from 2 to 12 subunits (2xEGFP to 12xEGFP) for analysis of NLS strength. As shown by in gel GFP fluorescence analysis and αGFP Western blotting, EGFP concatemers are expressed as fluorescent full-length proteins in eukaryotic cells. As expected, nuclear localization of concatemeric EGFPs decreases with increasing molecular weight. By oligonucleotide ligation this set of EGFP concatemers can be easily fused to NLS motifs. After determination of intracellular localization of EGFP concatemers alone and fused to different NLS motifs we calculated the size of a hypothetic EGFP concatemer showing a defined distribution of EGFP fluorescence between nucleus and cytoplasm (n/c ratio = 2). Clear differences of the size of the hypothetic EGFP concatemer depending on the fused NLS motif were observed. Therefore, we propose to use the size of this hypothetic concatemer as quantitative indicator for comparing strength of different NLS motifs. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Using Online Interactive Physics-based Video Analysis Exercises to Enhance Learning

    Directory of Open Access Journals (Sweden)

    Priscilla W. Laws

    2017-04-01

    Full Text Available As part of our new digital video age, physics students throughout the world can use smart phones, video cameras, computers and tablets to produce and analyze videos of physical phenomena using analysis software such as Logger Pro, Tracker or Coach. For several years, LivePhoto Physics Group members have created short videos of physical phenomena. They have also developed curricular materials that enable students to make predictions and use video analysis software to verify them. In this paper a new LivePhoto Physics project that involves the creation and testing of a series of Interactive Video Vignettes (IVVs will be described. IVVs are short webbased assignments that take less than ten minutes to complete. Each vignette is designed to present a video of a phenomenon, ask for a student’s prediction about it, and then conduct on-line video observations or analyses that allow the user to compare findings with his or her initial prediction. The Vignettes are designed for web delivery as ungraded exercises to supplement textbook reading, or to serve as pre-lecture or pre-laboratory activities that span a number of topics normally introduced in introductory physics courses. A sample Vignette on the topic of Newton’s Third Law will be described, and the outcomes of preliminary research on the impact of Vignettes on student motivation, learning and attitudes will be summarized.

  10. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  11. Enhancing Perceived Quality of Compressed Images and Video with Anisotropic Diffusion and Fuzzy Filtering

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Korhonen, Jari; Forchhammer, Søren

    2013-01-01

    video sequences. For the video sequences, different filters are applied to luminance (Y) and chrominance (U,V) components. The performance of the proposed method has been compared against several other methods by using different objective quality metrics and a subjective comparison study. Both objective...

  12. Enhancing the Assessment Experience: Improving Student Perceptions, Engagement and Understanding Using Online Video Feedback

    Science.gov (United States)

    West, John; Turner, Will

    2016-01-01

    Individualised video screencasts with accompanying narration were used to provide assessment feedback to a large number (n = 299) of first-year Bachelor of Education students at Edith Cowan University in Western Australia. An anonymous online survey revealed that nearly three times as many respondents (61%) preferred video feedback to written…

  13. How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps [arXiv

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Mortensen, N. Asger; Wubs, Martijn

    2017-01-01

    nonlocal optical response theory. A simple strategy to introduce nonlocal corrections to the analytic solutions, which reproduce the trends of the simulations excellently, is also proposed. It is therefore demonstrated that the nonlocal optical response of the metal imposes more realistic, finite upper......, in comparison with appropriate analytical modelling, it is shown that, within classical electrodynamics, and for the largely reduced separations explored, fluorescence enhancement factors of the order of 106 can be achieved. This remarkable prediction is mainly governed by the dramatic increase in excitation...... bounds to the enhancement feasible with ultrasmall plasmonic cavities, thus providing a theoretical description closer to state of the art experiments. [Phys. Rev. B 96, 085413 (2017) doi:10.1103/PhysRevB.96.085413]....

  14. Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production.

    Science.gov (United States)

    Brennan, Liam; Blanco Fernández, Alfonso; Mostaert, Anika S; Owende, Philip

    2012-08-01

    This paper describes a microalgal cell lipid fluorescence enhancement method using BODIPY(505/515), which can be used to screen for lipids in wild-type microalgae and to monitor lipid content within microalgae production processes to determine optimal harvesting time. The study was based on four microalgae species (Dunaliella teteriolecta, Tetraselmis suecica, Nannochloropsis oculata, and Nannochloris atomus) selected because of their inherent high lipid content. An extended analysis was carried out with N. oculata due to the depressed fluorescence observed when compared with the other experimental strains. BODIPY(505/515) lipid fluorescence was determined for two solvent pre-treatment methods (DMSO and glycerol) and four staining condition parameters (analysis time, staining temperature, dye concentration, and algal cell concentration). It was found that lipid fluorescence of thick cell-walled microalgae, such as N. oculata, is significantly enhanced by both the pre-treatment methods and staining condition parameters, thereby significantly enhancing lipid fluorescence by ca. 800 times the base autofluorescence. The lipid fluorescence enhancement method provides a quick and simple index for in vivo Flow Cytometry quantification of total lipid contents for purposes of species screening or whole culture monitoring in biofuel-directed microalgae production. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Microstructure-Enhanced Liquid–Liquid Extraction in a Real-Time Fluorescence Detection Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Penghui Xiong

    2016-03-01

    Full Text Available Microfluidic system is widely employed in the detection of environmental contaminants and biological specimens. One of the critical issues which limits the applications of microfluidic chips is the limit of detection of trace specimens. Liquid–liquid extraction is of great importance in the preprocessing in microfluidic devices. In this paper, we developed a real-time fluorescence detection microfluidic chip combined with a microstructure-enhanced liquid–liquid laminar extraction technique, which concentrated the trace compound and realized real-time monitoring. Auxiliary microstructures integrated in the microfluidic chip were applied to increase the extraction efficiency, which was proved by the FEM (finite element method simulation as well. A common fluorescence probe, Rhodamine 6G (Rh6g, was used in the experiment to demonstrate the performance of the microfluidic system. It revealed that the liquid–liquid laminar extraction combined with auxiliary microstructures of a cross shape was an effective method for enrichment. The efficiency of microstructure-enhanced liquid–liquid extraction was increased by 350% compared to the traditional laminar flow extraction.

  16. Fluorescence-enhanced optical tomography in small volume: Telegrapher and Diffusion models

    Directory of Open Access Journals (Sweden)

    Ranadhyr Roy

    2011-08-01

    Full Text Available Small animal fluorescence-enhanced optical tomography has possibility for restructuring drug discovery and preclinical investigation of drug candidates. However, accurate modeling of photon propagation in small animals is critical to quantitatively obtain accurate tomographic images. The diffusion approximation is commonly used for biomedical optical diagnostic techniques in turbid large media where absorption is low compared to scattering system. Unfortunately, this approximation has significant limitations to accurately predict radiative transport in turbid small media and also in a media where absorption is high compared to scattering systems. A radiative transport equation (RTE is best suited for photon propagation in human tissues. However, such models are quite expensive computationally. To alleviate the problems of the high computational cost of RTE and inadequacies of the diffusion equation in a small volume, we use telegrapher equation (TE in the frequency domain for fluorescence-enhanced optical tomography problems. The telegrapher equation can accurately and efficiently predict ballistic as well as diffusion-limited transport regimes which could simultaneously exist in small animals. The accuracy of telegrapher-based model is tested by comparing with the diffusion-based model using stimulated data in a small volume. This work demonstrates the use of the telegrapher-based model in small animal optical tomography problems.

  17. Quantifying sublethal effects of glyphosate and Roundup® to Daphnia magna using a fluorescence based enzyme activity assay and video tracking

    DEFF Research Database (Denmark)

    Roslev, Peter; R. Hansen, Lone; Ørsted, Michael

    Glyphosate (N-(phosphonomethyl)glycine) is the active ingredient in a range of popular broad-spectrum, non-selective herbicide formulations. The toxicity of this herbicide to non-target aquatic organisms such as Daphnia magna is often evaluated using conventional toxicity assays that focus...... on endpoints such as immobility and mortality. In this study, we investigated sublethal effects of glyphosate and Roundup® to D. magna using video tracking for quantifying behavioral changes, and a novel fluorescence based assay for measuring in vivo hydrolytic enzyme activity (FLEA assay). Roundup® exposure...... resulted in concentration-dependent inhibition of alkaline phosphatase activity in D. magna. The inhibition of alkaline phosphatase by Roundup® was temperature-dependent with lowest inhibition at 14 °C and greater inhibition at 20 and 26 °C. Exposure of D. magna to sublethal concentrations of glyphosate...

  18. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study.

    Science.gov (United States)

    Wang, Ping; Zhu, Xing-Ting; Qi, Zhigang; Huang, Silin; Li, Hui-Jie

    2017-01-01

    Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI) study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs) and twenty non-video game players (NVGPs) of 60 years of age or older participated in the present study, and there are no significant differences in age (t = 0.62, p = 0.536), gender ratio (t = 1.29, p = 0.206) and years of education (t = 1.92, p = 0.062) between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  19. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2017-11-01

    Full Text Available Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs and twenty non-video game players (NVGPs of 60 years of age or older participated in the present study, and there are no significant differences in age (t = 0.62, p = 0.536, gender ratio (t = 1.29, p = 0.206 and years of education (t = 1.92, p = 0.062 between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  20. Real-time demonstration hardware for enhanced DPCM video compression algorithm

    Science.gov (United States)

    Bizon, Thomas P.; Whyte, Wayne A., Jr.; Marcopoli, Vincent R.

    The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development

  1. Fabrication of Polydiacetylene Liposome Chemosensor with Enhanced Fluorescent Self-Amplification and Its Application for Selective Detection of Cationic Surfactants.

    Science.gov (United States)

    Wang, Dong-En; Zhao, Lei; Yuan, Mao-Sen; Chen, Shu-Wei; Li, Tianbao; Wang, Jinyi

    2016-10-07

    Polydiacetylene (PDA) materials have been adopted as one of the powerful conjugated polymers for sensing applications due to their unique optical properties. In this paper, we present a new PDA liposome-based sensor system with enhanced fluorescent self-amplification by tuning a fluorophore fluorescence emission. In this system, a 1,8-naphthalimide derivative employed as a highly fluorescent fluorophore was incorporated into a PDA supermolecule. During the formation of blue PDA liposomes, the fluorescence emission of the fluorophore can be directly quenched, while thermal-induced phase transition of PDA liposomes from blue to red can readily restore this fluorescence emission. These phenomena could be ascribed to the tunable Förster energy transfer between the excited fluorophore and PDA conjugated framework. To demonstrate the sensing performance of this newly prepared PDA liposome-based sensor, the sensor with fluorescent self-amplification was successfully applied for the detection of cationic surfactants (CS). The results show that the PDA liposomes displayed a distinct color change and fluorescence restoration in the presence of cationic surfactant species, and allowed detection of cationic surfactants with high sensitivity and selectivity. The limit of detection for target CS, such as cetyltrimethylammonium bromide (CTAB), can reach as low as 184 nM. Compared to the traditional methods based on colorimetric PDA liposomes, this newly fabricated PDA sensor system was superior for sensitivity. Thus, our findings offer an avenue for the design and development of new types of PDA sensors with enhanced sensitivity.

  2. Synthesis of europium-doped VSOP, customized enhancer solution and improved microscopy fluorescence methodology for unambiguous histological detection.

    Science.gov (United States)

    de Schellenberger, Angela Ariza; Hauptmann, Ralf; Millward, Jason M; Schellenberger, Eyk; Kobayashi, Yuske; Taupitz, Matthias; Infante-Duarte, Carmen; Schnorr, Jörg; Wagner, Susanne

    2017-10-10

    Intrinsic iron in biological tissues frequently precludes unambiguous the identification of iron oxide nanoparticles when iron-based detection methods are used. Here we report the full methodology for synthesizing very small iron oxide nanoparticles (VSOP) doped with europium (Eu) in their iron oxide core (Eu-VSOP) and their unambiguous qualitative and quantitative detection by fluorescence. The resulting Eu-VSOP contained 0.7 to 2.7% Eu relative to iron, which was sufficient for fluorescent detection while not altering other important particle parameters such as size, surface charge, or relaxivity. A customized enhancer solution with high buffer capacity and nearly neutral pH was developed to provide an antenna system that allowed fluorescent detection of Eu-VSOP in cells and histologic tissue slices as well as in solutions even under acidic conditions as frequently obtained from dissolved organic material. This enhancer solution allowed detection of Eu-VSOP using a standard fluorescence spectrophotometer and a fluorescence microscope equipped with a custom filter set with an excitation wavelength (λex) of 338 nm and an emission wavelength (λem) of 616 nm. The fluorescent detection of Eu-doped very small iron oxide nanoparticles (Eu-VSOP) provides a straightforward tool to unambiguously characterize VSOP biodistribution and toxicology at tissue, and cellular levels, providing a sensitive analytical tool to detect Eu-doped IONP in dissolved organ tissue and biological fluids with fluorescence instruments.

  3. Gaming to see: Action Video Gaming is associated with enhanced processing of masked stimuli

    OpenAIRE

    Carsten ePohl; Wilfried eKunde; Thomas eGanz; Annette eConzelmann; Paul ePauli; Andrea eKiesel

    2014-01-01

    Recent research revealed that action video game players outperform non-players in a wide range of attentional, perceptual and cognitive tasks. Here we tested if expertise in action video games is related to differences regarding the potential of shortly presented stimuli to bias behaviour. In a response priming paradigm, participants classified four animal pictures functioning as targets as being smaller or larger than a reference frame. Before each target, one of the same four animal picture...

  4. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    OpenAIRE

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R.; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris p...

  5. pGreen-S: a clone vector bearing absence of enhanced green fluorescent protein for screening recombinants.

    Science.gov (United States)

    Tang, Jinbao; Liang, Shujuan; Zhang, Jinbao; Gao, Zhiqin; Zhang, Suhua

    2009-05-01

    The bacterial cloning vector, pGreen-S, was constructed by inserting the enhanced green fluorescent protein (EGFP) gene at the XbaI restriction site of pUC18 plasmid. When expressed in Escherichia coli DH5alpha produced colonies that were an absinthe green color under daylight and strongly fluorescent green under longwave ultraviolet light. The pGreen-S vector was used to select for directional insert based on the loss of green fluorescence in recombinant colonies that was caused by the absence of EGFP. The EGFP reporter system differs from the conventional complementation of lacZ, making screening recombinants simpler, less expensive, and more effective.

  6. Temperature measurements of micro-droplets using pulsed 2-color laser-induced fluorescence with MDR-enhanced energy transfer

    Science.gov (United States)

    Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold

    2016-12-01

    In this work, a new measurement system is presented for studying temperature of micro-droplets by pulsed 2-color laser-induced fluorescence. Pulsed fluorescence excitation allows motion blur suppression and thus simultaneous measurements of droplet size, velocity and temperature. However, high excitation intensities of pulsed lasers lead to morphology-dependent resonances inside micro-droplets, which are accompanied by disruptive stimulated emission. Investigations showed that stimulated emission can be avoided by enhanced energy transfer via an additional dye. The suitability and accuracy of the new pulsed method are verified on the basis of a spectroscopic analysis and comparison to continuously excited 2-color laser-induced fluorescence.

  7. Iterative Multiview Side Information for Enhanced Reconstruction in Distributed Video Coding

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Distributed video coding (DVC is a new paradigm for video compression based on the information theoretical results of Slepian and Wolf (SW and Wyner and Ziv (WZ. DVC entails low-complexity encoders as well as separate encoding of correlated video sources. This is particularly attractive for multiview camera systems in video surveillance and camera sensor network applications, where low complexity is required at the encoder. In addition, the separate encoding of the sources implies no communication between the cameras in a practical scenario. This is an advantage since communication is time and power consuming and requires complex networking. In this work, different intercamera estimation techniques for side information (SI generation are explored and compared in terms of estimating quality, complexity, and rate distortion (RD performance. Further, a technique called iterative multiview side information (IMSI is introduced, where the final SI is used in an iterative reconstruction process. The simulation results show that IMSI significantly improves the RD performance for video with significant motion and activity. Furthermore, DVC outperforms AVC/H.264 Intra for video with average and low motion but it is still inferior to the Inter No Motion and Inter Motion modes.

  8. Plasmonic enhancement of cyanine dyes for near-infrared light-triggered photodynamic/photothermal therapy and fluorescent imaging

    Science.gov (United States)

    Lu, Mindan; Kang, Ning; Chen, Chuan; Yang, Liuqing; Li, Yang; Hong, Minghui; Luo, Xiangang; Ren, Lei; Wang, Xiumin

    2017-11-01

    Near-infrared (NIR) triggered cyanine dyes have attracted considerable attention in multimodal tumor theranostics. However, NIR cyanine dyes used in tumor treatment often suffer from low fluorescence intensity and weak singlet oxygen generation efficiency, resulting in inadequate diagnostic and therapy efficacy for tumors. It is still a great challenge to improve both the photodynamic therapy (PDT) and fluorescent imaging (FLI) efficacy of cyanine dyes in tumor applications. Herein, a novel multifunctional nanoagent AuNRs@SiO2-IR795 was developed to realize the integrated photothermal/photodynamic therapy (PTT/PDT) and FLI at a very low dosage of IR795 (0.4 μM) based on metal-enhanced fluorescence (MEF) effects. In our design, both the fluorescence intensity and reactive oxygen species of AuNRs@SiO2-IR795 nanocomposites were significantly enhanced up to 51.7 and 6.3 folds compared with free IR795, owing to the localized surface plasmon resonance band of AuNRs overlapping with the absorption or fluorescence emission band of the IR795 dye. Under NIR laser irradiation, the cancer cell inhibition efficiency in vitro with synergetic PDT/PTT was up to 82.3%, compared with 10.3% for free IR795. Moreover, the enhanced fluorescence intensity of our designed nanocomposites was helpful to track their behavior in tumor cells. Therefore, our designed nanoagents highlight the applications of multimodal diagnostics and therapy in tumors based on MEF.

  9. Circular dichroism spectroscopy of fluorescent proteins

    NARCIS (Netherlands)

    Visser, N.V.; Hink, M.A.; Borst, J.W.; Krogt, van der G.N.M.; Visser, A.J.W.G.

    2002-01-01

    Circular dichroism (CD) spectra have been obtained from several variants of green fluorescent protein: blue fluorescent protein (BFP), enhanced cyan fluorescent protein (CFP), enhanced green fluorescent protein (GFP), enhanced yellow fluorescent protein (YFP), all from Aequorea victoria, and the red

  10. Study on silicon oxide coated on silver nanocrystal to enhance fluorescence intensity of rare earth complexes

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yan-rong; Lin, Xue-mei; Wang, Ai-ling; Wang, Zhong-xia; Kang, Jie; Chu, Hai-bin, E-mail: binghai99@gmail.com; Zhao, Yong-liang, E-mail: hxzhaoyl@163.com

    2014-10-15

    Twelve kinds of rare earth complexes were synthesized using halo-benzoic acid as anion ligand and Sm{sup 3+} and Dy{sup 3+} as central ions, respectively. The complexes were characterized by elemental analysis, rare earth coordination titration and electrospray ionization mass spectra, from which the compositions of the complexes were confirmed to be RE(p-FBA){sub 3}·H{sub 2}O, RE(p-ClBA){sub 3}·2H{sub 2}O, RE(p-BrBA){sub 3}·H{sub 2}O, RE(o-FBA){sub 3}·2H{sub 2}O, RE(o-ClBA){sub 3}·H{sub 2}O, RE(o-BrBA){sub 3}·H{sub 2}O (RE=Sm{sup 3+}, Dy{sup 3+}). Besides, IR spectra and UV–visible absorption spectroscopy indicated that the carboxyl oxygen atoms of ligands coordinated to the rare earth ions. Moreover, Ag@SiO{sub 2} core–shell nanoparticles (NPs) were prepared via a modified Stöber method. The average diameters of silver cores were typically between 60 nm and 70 nm, and the thicknesses of the SiO{sub 2} shells were around 10 nm, 15 nm and 25 nm, respectively. The influence of Ag@SiO{sub 2} NPs on the luminescence properties of the rare earth complexes showed that the luminescence intensities of rare earth complexes were enhanced remarkably. As the thickness of SiO{sub 2} shell increases in the range of 10–25 nm, the effect of metal-enhanced fluorescence become obvious. The mechanism of the changes of the fluorescence intensity is also discussed. - Highlights: • Among 10–25 nm, the thicker the shell thickness, the better the fluorescence effect. • The strong the intensity of the pure complexes, the smaller the multiple enhanced. • The intensity of Sm(p-BrBA){sub 3}·H{sub 2}O is the strongest among Sm(p-XBA){sub 3}·nH{sub 2}O complexes. • The intensity of Dy(p-ClBA){sub 3}·2H{sub 2}O is the strongest among Dy(p-XBA){sub 3}·nH{sub 2}O complexes. • When halogen is in o-position, the intensity of RE(o-ClBA){sub 3}·H{sub 2}O is the strongest.

  11. Analysis of Trinitrophenylated Adenosine and Inosine by Capillary Electrophoresis and γ-Cyclodextrin-Enhanced Fluorescence Detection.

    Science.gov (United States)

    Stephen, Terilyn K L; Guillemette, Katherine L; Green, Thomas K

    2016-08-02

    Monitoring molecules such as adenosine (Ado) and inosine (Ino) in the central nervous system has enabled the field of neuroscience to correlate molecular concentrations dynamics to neurological function, behavior, and disease. In vivo sampling techniques are commonly used to monitor these dynamics; however, many techniques are limited by the sensitivity and sample volume requirements of currently available detection methods. Here, we present a novel capillary electrophoresis-laser-induced fluorescence detection (CE-LIF) method that analyzes Ado and Ino by derivatization with 2,4,6-trinitrobenzenesulfonic acid to form fluorescent trinitrophenylated complexes of Ado (TNP-Ado) and Ino (TNP-Ino). These complexes exhibit ∼25-fold fluorescence enhancement upon the formation of inclusion complexes with γ-cyclodextrin (γ-CD). Association constants were determined as 4600 M(-1) for Ado and 1000 M(-1) for Ino by CE-LIF. The structure of the TNP-Ado:γ-CD complex was determined by 2D nuclear magnetic resonance (NMR) spectroscopy. Optimal trinitrophenylation reaction conditions and CE-LIF parameters were determined and resulted in the limit of detection of 1.6 μM for Ado and 4 μM for Ino. Ado and Ino were simultaneously quantified in homogenized rat forebrain samples to illustrate application of the technique. Simulated biological samples, desalted by ultrafiltration in the presence γ-CD, were concentrated on-capillary by large-volume sample stacking (LVSS) to achieve detection limits of 32 and 38 nM for TNP-Ado and TNP-Ino, respectively.

  12. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    Science.gov (United States)

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Video gaming enhances psychomotor skills but not visuospatial and perceptual abilities in surgical trainees.

    Science.gov (United States)

    Kennedy, A M; Boyle, E M; Traynor, O; Walsh, T; Hill, A D K

    2011-01-01

    There is considerable interest in the identification and assessment of underlying aptitudes or innate abilities that could potentially predict excellence in the technical aspects of operating. However, before the assessment of innate abilities is introduced for high-stakes assessment (such as competitive selection into surgical training programs), it is essential to determine that these abilities are stable and unchanging and are not influenced by other factors, such as the use of video games. The aim of this study was to investigate whether experience playing video games will predict psychomotor performance on a laparoscopic simulator or scores on tests of visuospatial and perceptual abilities, and to examine the correlation, if any, between these innate abilities. Institutional ethical approval was obtained. Thirty-eight undergraduate medical students with no previous surgical experience were recruited. All participants completed a self-reported questionnaire that asked them to detail their video game experience. They then underwent assessment of their psychomotor, visuospatial, and perceptual abilities using previously validated tests. The results were analyzed using independent samples t tests to compare means and linear regression curves for subsequent analysis. Students who played video games for at least 7 hours per week demonstrated significantly better psychomotor skills than students who did not play video games regularly. However, there was no difference on measures of visuospatial and perceptual abilities. There was no correlation between psychomotor tests and visuospatial or perceptual tests. Regular video gaming correlates positively with psychomotor ability, but it does not seem to influence visuospatial or perceptual ability. This study suggests that video game experience might be beneficial to a future career in surgery. It also suggests that relevant surgical skills may be gained usefully outside the operating room in activities that are not

  14. Surface plasmon field-enhanced fluorescence spectroscopy in PCR product analysis by peptide nucleic acid probes.

    Science.gov (United States)

    Yao, Danfeng; Yu, Fang; Kim, Junyoung; Scholz, Judith; Nielsen, Peter E; Sinner, Eva-Kathrin; Knoll, Wolfgang

    2004-12-14

    Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) was recently developed for PCR product analysis, which allowed for real-time monitoring of hybridization processes and for the detection of trace amounts of PCR products, with a detection limit of 100 fmol on the peptide nucleic acid (PNA) probe surface, and 500 fmol on the DNA probe surface. By selectively labeling the strands of PCR-amplified DNA, it was shown that the heat denaturation process in combination with the application of low-salt condition substantially reduced the interference from the antisense strands and thus simplified the surface hybridization. Furthermore, SPFS was demonstrated to be capable of quantitatively discriminating the difference induced by single nucleotide substitution, even within one minute of contact time.

  15. Improved method to raise polyclonal antibody using enhanced green fluorescent protein transgenic mice.

    Science.gov (United States)

    Ren, Jianke; Wang, Long; Liu, Guoxiang; Zhang, Wen; Sheng, Zhejin; Wang, Zhugang; Fei, Jian

    2008-02-01

    Recombinant fusion protein is widely used as an antigen to raise antibodies against the epitope of a target protein. However, the concomitant anticarrier antibody in resulting antiserum reduces the production of the desired antibody and brings about unwanted non-specific immune reactions. It is proposed that the carrier protein transgenic animal could be used to solve this problem. To validate this hypothesis, enhanced green fluorescent protein (EGFP) transgenic mice were produced. By immunizing the mice with fusion protein His6HAtag-EGFP, we showed that the antiserum from the transgenic mice had higher titer antibody against His6HA tag and lower titer antibody against EGFP compared with that from wild-type mice. Therefore, this report describes an improved method to raise high titer antipeptide polyclonal antibody using EGFP transgenic mice that could have application potential in antibody preparation.

  16. CROSS LAYERED HYBRID TRANSPORT LAYER PROTOCOL APPROACH TO ENHANCE NETWORK UTILISATION FOR VIDEO TRAFFIC

    Directory of Open Access Journals (Sweden)

    Matilda.S

    2010-03-01

    Full Text Available Video data transfer is the major traffic in today’s Internet. With the emerging need for anytime anywhere communication, applications transmitting video is gaining momentum. Real Time Protocol is the primary standard for transfer of video data, as; it requires timely delivery and can tolerate loss of packets. Streaming is the method used for delivering video content from the source server to the user. But this has many drawbacks: a It sends only the amount of data equivalent to the streaming encoded rate to the client irrespective of the available bandwidth in the path. Hence the links are underutilized; b It utilizes the link for the entire period of transfer and hence the link is not available to service other new clients. Thus as the number of clients increases, the network performance decreases. In this work, the advantages and disadvantages of the combination of different protocols in the application layer and transport layer are analyzed. The significant characteristics of each of these protocols are utilized and a combination of protocols for improving the network performance is arrived at, while retaining the QoS of video transmission.

  17. Students' and Teachers' Perceptions of Using Video Games to Enhance Science Instruction

    Science.gov (United States)

    Marino, Matthew T.; Israel, Maya; Beecher, Constance C.; Basham, James D.

    2012-10-01

    Science education video game research points toward promising, but inconclusive results in both student learning outcomes and attitudes. However, student-level variables other than gender have been largely absent from this research. This study examined how students' reading ability level and disability status are related to their video game-playing behaviors outside of school and their perceptions about the use of science video games during school. Thirty-four teachers and 876 sixth- through ninth-grade students from 14 states participated in the study. All student groups reported that they would prefer to learn science from a video game rather than from traditional text, laboratory-based, or Internet environments. Chi-square analyses indicated a significant association between reading ability level, disability status, and key areas of interest including students' use of video games outside of school, their perceptions of their scientific abilities, and whether they would pursue a career in the sciences. Implications of these findings and areas for future research are identified.

  18. Enhancing Digital Video Analysis of Bar Kinematics in Weightlifting: A Case Study.

    Science.gov (United States)

    Dæhlin, Torstein E; Krosshaug, Tron; Chiu, Loren Z F

    2017-06-01

    Weightlifting technique can be objectively assessed from two-dimensional video recordings. Despite its importance, participants' bar trajectories in research involving the snatch or clean exercises are often not reported, potentially due to the time required to digitize video. The purpose of this investigation was to evaluate the use of a light-emitting diode (LED)-based marker, digital video, and open-source software to automatically track the bar end during weightlifting exercises. A former national-level weightlifter was recorded with a digital video camera performing the snatch, clean and jerk, and squat exercises. An LED-based marker was placed on the right end of the bar. This marker was automatically tracked using 2 open-source software programs to obtain vertical and horizontal position coordinates. The LED-based marker was successfully auto-tracked for all videos over a variety of camera settings. Furthermore, the vertical and horizontal bar displacements and vertical bar velocity were consistent between the 2 software programs. This study demonstrates that an LED-based marker can be automatically tracked using open-source software. This combination of an LED-based marker, consumer camera, and open-source software is an accessible, low-cost method to objectively evaluate weightlifting technique.

  19. Gaming to see: Action Video Gaming is associated with enhanced processing of masked stimuli

    Directory of Open Access Journals (Sweden)

    Carsten ePohl

    2014-02-01

    Full Text Available Recent research revealed that action video game players outperform non-players in a wide range of attentional, perceptual and cognitive tasks. Here we tested if expertise in action video games is related to differences regarding the potential of shortly presented stimuli to bias behaviour. In a response priming paradigm, participants classified four animal pictures functioning as targets as being smaller or larger than a reference frame. Before each target, one of the same four animal pictures was presented as a masked prime to influence participants’ responses in a congruent or incongruent way. Masked primes induced congruence effects, that is, faster responses for congruent compared to incongruent conditions, indicating processing of hardly visible primes. Results also suggested that action video game players showed a larger congruence effect than non-players for 20 ms primes, whereas there was no group difference for 60 ms primes. In addition, there was a tendency for action video game players to detect masked primes for some prime durations better than non-players. Thus, action video game expertise may be accompanied by faster and more efficient processing of shortly presented visual stimuli.

  20. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  1. Novel fluorescence nanobubbles for contrast-enhanced ultrasound imaging in rabbit VX2 hepatocellular carcinoma model

    Science.gov (United States)

    Yu, Houqiang; Wang, Wei; He, Xiaoling; Zhou, Qibing; Ding, Mingyue

    2017-03-01

    Ultrasound contrast agents (UCAs) such as SonoVue or Optison have been used widely in clinic for contrast-enhanced vascular imaging. However, microbubbles UCAs display limitations in tumor-targeted imaging due to the large sizes, nanoscaled UCAs has consequently attracted increasing attentions. In this work, we synthesized nanobubbles (NBs) by ultrasonic cavitation method, then a fluorescent marker of Alexa Fluor 680 was conjugated to the shell in order to observe the localization of NBs in tumor tissue. Measurement of fundamental characteristics showed that the NBs had homogeneous distribution of mean diameter of 267.9 +/- 19.2 nm and polydispersity index of 0.410 +/- 0.056. To assess in vivo tumor-selectivity of NBs, we established the rabbits VX2 hepatocellular carcinoma model though surgical implantation method. After the rabbits were intravenous administered of NBs, contrast-enhanced sonograms was observed in the surrounding of VX2 tumor, which showed there are rich capillaries in the tumor periphery. We additionally investigated the toxic of the NBs by hematoxylin-eosin staining. The results indicated that the NBs is a biocompatible non-toxic lipid system. Furthermore, the VX2 tumors and major organs were analyzed using ex vivo fluorescence imaging to confirm the targeted selectivity of NBs, and the results verified that the NBs were capable of targeting VX2 tumor. Confocal laser scanning microscopy examination showed that the NBs can traverse the VX2 tumor capillaries and target to the hepatocellular carcinoma tumor cells. All these results suggested that the newly prepared NBs have a potential application in molecular imaging and tumor-targeting therapy.

  2. Web-Mediated Augmentation and Interactivity Enhancement of Omni-Directional Video in Both 2D and 3D

    OpenAIRE

    Wijnants, Maarten; Van Erum, Kris; QUAX, Peter; Lamotte, Wim

    2015-01-01

    Video consumption has since the emergence of the medium largely been a passive affair. This paper proposes augmented Omni-Directional Video (ODV) as a novel format to engage viewers and to open up new ways of interacting with video content. Augmented ODV blends two important contemporary technologies: Augmented Video Viewing and 360 degree video. The former allows for the addition of interactive features to Web-based video playback, while the latter unlocks spatial video navigation opportunit...

  3. Fluorescence enhancement of samarium (III) perchlorate by 1,10-phenanthroline on Phenylnaphthoylmethyl sulfoxide complex and luminescence mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Xian, E-mail: nmglwx@163.com; Feng, Shu-Yan; Liu, Yu; Zhang, Jing; Xin, Xiao-Dong; Ao, Bo-Yang; Li, Ying-Jie

    2013-11-15

    A novel ligand, Phenylnaphthoylmethyl sulfoxide, was synthesized by a new method. Its novel binary complex, SmL{sub 5}·(ClO{sub 4}){sub 3}·2H{sub 2}O, and the ternary complex, SmL{sub 4}·L′(ClO{sub 4}){sub 3}·2H{sub 2}O, had been synthesized (using Phenylnaphthoylmethyl sulfoxide as the first ligand L, 1,10-phenanthroline as the second ligand L′). The complexes were characterized by element analysis, coordination titration, molar conductivity, IR, TG-DSC, {sup 1}HNMR and UV spectra. Their fluorescence emission mechanism, fluorescence intensities and phosphorescence spectra of the two ligands were also investigated by comparison. Fluorescent spectra illustrated that the ternary rare-earth complex presented stronger fluorescence intensity than the binary rare-earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.81 times as strong as that of the binary system. By the analysis of fluorescence and phosphorescence spectra, it was found that the Phenylnaphthoylmethyl sulfoxide and phen had the advantage to absorb and transfer energy to Sm (III) ions effectively, and then the complexes emitted the characteristic fluorescence of Sm (III) ions. The phosphorescence spectra and fluorescence lifetime of the complexes were also measured. -- Highlights: • A novel ligand, Phenylnaphthoylmethyl sulfoxide, has been synthesized. • Its novel ternary complex and the binary complex have been synthesized. • The fluorescence emission intensity of ternary rare earth complex exhibit obvious enhancement. • The fluorescence emission mechanism and phosphorescence spectra are also investigated.

  4. Video games and rehabilitation: using design principles to enhance engagement in physical therapy.

    Science.gov (United States)

    Lohse, Keith; Shirzad, Navid; Verster, Alida; Hodges, Nicola; Van der Loos, H F Machiel

    2013-12-01

    Patient nonadherence with therapy is a major barrier to rehabilitation. Recovery is often limited and requires prolonged, intensive rehabilitation that is time-consuming, expensive, and difficult. We review evidence for the potential use of video games in rehabilitation with respect to the behavioral, physiological, and motivational effects of gameplay. In this Special Interest article, we offer a method to evaluate effects of video game play on motor learning and their potential to increase patient engagement with therapy, particularly commercial games that can be interfaced with adapted control systems. We take the novel approach of integrating research across game design, motor learning, neurophysiology changes, and rehabilitation science to provide criteria by which therapists can assist patients in choosing games appropriate for rehabilitation. Research suggests that video games are beneficial for cognitive and motor skill learning in both rehabilitation science and experimental studies with healthy subjects. Physiological data suggest that gameplay can induce neuroplastic reorganization that leads to long-term retention and transfer of skill; however, more clinical research in this area is needed. There is interdisciplinary evidence suggesting that key factors in game design, including choice, reward, and goals, lead to increased motivation and engagement. We maintain that video game play could be an effective supplement to traditional therapy. Motion controllers can be used to practice rehabilitation-relevant movements, and well-designed game mechanics can augment patient engagement and motivation in rehabilitation. We recommend future research and development exploring rehabilitation-relevant motions to control games and increase time in therapy through gameplay.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A61) for more insights from the authors.

  5. Noninvasive optical diagnostics of enhanced green fluorescent protein expression in skeletal muscle for comparison of electroporation and sonoporation efficiencies

    Science.gov (United States)

    Tamošiūnas, Mindaugas; Kadikis, Roberts; Saknīte, Inga; Baltušnikas, Juozas; Kilikevičius, Audrius; Lihachev, Alexey; Petrovska, Ramona; Jakovels, Dainis; Šatkauskas, Saulius

    2016-04-01

    We highlight the options available for noninvasive optical diagnostics of reporter gene expression in mouse tibialis cranialis muscle. An in vivo multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) expression, providing information on location and duration of EGFP expression and allowing quantification of EGFP expression levels. For EGFP coding plasmid (pEGFP-Nuc Vector, 10 μg/50 ml) transfection, we used electroporation or ultrasound enhanced microbubble cavitation [sonoporation (SP)]. The transcutaneous EGFP fluorescence in live mice was monitored over a period of one year using the described parameters: area of EGFP positive fibers, integral intensity, and mean intensity of EGFP fluorescence. The most efficient transfection of EGFP coding plasmid was achieved, when one high voltage and four low voltage electric pulses were applied. This protocol resulted in the highest short-term and long-term EGFP expression. Other electric pulse protocols as well as SP resulted in lower fluorescence intensities of EGFP in the transfected area. We conclude that noninvasive multispectral imaging technique combined with fluorescence spectroscopy point measurements is a suitable method to estimate the dynamics and efficiency of reporter gene transfection in vivo.

  6. Al3+-induced far-red fluorescence enhancement of conjugated polymer nanoparticles and its application in live cell imaging

    Science.gov (United States)

    LiuH. Liu, X. Hao, C. H. Duan,; H. Yang Contributed Equally To This Work., Heng; Hao, Xian; Duan, Chunhui; Yang, Hui; Lv, Yi; Xu, Haijiao; Wang, Hongda; Huang, Fei; Xiao, Debao; Tian, Zhiyuan

    2013-09-01

    Fluorescent nanoparticles (NPs) for Al3+ sensing with high selectivity were developed from a type of carbazole-based conjugated polymer with a two-dimensional donor-π bridge-acceptor (D-π-A) structure. These NPs are characterized by their small particle diameter (~18 nm), far-red fluorescence emission (centered ~710 nm), and Al3+-induced fluorescence enhancement with high selectivity owing to an Al3+-triggered inhibition on the intramolecular charge transfer (ICT) processes between the conjugated backbone and the pendant acceptors. This type of nanoparticle is easily suspended in aqueous solutions, indicating their practical applicability in physiological media, and their ability for intracellular Al3+ sensing was confirmed. As compared to other types of conjugated polymer based probes showing metal ion mediated fluorescence quenching, these as-prepared NPs possess analyte-enhanced fluorescence emission, which is analytically favored in terms of sensitivity and selectivity. Fluorescence emission with wavelengths in the biological window of maximum optical transparency (~700 to 1000 nm) is expected to impart a salient advantage for biological detection applications to these as-prepared probes. The superior features of merit of this new type of fluorescent probe, together with the validation of practicability for intracellular Al3+ ion sensing, are indicative of their potential for application in fluorescence-based imaging and sensing, such as investigations on Al3+-related physiological and pathological processes.Fluorescent nanoparticles (NPs) for Al3+ sensing with high selectivity were developed from a type of carbazole-based conjugated polymer with a two-dimensional donor-π bridge-acceptor (D-π-A) structure. These NPs are characterized by their small particle diameter (~18 nm), far-red fluorescence emission (centered ~710 nm), and Al3+-induced fluorescence enhancement with high selectivity owing to an Al3+-triggered inhibition on the intramolecular charge

  7. Biocompatible fluorescence-enhanced ZrO{sub 2}-CdTe quantum dot nanocomposite for in vitro cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhisong; Zhu Zhihong; Zheng Xinting; Qiao Yan; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 (Singapore); Guo Jun, E-mail: ecmli@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore)

    2011-04-15

    With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO{sub 2}, an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO{sub 2}-QD nanocomposites with the size of {approx} 30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO{sub 2}-QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.

  8. Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter.

    Science.gov (United States)

    Puckett, Libby G; Dikici, Emre; Lai, Siyi; Madou, Marc; Bachas, Leonidas G; Daunert, Sylvia

    2004-12-15

    The incorporation of a protein-ligand binding assay into a centrifugal microfluidics platform is described. The platform itself is a disc-shaped polymer substrate, upon which a series of microfluidic channels and reservoirs have been machined. Centrifugal microfluidics platforms require no internal moving parts, and fluid propulsion is achieved solely through rotation of the disc. Fluid flow is controlled by passive valves, the opening of which is dependent on the angular frequency of the rotating platform, the channel dimensions, and the physical properties of the fluid. To evaluate the effectiveness of incorporating a protein-based assay onto the centrifugal microfluidics analytical platform, a class-selective, homogeneous assay for the detection of phenothiazine antidepressants was employed. This class of drugs is known to bind to calmodulin, a calcium binding protein. Specifically, a fusion protein between calmodulin and enhanced green fluorescent protein was utilized. Calmodulin undergoes a conformational change upon binding to phenothiazines that alters the fluorescence properties of the attached fluorescent protein, which can be correlated to the concentration of the drug present. Another important aspect of this work was to study the efficacy of the platform to perform reconstitution assays. To do this, the biological reagent was dried on the platform and rehydrated to carry out the assay. The ability to prealiquot reagents on the platform should enhance its versatility and portability. The integration of protein-based assays in this platform should be useful in the design of analytical systems for high-throughput screening of pharmaceuticals and clinical diagnostics.

  9. Ag@Aggregation-induced emission dye core/shell nanostructures with enhanced one- and two-photon fluorescence

    Science.gov (United States)

    Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang

    2017-10-01

    Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.

  10. Getting Serious About Games -- Using Video Game-Based Learning to Enhance Nuclear Terrorism Preparedness

    Science.gov (United States)

    2012-03-01

    militias. At its core, the game drives home the message that daily life is extremely dangerous and cruel for refugees in this crisis. As of 2010...to kill: A call to action against TV, movie and video game violence. New York: Crown Archetype. Hampton, B., Altmire, B., Brunjes, B., Jennings, D. M

  11. How Interactive Video (ITV) Web-Enhanced Format Affects Instructional Strategy and Instructor Satisfaction

    Science.gov (United States)

    Moody, Catrina V.

    2013-01-01

    This qualitative study explored the quality of technology associated with interactive video (ITV) classes in distance education programs and the resulting satisfaction of the instructors teaching this format. The participants were full time instructors of a rural community college that used the ITV format. Community college ITV instructors are…

  12. Students' and Teachers' Perceptions of Using Video Games to Enhance Science Instruction

    Science.gov (United States)

    Marino, Matthew T.; Israel, Maya; Beecher, Constance C.; Basham, James D.

    2013-01-01

    Science education video game research points toward promising, but inconclusive results in both student learning outcomes and attitudes. However, student-level variables other than gender have been largely absent from this research. This study examined how students' reading ability level and disability status are related to their video…

  13. The utility of live video capture to enhance debriefing following transcatheter aortic valve replacement.

    Science.gov (United States)

    Seamans, David P; Louka, Boshra F; Fortuin, F David; Patel, Bhavesh M; Sweeney, John P; Lanza, Louis A; DeValeria, Patrick A; Ezrre, Kim M; Ramakrishna, Harish

    2016-10-01

    The surgical and procedural specialties are continually evolving their methods to include more complex and technically difficult cases. These cases can be longer and incorporate multiple teams in a different model of operating room synergy. Patients are frequently older, with comorbidities adding to the complexity of these cases. Recording of this environment has become more feasible recently with advancement in video and audio capture systems often used in the simulation realm. We began using live capture to record a new procedure shortly after starting these cases in our institution. This has provided continued assessment and evaluation of live procedures. The goal of this was to improve human factors and situational challenges by review and debriefing. B-Line Medical's LiveCapture video system was used to record successive transcatheter aortic valve replacement (TAVR) procedures in our cardiac catheterization/laboratory. An illustrative case is used to discuss analysis and debriefing of the case using this system. An illustrative case is presented that resulted in long-term changes to our approach of these cases. The video capture documented rare events during one of our TAVR procedures. Analysis and debriefing led to definitive changes in our practice. While there are hurdles to the use of this technology in every institution, the role for the ongoing use of video capture, analysis, and debriefing may play an important role in the future of patient safety and human factors analysis in the operating environment.

  14. Joint volumetric extraction and enhancement of vasculature from low-SNR 3-D fluorescence microscopy images.

    Science.gov (United States)

    Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin

    2017-03-01

    To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.

  15. Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres.

    Science.gov (United States)

    Lecler, Sylvain; Haacke, Stefan; Lecong, Nhan; Crégut, Olivier; Rehspringer, Jean-Luc; Hirlimann, Charles

    2007-04-16

    The two-photon excited fluorescence from a dye solution is enhanced when a small amount of micro-meter sized silica beads are added. This observation is made in the simple scattering regime (inter-sphere distance four times larger than their radius) and is shown to depend on the concentration of the silica spheres. For a solution of rhodamine B, the enhancement can reach more than 30 %. As complementary experiments show that the fluorescence efficiency is unchanged, we argue that the non-linear absorption is enhanced due to focussing of the incident beam in the near-field of the spheres, a situation previously referred to as photonic (nano-)jets [3]. Our calculations indeed show that for the parameters of the spheres studied near-field focussing leads to an intensity concentration close to the sphere surface. We suggest that these photonic jets could be used to enhance other non-linear optical effects.

  16. Wavelength dependence of the time course of fluorescence enhancement and photobleaching during irradiation of ethidium bromide-stained nuclei

    Directory of Open Access Journals (Sweden)

    L Galassi

    2009-12-01

    Full Text Available The variation of fluorescence during irradiation of ethidium bromide-stained nuclei with the 458 nm argon laser line was measured at different wavelengths throughout the emission spectrum. When glycerol was used as a mountant, photoenhancement of fluorescence was observed at all wavelengths, but was greater at the shorter wavelengths. Fluorescence increased by almost one order of magnitude at 500 nm after 40 s of irradiation, compared with only about 10% at wavelengths longer than 600 nm after 2-3 s. In nuclei mounted in phosphate buffer, an initial photoenhancement of fluorescence was detected only at the shorter wavelengths, while continuous photobleaching was observed in the rest of the emission spectrum. When the spectra are normalized to maximum, so as to eliminate the effect of the concurrent photobleaching, it appears that the difference between the time course of fluorescence variation in buffer and glycerol depends largely on the lower photobleaching rate in glycerol. The photoenhancement of fluorescence at shorter wavelengths was found to consist of a band peaking at 485-491 nm in glycerol and at 495-496 nm in buffer. Attenuation of the inner-filter effect contributes minimally to the enhancement of fluores- cence at shorter wavelengths. Since the dimer is known to be non fluorescent, the light-induced disaggregation of dimers to monomers cannot be an explanation for the large increase of fluorescence at the shorter wavelengths. The same laser beam that was used to excite the fluorescence of stained nuclei was also used for monitoring the concomitant variation of transmitted light, from which the variation of absorptance during irradiation was computed. While the expected decrease of absorptance was observed in glycerol, reflecting the photodestruction of the fluorophore, in buffer solution an unexpected initial increase was found, which may reflect the accumulation of an absorbing photoproduct.

  17. The use of animation video in teaching to enhance the imagination and visualization of student in engineering drawing

    Science.gov (United States)

    Ismail M., E.; Mahazir I., Irwan; Othman, H.; Amiruddin M., H.; Ariffin, A.

    2017-05-01

    The rapid development of information technology today has given a new breath toward usage of computer in education. One of the increasingly popular nowadays is a multimedia technology that merges a variety of media such as text, graphics, animation, video and audio controlled by a computer. With this technology, a wide range of multimedia element can be developed to improve the quality of education. For that reason, this study aims to investigate the use of multimedia element based on animated video that was developed for Engineering Drawing subject according to the syllabus of Vocational College of Malaysia. The design for this study was a survey method using a quantitative approach and involved 30 respondents from Industrial Machining students. The instruments used in study is questionnaire with correlation coefficient value (0.83), calculated on Alpha-Cronbach. Data was collected and analyzed descriptive analyzed using SPSS. The study found that multimedia element for animation video was use significant have capable to increase imagination and visualization of student. The implications of this study provide information of use of multimedia element will student effect imagination and visualization. In general, these findings contribute to the formation of multimedia element of materials appropriate to enhance the quality of learning material for engineering drawing.

  18. Bespoke video vignettes - an approach to enhancing reflective learning developed by dental undergraduates and their clinical teachers.

    Science.gov (United States)

    Davies, B R; Leung, A N; Dunne, S M; Dillon, J; Blum, I R

    2017-02-01

    This study explores the selective use of video as a medium to support reflective processes as related to dental undergraduate learning. With the objective of developing and enhancing high-quality adult dental care, the use of compiled video materials created in an undergraduate clinical setting was investigated. Video cameras were used to capture elements of reflection-in-action and reflection-on-action typically found during everyday clinical practice. 'Gold standard' or 'textbook outcomes' are rarely, if ever, fully achieved in dental practice. Real-life clinical experiences offer challenges and opportunities for both teachers and students to engage with reflective learning processes. The materials generated allowed for an experience of individual reflective learning and the creation of a data bank or archive with potential use for the benefit of a wider student cohort. Various aspects of the students' views and comments on the process of reflection were reported and explored by means of a semi-structured focus group moderated by a linked educational advisor. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Hierarchical self-assembly of a fluorescence emission-enhanced organogelator and its multiple stimuli-responsive behaviors.

    Science.gov (United States)

    Ren, Yuan-Yuan; Xu, Zheng; Li, Guoqiang; Huang, Junhai; Fan, Xiaotian; Xu, Lin

    2017-01-03

    A discrete hexagonal metallacycle 1 decorated with tetraphenylethylene, amide groups and long hydrophobic alkyl chains was constructed via [3 + 3] coordination-driven self-assembly, from which the fluorescence emission-enhanced organogelator with multiple stimuli-responsiveness was successfully prepared via hierarchical self-assembly.

  20. Enhanced imaging resolution in dynamic fluorescence molecular tomography by multispectral excitation method (Conference Presentation)

    Science.gov (United States)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-03-01

    Dynamic fluorescence molecular tomography (DFMT) is a promising method for the quantitative evaluation of the metabolic process of fluorescent agents in body. However, the resolution is limited due to the ill-posed nature of fluorescence molecular tomography (FMT) and the high absorption and scattering of the fluorescent light in biological tissues. In this paper, the resolution of DFMT is improved by multispectral excitation method. Firstly, the imaged object with varied fluorescent concentrations at different time points is excited by several excitation lights with different wavelengths, and the fluorescent images are collected. Secondly, the individual FMT images at different time points are respectively reconstructed, and independent component analysis (ICA) is employed to decompose the fluorescent targets. The independent components (ICs) and corresponding spectrum courses (SCs) which obtained from ICA represent the spatial structures and spectral variations of the fluorescent targets, respectively. Thirdly, the ICs and SCs are combined to quantitatively recover the concentrations of individual fluorescent targets. Finally, the metabolic parameters and DFMT images are obtained by fitting the FMT images of each fluorescent targets at different time points into a two compartment model. Numerical simulations are carried out to validate the feasibility of the proposed method. The results demonstrate that the resolution of DFMT is significantly improved. The metabolic curves can be correctly recovered even when the edge-edge-distance of the fluorescent targets is less than 0.1 cm.

  1. Single molecule dynamics in a virtual cell: a three-dimensional model that produces simulated fluorescence video-imaging data.

    Science.gov (United States)

    Mashanov, Gregory I

    2014-09-06

    The analysis of single molecule imaging experiments is complicated by the stochastic nature of single molecule events, by instrument noise and by the limited information which can be gathered about any individual molecule observed. Consequently, it is important to cross check experimental results using a model simulating single molecule dynamics (e.g. movements and binding events) in a virtual cell-like environment. The output of such a model should match the real data format allowing researchers to compare simulated results with the real experiments. The proposed model exploits the advantages of 'object-oriented' computing. First of all, the ability to create and manipulate a number of classes, each containing an arbitrary number of single molecule objects. These classes may include objects moving within the 'cytoplasm'; objects moving at the 'plasma membrane'; and static objects located inside the 'body'. The objects of a given class can interact with each other and/or with the objects of other classes according to their physical and chemical properties. Each model run generates a sequence of images, each containing summed images of all fluorescent objects emitting light under given illumination conditions with realistic levels of noise and emission fluctuations. The model accurately reproduces reported single molecule experiments and predicts the outcome of future experiments.

  2. Enhancing the Dialogue in Simultaneous Class-Based and Live Video-Streamed Teaching

    DEFF Research Database (Denmark)

    Jelsbak, Vibe Alopaeus; Ørngreen, Rikke; Thorsen, Jonas

    2015-01-01

    from home via the Internet. In live video-streamed teaching classes teachers tend to choose one-way communication instead of dialogue. We know from our early findings that technology issues are one of the main reasons for this, since the same teachers use dialogue and discussions in traditional......The bachelor programme in biomedical laboratory analysis at VIA University College in Aarhus has established a blended class concept which combines traditional and live broadcast teaching. 1-2 days a week students have the choice either to attend teaching sessions in the traditional way or to work...... teaching. This paper describes a work-in-progress project focused on developing possibilities for a more dialogue-based approach to live video-streamed teaching. We present our new setup and argue for educational designs which this is believed to support, and we outline the research design for collecting...

  3. Enhancing the Dialogue in Simultaneous Class-Based and Live Video-Streamed Teaching

    DEFF Research Database (Denmark)

    Jelsbak, Vibe Alopaeus; Bendsen, Thomas; Thorsen, Jonas

    2015-01-01

    or to work from home via the Internet. In live video-streamed teaching classes teachers tend to choose one-way communication instead of dialogue. We know from our early findings that technology issues are one of the main reasons for this, since the same teachers use dialogue and discussions in traditional......Abstract: The bachelor programme in biomedical laboratory analysis at VIA University College in Aarhus has established a blended class concept which combines traditional and live broadcast teaching. 1-2 days a week students have the choice either to attend teaching sessions in the traditional way...... teaching. This paper describes a work-in-progress project focused on developing possibilities for a more dialogue-based approach to live video-streamed teaching. We present our new setup and argue for educational de- signs which this is believed to support, and we outline the research design for collecting...

  4. Enhanced fluorescence of tetrasulfonated zinc phthalocyanine by graphene quantum dots and its application in molecular sensing/imaging.

    Science.gov (United States)

    Wang, Jian; Zhang, Yanjun; Ye, Jiqing; Jiang, Zhou

    2017-06-01

    When excited at 435 nm, tetra-sulfonate zinc phthalocyanine (ZnPcS4 ) emitted dual fluorescence at 495 and 702 nm. The abnormal fluorescence at 495 nm was experimentally studied and analyzed in detail for the first time. The abnormal fluorescence at 495 nm was deduced to originate from triplet-triplet (T-T) energy transfer of excited phthalocyanine (3 *ZnPcS4 ). Furthermore, graphene quantum dots (GQDs) enhanced the 495 nm fluorescence quantum yield (Q) of ZnPcS4 . The fluorescence properties of ZnPcS4 -GQDs conjugate were retained in a cellular environment. Based on the fluorescence of ZnPcS4 -GQDs conjugate, we designed and prepared an Apt29/thrombin/Apt15 sandwich thrombin sensor with high specificity and affinity. This cost-saving, simple operational sensing strategy can be extended to use in sensing/imaging of other biomolecules. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Plasmon-enhanced fluorescence imaging with silicon-based silver chips for protein and nucleic acid assay.

    Science.gov (United States)

    Yuan, Bing; Jiang, Xiangxu; Yao, Chu; Bao, Meimei; Liu, Jiaojiao; Dou, Yujiang; Xu, Yinze; He, Yao; Yang, Kai; Ma, Yuqiang

    2017-02-22

    Metal-enhanced fluorescence shows great potential for improving the sensitivity of fluoroscopy, which has been widely used in protein and nucleic acid detection for biosensor and bioassay applications. In comparison with the traditional glass-supported metal nanoparticles (MNPs), the introduction of a silicon substrate has been shown to provide an increased surface-enhanced Raman scattering (SERS) effect due to the coupling between the MNPs and the semiconducting silicon substrate. In this work, we further study the fluorescence-enhanced effect of the silicon-supported silver-island (Ag@Si) plasmonic chips. In particular, we investigate their practical application of improving the traditional immunoassay such as the biotin-streptavidin-based protein assay and the protein-/nucleic acid-labeled cell and tissue samples. The protein assay shows a wavelength-dependent enhancement effect of the Ag@Si chip, with an enhancement factor ranging from 1.2 (at 532 nm) to 57.3 (at 800 nm). Moreover, for the protein- and nucleic acid-labeled cell and tissue samples, the Ag@Si chip provides a fluorescence enhancement factor of 3.0-4.1 (at 800 nm) and a significant improvement in the signal/background ratio for the microscopy images. Such a ready accommodation of the fluorescence-enhanced effect for the immunoassay samples with simple manipulations indicates broad potential for applications of the Ag@Si chip not only in biological studies but also in the clinical field. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development and evaluation of online video teaching resources to enhance student knowledge of livestock handling.

    Science.gov (United States)

    Klupiec, C; Pope, S; Taylor, R; Carroll, D; Ward, M H; Celi, P

    2014-07-01

    To evaluate the effectiveness of online audiovisual materials to support the acquisition of animal handling skills by students of veterinary and animal science. A series of video clips (Livestock Handling modules) demonstrating livestock handling procedures was created and delivered online to students enrolled in the Faculty of Veterinary Science, University of Sydney. The effectiveness of these modules for supporting student learning was evaluated via an online survey. The survey also sought feedback on how students could be better prepared for handling livestock. The survey indicated that students found the videos a useful part of their learning experience, particularly by familiarising them with correct handling procedures and emphasising the importance of safety when handling livestock. Students also highlighted that online delivery supported flexible learning. Suggested improvements of the Livestock Handling modules centred around broadening the content of the videos and improving the user-friendliness of online access. Student feedback regarding how the Faculty could better prepare them for livestock handling was dominated by requests for more opportunities to practise animal handling using live animals. The Livestock Handling audiovisual tool is a valuable supplementary resource for developing students' proficiency in safe and effective handling of livestock. However, the results also clearly reveal a perception by students that more hands-on experience is required for acquisition of animal handling skills. These findings will inform future development of the Faculty's animal handling program. © 2014 Australian Veterinary Association.

  7. Earlier visual N1 latencies in expert video-game players: a temporal basis of enhanced visuospatial performance?

    Directory of Open Access Journals (Sweden)

    Andrew J Latham

    Full Text Available Increasing behavioural evidence suggests that expert video game players (VGPs show enhanced visual attention and visuospatial abilities, but what underlies these enhancements remains unclear. We administered the Poffenberger paradigm with concurrent electroencephalogram (EEG recording to assess occipital N1 latencies and interhemispheric transfer time (IHTT in expert VGPs. Participants comprised 15 right-handed male expert VGPs and 16 non-VGP controls matched for age, handedness, IQ and years of education. Expert VGPs began playing before age 10, had a minimum 8 years experience, and maintained playtime of at least 20 hours per week over the last 6 months. Non-VGPs had little-to-no game play experience (maximum 1.5 years. Participants responded to checkerboard stimuli presented to the left and right visual fields while 128-channel EEG was recorded. Expert VGPs responded significantly more quickly than non-VGPs. Expert VGPs also had significantly earlier occipital N1s in direct visual pathways (the hemisphere contralateral to the visual field in which the stimulus was presented. IHTT was calculated by comparing the latencies of occipital N1 components between hemispheres. No significant between-group differences in electrophysiological estimates of IHTT were found. Shorter N1 latencies may enable expert VGPs to discriminate attended visual stimuli significantly earlier than non-VGPs and contribute to faster responding in visual tasks. As successful video-game play requires precise, time pressured, bimanual motor movements in response to complex visual stimuli, which in this sample began during early childhood, these differences may reflect the experience and training involved during the development of video-game expertise, but training studies are needed to test this prediction.

  8. Label-free fluorescent detection of thrombin activity based on a recombinant enhanced green fluorescence protein and nickel ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles.

    Science.gov (United States)

    Wang, Ming; Lei, Chunyang; Nie, Zhou; Guo, Manli; Huang, Yan; Yao, Shouzhuo

    2013-11-15

    Herein, a novel label-free fluorescent assay has been developed to detect the activity of thrombin and its inhibitor, based on a recombinant enhanced green fluorescence protein (EGFP) and Ni(2+) ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles (Ni(2+)-NTA MNPs). The EGFP, containing a thrombin cleavage site and a hexahistidine sequence (His-tag) at its N-terminal, was adsorbed onto Ni(2+)-NTA MNPs through Ni(2+)-hexahistidine interaction, and dragged out of the solution by magnetic separation. Thrombin can selectively digest EGFP accompanied by His-tag peptide sequence leaving, and the resulting EGFP cannot be captured by Ni(2+)-NTA MNPs and kept in supernatant. Hence the fluorescence change of supernatant can clearly represent the activity of thrombin. Under optimized conditions, such assay showed a relatively low detection limit (3.0×10(-4) U mL(-1)), and was also used to detect the thrombin inhibitor, Hirudin, and further applied to detect thrombin activity in serum. Combined with the satisfactory reusability of Ni(2+)-NTA MNPs, our method presents a promising candidate for simple, sensitive, and cost-saving protease activity detecting and inhibitor screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Using High-Fidelity Simulation and Video-Assisted Debriefing to Enhance Obstetrical Hemorrhage Mock Code Training.

    Science.gov (United States)

    Jacobs, Peggy J

    The purpose of this descriptive, one-group posttest study was to explore the nursing staff's perception of the benefits of using high-fidelity simulation during mandated obstetrical hemorrhage mock code training. In addition, the use of video-assisted debriefing was used to enhance the nursing staff's evaluation of their communication and teamwork processes during a simulated obstetrical crisis. The convenience sample of 84 members of the nursing staff consented to completing data collection forms and being videotaped during the simulation. Quantitative results for the postsimulation survey showed that 93% of participants agreed or totally agreed that the use of SimMan made the simulation more realistic and enhanced learning and that debriefing and the use of videotaped playback improved their evaluation of team communication. Participants derived greatest benefit from reviewing their performance on videotape and discussing it during postsimulation debriefing. Simulation with video-assisted debriefing offers hospital educators the ability to evaluate team processes and offer support to improve teamwork with the ultimate goal of improving patient outcomes during obstetrical hemorrhage.

  10. In the here and now: enhanced motor corticospinal excitability in novices when watching live compared to video recorded dance.

    Science.gov (United States)

    Jola, Corinne; Grosbras, Marie-Hélène

    2013-01-01

    Enhanced motor corticospinal excitability (MCE) in passive action observation is thought to signify covert motor resonance with the actions seen. Actions performed by others are an important social stimulus and thus, motor resonance is prevalent during social interaction. However, most studies employ simple/short snippets of recorded movements devoid of any real-life social context, which has recently been criticized for lacking ecological validity. Here, we investigated whether the co-presence of the actor and the spectator has an impact on motor resonance by comparing novices' MCE for the finger (FDI) and the arm (ECR) with single-pulse transcranial magnetic stimulation when watching five-minute solos of ballet dance, Bharatanatyam (Indian dance) and an acting control condition either live or on video. We found that (1) MCE measured in the arm muscle was significantly enhanced in the live compared to the video condition, (2) differences across performances were only evident in the live condition, and (3) our novices reported enjoying the live presentations significantly more. We suggest that novice spectators' MCE is susceptible to the performers' live presence.

  11. Expression of exogenetic enhanced green fluorescent protein in rat endocranium through lentivirus infection.

    Science.gov (United States)

    Zhang, Qi; Li, Qiang; Li, Li; Zhang, Zhaolong; Wu, Yina; Xu, Yi

    2015-01-01

    The study aims to investigate whether exogenetic green fluorescent protein is able to express in the endocranium of rats, and to establish a method for further study in exogenetic gene knock-in or gene overexpression. Forty female Sprague Dawley (SD) rats were randomly divided into 4 groups with 10 in each: low and high dose groups, treated with 10% and 100% EGFP-lentivirus, respectively; negative control group, treated with virus enhancer; sham group, treated with normal saline. Seven days later, half rats' brain tissues were perfusion fixed and fresh brain tissues were obtained from the rest after euthanasia in each group. Immunohistochemical analysis, Western blotting and RT-PCR were respectively performed to detect the site where EGFP expressed and its levels. Immunohistochemical analysis demonstrated that EGFP was successfully expressed in brain tissue of those rats infected with EGFP-lentivirus. Both Western blotting and RT-PCR showed that EGFP was expressed after treatment with EGFP-lentivirus, and the expression level increased with the dosage of the vector. Exogenetic EGFP gene can express in brain tissue of the rat, which laid a solid foundation for future studies in exogenetic gene knock in or gene overexpression.

  12. Saturated excitation of Fluorescence to quantify excitation enhancement in aperture antennas

    KAUST Repository

    Aouani, Heykel

    2012-07-23

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas. © 2012 Optical Society of America.

  13. Through the Looking Glass: Real-Time Video Using 'Smart' Technology Provides Enhanced Intraoperative Logistics.

    Science.gov (United States)

    Baldwin, Andrew C W; Mallidi, Hari R; Baldwin, John C; Sandoval, Elena; Cohn, William E; Frazier, O H; Singh, Steve K

    2016-01-01

    In the setting of increasingly complex medical therapies and limited physician resources, the recent emergence of 'smart' technology offers tremendous potential for improved logistics, efficiency, and communication between medical team members. In an effort to harness these capabilities, we sought to evaluate the utility of this technology in surgical practice through the employment of a wearable camera device during cardiothoracic organ recovery. A single procurement surgeon was trained for use of an Explorer Edition Google Glass (Google Inc., Mountain View, CA) during the recovery process. Live video feed of each procedure was securely broadcast to allow for members of the home transplant team to remotely participate in organ assessment. Primary outcomes involved demonstration of technological feasibility and validation of quality assurance through group assessment. The device was employed for the recovery of four organs: a right single lung, a left single lung, and two bilateral lung harvests. Live video of the visualization process was remotely accessed by the home transplant team, and supplemented final verification of organ quality. In each case, the organs were accepted for transplant without disruption of standard procurement protocols. Media files generated during the procedures were stored in a secure drive for future documentation, evaluation, and education purposes without preservation of patient identifiers. Live video streaming can improve quality assurance measures by allowing off-site members of the transplant team to participate in the final assessment of donor organ quality. While further studies are needed, this project suggests that the application of mobile 'smart' technology offers not just immediate value, but the potential to transform our approach to the practice of medicine.

  14. Enhanced fluorescence of graphene oxide by well-controlled Au@SiO2 core-shell nanoparticles.

    Science.gov (United States)

    Li, Cuiyan; Zhu, Yihua; Wang, Siwen; Zhang, Xiaoqing; Yang, Xiaoling; Li, Chunzhong

    2014-01-01

    Graphene and graphene derivatives, including graphene oxide (GO) and reduced GO (rGO), have attracted remarkable attention in different fields due to their unique electronic, thermal, and mechanical properties, whereas the fluorescence property is rarely been studied. This paper reports on metal-enhanced fluorescence Au@SiO2 composite nanoparticles adsorbed graphene oxide nanosheets, where the silica-shell is used to control the distance between gold-core and fluorophore GO, and a positively charged polyelectrolyte poly(allylamine hydrochloride) (PAH) is used to adsorb the negatively charged silica-shell and GO by layer-by-layer assembly (LbL) approach. The silica-shell around the 80 nm gold-core can be well-controlled by ending the reaction at different times. Various analytical techniques were applied to characterize the morphology and optical characters of the as-prepared particles. A more than three-fold increase of the fluorescence intensity of GO was obtained.

  15. Enhancing digital video analysis of bar kinematics in weightlifting: a case study

    OpenAIRE

    Dæhlin, Torstein Eriksen; Krosshaug, Tron; Chiu, Loren Z. F.

    2017-01-01

    I Brage finner du siste tekst-versjon av artikkelen, og den kan inneholde ubetydelige forskjeller fra forlagets pdf-versjon. Forlagets pdf-versjon finner du på www.nsca.com / In Brage you'll find the final text version of the article, and it may contain insignificant differences from the journal's pdf version. The definitive version is available at www.nsca.com Weightlifting technique can be objectively assessed from two-dimensional video recordings. Despite its importance, participants’ b...

  16. RealityFlythrough: Enhancing Situational Awareness for Medical Response to Disasters Using Ubiquitous Video

    Science.gov (United States)

    McCurdy, Neil J.; Griswold, William G; Lenert, Leslie A.

    2005-01-01

    The first moments at a disater scene are chaotic. The command center initially operates with little knowledge of hazards, geography and casualties, building up knowledge of the event slowly as information trickles in by voice radio channels. RealityFlythrough is a tele-presence system that stitches together live video feeds in real-time, using the principle of visual closure, to give command center personnel the illusion of being able to explore the scene interactively by moving smoothly between the video feeds. Using RealityFlythrough, medical, fire, law enforcement, hazardous materials, and engineering experts may be able to achieve situational awareness earlier, and better manage scarce resources. The RealityFlythrough system is composed of camera units with off-the-shelf GPS and orientation systems and a server/viewing station that offers access to images collected by the camera units in real time by position/orientation. In initial field testing using an experimental mesh 802.11 wireless network, two camera unit operators were able to create an interactive image of a simulated disaster scene in about five minutes. PMID:16779092

  17. Investigating interactional competence using video recordings in ESL classrooms to enhance communication

    Science.gov (United States)

    Krishnasamy, Hariharan N.

    2016-08-01

    Interactional competence, or knowing and using the appropriate skills for interaction in various communication situations within a given speech community and culture is important in the field of business and professional communication [1], [2]. Similar to many developing countries in the world, Malaysia is a growing economy and undergraduates will have to acquire appropriate communication skills. In this study, two aspects of the interactional communicative competence were investigated, that is the linguistic and paralinguistic behaviors in small group communication as well as conflict management in small group communication. Two groups of student participants were given a problem-solving task based on a letter of complaint. The two groups of students were video recorded during class hours for 40 minutes. The videos and transcription of the group discussions were analyzed to examine the use of language and interaction in small groups. The analysis, findings and interpretations were verified with three lecturers in the field of communication. The results showed that students were able to accomplish the given task using verbal and nonverbal communication. However, participation was unevenly distributed with two students talking for less than a minute. Negotiation was based more on alternative views and consensus was easily achieved. In concluding, suggestions are given on ways to improve English language communication.

  18. Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study

    Science.gov (United States)

    Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.

    2014-02-01

    The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (Plaser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.

  19. Title: Using Video to Enhance a Citizen Science Program: Digital Earth Watch And The Picture Post Network

    Science.gov (United States)

    Smith, J. D.; Beaudry, J.; Schloss, A. L.; Pickle, J.

    2012-12-01

    Digital Earth Watch (DEW) involves individuals, schools, organizations and communities in a systematic monitoring project of their local environment, especially vegetation health. The DEW Picture Post network offers people the means to make and share their own observations. A Picture Post is an easy-to-use and inexpensive platform for repeatedly taking digital photographs as a standardized set of images of the entire 360° landscape, which then can be shared over the Internet on the Picture Post website. This simple concept has the potential to create a wealth of information and data on changing environmental conditions, which is important for a society grappling with the effects of climate change. As a web-based program, it is critical to bring in new participants and to convey technical, scientific, and participant information with little or no human interaction. Once they get going, it is also important to keep participants engaged by getting their feedback as well as by sharing their experiences. This presentation will demonstrate our use of video to enhance the program, in particular the power of video for teaching skills needed to start up and contribute to a picture post, to convey findings and other scientific information collected at picture posts, and to engage participants and the community in an ongoing effort in monitoring and understanding their local environment and changing conditions. A DEW video library is being developed by a collaborative effort led by the University of New Hampshire with the University of Southern Maine, and Concord Academy. We invite individuals, schools, informal education centers, groups and communities to join: visit us atPicture Post is supported by NASA

  20. Using Video Games to Enhance Motivation States in Online Education: Protocol for a Team-Based Digital Game.

    Science.gov (United States)

    Janssen, Anna; Shaw, Tim; Goodyear, Peter

    2015-09-28

    Video and computer games for education have been of interest to researchers for several decades. Over the last half decade, researchers in the health sector have also begun exploring the value of this medium. However, there are still many gaps in the literature regarding the effective use of video and computer games in medical education, particularly in relation to how learners interact with the platform, and how the games can be used to enhance collaboration. The objective of the study is to evaluate a team-based digital game as an educational tool for engaging learners and supporting knowledge consolidation in postgraduate medical education. A mixed methodology will be used in order to establish efficacy and level of motivation provided by a team-based digital game. Second-year medical students will be recruited as participants to complete 3 matches of the game at spaced intervals, in 2 evenly distributed teams. Prior to playing the game, participants will complete an Internet survey to establish baseline data. After playing the game, participants will voluntarily complete a semistructured interview to establish motivation and player engagement. Additionally, metrics collected from the game platform will be analyzed to determine efficacy. The research is in the preliminary stages, but thus far a total of 54 participants have been recruited into the study. Additionally, a content development group has been convened to develop appropriate content for the platform. Video and computer games have been demonstrated to have value for educational purposes. Significantly less research has addressed how the medium can be effectively utilized in the health sector. Preliminary data from this study would suggest there is an interest in games for learning in the medical student body. As such, it is beneficial to undertake further research into how these games teach and engage learners in order to evaluate their role in tertiary and postgraduate medical education in the future.

  1. Using Video Games to Enhance Motivation States in Online Education: Protocol for a Team-Based Digital Game

    Science.gov (United States)

    Shaw, Tim; Goodyear, Peter

    2015-01-01

    Background Video and computer games for education have been of interest to researchers for several decades. Over the last half decade, researchers in the health sector have also begun exploring the value of this medium. However, there are still many gaps in the literature regarding the effective use of video and computer games in medical education, particularly in relation to how learners interact with the platform, and how the games can be used to enhance collaboration. Objective The objective of the study is to evaluate a team-based digital game as an educational tool for engaging learners and supporting knowledge consolidation in postgraduate medical education. Methods A mixed methodology will be used in order to establish efficacy and level of motivation provided by a team-based digital game. Second-year medical students will be recruited as participants to complete 3 matches of the game at spaced intervals, in 2 evenly distributed teams. Prior to playing the game, participants will complete an Internet survey to establish baseline data. After playing the game, participants will voluntarily complete a semistructured interview to establish motivation and player engagement. Additionally, metrics collected from the game platform will be analyzed to determine efficacy. Results The research is in the preliminary stages, but thus far a total of 54 participants have been recruited into the study. Additionally, a content development group has been convened to develop appropriate content for the platform. Conclusions Video and computer games have been demonstrated to have value for educational purposes. Significantly less research has addressed how the medium can be effectively utilized in the health sector. Preliminary data from this study would suggest there is an interest in games for learning in the medical student body. As such, it is beneficial to undertake further research into how these games teach and engage learners in order to evaluate their role in tertiary

  2. Fluorescence enhancement of asCP595 is due to consecutive absorbance of two photons

    Science.gov (United States)

    Savitsky, Alexander P.; Agranat, Michail B.; Lukyanov, Konstantin A.; Schuttrigkeit, Tanja; von Feilitzsch, Till; Kompa, Christian; Michel-Beyerle, Maria-Elisabeth

    2004-06-01

    Colored proteins are widely used as gene markers in biotechnology. Chromophores result from autocatalytic posttranslational reactions involving several amino acids. The protein asCP595 was isolated for the first time from the coral as a weakly fluorescent chromoprotein with a fluorescence maximum at 595 nm. Strong illumination in the blue wing of the low energy absorption band results in a superlinear increase of the fluorescence yield and shifts its fluorescence spectrum by about 10 nm to the red. Time resolved fluorescence measurements using excitation pulses with 10 ps duration revealed a multiexponential decay pattern with time constants in the range from 20 ps to 2.1 ns. The ratio of amplitudes related to the different time constants depends on the intensity of illumination favoring the ns component at high intensities. Transient absorption measurements using ultrashort excitation pulses (150 fs, 1 kHz repetition rate) did not reveal excited states with nanosecond lifetimes as observed in fluorescence upon excitation using 10 ps pulses. This observation leads to the notion that within 10 ps a second photon is absorbed by a state not yet populated within 150 fs. As a consequence we propose two different excited singlet states operative in asCP595, one with low fluorescence quantum yield peaking at 595 nm and one with high fluorescence quantum yield peaking at 605 nm which is populated via the consecutive absorption of two photons at high excitation intensities.

  3. Fluorescence Enhancement from Self-Assembled Aggregates II: Factors Influencing Florescence Color from Azobenzene Aggregates

    Science.gov (United States)

    Han, Mina

    2013-09-01

    We have chosen two types of azobenzene derivatives to elucidate the correlation between molecular structure and fluorescence color of light-driven azobenzene-based aggregates. The fluorescence color from azobenzene molecules (1 and 2), adopting a planar structure, was obviously red-shifted from that of the corresponding twisted ortho-alkylated azobenzene 3. The steric hindrance resulting from bulky alkyl groups at the ortho position of the azo linkage was considered to lessen the intermolecular π - π stacking between aromatic rings, leading to the relatively smaller spectral shift in fluorescence from the absorption band of the initial azobenzene solution. The substitution of electron-withdrawing groups into the azobenzene core gave rise to a blue-shift in fluorescence wavelength. That is, the extended π-conjugated system consisting of a planar azobenzene core as well as the electronic properties of the substituents are key factors influencing the fluorescence color from the light-driven azobenzene aggregates. Moreover, we could prepare fluorescent polymer films by mixing fluorescent azobenzene aggregates with polymers. The fluorescence colors from the polymer films were comparable to those from the azobenzene aggregates.

  4. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-06-12

    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  5. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques

    Science.gov (United States)

    Wang, Zhile; Zong, Shenfei; Wang, Zhuyuan; Wu, Lei; Chen, Peng; Yun, Binfeng; Cui, Yiping

    2017-03-01

    We present a novel microfluidic chip based method for the detection of micro RNA (miRNA) via the combination of fluorescence and surface enhanced Raman scattering (SERS) spectroscopies. First, silver nanoparticles (Ag NPs) are immobilized onto a glass slide, forming a SERS enhancing substrate. Then a specificially designed molecular beacon (MB) is attached to the SERS substrate. The 3‧ end of the MB is decorated with a thiol group to facilitate the attachment of the MB, while the 5‧ end of the MB is labeled with an organic dye 6-FAM, which is used both as the fluorophore and SERS reporter. In the absence of target miRNA, the MB will form a hairpin structure, making 6-FAM close to the Ag NPs. Hence, the fluorescence of 6-FAM will be quenched and the Raman signal of 6-FAM will be enhanced. On the contrary, with target miRNA present, hybridization between the miRNA and MB will unfold the MB and increase the distance between 6-FAM and the Ag NPs. Thus the fluorescence of 6-FAM will recover and the SERS signal of 6-FAM will decrease. So the target miRNA will simultaneously introduce opposite changing trends in the intensities of the fluorescence and SERS signals. By combining the opposite changes in the two optical spectra, an improved sensitivity and linearity toward the target miRNA is achieved as compared with using solely fluorescence or SERS. Moreover, introducing the microfluidic chip can reduce the reaction time, reagent dosage and complexity of detection. With the improved sensitivity and simplicity, we anticipate that the presented method can have great potential in the investigation of miRNA related diseases.

  6. Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial

    Science.gov (United States)

    Ballesteros, Soledad; Prieto, Antonio; Mayas, Julia; Toril, Pilar; Pita, Carmen; Ponce de León, Laura; Reales, José M.; Waterworth, John

    2014-01-01

    Age-related cognitive and brain declines can result in functional deterioration in many cognitive domains, dependency, and dementia. A major goal of aging research is to investigate methods that help to maintain brain health, cognition, independent living and wellbeing in older adults. This randomized controlled study investigated the effects of 20 1-h non-action video game training sessions with games selected from a commercially available package (Lumosity) on a series of age-declined cognitive functions and subjective wellbeing. Two groups of healthy older adults participated in the study, the experimental group who received the training and the control group who attended three meetings with the research team along the study. Groups were similar at baseline on demographics, vocabulary, global cognition, and depression status. All participants were assessed individually before and after the intervention, or a similar period of time, using neuropsychological tests and laboratory tasks to investigate possible transfer effects. The results showed significant improvements in the trained group, and no variation in the control group, in processing speed (choice reaction time), attention (reduction of distraction and increase of alertness), immediate and delayed visual recognition memory, as well as a trend to improve in Affection and Assertivity, two dimensions of the Wellbeing Scale. Visuospatial working memory (WM) and executive control (shifting strategy) did not improve. Overall, the current results support the idea that training healthy older adults with non-action video games will enhance some cognitive abilities but not others. PMID:25352805

  7. Augmenting real-time video with virtual models for enhanced visualization for simulation, teaching, training and guidance

    Science.gov (United States)

    Potter, Michael; Bensch, Alexander; Dawson-Elli, Alexander; Linte, Cristian A.

    2015-03-01

    In minimally invasive surgical interventions direct visualization of the target area is often not available. Instead, clinicians rely on images from various sources, along with surgical navigation systems for guidance. These spatial localization and tracking systems function much like the Global Positioning Systems (GPS) that we are all well familiar with. In this work we demonstrate how the video feed from a typical camera, which could mimic a laparoscopic or endoscopic camera used during an interventional procedure, can be used to identify the pose of the camera with respect to the viewed scene and augment the video feed with computer-generated information, such as rendering of internal anatomy not visible beyond the imaged surface, resulting in a simple augmented reality environment. This paper describes the software and hardware environment and methodology for augmenting the real world with virtual models extracted from medical images to provide enhanced visualization beyond the surface view achieved using traditional imaging. Following intrinsic and extrinsic camera calibration, the technique was implemented and demonstrated using a LEGO structure phantom, as well as a 3D-printed patient-specific left atrial phantom. We assessed the quality of the overlay according to fiducial localization, fiducial registration, and target registration errors, as well as the overlay offset error. Using the software extensions we developed in conjunction with common webcams it is possible to achieve tracking accuracy comparable to that seen with significantly more expensive hardware, leading to target registration errors on the order of 2 mm.

  8. Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial.

    Science.gov (United States)

    Ballesteros, Soledad; Prieto, Antonio; Mayas, Julia; Toril, Pilar; Pita, Carmen; Ponce de León, Laura; Reales, José M; Waterworth, John

    2014-01-01

    Age-related cognitive and brain declines can result in functional deterioration in many cognitive domains, dependency, and dementia. A major goal of aging research is to investigate methods that help to maintain brain health, cognition, independent living and wellbeing in older adults. This randomized controlled study investigated the effects of 20 1-h non-action video game training sessions with games selected from a commercially available package (Lumosity) on a series of age-declined cognitive functions and subjective wellbeing. Two groups of healthy older adults participated in the study, the experimental group who received the training and the control group who attended three meetings with the research team along the study. Groups were similar at baseline on demographics, vocabulary, global cognition, and depression status. All participants were assessed individually before and after the intervention, or a similar period of time, using neuropsychological tests and laboratory tasks to investigate possible transfer effects. The results showed significant improvements in the trained group, and no variation in the control group, in processing speed (choice reaction time), attention (reduction of distraction and increase of alertness), immediate and delayed visual recognition memory, as well as a trend to improve in Affection and Assertivity, two dimensions of the Wellbeing Scale. Visuospatial working memory (WM) and executive control (shifting strategy) did not improve. Overall, the current results support the idea that training healthy older adults with non-action video games will enhance some cognitive abilities but not others.

  9. Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes.

    Science.gov (United States)

    Katoh, A; Shoguchi, K; Matsuoka, H; Yoshimura, M; Ohkubo, J-I; Matsuura, T; Maruyama, T; Ishikura, T; Aritomi, T; Fujihara, H; Hashimoto, H; Suzuki, H; Murphy, D; Ueta, Y

    2014-05-01

    The up-regulation of c-fos gene expression is widely used as a marker of neuronal activation elicited by various stimuli. Anatomically precise observation of c-fos gene products can be achieved at the RNA level by in situ hybridisation or at the protein level by immunocytochemistry. Both of these methods are time and labour intensive. We have developed a novel transgenic rat system that enables the trivial visualisation of c-fos expression using an enhanced green fluorescent protein (eGFP) tag. These rats express a transgene consisting of c-fos gene regulatory sequences that drive the expression of a c-fos-eGFP fusion protein. In c-fos-eGFP transgenic rats, robust nuclear eGFP fluorescence was observed in osmosensitive brain regions 90 min after i.p. administration of hypertonic saline. Nuclear eGFP fluorescence was also observed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) 90 min after i.p. administration of cholecystokinin (CCK)-8, which selectively activates oxytocin (OXT)-secreting neurones in the hypothalamus. In double transgenic rats that express c-fos-eGFP and an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene, almost all mRFP1-positive neurones in the SON and PVN expressed nuclear eGFP fluorescence 90 min after i.p. administration of CCK-8. It is possible that not only a plane image, but also three-dimensional reconstruction image may identify cytoplasmic vesicles in an activated neurone at the same time. © 2014 British Society for Neuroendocrinology.

  10. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy

    Science.gov (United States)

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2 nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5 nm and 10 nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level. PMID:26780882

  11. Aptamer-Based Single-Step Assay by the Fluorescence Enhancement on Electroless Plated Nano Au Substrate.

    Science.gov (United States)

    Nambi Krishnan, Jegatha; Park, Sang-Hwi; Kim, Sang Kyung

    2017-09-07

    A new single-step aptamer-based surface-enhanced fluorescent optical sensor is built, by combining an aptamer-target interaction for target recognition and a fluorophore interaction for signal enhancement. The developed aptasensor is simple, sensitive, specific and stable for the detection of thrombin. A new nanometallic Au structure in the range of 100 nm was constructed through effective electroless plating method on a Cu thin film. Cu⁺ ions act as sacrificial seeds for the reduction of Au 2+/3+ ions to form Au nanolawns. In order to utilize the structure for a fluorescence-based sensor, aptamer conjugated with Cy3 was immobilized on the nanogold substrate through electrostatic attraction. The Au substrate was coated with chitosan (molecular weight 1000 Da). Thrombin binding aptamer (TBA) was applied as a model system demonstrating the aptamer-based fluorescence assay on nanogold substrates. Thrice-enhanced fluorescence emission was achieved with Cy3-conjugated TBA stably immobilized on the chitosan-coated Au substrate. The intensity change was proportional to the concentration of thrombin from 10 μM to 10 pM, whereas the intensity change was ignorable for other proteins such as human serum albumin (HSA). Aptamer-based assay benefited from simple immobilization of receptors and Au nanostructure contributed in building an effective surface enhancing/positively charged substrate was proved. Such an aptasensor holding high utilities for point-of-care devices by incorporating simplicity, sensitivity and selectivity in detection, low-cost for test, small sample volumes has been developed.

  12. Enhancing communication skills for pediatric visits through on-line training using video demonstrations

    Directory of Open Access Journals (Sweden)

    Wissow Larry

    2008-02-01

    Full Text Available Abstract Background Training in communication skills for health professionals is important, but there are substantial barriers to individual in-person training for practicing clinicians. We evaluated the feasibility and desirability of on-line training and sought suggestions for future courses. Methods Based on successful in-person curricula for communication skills and our previous on-line curricula, we created an on-line course consisting of 28 modules (4.75 hours CME credit about communication skills during pediatric visits that included a mental health concern; each module included a brief case, a multiple choice question, an explanation, and a 1–2 minute video demonstrating key skills. Specific communication skills included: greeting, setting an agenda, discussing diagnosis and treatment, and managing negative interactions. The course was announced by emails in spring, 2007; the course was available on-line for 60 days; we aimed to enroll 50 clinicians. Outcomes were analyzed for those who evaluated the course within 75 days of its initial availability. Results Overall, 61 clinicians registered, of whom most were nurses (N = 24, physicians (N = 22, or psychologists or social workers (N = 12. Of the 36 (59% clinicians who evaluated the course, over 85% agreed that all course objectives had been met; over 90% reported greater confidence in greetings and agenda-setting; and over 80% reported greater confidence in discussing diagnosis and treatment and managing negative interactions. Nearly all, 97% would recommend the course to other clinicians and trainees. Suggestions for improvement included a library of additional video vignettes and written materials to accompany the on-line training. Conclusion On-line training in communication skills for pediatric mental health visits is feasible, desirable and associated with increased confidence in key skills. Positive feedback from clinicians suggests that a comparison of on-line versus in

  13. Enhancing OSCE preparedness with video exemplars in undergraduate nursing students. A mixed method study.

    Science.gov (United States)

    Massey, D; Byrne, J; Higgins, N; Weeks, B; Shuker, M-A; Coyne, E; Mitchell, M; Johnston, A N B

    2017-07-01

    Objective structured clinical examinations (OSCEs) are designed to assess clinical skill performance and competency of students in preparation for 'real world' clinical responsibilities. OSCEs are commonly used in health professional education and are typically associated with high levels of student anxiety, which may present a significant barrier to performance. Students, including nursing students, have identified that flexible access to exemplar OSCEs might reduce their anxiety and enable them to better prepare for such examinations. To implement and evaluate an innovative approach to preparing students for OSCEs in an undergraduate (registration) acute care nursing course. A set of digitized OSCE exemplars were prepared and embedded in the University-based course website as part of usual course learning activities. Use of the exemplars was monitored, pre and post OSCE surveys were conducted, and qualitative data were collected to evaluate the approach. OSCE grades were also examined. The online OSCE exemplars increased self-rated student confidence, knowledge, and capacity to prepare and provided clarity around assessment expectations. OSCE exemplars were accessed frequently and positively received; but did not impact on performance. Video exemplars aid student preparation for OSCEs, providing a flexible, innovative and clear example of the assessment process. Video exemplars improved self-rated student confidence and understanding of performance expectations, leading to increased engagement and reduced anxiety when preparing for the OSCE, but not overall OSCE performance. Such OSCE exemplars could be used to increase staff capacity and improve the quality of the student learning experience. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. A capillary-based probe for in situ detection of enhanced fluorescence signals

    Science.gov (United States)

    Long, F.; Xiao, R.; Zhu, A. N.; Shi, H. C.; Wang, S. Q.

    2013-07-01

    A simple, compact, and high sensitivity capillary-based probe for the in situ detection of fluorescence signals with high sensitivity is demonstrated. A home-made single-multi-mode fiber coupler that is coaxially aligned with the capillary-based probe provides for the transmission of excitation light and the collection and transmission of fluorescence. We propose a conceptually straightforward theoretical model to optimize the factors affecting the fluorescence-capture capability of the capillary-based probe. The fluorescence signal detected by fiber-optic spectroscopy non-linearly increases with the length of the capillary-based probe. In addition, the thicker the capillary tube wall is, the less the fluorescence signals determined are. The performance of the proposed probe is evaluated experimentally by measuring the fluorescence spectra of Cy5.5 dye and blue-green algae. The experimental results show that the proposed probe provides more than a ten-fold increase in fluorescence signal compared with direct measurements by a flat-tipped multi-mode fiber probe. The advantages of the capillary-based probe, which include its simple and compact structure, excellent light collection efficiency, requirement of small sample volume, and recoverability of samples, allow its wide application to in situ detection in the medical, forensic, biological, geological, and environmental fields with high sensitivity.

  15. Fragment, tag, enrich, and send: Enhancing the social sharing of videos

    NARCIS (Netherlands)

    P.S. Cesar Garcia (Pablo Santiago); D.C.A. Bulterman (Dick); A.J. Jansen (Jack); D. Geerts (David); H. Knoche; W. Seager

    2009-01-01

    htmlabstractThe migration of media consumption to personal computers retains distributed social viewing, but only via nonsocial, strictly personal interfaces. This article presents an architecture, and implementation for media sharing that allows for enhanced social interactions among users.

  16. Enhancing Communication of Climate Impacts Assessments: Examples of Local Stories, Animations and Video.

    Science.gov (United States)

    Fitzpatrick, M. F.; Grigholm, B. O.

    2014-12-01

    Comprehensive climate impacts assessments are important vehicles for conveying salient information to the public and policy makers. However, over the last few decades communication of this important information has been hampered for a number of reasons. Firstly, we have a rapidly changing social media landscape, where there are fewer opportunities for in-depth treatment of issues. To compete in this arena, climate information needs to be packaged in sound bites, and much of the nuance and complexity may be lost. Secondly, scientific literacy among the general U.S. population is not particularly high, which creates a barrier to understanding and limits the audiences that can be reached. Thirdly, climate science has been undermined by misinformation over many years often funded by fossil fuel interests. While this latter obstacle is clearly diminishing - largely in the face of evidence from the undeniable climate impacts that are already being seen by communities - there has been much confusion generated to date. Despite the fact that 97% of active climate scientists agree that the planet is warming as a result of human greenhouse gas emission, only 42% of the U.S. population agrees (Pew Research, 2013). In the face of these challenges, much of the work that the Union of Concerned Scientists does to translate climate impacts assessments has shifted to visuals, animations, and videos that people can relate to and connect with more readily. In this session we will share some of the general design features, discuss target audiences, and outline production limitations of several local stories involving videos and animations, as well as present some recent infographics. One example of this work are case studies that focus on sea level rise and involve a local personality who can speak to climate impacts at the community level. We understand the power of visual images and stories in creating messages that stick, and we use this in designing animations that explain the

  17. Enhancing reading performance through action video games: the role of visual attention span.

    Science.gov (United States)

    Antzaka, A; Lallier, M; Meyer, S; Diard, J; Carreiras, M; Valdois, S

    2017-11-06

    Recent studies reported that Action Video Game-AVG training improves not only certain attentional components, but also reading fluency in children with dyslexia. We aimed to investigate the shared attentional components of AVG playing and reading, by studying whether the Visual Attention (VA) span, a component of visual attention that has previously been linked to both reading development and dyslexia, is improved in frequent players of AVGs. Thirty-six French fluent adult readers, matched on chronological age and text reading proficiency, composed two groups: frequent AVG players and non-players. Participants performed behavioural tasks measuring the VA span, and a challenging reading task (reading of briefly presented pseudo-words). AVG players performed better on both tasks and performance on these tasks was correlated. These results further support the transfer of the attentional benefits of playing AVGs to reading, and indicate that the VA span could be a core component mediating this transfer. The correlation between VA span and pseudo-word reading also supports the involvement of VA span even in adult reading. Future studies could combine VA span training with defining features of AVGs, in order to build a new generation of remediation software.

  18. Enhancing analysis of cells and proteins by fluorescence imaging on silk-based biomaterials: modulating the autofluorescence of silk.

    Science.gov (United States)

    Neo, Puay Yong; Tan, Daryl Jian-An; Shi, Pujiang; Toh, Siew Lok; Goh, James Cho-Hong

    2015-02-01

    emission wavelengths compared with the red emission wavelength. This study has showed that the use of SB is a cost and time effective approach to enhance fluorescence-based imaging analyses of cell-seeded silk biomaterials, which otherwise would have been hindered by the unmodulated autofluorescence signals.

  19. Integrating Internet Video Conferencing Techniques and Online Delivery Systems with Hybrid Classes to Enhance Student Interaction and Learning in Accelerated Programs

    Science.gov (United States)

    Beckwith, E. George; Cunniff, Daniel T.

    2009-01-01

    Online course enrollment has increased dramatically over the past few years. The authors cite the reasons for this rapid growth and the opportunities open for enhancing teaching/learning techniques such as video conferencing and hybrid class combinations. The authors outlined an example of an accelerated learning, eight-class session course…

  20. Determination of fluoxetine in pharmaceutical and biological samples based on the silver nanoparticle enhanced fluorescence of fluoxetine-terbium complex.

    Science.gov (United States)

    Lotfi, Ali; Manzoori, Jamshid L

    2016-11-01

    In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium-fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV-Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium-sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb(3+) concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium-fluoxetine-AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10(-4) mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Fluorescence enhancement of the aflatoxin B{sub 1} by forming inclusion complexes with some cyclodextrins and molecular modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Mohammad [Department of Chemistry, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of); Alizadeh, Naader [Department of Chemistry, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of)], E-mail: alizaden@modares.ac.ir

    2007-12-15

    The interaction between the aflatoxin B{sub 1} (AFB{sub 1}) and three cyclodextrins, {alpha}-cyclodextrin ({alpha}-CD), {beta}-cyclodextrin ({beta}-CD) and heptakis-2,6-dimethyl-o-{beta}-cyclodextrin (ome-CD), was studied by spectrofluorescence technique. It was found that the inclusion association behavior occurs for the complexes of cyclodextrins with AFB{sub 1}. The fluorescence of AFB{sub 1} is generally enhanced in the complexes with cyclodextrins in aqueous solutions. The inclusion complex constants of the three types of cyclodextrins at different temperatures were evaluated from Benesi-Hildebrand plot and also by non-linear regression analysis. These cyclodextrins can only form the 1:1 (host:guest) inclusion complex in the studied temperature range of 20-50 deg. C. The enthalpy ({delta}H{sup o}) and entropy ({delta}S{sup o}) changes of complexation were extracted from the temperature dependency of complex formation constants (K). Temperature-dependent measurements showed that the association step is controlled by enthalpy-entropy compensation effect. The use of ome-CD generally resulted in the greatest fluorescence intensity. On the other hand, the discrepancy between the exhibited enhanced fluorescence and thermodynamic parameters ({delta}G{sup o}) is proposed to be different only by the orientation of the AFB{sub 1} within the cyclodextrin cavity. To find the most favorable structure, the geometry of complex was investigated by molecular modeling approach employing the semiemperical HF-SCF calculations.

  2. AN IMPROVED BIT LOADING TECHNIQUE FOR ENHANCED ENERGY EFFICIENCY IN NEXT GENERATION VOICE/VIDEO APPLICATIONS

    Directory of Open Access Journals (Sweden)

    VINOTH BABU K.

    2016-04-01

    Full Text Available Multi input multi output (MIMO and orthogonal frequency division multiplexing (OFDM are the key techniques for the future wireless communication systems. Previous research in the above areas mainly concentrated on spectral efficiency improvement and very limited work has been done in terms of energy efficient transmission. In addition to spectral efficiency improvement, energy efficiency improvement has become an important research because of the slow progressing nature of the battery technology. Since most of the user equipments (UE rely on battery, the energy required to transmit the target bits should be minimized to avoid quick battery drain. The frequency selective fading nature of the wireless channel reduces the spectral and energy efficiency of OFDM based systems. Dynamic bit loading (DBL is one of the suitable solution to improve the spectral and energy efficiency of OFDM system in frequency selective fading environment. Simple dynamic bit loading (SDBL algorithm is identified to offer better energy efficiency with less system complexity. It is well suited for fixed data rate voice/video applications. When the number of target bits are very much larger than the available subcarriers, the conventional single input single output (SISO-SDBL scheme offers high bit error rate (BER and needs large transmit energy. To improve bit error performance we combine space frequency block codes (SFBC with SDBL, where the adaptations are done in both frequency and spatial domain. To improve the quality of service (QoS further, optimal transmit antenna selection (OTAS scheme is also combined with SFBC-SDBL scheme. The simulation results prove that the proposed schemes offer better QoS when compared to the conventional SISOSDBL scheme.

  3. Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Soledad eBallesteros

    2014-10-01

    Full Text Available Age-related cognitive and brain declines can result in functional deterioration in many cognitive domains, dependency, and dementia. A major goal of aging research is to investigate methods that help to maintain brain health, cognition, independent living and wellbeing in older adults. This randomized controlled study investigated the effects of 20 1-hr non-action video game training sessions with games selected from a commercially available package (Lumosity on a series of age-declined cognitive functions and subjective wellbeing. Two groups of healthy older adults participated in the study, the experimental group who received the training and the control group who attended three meetings with the research team along the study. Groups were similar at baseline on demographics, vocabulary, global cognition, and depression status. All participants were assessed individually before and after the intervention, or a similar period of time, using neuropsychological tests and laboratory tasks to investigate possible transfer effects. The results showed significant improvements in the trained group, and no variation in the control group, in processing speed (choice reaction time, attention (reduction of distraction and increase of alertness, immediate and delayed visual recognition memory, as well as a trend to improve in Affection and Assertivity, two dimensions of the Wellbeing Scale. Visuospatial working memory (WM and executive control (shifting strategy did not improve. Overall, the current results support the idea that training healthy older adults with non-action video games will enhance some cognitive abilities but not others. Trial Registration: ClinicalTrials.gov identifier NCT02007616http://clinicaltrials.gov/show/NCT02007616

  4. Efficient Hybrid Watermarking Scheme for Security and Transmission Bit Rate Enhancement of 3D Color-Plus-Depth Video Communication

    Science.gov (United States)

    El-Shafai, W.; El-Rabaie, S.; El-Halawany, M.; Abd El-Samie, F. E.

    2018-03-01

    Three-Dimensional Video-plus-Depth (3DV + D) comprises diverse video streams captured by different cameras around an object. Therefore, there is a great need to fulfill efficient compression to transmit and store the 3DV + D content in compressed form to attain future resource bounds whilst preserving a decisive reception quality. Also, the security of the transmitted 3DV + D is a critical issue for protecting its copyright content. This paper proposes an efficient hybrid watermarking scheme for securing the 3DV + D transmission, which is the homomorphic transform based Singular Value Decomposition (SVD) in Discrete Wavelet Transform (DWT) domain. The objective of the proposed watermarking scheme is to increase the immunity of the watermarked 3DV + D to attacks and achieve adequate perceptual quality. Moreover, the proposed watermarking scheme reduces the transmission-bandwidth requirements for transmitting the color-plus-depth 3DV over limited-bandwidth wireless networks through embedding the depth frames into the color frames of the transmitted 3DV + D. Thus, it saves the transmission bit rate and subsequently it enhances the channel bandwidth-efficiency. The performance of the proposed watermarking scheme is compared with those of the state-of-the-art hybrid watermarking schemes. The comparisons depend on both the subjective visual results and the objective results; the Peak Signal-to-Noise Ratio (PSNR) of the watermarked frames and the Normalized Correlation (NC) of the extracted watermark frames. Extensive simulation results on standard 3DV + D sequences have been conducted in the presence of attacks. The obtained results confirm that the proposed hybrid watermarking scheme is robust in the presence of attacks. It achieves not only very good perceptual quality with appreciated PSNR values and saving in the transmission bit rate, but also high correlation coefficient values in the presence of attacks compared to the existing hybrid watermarking schemes.

  5. Fluorescence enhancement effect for the determination of curcumin with yttrium(III)-curcumin-sodium dodecyl benzene sulfonate system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Feng [Department of Chemistry, Zaozhuang University, Zaozhuang, 277160 (China)], E-mail: wf332@uzz.edu.cn; Huang Wei; Wang Yanwei [Department of Chemistry, Zaozhuang University, Zaozhuang, 277160 (China)

    2008-01-15

    It is found that the fluorescence of curcumin is greatly enhanced by yttrium(III) (Y{sup 3+}) in the presence of sodium dodecyl benzene sulfonate. Based on this, a sensitive fluorimetric method for the determination of curcumin in aqueous solution is proposed. In the potassium hydrogen phthalate (KHP) buffer, the fluorescence intensity of curcumin is proportional to the concentration of curcumin in the range of 7.37x10{sup -4}-0.18, 0.18-2.95 {mu}g mL{sup -1} and the detection limit is 0.1583 ng mL{sup -1}. The actual samples are satisfactorily determined. In addition, the interaction mechanism is also studied.

  6. Enhancing photoinduced electron transfer efficiency of fluorescent pH-probes with halogenated phenols.

    Science.gov (United States)

    Aigner, Daniel; Freunberger, Stefan A; Wilkening, Martin; Saf, Robert; Borisov, Sergey M; Klimant, Ingo

    2014-09-16

    Photoinduced electron transfer (PET), which causes pH-dependent quenching of fluorescent dyes, is more effectively introduced by phenolic groups than by amino groups which have been much more commonly used so far. That is demonstrated by fluorescence measurements involving several classes of fluorophores. Electrochemical measurements show that PET in several amino-modified dyes is thermodynamically favorable, even though it was not experimentally found, underlining the importance of kinetic aspects to the process. Consequently, the attachment of phenolic groups allows for fast and simple preparation of a wide selection of fluorescent pH-probes with tailor-made spectral properties, sensitive ranges, and individual advantages, so that a large number of applications can be realized. Fluorophores carrying phenolic groups may also be used for sensing analytes other than pH or molecular switching and signaling.

  7. Diphenylacrylonitrile-connected BODIPY dyes: fluorescence enhancement based on dark and AIE resonance energy transfer.

    Science.gov (United States)

    Lin, Liangbin; Lin, Xiaoru; Guo, Hongyu; Yang, Fafu

    2017-07-19

    This study focuses on the construction of novel diphenylacrylonitrile-connected BODIPY dyes with high fluorescence in both solution and an aggregated state by combining DRET and FRET processes in a single donor-acceptor system. The first BODIPY derivatives with one, two, or three AIE-active diphenylacrylonitrile groups were designed and synthesized in moderate yields. Strong fluorescence emissions were observed in the THF solution under excitation at the absorption wavelength of non-emissive diphenylacrylonitrile chromophores, implying the existence of the DRET process between the dark diphenylacrylonitrile donor and the emissive BODIPY acceptor. In the THF/H2O solution, the fluorescence intensity of the novel BODIPY derivatives gradually increased under excitation at the absorption wavelength of diphenylacrylonitrile chromophores, suggesting a FRET process between diphenylacrylonitrile and BODIPY moieties. A greater number of diphenylacrylonitrile units led to higher energy-transfer efficiencies. The pseudo-Stokes shift for both DRET and FRET processes was as large as 190 nm.

  8. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation.

    Science.gov (United States)

    Seo, Yeong Hwan; Cho, Changsoon; Lee, Jung-Yong; Han, Jong-In

    2014-12-01

    Solar radiation has intensity that is too high to inhibit microalgae activity and is composed of wide light spectrum including ultraviolet (UV) range which cannot be utilized for microalgae. For these reasons, the modification of solar radiation is required for effective microalgae cultivation, and to do that, fluorescent paint was used for not only blocking excessive solar energy but also converting UV to visible light. With fluorescent aqueous layer, microalgae was protected from photoinhibition and could grow well, but there was difference in growth and lipid accumulation efficiencies depending on the color; maximum dry weight of 1.7 g/L was achieved in red paint, whereas best lipid content of 30% was obtained in blue one. This phenomenon was due to the different light spectrum made by colors. With simple process using fluorescent paint, modification of light was successfully done and allowing microalgae to grow under strong radiation such as solar radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  10. A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids

    Science.gov (United States)

    Veilleux, Jocelyn; Coulombe, Sylvain

    2010-11-01

    Mass diffusion of rhodamine 6G (R6G) in water-based alumina nanofluids is studied by means of total internal reflection fluorescence (TIRF) microscopy. We report a mass diffusivity enhancement that reaches an order of magnitude in a 2 vol % nanofluid when compared to the value in deionized water. Since experiments were performed with positively charged R6G, interfacial complexation between the dye and the nanoparticles was not observed. The effect of local density variations on mass diffusivity measurements is also addressed. An explanation for the enhancement of mass diffusion is presented using arguments based on dispersion, and it is shown that it correctly describes the order of magnitude differences between the thermal conductivity and mass diffusivity enhancements reported in the literature.

  11. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement.

    Science.gov (United States)

    Byrne, H L; Gholami, Y; Kuncic, Z

    2017-04-21

    The addition of gold nanoparticles within target tissue (i.e. a tumour) to enhance the delivered radiation dose is a well studied radiotherapy treatment strategy, despite not yet having been translated into standard clinical practice. While several studies have used Monte Carlo simulations to investigate radiation dose enhancement by Auger electrons emitted from irradiated gold nanoparticles, none have yet considered the effects due to escaping fluorescence photons. Geant4 was used to simulate a water phantom containing 10 mg ml -1 uniformly dispersed gold (1% by mass) at 5 cm depth. Incident monoenergetic photons with energies either side of the gold K-edge at 73 keV and 139.5 keV were chosen to give the same attenuation contrast against water, where water is used as a surrogate for biological tissue. For 73 keV incident photons, adding 1% gold into the water phantom enhances the energy deposited in the phantom by a factor of  ≈1.9 while 139.5 keV incident photons give a lower enhancement ratio of  ≈1.5. This difference in enhancement ratio, despite the equivalent attenuation ratios, can be attributed to energy carried from the target into the surrounding volume by fluorescence photons for the higher incident photon energy. The energy de-localisation is maximal just above the K-edge with 36% of the initial energy deposit in the phantom lost to escaping fluorescence photons. Conversely we find that the absorption of more photons by gold in the phantom reduces the number of scattered photons and hence energy deposited in the surrounding volume by up to 6% for incident photons below the K-edge. For incident photons above the K-edge this is somewhat offset by fluorescence. Our results give new insight into the previously unstudied centimetre scale energy deposition outside a target, which will be valuable for the future development of treatment plans using gold nanoparticles. From these results, we can conclude that gold nanoparticles delivered

  12. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons.

    Science.gov (United States)

    Song, Jung-Hoon; Atay, Tolga; Shi, Sufei; Urabe, Hayato; Nurmikko, Arto V

    2005-08-01

    Nanoengineered fluorescent response is reported from semiconductor core-shell (CdSe/ZnS) quantum dots in proximity to the surface plasmon polariton field of periodic Ag nanoparticle arrays. Tuning the surface plasmon polariton resonance to the quantum dot exciton emission band results in an enhancement of up to approximately 50-fold in the overall fluorescence efficiency, in a design where each Ag nanoparticle is interconnected by a continuous Ag thin film. Propagating modes of surface plasmon resonances have a direct impact on the fluorescence enhancement.

  13. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II)

    Science.gov (United States)

    Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu

    2018-01-01

    The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.

  14. Fluorescence enhancement of single DNA molecules confined in Si/SiO2 nanochannels

    DEFF Research Database (Denmark)

    Westerlund, F.; Persson, Karl Fredrik; Kristensen, Anders

    2010-01-01

    We demonstrate that the detected emission intensity from YOYO-labeled DNA molecules confined in 180 nm deep Si/SiO2 nano-funnels changes significantly and not monotonically with the width of the funnel. This effect may be of importance for quantitative fluorescence microscopy and for experiments...

  15. Enhanced escape rate for Hg 254 nm resonance radiation in fluorescent lamps

    Science.gov (United States)

    Lawler, James E.; Raizen, Mark G.

    2013-10-01

    The potential of the low-cost MAGIS isotopic separation method to improve fluorescent lamp efficacy is explored using resonance radiation transport simulations. New Hg isotopic mixes are discovered that yield escape rates for 254 nm Hg I resonance radiation equal to 117% to 122% of the rate for a natural isotopic mix under the same lamp conditions.

  16. Broadband Antireflection and Light Extraction Enhancement in Fluorescent SiC with Nanodome Structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Zhu, Xiaolong; Jokubavicius, Valdas

    2014-01-01

    We demonstrate a time-efficient and low-cost approach to fabricate Si3N4 coated nanodome structures in fluorescent SiC. Nanosphere lithography is used as the nanopatterning method and SiC nanodome structures with Si3N4 coating are formed via dry etching and thin film deposition process. By using...

  17. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    Science.gov (United States)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  18. Determination of Protein by Fluorescence Enhancement of Curcumin in Lanthanum-Curcumin-Sodium Dodecyl Benzene Sulfonate-Protein System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Zaozhuang University, People' s Republic of China; Huang, Wei [Zaozhuang University, People' s Republic of China; Zhang, Yunfeng [Zaozhuang University, People' s Republic of China; Wang, Mingyin [Zaozhuang University, People' s Republic of China; Sun, Lina [Zaozhuang University, People' s Republic of China; Tang, Bo [Shandong University, Jinan, China; Wang, Wei [ORNL

    2011-01-01

    We found that the fluorescence intensity of the lanthanum (La(3+))-curcumin (CU) complex can be highly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this finding, a new fluorimetric method for the determination of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of proteins in the range 0.0080-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1) for human serum albumin (HSA) with excitation of 425 nm, and 0.00020-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1)for human serum albumin (HSA) with excitation of 280 nm, while corresponding qualitative detection limits (S/N 3) are as low as 5.368, 0.573, 0.049, 0.562 g mL(-1), respectively. Study on reaction mechanism reveals that proteins can bind with La(3+), CU and SDBS through self-assembling function with electrostatic attraction, hydrogen bonding, hydrophobic interaction and van der Waals forces, etc. The proteins form a supermolecular association with multilayer structure, in which La(3+)-CU is clamped between BSA and SDBS. The unique high fluorescence enhancement of CU is resulted through synergic effects of favorable hydrophobic microenvironment provided by BSA and SDBS, and efficient intermolecular energy transfer among BSA, SDBS and CU. In energy transfer process, La(3+) plays a crucial role because it not only shortens the distance between SDBS and CU, but also acts as a "bridge" for transferring the energy from BSA to CU.

  19. Determination of protein by fluorescence enhancement of curcumin in lanthanum-curcumin-sodium dodecyl benzene sulfonate-protein system.

    Science.gov (United States)

    Wang, Feng; Huang, Wei; Zhang, Yunfeng; Wang, Mingyin; Sun, Lina; Tang, Bo; Wang, Wei

    2011-01-01

    We found that the fluorescence intensity of the lanthanum (La(3+))-curcumin (CU) complex can be highly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this finding, a new fluorimetric method for the determination of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of proteins in the range 0.0080-20.0 μg·mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 μg·mL(-1) for human serum albumin (HSA) with excitation of 425 nm, and 0.00020-20.0 μg·mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 μg·mL(-1)for human serum albumin (HSA) with excitation of 280 nm, while corresponding qualitative detection limits (S/N ≥ 3) are as low as 5.368, 0.573, 0.049, 0.562 µg·mL(-1), respectively. Study on reaction mechanism reveals that proteins can bind with La(3+), CU and SDBS through self-assembling function with electrostatic attraction, hydrogen bonding, hydrophobic interaction and van der Waals forces, etc. The proteins form a supermolecular association with multilayer structure, in which La(3+)-CU is clamped between BSA and SDBS. The unique high fluorescence enhancement of CU is resulted through synergic effects of favorable hydrophobic microenvironment provided by BSA and SDBS, and efficient intermolecular energy transfer among BSA, SDBS and CU. In energy transfer process, La(3+) plays a crucial role because it not only shortens the distance between SDBS and CU, but also acts as a "bridge" for transferring the energy from BSA to CU.

  20. Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application.

    Science.gov (United States)

    Xue, Jingjing; Chen, Xinyi; Liu, Shanglin; Zheng, Fenfen; He, Li; Li, Lingling; Zhu, Jun-Jie

    2015-09-02

    The polyaniline (PAN)-coated CdSeTe quantum dots (QDs) were prepared by in situ polymerization of aniline on the surface of CdSeTe QDs. The PAN-coated CdSeTe QDs has a tremendously enhanced fluorescence (∼40 times) and improved biocompatibility compared to the uncoated CdSeTe QDs. The fluorescence intensity of the PAN-coated CdSeTe QDs can be adjusted by controlling the construction parameters of the PAN shell. The kinetics of the in situ controllable polymerization process was studied by varying the temperature, and the apparent activation energy of polymerization was estimated. With the same method, a series of the PAN derivatives were also tested to coat the CdSeTe QDs in this study. All the QDs showed a significant enhancement of the fluorescence intensity and better biocompatibility. The significantly enhanced fluorescence can provide highly amplified signal for luminescence-based cell imaging.

  1. Fe-nitrilotriacetic acid coordination polymer nanowires: an effective sensing platform for fluorescence-enhanced nucleic acid detection

    Science.gov (United States)

    Zhou, Yunchun; Liu, Qian; Sun, Xuping; Kong, Rongmei

    2017-02-01

    The determination of specific nucleic acid sequences is key in identifying disease-causing pathogens and genetic diseases. In this paper we report the utilization of Fe-nitrilotriacetic acid coordination polymer nanowires as an effective nanoquencher for fluorescence-enhanced nucleic acid detection. The detection is fast and the whole process can be completed within 15 min. This nanosensor shows a low detection limit of 0.2 nM with selectivity down to single-base mismatch. This work provides us with an attractive sensing platform for applications.

  2. Photoluminescence Enhancement in Nanotextured Fluorescent SiC Passivated by Atomic Layer Deposited Al2O3 Films

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    The influence of thickness of atomic layer deposited Al2O3 films on nano-textured fluorescent 6H-SiC passivation is investigated. The passivation effect on the light emission has been characterized by photoluminescence and time-resolved photoluminescence at room temperature. The results show...... that 20nm thickness of Al2O3 layer is favorable to observe a large photoluminescence enhancement (25.9%) and long carrier lifetime (0.86ms). This is a strong indication for an interface hydrogenation that takes place during post-thermal annealing. These results show that an Al2O3 layer could serve...

  3. Preparation of a bio-immunoreagent between ZZ affibody and enhanced green fluorescent protein for immunofluorescence applications.

    Science.gov (United States)

    Yang, Hong-Ming; Chen, Yong; Gao, Zhi-Qin; Tang, Jin-Bao

    2012-03-01

    In the present study, we constructed plasmid pUC-ZZ-EGFP to express Pro-ZZ-EGFP using ZZ peptide (a synthetic artificial IgG-Fc-fragment-binding protein derived from the B domain of staphylococcal protein A) and enhanced green fluorescent protein (EGFP). Without induction with isopropyl-β-D: -thiogalactopyranoside, the chimeric protein was effectively expressed in Escherichia coli HB101. Its affinity constant binding IgG was 2.6 × 10(8) M(-1) obtained by competitive enzyme-linked immunosorbent assay, indicating that the ZZ peptide retains the native structure in Pro-ZZ-EGFP. The application of immunofluorescence assay for detecting the Mycoplasma pneumoniae IgG antibody, Pro-ZZ-EGFP, exhibited a good signal comparable in brightness and fluorescence pattern with the signal generated using the fluorescein isothiocyanate-labeled anti-human IgG. The result indicates that Pro-ZZ-EGFP possesses great potential for clinical immunofluorescence IgG test as an alternative versatile fluorescent antibody.

  4. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein.

    Science.gov (United States)

    Arpino, James A J; Rizkallah, Pierre J; Jones, D Dafydd

    2014-08-01

    Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP(D190Δ) containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP(A227Δ) revealed that a `flipping' mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  5. Al³⁺-induced far-red fluorescence enhancement of conjugated polymer nanoparticles and its application in live cell imaging.

    Science.gov (United States)

    Liu, Heng; Hao, Xian; Duan, Chunhui; Yang, Hui; Lv, Yi; Xu, Haijiao; Wang, Hongda; Huang, Fei; Xiao, Debao; Tian, Zhiyuan

    2013-10-07

    Fluorescent nanoparticles (NPs) for Al(3+) sensing with high selectivity were developed from a type of carbazole-based conjugated polymer with a two-dimensional donor-π bridge-acceptor (D-π-A) structure. These NPs are characterized by their small particle diameter (∼18 nm), far-red fluorescence emission (centered ∼710 nm), and Al(3+)-induced fluorescence enhancement with high selectivity owing to an Al(3+)-triggered inhibition on the intramolecular charge transfer (ICT) processes between the conjugated backbone and the pendant acceptors. This type of nanoparticle is easily suspended in aqueous solutions, indicating their practical applicability in physiological media, and their ability for intracellular Al(3+) sensing was confirmed. As compared to other types of conjugated polymer based probes showing metal ion mediated fluorescence quenching, these as-prepared NPs possess analyte-enhanced fluorescence emission, which is analytically favored in terms of sensitivity and selectivity. Fluorescence emission with wavelengths in the biological window of maximum optical transparency (∼700 to 1000 nm) is expected to impart a salient advantage for biological detection applications to these as-prepared probes. The superior features of merit of this new type of fluorescent probe, together with the validation of practicability for intracellular Al(3+) ion sensing, are indicative of their potential for application in fluorescence-based imaging and sensing, such as investigations on Al(3+)-related physiological and pathological processes.

  6. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow....... At a device level, the focus is on improving the light extraction efficiency due to the rather high refractive index of SiC by nanostructuring the surface of SiC. Both periodic nanostructures made by e-beam lithography and nanosphere lithography and random nanostructures made by self-assembled Au nanosphere...... fluorescent Boron-Nitrogen co-doped 6H SiC is optimized in terms of source material, growth condition, dopant concentration, and carrier lifetime by using photoluminescence, pump-probe spectroscopy etc. The internal quantum efficiency is measured and the methods to increase the efficiency have been explored...

  7. Pulsed magnetic field from video display terminals enhances teratogenic effects of cytosine arabinoside in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, H.; Wu, R.Y.; Shao, B.J.; Fu, Y.D.; Yao, G.D.; Lu, D.J. [Zhejiang Medical Univ. (China)

    1995-05-01

    Eighty-nine Swiss Webster mice were randomly divided into four groups: a control group, a pulsed magnetic field (PMF) group, a cytosine arabinoside (ara-C, a teratogen) group, and a combined PMF + ara-C group. Mice in the PMF and PMF + ara-C groups were irradiated with a PMF (a sawtooth waveform with 52 {mu}s rise time, 12{mu}s decay time, and 15.6 kHz frequency) at a peak magnetic flux density of 40 {mu}T for 4 hours daily on days 6-17 of gestation. The mice in the ara-C and the PMF + ara-C groups were injected intraperitoneally on day 9 of gestation with 10 mg/kg of ara-C. The incidence of resorption and dead fetuses was not affected by PMF but was increased by ara-C injection. The malformation incidence of cleft palate (CP) and/or cleft lip (CL) was significantly higher in all three of the treated groups than in the control group (P < 0.05). If, however, statistical analyses had been done on litters rather than on individual fetuses, they would show that the incidence of CP and/or CL in the PMF group is not significantly greater than that in the control group. A significantly higher incidence of CP and/or CL was found in the PMF + ara-C group (49%) than the ara-C alone group (26.1%). These data suggest that PMF might enhance the development of ara-C-induced CP and/or CL. The incidence of minor variations in skeletal development, including reduction of skeletal calcification and loss of skeleton, was not statistically significant in the PMF group. However, it was higher in the two ara-C-treated groups, and there was no significant difference between the ara-C alone group and the ara-C + PMF group. From these results it is concluded that the very weak embryotoxic effects of PMF exposure may be revealed and enhanced in combination with a teratogenic agent.

  8. Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging

    OpenAIRE

    Xu, Suying; Bai, Xilin; Ma, Jingwen; Xu, Minmin; Hu, Gaofei; James, Tony D.; Wang, Leyu

    2016-01-01

    The use of fluorescence probes for biomedical imaging has attracted significant attention over recent years owing to their high resolution at cellular level. The probes are available in many formats including small particle size based imaging agents which are considered to be promising candidates, due to their excellent stabilities. Yet, concerns over the potential cytotoxicity effects of inorganic luminescent particles have led to questions about their suitability for imaging applications. E...

  9. Surface Functionalization for Enhanced Fluorescence Detection, Surface Plasmon Resonance Imaging and Microscopy

    OpenAIRE

    Fasoli, Jennifer Betsy

    2015-01-01

    This work presents several high throughput imaging and analysis techniques performed by fluorescence detection and surface plasmon resonance biosensing. The microarray fabrication methods introduced in this thesis, as well as the DNA functionalization on planar and nanoparticle surfaces, enable and facilitate the real-time study of adsorption events via DNA- DNA hybridization and protein-DNA interaction. Silica deposited on polyolefin film serves as the base for the development of DNA mic...

  10. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy.

    Science.gov (United States)

    Gao, Shi; Wang, Guohao; Qin, Zainen; Wang, Xiangyu; Zhao, Guoqing; Ma, Qingjie; Zhu, Lei

    2017-01-01

    Photodynamic therapy (PDT) is a promising tumor treatment modality that can convert oxygen into cytotoxic singlet oxygen (SO) via photosensitizer to ablate tumor growth. However, the uncontrolled cancer cell proliferation during tumor development and the oxygen consumption during PDT always result in an insufficient oxygen level in tumors, which can adversely affect the PDT efficiency in turn. We designed an oxygen-generating PDT nanocomplex by encapsulating a manganese dioxide nanoparticle (MnO 2 NP) in an indocyanine green (ICG) modified hyaluronic acid nanoparticle (HANP) to overcome this limitation. Because of the excellent fluorescent and photoacoustic properties, the tumor accumulation of the ICG-HANP/MnO 2 (IHM) nanocomplex was monitored by fluorescent imaging and photoacoustic imaging after intravenous administration into the SCC7 tumor-bearing mouse model. Both high fluorescent and photoacoustic signals were detected and found peak at 6 h post-injection (tumor-muscle ratio: 4.03 ± 0.36 for fluorescent imaging and 2.93 ± 0.13 for photoacoustic imaging). In addition, due to the high reactivity of MnO 2 NP to H 2 O 2 , an unfavorable tumor cell metabolic, the oxygen content in the tumor is elevated 2.25 ± 0.07 times compared to that without IHM treatment as ultrasound imaging confirmed. After laser irradiation, significant tumor growth inhibition was observed in the IHM-treated group compared to the ICG-HANP-treated group, attributed to the beneficial oxygen-generating property of IHM for PDT. It is expected that the design of IHM will provide an alternative way of improving clinical PDT efficacy and will be widely applied in cancer theranostics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High-efficiency type II cell-enhanced green fluorescent protein expression facilitates cellular identification, tracking, and isolation.

    Science.gov (United States)

    Vanderbilt, Jeff N; Gonzalez, Robert F; Allen, Lennell; Gillespie, AnneMarie; Leaffer, David; Dean, Willow B; Chapin, Cheryl; Dobbs, Leland G

    2015-07-01

    We have developed a transgenic mouse expressing enhanced green fluorescent protein (EGFP) in virtually all type II (TII) alveolar epithelial cells. The CBG mouse (SPC-BAC-EGFP) contains a bacterial artificial chromosome modified to express EGFP within the mouse surfactant protein (SP)-C gene 3' untranslated region. EGFP mRNA expression is limited to the lung. EGFP fluorescence is both limited to and exhibited by all cells expressing pro-SP-C; fluorescence is uniform throughout all lobes of the lung and does not change as mice age. EGFP(+) cells also express SP-B but do not express podoplanin, a type I (TI) cell marker. CBG mice show no evidence of lung disease with aging. In 3 hours, TII cells can be isolated in >99% purity from CBG mice by FACS; the yield of 3.7 ± 0.6 × 10(6) cells represents approximately 25 to 60% of the TII cells in the lung. By FACS analysis, approximately 0.9% of TII cells are in mitosis in uninjured lungs; after bleomycin injury, 4.1% are in mitosis. Because EGFP fluorescence can be detected for >14 days in culture, at a time that SP-C mRNA expression is essentially nil, this line may be useful for tracking TII cells in culture and in vivo. When CBG mice are crossed to transgenic mice expressing rat podoplanin, TI and TII cells can be easily simultaneously identified and isolated. When bred to other strains of mice, EGFP expression can be used to identify TII cells without the need for immunostaining for SP-C. These mice should be useful in models of mouse pulmonary disease and in studies of TII cell biology, biochemistry, and genetics.

  12. Ultrasound-induced transformation of fluorescent organic nanoparticles from a molecular rotor into rhomboidal nanocrystals with enhanced emission.

    Science.gov (United States)

    Koenig, Matthias; Torres, Tomás; Barone, Vincenzo; Brancato, Giuseppe; Guldi, Dirk M; Bottari, Giovanni

    2014-11-04

    Fluorescent organic nanoparticles (FONs) based on aggregation-induced emission (AIE) are receiving increasing attention owing to their simple preparation, enhanced optical properties, and a wide range of applications. Therefore, finding simple methods to tune the structural and emissive properties of FONs is highly desirable. In this context, we discuss the preparation of highly emissive, amorphous AIE spherical nanoparticles based on a structurally-simple molecular rotor and their sonochemical transformation into rhomboidal nanocrystals. Interestingly, the ultrasound-induced modification of the morphology is accompanied by a remarkable enhancement in the stability and emission of the resulting nanocrystals. Detailed characterization of both spherical and rhomboidal nanoparticles was carried out by means of several microscopic, crystallographic, and spectroscopic techniques as well as quantum mechanical calculations. In a nutshell, this work provides a unique example of the ultrasound-induced switching of morphology, stability, and emission in FONs.

  13. Use of Short Animal-Themed Videos to Enhance Veterinary Students' Mood, Attention, and Understanding of Pharmacology Lectures.

    Science.gov (United States)

    Kogan, Lori R; Hellyer, Pete; Clapp, Tod R; Suchman, Erica; McLean, Jennifer; Schoenfeld-Tacher, Regina

    2017-09-29

    Professional DVM training is inherently stressful and challenging for students. This study evaluated a simple intervention-short breaks during a veterinary pharmacology lecture course in the form of funny/cute animal videos (Mood Induction Procedures, or MIP)-to assess for potential impact on students' mood, interest in material, and perceived understanding of material. Ten YouTube video clips showing cats or dogs were selected to influence students' affective states. The videos were shown in a required pharmacology class offered during the fall semester of the second year of the DVM program at a large, land-grant institution in the Western US. The student cohort consisted of 133 students (20 males, 113 females). Twenty days of the course were randomly chosen for the study and ranged from weeks 2 to 13 of the semester. Sessions in which the videos were played were alternated with sessions in which no video was played, for a total of 10 video days and 10 control days. There were significant differences in all three post-class assessment measures between the experimental (video) days and the control days. Results suggest that showing short cute animal videos in the middle of class positively affected students' mood, interest in material, and self-reported understanding of material. While the results of this study are limited to one student cohort at one institution, the ease of implementation of the technique and relatively low stakes support incorporation of the MIP technique across a variety of basic and clinical science courses.

  14. Fluorescence cytology with 5-aminolevulinic acid in EUS-guided FNA as a method for differentiating between malignant and benign lesions (with video).

    Science.gov (United States)

    Ikeura, Tsukasa; Takaoka, Makoto; Uchida, Kazushige; Shimatani, Masaaki; Miyoshi, Hideaki; Kato, Kota; Ohe, Chisato; Uemura, Yoshiko; Kaibori, Masaki; Kwon, A-Hon; Okazaki, Kazuichi

    2015-01-01

    EUS-guided FNA (EUS-FNA) has been increasingly performed to obtain specimens for the pathological evaluation of patients with GI and pancreaticobiliary masses as well as lymphadenopathies of unknown origin. Photodynamic diagnosis by using 5-aminolebulinic acid (ALA) has been reported to be useful for enabling the visual differentiation between malignant and normal tissue in various cancers. To evaluate the diagnostic accuracy of fluorescence cytology with ALA in EUS-FNA. A prospective study. A single center. A total of 28 consecutive patients who underwent EUS-FNA for the pathological diagnosis of a pancreaticobiliary mass lesion or intra-abdominal lymphadenopathy of unknown origin. Patients were orally administered ALA 3 to 6 hours before EUS-FNA. The sample was obtained via EUS-FNA for fluorescence cytology and conventional cytology. A single gastroenterologist performed the fluorescence cytology by using fluorescence microscopy after the procedure, independently of the conventional cytology by pathologists. The accuracy of fluorescence cytology with ALA in the differentiation between benign and malignant lesions by comparing the results of fluorescence cytology with the final diagnosis. Of the 28 patients included in the study, 22 were considered as having malignant lesions and 6 patients as having benign lesions. Fluorescence cytology could correctly discriminate between benign and malignant lesions in all patients. Therefore, both the sensitivity and specificity of fluorescence cytology were 100% in our study. Fluorescence cytology was performed by only 1 gastroenterologist with a small number of patients. Fluorescence cytology with ALA in EUS-FNA may be an effective and simple method for differentiating between benign and malignant lesions. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  15. Performance of electrokinetic stacking enhanced paper-based analytical device with smartphone for fast detection of fluorescent whitening agent.

    Science.gov (United States)

    Song, Yi-Zhen; Zhang, Xiu-Xiu; Ma, Biao; Wu, Zhi-Yong; Zhang, Zi-Qiang

    2017-12-01

    Quantification is a fundamental aspect of performance of an analytical system. Paper-based analytical device (PAD) as an on-site detection platform has drawn wide attention mainly due to its portability and cost effectiveness. In this work, a portable and low-cost PAD for online preconcentration and sensitive determination of fluorescent whitening agent (FWA) was demonstrated, which was consisted of ultra violet light-emitting diode (UV LED), macro-focusing lens, smartphone and miniaturized DC voltage source. Taking a widely used FWA component VBL as the analyte, the performance of the PAD enhanced with electrokinetic stacking (ES) and fluorescence imaging detection was systematically investigated. With ES, the sensitivity of the PAD system was 160-fold enhanced, and a limit of detection (LOD) of 0.06 μg mL -1 was achieved. The dynamic range was 0.1-10.0 μg mL -1 (linear in 0.1-0.7 μg mL -1 , R 2  = 0.99). With manual operation, the relative standard deviation (RSD) of intra-day and inter-day were all below 15%. Eventually, VBL from different napkin samples and toilet paper was determined with average recovery rates in the range of 90%-95% (RSD = 8.0%-12.0%). This work shows that with ES, the sensitivity of PAD can be greatly improved, and a LOD close to a desktop fluorescent spectrophotometer can be achieved as demonstrated by the detection of FWA component. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fingerprint enhancement revisited and the effects of blood enhancement chemicals on subsequent profiler Plus fluorescent short tandem repeat DNA analysis of fresh and aged bloody fingerprints.

    Science.gov (United States)

    Frégeau, C J; Germain, O; Fourney, R M

    2000-03-01

    This study was aimed at determining the effect of seven blood enhancement reagents on the subsequent Profiler Plus fluorescent STR DNA analysis of fresh or aged bloody fingerprints deposited on various porous and nonporous surfaces. Amido Black, Crowle's Double Stain. 1,8-diazafluoren-9-one (DFO), Hungarian Red, leucomalachite green, luminol and ninhydrin were tested on linoleum, glass, metal, wood (pine, painted white), clothing (85% polyester/15% cotton, 65% polyester/35% cotton, and blue denim) and paper (Scott 2-ply and Xerox-grade). Preliminary experiments were designed to determine the optimal blood dilutions to use to ensure a DNA typing result following chemical enhancement. A 1:200 blood dilution deposited on linoleum and enhanced with Crowle's Double Stain generated enough DNA for one to two rounds of Profiler Plus PCR amplification. A comparative study of the DNA yields before and after treatment indicated that the quantity of DNA recovered from bloody fingerprints following enhancement was reduced by a factor of 2 to 12. Such a reduction in the DNA yields could potentially compromise DNA typing analysis in the case of small stains. The blood enhancement chemicals selected were also evaluated for their capability to reveal bloodmarks on the various porous and nonporous surfaces chosen in this study. Luminol. Amido Black and Crowle's Double Stain showed the highest sensitivity of all seven chemicals tested and revealed highly diluted (1:200) bloody fingerprints. Both luminol and Amido Black produced excellent results on both porous and nonporous surfaces, but Crowle's Double Stain failed to produce any results on porous substrates. Hungarian Red, DFO, leucomalachite green and ninhydrin showed lower sensitivities. Enhancement of bloodmarks using any of the chemicals selected, and short-term exposure to these same chemicals (i.e., less than 54 days), had no adverse effects on the PCR amplification of the nine STR systems surveyed (D3S 1358, HumvWA, Hum

  17. Cu2+ colorimetric sensing and fluorescence enhancement and Hg2+ fluorescence diminution in "scorpionate"-like tetrathienyl-substituted boron-dipyrrins.

    Science.gov (United States)

    Choi, Shin Hei; Pang, Keliang; Kim, Kibong; Churchill, David G

    2007-12-10

    Four novel tetrathienyl-substituted boron-dipyrrin-type (BODIPY-type) complexes, 3-(R')-4,4-di(R')-8-R-4-bora-3a,4a-diaza-s-indacene (4a, R = 2-T, R' = 2-T; 4b, R = 3-T, R' = 2-T; 5a, R = 2-T, R' = 3-T; 5b, R = 3-T, R' = 3-T; T = thienyl) have been prepared and fully characterized to explore patterns of stoichiometric Mn+ recognition in solution. Treatment of the respective parent BF2 dipyrrin with 2- or 3-thienyllithium gave the unexpected asymmetric tetrathienyl-substituted products in 8.5-35% yield. Compounds 4a and 4b bear a neutral "scorpionate"-like [SSS] tridentate binding pocket. Extensive NMR and UV-vis spectroscopic studies were performed on 4a-5b; 5a, 4b, and 5b were structurally characterized. The PhiF values for 4a-5b all decrease compared to the BF2-containing parent molecules (0.00058, 0.012, 0.00090, and 0.0051, respectively), with lambda(abs,max) values (epsilon, M(-1) cm(-1)) of 563 (44,000), 553 (29,000), 539 (33,000), and 531 (44,000) nm, respectively, and Stokes' shifts of 25-36 nm. Upon treatment with metal ion (Ca2+, Cs+, Mn2+, Co2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, Pb2+) perchlorate salts, the solution of 4b undergoes rapid pink-to-clear switch-off behavior upon Cu2+ addition (10 microM scale) with smaller effects seen for 4a. Further, there were 2- to 19-fold Cu2+ fluorescence enhancements for these ligands. Cu2+- and Hg2+-L (L = 4a-5b) binding was modeled, and response patterns for Mn+-L 1:1 molar solutions upon Cu2+ addition were measured. Upon treatment with Hg2+, all ligand solutions show a significant fluorescence decrease accompanied by minor absorption increases. The UV-vis spectroscopic detection limit for Cu2+ and Hg2+ is approximately 270 ppb and approximately 1.7 ppm, respectively; the naked eye detection limit for Cu2+ with 4b (1.0 x 10(-5) M) is approximately 23 microM. DFT calculations gave HOMO-LUMO gaps of 478 (4a), 462 (4b), 448 (5a), and 442 nm (5b). Molecular orbital diagrams for 4a-5b revealed that the HOMO and LUMO electron

  18. Selective detection of Mg2+ ions via enhanced fluorescence emission using Au–DNA nanocomposites

    Directory of Open Access Journals (Sweden)

    Tanushree Basu

    2017-04-01

    Full Text Available The biophysical properties of DNA-modified Au nanoparticles (AuNPs have attracted a great deal of research interest for various applications in biosensing. AuNPs have strong binding capability to the phosphate and sugar groups in DNA, rendering unique physicochemical properties for detection of metal ions. The formation of Au–DNA nanocomposites is evident from the observed changes in the optical absorption, plasmon band, zeta potential, DLS particle size distribution, as well as TEM and AFM surface morphology analysis. Circular dichroism studies also revealed that DNA-functionalized AuNP binding caused a conformational change in the DNA structure. Due to the size and shape dependent plasmonic interactions of AuNPs (33–78 nm with DNA, the resultant Au–DNA nanocomposites (NCs exhibit superior fluorescence emission due to chemical binding with Ca2+, Fe2+ and Mg2+ ions. A significant increase in fluorescence emission (λex = 260 nm of Au–DNA NCs was observed after selectively binding with Mg2+ ions (20–800 ppm in an aqueous solution where a minimum of 100 ppm Mg2+ ions was detected based on the linearity of concentration versus fluorescence intensity curve (λem = 400 nm. The effectiveness of Au–DNA nanocomposites was further verified by comparing the known concentration (50–120 ppm of Mg2+ ions in synthetic tap water and a real life sample of Gelusil (300–360 ppm Mg2+, a widely used antacid medicine. Therefore, this method could be a sensitive tool for the estimation of water hardness after careful preparation of a suitably designed Au–DNA nanostructure.

  19. Selective detection of Mg2+ions via enhanced fluorescence emission using Au-DNA nanocomposites.

    Science.gov (United States)

    Basu, Tanushree; Rana, Khyati; Das, Niranjan; Pal, Bonamali

    2017-01-01

    The biophysical properties of DNA-modified Au nanoparticles (AuNPs) have attracted a great deal of research interest for various applications in biosensing. AuNPs have strong binding capability to the phosphate and sugar groups in DNA, rendering unique physicochemical properties for detection of metal ions. The formation of Au-DNA nanocomposites is evident from the observed changes in the optical absorption, plasmon band, zeta potential, DLS particle size distribution, as well as TEM and AFM surface morphology analysis. Circular dichroism studies also revealed that DNA-functionalized AuNP binding caused a conformational change in the DNA structure. Due to the size and shape dependent plasmonic interactions of AuNPs (33-78 nm) with DNA, the resultant Au-DNA nanocomposites (NCs) exhibit superior fluorescence emission due to chemical binding with Ca 2+ , Fe 2+ and Mg 2+ ions. A significant increase in fluorescence emission (λ ex = 260 nm) of Au-DNA NCs was observed after selectively binding with Mg 2+ ions (20-800 ppm) in an aqueous solution where a minimum of 100 ppm Mg 2+ ions was detected based on the linearity of concentration versus fluorescence intensity curve (λ em = 400 nm). The effectiveness of Au-DNA nanocomposites was further verified by comparing the known concentration (50-120 ppm) of Mg 2+ ions in synthetic tap water and a real life sample of Gelusil (300-360 ppm Mg 2+ ), a widely used antacid medicine. Therefore, this method could be a sensitive tool for the estimation of water hardness after careful preparation of a suitably designed Au-DNA nanostructure.

  20. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...... and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body...

  1. Omnidirectional luminescence enhancement of fluorescent SiC via pseudoperiodic antireflective subwavelength structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Yakimova, Rositza

    2012-01-01

    -785 nm is dramatically suppressed from 20.5% to 1.62%, and the hydrophobic surface with a large contact angle of 98° is also achieved. The angle-resolved photoluminescence study presents a considerable omnidirectional luminescence enhancement with an integral intensity enhancement of 66.3% and a fairly...

  2. Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands.

    Science.gov (United States)

    Ding, Si-Jing; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-10-14

    We investigate tunable plasmon resonance and enhanced second harmonic generation (SHG) and up-converted fluorescence (UCF) of the hemispheric-like silver core/shell islands. The Ag, Ag/Ag2O, and Ag/Ag2O/Ag island films are prepared by using a sputtering technique. The SHG and UCF of the Ag/Ag2O/Ag core/shell islands near the percolating regime is enhanced 2.34 and 3.94 times compared to the sum of two individual counterparts of Ag/Ag2O core/shell and Ag shell islands. The ratio of SHG intensity induced by p- and s-polarization is 0.86 for the initial Ag islands and increase to 1.61 for the Ag/Ag2O/Ag core/shell samples. The tunable intensity ratio of SHG to UCF of the Ag islands treated by thermal and laser annealing processes is also observed. The physical mechanism of the enhanced SHG and UCF in the Ag/Ag2O/Ag core/shell islands is discussed. Our observations provide a new approach to fabricate plasmon-enhanced optical nonlinear nanodevices with tunable SHG and UCF.

  3. Reviews in instructional video

    NARCIS (Netherlands)

    van der Meij, Hans

    2017-01-01

    This study investigates the effectiveness of a video tutorial for software training whose construction was based on a combination of insights from multimedia learning and Demonstration-Based Training. In the videos, a model of task performance was enhanced with instructional features that were

  4. Enhanced simulator software for image validation and interpretation for multimodal localization super-resolution fluorescence microscopy

    Science.gov (United States)

    Erdélyi, Miklós; Sinkó, József; Gajdos, Tamás.; Novák, Tibor

    2017-02-01

    Optical super-resolution techniques such as single molecule localization have become one of the most dynamically developed areas in optical microscopy. These techniques routinely provide images of fixed cells or tissues with sub-diffraction spatial resolution, and can even be applied for live cell imaging under appropriate circumstances. Localization techniques are based on the precise fitting of the point spread functions (PSF) to the measured images of stochastically excited, identical fluorescent molecules. These techniques require controlling the rate between the on, off and the bleached states, keeping the number of active fluorescent molecules at an optimum value, so their diffraction limited images can be detected separately both spatially and temporally. Because of the numerous (and sometimes unknown) parameters, the imaging system can only be handled stochastically. For example, the rotation of the dye molecules obscures the polarization dependent PSF shape, and only an averaged distribution - typically estimated by a Gaussian function - is observed. TestSTORM software was developed to generate image stacks for traditional localization microscopes, where localization meant the precise determination of the spatial position of the molecules. However, additional optical properties (polarization, spectra, etc.) of the emitted photons can be used for further monitoring the chemical and physical properties (viscosity, pH, etc.) of the local environment. The image stack generating program was upgraded by several new features, such as: multicolour, polarization dependent PSF, built-in 3D visualization, structured background. These features make the program an ideal tool for optimizing the imaging and sample preparation conditions.

  5. Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors (Review).

    Science.gov (United States)

    Harrison, Richard P; Chauhan, Veeren M

    2017-12-15

    Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to wide-scale adoption of CGTs remains challenging, such that the emergence of a "blockbuster" therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches.

  6. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  7. Novel fluorescent probe for low density lipoprotein, based on the enhancement of Europium emission band

    OpenAIRE

    Courrol, Lilia Coronato; Monteiro, A.M.; SILVA, F.R.O.; L. Gomes; VIEIRA, N.D.; Gidlund, Magnus; Figueiredo Neto, A.M.

    2007-01-01

    We report here the observation of the enhancement of Europium-tetracycline complex emission in Low Density Lipoprotein (LDL) solutions. Europium emission band of tetracycline solution containing Europium (III) chloride hexahydrate was tested to obtain effective enhancement in the presence of native LDL and oxidized LDL. Europium emission lifetime in the presence of lipoproteins was measured, resulting in a simple method to measure the lipoproteins quantity in an aqueous solution at physiologi...

  8. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  9. One-step detection of circulating tumor cells in ovarian cancer using enhanced fluorescent silica nanoparticles.

    Science.gov (United States)

    Kim, Jin Hyun; Chung, Hyun Hoon; Jeong, Min Sook; Song, Mi Ryoung; Kang, Keon Wook; Kim, Jun Sung

    2013-01-01

    Ovarian cancer is the fifth-leading cause of cancer-related deaths among women as a result of late diagnosis. For survival rates to improve, more sensitive and specific methods for earlier detection of ovarian cancer are needed. This study presents the development of rapid and specific one-step circulating tumor cell (CTC) detection using flow cytometry in a whole-blood sample with fluorescent silica nanoparticles. We prepared magnetic nanoparticle (MNP)-SiO2(rhodamine B isothiocyanate [RITC]) (MNP-SiO2[RITC] incorporating organic dyes [RITC, ëmax(ex/em) = 543/580 nm]) in the silica shell. We then controlled the amount of organic dye in the silica shell of MNP-SiO2(RITC) for increased fluorescence intensity to overcome the autofluorescence of whole blood and increase the sensitivity of CTC detection in whole blood. Next, we modified the surface function group of MNP-SiO2(RITC) from -OH to polyethylene glycol (PEG)/COOH and conjugated a mucin 1 cell surface-associated (MUC1) antibody on the surface of MNP-SiO2(RITC) for CTC detection. To study the specific targeting efficiency of MUC1-MNP-SiO2(RITC), we used immunocytochemistry with a MUC1-positive human ovarian cancer cell line and a negative human embryonic kidney cell line. This technology was capable of detecting 100 ovarian cancer cells in 50 μL of whole blood. In conclusion, we developed a one-step CTC detection technology in ovarian cancer based on multifunctional silica nanoparticles and the use of flow cytometry.

  10. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.

    Science.gov (United States)

    Crake, Calum; Owen, Joshua; Smart, Sean; Coviello, Christian; Coussios, Constantin-C; Carlisle, Robert; Stride, Eleanor

    2016-12-01

    Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Mukeshchand Thakur

    2014-01-01

    Full Text Available A novel report on microwave assisted synthesis of bright carbon dots (C-dots using gum arabic (GA and its use as molecular vehicle to ferry ciprofloxacin hydrochloride, a broad spectrum antibiotic, is reported in the present work. Density gradient centrifugation (DGC was used to separate different types of C-dots. After careful analysis of the fractions obtained after centrifugation, ciprofloxacin was attached to synthesize ciprofloxacin conjugated with C-dots (Cipro@C-dots conjugate. Release of ciprofloxacin was found to be extremely regulated under physiological conditions. Cipro@C-dots were found to be biocompatible on Vero cells as compared to free ciprofloxacin (1.2 mM even at very high concentrations. Bare C-dots (∼13 mg mL−1 were used for microbial imaging of the simplest eukaryotic model—Saccharomyces cerevisiae (yeast. Bright green fluorescent was obtained when live imaging was performed to view yeast cells under fluorescent microscope suggesting C-dots incorporation inside the cells. Cipro@C-dots conjugate also showed enhanced antimicrobial activity against both model gram positive and gram negative microorganisms. Thus, the Cipro@C-dots conjugate paves not only a way for bioimaging but also an efficient new nanocarrier for controlled drug release with high antimicrobial activity, thereby serving potential tool for theranostics.

  12. Spectrofluorimetric determination of phenylalanine based on fluorescence enhancement of europium ion immobilized with sol-gel method

    Science.gov (United States)

    Zhang, Kun; Yan, Hong-Tao; Zhou, Tie

    2011-12-01

    The analysis of phenylalanine (Phe) in serum is widely performed for the screening of newborn phenylketonuria (PKU). In this work, a novel spectrofluorimetric method for the determination of Phe was developed based on the fluorescence enhancement of Ruhemann's purple, the reaction product between Phe and ninhydrin, upon coordination with Eu 3+. A filter paper disc containing immobilized reactants (ninhydrin and Eu 3+) was fabricated by sol-gel method. The experimental parameters affecting the determination of Phe, such as the concentrations of immobilized reagents, the pH value, the reaction time and temperature were optimized. Under optimum conditions, the fluorescence intensity of Phe-ninhydrin-Eu 3+ system was linearly proportional to the concentration of Phe in the range from 5 × 10 -5 to 2 × 10 -3 mol L -1, and the limit of detection was found to be 5.2 × 10 -6 mol L -1. The relative standard deviation was 2.6% for ten replicate measurements of 1.5 × 10 -4 mol L -1 of Phe. The method has merits of sensitivity, simplicity and low cost, and has been applied to the determination of Phe in artificial serum.

  13. Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy.

    Science.gov (United States)

    Toma, Mana; Tawa, Keiko

    2016-08-31

    Polydopamine (PDA) thin films are introduced to the surface modification of biosensor surfaces utilizing surface plasmon enhanced fluorescence spectroscopy (SPFS) as the linker layer of capture antibody on to the sensor surfaces. The capture antibody can be directly attached to the sensor surface without using any coupling agent by functionalizing the gold sensor surface with PDA thin films. The PDA coating is performed by a single-step preparation process by applying the dopamine solution on the sensor surface, which requires an extremely short incubation time (10 min). The real-time in situ measurement of the adsorption kinetics of the capture antibody onto the PDA-coated sensor surface is studied by surface plasmon resonance (SPR) spectroscopy. It reveals that the immobilization of capture antibody immediately occurs after introduction of a solution containing capture antibody, and the sensor surface is fully covered with the capture antibody. The sensitive detection of the cytokine marker interleukin-6 (IL-6) is performed by SPFS using a sandwich assay format with fluorescently labeled detection antibody. The sensor chips functionalized by PDA chemistry exhibited sensitive sensor responses with low nonspecific adsorption of the detection antibody onto the sensor surface. The detection limit of IL-6 with the developed SPFS biosensor is determined to be 2 pg/mL (100 fM), which is within the range of the diagnostic criteria. Our observation elucidates the remarkable utility of PDA coatings for chemical modification of the metallic sensor surfaces by a simple, brief, and inexpensive manner.

  14. Enhanced green fluorescent protein in optofluidic Fabry-Perot microcavity to detect laser induced temperature changes in a bacterial culture

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Walo, D.; Freire, R.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-09-01

    Thermal therapy using laser sources can be used in combination with other cancer therapies to eliminate tumors. However, high precision temperature control is required to avoid damage in healthy surrounding tissues. Therefore, in order to detect laser induced temperature changes, we have used the fluorescence signal of the enhanced Green Fluorescent Protein (eGFP) over-expressed in an E. coli bacterial culture. For that purpose, the bacteria expressing eGFP are injected in a Fabry-Perot (FP) optofluidic planar microcavity. In order to locally heat the bacterial culture, external infrared or ultraviolet lasers were used. Shifts in the wavelengths of the resonant FP modes are used to determine the temperature increase as a function of the heating laser pump power. Laser induced local temperature increments up to 6-7 °C were measured. These results show a relatively easy way to measure laser induced local temperature changes using a FP microcavity and using eGFP as a molecular probe instead of external nanoparticles, which could damage/alter the cell. Therefore, we believe that this approach can be of interest for the study of thermal effects in laser induced thermal therapies.

  15. Photosensized Controlling Benzyl Methacrylate-Based Matrix Enhanced Eu3+ Narrow-Band Emission for Fluorescence Applications

    Directory of Open Access Journals (Sweden)

    Mei-Hsiang Lin

    2012-03-01

    Full Text Available This study synthesized a europium (Eu3+ complex Eu(DBM3Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl-1-methyl-1H-imidazo[4,5-f][1,10]phenanthroline dispersed in a benzyl methacrylate (BMA monomer and treated with ultraviolet (UV light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu3+ energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π–π interactions between the ligands and the Eu3+-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA matrix. The underlying mechanism of the effective enhancement of the pure Eu3+ emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material.

  16. We All Stream for Video

    Science.gov (United States)

    Technology & Learning, 2008

    2008-01-01

    More than ever, teachers are using digital video to enhance their lessons. In fact, the number of schools using video streaming increased from 30 percent to 45 percent between 2004 and 2006, according to Market Data Retrieval. Why the popularity? For starters, video-streaming products are easy to use. They allow teachers to punctuate lessons with…

  17. The interaction mechanism and fluorescence enhancement in morin-Al 3+-sodium dodecyl benzene sulfonate-protein system

    Science.gov (United States)

    Wang, Fei; Yang, Jinghe; Wu, Xia; Sun, Changxia; Liu, Shufang; Guo, Changying; Jia, Zhen

    2005-06-01

    The positive net-like complex of morin and Al 3+ can be clamped in the negative sodium dodecyl benzene sulfonate (SDBS)-bovine serum albumin (BSA) premicelle-like cluster to form a large association, where BSA is unfolded to expose interior tryptophan residues. Morin obtains the energy from BSA and SDBS, plused the hydrophobic microenvironment provided by BSA and SDBS, to enhance its fluorescence. Here, SDBS not only changes microenvironment but also plays a role of energy donor. Al 3+ acts as a 'fixed bridge' to provide an efficient channel for the energy transfer between BSA or SDBS and morin. Based on it, a sensitive determination of the protein at ng/mL is established.

  18. Talking Video in 'Everyday Life'

    DEFF Research Database (Denmark)

    McIlvenny, Paul

    For better or worse, video technologies have made their way into many domains of social life, for example in the domain of therapeutics. Techniques such as Marte Meo, Video Interaction Guidance (ViG), Video-Enhanced Reflection on Communication, Video Home Training and Video intervention....../prevention (VIP) all promote the use of video as a therapeutic tool. This paper focuses on media therapeutics and the various in situ uses of video technologies in the mass media for therapeutic purposes. Reality TV parenting programmes such as Supernanny, Little Angels, The House of Tiny Tearaways, Honey, We......’re Killing the Kids, and Driving Mum and Dad Mad all use video as a prominent element of not only the audiovisual spectacle of reality television but also the interactional therapy, counselling, coaching and/or instruction intrinsic to these programmes. Thus, talk-on-video is used to intervene...

  19. Enhancement of allergic skin wheal responses in patients with atopic eczema/dermatitis syndrome by playing video games or by a frequently ringing mobile phone.

    Science.gov (United States)

    Kimata, H

    2003-06-01

    Playing video games causes physical and psychological stress, including increased heart rate and blood pressure and aggression-related feelings. Use of mobile phones is very popular in Japan, and frequent ringing is a common and intrusive part of Japanese life. Atopic eczema/dermatitis syndrome is often exacerbated by stress. Stress increases serum IgE levels, skews cytokine pattern towards Th2 type, enhances allergen-induced skin wheal responses, and triggers mast cell degranulation via substance P, vasoactive intestinal peptide and nerve growth factor. (1). In the video game study, normal subjects (n = 25), patients with allergic rhinitis (n = 25) or atopic eczema/dermatitis syndrome (n = 25) played a video game (STREET FIGHTER II) for 2 h. Before and after the study, allergen-induced wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factor, and in vitro production of total IgE, antihouse dust mite IgE and cytokines were measured. (2). In the mobile phone study, normal subjects (n = 27), patients with allergic rhinitis (n = 27) or atopic eczema/dermatitis syndrome (n = 27) were exposed to 30 incidences of ringing mobile phones during 30 min. Before and after the study, allergen-induced wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factor were measured. Playing video games had no effect on the normal subjects or the patients with allergic rhinitis. In contrast, playing video games significantly enhanced allergen-induced skin wheal responses and increased plasma levels of substance P, vasoactive intestinal peptide and nerve growth factors in the patients with atopic eczema/dermatitis syndrome. Moreover, playing video games enhanced in vitro production of total IgE and anti-house dust mite IgE with concomitant increased production of IL-4, IL-10 and IL-13 and decreased production of IFN-gamma and IL-12 in the patients with atopic eczema/dermatitis syndrome. However, exposure

  20. Metal-organic gel enhanced fluorescence anisotropy for sensitive detection of prostate specific antigen

    Science.gov (United States)

    Zhao, Ting Ting; Peng, Zhe Wei; Yuan, Dan; Zhen, Shu Jun; Huang, Cheng Zhi; Li, Yuan Fang

    2018-03-01

    In this contribution, we demonstrated that Cu-based metal-organic gel (Cu-MOG) was able to serve as a novel amplification platform for fluorescence anisotropy (FA) assay for the first time, which was confirmed by the sensitive detection of a common cancer biomarker, prostate specific antigen (PSA). The dye-labeled probe aptamer (PA) product was adsorbed onto the benzimidazole derivative-containing Cu-MOG via electrostatic incorporation and strong π-π stacking interactions, which significantly increased the FA value due to the enlargement of the molecular volume of the PA/Cu-MOG complex. With the introduction of target PSA, the FA value was obviously decreased on account of the specific recognition between PSA and PA which resulted in the detachment of PA from the surface of MOG. The linear range was from 0.5-8 ng/mL, with a detection limit of 0.33 ng/mL. Our work has thus helped to demonstrate promising application of MOG material in the fields of biomolecules analysis and disease diagnosis.

  1. Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing.

    Science.gov (United States)

    Lin, Xiaomei; Gao, Gongmin; Zheng, Liyan; Chi, Yuwu; Chen, Guonan

    2014-01-21

    Novel highly fluorescent (FL) metal-organic frameworks (MOFs) have been synthesized by encapsulating branched poly-(ethylenimine)-capped carbon quantum dots (BPEI-CQDs) with a high FL quantum yield into the zeolitic imidazolate framework materials (ZIF-8). The as-synthesized FL-functionalized MOFs not only maintain an excellent FL activity and sensing selectivity derived from BPEI-CQDs but also can strongly and selectively accumulate target analytes due to the adsorption property of MOFs. The selective accumulation effect of MOFs can greatly amplify the sensing signal and specificity of the nanosized FL probe. The obtained BPEI-CQDs/ZIF-8 composites have been used to develop an ultrasensitive and highly selective sensor for Cu(2+) ion, with a wide response range (2-1000 nM) and a very low detection limit (80 pM), and have been successfully applied in the detection of Cu(2+) ions in environmental water samples. It is envisioned that various MOFs incorporated with FL nanostructures with high FL quantum yields and excellent selectivity would be designed and synthesized in similar ways and could be applied in sensing target analytes.

  2. Enhanced fluorescence properties of type-I and type-II CdTe/CdS quantum dots using porous silver membrane

    Science.gov (United States)

    Thuy, Ung Thi Dieu; Chae, Weon-Sik; Yang, Won-Geun; Liem, Nguyen Quang

    2017-04-01

    This paper reports the metal-induced fluorescence property on the CdTe/CdS core/shell quantum dots (QDs), which exhibit the systematic band-gap transition from type-I to type-II with increasing shell thickness, near porous silver membrane by using time-resolved fluorescence lifetime imaging microscopy (FLIM). The results revealed that notable fluorescence enhancement came from the closed location to the cavity of the porous silver metal due to an increase in the local electromagnetic fields at the cavity. In the cases of the type-II CdTe/CdS QDs, interestingly, multiple exciton generation can be an additional factor for the lifetime reduction and fluorescence amplification compared to the type-I QDs. Without CdS shell, the strong interaction between the bare core CdTe QDs and silver caused emission quenching.

  3. Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography.

    Science.gov (United States)

    Bang, L T; Wu, H Y; Zhao, Y; Kim, E G; Kim, N

    2017-03-01

    Multilayer images of living cells are typically obtained using confocal or multiphoton microscopy. However, limitations on the distance between consecutive scan layers hinder high-resolution three-dimensional reconstruction, and scattering strongly degrades images of living cell components. Consequently, when overlapping information from different layers is focused on a specific point in the camera, this causes uncertainty in the depiction of the cell components. We propose a method that combines the Fresnel incoherent correlation holography and a depth-of-focus reduction algorithm to enhance the depth information of three-dimensional cell images. The proposed method eliminates overlap between light elements in the different layers inside living cells and limitations on the interlayer distance, and also enhances the contrast of the reconstructed holograms of living cells. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Enhancement effect of defect fluorescence of ZnSe quantum dots on a heterojuction of ZnSe quantum dots and gold nanoparticles

    Science.gov (United States)

    Bai, Zhongchen; Hao, Licai; Huang, Zhaoling; Qin, Shuijie; Zhang, Zhengping

    2017-12-01

    We studied an enhancement effect of defect fluorescence of ZnSe quantum dots (QDs) on a heterojunction of ZnSe QDs and gold nanoparticles. The photoluminescence (PL) of Au/ZnSe heterojunction is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the charge transfer of photon-generated carriers from ZnSe QDs, the enhanced PL effect is observed, which results from the increase of the built-in electric field to hinder the electron transfer to gold nanoparticles and is trapped by the defect states of ZnSe QDs. The broadening of defect fluorescence spectra and the reduction of excitonic fluorescence in multi-heterojunction of ZnSe QDs and gold nanoparticles are also observed which is attributed to an increase of their contact areas. We believe that enhanced defect fluorescence method described in this paper have potential applications in forming uniform optoelectronic heterojunction in controlling and boosting fluorescent efficiency of weak PL devices.

  5. Study on the fluorescent enhancement effect in terbium-gadolinium-protein-sodium dodecyl benzene sulfonate system and its application on sensitive detection of protein at nanogram level.

    Science.gov (United States)

    Sun, Changxia; Yang, Jinghe; Wu, Xia; Liu, Shufang; Su, Benyu

    2004-08-01

    The co-luminescence effect in a terbium-gadolinium-protein-sodium dodecyl benzene sulfonate (SDBS) system is reported here. Based on it, the sensitive quantitative analysis of protein at nanogram levels is established. The co-luminescence mechanism is studied using fluorescence, resonance light scattering (RLS), absorption spectroscopy and NMR measurement. It is considered that protein could be unfolded by SDBS, then a efficacious intramolecular fluorescent energy transfer occurs from unfolded protein to rare earth ions through SDBS acting as a "transfer bridge" to enhance the emission fluorescence of Tb3+ in this ternary complex of Tb-SDBS-BSA, where energy transfer from protein to SDBS by aromatic ring stacking is the most important step. Cooperating with the intramolecular energy transfer above is the intermolecular energy transfer between the simultaneous existing complexes of both Tb3+ and Gd3+. The fluorescence quantum yield is increased by an energy-insulating sheath, which is considered to be another reason for the resulting enhancement of the fluorescence. Förster theory is used to calculate the distribution of enhancing factors and has led to a greater understanding of the mechanisms of energy transfer.

  6. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm

    NARCIS (Netherlands)

    Li, D.D.U.; Arlt, J.; Tyndall, D.; Walker, R.; Richardson, J.; Stoppa, D.; Charbon, E.; Henderson, R.K.

    2011-01-01

    A high-speed and hardware-only algorithm using a center of mass method has been proposed for single-detector fluorescence lifetime sensing applications. This algorithm is now implemented on a field programmable gate array to provide fast lifetime estimates from a 32 × 32 low dark count 0.13 ?m

  7. A compilation of consumers' stories: the development of a video to enhance medication adherence in newly transplanted kidney recipients.

    Science.gov (United States)

    Low, Jac Kee; Crawford, Kimberley; Manias, Elizabeth; Williams, Allison

    2016-04-01

    To describe the design, development and evaluation of a consumer-centred video, which was underpinned by the Theory of Planned Behaviour and it was created to educate newly transplanted kidney recipients about the importance of medication adherence. Kidney transplantation is a treatment whereby medication adherence is critical to ensure long-term kidney graft success. To date, many interventions aimed to improve medication adherence in kidney transplantation have been conducted but consumers remain largely uninvolved in the interventional design. Qualitative sequential design. Twenty-two participants who had maintained their kidney transplant for at least 8 months and three participants who had experienced a kidney graft loss due to non-adherence were interviewed from March-May 2014 in Victoria, Australia. These interviews were independently reviewed by two researchers and were used to guide the design of the story plot and to identify storytellers for the video. The first draft of the video was evaluated by a panel of seven experts in the field, one independent educational expert and two consumers using Lynn's content validity questionnaire. The content of the video was regarded as highly relevant and comprehensive, which achieved a score of >3·7 out of a possible 4. The final 18-minute video comprised 15 sections. Topics included medication management, the factors affecting medication adherence and the absolute necessity of adherence to immunosuppressive medications for graft survival. This paper has demonstrated the feasibility of creating a consumer-driven video that supports medication adherence in an engaging way. © 2015 John Wiley & Sons Ltd.

  8. The Synthesis of Wavelength-Controlled CdTe/Hydroxyapatite Composites and Their Fluorescence Enhancement by Bovine Serum Albumin

    National Research Council Canada - National Science Library

    Jin, Li; Cao, Xueling; Zhong, Fangli; Zhang, Jianpo

    2016-01-01

    .... This thesis introduced how the fluorescence CdTe quantum dots/hydroxyapatite composites were synthesized and how their structure, morphology, and fluorescence property were characterized by using TEM...

  9. Video microblogging

    DEFF Research Database (Denmark)

    Bornoe, Nis; Barkhuus, Louise

    2010-01-01

    Microblogging is a recently popular phenomenon and with the increasing trend for video cameras to be built into mobile phones, a new type of microblogging has entered the arena of electronic communication: video microblogging. In this study we examine video microblogging, which is the broadcasting...... of short videos. A series of semi-structured interviews offers an understanding of why and how video microblogging is used and what the users post and broadcast....

  10. Enhancement of the Upconversion Emission by Visible-to-Near-Infrared Fluorescent Graphene Quantum Dots for miRNA Detection

    Science.gov (United States)

    2016-01-01

    We developed a sensor for the detection of specific microRNA (miRNA) sequences that was based on graphene quantum dots (GQDs) and ssDNA-UCNP@SiO2. The proposed sensor exploits the interaction between the sp2 carbon atoms of the GQD, mainly π–π stacking, and the DNA nucleobases anchored on the upconversion nanoparticles (UCNPs). This interaction brings the GQD to the surface of the ssDNA-UCNP@SiO2 system, enhancing the upconversion emission. On the other hand, hybridization of the single-stranded DNA (ssDNA) chains anchored on the nanoparticles with their complementary miRNA sequences blocks the capacity of the UCNPs to interact with the GQD through π–π stacking. That gives as result a reduction of the fluorescent enhancement, which is dependent on the concentration of miRNA sequences. This effect was used to create a sensor for miRNA sequences with a detection limit of 10 fM. PMID:27153453

  11. Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhengqing; Liu Shaopu; Yin Pengfei [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); He Youqiu, E-mail: heyq@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2012-10-01

    Graphical abstract: Glyphosate (Glyp) had been used to modify the surface of CdTe/CdS QDs, resulting in the enhancement of fluorescence intensity. The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu{sup 2+} based on the fluorescence quenching. Highlights: Black-Right-Pointing-Pointer Water soluble CdTe/CdS quantum dots capped with glyphosate were firstly synthesized. Black-Right-Pointing-Pointer The fluorescence of the Glyp-functionalized QDs was quenched by copper ion. Black-Right-Pointing-Pointer A new fluorescent sensor for copper ion was developed based on the prepared QDs. Black-Right-Pointing-Pointer The sensor exhibited high sensitivity and good selectivity for copper ion. - Abstract: A novel fluorescent probe for Cu{sup 2+} determination based on the fluorescence quenching of glyphosate (Glyp)-functionalized quantum dots (QDs) was firstly reported. Glyp had been used to modify the surface of QDs to form Glyp-functionalized QDs following the capping of thioglycolic acid on the core-shell CdTe/CdS QDs. Under the optimal conditions, the response was linearly proportional to the concentration of Cu{sup 2+} between 2.4 Multiplication-Sign 10{sup -2} {mu}g mL{sup -1} and 28 {mu}g mL{sup -1}, with a detection limit of 1.3 Multiplication-Sign 10{sup -3} {mu}g mL{sup -1} (3{delta}). The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu{sup 2+}. The fluorescent probe was successfully used for the determination of Cu{sup 2+} in environmental samples. The mechanism of reaction was also discussed.

  12. Live cell imaging based on surface plasmon-enhanced fluorescence microscopy using random nanostructures

    Science.gov (United States)

    Oh, Youngjin; Lee, Wonju; Son, Taehwang; Kim, Sook Young; Shin, Jeon-Soo; Kim, Donghyun

    2014-02-01

    Localized surface plasmon enhanced microscopy based on nanoislands of random spatial distribution was demonstrated for imaging live cells and molecular interactions. Nanoislands were produced without lithography by high temperature annealing under various processing conditions. The localization of near-field distribution that is associated with localized surface plasmon on metallic random nanoislands was analyzed theoretically and experimentally in comparison with periodic nanostructures. For experimental validation in live cell imaging, mouse macrophage-like cell line stained with Alexa Fluor 488 was prepared on nanoislands. The results suggest the possibility of attaining the imaging resolution on the order of 80 nm.

  13. Enhanced upconversion fluorescence of Er3+:ZrO2 nanocrystals induced by phase transformation

    Directory of Open Access Journals (Sweden)

    L. Liu

    2012-03-01

    Full Text Available In this letter, we demonstrate for the first time a growth of monoclinic phase ZrO2 nanocrytals based on a sol-gel method, compared to the ordinary sol-gel procedure, our method decreases the synthesized temperature from ∼1000 °C to ∼800 °C. In addition, it is found that Er3+ in monoclinic phase ZrO2 nanocrystals have greatly enhanced upconversion emissions under infrared LD excitation due to its lower environmental symmetry.

  14. Human parainfluenza virus type 3 (HPIV-3); Construction and rescue of an infectious, recombinant virus expressing the enhanced green fluorescent protein (EGFP).

    Science.gov (United States)

    The ability to rescue an infectious, recombinant, RNA virus from a cDNA clone, has led to new opportunities for measuring viral replication from a viral expressed reporter gene. In this protocol, the process of inserting enhanced green fluorescent protein (EGFP) gene into the human parainfluenza vi...

  15. Adopting Lightboard for a Chemistry Flipped Classroom to Improve Technology-Enhanced Videos for Better Learner Engagement

    Science.gov (United States)

    Fung, Fun Man

    2017-01-01

    Currently there are two primary methods of recording flipped classroom videos: (1) using the white board and (2) screencasting a PowerPoint presentation. Both methods have several disadvantages. In the former, the presenter's body obscures the content. Both methods lack an element of human interaction between the viewers and presenter and require…

  16. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    Science.gov (United States)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  17. Video demystified

    CERN Document Server

    Jack, Keith

    2004-01-01

    This international bestseller and essential reference is the "bible" for digital video engineers and programmers worldwide. This is by far the most informative analog and digital video reference available, includes the hottest new trends and cutting-edge developments in the field. Video Demystified, Fourth Edition is a "one stop" reference guide for the various digital video technologies. The fourth edition is completely updated with all new chapters on MPEG-4, H.264, SDTV/HDTV, ATSC/DVB, and Streaming Video (Video over DSL, Ethernet, etc.), as well as discussions of the latest standards throughout. The accompanying CD-ROM is updated to include a unique set of video test files in the newest formats. *This essential reference is the "bible" for digital video engineers and programmers worldwide *Contains all new chapters on MPEG-4, H.264, SDTV/HDTV, ATSC/DVB, and Streaming Video *Completely revised with all the latest and most up-to-date industry standards.

  18. Fabrication of Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites with enhanced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiqin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); College of Chemistry & Chemical Engineering, Baoji University of Arts & Sciences, Baoji, 721013 (China); Kang, Jianmiao [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); Yang, Jianhui, E-mail: jianhui@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); Wu, Biao, E-mail: wubiao@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China)

    2016-07-15

    Herein, Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites are synthesized through layer-by-layer assembly technology. Au{sub nanoparticle}@mSiO{sub 2} core–shell nanospheres were prepared at first in the presence of CTAB in aqueous solution system by the modified one-pot method. A chemical precipitation method and a succeeding calcination process were adopted to the growth of Y{sub 2}O{sub 3}:Eu shells on the surfaces of Au{sub nanoparticle}@mSiO{sub 2} core–shell nanospheres. The structure, morphology and composition of the nanocomposites were confirmed by XRD, TEM and UV–vis absorption spectrum. The prepared Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites have showed the emission intensity enhances to 6.23 times at 30 nm thickness of the silica spacer between the core of Au nanoparticle and the shell of Y{sub 2}O{sub 3}:Eu. According to the observations of fluorescent lifetime and the modeling of local electric field, the metal-enhanced and quenched fluorescence is closely related with the enhancement of excitation and radiative decay rate and the quenching by NRET comes as a result of competition between the distance-dependent mechanisms. This kind of multifunctional inorganic material will be widely used in electronics, biology and medical drug loading, etc. - Highlights: • Fabrication of Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites with core-spacer-shell structure. • The controllable fluorescence is achieved by adjusting the spacer thickness of silica. • The fluorescence enhancement is 6.23-fold at an optimal spacer thickness about 30 nm. • The metal-enhanced fluorescence mechanism is proposed.

  19. Fluorescence enhancement effect of Eu(III)-thenoyltrifluoroacetone-cetyltrimethyl ammonium bromide in water-dissolved organic matter extracted from wheat straw.

    Science.gov (United States)

    Huang, Fei; Meng, Fanhui; Fan, Mengdi; Zhao, Yanyan; Wu, Xia; Shen, Lin

    2015-01-01

    The fluorescence spectral characteristics of water-dissolved organic matter extracted from wheat straw (DOM-WS) were studied using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy. The results indicated that 3D-EEM spectra of DOM-WS showed four different fluorophores: humic-like, visible fulvic-like, UV fulvic-like and protein-like substances. It is interesting that DOM-WS can obviously enhance the fluorescence intensity of Eu(III)-thenoyltrifluoroacetone-cetyltrimethyl ammonium bromide system. On the basis of this study, a new fluorescence method for the determination of trace amounts of Eu(III) was developed. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of Eu(III) in the range of 8.0×10(-8)-8.0×10(-7)mol/L. The detection limit (S/N=3) was 1.1×10(-9)mol/L. This method was applied to the analysis of Eu(III) concentration in standard sample and obtained satisfactory results. It may be a new way to use wheat straw effectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. "Turn on" and label-free core-shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+

    Science.gov (United States)

    Pang, Yuanfeng; Rong, Zhen; Xiao, Rui; Wang, Shengqi

    2015-03-01

    A turn on and label-free fluorescent apasensor for Hg2+ with high sensitivity and selectivity has been demonstrated in this report. Firstly, core-shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg2+ was added to the aptamer-Ag@SiO2 NPs and TO mixture buffer solution, the aptamer strand can bind Hg2+ to form T-Hg2+-T complex with a hairpin structure which TO can insert into. When clamped by the nucleic acid bases, the fluorescence quanta yield of TO will be increased under laser excitation and emitted a fluorescence emission. Furthermore, the fluorescence emission can be amplified largely by the MEF effect of the Ag@SiO2 NPs. The whole experiment can be finished within 30 min and the limit of detection is 0.33 nM even with interference by high concentrations of other metal ions. Finally, the sensor was applied for detecting Hg2+ in different real water samples with satisfying recoveries over 94%.

  1. "Turn on" and label-free core-shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg(2+).

    Science.gov (United States)

    Pang, Yuanfeng; Rong, Zhen; Xiao, Rui; Wang, Shengqi

    2015-03-30

    A turn on and label-free fluorescent apasensor for Hg(2+) with high sensitivity and selectivity has been demonstrated in this report. Firstly, core-shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg(2+) was added to the aptamer-Ag@SiO2 NPs and TO mixture buffer solution, the aptamer strand can bind Hg(2+) to form T-Hg(2+)-T complex with a hairpin structure which TO can insert into. When clamped by the nucleic acid bases, the fluorescence quanta yield of TO will be increased under laser excitation and emitted a fluorescence emission. Furthermore, the fluorescence emission can be amplified largely by the MEF effect of the Ag@SiO2 NPs. The whole experiment can be finished within 30 min and the limit of detection is 0.33 nM even with interference by high concentrations of other metal ions. Finally, the sensor was applied for detecting Hg(2+) in different real water samples with satisfying recoveries over 94%.

  2. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs.

    Science.gov (United States)

    Zhang, Zhen; Xia, Shumin; Kanchanawong, Pakorn

    2017-05-22

    The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This

  3. Social video content delivery

    CERN Document Server

    Wang, Zhi; Zhu, Wenwu

    2016-01-01

    This brief presents new architecture and strategies for distribution of social video content. A primary framework for socially-aware video delivery and a thorough overview of the possible approaches is provided. The book identifies the unique characteristics of socially-aware video access and social content propagation, revealing the design and integration of individual modules that are aimed at enhancing user experience in the social network context. The change in video content generation, propagation, and consumption for online social networks, has significantly challenged the traditional video delivery paradigm. Given the massive amount of user-generated content shared in online social networks, users are now engaged as active participants in the social ecosystem rather than as passive receivers of media content. This revolution is being driven further by the deep penetration of 3G/4G wireless networks and smart mobile devices that are seamlessly integrated with online social networking and media-sharing s...

  4. Fluorescence enhancement and nonreciprocal transmission of light waves by nanomaterial interfaces

    Science.gov (United States)

    Nyman, M.; Shevchenko, A.; Kaivola, M.

    2017-11-01

    In an optically absorbing or amplifying linear medium, the energy flow density of interfering optical waves is in general periodically modulated in space. This makes the wave transmission through a material boundary, as described by the Fresnel transmission coefficients, nonreciprocal and apparently violating the energy conservation law. The modulation has been previously described in connection to ordinary homogeneous nonmagnetic materials. In this work, we extend the description to nanomaterials with designed structural units that can be magnetic at optical frequencies. We find that in such a "metamaterial" the modulation in energy flow can be used to enhance optical far-field emission in spite of the fact that the material is highly absorbing. We also demonstrate a nanomaterial design that absorbs light, but simultaneously eliminates the power flow modulation and returns the reciprocity, which is impossible to achieve with a nonmagnetic material. We anticipate that these unusual optical effects can be used to increase the efficiency of nanostructured light emitters and absorbers, such as light-emitting diodes and solar cells.

  5. Interactive video tutorials for enhancing problem solving, reasoning, and meta-cognitive skills of introductory physics students

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    We discuss the development of interactive video tutorial-based problems to help introductory physics students learn effective problem solving heuristics. The video tutorials present problem solving strategies using concrete examples in an interactive environment. They force students to follow a systematic approach to problem solving and students are required to solve sub-problems (research-guided multiple choice questions) to show their level of understanding at every stage of prob lem solving. The tutorials are designed to provide scaffolding support at every stage of problem solving as needed and help students view the problem solving process as an opportunity for knowledge and skill acquisition rather than a "plug and chug" chore. A focus on helping students learn first to analyse a problem qualitatively, and then to plan a solution in terms of the relevant physics principles, can be useful for developing their reasoning skills. The reflection stage of problem solving can help students develop meta-cogniti...

  6. Brain training with non-action video games enhances aspects of cognition in older adults : a randomized controlled trial

    OpenAIRE

    Ballesteros, Soledad; Prieto, Antonio; Mayes, Julia; Toril, Pilar; Pita, Carmen; Ponce de León, Laura; Reales, José; Waterworth, John

    2014-01-01

    Age-related cognitive and brain declines can result in functional deterioration in many cognitive domains, dependency, and dementia. A major goal of aging research is to investigate methods that help to maintain brain health, cognition, independent living and wellbeing in older adults. This randomized controlled study investigated the effects of 20 1-h non-action video game training sessions with games selected from a commercially available package (Lumosity) on a series of age-declined cogni...

  7. Integrating customised video clips into The veterinary nursing curriculum to enhance practical competency training and the development of student confidence

    OpenAIRE

    Dunne, Karen; Brereton, Bernadette; Bree, Ronan; Dallat, John

    2015-01-01

    Competency training is a critical aspect of veterinary nursing education, as graduates must complete a practical competency assessment prior to registration as a veterinary nurse. Despite this absolute requirement for practical training across a range of domestic animal species, there is a lack of published literature on optimal teaching approaches. The aim of this project was to assess the value of customised video clips in the practical skills training of veterinary nursing students. The ef...

  8. Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial

    OpenAIRE

    Soledad eBallesteros; Antonio ePrieto; Julia eMayas; Pilar eToril; Carmen ePita; Laura ePonce de León; José Manuel Reales; John eWaterworth

    2014-01-01

    Age-related cognitive and brain declines can result in functional deterioration in many cognitive domains, dependency, and dementia. A major goal of aging research is to investigate methods that help to maintain brain health, cognition, independent living and wellbeing in older adults. This randomized controlled study investigated the effects of 20 1-hr non-action video game training sessions with games selected from a commercially available package (Lumosity) on a series of age-declined cogn...

  9. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    Science.gov (United States)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  10. Pyrene Scaffold as Real-Time Fluorescent Turn-on Chemosensor for Selective Detection of Trace-Level Al(III) and Its Aggregation-Induced Emission Enhancement.

    Science.gov (United States)

    Shyamal, Milan; Mazumdar, Prativa; Maity, Samir; Sahoo, Gobinda P; Salgado-Morán, Guillermo; Misra, Ajay

    2016-01-21

    A pyrene based fluorescent probe, 3-methoxy-2-((pyren-2yl-imino)methyl)phenol (HL), was synthesized via simple one-pot reaction from inexpensive reagents. It exhibited high sensitivity and selectivity toward Al(3+) over other relevant metal ions and also displayed novel aggregation-induced emission enhancement (AIEE) characteristics in its aggregate/solid state. When bound with Al(3+) in 1:1 mode, a significant fluorescence enhancement with a turn-on ratio of over ∼200-fold was triggered via chelation-enhanced fluorescence through sensor complex (Al-L) formation, and amusingly excess addition of Al(3+), dramatic enhancement of fluorescence intensity over manifold through aggregate formation was observed. The 1:1 stoichiometry of the sensor complex (Al-L) was calculated from Job's plot based on UV-vis absorption titration. In addition, the binding site of sensor complex (Al-L) was well-established from the (1)H NMR titrations and also supported by the fluorescence reversibility by adding Al(3+) and EDTA sequentially. Intriguingly, the AIEE properties of HL may improve its impact and studied in CH3CN-H2O mixtures at high water content. To gain insight into the AIEE mechanism of the HL, the size and growth process of particles in different volume percentage of water and acetonitrile mixture were studied using time-resolved photoluminescence, dynamic light scattering, optical microscope, and scanning electron microscope. The molecules of HL are aggregated into ordered one-dimensional rod-shaped microcrystals that show obvious optical waveguide effect.

  11. Ultra-fast and sensitive detection of non-typhoidal Salmonella using microwave-accelerated metal-enhanced fluorescence ("MAMEF".

    Directory of Open Access Journals (Sweden)

    Sharon M Tennant

    Full Text Available Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc. in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF. We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1:1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids.

  12. Ultra-fast and sensitive detection of non-typhoidal Salmonella using microwave-accelerated metal-enhanced fluorescence ("MAMEF").

    Science.gov (United States)

    Tennant, Sharon M; Zhang, Yongxia; Galen, James E; Geddes, Chris D; Levine, Myron M

    2011-04-08

    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1:1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids).

  13. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Science.gov (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-07

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  14. Comparing the Ability of Enhanced Sampling Molecular Dynamics Methods To Reproduce the Behavior of Fluorescent Labels on Proteins.

    Science.gov (United States)

    Walczewska-Szewc, Katarzyna; Deplazes, Evelyne; Corry, Ben

    2015-07-14

    Adequately sampling the large number of conformations accessible to proteins and other macromolecules is one of the central challenges in molecular dynamics (MD) simulations; this activity can be difficult, even for relatively simple systems. An example where this problem arises is in the simulation of dye-labeled proteins, which are now being widely used in the design and interpretation of Förster resonance energy transfer (FRET) experiments. In this study, MD simulations are used to characterize the motion of two commonly used FRET dyes attached to an immobilized chain of polyproline. Even in this simple system, the dyes exhibit complex behavior that is a mixture of fast and slow motions. Consequently, very long MD simulations are required to sufficiently sample the entire range of dye motion. Here, we compare the ability of enhanced sampling methods to reproduce the behavior of fluorescent labels on proteins. In particular, we compared Accelerated Molecular Dynamics (AMD), metadynamics, Replica Exchange Molecular Dynamics (REMD), and High Temperature Molecular Dynamics (HTMD) to equilibrium MD simulations. We find that, in our system, all of these methods improve the sampling of the dye motion, but the most significant improvement is achieved using REMD.

  15. Video Editing System

    Science.gov (United States)

    Schlecht, Leslie E.; Kutler, Paul (Technical Monitor)

    1998-01-01

    This is a proposal for a general use system based, on the SGI IRIS workstation platform, for recording computer animation to videotape. In addition, this system would provide features for simple editing and enhancement. Described here are a list of requirements for the system, and a proposed configuration including the SGI VideoLab Integrator, VideoMedia VLAN animation controller and the Pioneer rewritable laserdisc recorder.

  16. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  17. Analysis of tryptophan at nmoll(-1) level based on the fluorescence enhancement of terbium-gadolinium-tryptophan-sodium dodecyl benzene sulfonate system.

    Science.gov (United States)

    Liu, Shufang; Yang, Jinghe; Wu, Xia; Su, Benyu; Sun, Changxia; Wang, Feng

    2004-10-08

    It is found that Tb(3+) can react with tryptophan (Trp) and sodium dodecyl benzene sulfonate (SDBS), and emits the intrinsic fluoresence of Tb(3+). The fluorescence intensity can be enhanced by La(3+), Gd(3+), Lu(3+), Sc(3+) and Y(3+), among which Gd(3+) has the greatest enhancement. This is a new co-luminescence system. The studies indicate that in the Tb-Gd-Trp-SDBS system, there is both Tb-Trp-SDBS and Gd-Trp-SDBS complexes, and they aggregate together and form a large congeries. The fluorescence enhancement of the Tb-Gd-Trp-SDBS system is considered to originate from intramolecular and intermolecular energy transfers, and the energy-insulating sheath effect of Gd-Trp-SDBS complex. Under the optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of Trp in the range from 4x10(-8) to 4x10(-5)moll(-1). The detection limit is 10(-9)moll(-1). The proposed method is one of the most sensitive fluoremetries of Trp.

  18. A functional chimaeric S-layer-enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells.

    Science.gov (United States)

    Ilk, Nicola; Küpcü, Seta; Moncayo, Gerald; Klimt, Sigrid; Ecker, Rupert C; Hofer-Warbinek, Renate; Egelseer, Eva M; Sleytr, Uwe B; Sára, Margit

    2004-04-15

    The chimaeric gene encoding a C-terminally truncated form of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 and the EGFP (enhanced green fluorescent protein) was ligated into plasmid pET28a and cloned and expressed in Escherichia coli. Just 1 h after induction of expression an intense EGFP fluorescence was detected in the cytoplasm of the host cells. Expression at 28 degrees C instead of 37 degrees C resulted in clearly increased fluorescence intensity, indicating that the folding process of the EGFP moiety was temperature sensitive. To maintain the EGFP fluorescence, isolation of the fusion protein from the host cells had to be performed in the presence of reducing agents. SDS/PAGE analysis, immunoblotting and N-terminal sequencing of the isolated and purified fusion protein confirmed the presence of both the S-layer protein and the EGFP moiety. The fusion protein had maintained the ability to self-assemble in suspension and to recrystallize on peptidoglycan-containing sacculi or on positively charged liposomes, as well as to fluoresce. Comparison of fluorescence excitation and emission spectra of recombinant EGFP and rSbpA(31-1068)/EGFP revealed identical maxima at 488 and 507 nm respectively. The uptake of liposomes coated with a fluorescent monomolecular protein lattice of rSbpA(31-1068)/EGFP into HeLa cells was studied by confocal laser-scanning microscopy. The major part of the liposomes was internalized within 2 h of incubation and entered the HeLa cells by endocytosis.

  19. Micellar Enhanced Three-Dimensional Excitation-Emission Matrix Fluorescence for Rapid Determination of Antihypertensives in Human Plasma with Aid of Second-Order Calibration Methods

    Directory of Open Access Journals (Sweden)

    Hai-Yan Fu

    2015-01-01

    Full Text Available A highly sensitive three-dimensional excitation-emission fluorescence method was proposed to determine antihypertensives including valsartan and amlodipine besylate in human plasma with the aid of second-order calibration methods based on parallel factor analysis (PARAFAC and alternating trilinear decomposition (ATLD algorithms. Antihypertensives with weak fluorescent can be transformed into a strong fluorescent property by changing microenvironment in samples using micellar enhanced surfactant. Both the adopted algorithms with second-order advantage can improve the resolution and directly attain antihypertensives concentration even in the presence of potential strong intrinsic fluorescence from human plasma. The satisfactory results can be achieved for valsartan and amlodipine besylate in complicated human plasma. Furthermore, some statistical parameters and figures of merit were evaluated to investigate the performance of the proposed method, and the accuracy and precision of the proposed method were also validated by the elliptical joint confidence region (EJCR test and repeatability analysis of intraday and interday assay. The proposed method could not only light a new avenue to directly determine valsartan or amlodipine besylate in human plasma, but also hold great potential to be extended as a promising alternative for more practical applications in the determination of weak fluorescent drugs.

  20. Fluorescence enhancement of glutathione capped CdTe/ZnS quantum dots by embedding into cationic starch for sensitive detection of rifampicin

    Science.gov (United States)

    Hooshyar, Zari; Bardajee, Ghasem Rezanejade

    2017-02-01

    In this study, we describe the synthesis of a new quantum dots (QDs) by embedding glutathione capped CdTe/ZnS QDs into cationic starch biopolymer (CS-GSH-CdTe/ZnS QDs). The fluorescence intensity of prepared QDs was significantly enhanced. When QDs interacted with rifampicin, the fluorescence intensity of the CS-GSH-CdTe/ZnS QDs was highly quenched compared with GSH-CdTe/ZnS QDs. Based on the above, a new fluorescent nanosensor for simple, sensitive and selective detection of rifampicin was developed. The fluorescence quenching was well described by the typical Stern-Volmer equation. After optimization, the linear range of the as-prepared QDs fluorescence intensity versus the concentration of rifampicin was F0/F = 0.0422Q + 1.109 (R2 = 0.99). The detection limit was 0.06 × 10- 6 mol/L. The proposed method with satisfactory results was used to detect rifampicin in commercial capsules and tablets.

  1. Formation of an heterochiral supramolecular cage by diastereomer self-discrimination: fluorescence enhancement and C60 sensing.

    Science.gov (United States)

    Arribas, Carlos Solano; Wendt, Ola F; Sundin, Anders P; Carling, Carl-Johan; Wang, Ruiyao; Lemieux, Robert P; Wärnmark, Kenneth

    2010-06-28

    Diastereomer discrimination was observed in the formation of a metallomacrocycle from a racemic ligand based on Tröger's base. The metallomacrocycle exhibited a dramatic increase in fluorescence intensity compared to the ligand and its fluorescence was efficiently quenched by C(60).

  2. Selective enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically grown plants with a nitrogen stabilizer.

    Science.gov (United States)

    Pagliaccia, D; Merhaut, D; Colao, M C; Ruzzi, M; Saccardo, F; Stanghellini, M E

    2008-10-01

    Fluorescent pseudomonads have been associated, via diverse mechanisms, with suppression of root disease caused by numerous fungal and fungal-like pathogens. However, inconsistent performance in disease abatement, after their employment, has been a problem. This has been attributed, in part, to the inability of the biocontrol bacterium to maintain a critical threshold population necessary for sustained biocontrol activity. Our results indicate that a nitrogen stabilizer (N-Serve, Dow Agrosciences) selectively and significantly enhanced, by two to three orders of magnitude, the resident population of fluorescent pseudomonads in the amended (i.e., 25 microg ml(-1) nitrapyrin, the active ingredient) and recycled nutrient solution used in the cultivation of hydroponically grown gerbera and pepper plants. Pseudomonas putida was confirmed as the predominant bacterium selectively enhanced. Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rDNA suggested that N-Serve selectively increased P. putida and reduced bacterial diversity 72 h after application. In vitro tests revealed that the observed population increases of fluorescent pseudomonads were preceded by an early growth suppression of indigenous aerobic heterotrophic bacteria (AHB) population. Interestingly, the fluorescent pseudomonad population did not undergo this decrease, as shown in competition assays. Xylene and 1,2,4-trimethylbenzene (i.e., the inert ingredients in N-Serve) were responsible for a significant percentage of the fluorescent pseudomonad population increase. Furthermore, those increases were significantly higher when the active ingredient (i.e., nitrapyrin) and the inert ingredients were combined, which suggests a synergistic response. P. putida strains were screened for the ability to produce antifungal compounds and for the antifungal activity against Pythium aphanidermatum and Phytophthora capsici. The results of this study suggest the presence of diverse mechanisms with

  3. Digital video.

    Science.gov (United States)

    Johnson, Don; Johnson, Mike

    2004-04-01

    The process of digital capture, editing, and archiving video has become an important aspect of documenting arthroscopic surgery. Recording the arthroscopic findings before and after surgery is an essential part of the patient's medical record. The hardware and software has become more reasonable to purchase, but the learning curve to master the software is steep. Digital video is captured at the time of arthroscopy to a hard disk, and written to a CD at the end of the operative procedure. The process of obtaining video of open procedures is more complex. Outside video of the procedure is recorded on digital tape with a digital video camera. The camera must be plugged into a computer to capture the video on the hard disk. Adobe Premiere software is used to edit the video and render the finished video to the hard drive. This finished video is burned onto a CD. We outline the choice of computer hardware and software for the manipulation of digital video. The techniques of backup and archiving the completed projects and files also are outlined. The uses of digital video for education and the formats that can be used in PowerPoint presentations are discussed.

  4. Recommendations to enhance constructivist-based learning in Interprofessional Education using video-based self-assessment

    Directory of Open Access Journals (Sweden)

    Dahmen, Uta

    2016-04-01

    Full Text Available Introduction: Interprofessional collaboration is crucial to the optimization of patient care.Aim: This paper aims to provide recommendations for implementing an innovative constructivist educational concept with the core element of video-based self-assessment.Methodology: A course for students in medicine, physiotherapy, and nursing was developed through interprofessional, cross-institutional collaboration. The course consisted of We evaluated the preparation and implementation of the three courses conducted thus far. Concrete recommendations for implementation were made based on evaluation sheets (students, open discussions (tutors, instructors, institutions and recorded meeting minutes (project managers, project participants.Results: Basic recommendations for implementation include: selecting appropriate criteria for self-assessment and a simulated situation that offers members of each professional group an equal opportunity to act in the role play. In terms of administrative implementation we recommend early coordination among the professions and educational institutions regarding the target groups, scheduling and attendance policy to ensure participant recruitment across all professions. Procedural planning should include developing teaching materials, such as the case vignette and treatment scenario, and providing technical equipment that can be operated intuitively in order to ensure efficient recording.Conclusion: These recommendations serve as an aid for implementing an innovative constructivist educational concept with video-based self-assessment at its core.

  5. Recommendations to enhance constructivist-based learning in Interprofessional Education using video-based self-assessment.

    Science.gov (United States)

    Dahmen, Uta; Schulze, Christine; Schindler, Claudia; Wick, Katharina; Schwartze, Dominique; Veit, Andrea; Smolenski, Ulrich

    2016-01-01

    Interprofessional collaboration is crucial to the optimization of patient care. This paper aims to provide recommendations for implementing an innovative constructivist educational concept with the core element of video-based self-assessment. A course for students in medicine, physiotherapy, and nursing was developed through interprofessional, cross-institutional collaboration. The course consisted of drawing on prior knowledge about the work done by each professional group in regard to a specific clinical scenario and an interprofessional treatment situation, filming a role play of this treatment situation, and a structured self-assessment of the role play. We evaluated the preparation and implementation of the three courses conducted thus far. Concrete recommendations for implementation were made based on evaluation sheets (students), open discussions (tutors, instructors, institutions) and recorded meeting minutes (project managers, project participants). Basic recommendations for implementation include: selecting appropriate criteria for self-assessment and a simulated situation that offers members of each professional group an equal opportunity to act in the role play. In terms of administrative implementation we recommend early coordination among the professions and educational institutions regarding the target groups, scheduling and attendance policy to ensure participant recruitment across all professions. Procedural planning should include developing teaching materials, such as the case vignette and treatment scenario, and providing technical equipment that can be operated intuitively in order to ensure efficient recording. These recommendations serve as an aid for implementing an innovative constructivist educational concept with video-based self-assessment at its core.

  6. Enhancing student interactions with the instructor and content using pen-based technology, YouTube videos, and virtual conferencing.

    Science.gov (United States)

    Cox, James R

    2011-01-01

    This report describes the incorporation of digital learning elements in organic chemistry and biochemistry courses. The first example is the use of pen-based technology and a large-format PowerPoint slide to construct a map that integrates various metabolic pathways and control points. Students can use this map to visualize the integrated nature of metabolism and how various hormones impact metabolic regulation. The second example is the embedding of health-related YouTube videos directly into PowerPoint presentations. These videos become a part of the course notes and can be viewed within PowerPoint as long as students are online. The third example is the use of a webcam to show physical models during online sessions using web-conferencing software. Various molecular conformations can be shown through the webcam, and snapshots of important conformations can be incorporated into the notes for further discussion and annotation. Each of the digital learning elements discussed in this report is an attempt to use technology to improve the quality of educational resources available outside of the classroom to foster student engagement with ideas and concepts. Biochemistry and Molecular Biology Education Vol. 39, No. 1, pp. 4-9, 2011. Copyright © 2011 Wiley Periodicals, Inc.

  7. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Foerster distance of Bioluminescence resonance energy transfer (BRET)

    Energy Technology Data Exchange (ETDEWEB)

    Dacres, Helen, E-mail: helen.dacres@csiro.au [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia); Michie, Michelle; Wang, Jian [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia); Pfleger, Kevin D.G. [Laboratory for Molecular Endocrinology-GPCRs, Western Australian Institute for Medical Research (WAIMR) and Centre for Medical Research, The University of Western Australia, Perth (Australia); Trowell, Stephen C. [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer First experimental determination of Foerster distance (R{sub 0}) for enhanced BRET systems. Black-Right-Pointing-Pointer Effect of brighter BRET components RLuc2, RLuc8 and Venus was assessed. Black-Right-Pointing-Pointer Using brighter BRET components substantially increased (25%) R{sub 0} of the BRET{sup 1} system. Black-Right-Pointing-Pointer Using brighter BRET components marginally increased (2-9%) R{sub 0} of the BRET{sup 2} system. Black-Right-Pointing-Pointer Brighter BRET components improve the different weaknesses of BRET{sup 1} and BRET{sup 2} systems. -- Abstract: Bioluminescence resonance energy transfer (BRET) is an important tool for monitoring macromolecular interactions and is useful as a transduction technique for biosensor development. Foerster distance (R{sub 0}), the intermolecular separation characterized by 50% of the maximum possible energy transfer, is a critical BRET parameter. R{sub 0} provides a means of linking measured changes in BRET ratio to a physical dimension scale and allows estimation of the range of distances that can be measured by any donor-acceptor pair. The sensitivity of BRET assays has recently been improved by introduction of new BRET components, RLuc2, RLuc8 and Venus with improved quantum yields, stability and brightness. We determined R{sub 0} for BRET{sup 1} systems incorporating novel RLuc variants RLuc2 or RLuc8, in combination with Venus, as 5.68 or 5.55 nm respectively. These values were approximately 25% higher than the R{sub 0} of the original BRET{sup 1} system. R{sub 0} for BRET{sup 2} systems combining green fluorescent proteins (GFP{sup 2}) with RLuc2 or RLuc8 variants was 7.67 or 8.15 nm, i.e. only 2-9% greater than the original BRET{sup 2} system despite being {approx}30-fold brighter.

  8. Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

    OpenAIRE

    Tennant, Sharon M.; Zhang, Yongxia; Galen, James E.; Geddes, Chris D.; Levine, Myron M.

    2011-01-01

    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adap...

  9. Blind Evaluation of the Microwave-Accelerated Metal-Enhanced Fluorescence Ultrarapid and Sensitive Chlamydia trachomatis Test by Use of Clinical Samples

    OpenAIRE

    Melendez, Johan H.; Huppert, Jill S.; Jett-Goheen, Mary; Hesse, Elizabeth A; Quinn, Nicole; Charlotte A. Gaydos; Geddes, Chris D.

    2013-01-01

    Accurate point-of-care (POC) diagnostic tests for Chlamydia trachomatis infection are urgently needed for the rapid treatment of patients. In a blind comparative study, we evaluated microwave-accelerated metal-enhanced fluorescence (MAMEF) assays for ultrafast and sensitive detection of C. trachomatis DNA from vaginal swabs. The results of two distinct MAMEF assays were compared to those of nucleic acid amplification tests (NAATs). The first assay targeted the C. trachomatis 16S rRNA gene, an...

  10. Immersive video

    Science.gov (United States)

    Moezzi, Saied; Katkere, Arun L.; Jain, Ramesh C.

    1996-03-01

    Interactive video and television viewers should have the power to control their viewing position. To make this a reality, we introduce the concept of Immersive Video, which employs computer vision and computer graphics technologies to provide remote users a sense of complete immersion when viewing an event. Immersive Video uses multiple videos of an event, captured from different perspectives, to generate a full 3D digital video of that event. That is accomplished by assimilating important information from each video stream into a comprehensive, dynamic, 3D model of the environment. Using this 3D digital video, interactive viewers can then move around the remote environment and observe the events taking place from any desired perspective. Our Immersive Video System currently provides interactive viewing and `walkthrus' of staged karate demonstrations, basketball games, dance performances, and typical campus scenes. In its full realization, Immersive Video will be a paradigm shift in visual communication which will revolutionize television and video media, and become an integral part of future telepresence and virtual reality systems.

  11. Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles.

    Science.gov (United States)

    Kenesei, Kata; Murali, Kumarasamy; Czéh, Árpád; Piella, Jordi; Puntes, Victor; Madarász, Emília

    2016-07-07

    Precisely targeted nanoparticle delivery is critically important for therapeutic applications. However, our knowledge on how the distinct physical and chemical properties of nanoparticles determine tissue penetration through physiological barriers, accumulation in specific cells and tissues, and clearance from selected organs has remained rather limited. In the recent study, spectral imaging fluorescence microscopy was exploited for precise and rapid monitoring of tissue- and cell-type-specific distribution of fluorescent polystyrene nanoparticles with chemically distinct surface compositions. Fluorescent polystyrene nanoparticles with 50-90 nm diameter and with carboxylated- or polyethylene glycol-modified (PEGylated) surfaces were delivered into adult male and pregnant female mice with a single intravenous injection. The precise anatomical distribution of the particles was investigated by confocal microscopy after a short-term (5 min) or long-term (4 days) distribution period. In order to distinguish particle-fluorescence from tissue autofluorescence and to enhance the detection-efficiency, fluorescence spectral detection was applied during image acquisition and a post hoc full spectrum analysis was performed on the final images. Spectral imaging fluorescence microscopy allowed distinguishing particle-fluorescence from tissue-fluorescence in all examined organs (brain, kidney, liver, spleen and placenta) in NP-treated slice preparations. In short-time distribution following in vivo NP-administration, all organs contained carboxylated-nanoparticles, while PEGylated-nanoparticles were not detected in the brain and the placenta. Importantly, nanoparticles were not found in any embryonic tissues or in the barrier-protected brain parenchyma. Four days after the administration, particles were completely cleared from both the brain and the placenta, while PEGylated-, but not carboxylated-nanoparticles, were stuck in the kidney glomerular interstitium. In the spleen

  12. Student Views on the Use of 2 Styles of Video-Enhanced Feedback Compared to Standard Lecture Feedback During Clinical Skills Training.

    Science.gov (United States)

    Nesbitt, Craig; Phillips, Alex W; Searle, Roger; Stansby, Gerard

    2015-01-01

    Feedback plays an important role in the learning process. However, often this may be delivered in an unstructured fashion that can detract from its potential benefit. Further, students may have different preferences in how feedback should be delivered, which may be influenced by which method they feel will lead to the most effective learning. The aim of this study was to evaluate student views on 3 different modes of feedback particularly in relation to the benefit each conferred. Undergraduate medical students participating in a surgical suturing study were asked to give feedback using a semi-structured questionnaire. Discrete questions using a Likert scale and open responses were solicited. Students received either standard lecture feedback (SLF), individualized video feedback (IVF), or enhanced unsupervised video feedback (UVF). Students had a strong preference for IVF over UVF or SLF. These responses correlated with their perception of how much each type of feedback improved their performance. However, there was no statistical difference in suturing skill improvement between IVF and UVF, which were both significantly better than SLF. Students have a strong preference for IVF. This relates to a perception that this will lead to the greatest level of skill improvement. However, an equal effect in improvement can be achieved by using less resource-demanding UVF. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  13. Enhanced photoluminescence of Co{sup 2+} ions in ZnCoO/ZnMgO multiple quantum wells and the fluorescence energy transfer mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ashfaq, J.M.; Hu, B.C.; Zhou, N.; Li, X.L.; Ma, C.Y.; Zhang, Q.Y., E-mail: qyzhang@dlut.edu.cn

    2015-02-15

    Using a pulsed laser deposition system, ZnCoO/ZnMgO multiple quantum well (MQW) samples were grown on c-plane sapphire substrate with a ∼20 nm thick ZnO buffer layer. Compared with monolayer ZnCoO film, the MQW samples exhibited obviously enhanced Co{sup 2+} photoluminescence (PL) at ∼1.80 eV and multiple-phonon resonant Raman scattering (RRS). The enhancement in multiple-phonon RRS was due to the introduction of ZnMgO barrier layer. The enhanced Co{sup 2+} PL was assigned to the quantum confinement effect (QCE) of MQW samples. However, QCE was found not helpful to prevent the band-gap PL quenching. Co{sup 2+} 3d electronic states were proved to be highly localized and a mechanism of fluorescence resonance energy transfer (FRET) between ZnO excitons and the localized Co{sup 2+} 3d states was proposed. - Highlights: • Enhanced Co{sup 2+} PL and multiple-phonon RRS have been observed in ZnCoO/ZnMgO MQW samples. • Quantum confinement effect and ZnMgO barrier layers are responsible for the enhancement of Co{sup 2+} PL and multiple-phonon RRS, respectively. • Band-gap PL quenching is suggested to be due to the fluorescence resonance energy transfer from the excitons to the localized Co{sup 2+} 3d states.

  14. Video games

    OpenAIRE

    Kolář, Vojtěch

    2012-01-01

    This thesis is based on a detailed analysis of various topics related to the question of whether video games can be art. In the first place it analyzes the current academic discussion on this subject and confronts different opinions of both supporters and objectors of the idea, that video games can be a full-fledged art form. The second point of this paper is to analyze the properties, that are inherent to video games, in order to find the reason, why cultural elite considers video games as i...

  15. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  16. Aggregation induced emission enhancement (AIEE) characteristics of quinoline based compound - A versatile fluorescent probe for pH, Fe(III) ion, BSA binding and optical cell imaging.

    Science.gov (United States)

    Manikandan, Irulappan; Chang, Chien-Huei; Chen, Chia-Ling; Sathish, Veerasamy; Li, Wen-Shan; Malathi, Mahalingam

    2017-07-05

    Novel benzimidazoquinoline derivative (AVT) was synthesized through a substitution reaction and characterized by various spectral techniques. Analyzing the optical properties of AVT under absorption and emission spectral studies in different environments exclusively with respect to solvents and pH, intriguing characteristics viz. aggregation induced emission enhancement (AIEE) in the THF solvent and 'On-Off' pH sensing were found at neutral pH. Sensing nature of AVT with diverse metal ions and bovine serum albumin (BSA) was also studied. Among the metal ions, Fe 3+ ion alone tunes the fluorescence intensity of AVT probe in aqueous medium from "turn-on" to "turn-off" through ligand (probe) to metal charge transfer (LMCT) mechanism. The probe AVT in aqueous medium interacts strongly with BSA due to Fluorescence Resonance Energy Transfer (FRET) and the conformational change in BSA was further analyzed using synchronous fluorescence techniques. Docking study of AVT with BSA reveals that the active site of binding is tryptophan residue which is also supported by the experimental results. Interestingly, fluorescent AVT probe in cells was examined through cellular imaging studies using BT-549 and MDA-MB-231 cells. Thus, the single molecule probe based detection of multiple species and stimuli were described. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Aggregation induced emission enhancement (AIEE) characteristics of quinoline based compound - A versatile fluorescent probe for pH, Fe(III) ion, BSA binding and optical cell imaging

    Science.gov (United States)

    Manikandan, Irulappan; Chang, Chien-Huei; Chen, Chia-Ling; Sathish, Veerasamy; Li, Wen-Shan; Malathi, Mahalingam

    2017-07-01

    Novel benzimidazoquinoline derivative (AVT) was synthesized through a substitution reaction and characterized by various spectral techniques. Analyzing the optical properties of AVT under absorption and emission spectral studies in different environments exclusively with respect to solvents and pH, intriguing characteristics viz. aggregation induced emission enhancement (AIEE) in the THF solvent and 'On-Off' pH sensing were found at neutral pH. Sensing nature of AVT with diverse metal ions and bovine serum albumin (BSA) was also studied. Among the metal ions, Fe3 + ion alone tunes the fluorescence intensity of AVT probe in aqueous medium from ;turn-on; to ;turn-off; through ligand (probe) to metal charge transfer (LMCT) mechanism. The probe AVT in aqueous medium interacts strongly with BSA due to Fluorescence Resonance Energy Transfer (FRET) and the conformational change in BSA was further analyzed using synchronous fluorescence techniques. Docking study of AVT with BSA reveals that the active site of binding is tryptophan residue which is also supported by the experimental results. Interestingly, fluorescent AVT probe in cells was examined through cellular imaging studies using BT-549 and MDA-MB-231 cells. Thus, the single molecule probe based detection of multiple species and stimuli were described.

  18. Ruthenium(II) Complex Incorporated UiO-67 Metal-Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy.

    Science.gov (United States)

    Chen, Rui; Zhang, Jinfeng; Chelora, Jipsa; Xiong, Yuan; Kershaw, Stephen V; Li, King Fai; Lo, Pik-Kwan; Cheah, Kok Wai; Rogach, Andrey L; Zapien, Juan Antonio; Lee, Chun-Sing

    2017-02-22

    Ruthenium(II) tris(bipyridyl) cationic complex (Ru(bpy) 3 2+ ) incorporated UiO-67 (Universitetet i Oslo) nanoscale metal-organic frameworks (NMOFs) with an average diameter of ∼92 nm were developed as theranostic nanoplatform for in vitro two-photon fluorescence imaging and photodynamic therapy. After incorporation into porous UiO-67 nanoparticles, the quantum yield, luminescence lifetime, and two-photon fluorescence intensity of Ru(bpy) 3 2+ guest molecules were much improved owing to the steric confinement effect of MOF pores. Benefiting from these merits, the as-synthesized nanoparticles managed to be internalized by A549 cells while providing excellent red fluorescence in cytoplasm upon excitation with 880 nm irradiation. Photodynamic therapeutic application of the Ru(bpy) 3 2+ -incorporated UiO-67 NMOFs was investigated in vitro. The Ru(bpy) 3 2+ -incorporated UiO-67 NMOFs exhibited good biocompatibility without irradiation while having good cell-killing rates upon irradiation. In view of these facts, the developed Ru(bpy) 3 2+ -incorporated NMOFs give a new potential pathway to achieve enhanced two-photon fluorescence imaging and photodynamic therapy.

  19. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  20. Quantum sized Ag nanocluster assisted fluorescence enhancement in Tm{sup 3+}-Yb{sup 3+} doped optical fiber beyond plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.; Das, Shyamal; Bhadra, Shyamal K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-12-07

    We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb{sup 3+}) and Thulium (Tm{sup 3+}) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailed laser diode with input power of 20–100 mW to excite the Yb{sup 3+}. Four times enhancement of Yb{sup 3+} emission of 900–1100 nm and Tm{sup 3+} upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs.

  1. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Juan P Monrás

    Full Text Available The vast application of fluorescent semiconductor nanoparticles (NPs or quantum dots (QDs has prompted the development of new, cheap and safer methods that allow generating QDs with improved biocompatibility. In this context, green or biological QDs production represents a still unexplored area. This work reports the intracellular CdTe QDs biosynthesis in bacteria. Escherichia coli overexpressing the gshA gene, involved in glutathione (GSH biosynthesis, was used to produce CdTe QDs. Cells exhibited higher reduced thiols, GSH and Cd/Te contents that allow generating fluorescent intracellular NP-like structures when exposed to CdCl(2 and K(2TeO(3. Fluorescence microscopy revealed that QDs-producing cells accumulate defined structures of various colors, suggesting the production of differently-sized NPs. Purified fluorescent NPs exhibited structural and spectroscopic properties characteristic of CdTe QDs, as size and absorption/emission spectra. Elemental analysis confirmed that biosynthesized QDs were formed by Cd and Te with Cd/Te ratios expected for CdTe QDs. Finally, fluorescent properties of QDs-producing cells, such as color and intensity, were improved by temperature control and the use of reducing buffers.

  2. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.

    Science.gov (United States)

    Lu, Lu; Qian, Yunxia; Wang, Lihui; Ma, Keke; Zhang, Yaodong

    2014-02-12

    One of the great challenges in metal-enhanced fluorescence (MEF) technology is the achievement of distance modulation with nanometer accuracy between the fluorophore and metal surface to obtain maximum enhancement. We propose an MEF-based core-shell Ag@SiO2 nanoflare for distance control via the thickness of silica shell with cooperation of DNA hybridization. The nanoflare contains a 50 nm spherical silver nanoparticle (Ag NP) core, a 8 nm silica shell, and cyanine (Cy5)-labeled aptamer hybridized with a complementary DNA (cDNA) immobilized onto the shell surface. The formation of the Cy5-labeled aptamer/cDNA duplex on the Ag@SiO2 NP surface results in the confinement of Cy5 to the shell surface and an increase in the fluorescence of Cy5 with a 32-fold enhancement factor in bulk solution (signal-on). In the presence of affinity-binding targets, the Cy5-labeled aptamers confined onto the Ag@SiO2 NP surface dissociate from their cDNA into the solution because of structure switching. The target-induced release of aptamer leads to a reduction in the enhanced fluorescence signal of the labeled Cy5 moiety (signal-off). Thus, the nanoflare can be used as a sensor for target recognition. Using adenosine-5'-triphosphate (ATP) aptamer, detection of ATP has a linear response from 0 to 0.5 mM and a detection limit of 8 μM. With various types of DNA probes immobilized onto the core-shell Ag@SiO2 NPs, the MEF-based nanoflare has provided an effective platform for the detection and quantification of a broad range of analytes, such as mRNA regulation and detection, cell sorting, and gene profiling.

  3. Protoporphyrin IX fluorescence for enhanced photodynamic diagnosis and photodynamic therapy in murine models of skin and breast cancer

    Science.gov (United States)

    Rollakanti, Kishore Reddy

    Protoporphyrin IX (PpIX) is a photosensitizing agent derived from aminolevulinic acid. PpIX accumulates specifically within target cancer cells, where it fluoresces and produces cytotoxic reactive oxygen species. Our aims were to employ PpIX fluorescence to detect squamous cell carcinoma (SCC) of the skin (Photodynamic diagnosis, PDD), and to improve treatment efficacy (Photodynamic therapy, PDT) for basal cell carcinoma (BCC) and cutaneous breast cancer. Hyperspectral imaging and a spectrometer based dosimeter system were used to detect very early SCC in UVB-irradiated murine skin, using PpIX fluorescence. Regarding PDT, we showed that low non-toxic doses of vitamin D, given before ALA application, increase tumor specific PpIX accumulation and sensitize BCC and breast cancer cells to ALA-PDT. These optical imaging methods and the combination therapy regimen (vitamin D and ALA-PDT) are promising tools for effective management of skin and breast cancer.

  4. Establishment of a hepatocellular carcinoma cell line expressing dual reporter genes: sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP)

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Won Jung; Koo, Bon Chul; Kwon, Mo Sun [Kyungpook National University School of Medicine, Daegu (Korea, Republic of)] (and others)

    2007-06-15

    Dual reporter gene imaging has several advantages for more sophisticated molecular imaging studies such as gene therapy monitoring. Herein, we have constructed hepatoma cell line expressing dual reporter genes of sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP), and the functionalities of the genes were evaluated in vivo by nuclear and optical imaging. A pRetro-PN vector was constructed after separating NIS gene from pcDNA-NIS. RSV-EGFP-WPRE fragment separated from pLNRGW was cloned into pRetro-PN vector. The final vector expressing dual reporter genes was named pRetro-PNRGW. A human hepatoma (HepG2) cells were transfected by the retrovirus containing NIS and EGFP gene (HepG2-NE). Expression of NIS gene was confirmed by RT-PCR, radioiodine uptake and efflux studies. Expression of EGFP was confirmed by RT-PCR and fluorescence microscope. The HepG2 and HepG2-NE cells were implanted in shoulder and hindlimb of nude mice, then fluorescence image, gamma camera image and I-124 microPET image were undertaken. The HepG2-NE cell was successfully constructed. RT-PCR showed NIS and EGFP mRNA expression. About 50% of cells showed fluorescence. The iodine uptake of NIS-expressed cells was about 9 times higher than control. In efflux study, T{sub 1/2} of HepG2-NE cells was 9 min. HepG2-NE xenograft showed high signal-to-background fluorescent spots and higher iodine-uptake compared to those of HepG2 xenograft. A hepatoma cell line expressing NIS and EGFP dual reporter genes was successfully constructed and could be used as a potential either by therapeutic gene or imaging reporter gene.

  5. Generation and characterization of a trackable plant-made influenza H5 virus-like particle (VLP) containing enhanced green fluorescent protein (eGFP).

    Science.gov (United States)

    Young, Katie R; Arthus-Cartier, Guillaume; Yam, Karen K; Lavoie, Pierre-Olivier; Landry, Nathalie; D'Aoust, Marc-André; Vézina, Louis-Philippe; Couture, Manon M-J; Ward, Brian J

    2015-09-01

    Medicago, Inc. has developed an efficient virus-like particle (VLP) vaccine production platform using the Nicotiana benthamiana expression system, and currently has influenza-based products targeting seasonal/pandemic hemagglutinin (HA) proteins in advanced clinical trials. We wished to generate a trackable HA-based VLP that would allow us to study both particle assembly in plants and VLP interactions within the mammalian immune system. To this end, a fusion protein was designed, composed of H5 (from influenza A/Indonesia/05/2005 [H5N1]) with enhanced green fluorescent protein (eGFP). Expression of H5-eGFP in N. benthamiana produced brightly fluorescent ∼160 nm particles resembling H5-VLPs. H5-eGFP-VLPs elicited anti-H5 serologic responses in mice comparable to those elicited by H5-VLPs in almost all assays tested (hemagglutination inhibition/IgG(total)/IgG1/IgG2b/IgG2a:IgG1 ratio), as well as a superior anti-GFP IgG response (mean optical density = 2.52 ± 0.16 sem) to that elicited by soluble GFP (mean optical density = 0.12 ± 0.06 sem). Confocal imaging of N. benthamiana cells expressing H5-eGFP displayed large fluorescent accumulations at the cell periphery, and draining lymph nodes from mice given H5-eGFP-VLPs via footpad injection demonstrated bright fluorescence shortly after administration (10 min), providing proof of concept that the H5-eGFP-protein/VLPs could be used to monitor both VLP assembly and immune trafficking. Given these findings, this novel fluorescent reagent will be a powerful tool to gain further fundamental insight into the biology of influenza VLP vaccines. © FASEB.

  6. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  7. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  8. Incorporating Video Games into Physical Education

    Science.gov (United States)

    Hayes, Elizabeth; Silberman, Lauren

    2007-01-01

    Contrary to common belief, several studies have found no relationship between video gaming and obesity or physical inactivity. In fact, video gaming is an untapped resource for enhancing young people's motivation and ability to participate in sports and other movement-based activities. Many popular video games offer sophisticated and engaging…

  9. Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage

    NARCIS (Netherlands)

    Rouwendal, G.J.A.; Mendes, O.; Wolbert, E.J.H.; Boer, de A.D.

    1997-01-01

    The gene encoding green fluorescent protein (GFP) from Aequorea victoria was resynthesized to adapt its codon usage for expression in plants by increasing the frequency of codons with a C or a G in the third position from 32 to 60%. The strategy for constructing the synthetic gfp gene was based on

  10. Video Podcasts

    DEFF Research Database (Denmark)

    Nortvig, Anne Mette; Sørensen, Birgitte Holm

    2016-01-01

    This project’s aim was to support and facilitate master’s students’ preparation and collaboration by making video podcasts of short lectures available on YouTube prior to students’ first face-to-face seminar. The empirical material stems from group interviews, from statistical data created through...... YouTube analytics and from surveys answered by students after the seminar. The project sought to explore how video podcasts support learning and reflection online and how students use and reflect on the integration of online activities in the videos. Findings showed that students engaged actively...

  11. Automated analysis and annotation of basketball video

    Science.gov (United States)

    Saur, Drew D.; Tan, Yap-Peng; Kulkarni, Sanjeev R.; Ramadge, Peter J.

    1997-01-01

    Automated analysis and annotation of video sequences are important for digital video libraries, content-based video browsing and data mining projects. A successful video annotation system should provide users with useful video content summary in a reasonable processing time. Given the wide variety of video genres available today, automatically extracting meaningful video content for annotation still remains hard by using current available techniques. However, a wide range video has inherent structure such that some prior knowledge about the video content can be exploited to improve our understanding of the high-level video semantic content. In this paper, we develop tools and techniques for analyzing structured video by using the low-level information available directly from MPEG compressed video. Being able to work directly in the video compressed domain can greatly reduce the processing time and enhance storage efficiency. As a testbed, we have developed a basketball annotation system which combines the low-level information extracted from MPEG stream with the prior knowledge of basketball video structure to provide high level content analysis, annotation and browsing for events such as wide- angle and close-up views, fast breaks, steals, potential shots, number of possessions and possession times. We expect our approach can also be extended to structured video in other domains.

  12. Video Stabilization Using Feature Point Matching

    Science.gov (United States)

    Kulkarni, Shamsundar; Bormane, D. S.; Nalbalwar, S. L.

    2017-01-01

    Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper an algorithm is proposed to stabilize jittery videos. A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video is identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.

  13. Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster Resonance Energy Transfer (FRET) studies

    NARCIS (Netherlands)

    Hink, M.A.; Visser, N.V.; Borst, J.W.; Hoek, van A.; Visser, A.J.W.G.

    2003-01-01

    Corrected fluorescence excitation and emission spectra have been obtained from several enhanced variants of the green fluorescent protein (EGFP) isolated from the jellyfish Aequorea victoria, blue fluorescence protein (EBFP), cyan fluorescent protein (ECFP), EGFP and yellow fluorescent protein

  14. Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo.

    Science.gov (United States)

    Luo, Haiming; Yang, Jie; Jin, Honglin; Huang, Chuan; Fu, Jianwei; Yang, Fei; Gong, Hui; Zeng, Shaoqun; Luo, Qingming; Zhang, Zhihong

    2011-06-01

    Relatively weak tumor affinities and short retention time in vivo hinder the application of targeting peptides in tumor molecular imaging. Multivalent strategies based on various scaffolds have been utilized to improve the ability of peptide-receptor binding or extend the clearance time of peptide-based probes. Here, we use a tetrameric far-red fluorescent protein (tfRFP) as a scaffold to create a self-assembled octavalent peptide fluorescent nanoprobe (Octa-FNP) using a genetic engineering approach. The multiligand connecting, fluorophore labeling and nanostructure formation of Octa-FNP were performed in one step. In vitro studies showed Octa-FNP is a 10-nm fluorescent probe with excellent serum stability. Cellular uptake of Octa-FNP by human nasopharyngeal cancer 5-8F cells is 15-fold of tetravalent probe, ∼80-fold of monovalent probe and ∼600-fold of nulvalent tfRFP. In vivo enhanced tumor targeting and intracellular uptake of Octa-FNP were confirmed using optical imaging and Western blot analysis. It achieved extremely high contrast of Octa-FNP signal between tumor tissue and normal organs, especially seldom Octa-FNP detected in liver and spleen. Owing to easy preparation, precise structural and functional control, and multivalent effect, Octa-FNP provides a powerful tool for tumor optical molecular imaging and evaluating the targeting ability of numerous peptides in vivo.

  15. The effect of thermal treatment on the enhancement of detection of adulteration in extra virgin olive oils by synchronous fluorescence spectroscopy and chemometric analysis

    Science.gov (United States)

    Mabood, F.; Boqué, R.; Folcarelli, R.; Busto, O.; Jabeen, F.; Al-Harrasi, Ahmed; Hussain, J.

    2016-05-01

    In this study the effect of thermal treatment on the enhancement of synchronous fluorescence spectroscopic method for discrimination and quantification of pure extra virgin olive oil (EVOO) samples from EVOO samples adulterated with refined oil was investigated. Two groups of samples were used. One group was analyzed at room temperature (25 °C) and the other group was thermally treated in a thermostatic water bath at 75 °C for 8 h, in contact with air and with light exposure, to favor oxidation. All the samples were then measured with synchronous fluorescence spectroscopy. Synchronous fluorescence spectra were acquired by varying the wavelength in the region from 250 to 720 nm at 20 nm wavelength differential interval of excitation and emission. Pure and adulterated olive oils were discriminated by using partial least-squares discriminant analysis (PLS-DA). It was found that the best PLS-DA models were those built with the difference spectra (75 °C-25 °C), which were able to discriminate pure from adulterated oils at a 2% level of adulteration of refined olive oils. Furthermore, PLS regression models were also built to quantify the level of adulteration. Again, the best model was the one built with the difference spectra, with a prediction error of 3.18% of adulteration.

  16. A fusion tag to fold on: the S-layer protein SgsE confers improved folding kinetics to translationally fused enhanced green fluorescent protein.

    Science.gov (United States)

    Ristl, Robin; Kainz, Birgit; Stadlmayr, Gerhard; Schuster, Heinrich; Pum, Dietmar; Messner, Paul; Obinger, Christian; Schaffer, Christina

    2012-09-01

    Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.

  17. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement.

    Science.gov (United States)

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-02-23

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition.

  18. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay.

    Directory of Open Access Journals (Sweden)

    Peihu Fan

    Full Text Available The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA. Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL. The specificity was 100% and the coefficient of variation (CV was 7.8% at low p24 concentration (1.5 pg/mL with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens.

  19. Simultaneous determination of norfloxacin and lomefloxacin in milk by first derivative synchronous fluorescence spectrometry using Al (III) as an enhancer.

    Science.gov (United States)

    Yi, Yan-Ni; Li, Gui-Rong; Wang, Yong-Sheng; Zhou, Yu-Zhen; Zhu, Hui-Min

    2011-11-30

    A novel method for the simultaneous determination of norfloxacin (NFLX) and lomefloxacin (LFLX) in milk samples was developed by using first derivative synchronous fluorimetry. The synchronous fluorescence (Δλ=160 nm) spectra and first derivative synchronous fluorescence spectra of NFLX, LFLX and their mixture were studied. The zero-crossing method was utilized to measure the first derivative value of the derivative spectrum. The zero-crossing points were located at 275.0 nm for NFLX and at 283.8 nm for LFLX, in first derivative synchronous fluorescence spectra. Therefore, 283.8 nm and 275.0 nm were selected for the determination of NFLX and LFLX. The first derivative values varied linearly with the concentrations in the range of 1.68×10(-8)-5.64×10(-6) mol L(-1) for NFLX and 1.89×10(-8)-6.19×10(-6) mol L(-1) for LFLX. The detection limits were 5.03×10(-9) mol L(-1) for NFLX and 7.58×10(-9) mol L(-1) for LFLX. The proposed method is reliable, selective and sensitive, and has been used successfully in the simultaneous determination of NFLX and LFLX in milk samples, whose results were in good agreement with those obtained by HPLC. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  1. Enhanced blue luminescence in BaMgAl{sub 10}O{sub 17}:Eu, Er, Nd nanophosphor for PDPs and Mercury free fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra S., E-mail: raghvendra_nac@yahoo.co.in; Shukla, Vineet K.; Mishra, Priya; Pandey, Shiv K.; Kumar, Kausal; Baranwal, Vikas; Kumar, Manvendra; Pandey, Avinash C.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Synthesis of Er{sup 3+}/Nd{sup 3+} codoped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor nanoparticles. Black-Right-Pointing-Pointer An enhancement in blue emission of Eu{sup 2+} has been observed. Black-Right-Pointing-Pointer Lifetime of the 4f{sup 6}5d {yields} 4f{sup 7} transition has been measured and discussed. Black-Right-Pointing-Pointer The enhancement has been explained by energy transfer and created defect states. Black-Right-Pointing-Pointer This phosphor can find application in PDPs and mercury free fluorescent lamps. - Abstract: The Er{sup 3+}/Nd{sup 3+} codoped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor nanoparticles have been synthesized through solution combustion method. Nanophosphor has shown intense broad blue photoluminescence (PL), corresponding to the 4f{sup 6}5d {yields} 4f{sup 7} electronic transition of Eu{sup 2+} ion under vacuum ultraviolet (147 nm) as well as UV (355 nm) excitations. An enhancement in blue emission of Eu{sup 2+} has been observed on the codoping of Er{sup 3+}/Nd{sup 3+} ions and concentration of the doping ions have been optimized. Lifetime of the 4f{sup 6}5d {yields} 4f{sup 7} transition has been measured and discussed. The enhancement in emission intensity of codoped blue nanophosphor is explained by energy transfer from the Er{sup 3+}/Nd{sup 3+} ions and created defect states to the Eu{sup 2+} in the BaMgAl{sub 10}O{sub 17}. This phosphor has also shown better emission intensity as compared to commercial blue phosphor under VUV excitation and thus making it attractive for the application in plasma display panels and mercury free-fluorescent lamps.

  2. Enhancement and regulation of fluorescence emission from NaYF4:Yb3+, Er3+ nanocrystals by codoping Mn2+ ions.

    Science.gov (United States)

    He, Enjie; Zheng, Hairong; Gao, Wei; Tu, Yinxun; Lu, Ying; Tian, Huani; Li, Guian

    2014-06-01

    NaYF4:Yb3+, Er3+, Mn2+ nanocrystals with cubic crystal phase were obtained by a facile solvothermal method through doping a proper amount of Mn2+ ions to the nanocrystals. The results of XRD and TEM showed that the as-prepared samples were well crystallized and their average size was about 25 nm. Under excitations at 978.5 nm and at 532 nm, obvious enhancement and regulation of upconversion and downconversion fluorescence were obtained. Upconversion emission spectra indicate that these effects were independent of doped concentrations of Er3+ and Yb3+, excitation power, and the excitation wavelength in the current study. It is concluded that the enhancement of fluorescence emissions is mainly due to the change of local symmetry around Er3+ ions, while the regulation of red-to-green ratios was caused by efficient energy transfer between Er3+ and Mn2+ ions. This kind of upconversion material has a great potential in bioimaging and drug delivery since the excitation and emission falls into the region of "optical window" of biological tissues.

  3. The Dilemmas of Formulating Theory-Informed Design Guidelines for a Video Enhanced Rubric for the Formative Assessment of Complex Skills

    NARCIS (Netherlands)

    Ackermans, Kevin; Rusman, Ellen; Brand-Gruwel, Saskia; Specht, Marcus

    2017-01-01

    Learners aiming to master a complex skill may benefit from the combina-tion of abstract information found in a text-based analytical rubric and con-crete information provided by a video modeling example. In this paper, we address the design dilemmas of combining video modeling examples and rubrics

  4. The Dilemmas of Formulating Theory-Informed Design Guidelines for a Video Enhanced Rubric (for the Formative Assessment of Complex Skills)

    NARCIS (Netherlands)

    Ackermans, Kevin; Rusman, Ellen; Brand-Gruwel, Saskia; Specht, Marcus

    2017-01-01

    Learners aiming to master a complex skill may benefit from the combina-tion of abstract information found in a text-based analytical rubric and con-crete information provided by a video modeling example. In this paper, we address the design dilemmas of combining video modeling examples and rubrics

  5. Akademisk video

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth

    2017-01-01

    Dette kapitel har fokus på metodiske problemstillinger, der opstår i forhold til at bruge (digital) video i forbindelse med forskningskommunikation, ikke mindst online. Video har længe været benyttet i forskningen til dataindsamling og forskningskommunikation. Med digitaliseringen og internettet er...... der dog opstået nye muligheder og udfordringer i forhold til at formidle og distribuere forskningsresultater til forskellige målgrupper via video. Samtidig er klassiske metodologiske problematikker som forskerens positionering i forhold til det undersøgte stadig aktuelle. Både klassiske og nye...... problemstillinger diskuteres i kapitlet, som rammesætter diskussionen ud fra forskellige positioneringsmuligheder: formidler, historiefortæller, eller dialogist. Disse positioner relaterer sig til genrer inden for ’akademisk video’. Afslutningsvis præsenteres en metodisk værktøjskasse med redskaber til planlægning...

  6. Low-complexity JPEG-based progressive video codec for wireless video transmission

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Forchhammer, Søren

    2010-01-01

    This paper discusses the question of video codec enhancement for wireless video transmission of high definition video data taking into account constraints on memory and complexity. Starting from parameter adjustment for JPEG2000 compression algorithm used for wireless transmission and achieving...

  7. Effective Educational Videos: Principles and Guidelines for Maximizing Student Learning from Video Content

    Science.gov (United States)

    Brame, Cynthia J.

    2016-01-01

    Educational videos have become an important part of higher education, providing an important content-delivery tool in many flipped, blended, and online classes. Effective use of video as an educational tool is enhanced when instructors consider three elements: how to manage cognitive load of the video; how to maximize student engagement with the…

  8. Creating and Editing Video to Accompany Manuscripts.

    Science.gov (United States)

    Gordon, Shayna L; Porto, Dennis A; Ozog, David M; Council, M Laurin

    2016-02-01

    The use of video can enhance the learning experience by demonstrating procedural techniques that are difficult to relay in writing. Several peer-reviewed journals allow publication of videos alongside articles to complement the written text. The purpose of this article is to instruct the dermatologic surgeon on how to create and edit a video using a smartphone, to accompany a article. The authors describe simple tips to optimize surgical videography. The video that accompanies this article further demonstrates the techniques described. Creating a surgical video requires little experience or equipment and can be completed in a modest amount of time. Making and editing a video to accompany a article can be accomplished by following the simple recommendations in this article. In addition, the increased use of video in dermatologic surgery education can enhance the learning opportunity.

  9. Fluorescent turn-on detection and assay of water based on 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide with aggregation-induced emission enhancement.

    Science.gov (United States)

    Sun, Yang; Liang, Xuhua; Wei, Song; Fan, Jun; Yang, Xiaohui

    2012-11-01

    The photophysical properties of 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) consisting of donor and acceptor units were investigated in different solutions. Changing from a non-polar to a polar solvent increased the solvent interaction and both the excitation and emission spectra were shifted to longer wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT). Density functional theory (DFT) calculations and spectral analyses revealed that such fluorophores were capable of sensing protons by intramolecular charge transfer (ICT). Empirical and quantum mechanical calculations showed that the electron donating effect of the dimethylamino group decreased the change in dipole moment on excitation which resulted in a fluorescence quantum yield remarkably enhanced as the solvent polarity increased. In alkaline media the fluorescence of DON was quenched owing to photoinduced electron transfer being disabled in acidic media. The pK(a) of the 1,8-naphthailimide dye was 6.70, which defines the dye as a highly efficient "off-on" switch. DON exhibited a typical aggregation-induced emission enhancement (AIEE) behavior that it is virtually nonemissive in organic solvent but highly luminescent in water, as a result of the restriction of free intramolecular rotation of a C-N bond and the non-planar configuration in the aggregate state. The hydrophobicity of octadecyl group provided DON with a fluorescent response to water based on AIEE and the water-dependent spectral characteristics of DON, and the AIEE of DON caused by the effect of water and formation of J-aggregation states. In the range of 0-79.8% (v/v), the fluorescence intensity of DON in acetone solution increased as a linear function of the water content. The optimum detection limits were of 0.011%, 0.0021%, and 0.0033% of water in acetone, ethanol, and acetonitrile, respectively. Satisfactory reproducibility, reversibility and a short response time

  10. Recombinant subgroup B human respiratory syncytial virus expressing enhanced green fluorescent protein efficiently replicates in primary human cells and is virulent in cotton rats.

    Science.gov (United States)

    Lemon, Ken; Nguyen, D Tien; Ludlow, Martin; Rennick, Linda J; Yüksel, Selma; van Amerongen, Geert; McQuaid, Stephen; Rima, Bert K; de Swart, Rik L; Duprex, W Paul

    2015-03-01

    Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV(B05)) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV(B05)EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP(+) cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies. Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with

  11. Sensitive optical detection of an early metastatic tumor using a new cell line with enhanced luminescent and fluorescent signals

    Directory of Open Access Journals (Sweden)

    Yeon Joo Kim

    2011-10-01

    Full Text Available Animal models using cell lines that are dual-labeled with luciferase and green fluorescent protein (GFP are powerful tools for performing simultaneous quantitative and qualitative analysis of metastatic tumors. However, the applications of such dual-labeled tumor models have been limited due to the technical challenges associated with low bioluminescent signaling from tumor cells. Here, we used lentiviral vector (LV encoding firefly luciferase and GFP and engineered a more sensitive and highly metastatic prostate cancer cell line (MLL-Luc/GFP cells, which allows simultaneous fluorescence and luminescence imaging. The light emission of MLL-Luc/GFP cells was 33.5 fold higher than that of PC-3-luc2-GFP prostate cancer cells which showed 750 p/s light emission per cell. Furthermore, the MLL-Luc/GFP cells showed 3.9 fold higher luciferase activities than did 4T1-luc2, which was previously recognized as exhibiting the highest luciferase activity. An in vivo evaluation with optical imaging showed pinpoint localization of GFP-positive cells in a metastatic lung as well as easy detection of early metastatic spreading. The newly engineered MLL-Luc/GFP cells provide an appropriate metastatic animal model system for future studies of metastasis and the testing of anti-metastatic therapies specifically aimed at prostatic cancer.

  12. Ultra sensitive sensor with enhanced dynamic range for high speed detection of multi-color fluorescence radiation.

    Science.gov (United States)

    Tsupryk, A; Tovkach, I; Gavrilov, D; Kosobokova, O; Gudkov, G; Tyshko, G; Gorbovitski, B; Gorfinkel, V

    2008-05-15

    This paper describes design of the new ultra sensitive sensor system for fluorescence detection applications. System comprises two units: optical spectra separation unit and detection unit. Optical unit of the sensor performs spatial spectra separation of signal from the laser excited fluorescence, and resulting spectra is collected in the detection part of the system. Optical part is built using diffraction grating as spectra separation element. Detection part comprises 32-channel photomultiplier tube working in single photon counting mode with our 32-channel amplifier. Using single photon detection technique and specific signal processing algorithms for collected data, the proposed system allows to achieve unique combination of characteristics--high sensitivity, high detection speed and wide linearity dynamic range comparing to existing commercial instruments. DNA sequencing experiments with new sensor as detection device, and using two types of lasers (Ar-ion and Nd-YAG) were carried out, yielding sequencing traces which have quality factor of 20 for read lengths as long as 650 base pairs.

  13. Video Analytics

    DEFF Research Database (Denmark)

    This book collects the papers presented at two workshops during the 23rd International Conference on Pattern Recognition (ICPR): the Third Workshop on Video Analytics for Audience Measurement (VAAM) and the Second International Workshop on Face and Facial Expression Recognition (FFER) from Real...... World Videos. The workshops were run on December 4, 2016, in Cancun in Mexico. The two workshops together received 13 papers. Each paper was then reviewed by at least two expert reviewers in the field. In all, 11 papers were accepted to be presented at the workshops. The topics covered in the papers...

  14. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  15. Video Analytics

    DEFF Research Database (Denmark)

    This book collects the papers presented at two workshops during the 23rd International Conference on Pattern Recognition (ICPR): the Third Workshop on Video Analytics for Audience Measurement (VAAM) and the Second International Workshop on Face and Facial Expression Recognition (FFER) from Real W...

  16. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Avinash; Vidyarthi, S.R. [Department of Chemical Engineering Harcourt Butler Technological Institute, Kanpur 208001, U.P. (India); Sankararamakrishnan, Nalini, E-mail: nalini@iitk.ac.in [Centre for Environmental Science and Engineering Indian Institute of Technology Kanpur, Kanpur 208016, U.P. (India)

    2014-06-01

    Highlights: • Oxidized (CNT-OX), CNT-I, CNT-S were prepared. • Capacity of CNT-S (151.5 mg/g) was higher than other CNTs. • Applied to the removal of Hg(II) from spiked and natural coal wash waters. • Applied to the removal of Hg(0) from compact fluorescent lamps. - Abstract: Three different functionalized multiwalled carbon nanotubes were prepared, namely, oxidized CNTs (CNT-OX), iodide incorporated MWCNT (CNT-I) and sulfur incorporated MWCNT (CNT-S). The as prepared adsorbents were structurally characterized by various spectral techniques like scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Brunauer, Emmett, and Teller (BET) surface area analyzer, Fourier transform infra red (FTIR) and Raman spectroscopy. Loading of iodide and sulfur was evident from the EDAX graphs. The adsorption properties of Hg{sup 2+} as a function of pH, contact time and initial metal concentration were characterized by Cold vapor AAS. The adsorption kinetics fitted the Pseudo second order kinetics and equilibrium was reached within 90 min. The experimental data were modeled with Langmuir, Freundlich, Dubinin-Redushkevich and Temkin isotherms and various isotherm parameters were evaluated. It was found that the mercury adsorption capacity for the prepared adsorbents were in the order of CNT-S > CNT-I > CNT-OX > CNT. Studies have been conducted to demonstrate the applicability of the sorbent toward the removal of Hg(0) from broken compact fluorescent light (CFL) bulbs and Hg(II) from contaminated water streams.

  17. Electronic energy transfer in tetracene-doped p-terphenyl nanoparticles: Extraordinarily high fluorescence enhancement and quenching efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Masaaki, E-mail: smmitsu@ipc.shizuoka.ac.jp; Kawano, Yuya

    2013-06-20

    Highlights: ► Tc/pTP-NPs at various doping ratios are produced by reprecipitation in water. ► The energy transfer in Tc/pTP-NPs is investigated. ► More than 10{sup 4}pTP donors were quenched by a single Tc acceptor. ► Efficient energy transfer is attributed to the rapid exciton diffusion in the NPs. - Abstract: A series of tetracene (Tc)-doped p-terphenyl (pTP) nanoparticles (Tc/pTP-NPs) were produced at various doping ratios by reprecipitation in water. The Tc/pTP-NPs are disk-like with a mean diameter of 75 nm and height of 7 nm, which were determined by scanning electron microscopy and atomic force microscopy, and exhibited electronic delocalization through H-type aggregation of the pTP molecules. Electronic energy transfer in the Tc/pTP-NPs was examined using steady-state and time-resolved fluorescence spectroscopy and fluorescence anisotropy experiments: pTP-NPs serve as an excellent light-harvesting nano-matrix with a large absorption coefficient that exceeds 10{sup 9} M{sup −1} cm{sup −1}. Furthermore, Stern–Volmer analysis of the donor emission was performed by changing the dopant concentration; this showed that a single Tc acceptor quenched more than 10{sup 4}pTP donors. Comparison of the experimental and theoretical energy transfer efficiencies indicated that the efficient energy transfer can be attributed to two-dimensional exciton diffusion in the host nanoparticles.

  18. Infection of the upper respiratory tract of hamsters by the bovine parainfluenza virus type 3 BN-1 strain expressing enhanced green fluorescent protein.

    Science.gov (United States)

    Ohkura, Takashi; Minakuchi, Moeko; Sagai, Mami; Kokuho, Takehiro; Konishi, Misako; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2015-02-01

    Bovine parainfluenza virus type 3 (BPIV3) is an important pathogen associated with bovine respiratory disease complex (BRDC). We have generated a recombinant BPIV3 expressing enhanced green fluorescent protein (rBPIV3-EGFP) based on the BN-1 strain isolated in Japan. After intranasal infection of hamsters with rBPIV3-EGFP, EGFP fluorescence was detected in the upper respiratory tract including the nasal turbinates, pharynx, larynx, and trachea. In the nasal turbinates, rBPIV3-EGFP attained high titers (>10(6) TCID50/g of tissue) 2-4 days after infection. Ciliated epithelial cells in the nasal turbinates and trachea were infected with rBPIV3-EGFP. Histopathological analysis indicated that mucosal epithelial cells in bronchi were shed by 6 days after infection, leaving non-ciliated cells, which may have increased susceptibility to bacterial infection leading to the development of BRDC. These data indicate that rBPIV3-EGFP infection of hamsters is a useful small animal model for studying the development of BPIV3-associated BRDC. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Enhanced-quantum yield sulfur/nitrogen co-doped fluorescent carbon nanodots produced from biomass Enteromorpha prolifera: synthesis, posttreatment, applications and mechanism study.

    Science.gov (United States)

    Xu, Yuanhong; Li, Dan; Liu, Mengli; Niu, Fushuang; Liu, Jingquan; Wang, Erkang

    2017-07-03

    Enteromorpha prolifera (E. prolifera), one of the main algae genera for green tide, significantly influences both the coastal ecological environment and seawater quality. How to effectively utilize this waste as reproducible raw resource with credible application mechanism are urgent environmental issues to be solved. Herein, E. prolifera was converted to attractive fluorescent carbon nanodots (CNDs) by one-pot green hydrothermal process. The purity and quantum yields for the as-prepared CNDs can be enhanced upon the post-treatment of ethanol sedimentation. The CNDs can be well dispersed in aqueous medium with uniform spherical morphology, narrow size distribution and average size of 2.75 ± 0.12 nm. The ease synthesis and relatively high quantum yields of the CNDs make E. prolifera inexpensive benefit to the human and nature, such as applications in efficient cell imaging and fiber staining. Furthermore, it was discovered that the fluorescence intensity of the CNDs can be selectively quenched upon Fe3+ addition, which can be used for specific sensitive assay and removal of Fe3+ in aqueous medium. More importantly, it was reasonably proposed that the quenching was resulted from the synergistic effects of CNDs aggregation and Fe3+-CNDs charge-transfer transitions due to the coordination interactions between Fe3+ and the oxygenous groups on the CNDs.

  20. Ditigal-Image Enhancement

    Science.gov (United States)

    Woods, R.; Gonzalez, R.

    1984-01-01

    Programable system enhances digitally monocular and stereographic images at video rates. Provides automatic and interactive enhancement modes based on histogram modification and intensity-mapping techniques.

  1. A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial

    National Research Council Canada - National Science Library

    Pichierri, Giuseppe; Murer, Kurt; de Bruin, Eling D

    2012-01-01

    ...) or the control group (n = 16). The dance group absolved a twelve-week cognitive-motor exercise program twice weekly that comprised progressive strength and balance training supplemented with additional dance video gaming...

  2. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    Science.gov (United States)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  3. Extraction and sensitive detection of toxins A and B from the human pathogen Clostridium difficile in 40 seconds using microwave-accelerated metal-enhanced fluorescence.

    Directory of Open Access Journals (Sweden)

    Lovleen Tina Joshi

    Full Text Available Clostridium difficile is the primary cause of antibiotic associated diarrhea in humans and is a significant cause of morbidity and mortality. Thus the rapid and accurate identification of this pathogen in clinical samples, such as feces, is a key step in reducing the devastating impact of this disease. The bacterium produces two toxins, A and B, which are thought to be responsible for the majority of the pathology associated with the disease, although the relative contribution of each is currently a subject of debate. For this reason we have developed a rapid detection assay based on microwave-accelerated metal-enhanced fluorescence which is capable of detecting the presence of 10 bacteria in unprocessed human feces within 40 seconds. These promising results suggest that this prototype biosensor has the potential to be developed into a rapid, point of care, real time diagnostic assay for C. difficile.

  4. Enhancing Parent-Child Communication and Parental Self-Esteem With a Video-Feedback Intervention: Outcomes With Prelingual Deaf and Hard-of-Hearing Children

    OpenAIRE

    Lam-Cassettari, Christa; Wadnerkar, Meghana; James, Deborah

    2015-01-01

    Evidence on best practice for optimizing communication with prelingual deaf and hard-of-hearing (DHH) children is lacking. This study examined the effect of a family-focused psychosocial video intervention program on parent?child communication in the context of childhood hearing loss. Fourteen hearing parents with a prelingual DHH child (Mage = 2 years 8 months) completed three sessions of video interaction guidance intervention. Families were assessed in spontaneous free play interactions at...

  5. Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe2O4 composites for Hg0 removal under fluorescent light irradiation

    Science.gov (United States)

    Li, Chengwei; Zhang, Anchao; Zhang, Lixiang; Song, Jun; Su, Sheng; Sun, Zhijun; Xiang, Jun

    2018-03-01

    A series of magnetic Ag/BiOI/ZnFe2O4 hybrids synthesized via hydrothermal process, subsequent deposition-precipitation and photoreduction method were employed to remove elemental mercury (Hg0) under fluorescent light irradiation. The effects of Ag content, fluorescent light irradiation, reaction temperature, pH value, flue gas composition, anions and photocatalyst dosage on Hg0 removal were investigated in detail. The as-synthesized photocatalysts were characterized using N2 adsorption-desorption, XRD, SEM, TEM, HRTEM, XPS, VSM, DRS, ESR, PL and photocurrent response. The results showed that the ternary Ag/BiOI/ZnFe2O4 hybrids possessed enhanced visible-light-responsive photocatalytic performances for Hg0 removal. Ag/BiOI/ZnFe2O4 photocatalyst could be easily recovered from the reaction solution by an extra magnet and was stable in the process of Hg0 removal. Lower content of Ag was highly dispersed on the surface of BiOI/ZnFe2O4, while higher content of Ag would result in some aggregations and/or the blockages of micropore. In comparison to BiOI/ZnFe2O4, Ag deposited BiOI/ZnFe2O4 material showed lower recombination rate of electron-hole pairs. The superior Hg0 oxidation removal could correspond to good match of BiOI and ZnFe2O4, excellent fluidity and surface plasmon resonance effect of Ag0 nanoparticles, which led to higher separation efficiency of photogenerated electrons and holes, thereby enhancing the hybrids' photocatalytic activity.

  6. Multicolor, Fluorescent Supercapacitor Fiber.

    Science.gov (United States)

    Liao, Meng; Sun, Hao; Zhang, Jing; Wu, Jingxia; Xie, Songlin; Fu, Xuemei; Sun, Xuemei; Wang, Bingjie; Peng, Huisheng

    2017-10-05

    Fiber-shaped supercapacitors have attracted broad attentions from both academic and industrial communities due to the demonstrated potentials as next-generation power modules. However, it is important while remains challenging to develop dark-environment identifiable supercapacitor fibers for enhancement on operation convenience and security in nighttime applications. Herein, a novel family of colorful fluorescent supercapacitor fibers has been produced from aligned multi-walled carbon nanotube sheets. Fluorescent dye particles are introduced and stably anchored on the surfaces of aligned multi-walled carbon nanotubes to prepare hybrid fiber electrodes with a broad range of colors from red to purple. The fluorescent component in the dye introduces fluorescent indication capability to the fiber, which is particularly promising for flexible and wearable devices applied in dark environment. In addition, the colorful fluorescent supercapacitor fibers also maintain high electrochemical performance under cyclic bending and charge-discharge processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Part Two: Learning Science Through Digital Video: Student Views on Watching and Creating Videos

    Science.gov (United States)

    Wade, P.; Courtney, A. R.

    2014-12-01

    The use of digital video for science education has become common with the wide availability of video imagery. This study continues research into aspects of using digital video as a primary teaching tool to enhance student learning in undergraduate science courses. Two survey instruments were administered to undergraduate non-science majors. Survey One focused on: a) What science is being learned from watching science videos such as a "YouTube" clip of a volcanic eruption or an informational video on geologic time and b) What are student preferences with regard to their learning (e.g. using video versus traditional modes of delivery)? Survey Two addressed students' perspectives on the storytelling aspect of the video with respect to: a) sustaining interest, b) providing science information, c) style of video and d) quality of the video. Undergraduate non-science majors were the primary focus group in this study. Students were asked to view video segments and respond to a survey focused on what they learned from the segments. The storytelling aspect of each video was also addressed by students. Students watched 15-20 shorter (3-15 minute science videos) created within the last four years. Initial results of this research support that shorter video segments were preferred and the storytelling quality of each video related to student learning.

  8. Video Analytics

    DEFF Research Database (Denmark)

    This book collects the papers presented at two workshops during the 23rd International Conference on Pattern Recognition (ICPR): the Third Workshop on Video Analytics for Audience Measurement (VAAM) and the Second International Workshop on Face and Facial Expression Recognition (FFER) from Real...... include: re-identification, consumer behavior analysis, utilizing pupillary response for task difficulty measurement, logo detection, saliency prediction, classification of facial expressions, face recognition, face verification, age estimation, super-resolution, pose estimation, and pain recognition...

  9. Video Analytics

    DEFF Research Database (Denmark)

    include: re-identification, consumer behavior analysis, utilizing pupillary response for task difficulty measurement, logo detection, saliency prediction, classification of facial expressions, face recognition, face verification, age estimation, super-resolution, pose estimation, and pain recognition......This book collects the papers presented at two workshops during the 23rd International Conference on Pattern Recognition (ICPR): the Third Workshop on Video Analytics for Audience Measurement (VAAM) and the Second International Workshop on Face and Facial Expression Recognition (FFER) from Real...

  10. Electrophysiological effects of kainic acid on vasopressin-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 neurones isolated from the supraoptic nucleus in transgenic rats.

    Science.gov (United States)

    Ohkubo, J; Ohbuchi, T; Yoshimura, M; Maruyama, T; Ishikura, T; Matsuura, T; Suzuki, H; Ueta, Y

    2014-01-01

    The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)-producing and oxytocin (OXT)-producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP-enhanced green fluorescent protein (eGFP) and the other expressing an OXT-monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP-eGFP and OXT-mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate-induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP-eGFP and OXT-mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA-induced responses were inhibited by the non-NMDA ionotrophic receptor antagonist 6-cyano-7-nitroquinoxaline-2,3(1H4H)-dione in both AVP-eGFP and OXT-mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose-dependent manner. The KA-induced currents were significantly larger in OXT-mRFP1 neurones than in AVP-eGFP neurones. This significant difference in KA-induced currents was abolished by the GluK1-containing KAR antagonist UBP302. At high concentrations (250-500 μm), the specific GluK1-containing KAR agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) induced significantly larger currents in OXT-mRFP1 neurones than in AVP-eGFP neurones. Furthermore, the difference between the AVP-eGFP and OXT-mRFP1 neurones in the ATPA currents

  11. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...... the foundations of the fluorescence phenomenon, introduces some general methodologies and provides selected examples on applications focused to disentangle structural and dynamical aspects of biological processes....

  12. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Shashwat S; Chen, D-H [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: chendh@mail.ncku.edu.tw

    2009-05-06

    We report a novel nanoformulation for targeted drug delivery which utilizes nanophotonics through the fusion of nanotechnology with biomedical application. The approach involves an energy-transferring magnetic nanoscopic co-assembly fabricated of rhodamine B (RDB) fluorescent dye grafted gum arabic modified Fe{sub 3}O{sub 4} magnetic nanoparticle and photosensitive linker by which dexamethasone drug is conjugated to the magnetic nano-assembly. The advantage offered by this nanoformulation is the indirect photo-triggered-on-demand drug release by efficient up-converting energy of the near-IR (NIR) light to higher energy and intraparticle energy transfer from the dye grafted magnetic nanoparticle to the linker for drug release by cleavage. The synthesized nanoparticles were found to be of ultra-small size (13.33 nm) and are monodispersed in an aqueous suspension. Dexamethasone (Dexa) drug conjugated to RDB-GAMNP by photosensitive linker showed appreciable release of Dexa by photo-triggered response on exposure to radiation having a wavelength in the NIR region whereas no detectable release was observed in the dark. Photo-triggered response for the nanoformulation not bearing the rhodamine B dye was drastically less as less Dexa was released on exposure to NIR radiation which suggest that the photo-cleavage of linker and release of Dexa mainly originated from the indirect excitation through the uphill energy conversions based on donor-acceptor model FRET. The promising pathway of nanophotonics for the on-demand release of the drug makes this nanocarrier very promising for applications in nanomedicine.

  13. Interactive Video, The Next Step

    Science.gov (United States)

    Strong, L. R.; Wold-Brennon, R.; Cooper, S. K.; Brinkhuis, D.

    2012-12-01

    Video has the ingredients to reach us emotionally - with amazing images, enthusiastic interviews, music, and video game-like animations-- and it's emotion that motivates us to learn more about our new interest. However, watching video is usually passive. New web-based technology is expanding and enhancing the video experience, creating opportunities to use video with more direct interaction. This talk will look at an Educaton and Outreach team's experience producing video-centric curriculum using innovative interactive media tools from TED-Ed and FlixMaster. The Consortium for Ocean Leadership's Deep Earth Academy has partnered with the Center for Dark Energy Biosphere Investigations (C-DEBI) to send educators and a video producer aboard three deep sea research expeditions to the Juan de Fuca plate to install and service sub-seafloor observatories. This collaboration between teachers, students, scientists and media producers has proved a productive confluence, providing new ways of understanding both ground-breaking science and the process of science itself - by experimenting with new ways to use multimedia during ocean-going expeditions and developing curriculum and other projects post-cruise.

  14. Nanoscale Fluorescent Metal-Organic Framework@Microporous Organic Polymer Composites for Enhanced Intracellular Uptake and Bioimaging.

    Science.gov (United States)

    Wang, Lei; Wang, Weiqi; Zheng, Xiaohua; Li, Zhensheng; Xie, Zhigang

    2017-01-26

    Polymer-modified metal-organic frameworks combine the advantages of both soft polymers and crystalline metal-organic frameworks (MOFs). It is a big challenge to develop simple methods for surface modification of MOFs. In this work, MOF@microporous organic polymer (MOP) hybrid nanoparticles (UNP) have been synthesized by epitaxial growth of luminescent boron-dipyrromethene (BODIPYs)-imine MOPs on the surface of UiO-MOF seeds, which exhibit low cytotoxicity, smaller size distribution, well-retained pore integrity, and available functional sites. After folic acid grafting, the enhanced intracellular uptake and bioimaging was validated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Use of fluorescent Ca2+ dyes with green fluorescent protein and its variants: problems and solutions.

    OpenAIRE

    Bolsover, S.; O. Ibrahim; O'luanaigh, N; Williams, H; Cockcroft, S

    2001-01-01

    We have studied the degree to which fluorescent Ca(2+) indicator dyes, and green fluorescent protein and its variants, can be used together. We find that the most commonly used fluorescent protein, enhanced green fluorescent protein (EGFP), seriously contaminates fura 2 signals. We suggest two alternative combinations for which there is no detectable contamination of the Ca(2+) indicator signal by the fluorescent protein. Blue fluorescent protein can be used with the Ca(2+) indicator Fura Red...

  16. Learning computer science by watching video games

    OpenAIRE

    Nagataki, Hiroyuki

    2014-01-01

    This paper proposes a teaching method that utilizes video games in computer science education. The primary characteristic of this approach is that it utilizes video games as observational materials. The underlying idea is that by observing the computational behavior of a wide variety of video games, learners will easily grasp the fundamental architecture, theory, and technology of computers. The results of a case study conducted indicate that the method enhances the motivation of students for...

  17. Application of the Coastal and Marine Ecological Classification Standard to ROV Video Data for Enhanced Analysis of Deep-Sea Habitats in the Gulf of Mexico

    Science.gov (United States)

    Ruby, C.; Skarke, A. D.; Mesick, S.

    2016-02-01

    The Coastal and Marine Ecological Classification Standard (CMECS) is a network of common nomenclature that provides a comprehensive framework for organizing physical, biological, and chemical information about marine ecosystems. It was developed by the National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, in collaboration with other feral agencies and academic institutions, as a means for scientists to more easily access, compare, and integrate marine environmental data from a wide range of sources and time frames. CMECS has been endorsed by the Federal Geographic Data Committee (FGDC) as a national metadata standard. The research presented here is focused on the application of CMECS to deep-sea video and environmental data collected by the NOAA ROV Deep Discoverer and the NOAA Ship Okeanos Explorer in the Gulf of Mexico in 2011-2014. Specifically, a spatiotemporal index of the physical, chemical, biological, and geological features observed in ROV video records was developed in order to allow scientist, otherwise unfamiliar with the specific content of existing video data, to rapidly determine the abundance and distribution of features of interest, and thus evaluate the applicability of those video data to their research. CMECS units (setting, component, or modifier) for seafloor images extracted from high-definition ROV video data were established based upon visual assessment as well as analysis of coincident environmental sensor (temperature, conductivity), navigation (ROV position, depth, attitude), and log (narrative dive summary) data. The resulting classification units were integrated into easily searchable textual and geo-databases as well as an interactive web map. The spatial distribution and associations of deep-sea habitats as indicated by CMECS classifications are described and optimized methodological approaches for application of CMECS to deep-sea video and environmental data are presented.

  18. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  19. An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers

    Science.gov (United States)

    Wagnières, Georges A.; Studzinski, André P.; van den Bergh, Hubert E.

    1997-01-01

    We describe the design and performance tested during six years of clinical trials of a fluorescence endoscope for the detection and delineation of cancers in several hollow organs. The apparatus is based on the imaging of the laser-induced fluorescence that differs between a tumor and its surrounding normal tissue. The tests are carried out in the upper aerodigestive tract, the tracheobronchial tree, the esophagus, and the colon. In the three former cases an exogenous dye is used (Photofrin II), whereas in the latter case fluorescein molecules conjugated with monoclonal antibodies directed against carcinoembryonic antigen are injected. The decrease of native tissue autofluorescence observed in early cancers is also used for detecting lesions in the tracheobronchial tree. The fluorescence contrast between the tumor and surrounding normal tissue is enhanced by real time image processing. This is done by simultaneously recording the fluorescence image in two spectral domains, after which these two images are digitized and manipulated with a mathematical operator (look-up table) at video frequency. Moreover, the device that is described below allows for an immediate observation of the endoscopic area under white light illumination during fluorescence detection in order to localize the origin of the "positive" fluorescence signals. Typical results obtained in the tracheobronchial tree and in the colon are presented and the sources of false positives and false negatives are evaluated in terms of the fluorescent dye, tissue optical properties, and illumination optics.

  20. Fluorescent dendritic organogels based on 2-(2'-hydroxyphenyl)benzoxazole: emission enhancement and multiple stimuli-responsive properties.

    Science.gov (United States)

    Chen, Hui; Feng, Yu; Deng, Guo-Jun; Liu, Zhi-Xiong; He, Yan-Mei; Fan, Qing-Hua

    2015-07-27

    A new highly efficient and versatile poly(benzyl ether) dendritic organogelator HPB-G1 with 2-(2'-hydroxyphenyl)benzoxazole (HPB) at the focal point has been designed and synthesized. HPB-G1 can form stable organogels toward various apolar and polar organic solvents. Further studies revealed that intermolecular multiple π-π stacking interactions are the main driving forces for the formation of the organogels. Notably, dendron HPB-G1 exhibited a significantly enhanced emission in the gel state in contrast to weak emission in solution. Most interestingly, these dendritic organogels exhibited multiple stimuli-responsive behaviors upon exposure to environmental stimuli, including temperature, sonication, shear stress, and the presence of anions, metal cations, acids/bases, thus leading to reversible sol-gel phase transitions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multiview video codec based on KTA techniques

    Science.gov (United States)

    Seo, Jungdong; Kim, Donghyun; Ryu, Seungchul; Sohn, Kwanghoon

    2011-03-01

    Multi-view video coding (MVC) is a video coding standard developed by MPEG and VCEG for multi-view video. It showed average PSNR gain of 1.5dB compared with view-independent coding by H.264/AVC. However, because resolutions of multi-view video are getting higher for more realistic 3D effect, high performance video codec is needed. MVC adopted hierarchical B-picture structure and inter-view prediction as core techniques. The hierarchical B-picture structure removes the temporal redundancy, and the inter-view prediction reduces the inter-view redundancy by compensated prediction from the reconstructed neighboring views. Nevertheless, MVC has inherent limitation in coding efficiency, because it is based on H.264/AVC. To overcome the limit, an enhanced video codec for multi-view video based on Key Technology Area (KTA) is proposed. KTA is a high efficiency video codec by Video Coding Expert Group (VCEG), and it was carried out for coding efficiency beyond H.264/AVC. The KTA software showed better coding gain than H.264/AVC by using additional coding techniques. The techniques and the inter-view prediction are implemented into the proposed codec, which showed high coding gain compared with the view-independent coding result by KTA. The results presents that the inter-view prediction can achieve higher efficiency in a multi-view video codec based on a high performance video codec such as HEVC.

  2. Automatic tracking of cells for video microscopy in patch clamp experiments.

    Science.gov (United States)

    Peixoto, Helton M; Munguba, Hermany; Cruz, Rossana M S; Guerreiro, Ana M G; Leao, Richardson N

    2014-06-20

    Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. The techniques of digital image processing used in this work are an important addition to the set of microscopy

  3. Video Conferencing for a Virtual Seminar Room

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Fosgerau, A.; Hansen, Peter Søren K.

    2002-01-01

    A PC-based video conferencing system for a virtual seminar room is presented. The platform is enhanced with DSPs for audio and video coding and processing. A microphone array is used to facilitate audio based speaker tracking, which is used for adaptive beam-forming and automatic camera-control...

  4. Enhancing Parent-Child Communication and Parental Self-Esteem with a Video-Feedback Intervention: Outcomes with Prelingual Deaf and Hard-of-Hearing Children

    Science.gov (United States)

    Lam-Cassettari, Christa; Wadnerkar-Kamble, Meghana B.; James, Deborah M.

    2015-01-01

    Evidence on best practice for optimizing communication with prelingual deaf and hard-of-hearing (DHH) children is lacking. This study examined the effect of a family-focused psychosocial video intervention program on parent-child communication in the context of childhood hearing loss. Fourteen hearing parents with a prelingual DHH child…

  5. Robotic video photogrammetry system

    Science.gov (United States)

    Gustafson, Peter C.

    1997-07-01

    For many years, photogrammetry has been in use at TRW. During that time, needs have arisen for highly repetitive measurements. In an effort to satisfy these needs in a timely manner, a specialized Robotic Video Photogrammetry System (RVPS) was developed by TRW in conjunction with outside vendors. The primary application for the RVPS has strict accuracy requirements that demand significantly more images than the previously used film-based system. The time involved in taking these images was prohibitive but by automating the data acquisition process, video techniques became a practical alternative to the more traditional film- based approach. In fact, by applying video techniques, measurement productivity was enhanced significantly. Analysis involved was also brought `on-board' to the RVPS, allowing shop floor acquisition and delivery of results. The RVPS has also been applied in other tasks and was found to make a critical improvement in productivity, allowing many more tests to be run in a shorter time cycle. This paper will discuss the creation of the system and TRW's experiences with the RVPS. Highlighted will be the lessons learned during these efforts and significant attributes of the process not common to the standard application of photogrammetry for industrial measurement. As productivity and ease of use continue to drive the application of photogrammetry in today's manufacturing climate, TRW expects several systems, with technological improvements applied, to be in use in the near future.

  6. Lutein from Deepoxidation of Lutein Epoxide Replaces Zeaxanthin to Sustain an Enhanced Capacity for Nonphotochemical Chlorophyll Fluorescence Quenching in Avocado Shade Leaves in the Dark1

    Science.gov (United States)

    Förster, Britta; Pogson, Barry James; Osmond, Charles Barry

    2011-01-01

    Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m−2 s−1, increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQΔpH) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQΔLAZ); and after epoxidation of A+Z but with residual ΔL (NPQΔL). The capacity of both NPQΔLAZ and NPQΔL was similar and 45% larger than NPQΔpH, but dark relaxation of NPQΔLAZ was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQΔLAZ and NPQΔL provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to “lock in” enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools. PMID:21427278

  7. A fluorescent indicator for imaging lysosomal zinc(II) with Förster resonance energy transfer (FRET)-enhanced photostability and a narrow band of emission.

    Science.gov (United States)

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R; Davidson, Michael W; Zhu, Lei

    2015-01-07

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determination of berberine by measuring the enhanced total internal reflected fluorescence at water/tetrachloromethane interface in the presence of sodium dodecyl benzene sulfonate.

    Science.gov (United States)

    Feng, Ping; Huang, Cheng Zhi; Li, Yuan Fang

    2003-07-01

    A highly sensitive method for determination of berberine is proposed based on the measurements of total internal reflected fluorescence (TIRF) at water/ tetrachloromethane (H(2)O/CCl(4)) interface. In the pH range of 2.6-5.7, the co-adsorption of the berberine with the anionic surfactants such as sodium dodecyl benzene sulfonate (SDBS), sodium dodecylsulfonate (SDS), and sodium lauryl sulfate (SLS) occurs at the H(2)O/CCl(4 )interface, resulting in greatly enhanced TIRF signal characterized by the emission at 526 nm when excited with a 351 nm light beam. The enhanced TIRF intensity is in proportion to the berberine concentration in the range 0.2-10.0x10(-7) mol L(-1). The limit of detection is 1.7x10(-9) mol L(-1) (3sigma). It was found that ions such as Ca(II), Cu(II), Fe(III), Cd(II), Mg(II), Zn(II), Pb(II), and Al(III) can be allowed larger than 1.0x10(-4) mol L(-1). Meanwhile, the organic compounds such as vitamin B, saccharine, and amino acid do not display any effect for the present TIRF method even if they are larger than 1.0x10(-2) mol L(-1)in high concentration levels (larger than 1.0x10(-5) mol L(-1)). The results of determination for synthetic samples were agreement with the desired values, and the ones for tablets were identical with those obtained according to the method of Chinese Pharmacopoeia.

  9. Efficient Generation of Human Embryonic Stem Cell-Derived Cardiac Progenitors Based on Tissue-Specific Enhanced Green Fluorescence Protein Expression

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I.; Sarkadi, Balázs

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFPhigh rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFPhigh rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFPhigh rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications. PMID:24734786

  10. Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

    Science.gov (United States)

    Galen, James E.; Geddes, Chris D.; Levine, Myron M.

    2011-01-01

    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids). PMID:21494634

  11. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  12. Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction.

    Science.gov (United States)

    Yin, Hua; Ma, Yanlin; Deng, Yang; Xu, Zhenbo; Liu, Junyan; Zhao, Junfeng; Dong, Jianjun; Yu, Junhong; Chang, Zongming

    2016-08-01

    Genome shuffling is an efficient and promising approach for the rapid improvement of microbial phenotypes. In this study, genome shuffling was applied to enhance the yield of glutathione produced by Saccharomyces cerevisiae YS86. Six isolates with subtle improvements in glutathione yield were obtained from populations generated by ultraviolet (UV) irradiation and nitrosoguanidine (NTG) mutagenesis. These yeast strains were then subjected to recursive pool-wise protoplast fusion. A strain library that was likely to yield positive colonies was created by fusing the lethal protoplasts obtained from both UV irradiation and heat treatments. After two rounds of genome shuffling, a high-yield recombinant YSF2-19 strain that exhibited 3.2- and 3.3-fold increases in glutathione production in shake flask and fermenter respectively was obtained. Comparative analysis of synthetase gene expression was conducted between the initial and shuffled strains using FQ (fluorescent quantitation) RT-PCR (reverse transcription polymerase chain reaction). Delta CT (threshold cycle) relative quantitation analysis revealed that glutathione synthetase gene (GSH-I) expression at the transcriptional level in the YSF2-19 strain was 9.9-fold greater than in the initial YS86. The shuffled yeast strain has a potential application in brewing, other food, and pharmaceutical industries. Simultaneously, the analysis of improved phenotypes will provide more valuable data for inverse metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    Science.gov (United States)

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.

  14. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  15. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C.; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E.

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1±2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6±8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  16. Incorporating user motivations to design for video tagging

    NARCIS (Netherlands)

    van Velsen, Lex Stefan; Melenhorst, M.S.

    2009-01-01

    User video tagging can enhance the indexing of large collections of videos, or can provide the basis for personalizing output. However, before the benefits of tagging can be reaped, users must be motivated to provide videos with tags. This article describes a two-stage study that aimed at collecting

  17. Student-Produced Videos for Exam Review in Mathematics Courses

    Science.gov (United States)

    Hulsizer, Heidi

    2016-01-01

    Videos have been used in classrooms for decades, but student-produced video has recently become a viable, economical option to enhance learning. Students were asked to create videos to be used for their exam review in two different undergraduate mathematics courses: Differential Equation and Complex Analysis. Students were then surveyed about…

  18. Semi-automatic 2D-to-3D conversion of human-centered videos enhanced by age and gender estimation

    Science.gov (United States)

    Fard, Mani B.; Bayazit, Ulug

    2014-01-01

    In this work, we propose a feasible 3D video generation method to enable high quality visual perception using a monocular uncalibrated camera. Anthropometric distances between face standard landmarks are approximated based on the person's age and gender. These measurements are used in a 2-stage approach to facilitate the construction of binocular stereo images. Specifically, one view of the background is registered in initial stage of video shooting. It is followed by an automatically guided displacement of the camera toward its secondary position. At the secondary position the real-time capturing is started and the foreground (viewed person) region is extracted for each frame. After an accurate parallax estimation the extracted foreground is placed in front of the background image that was captured at the initial position. So the constructed full view of the initial position combined with the view of the secondary (current) position, form the complete binocular pairs during real-time video shooting. The subjective evaluation results present a competent depth perception quality through the proposed system.

  19. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... NEI YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  20. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia ... of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: Amblyopia ...

  1. NEI You Tube Videos: Amblyopia

    Science.gov (United States)

    ... YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia ... of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: Amblyopia ...

  2. Investigating Students' Use and Adoption of "With-Video Assignments": Lessons Learnt for Video-Based Open Educational Resources

    Science.gov (United States)

    Pappas, Ilias O.; Giannakos, Michail N.; Mikalef, Patrick

    2017-01-01

    The use of video-based open educational resources is widespread, and includes multiple approaches to implementation. In this paper, the term "with-video assignments" is introduced to portray video learning resources enhanced with assignments. The goal of this study is to examine the factors that influence students' intention to adopt…

  3. Indexed Captioned Searchable Videos: A Learning Companion for STEM Coursework

    Science.gov (United States)

    Tuna, Tayfun; Subhlok, Jaspal; Barker, Lecia; Shah, Shishir; Johnson, Olin; Hovey, Christopher

    2017-02-01

    Videos of classroom lectures have proven to be a popular and versatile learning resource. A key shortcoming of the lecture video format is accessing the content of interest hidden in a video. This work meets this challenge with an advanced video framework featuring topical indexing, search, and captioning (ICS videos). Standard optical character recognition (OCR) technology was enhanced with image transformations for extraction of text from video frames to support indexing and search. The images and text on video frames is analyzed to divide lecture videos into topical segments. The ICS video player integrates indexing, search, and captioning in video playback providing instant access to the content of interest. This video framework has been used by more than 70 courses in a variety of STEM disciplines and assessed by more than 4000 students. Results presented from the surveys demonstrate the value of the videos as a learning resource and the role played by videos in a students learning process. Survey results also establish the value of indexing and search features in a video platform for education. This paper reports on the development and evaluation of ICS videos framework and over 5 years of usage experience in several STEM courses.

  4. Reduced attentional capture in action video game players.

    Science.gov (United States)

    Chisholm, Joseph D; Hickey, Clayton; Theeuwes, Jan; Kingstone, Alan

    2010-04-01

    Recent studies indicate that playing action video games improves performance on a number of attention-based tasks. However, it remains unclear whether action video game experience primarily affects endogenous or exogenous forms of spatial orienting. To examine this issue, action video game players and non-action video game players performed an attentional capture task. The results show that action video game players responded quicker than non-action video game players, both when a target appeared in isolation and when a salient, task-irrelevant distractor was present in the display. Action video game players additionally showed a smaller capture effect than did non-action video game players. When coupled with the findings of previous studies, the collective evidence indicates that extensive experience with action video games may enhance players' top-down attentional control, which, in turn, can modulate the negative effects of bottom-up attentional capture.

  5. Rheumatoid Arthritis Educational Video Series

    Medline Plus

    Full Text Available ... Rheumatoid Arthritis Educational Video Series Rheumatoid Arthritis Educational Video Series This series of five videos was designed ... Activity Role of Body Weight in Osteoarthritis Educational Videos for Patients Rheumatoid Arthritis Educational Video Series Psoriatic ...

  6. Fluorescent nanodiamonds for ultrasensitive detection

    Science.gov (United States)

    Kimball, Joseph; Shumilov, Dmytro; Maliwa, Badri; Zerda, T. W.; Rout, Bibhu; Fudala, Rafal; Raut, Sangram; Gryczynski, Ignacy; Simanek, Eric; Borejdo, Julian; Rich, Ryan; Akopova, Irina; Gryczynski, Zygmunt

    2014-03-01

    Fluorescent nanodiamonds (NDs) are new and emerging nanomaterials that have potential to be used as fluorescence imaging agents and also as a highly versatile platform for the controlled functionalization and delivery of a wide spectrum of therapeutic agents. We will utilize two experimental methods, TIRF, a relatively simple method based on total internal reflection fluorescence and SPRF, fluorescence enhanced by resonance coupling with surface plasmons. We estimate that the SPRF method will be 100 times sensitive than currently available similar detectors based on detectors. The ultimate goal of this research is to develop microarray platforms that could be used for sensitive, fast and inexpensive gene sequencing and protein detection.

  7. Fluorescence-based biosensors.

    Science.gov (United States)

    Strianese, Maria; Staiano, Maria; Ruggiero, Giuseppe; Labella, Tullio; Pellecchia, Claudio; D'Auria, Sabato

    2012-01-01

    The field of optical sensors has been a growing research area over the last three decades. A wide range of books and review articles has been published by experts in the field who have highlighted the advantages of optical sensing over other transduction methods. Fluorescence is by far the method most often applied and comes in a variety of schemes. Nowadays, one of the most common approaches in the field of optical biosensors is to combine the high sensitivity of fluorescence detection in combination with the high selectivity provided by ligand-binding proteins. In this chapter we deal with reviewing our recent results on the implementation of fluorescence-based sensors for monitoring environmentally hazardous gas molecules (e.g. nitric oxide, hydrogen sulfide). Reflectivity-based sensors, fluorescence correlation spectroscopy-based (FCS) systems, and sensors relying on the enhanced fluorescence emission on silver island films (SIFs) coupled to the total internal reflection fluorescence mode (TIRF) for the detection of gliadin and other prolamines considered toxic for celiac patients are also discussed herein.

  8. 61214++++','DOAJ-ART-EN'); return false;" href="+++++https://jual.nipissingu.ca/wp-content/uploads/sites/25/2014/06/v61214.m4v">61214++++">Jailed - Video

    Directory of Open Access Journals (Sweden)

    Cameron CULBERT

    2012-07-01

    Full Text Available As the public education system in Northern Ontario continues to take a downward spiral, a plethora of secondary school students are being placed in an alternative educational environment. Juxtaposing the two educational settings reveals very similar methods and characteristics of educating our youth as opposed to using a truly alternative approach to education. This video reviews the relationship between public education and alternative education in a remote Northern Ontario setting. It is my belief that the traditional methods of teaching are not appropriate in educating at risk students in alternative schools. Paper and pencil worksheets do not motivate these students to learn and succeed. Alternative education should emphasize experiential learning, a just in time curriculum based on every unique individual and the students true passion for everyday life. Cameron Culbert was born on February 3rd, 1977 in North Bay, Ontario. His teenage years were split between attending public school and his willed curriculum on the ski hill. Culbert spent 10 years (1996-2002 & 2006-2010 competing for Canada as an alpine ski racer. His passion for teaching and coaching began as an athlete and has now transferred into the classroom and the community. As a graduate of Nipissing University (BA, BEd, MEd. Camerons research interests are alternative education, physical education and technology in the classroom. Currently Cameron is an active educator and coach in Northern Ontario.

  9. Video Design Games

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte; Christensen, Kasper Skov; Iversen, Ole Sejer

    We introduce Video Design Games to train educators in teaching design. The Video Design Game is a workshop format consisting of three rounds in which participants observe, reflect and generalize based on video snippets from their own practice. The paper reports on a Video Design Game workshop...

  10. Characterization of social video

    Science.gov (United States)

    Ostrowski, Jeffrey R.; Sarhan, Nabil J.

    2009-01-01

    The popularity of social media has grown dramatically over the World Wide Web. In this paper, we analyze the video popularity distribution of well-known social video websites (YouTube, Google Video, and the AOL Truveo Video Search engine) and characterize their workload. We identify trends in the categories, lengths, and formats of those videos, as well as characterize the evolution of those videos over time. We further provide an extensive analysis and comparison of video content amongst the main regions of the world.

  11. Leica solution: CARS microscopy at video rates

    Science.gov (United States)

    Lurquin, V.

    2008-02-01

    Confocal and multiphoton microscopy are powerful techniques to study morphology and dynamics in cells and tissue, if fluorescent labeling is possible or autofluorescence is strong. For non-fluorescent molecules, Coherent anti-Stokes Raman scattering (CARS) microscopy provides chemical contrast based on intrinsic and highly specific vibrational properties of molecules eliminating the need for labeling. Just as other multiphoton techniques, CARS microscopy possesses three-dimensional sectioning capabilities. Leica Microsystems has combined the CARS imaging technology with its TCS SP5 confocal microscope to provide several advantages for CARS imaging. For CARS microscopy, two picosecond near-infrared lasers are overlapped spatially and temporally and sent into the scanhead of the confocal system. The software allows programmed, automatic switching between these light sources for multi-modal imaging. Furthermore the Leica TCS SP5 can be equipped with a non-descanned detector which will significantly enhance the signal. The Leica TCS SP5 scanhead combines two technologies in one system: a conventional scanner for maximum resolution and a resonant scanner for high time resolution. The fast scanner allows imaging speeds as high as 25 images/per second at a resolution of 512×512 pixel. This corresponds to true video-rate allowing to follow processes at these time-scales as well as the acquisition of three-dimensional stacks in a few seconds. This time resolution is critical to study live animals or human patients for which heart beat and muscle movements lead to a blurring of the image if the acquisition time is high. Furthermore with the resonant scanhead the sectioning is truly confocal and does not suffer from spatial leakage. In summary, CARS microscopy combined with the tandem scanner makes the Leica TCS SP5 a powerful tool for three-dimensional, label-free imaging of chemical and biological samples in vitro and in vivo.

  12. Video Analytics for Business Intelligence

    CERN Document Server

    Porikli, Fatih; Xiang, Tao; Gong, Shaogang

    2012-01-01

    Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the sho...

  13. Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy.

    Science.gov (United States)

    Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore

    2016-12-21

    New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.

  14. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines.

    Science.gov (United States)

    Takahashi, Akiko; Islam, M Sadiqul; Abe, Hideki; Okubo, Kataaki; Akazome, Yasuhisa; Kaneko, Takeshi; Hioki, Hiroyuki; Oka, Yoshitaka

    2016-03-01

    Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways. © 2015 Wiley Periodicals, Inc.

  15. Video visual analytics

    OpenAIRE

    Höferlin, Markus Johannes

    2013-01-01

    The amount of video data recorded world-wide is tremendously growing and has already reached hardly manageable dimensions. It originates from a wide range of application areas, such as surveillance, sports analysis, scientific video analysis, surgery documentation, and entertainment, and its analysis represents one of the challenges in computer science. The vast amount of video data renders manual analysis by watching the video data impractical. However, automatic evaluation of video material...

  16. Chemometric endogenous fluorescence for tissue diagnosis

    Science.gov (United States)

    Li, Run; Vasquez, Kevin; Xu, M.

    2017-02-01

    Endogenous fluorescence is a powerful technique for probing both structure and function of tissue. We show that enabling wide-field fluorescence microscopy with chemometrics can significantly enhance the performance of tissue diagnosis with endogenous fluorescence. The spatial distribution and absolute concentration of fluorophores is uncovered with non-negative factorization aided by the spatial diversity from microscopic autofluorescence color images. Fluorescence quantification in terms of its absolute concentration map avoids issues dependent on specific measurement approach or systems and yields biologically meaningful data. The standardization of endogenous fluorescence in terms of absolute concentration will facilitate its translation to the clinics and simplifies the assessment of competing methods relating to tissue fluorescence.

  17. A video rate laser scanning confocal microscope

    Science.gov (United States)

    Ma, Hongzhou; Jiang, James; Ren, Hongwu; Cable, Alex E.

    2008-02-01

    A video-rate laser scanning microscope was developed as an imaging engine to integrate with other photonic building blocks to fulfill various microscopic imaging applications. The system is quipped with diode laser source, resonant scanner, galvo scanner, control electronic and computer loaded with data acquisition boards and imaging software. Based on an open frame design, the system can be combined with varies optics to perform the functions of fluorescence confocal microscopy, multi-photon microscopy and backscattering confocal microscopy. Mounted to the camera port, it allows a traditional microscope to obtain confocal images at video rate. In this paper, we will describe the design principle and demonstrate examples of applications.

  18. Hardware architectures for real time processing of High Definition video sequences

    OpenAIRE

    Genovese, Mariangela

    2014-01-01

    Actually, application fields, such as medicine, space exploration, surveillance, authentication, HDTV, and automated industry inspection, require capturing, storing and processing continuous streams of video data. Consequently, different process techniques (video enhancement, segmentation, object detection, or video compression, as examples) are involved in these applications. Such techniques often require a significant number of operations depending on the algorithm complexity and the video ...

  19. “Is Your Man Stepping Out?” An online pilot study to evaluate acceptability of a guide-enhanced HIV prevention soap opera video series and feasibility of recruitment by Facebook© advertising

    Science.gov (United States)

    Jones, Rachel; Lacroix, Lorraine J.; Nolte, Kerry

    2015-01-01

    Love, Sex, and Choices (LSC) is a 12-episode soap opera video series developed to reduce HIV risk among at-risk Black urban women. We added a video guide commentator to offer insights at critical dramatic moments. An online pilot study evaluated acceptability of the Guide Enhanced LSC (GELSC) and feasibility of Facebook© advertising, streaming to smartphones, and retention. Facebook© ads targeted high HIV-prevalence areas. In 30 days, Facebook© ads generated 230 screening interviews; 84 were high risk, 40 watched GELSC, and 39 followed up at 30 days. Recruitment of high-risk participants was 10 per week compared to 7 per week in previous field recruitment. Half the sample was Black; 12% were Latina. Findings suggest GELSC influenced sex scripts and behaviors. It was feasible to recruit young urban women from a large geographic area via Facebook© and to retain the sample. We extended the reach to at-risk women by streaming to mobile devices. PMID:26066692

  20. "Is Your Man Stepping Out?" An Online Pilot Study to Evaluate Acceptability of a Guide-Enhanced HIV Prevention Soap Opera Video Series and Feasibility of Recruitment by Facebook Advertising.

    Science.gov (United States)

    Jones, Rachel; Lacroix, Lorraine J; Nolte, Kerry

    2015-01-01

    Love, Sex, and Choices (LSC) is a 12-episode soap opera video series developed to reduce HIV risk among at-risk Black urban women. We added a video guide commentator to offer insights at critical dramatic moments. An online pilot study evaluated acceptability of the Guide-Enhanced LSC (GELSC) and feasibility of Facebook advertising, streaming to smartphones, and retention. Facebook ads targeted high-HIV-prevalence areas. In 30 days, Facebook ads generated 230 screening interviews: 84 were high risk, 40 watched GELSC, and 39 followed up at 30 days. Recruitment of high-risk participants was 10 per week, compared to seven per week in previous field recruitment. Half the sample was Black; 12% were Latina. Findings suggest GELSC influenced sex scripts and behaviors. It was feasible to recruit young urban women from a large geographic area via Facebook and to retain the sample. We extended the reach to at-risk women by streaming to mobile devices. Copyright © 2015 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.