Institute of Scientific and Technical Information of China (English)
平健; 陈思捷; 张宁; 严正; 姚良忠
2017-01-01
With the deregulation of power industry and increasing penetration of distributed energy resources,both opportunities and challenges arise in distribution networks.Traditionally a distribution network is operated in a centralized way similar to a transmission network.However,this may incur problems such as high transaction costs,inefficiency,lack of transparency,and cyber-security risk.This paper presented a decentralized transactive distribution system operation method.Firstly,a transactive and decentralized mechanism was proposed.When a prosumer's actual generation/load deviates from her day-ahead schedule,she can send a real-time transaction request to neighboring prosumers and ask help to eliminate the deviation.A Vickrey-Clarke-Groves (VCG) auction method was introduced to encourage honest bidding of her neighbors.A security check method was proposed to ensure that power flows are within limits.Then,an operation method of a transactive distribution system,based on Ethereum blockchain that ensures transparency and information symmetry,was proposed.We also designed a smart contract of transactive energy.The simulation result based on Ethereum private blockchain shows that the proposed decentralized transactive method can deliver multilateral bidding of prosumers,minimize the total cost of eliminating deviation,and ensure the economic and secure operation of a distribution network.%电力体制改革的推进以及分布式能源渗透率的提高给配网运行带来了机遇与挑战.传统上,配网借鉴输电侧经验,以集中的方式管理运行.然而,这一模式在新形势下存在成本高、效率低、透明度低、信息安全风险高等问题.为此,该文提出了去中心化的配网运行模式和方法.首先,提出无须中心机构参与的配网交易机制与模型:配网中的产消者在其实际出力/负荷偏离发用电计划时,可发起实时交易请求,由周边产消者协助消除这一偏差,维持配网的供求动态平
Capacity Allocation and Revenue Sharing in Airline Alliances: A Combinatorial Auction-Based Modeling
Directory of Open Access Journals (Sweden)
Ying-jing Gu
2017-01-01
Full Text Available This paper attempts to establish a framework to help airline alliances effectively allocate their seat capacity with the purpose of maximizing alliances’ revenue. By assuming the airline alliance as the auctioneer and seat capacity in an itinerary as lots, the combinatorial auction model is constructed to optimize the allocation of the seat, and the revenue sharing method is established to share revenue between partners by Vickrey-Clarke-Groves (VCG mechanism. The result of the numerical study shows that the seat capacity allocation is effective even without information exchanging completely and the twofold revenue shares method shows more excitation for the airlines.
A distributed incentive compatible pricing mechanism for P2P networks
Zhang, Jie; Zhao, Zheng; Xiong, Xiao; Shi, Qingwei
2007-09-01
Peer-to-Peer (P2P) systems are currently receiving considerable interest. However, as experience with P2P networks shows, the selfish behaviors of peers may lead to serious problems of P2P network, such as free-riding and white-washing. In order to solve these problems, there are increasing considerations on reputation system design in the study of P2P networks. Most of the existing works is concerning probabilistic estimation or social networks to evaluate the trustworthiness for a peer to others. However, these models can not be efficient all the time. In this paper, our aim is to provide a general mechanism that can maximize P2P networks social welfare in a way of Vickrey-Clarke-Groves family, while assuming every peer in P2P networks is rational and selfish, which means they only concern about their own outcome. This mechanism has some desirable properties using an O(n) algorithm: (1) incentive compatibility, every peer truly report its connection type; (2) individually rationality; and (3) fully decentralized, we design a multiple-principal multiple-agent model, concerning about the service provider and service requester individually.
Spatiotemporal representation of cardiac vectorcardiogram (VCG signals
Directory of Open Access Journals (Sweden)
Yang Hui
2012-03-01
Full Text Available Abstract Background Vectorcardiogram (VCG signals monitor both spatial and temporal cardiac electrical activities along three orthogonal planes of the body. However, the absence of spatiotemporal resolution in conventional VCG representations is a major impediment for medical interpretation and clinical usage of VCG. This is especially so because time-domain features of 12-lead ECG, instead of both spatial and temporal characteristics of VCG, are widely used for the automatic assessment of cardiac pathological patterns. Materials and methods We present a novel representation approach that captures critical spatiotemporal heart dynamics by displaying the real time motion of VCG cardiac vectors in a 3D space. Such a dynamic display can also be realized with only one lead ECG signal (e.g., ambulatory ECG through an alternative lag-reconstructed ECG representation from nonlinear dynamics principles. Furthermore, the trajectories are color coded with additional dynamical properties of space-time VCG signals, e.g., the curvature, speed, octant and phase angles to enhance the information visibility. Results In this investigation, spatiotemporal VCG signal representation is used to characterize various spatiotemporal pathological patterns for healthy control (HC, myocardial infarction (MI, atrial fibrillation (AF and bundle branch block (BBB. The proposed color coding scheme revealed that the spatial locations of the peak of T waves are in the Octant 6 for the majority (i.e., 74 out of 80 of healthy recordings in the PhysioNet PTB database. In contrast, the peak of T waves from 31.79% (117/368 of MI subjects are found to remain in Octant 6 and the rest (68.21% spread over all other octants. The spatiotemporal VCG signal representation is shown to capture the same important heart characteristics as the 12-lead ECG plots and more. Conclusions Spatiotemporal VCG signal representation is shown to facilitate the characterization of space-time cardiac
Characterizing Economic and Social Properties of Trust and Reputation Systems in P2P Environment
Institute of Scientific and Technical Information of China (English)
Yu-Feng Wang; Yoshiaki Hori; Kouichi Sakurai
2008-01-01
Considering the fact that P2P (Peer-to-Peer) systems are self-organized and autonomous, social-control mechanism (like trust and reputation) is essential to evaluate the trustworthiness of participating peers and to combat the selfish, dishonest and malicious peer behaviors. So, naturally, we advocate that P2P systems that gradually act as an important information infrastructure should be multi-disciplinary research topic, and reflect certain features of our society. So, from economic and social perspective, this paper designs the incentive-compatible reputation feedback scheme based on well-known economic model, and characterizes the social features of trust network in terms of efficiency and cost. Specifically, our framework has two distinctive purposes: first, from high-level perspective, we argue trust system is a special kind of social network, and an accurate characterization of the structural properties of the network can be of fundamental importance to understand the dynamics of the system. Thus, inspired by the concept of weighted small-world, this paper proposes new measurements to characterize the social properties of trust system, that is, highg lobal and local efficiency, and low cost; then, from relative low-level perspective, we argue that reputation feedback is a special kind of information, and it is not free. So, based on economic model, VCG (Vickrey-Clarke-Grove)-like reputation remuneration mechanism is proposed to stimulate rational peers not only to provide reputation feedback, but truthfully offer feedback. Furthermore, considering that trust and reputation is subjective, we classify the trust into functional trust and referral trust, and extend the referral trust to include two factors: similarity and truthfulness, which can efficiently reduce the trust inference error. The preliminary simulation results show the benefits of our proposal and the emergence of certain social properties in trust network.
Directory of Open Access Journals (Sweden)
Anat Lerner
2014-04-01
Full Text Available We characterize the efficiency space of deterministic, dominant-strategy incentive compatible, individually rational and Pareto-optimal combinatorial auctions in a model with two players and k nonidentical items. We examine a model with multidimensional types, private values and quasilinear preferences for the players with one relaxation: one of the players is subject to a publicly known budget constraint. We show that if it is publicly known that the valuation for the largest bundle is less than the budget for at least one of the players, then Vickrey-Clarke-Groves (VCG uniquely fulfills the basic properties of being deterministic, dominant-strategy incentive compatible, individually rational and Pareto optimal. Our characterization of the efficient space for deterministic budget constrained combinatorial auctions is similar in spirit to that of Maskin 2000 for Bayesian single-item constrained efficiency auctions and comparable with Ausubel and Milgrom 2002 for non-constrained combinatorial auctions.
Fov isolates belonging to all known races, biotypes, and most of known genotypes were characterized by phylogenetic and VCG analysis. VCGs with multiple members were sequenced for at least two members, and the resulting sequences were always identical except for VCG01111 members. Vegetative compatib...
Immunomodifying effect of VCG vaccine in treatment of urinary bladder neoplasm
International Nuclear Information System (INIS)
Neprina, G.S.; Panteleeva, E.S.; Vatin, O.E.; Karyakin, O.B.; Kurasova, V.G.; Filatov, P.P.; Dunchik, V.N.
1989-01-01
It is shown that immunotherapy realization using VCG vaccine after completion of PCT (polychemotherapy) course in patients suffering from later stages of urinary bladder neoplasm, allowed one to maximally connect stages of chemo- and radiation therapy at the expense of sufficient increase of the quantity of main groups of immunocompetent cells. Introduction of incometacin to immunocorrection scheme allowed one to remove disbalance in immunoregulating lymphocyte system which testifies to advisability of combined applicaion of VCG vaccine and indometacin in complex treatment of cerinary bladder neoplasms. 5 refs
Smart building temperature control using occupant feedback
Gupta, Santosh K.
feedback signals, we propose a distributed solution, which ensures that a consensus is attained among all occupants upon convergence, irrespective of their temperature preferences being in coherence or conflicting. Occupants are only assumed to be rational, in that they choose their own temperature set-points so as to minimize their individual energy cost plus discomfort. We use Alternating Direction Method of Multipliers ( ADMM) to solve our consensus problem. We further establish the convergence of the proposed algorithm to the optimal thermal set point values that minimize the sum of the energy cost and the aggregate discomfort of all occupants in a multi-zone building. For simulating our consensus algorithm we use realistic building parameters based on the Watervliet test facility. The simulation study based on real world building parameters establish the validity of our theoretical model and provide insights on the dynamics of the system with a mobile user population. In the third part we present a game-theoretic (auction) mechanism, that requires occupants to "purchase" their individualized comfort levels beyond what is provided by default by the building operator. The comfort pricing policy, derived as an extension of Vickrey-Clarke-Groves (VCG) pricing, ensures incentive-compatibility of the mechanism, i.e., an occupant acting in self-interest cannot benefit from declaring their comfort function untruthfully, irrespective of the choices made by other occupants. The declared (or estimated) occupant comfort ranges (functions) are then utilized by the building operator---along with the energy cost information---to set the environment controls to optimally balance the aggregate discomfort of the occupants and the energy cost of the building operator. We use realistic building model and parameters based on our test facility to demonstrate the convergence of the actual temperatures in different zones to the desired temperatures, and provide insight to the pricing
Picot, Adeline; Doster, Mark; Islam, Md-Sajedul; Callicott, Kenneth; Ortega-Beltran, Alejandro; Cotty, Peter; Michailides, Themis
2018-01-16
To identify predominant isolates for potential use as biocontrol agents, Aspergillus flavus isolates collected from soils of almond, pistachio and fig orchard in the Central Valley of California were tested for their membership to 16 atoxigenic vegetative compatibility groups (VCGs), including YV36, the VCG to which AF36, an atoxigenic isolate commercialized in the United States as biopesticide, belongs. A surprisingly large proportion of isolates belonged to YV36 (13.3%, 7.2% and 6.6% of the total almond, pistachio and fig populations, respectively), while the percentage of isolates belonging to the other 15 VCGs ranged from 0% to 2.3%. In order to gain a better insight into the structure and diversity of atoxigenic A. flavus populations and to further identify predominant isolates, seventeen SSR markers were then used to genetically characterize AF36, the 15 type-isolates of the VCGs and 342 atoxigenic isolates of the almond population. There was considerable genetic diversity among isolates with a lack of differentiation among micro-geographical regions or years. Since isolates sharing identical SSR profiles from distinct orchards were rare, we separated them into groups of at least 3 closely-related isolates from distinct orchards that shared identical alleles for at least 15 out of the 17 loci. This led to the identification of 15 groups comprising up to 24 closely-related isolates. The group which contained the largest number of isolates were members of YV36 while five groups were also found to be members of our studied atoxigenic VCGs. These results suggest that these 15 groups, and AF36 in particular, are well adapted to various environmental conditions in California and to tree crops and, as such, are good candidates for use as biocontrol agents. Published by Elsevier B.V.
Mechanism Design for Multi-slot Ads Auction in Sponsored Search Markets
Deng, Xiaotie; Sun, Yang; Yin, Ming; Zhou, Yunhong
In this paper, we study pricing models for multi-slot advertisements, where advertisers can bid to place links to their sales webpages at one or multiple slots on a webpage, called the multi-slot AD auction problem. We develop and analyze several important mechanisms, including the VCG mechanism for multi-slot ads auction, the optimal social welfare solution, as well as two weighted GSP-like protocols (mixed and hybrid). Furthermore, we consider that forward-looking Nash equilibrium and prove its existence in the weighted GSP-like pricing protocols.
Hartog, J P Den
1961-01-01
First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e
Chester, W
1979-01-01
When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How ever, the presentation is more sophisticated than might be considered appropri ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...
Value of the electrocardiogram in the diagnosis and prognosis of Brugada syndrome
International Nuclear Information System (INIS)
Perez-Riera, A; Femenia, F.; Baranchuk Facc, A
2011-01-01
Twelve-lead ECG associated to high right para sternal accessory leads is the resource that yields a greatest number of diagnostic and prognostic information in patients carriers of Brugada (Br S). By this simple, cheap, reproducible, and operator-independent method, depolarization alterations can be studied as well as ventricular re polarization aspects. The method allows diagnosing frequent episodes of atrial fibrillation and other supraventricular arrhythmias, as well as characterizing the different ventricular tachyarrhythmias. The analysis of the Frank VCG (F-VCG) of patients with Br S suggests the duality of the underlying pathophysiologic mechanisms of the Brugada Type-1 ECG pattern. F-VCG of patients with Brugada type-1 ECG pattern has distinctive characteristics from the F-VCG of individuals with R BBB pattern. The understanding of these mechanisms may help to guide future therapeutic efforts to control the channels dysfunction associated with this intriguing channelopaty
Eisenthal, Joshua
2018-05-01
At the time of Heinrich Hertz's premature death in 1894, he was regarded as one of the leading scientists of his generation. However, the posthumous publication of his treatise in the foundations of physics, Principles of Mechanics, presents a curious historical situation. Although Hertz's book was widely praised and admired, it was also met with a general sense of dissatisfaction. Almost all of Hertz's contemporaries criticized Principles for the lack of any plausible way to construct a mechanism from the "hidden masses" that are particularly characteristic of Hertz's framework. This issue seemed especially glaring given the expectation that Hertz's work might lead to a model of the underlying workings of the ether. In this paper I seek an explanation for why Hertz seemed so unperturbed by the difficulties of constructing such a mechanism. In arriving at this explanation, I explore how the development of Hertz's image-theory of representation framed the project of Principles. The image-theory brings with it an austere view of the "essential content" of mechanics, only requiring a kind of structural isomorphism between symbolic representations and target phenomena. I argue that bringing this into view makes clear why Hertz felt no need to work out the kinds of mechanisms that many of his readers looked for. Furthermore, I argue that a crucial role of Hertz's hypothesis of hidden masses has been widely overlooked. Far from acting as a proposal for the underlying structure of the ether, I show that Hertz's hypothesis ruled out knowledge of such underlying structure.
International Nuclear Information System (INIS)
Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu
1992-08-01
This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.
To identify predominant isolates for potential use as biocontrol agents, Aspergillus flavus isolates collected soils of almond, pistachio and fig orchard in the Central Valley of California were tested for their membership to 16 atoxigenic vegetative compatibility groups(VCGs), including YV36, the V...
van Deventer, M. Oskar
2009-01-01
The basis of a good mechanical puzzle is often a puzzling mechanism. This article will introduce some new puzzling mechanisms, like two knots that engage like gears, a chain whose links can be interchanged, and flat gears that do not come apart. It illustrates how puzzling mechanisms can be transformed into real mechanical puzzles, e.g., by…
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
Spencer, A J M
2004-01-01
The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten
... ventilation is a life support treatment. A mechanical ventilator is a machine that helps people breathe when ... to breathe enough on their own. The mechanical ventilator is also called a ventilator , respirator, or breathing ...
Risitano, Antonino
2011-01-01
METHODOLOGICAL STATEMENT OF ENGINEERING DESIGNApproaches to product design and developmentMechanical design and environmental requirementsPROPERTIES OF ENGINEERING MATERIALSMaterials for mechanical designCharacterization of metalsStress conditionsFatigue of materialsOptimum material selection in mechanical designDESIGN OF MECHANICAL COMPONENTS AND SYSTEMSFailure theoriesHertz theoryLubrificationShafts and bearingsSplines and keysSpringsFlexible machine elementsSpur gearsPress and shrink fitsPressure tubesCouplingsClutchesBrakes
text only Mechanical Systems.gif (14697 bytes) NLC Home Page NLC Technical SLAC Permanent Magnets Organization Overview The Mechanical Systems Group Organization is shown on the NLC Project Group Organization Chart (Next Linear Collider Technical Web Page). The Mechanical Systems Group operates on a matrixed
Barham, Jerry N.
Mechanical kinesiology is defined as a study of the mechanical factors affecting human movement, i.e., applying the physical laws of mechanics to the study of human motor behavior. This textbook on the subject is divided into thirty lessons. Each lesson is organized into three parts: a part on the text proper; a part entitled "study…
DEFF Research Database (Denmark)
Restrepo-Giraldo, John Dairo
2006-01-01
Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design such mechan......Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design...... using criteria such as size, performance parameters, operation environment, etc. Content: Understanding Mechanisms Design (2 weeks) Definitions, mechanisms representations, kinematic diagrams, the four bar linkage, mobility, applications of mechanisms, types of mechanisms, special mechanisms, the design......: equations for various mechanisms. At the end of this module you will be able to analyze existing mechanisms and to describe their movement. Designing mechanisms (7 weeks) Type synthesis and dimensional synthesis, function generation, path generation, three precision points in multi-loop mechanisms...
Caltagirone, Jean-Paul
2014-01-01
This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H
International Nuclear Information System (INIS)
Lee, T.D.
1985-01-01
This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics
Energy Technology Data Exchange (ETDEWEB)
Cho, Ho Seon; Lee, Geun Hui
2004-04-15
This book deals with how to read and draw the mechanical drawing, which includes the basic of drawing like purpose, kinds, and criterion, projection, special projection drawing, omission of the figure, section, and types of section, dimensioning method, writing way of allowable limit size, tolerance of regular size, parts list and assembling drawing, fitting, mechanical elements like screw, key, pin, rivet, spring, bearing, pipe, valve, welding, geometric tolerance and mechanical materials.
Benacquista, Matthew J
2018-01-01
This textbook provides an introduction to classical mechanics at a level intermediate between the typical undergraduate and advanced graduate level. This text describes the background and tools for use in the fields of modern physics, such as quantum mechanics, astrophysics, particle physics, and relativity. Students who have had basic undergraduate classical mechanics or who have a good understanding of the mathematical methods of physics will benefit from this book.
Bolton, W C
2013-01-01
This book gives comprehensive coverage of mechanical science for HNC/HND students taking mechanical engineering courses, including all topics likely to be covered in both years of such courses, as well as for first year undergraduate courses in mechanical engineering. It features 500 problems with answers and 200 worked examples. The third edition includes a new section on power transmission and an appendix on mathematics to help students with the basic notation of calculus and solution of differential equations.
Romano, Antonio
2010-01-01
This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica(R), this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include: * various aspects of nonlin
Linder, Ralph C.; And Others
This curriculum guide, which was validated by vocational teachers and mechanics in the field, describes the competencies needed by entry-level automotive mechanics. This guide lists 15 competencies; for each competency, various tasks with their performance objective, student learning experiences, suggested instructional techniques, instructional…
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Wilson, Theodore A
2016-01-01
This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...
Şengül, Caner
2016-01-01
College Mechanics QueBank has been designed to be different, enthusiastic, interesting and helpful to you. Therefore, it is not just a test bank about mechanics but also it is like a compass in order to find your way in mechanics Each chapter in this book is put in an order to follow a hierarchy of the mechanics topics; from vectors to simple harmonic motion. Throughout the book there are many multiple choice and long answer questions for you to solve. They have been created for YGS, LYS, SAT, IB or other standardized exams in the world because mechanics has no boundaries and so Physics has no country. Learn the main principle of each chapter and explore the daily life applications. Then you can start to solve the questions by planning a problem solving method carefully. Finally, enjoy solving the questions and discover the meachanics of the universe once more.
Zehnder, Alan T
2012-01-01
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering. He teaches applied mechanics and his research t...
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
International Nuclear Information System (INIS)
Rae, A.I.M.
1981-01-01
This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)
International Nuclear Information System (INIS)
Wood, A.G.; Parker, G.E.; Berry, R.
1976-01-01
It is stated that the indexing mechanism described can be used in a nuclear reactor fuel element inspection rig. It comprises a tubular body adapted to house a canister containing a number of fuel elements located longtitudinally, and has two chucks spaced apart for displacing the fuel elements longitudinally in a stepwise manner, together with a plunger mechanism for displacing them successively into the chucks. A measuring unit is located between the chucks for measuring the diameter of the fuel elements at intervals about their circumferences, and a secondary indexing mechanism is provided for rotating the measuring unit in a stepwise manner. (U.K.)
Lenarcic, Jadran; Stanišić, Michael M
2013-01-01
This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.
Perez, Nestor
2017-01-01
The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...
Lemos, Nivaldo A
2018-01-01
Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analyt...
Gross, Dietmar; Schröder, Jörg; Wall, Wolfgang A; Rajapakse, Nimal
Statics is the first volume of a three-volume textbook on Engineering Mechanics. The authors, using a time-honoured straightforward and flexible approach, present the basic concepts and principles of mechanics in the clearest and simplest form possible to advanced undergraduate engineering students of various disciplines and different educational backgrounds. An important objective of this book is to develop problem solving skills in a systematic manner. Another aim of this volume is to provide engineering students as well as practising engineers with a solid foundation to help them bridge the gap between undergraduate studies on the one hand and advanced courses on mechanics and/or practical engineering problems on the other. The book contains numerous examples, along with their complete solutions. Emphasis is placed upon student participation in problem solving. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Now in i...
International Nuclear Information System (INIS)
Stelle, Kellogg S
2007-01-01
With the development of the electronic archives in high-energy physics, there has been increasing questioning of the role of traditional publishing styles, particularly in the production of conference books. One aspect of traditional publishing that still receives wide appreciation, however, is in the production of well-focussed pedagogical material. The present two-volume edition, 'Supersymmetric Mechanics-Vol 1', edited by S Bellucci and 'Supersymmetric Mechanics-Vol 2', edited by S Bellucci, S Ferrara and A Marrani, is a good example of the kind of well-digested presentation that should still find its way into university libraries. This two-volume set presents the material of a set of pedagogical lectures presented at the INFN National Laboratory in Frascati over a two-year period on the subject of supersymmetric mechanics. The articles include the results of discussions with the attending students after the lectures. Overall, this makes for a useful compilation of material on a subject that underlies much of the current effort in supersymmetric approaches to cosmology and the unification programme. The first volume comprises articles on 'A journey through garden algebras' by S Bellucci, S J Gates Jr and E Orazi on linear supermultiplet realizations in supersymmetric mechanics,'Supersymmetric mechanics in superspace' by S Bellucci and S Krivonos, 'Noncommutative mechanics, Landau levels, twistors and Yang-Mills amplitudes' by V P Nair, 'Elements of (super) Hamiltonian formalism' by A Nersessian and 'Matrix mechanics' by C Sochichiu. The second volume consists entirely of a masterful presentation on 'The attractor mechanism and space time singularities' by S Ferrara. This presents a comprehensive and detailed overview of the structure of supersymmetric black hole solutions in supergravity, critical point structure in the scalar field moduli space and the thermodynamic consequences. This second volume alone makes the set a worthwhile addition to the research
Verruijt, A.
2010-01-01
This book is the text for the introductory course of Soil Mechanics in the Department of Civil Engineering of the Delft University of Technology, as I have given from 1980 until my retirement in 2002. It contains an introduction into the major principles and methods of soil mechanics, such as the analysis of stresses, deformations, and stability. The most important methods of determining soil parameters, in the laboratory and in situ, are also described. Some basic principles of applied mecha...
International Nuclear Information System (INIS)
Dougherty, D.R.; Colombo, P.
1984-01-01
Sufficient data are lacking to provide a basis for adequately assessing the long term leaching behavior of solidified low level radioactive waste forms in their disposal environment. Although the release of radioactivity from a waste form to an aqueous environment is recognized to be due to one or more mechanisms such as diffusion, dissolution, corrosion or ion exchange, the leaching mechanisms and the factors which control the leaching behavior of waste forms are not fully understood. This study will determine the prevailing mechanisms for a variety of selected LLW solidification agents which are being considered for use by defense and commercial generators and which will cover the broadest possible number of mechanisms. The investigation will proceed by the postulation of mathematical models representative of the prevailing mechanism(s) and the use of statistically designed experiments to test the actual leaching behavior of laborattory samples against the postulated representations. Maximum use of existing leach data in the literature will be made by incorporating literature results into a computerized data base along with the experimental results generated in this task
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Helrich, Carl S
2017-01-01
This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment...
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Wave Mechanics or Wave Statistical Mechanics
International Nuclear Information System (INIS)
Qian Shangwu; Xu Laizi
2007-01-01
By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.
Mayer, E
1977-01-01
Mechanical Seals, Third Edition is a source of practical information on the design and use of mechanical seals. Topics range from design fundamentals and test rigs to leakage, wear, friction and power, reliability, and special designs. This text is comprised of nine chapters; the first of which gives a general overview of seals, including various types of seals and their applications. Attention then turns to the fundamentals of seal design, with emphasis on six requirements that must be considered: sealing effectiveness, length of life, reliability, power consumption, space requirements, and c
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
International Nuclear Information System (INIS)
Granger, R.A.
1985-01-01
This text offers the most comprehensive approach available to fluid mechanics. The author takes great care to insure a physical understanding of concepts grounded in applied mathematics. The presentation of theory is followed by engineering applications, helping students develop problem-solving skills from the perspective of a professional engineer. Extensive use of detailed examples reinforces the understanding of theoretical concepts
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
International Nuclear Information System (INIS)
1988-01-01
The Mechanical Engineering Division provides the other NAC divisions with design and construction services. Items of special mechanical significance are discussed here. The projects which received major design attention during the past year were: a coupling capacitor for SPC2; a bending magnet and solenoid for ECR ion source; a scanner for outer orbits of the SSC; a scattering chamber for an experimental beamline; a beam swinger; a rotary target magazine for isotope production; a robot arm for isotope production; an isotope transport system and a target cooling system for isotope production. The major projects that were under construction are: a magnetic spectrometer; a second injector cyclotron (SPC2) and extensions to the high-energy beamlines. 4 figs
Schwabl, Franz
2006-01-01
The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...
International Nuclear Information System (INIS)
Miannay, D.P.
1995-01-01
This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped
Jana, Madhusudan
2015-01-01
Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...
Darbyshire, Alan
2010-01-01
Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.
Stronge, W. J.
2004-03-01
Impact mechanics is concerned with the reaction forces that develop during a collision and the dynamic response of structures to these reaction forces. The subject has a wide range of engineering applications, from designing sports equipment to improving the crashworthiness of automobiles. This book develops several different methodologies for analysing collisions between structures. These range from rigid body theory for structures that are stiff and compact, to vibration and wave analyses for flexible structures. The emphasis is on low-speed impact where damage is local to the small region of contact between the colliding bodies. The analytical methods presented give results that are more robust or less sensitive to initial conditions than have been achieved hitherto. As a text, Impact Mechanics builds upon foundation courses in dynamics and strength of materials. It includes numerous industrially relevant examples and end-of-chapter homework problems drawn from industry and sports. Practising engineers will also find the methods presented in this book useful in calculating the response of a mechanical system to impact.
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
International Nuclear Information System (INIS)
Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.
2003-01-01
This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows
International Nuclear Information System (INIS)
Nguyen Trong Anh
1988-01-01
The 1988 progress report of the Reaction Mechanisms laboratory (Polytechnic School, France), is presented. The research topics are: the valence bond methods, the radical chemistry, the modelling of the transition states by applying geometric constraints, the long range interactions (ion - molecule) in gaseous phase, the reaction sites in gaseous phase and the mass spectroscopy applications. The points of convergence between the investigations of the mass spectroscopy and the theoretical chemistry teams, as well as the purposes guiding the research programs, are discussed. The published papers, the conferences, the congress communications and the thesis, are also reported [fr
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
International Nuclear Information System (INIS)
Ghatak, A.K.; Lokanathan, S.
1975-01-01
This textbook on quantum mechanics is intended for students at the graduate and post-graduate level. A balanced account of theory and applications is presented. Emphasis is laid on making results plausible and methods to be followed in solving problems. The various chapters in the book are devoted to the following: (1) Wave particle duality and uncertainty principle (2) Wave packets and time-dependent Schroedinger equation (3) Simple solutions of Schroedinger equation (4) Vector spaces and linear operators : Dirac notation (5) Angular momentum and spin (6) Addition of angular momenta (7) Time independent perturbation theory (8) The variational method (9) The WKB approximation (10) Elementary theory of scattering (11) Time-dependent perturbation theory (12) Motion in a magnetic field (13) Interaction of radiation with matter and (14) Relativistic theory. (A.K.)
DEFF Research Database (Denmark)
Gottlieb, Sara Wisbech Jacobsen; Hededal, Ole; Foged, Niels Nielsen
by stress and strain and their behaviour is convergent. Numerical models exist that simulate clay behaviour over time, the majority derived from Perzyna (1966). An empirical expression for the ‘index of viscosity’ was derived by Leinenkugel (1976). This suggests the change of strain rate is proportional......It is widely accepted that there is a connection between the undrained shear strength and the strain rate. Thixotropy and creep behaviour are connected to the mechanical properties of clay. Thixotropy is the ability of clay to recover its shear strength over time when the shear stress is released...... of equilibrium in viscosity over time at a given stress level for a thixotropic fluid. In rheology, this type of material is known as a non-Newtonian thixotropic fluid. A Newtonian fluid has no yield stress, resembling a strictly elastic material; whereas a non-Newtonian fluid cannot be expressed by a direct...
Bayne, Jay S
2008-06-01
In support of a generalization of systems theory, this paper introduces a new approach in modeling complex distributed systems. It offers an analytic framework for describing the behavior of interactive cyberphysical systems (CPSs), which are networked stationary or mobile information systems responsible for the real-time governance of physical processes whose behaviors unfold in cyberspace. The framework is predicated on a cyberspace-time reference model comprising three spatial dimensions plus time. The spatial domains include geospatial, infospatial, and sociospatial references, the latter describing relationships among sovereign enterprises (rational agents) that choose voluntarily to organize and interoperate for individual and mutual benefit through geospatial (physical) and infospatial (logical) transactions. Of particular relevance to CPSs are notions of timeliness and value, particularly as they relate to the real-time governance of physical processes and engagements with other cooperating CPS. Our overarching interest, as with celestial mechanics, is in the formation and evolution of clusters of cyberspatial objects and the federated systems they form.
Barron, Daniel R. (Inventor); Jasulaitis, Vytas (Inventor); Morrill, Brion F. (Inventor)
1995-01-01
Apparatus is described for automatically mating a pair of connectors and protecting them prior to mating, which minimizes weight and uses relatively simple and reliable mechanisms. Lower and upper connectors (24, 26) are held in lower and upper parts (14, 16) of a housing, with the upper connector mounted on a carrier (32) that is motor driven to move down and mate the connectors. A pair of movable members (36, 38) serve as shields, as coarse alignment aids, and as force transmitters. The movable members are pivotally mounted at the bottom of the upper housing, and as the carrier moves down it pivots the members out of the way. The movable members have socket elements (116) that closely receive pin elements (120) on the lower housing part, to coarsely align the connectors and to react mating and unmating forces between the housings. The carrier has a pair of plate portions (60, 62) with slots (64), and the movable members have cam followers engaged with the slot walls, to move the members with precision. The carrier plate-like portions engage follower members (82) that pivot open lower shield parts (44, 46) covering the lower connector, which is mounted on four stacks of Belleville washers (142).
Energy Technology Data Exchange (ETDEWEB)
Shook, Richard; /Marquette U. /SLAC
2010-08-25
The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.
International Nuclear Information System (INIS)
2010-01-01
The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by (1). It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x 0 2 n where n is the step of attenuation desired and x 0 is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.
Topological Higgs mechanism with ordinary Higgs mechanism
International Nuclear Information System (INIS)
Oda Ichiro; Yahikozawa Shigeaki.
1989-12-01
Topological Higgs mechanism in higher dimensions is analyzed when ordinary Higgs potential exists. It is shown that if one-form B-field becomes massive by the ordinary Higgs mechanism, another D-2 form C-field also becomes massive through topological term in addition to the topological mass generation by the topological Higgs mechanism. Moreover we investigate this mechanism in three dimensional theories, that is to say, Chern-Simons theory and more general theory. (author). 10 refs
Investigation of Nonholonomic Mechanics, Vakonomic Mechanics ...
African Journals Online (AJOL)
In this article, methods of modeling dynamic systems namely, Nonholonomic mechanics, Vakonomic mechanics and Chetaev methods for constrained dynamic system are investigated. The fact that Vakonomic mechanics gives a different motion equation to the other methods is verified using a particular example. It is shown ...
The Mechanics of Mechanical Watches and Clocks
Du, Ruxu
2013-01-01
"The Mechanics of Mechanical Watches and Clocks" presents historical views and mathematical models of mechanical watches and clocks. Although now over six hundred years old, mechanical watches and clocks are still popular luxury items that fascinate many people around the world. However few have examined the theory of how they work as presented in this book. The illustrations and computer animations are unique and have never been published before. It will be of significant interest to researchers in mechanical engineering, watchmakers and clockmakers, as well as people who have an engineering background and are interested in mechanical watches and clocks. It will also inspire people in other fields of science and technology, such as mechanical engineering and electronics engineering, to advance their designs. Professor Ruxu Du works at the Chinese University of Hong Kong, China. Assistant Professor Longhan Xie works at the South China University of Technology, China.
Mechanical restraint in psychiatry
DEFF Research Database (Denmark)
Bak, Jesper; Zoffmann, Vibeke; Sestoft, Dorte Maria
2014-01-01
PURPOSE: To examine how potential mechanical restraint preventive factors in hospitals are associated with the frequency of mechanical restraint episodes. DESIGN AND METHODS: This study employed a retrospective association design, and linear regression was used to assess the associations. FINDINGS......: Three mechanical restraint preventive factors were significantly associated with low rates of mechanical restraint use: mandatory review (exp[B] = .36, p mechanical...
2013-01-01
Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, en...
Mechanical engineer's handbook
Marghitu, Dan B
2001-01-01
The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students throughout the world. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is very comprehensive, yet affordable, compact, and durable. The Handbook covers all major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanic
Mechanical engineering education
Davim, J Paulo
2012-01-01
Mechanical Engineering is defined nowadays as a discipline "which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems". Recently, mechanical engineering has also focused on some cutting-edge subjects such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, as well as aspects related to sustainable mechanical engineering.This book covers mechanical engineering higher education with a particular emphasis on quality assurance and the improvement of academic
Song, Yuntao; Du, Shijun
2013-01-01
Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study
Mostafa, Mahmoud A
2012-01-01
MechanismsDefinitions Degrees of Freedom of Planar Mechanisms Four-Revolute-Pairs Chains Single-Slider Chain Double-Slider Mechanisms Mechanisms with Higher Pairs Compound Mechanisms Special Mechanisms Analytical Position Analysis of Mechanisms Velocities and AccelerationsAbsolute Plane Motion of a Particle Relative Motion Applications to Common Links Analysis of Mechanisms: Graphical Method Method of Instantaneous Centers for Determining the VelocitiesAnalytical Analysis CamsIntroduction Types of Cams Modes of Input/Output Motion Follower Configurations Classes of Cams Spur GearsIntroduction
National Aeronautics and Space Administration — OBJECTIVES The proposed research will combine the areas of compliant mechanisms and space technology. Compliant mechanisms perform their function through the elastic...
Analytical mechanics for relativity and quantum mechanics
Johns, Oliver Davis
2011-01-01
Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...
Classical Mechanics as Nonlinear Quantum Mechanics
International Nuclear Information System (INIS)
Nikolic, Hrvoje
2007-01-01
All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics
Current Solid Mechanics Research
DEFF Research Database (Denmark)
Tvergaard, Viggo
2016-01-01
About thirty years ago James Lighthill wrote an essay on “What is Mechanics?” With that he also included some examples of the applications of mechanics. While his emphasis was on fluid mechanics, his own research area, he also included examples from research activities in solid mechanics....
Molecular mechanisms of cancer
National Research Council Canada - National Science Library
Weber, Georg F
2007-01-01
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Section I. General Mechanisms of Transformation 1. Theories of Carcinogenesis...
Defense Mechanisms: A Bibliography.
Pedrini, D. T.; Pedrini, Bonnie C.
This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…
Mechanics and Physics of Precise Vacuum Mechanisms
Deulin, E. A; Panfilov, Yu V; Nevshupa, R. A
2010-01-01
In this book the Russian expertise in the field of the design of precise vacuum mechanics is summarized. A wide range of physical applications of mechanism design in electronic, optical-electronic, chemical, and aerospace industries is presented in a comprehensible way. Topics treated include the method of microparticles flow regulation and its determination in vacuum equipment and mechanisms of electronics; precise mechanisms of nanoscale precision based on magnetic and electric rheology; precise harmonic rotary and not-coaxial nut-screw linear motion vacuum feedthroughs with technical parameters considered the best in the world; elastically deformed vacuum motion feedthroughs without friction couples usage; the computer system of vacuum mechanisms failure predicting. This English edition incorporates a number of features which should improve its usefulness as a textbook without changing the basic organization or the general philosophy of presentation of the subject matter of the original Russian work. Exper...
Handbook of compliant mechanisms
Howell, Larry L; Olsen, Brian M
2013-01-01
A fully illustrated reference book giving an easy-to-understand introduction to compliant mechanisms A broad compilation of compliant mechanisms to give inspiration and guidance to those interested in using compliant mechanisms in their designs, the Handbook of Compliant Mechanisms includes graphics and descriptions of many compliant mechanisms. It comprises an extensive categorization of devices that can be used to help readers identify compliant mechanisms related to their application. It also provides chapters on the basic background in compliant mechanisms, the categories o
International Nuclear Information System (INIS)
Song, Yuntao; Wu, Weiyue; Du, Shijun
2014-01-01
Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.
Introduction to analytical mechanics
Gamalath, KAILW
2011-01-01
INTRODUCTION TO ANALYTICAL MECHANICS is an attempt to introduce the modern treatment of classical mechanics so that transition to many fields in physics can be made with the least difficulty. This book deal with the formulation of Newtonian mechanics, Lagrangian dynamics, conservation laws relating to symmetries, Hamiltonian dynamics Hamilton's principle, Poisson brackets, canonical transformations which are invaluable in formulating the quantum mechanics and Hamilton-Jacobi equation which provides the transition to wave mechanics.
Mechanical engineers' handbook, materials and engineering mechanics
Kutz, Myer
2015-01-01
Full coverage of materials and mechanical design inengineering Mechanical Engineers' Handbook, Fourth Edition provides aquick guide to specialized areas you may encounter in your work,giving you access to the basics of each and pointing you towardtrusted resources for further reading, if needed. The accessibleinformation inside offers discussions, examples, and analyses ofthe topics covered. This first volume covers materials and mechanical design, givingyou accessible and in-depth access to the most common topics you'llencounter in the discipline: carbon and alloy steels, stainlesssteels, a
507 mechanical movements mechanisms and devices
Brown, Henry T
2005-01-01
Epicyclic trains, oblique rollers, trip hammers, and lazy-tongs are among the ingenious mechanisms defined and illustrated in this intriguing collection. Spanning the first century of the Industrial Revolution, this 1868 compilation features simplified, concise illustrations of the mechanisms used in hydraulics, steam engines, pneumatics, presses, horologes, and scores of other machines.The movements of each of the 507 mechanisms are depicted in drawings on the left-hand page, and the facing page presents a brief description of the item's use and operation. Ranging from simple to intricately c
International Nuclear Information System (INIS)
Zorski, Henryk; Bazanski, Stanislaw; Gutowski, Roman; Slawianowski, Jan; Wilmanski, Krysztof; Wozniak, Czeslaw
1992-01-01
In the last 3 decades the field of mechanics has seen spectacular progress due to the demand for applications in problems of cosmology, thermonuclear fusion, metallurgy, etc. This book provides a broad and thorough overview on the foundations of mechanics. It discusses theoretical mechanics and continuum mechanics, as well as phenomenological thermodynamics, quantum mechanics and relativistic mechanics. Each chapter presents the basic physical facts of interest without going into details and derivations and without using advanced mathematical formalism. The first part constitutes a classical exposition of Lagrange's and Hamiltonian's analytical mechanics on which most of the continuum theory is based. The section on continuum mechanics focuses mainly on the axiomatic foundations, with many pointers for further research in this area. Special attention is given to modern continuum thermodynamics, both for the foundations and applications. A section on quantum mechanics is also included, since the phenomenological description of various quantum phenomena is becoming of increasing importance. refs.; figs.; tabs
Mechanics of Failure Mechanisms in Structures
Carlson, R L; Craig, J I
2012-01-01
This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material. Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials. The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthe...
Directory of Open Access Journals (Sweden)
Wang James HC
2010-07-01
Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.
Mechanical ventilator - infants
... this page: //medlineplus.gov/ency/article/007240.htm Mechanical ventilator - infants To use the sharing features on this page, please enable JavaScript. A mechanical ventilator is a machine that assists with breathing. ...
Mechanisms for supernova explosions
International Nuclear Information System (INIS)
Epstein, R.I.
1977-01-01
This report discusses some of the recent developments in the study of one supernova mechanism, the neutrino transport mechanism, and indicates what future developments are needed before this model can be adequately understood. (Auth.)
STRUCTURE OF ECONOMIC MECHANISM
Directory of Open Access Journals (Sweden)
L. I. Podderegina
2006-01-01
Full Text Available The paper considers and analyzes scientific approaches of economists to the essence and contents of the economic mechanism. Proposals for methodological formation of economic mechanism structure are substantiated in the paper.
Supersymmetric classical mechanics
International Nuclear Information System (INIS)
Biswas, S.N.; Soni, S.K.
1986-01-01
The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)
Environmental Compliance Mechanisms
Merkouris, Panagiotis; Fitzmaurice, Malgosia
2017-01-01
Compliance mechanisms can be found in treaties regulating such diverse issues as human rights, disarmament law, and environmental law. In this bibliography, the focus will be on compliance mechanisms of multilateral environmental agreements (MEAs). Compliance with norms of international
Blake, Alexander
2018-01-01
A cornerstone publication that covers the basic principles and practical considerations of design methodology for joints held by rivets, bolts, weld seams, and adhesive materials, Design of Mechanical Joints gives engineers the practical results and formulas they need for the preliminary design of mechanical joints, combining the essential topics of joint mechanics...strength of materials...and fracture control to provide a complete treatment of problems pertinent to the field of mechanical connections.
Methods of celestial mechanics
Brouwer, Dirk
2013-01-01
Methods of Celestial Mechanics provides a comprehensive background of celestial mechanics for practical applications. Celestial mechanics is the branch of astronomy that is devoted to the motions of celestial bodies. This book is composed of 17 chapters, and begins with the concept of elliptic motion and its expansion. The subsequent chapters are devoted to other aspects of celestial mechanics, including gravity, numerical integration of orbit, stellar aberration, lunar theory, and celestial coordinates. Considerable chapters explore the principles and application of various mathematical metho
International Nuclear Information System (INIS)
Perthuis, Ch. de
2005-06-01
The project mechanism complete the quotas systems concerning the carbon dioxide emissions market. The author explains and discusses these mechanisms and provides a panorama of the existing and developing projects. More specially she brings information on the mechanism of clean developments and renewable energies, the coordinated mechanisms, the agricultural projects, the financing of the projects and the exchange systeme of the New south Wales. (A.L.B.)
DEFF Research Database (Denmark)
Sicart (Vila), Miguel Angel
2008-01-01
This article defins game mechanics in relation to rules and challenges. Game mechanics are methods invoked by agents for interacting with the game world. I apply this definition to a comparative analysis of the games Rez, Every Extend Extra and Shadow of the Colossus that will show the relevance...... of a formal definition of game mechanics. Udgivelsesdato: Dec 2008...
Quantum mechanics. An introduction
International Nuclear Information System (INIS)
Lesch, H.
2008-01-01
The following topics are dealt with: The way to quantum mechanics starting from thermal radiation and the stability of matter, Heisenberg's uncertainty relation, the impact of quantum mechanics on technology, the description of the big bang by means of quantum mechanics
Verifiably Truthful Mechanisms
DEFF Research Database (Denmark)
Branzei, Simina; Procaccia, Ariel D.
2015-01-01
the computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money...
Mechanical spectral shift reactor
International Nuclear Information System (INIS)
Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.
1982-01-01
A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drive mechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displacer rods through the reactor vessel. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
2009-07-01
This paper first reviews proposals for the design of sectoral and related market mechanisms currently debated, both in the UNFCCC negotiations, and in different domestic legislative contexts. Secondly, it addresses the possible principles and technical requirements that Parties may wish to consider as the foundations for further elaboration of the mechanisms. The third issue explored herein is domestic implementation of sectoral market mechanisms by host countries, incentives to move to new market mechanisms, as well as how the transition between current and future mechanisms could be managed.
HYDRAULIC SERVO CONTROL MECHANISM
Hussey, R.B.; Gottsche, M.J. Jr.
1963-09-17
A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)
Mechanisms, Transmissions and Applications
Corves, Burkhard
2012-01-01
The first Workshop on Mechanisms, Transmissions and Applications -- MeTrApp-2011 was organized by the Mechatronics Department at the Mechanical Engineering Faculty, “Politehnica” University of Timisoara, Romania, under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines. The workshop brought together researchers and students who work in disciplines associated with mechanisms science and offered a great opportunity for scientists from all over the world to present their achievements, exchange innovative ideas and create solid international links, setting the trend for future developments in this important and creative field. The topics treated in this volume are mechanisms and machine design, mechanical transmissions, mechatronic and biomechanic applications, computational and experimental methods, history of mechanism and machine science and teaching methods.
Kotlyar, Oleg M.
2001-01-01
An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.
Mechanical Systems, Classical Models
Teodorescu, Petre P
2009-01-01
This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...
Energy Technology Data Exchange (ETDEWEB)
Kotlyar, Oleg M.
1999-06-18
An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.
The Antikythera mechanism and the mechanical universe
Edmunds, M. G.
2014-10-01
How did our view of the Universe develop? By the mid-eighteenth century, a world view had developed of a system constrained by physical laws. These laws, if not entirely understood, showed regularity and could be handled mathematically to provide both explanation and prediction of celestial phenomena. Most of us have at least some hazy idea of the fundamental shift that came through the work of Copernicus, Kepler, Galileo and Newton. The idea of a 'Mechanical Universe' running rather like a clock tends to be associated with these sixteenth- and seventeenth-century pioneers. It remains a useful - and perhaps comforting - analogy. Yet, recent investigations based around the Antikythera Mechanism, an artefact from ancient Greece, reinforce a view that the 'Mechanical' conception has been around for a much longer time - indeed certainly as far back as the third century BC. The extent of mechanical design expertise existing around 100 BC as witnessed by the Antikythera Mechanism comes as a great surprise to most people. It is certainly a very ingenious device, often referred to as 'The World's First Computer' although it is really a sophisticated mechanical astronomical calculator with its functions pre-determined rather than programmable. In this review, the structure and functions of the Antikythera Mechanism are described. The astronomy, cosmology and technology inherent in the machine fit surprisingly well into the context of its contemporary Classical world. A strong claim will be made for the influence of such mechanisms on the development of astronomical and philosophical views, based on literary reference. There is evidence that the technology persisted until its spectacular and rather sudden re-appearance in Western Europe around 1300 AD. From then on it is not hard to chart a path through the astronomical clocks of the sixteenth century to Kepler's aim (expressed in a 1605 letter) to 'show that the heavenly machine is not a kind of divine, live being, but a
Understanding the mechanisms of lung mechanical stress
Directory of Open Access Journals (Sweden)
C.S.N.B. Garcia
2006-06-01
Full Text Available Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area or strain (any forced change in length in relation to the initial length and shear stress (the stress component parallel to a given surface. The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.
Robust Design of Sounds in Mechanical Mechanisms
DEFF Research Database (Denmark)
Boegedal Jensen, Annemette; Munch, Natasja; Howard, Thomas J.
2015-01-01
mechanism consisting of a toothed rack and a click arm. First several geometries of the teeth and the click arm’s head were investigated to identify the most robust and repeatable design. It was found that a flat surface in the valleys between the teeth is very beneficial in relation to repeatability...
Complications of mechanical ventilation
Directory of Open Access Journals (Sweden)
Drašković Biljana
2011-01-01
Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.
Nonholonomic mechanics and control
Murray, RM
2015-01-01
This book explores some of the connections between control theory and geometric mechanics; that is, control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems subject to motion constraints. The synthesis of the topic is appropriate as there is a particularly rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems and illustrates the elegant mathematics behind many simple, interesting, and useful mechanical examples. It is intended for graduate students who wish to learn this subject and researchers in the area who want to enhance their techniques. The book contains sections focusing on physical examples and elementary terms, as well as theoretical sections that use sophisticated analysis and geometry. The first four chapters offer preliminaries and background information, while the...
Laskin, Nick
2018-01-01
Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
International Nuclear Information System (INIS)
Pavel Bona
2000-01-01
The work can be considered as an essay on mathematical and conceptual structure of nonrelativistic quantum mechanics which is related here to some other (more general, but also to more special and 'approximative') theories. Quantum mechanics is here primarily reformulated in an equivalent form of a Poisson system on the phase space consisting of density matrices, where the 'observables', as well as 'symmetry generators' are represented by a specific type of real valued (densely defined) functions, namely the usual quantum expectations of corresponding selfjoint operators. It is shown in this paper that inclusion of additional ('nonlinear') symmetry generators (i. e. 'Hamiltonians') into this reformulation of (linear) quantum mechanics leads to a considerable extension of the theory: two kinds of quantum 'mixed states' should be distinguished, and operator - valued functions of density matrices should be used in the role of 'nonlinear observables'. A general framework for physical theories is obtained in this way: By different choices of the sets of 'nonlinear observables' we obtain, as special cases, e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear) quantum mechanics, or nonlinear extensions of quantum mechanics; also various 'quasiclassical approximations' to quantum mechanics are all sub theories of the presented extension of quantum mechanics - a version of the extended quantum mechanics. A general interpretation scheme of extended quantum mechanics extending the usual statistical interpretation of quantum mechanics is also proposed. Eventually, extended quantum mechanics is shown to be (included into) a C * -algebraic (hence linear) quantum theory. Mathematical formulation of these theories is presented. The presentation includes an analysis of problems connected with differentiation on infinite-dimensional manifolds, as well as a solution of some problems connected with the work with only densely defined unbounded
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
Introduction to contact mechanics
Fischer-Cripps, Anthony C
2000-01-01
Contact mechanics deals with the elastic or plastic contact between two solid objects, and is thus intimately connected with such topics as fracture, hardness, and elasticity.This text, intended for advanced undergraduates, begins with an introduction to the mechanical properties of materials, general fracture mechanics, and fractures in brittle solids.This is followed by a detailed discussion of stresses and the nature of elastic and elastic-plastic contact.
Lectures on statistical mechanics
Bowler, M G
1982-01-01
Anyone dissatisfied with the almost ritual dullness of many 'standard' texts in statistical mechanics will be grateful for the lucid explanation and generally reassuring tone. Aimed at securing firm foundations for equilibrium statistical mechanics, topics of great subtlety are presented transparently and enthusiastically. Very little mathematical preparation is required beyond elementary calculus and prerequisites in physics are limited to some elementary classical thermodynamics. Suitable as a basis for a first course in statistical mechanics, the book is an ideal supplement to more convent
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
Lemaire, Maurice
2014-01-01
Science is a quest for certainty, but lack of certainty is the driving force behind all of its endeavors. This book, specifically, examines the uncertainty of technological and industrial science. Uncertainty and Mechanics studies the concepts of mechanical design in an uncertain setting and explains engineering techniques for inventing cost-effective products. Though it references practical applications, this is a book about ideas and potential advances in mechanical science.
Mechanical Material Engineering
International Nuclear Information System (INIS)
Kim, Mun Il
1993-01-01
This book introduced mechanical material with introduction, basic problems about metal ingredient of machine of metal and alloy, property of metal material mechanical metal material such as categorization of metal material and high tensile structure steel, mechanic design and steel material with three important points on using of steel materials, selection and directions machine structural steel, selection and directions of steel for tool, selection and instruction of special steel like stainless steel and spring steel, nonferrous metal materials and plastic.
Mechanical spectral shift reactor
International Nuclear Information System (INIS)
Wilson, J.F.; Sherwood, D.G.
1982-01-01
A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)
Quantum mechanics in chemistry
Schatz, George C
2002-01-01
Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt
Auer, George K; Weibel, Douglas B
2017-07-25
Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.
On obtaining classical mechanics from quantum mechanics
International Nuclear Information System (INIS)
Date, Ghanashyam
2007-01-01
Constructing a classical mechanical system associated with a given quantum-mechanical one entails construction of a classical phase space and a corresponding Hamiltonian function from the available quantum structures and a notion of coarser observations. The Hilbert space of any quantum-mechanical system naturally has the structure of an infinite-dimensional symplectic manifold ('quantum phase space'). There is also a systematic, quotienting procedure which imparts a bundle structure to the quantum phase space and extracts a classical phase space as the base space. This works straightforwardly when the Hilbert space carries weakly continuous representation of the Heisenberg group and one recovers the linear classical phase space R 2N . We report on how the procedure also allows extraction of nonlinear classical phase spaces and illustrate it for Hilbert spaces being finite dimensional (spin-j systems), infinite dimensional but separable (particle on a circle) and infinite dimensional but non-separable (polymer quantization). To construct a corresponding classical dynamics, one needs to choose a suitable section and identify an effective Hamiltonian. The effective dynamics mirrors the quantum dynamics provided the section satisfies conditions of semiclassicality and tangentiality
Locality and quantum mechanics.
Unruh, W G
2018-07-13
It is argued that it is best not to think of quantum mechanics as non-local, but rather that it is non-realistic.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Maximally causal quantum mechanics
International Nuclear Information System (INIS)
Roy, S.M.
1998-01-01
We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics. (author)
Wu, Theodore Y; Wu, Theodore Y
2000-01-01
This highly acclaimed series provides survey articles on the present state and future direction of research in important branches of applied solid and fluid mechanics. Mechanics is defined as a branch of physics that focuses on motion and on the reaction of physical systems to internal and external forces.
Frappier, Mélanie
2018-03-01
A century after its inception, quantum mechanics continues to puzzle us with dead-and-alive cats, waves "collapsing" into particles, and "spooky action at a distance." In his first book, What Is Real?, science writer and astrophysicist Adam Becker sets out to explore why the physics community is still arguing today about quantum mechanics's true meaning.
Working group inciting mechanisms
International Nuclear Information System (INIS)
Bureau, D.
2001-01-01
This document deals with the inciting mechanisms under consideration in the framework of the greenhouse effect fight. The advantages and disadvantages, the coherence of these mechanisms and their articulation with the taxation, have been specified. A whole evaluation of the various scenario, taking into account the implementing problems and the evolution in an international context, is proposed. (A.L.B.)
Mechanical response of composites
Camanho, Pedro P.; Dávila, C.G.; Pinho, Silvestre T.; Remmers, J.J.C.
2008-01-01
This book contains twelve selected papers presented at the ECCOMAS Thematic Conference ? Mechanical Response of Composites, and the papers presented by the three plenary speakers. It describes recent advances in the field of analysis models for the mechanical response of advanced composite
Sakes, Aimée; Wiel, van der Marleen; Henselmans, Paul W.J.; Leeuwen, van Johan L.; Dodou, Dimitra; Breedveld, Paul
2016-01-01
Background In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these
Energy Technology Data Exchange (ETDEWEB)
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Nilpotent mechanics and supersymmetry
International Nuclear Information System (INIS)
Duplij, S.A.
1988-01-01
Three formulations of the one dimensional nilpotent classical mechanics are given: Lagrange, Hamilton and Hamilton-Jacobi. The nilpotent part of the Lagrangian or Hamiltonian fully describes the nilpotent system. New nilpotent Poisson brackets are found. The Hamiltonian of SUSY mechanics is obtained
Mechanical spectral shift reactor
International Nuclear Information System (INIS)
Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.
1981-01-01
A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drivemechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displayer rods through the reactor vessel
Goldman, Iosif Ilich; Geilikman, B T
2006-01-01
This challenging book contains a comprehensive collection of problems in nonrelativistic quantum mechanics of varying degrees of difficulty. It features answers and completely worked-out solutions to each problem. Geared toward advanced undergraduates and graduate students, it provides an ideal adjunct to any textbook in quantum mechanics.
International Nuclear Information System (INIS)
Landsberg, P.T.
1988-01-01
It is suggested that an oversight occurred in classical mechanics when time-derivatives of observables were treated on the same footing as the undifferentiated observables. Removal of this oversight points in the direction of quantum mechanics. Additional light is thrown on uncertainty relations and on quantum mechanics, as a possible form of a subtle statistical mechanics, by the formulation of a classical uncertainty relation for a very simple model. The existence of universal motion, i.e., of zero-point energy, is lastly made plausible in terms of a gravitational constant which is time-dependent. By these three considerations an attempt is made to link classical and quantum mechanics together more firmly, thus giving a better understanding of the latter
Advanced Visual Quantum Mechanics
Thaller, Bernd
2005-01-01
Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.
Relativistic quantum mechanics
International Nuclear Information System (INIS)
Ollitrault, J.Y.
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)
Schrodinger's mechanics interpretation
Cook, David B
2018-01-01
The interpretation of quantum mechanics has been in dispute for nearly a century with no sign of a resolution. Using a careful examination of the relationship between the final form of classical particle mechanics (the HamiltonJacobi Equation) and Schrödinger's mechanics, this book presents a coherent way of addressing the problems and paradoxes that emerge through conventional interpretations.Schrödinger's Mechanics critiques the popular way of giving physical interpretation to the various terms in perturbation theory and other technologies and places an emphasis on development of the theory and not on an axiomatic approach. When this interpretation is made, the extension of Schrödinger's mechanics in relation to other areas, including spin, relativity and fields, is investigated and new conclusions are reached.
Ahn, Doyeol
2011-01-01
A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...
Quantum mechanics for pedestrians
Pade, Jochen
2014-01-01
This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in detail current issues such as interaction-free quantum measurements, neutrino oscillations, various topics in the field of quantum information as well as fundamental problems and epistemological questions, such as the measurement problem, entanglement, Bell's inequality, decoherence, and the realism debate. A chapter on current interpretations of quantum mechanics concludes the book. To develop quickly and clearly the main principles of quantum mechanics and its mathematical formulation, there is a systematic change between wave mechanics and algebraic representation in the first chapters. The required mathematical tools are introduced step by step. Moreover, the appendix coll...
Teverovsky, Alexander A.
2016-01-01
Cracking of multilayer ceramic capacitors, MLCCs, remains a serious problem for space systems. This problem increases substantially for large size capacitors and in cases when manual soldering is involved or the system experiences mechanical shock or vibration. In any case, a fracture occurs when the sum of external and internal mechanical stresses exceeds the strength of the part. To reduce the probability of cracking, the level of stress should be reduced, e.g. by optimizing the assembly workmanship and rules for board design, and the strength of the parts increased by selecting the most mechanically robust capacitors. The latter might possibly be achieved by selecting MLCCs based on the in-situ measurements of mechanical characteristics using four types of tests: flexural strength, hardness, fracture toughness, and flex bend testing. Note that military specifications MIL-PRF-123 and MIL-PRF-55681 do not have requirements for mechanical testing of the parts. However, specifications for automotive industry components employ two types of mechanical tests: beam load (break strength) test per AEC-Q200-003 and board flex test per AEC-Q200-005. A recent military specification for thin dielectric capacitors, MIL-PRF-32535, has one mechanical test, board flex testing, that is similar to AEC-Q200-005. The purpose of this report was assessment of the efficiency of different mechanical tests for selection robust capacitors and comparison of mechanical characteristics of Base Metal Electrode (BME) and Precious Metal Electrode (PME) capacitors. The report has three parts related to the first three mechanical tests mentioned above.
Mechanisms in environmental control
International Nuclear Information System (INIS)
Lindeneg, K.
1994-01-01
The theory of implementation provides methods for decentralization of decisions in societies. By using mechanisms (game forms) it is possible (in theory) to implement attractive states in different economic environments. As an example the market mechanisms can implement Pareto-efficient and individual rational allocations in an Arrow-Debreu economic environment without market failures. And even when there exists externalities the market mechanism sometime can be used if it is possible to make a market for the goods not allocated on a market already - examples are marketable emission permits, and deposit refund systems. But environmental problems can often be explained by the existence of other market failures (e.g. asymmetric information), and then the market mechanism do not work properly. And instead of using regulation or traditional economic instruments (subsidies, charges, fees, liability insurance, marketable emission permits, or deposit refund systems) to correct the problems caused by market failures, some other methods can be used to deal with these problems. This paper contains a survey of mechanisms that can be used in environmental control when the problems are caused by the existence of public goods, externalities, asymmetric information, and indivisible goods in the economy. By examples it will be demonstrated how the Clarke-Groves mechanism, the Cournot-Lindahl mechanism, and other mechanisms can be used to solve specific environmental problems. This is only theory and examples, but a recent field study have used the Cournot-Lindahl mechanism to solve the problem of lake liming in Sweden. So this subject may be of some interests for environmental policy in the future. (au) 23 refs
Mechanical engineers data handbook
Carvill, James
1994-01-01
This text provides the student and professional mechanical engineer with a reference text of an essentially practical nature. It is uncluttered by text, and extensive use of illustrations and tables provide quick and clear access to information. It alsoincludes examples of detailed calculations on many of the applications of technology used by mechanical and production engineers, draughtsmen and engineering designers.Although mainly intended for those studying and practising mechanical engineering, a glance at the contents will show that it is also useful to those in related br
Analytical elements of mechanics
Kane, Thomas R
2013-01-01
Analytical Elements of Mechanics, Volume 1, is the first of two volumes intended for use in courses in classical mechanics. The books aim to provide students and teachers with a text consistent in content and format with the author's ideas regarding the subject matter and teaching of mechanics, and to disseminate these ideas. The book opens with a detailed exposition of vector algebra, and no prior knowledge of this subject is required. This is followed by a chapter on the topic of mass centers, which is presented as a logical extension of concepts introduced in connection with centroids. A
Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.
2012-11-13
A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.
International Nuclear Information System (INIS)
Tonchev, N.; Shumovskij, A.S.
1986-01-01
The history of investigations, conducted at the JINR in the field of statistical mechanics, beginning with the fundamental works by Bogolyubov N.N. on superconductivity microscopic theory is presented. Ideas, introduced in these works and methods developed in them, have largely determined the ways for developing statistical mechanics in the JINR and Hartree-Fock-Bogolyubov variational principle has become an important method of the modern nucleus theory. A brief review of the main achievements, connected with the development of statistical mechanics methods and their application in different fields of physical science is given
Applications in solid mechanics
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
Problems in solid mechanics constitute perhaps the largest field of application of finite element methods. The vast majority of solid mechanics problems involve the standard momentum balance equation, posed in a Lagrangian setting, with different models distinguished by the choice of nonlinear...... or linearized kinematics, and the constitutive model for determining the stress. For some common models, the constitutive relationships are rather complex. This chapter addresses a number of canonical solid mechanics models in the context of automated modeling, and focuses on some pertinent issues that arise...
Supersymmetry in quantum mechanics
Cooper, Fred; Sukhatme, Uday
2001-01-01
This invaluable book provides an elementary description of supersymmetric quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. It gives physicists a fresh outlook and new ways of handling quantum-mechanical problems, and also leads to improved approximation techniques for dealing with potentials of interest in all branches of physics. The algebraic approach to obtaining eigenstates is elegant and important, and all physicists should become familiar with this. The book has been written in such a way that it can be easily appreciated by
Introduction to quantum mechanics
Phillips, A C
2003-01-01
Introduction to Quantum Mechanics is an introduction to the power and elegance of quantum mechanics. Assuming little in the way of prior knowledge, quantum concepts are carefully and precisely presented, and explored through numerous applications and problems. Some of the more challenging aspects that are essential for a modern appreciation of the subject have been included, but are introduced and developed in the simplest way possible.Undergraduates taking a first course on quantum mechanics will find this text an invaluable introduction to the field and help prepare them for more adv
Chaves, Eduardo W V
2013-01-01
This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately. The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.
Dirac, Paul Adrien Maurice
1964-01-01
The author of this concise, brilliant series of lectures on mathematical methods in quantum mechanics was one of the shining intellects in the field, winning a Nobel prize in 1933 for his pioneering work in the quantum mechanics of the atom. Beyond that, he developed the transformation theory of quantum mechanics (which made it possible to calculate the statistical distribution of certain variables), was one of the major authors of the quantum theory of radiation, codiscovered the Fermi-Dirac statistics, and predicted the existence of the positron.The four lectures in this book were delivered
Michell, S J
2013-01-01
Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th
Mechanics, Waves and Thermodynamics
Ranjan Jain, Sudhir
2016-05-01
Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.
Mechanical design engineering handbook
Childs, Peter R N
2013-01-01
Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum
Beyond conventional quantum mechanics
International Nuclear Information System (INIS)
Ghirardi, C.
1991-10-01
The author reviews some recent attempts to overcome the conceptual difficulties encountered by trying to interpret quantum mechanics as giving a complete, objective and unified description of natural phenomena. 38 refs
Shinbrot, Marvin
2012-01-01
Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Classicality in quantum mechanics
International Nuclear Information System (INIS)
Dreyer, Olaf
2007-01-01
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity
Variable mechanical ventilation.
Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto
2017-01-01
To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.
Chew, A D
2007-01-01
This presentation gives an overview of the technology of contemporary primary and secondary mechanical vacuum pumps. For reference a brief history of vacuum and a summary of important and basic vacuum concepts are first presented.
Demtröder, Wolfgang
2017-01-01
This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.
Classicality in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)
2007-05-15
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.
Statistical mechanics of superconductivity
Kita, Takafumi
2015-01-01
This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...
DEFF Research Database (Denmark)
Allin, Kristine H.; Nielsen, Trine; Pedersen, Oluf.
2015-01-01
Perturbations of the composition and function of the gut microbiota have been associated with metabolic disorders including obesity, insulin resistance and type 2 diabetes. Studies on mice have demonstrated several underlying mechanisms including host signalling through bacterial lipopolysacchari...
Elevated temperature fracture mechanics
International Nuclear Information System (INIS)
Tomkins, B.
1979-01-01
The application of fracture mechanics concepts to cracks at elevated temperatures is examined. Particular consideration is given to the characterisation of crack tip stress-strain fields and parameters controlling crack extension under static and cyclic loads. (author)
Computational Continuum Mechanics
Shabana, Ahmed A
2011-01-01
This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.
Playing at Statistical Mechanics
Clark, Paul M.; And Others
1974-01-01
Discussed are the applications of counting techniques of a sorting game to distributions and concepts in statistical mechanics. Included are the following distributions: Fermi-Dirac, Bose-Einstein, and most probable. (RH)
International Nuclear Information System (INIS)
Basdevant, J.L.
1983-01-01
This book is the second part of the physic lectures on quantum mechanics from Ecole Polytechnique. It contains some physic complements a little more thoroughly studied, mathematical complements to which refer, and an exercise and problem collection [fr
Toward broadband mechanical spectroscopy
DEFF Research Database (Denmark)
Hecksher, Tina; Torchinsky, Darius; Klieber, Christoph
2017-01-01
Diverse material classes exhibit qualitatively similar behavior when made viscous upon cooling toward the glass transition, suggesting a common theoretical basis. We used seven different measurement methods to determine the mechanical relaxation kinetics of a prototype molecular glass former over...
Bower, Allan F
2009-01-01
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based. Develop Intuitive Ability to Identify and Avoid Physically Meaningless Predictions Applied Mechanics of Solids is a powerful tool for understanding how to take advantage of these revolutionary computer advances in the field of solid mechanics. Beginning with a description of the physical and mathematical laws that govern deformation in solids, the text presents modern constitutive equations, as well as analytical and computational methods of stress analysis and fracture mechanics. It also addresses the nonlinear theory of deformable rods, membranes, plates, and shells, and solutions to important boundary and initial value problems in solid mechanics. The author uses the step-by-step manner of a blackboard lecture to explain problem solving methods, often providing...
International Nuclear Information System (INIS)
Ooshima, Yoshio.
1983-01-01
Purpose: To perform reliable scram operation, even if abnormality should occur in a system instructing scram operation in FBR type reactors. Constitution: An aluminum alloy member to be melt at a predetermined temperature (about 600sup(o)C) is disposed to a connection part between a control rod and a driving mechanism, whereby the control rod is detached from the driving mechanism and gravitationally fallen to the reactor core. (Ikeda, J.)
2014-01-01
Cloud computing has brought great benefits in cost and flexibility for provisioning services. The greatest challenge of cloud computing remains however the question of security. The current standard tools in access control mechanisms and cryptography can only partly solve the security challenges of cloud infrastructures. In the recent years of research in security and cryptography, novel mechanisms, protocols and algorithms have emerged that offer new ways to create secure services atop cloud...
Statistical mechanics rigorous results
Ruelle, David
1999-01-01
This classic book marks the beginning of an era of vigorous mathematical progress in equilibrium statistical mechanics. Its treatment of the infinite system limit has not been superseded, and the discussion of thermodynamic functions and states remains basic for more recent work. The conceptual foundation provided by the Rigorous Results remains invaluable for the study of the spectacular developments of statistical mechanics in the second half of the 20th century.
Mechanics of deformable bodies
Sommerfeld, Arnold Johannes Wilhelm
1950-01-01
Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.
Generalized classical mechanics
International Nuclear Information System (INIS)
De Leon, M.; Rodrigues, P.R.
1985-01-01
The geometrical study of Classical Mechanics shows that the Hamiltonian (respectively, Lagrangian) formalism may be characterized by intrinsical structures canonically defined on the cotangent (respectively, tangent) bundle of a differentiable manifold. A generalized formalism for higher order Lagrangians is developed. Then the Hamiltonian form of the theory is developed. Finally, the Poisson brackets are defined and the conditions under which a mapping is a canonical transformation are studied. The Hamilton-Jacobi equation for this type of mechanics is established. (Auth.)
Directory of Open Access Journals (Sweden)
Milosavljević Branko
2014-01-01
Full Text Available Different mechanical rebar splicing systems are presented, and design situations where mechanical splicing has advantage over reinforcement splicing by overlapping and welding are defined in this paper. New international standards for testing and proof of systems for mechanical rebar splicing quality are considered. Mechanical splicing system for rebar and bolt connection, usable in steel and reinforced concrete structural elements connections, is presented in this paper. There are only few examples of mechanical rebar splicing in our country. The most significant one - the pylon and beam connection at Ada Bridge in Belgrade is presented in the paper. Intensive development of production and use of mechanical rebar splicing systems, research in this area, as well as the publication of international standards prescribing requirements for quality and procedures for proof of quality, represent very good base for development of the corresponding technical norms in Serbia. The legislation in this area would quicken proof of quality procedures, attest and approval issuing for individual products, leading to wider use of this system in all situations where it is in advantage over the classical reinforcement splicing.
Theoretical physics. Quantum mechanics
International Nuclear Information System (INIS)
Rebhan, Eckhard
2008-01-01
From the first in two comprehensive volumes appeared Theoretical Physics of the author by this after Mechanics and Electrodynamics also Quantum mechanics appears as thinner single volume. First the illustrative approach via wave mechanics is reproduced. The more abstract Hilbert-space formulation introduces the author later by postulates, which are because of the preceding wave mechanics sufficiently plausible. All concepts of quantum mechanics, which contradict often to the intuitive understanding formed by macroscopic experiences, are extensively discussed and made by means of many examples as well as problems - in the largest part provided with solutions - understandable. To the interpretation of quantum mechanics an extensive special chapter is dedicated. this book arose from courses on theoretical physics, which the author has held at the Heinrich-Heine University in Duesseldorf, and was in numerous repetitions fitted to the requirement of the studyings. it is so designed that it is also after the study suited as reference book or for the renewing. All problems are very thoroughly and such extensively studied that each step is separately reproducible. About motivation and good understandability is cared much
Denais, Celine; Lammerding, Jan
2015-01-01
Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion. PMID:24563360
Clean Development Mechanism: Core of Kyoto Mechanism
Energy Technology Data Exchange (ETDEWEB)
Lee, Myung Kyun [United Nations Environment Programme (Denmark)
2000-06-01
Kyoto protocol is a foundation for achieving an ultimate goal of UNFCCC, which is to stabilizing greenhouse gas concentration in the air. The clean development system is a core element for successful implementation of Kyoto protocol with other Kyoto mechanisms. While UNFCCC requires a new paradigm changing to sustainable development considering demand and future environment from the past supply-oriented resource consumption, the clean development system will be used as a means of successful establishment of a new paradigm in 21st century. As environmental problem is integrated with economic problem and each country is thriving for securing its own economic benefit in the issue of environmental conservation, Korea should do its best to have both of global environmental conservation and economic benefit for its own. 1 tab.
Supersymmetry and quantum mechanics
International Nuclear Information System (INIS)
Cooper, F.; Sukhatme, U.
1995-01-01
In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable and an array of powerful new approximation methods for handling potentials which are not exactly solvable. In this report, we review the theoretical formulation of supersymmetric quantum mechanics and discuss many applications. Exactly solvable potentials can be understood in terms of a few basic ideas which include supersymmetric partner potentials, shape invariance and operator transformations. Familiar solvable potentials all have the property of shape invariance. We describe new exactly solvable shape invariant potentials which include the recently discovered self-similar potentials as a special case. The connection between inverse scattering, isospectral potentials and supersymmetric quantum mechanics is discussed and multi-soliton solutions of the KdV equation are constructed. Approximation methods are also discussed within the framework of supersymmetric quantum mechanics and in particular it is shown that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials. Supersymmetry ideas give particularly nice results for the tunneling rate in a double well potential and for improving large N expansions. We also discuss the problem of a charged Dirac particle in an external magnetic field and other potentials in terms of supersymmetric quantum mechanics. Finally, we discuss structures more general than supersymmetric quantum mechanics such as parasupersymmetric quantum mechanics in which there is a symmetry between a boson and a para-fermion of order p. ((orig.))
Noncanonical Hamiltonian mechanics
International Nuclear Information System (INIS)
Litteljohn, R.G.
1986-01-01
Noncanonical variables in Hamiltonian mechanics were first used by Lagrange in 1808. In spite of this, most work in Hamiltonian mechanics has been carried out in canonical variables, up to this day. One reason for this is that noncanonical coordinates are seldom needed for mechanical problems based on Lagrangians of the form L = T - V, where T is the kinetic energy and V is the potential energy. Of course, such Lagrangians arise naturally in celestial mechanics, and as a result they form the paradigms of nineteenth-century mechanics and have become enshrined in all the mechanics textbooks. Certain features of modern problems, however, lead to the use of noncanonical coordinates. Among these are issues of gauge invariance and singular Lagrange a Poisson structures. In addition, certain problems, like the flow of magnetic-field lines in physical space, are naturally formulated in terms of noncanonical coordinates. None of these features is present in the nineteenth-century paradigms of mechanics, but they do arise in problems involving particle motion in the presence of magnetic fields. For example, the motion of a particle in an electromagnetic wave is an important one in plasma physics, but the usual Hamiltonian formulation is gauge dependent. For this problem, noncanonical approaches based on Lagrangians in phase space lead to powerful computational techniques which are gauge invariant. In the limit of strong magnetic fields, particle motion becomes 'guiding-center motion'. Guiding-center motion is also best understood in terms of noncanonical coordinates. Finally the flow of magnetic-field lines through physical space is a Hamiltonian system which is best understood with noncanonical coordinates. No doubt many more systems will arise in the future for which these noncanonical techniques can be applied. (author)
Directory of Open Access Journals (Sweden)
Roman B. Golovkin
2015-12-01
Full Text Available Objective to establish the essential properties of the mechanism of charitable activities and to formulate the concept of quotmechanism of charitable activityquot. Methods the objective of the study is achieved using the complex of methods which are based on the interaction of dialectical and metaphysical analysis the epistemological properties of which allowed to reveal various aspects of the charitable activities mechanism functioning taking into account the principles of comprehensiveness complexity specificity and objectivity of the research. Results the rules are stated of using the term quotmechanismquot to characterize actions of state and law the essence of the charity mechanism is defined the definition of quotthe mechanism of charitable activity quot is formulated. Scientific novelty for the first time at theoretical level in legal science the definition of quotthe mechanism of charitable activityquot is formulated and its essential properties are set. Practical significance the research will contribute to improving the legal regulation in the field of philanthropy as well as to improving the efficiency and quality of charitable activity in the Russian Federation. nbsp
Bruhns, Otto T
2003-01-01
Mechanics, and in particular, the mechanics of solids, forms the basis of all engi neering sciences. It provides the essential foundations for understanding the action of forces on bodies, and the effects of these forces on the straining of the body on the one hand, and on the deformation and motion of the body on the other. Thus, it provides the solutions of many problems with which the would-be engineer is going to be confronted with on a daily basis. In addition, in engineering studies, mechanics has a more vital importance, which many students appreciate only much later. Because of its clear, and analyt ical setup, it aids the student to a great extent in acquiring the necessary degree of abstraction ability, and logical thinking, skills without which no engineer in the practice today would succeed. Many graduates have confirmed to me that learning mechanics is generally per ceived as difficult. On the other hand, they always also declared that the preoccu pation with mechanics made an essential c...
Fundamentals of Quantum Mechanics
Tang, C. L.
2005-06-01
Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors
Mechanical Biological Treatment
DEFF Research Database (Denmark)
Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund
2011-01-01
The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...
Mathur, Vishnu S
2008-01-01
NEED FOR QUANTUM MECHANICS AND ITS PHYSICAL BASIS Inadequacy of Classical Description for Small Systems Basis of Quantum Mechanics Representation of States Dual Vectors: Bra and Ket Vectors Linear Operators Adjoint of a Linear Operator Eigenvalues and Eigenvectors of a Linear Operator Physical Interpretation Observables and Completeness Criterion Commutativity and Compatibility of Observables Position and Momentum Commutation Relations Commutation Relation and the Uncertainty ProductAppendix: Basic Concepts in Classical MechanicsREPRESENTATION THEORY Meaning of Representation How to Set up a Representation Representatives of a Linear Operator Change of Representation Coordinate Representation Replacement of Momentum Observable p by -ih d/dqIntegral Representation of Dirac Bracket A2|F|A1> The Momentum Representation Dirac Delta FunctionRelation between the Coordinate and Momentum RepresentationsEQUATIONS OF MOTIONSchrödinger Equation of Motion Schrödinger Equation in the Coordinate Representation Equation o...
Supersymmetric symplectic quantum mechanics
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
Mechanics of ultrasound elastography
Li, Guo-Yang
2017-01-01
Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350
Weinberg, Steven
2013-01-01
Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a concise introduction to modern quantum mechanics. Ideally suited to a one-year graduate course, this textbook is also a useful reference for researchers. Readers are introduced to the subject through a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach. The textbook covers many topics not often found in other books on the subject, including alternatives to the Copenhagen interpretation, Bloch waves and band structure, the Wigner–Eckart theorem, magic numbers, isospin symmetry, the Dirac theory of constrained canonical systems, general scattering theory, the optical theorem, the 'in-in' formalism, the Berry phase, Landau levels, entanglement and quantum computing. Problems are included at the ends of chapters, with solutions available for instructors at www.cam...
Fundamentals of quantum mechanics
House, J E
2017-01-01
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Graphene Statistical Mechanics
Bowick, Mark; Kosmrlj, Andrej; Nelson, David; Sknepnek, Rastko
2015-03-01
Graphene provides an ideal system to test the statistical mechanics of thermally fluctuating elastic membranes. The high Young's modulus of graphene means that thermal fluctuations over even small length scales significantly stiffen the renormalized bending rigidity. We study the effect of thermal fluctuations on graphene ribbons of width W and length L, pinned at one end, via coarse-grained Molecular Dynamics simulations and compare with analytic predictions of the scaling of width-averaged root-mean-squared height fluctuations as a function of distance along the ribbon. Scaling collapse as a function of W and L also allows us to extract the scaling exponent eta governing the long-wavelength stiffening of the bending rigidity. A full understanding of the geometry-dependent mechanical properties of graphene, including arrays of cuts, may allow the design of a variety of modular elements with desired mechanical properties starting from pure graphene alone. Supported by NSF grant DMR-1435794
International Nuclear Information System (INIS)
Collins, P.D.B.; Martin, A.D.
1982-01-01
The mechanism of hadron scattering at high energies are reviewed in such a way as to combine the ideas of the parton model and quantum chromodynamics (QCD) with Regge theory and phenomenology. After a brief introduction to QCD and the basic features of hadron scattering data, scaling and the dimensional counting rules, the parton structure of hadrons, and the parton model for large momentum transfer processes, including scaling violations are discussed. Hadronic jets and the use of parton ideas in soft scattering processes are examined, attention being paid to Regge theory and its applications in exclusive and inclusive reactions, the relationship to parton exchange being stressed. The mechanisms of hadron production which build up cross sections, and hence the underlying Regge singularities, and the possible overlap of Regge and scaling regions are discussed. It is concluded that the key to understanding hadron reaction mechanisms seems to lie in the marriage of Regge theory with QCD. (author)
Mathematical physics classical mechanics
Knauf, Andreas
2018-01-01
As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.
Heterogeneity of reward mechanisms.
Lajtha, A; Sershen, H
2010-06-01
The finding that many drugs that have abuse potential and other natural stimuli such as food or sexual activity cause similar chemical changes in the brain, an increase in extracellular dopamine (DA) in the shell of the nucleus accumbens (NAccS), indicated some time ago that the reward mechanism is at least very similar for all stimuli and that the mechanism is relatively simple. The presently available information shows that the mechanisms involved are more complex and have multiple elements. Multiple brain regions, multiple receptors, multiple distinct neurons, multiple transmitters, multiple transporters, circuits, peptides, proteins, metabolism of transmitters, and phosphorylation, all participate in reward mechanisms. The system is variable, is changed during development, is sex-dependent, and is influenced by genetic differences. Not all of the elements participate in the reward of all stimuli. Different set of mechanisms are involved in the reward of different drugs of abuse, yet different mechanisms in the reward of natural stimuli such as food or sexual activity; thus there are different systems that distinguish different stimuli. Separate functions of the reward system such as anticipation, evaluation, consummation and identification; all contain function-specific elements. The level of the stimulus also influences the participation of the elements of the reward system, there are possible reactions to even below threshold stimuli, and excessive stimuli can change reward to aversion involving parts of the system. Learning and memory of past reward is an important integral element of reward and addictive behavior. Many of the reward elements are altered by repeated or chronic stimuli, and chronic exposure to one drug is likely to alter the response to another stimulus. To evaluate and identify the reward stimulus thus requires heterogeneity of the reward components in the brain.
International Nuclear Information System (INIS)
Kalen, D.D.; Mitchem, J.W.
1982-01-01
This invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holder used in nuclear reactors. The closure mechanism is composed of a latching member which includes a generally circular chamber with a plurality of elongated latches depending therefrom. The latching member circumscribes part of an actuator member which is disposed within the latching member so as to be axially movable. The axial movement of the actuator actuates positioning of the latches between positions in which the latches are locked and secured within the actuator member. Means, capable of being remotely manipulated, are provided to move the actuator in order to position the latches and load the articles within the tube
Classical mechanics with Maxima
Timberlake, Todd Keene
2016-01-01
This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.
Dynamically Assisted Schwinger Mechanism
International Nuclear Information System (INIS)
Schuetzhold, Ralf; Gies, Holger; Dunne, Gerald
2008-01-01
We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation--or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultrahigh intensity lasers
Quantum mechanics selected topics
Perelomov, Askold Mikhailovich
1998-01-01
It can serve as a good supplement to any quantum mechanics textbook, filling the gap between standard textbooks and higher-level books on the one hand and journal articles on the other. This book provides a detailed treatment of the scattering theory, multidimensional quasi-classical approximation, non-stationary problems for oscillators and the theory of unstable particles. It will be useful for postgraduate students and researchers who wish to find new, interesting information hidden in the depths of non-relativistic quantum mechanics.
Introduction to continuum mechanics
Lai, W Michael; Rubin, David
1996-01-01
Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a
Volokh, Konstantin
2016-01-01
This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .
International Nuclear Information System (INIS)
Burdge, R.E.
1979-01-01
The need for the training of mechanics is discussed, and the increased interest within the utility industry of placing a similar importance on this training as it has traditionally placed on operator training, is expressed. Effective approaches and techniques are described. Fundamental mechanical maintenance concepts and their practical application are discussed, including the use of supporting video programs. The importance of follow-up practical shop exercise which reinforces classroom instruction is stressed, drawing from practical utility experience. Utilizing success in training as a measure of eligibility for advancement is discussed as well as the interface between training and the company bargaining unit
Einstein's statistical mechanics
Energy Technology Data Exchange (ETDEWEB)
Baracca, A; Rechtman S, R
1985-08-01
The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject.
Einstein's statistical mechanics
International Nuclear Information System (INIS)
Baracca, A.; Rechtman S, R.
1985-01-01
The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject. (author)
Mechanical engineer's reference book
Parrish, A
1973-01-01
Mechanical Engineer's Reference Book: 11th Edition presents a comprehensive examination of the use of Systéme International d' Unités (SI) metrication. It discusses the effectiveness of such a system when used in the field of engineering. It addresses the basic concepts involved in thermodynamics and heat transfer. Some of the topics covered in the book are the metallurgy of iron and steel; screw threads and fasteners; hole basis and shaft basis fits; an introduction to geometrical tolerancing; mechanical working of steel; high strength alloy steels; advantages of making components as castings
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Fundamentals of continuum mechanics
Rudnicki, John W
2014-01-01
A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ
International Nuclear Information System (INIS)
Basdevant, J.L.
1983-01-01
From important experiment descriptions (sometimes, intentionally simplified), the essential concepts in Quantum Mechanics are first introduced. Wave function notion is described, Schroedinger equation is established, and, after applications rich in physical signification, quantum state and Hilbert space formalism are introduced, which will help to understand many essential phenomena. Then the quantum mechanic general formulation is written and some important consequences are deduced. This formalism is applied to a simple physical problem series (angular momentum, hydrogen atom, etc.) aiming at assimilating the theory operation and its application [fr
Noncommutative quantum mechanics
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
Saxon, David S
2012-01-01
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, m
Adventures in Celestial Mechanics
Szebehely, Victor G
1998-01-01
A fascinating introduction to the basic principles of orbital mechanics. It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principle
Fracture mechanical materials characterisation
International Nuclear Information System (INIS)
Wallin, K.; Planman, T.; Nevalainen, M.
1998-01-01
The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)
International Nuclear Information System (INIS)
Habib, P.
1988-01-01
The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr
Probabilistic approach to mechanisms
Sandler, BZ
1984-01-01
This book discusses the application of probabilistics to the investigation of mechanical systems. The book shows, for example, how random function theory can be applied directly to the investigation of random processes in the deflection of cam profiles, pitch or gear teeth, pressure in pipes, etc. The author also deals with some other technical applications of probabilistic theory, including, amongst others, those relating to pneumatic and hydraulic mechanisms and roller bearings. Many of the aspects are illustrated by examples of applications of the techniques under discussion.
Elastic plastic fracture mechanics
International Nuclear Information System (INIS)
Simpson, L.A.
1978-07-01
The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)
Yamane, Takashi
2016-01-01
This book first describes medical devices in relation to regenerative medicine before turning to a more specific topic: artificial heart technologies. Not only the pump mechanisms but also the bearing, motor mechanisms, and materials are described, including expert information. Design methods are described to enhance hemocompatibility: main concerns are reduction of blood cell damage and protein break, as well as prevention of blood clotting. Regulatory science from R&D to clinical trials is also discussed to verify the safety and efficacy of the devices.
Basniev, Kaplan S; Chilingar, George V 0
2012-01-01
The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry. This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike. It is a must-have for any engineer working in the oil and gas industry.
Modern logic and quantum mechanics
International Nuclear Information System (INIS)
Garden, R.W.
1984-01-01
The book applies the methods of modern logic and probabilities to ''interpreting'' quantum mechanics. The subject is described and discussed under the chapter headings: classical and quantum mechanics, modern logic, the propositional logic of mechanics, states and measurement in mechanics, the traditional analysis of probabilities, the probabilities of mechanics and the model logic of predictions. (U.K.)
He, Angela Xiaoxue; Arunachalam, Sudha
2017-07-01
How do children acquire the meanings of words? Many word learning mechanisms have been proposed to guide learners through this challenging task. Despite the availability of rich information in the learner's linguistic and extralinguistic input, the word-learning task is insurmountable without such mechanisms for filtering through and utilizing that information. Different kinds of words, such as nouns denoting object concepts and verbs denoting event concepts, require to some extent different kinds of information and, therefore, access to different kinds of mechanisms. We review some of these mechanisms to examine the relationship between the input that is available to learners and learners' intake of that input-that is, the organized, interpreted, and stored representations they form. We discuss how learners segment individual words from the speech stream and identify their grammatical categories, how they identify the concepts denoted by these words, and how they refine their initial representations of word meanings. WIREs Cogn Sci 2017, 8:e1435. doi: 10.1002/wcs.1435 This article is categorized under: Linguistics > Language Acquisition Psychology > Language. © 2017 Wiley Periodicals, Inc.
Structured Mechanical Collage.
Huang, Zhe; Wang, Jiang; Fu, Hongbo; Lau, Rynson W H
2014-07-01
We present a method to build 3D structured mechanical collages consisting of numerous elements from the database given artist-designed proxy models. The construction is guided by some graphic design principles, namely unity, variety and contrast. Our results are visually more pleasing than previous works as confirmed by a user study.
Educational Mechanisms of Dioramas
DEFF Research Database (Denmark)
May, Michael; Achiam, Marianne
2018-01-01
The diorama remains one of the most popular exhibit types in museums, and it has proven its educational potential time and time again. In spite of this, the specific mechanisms behind that educational potential remain unclear. In other words, museum practitioners and museum researchers know that ...
Motorcycle Mechanic. Teacher Edition.
Baugus, Mickey; Fulkerson, Dan, Ed.
These teacher's materials are for a 19-unit competency-based course on entry-level motorcycle mechanics at the secondary and postsecondary levels. The 19 units are: (1) introduction to motorcycle repair; (2) general safety; (3) tools and equipment; (4) metric measurements; (5) fasteners; (6) service department operations; (7) motorcycle engines;…
Fuzzy clustering of mechanisms
Indian Academy of Sciences (India)
described with reference to various attributes using the concept of ...... 0.20. 0.40. 0.10. 0.30. 0.20. 0.10. 0.80. 0.60. 0.80. 6. Economic and v ery con ...... I I 1977 Mechanisms in modern engineering design: A hand-book for engineers, designers.
Principles of Mechanical Excavation
International Nuclear Information System (INIS)
Lislerud, A.
1997-12-01
Mechanical excavation of rock today includes several methods such as tunnel boring, raiseboring, roadheading and various continuous mining systems. Of these raiseboring is one potential technique for excavating shafts in the repository for spent nuclear fuel and dry blind boring is promising technique for excavation of deposition holes, as demonstrated in the Research Tunnel at Olkiluoto. In addition, there is potential for use of other mechanical excavation techniques in different parts of the repository. One of the main objectives of this study was to analyze the factors which affect the feasibility of mechanical rock excavation in hard rock conditions and to enhance the understanding of factors which affect rock cutting so as to provide an improved basis for excavator performance prediction modeling. The study included the following four main topics: (a) phenomenological model based on similarity analysis for roller disk cutting, (b) rock mass properties which affect rock cuttability and tool life, (c) principles for linear and field cutting tests and performance prediction modeling and (d) cutter head lacing design procedures and principles. As a conclusion of this study, a test rig was constructed, field tests were planned and started up. The results of the study can be used to improve the performance prediction models used to assess the feasibility of different mechanical excavation techniques at various repository investigation sites. (orig.)
Mechanical Drawing and Design.
Mikulsky, Marilyn; McEnaney, Walter K.
A syllabus is provided for a comprehensive foundation course in mechanical drawing and design for grades 9, 10, 11, or 12 that is prerequisite to advanced elective courses. Introductory materials include course objectives, an overview of basic concepts, and guidelines for implementation. Brief discussions of and suggestions for the areas of design…
Mathematics and quantum mechanics
International Nuclear Information System (INIS)
Santander, M.
2000-01-01
Several episodes in the relation between Mathematics and Quantum Mechanics are discussed; and the emphasis is put in the existence of multiple and sometimes unexpected connections between ideas originating in Mathematics and in Quantum Physics. The question of the unresasonable effectiveness of Mathematics in Physics is also presented in the same light. (Author) 3 refs
Supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Crombrugghe, M. de; Rittenberg, V.
1982-12-01
We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions. (orig.)
Chester, Marvin
2003-01-01
Introductory text examines the classical quantum bead on a track: its state and representations; operator eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and bead in a spherical shell. Also, spin, matrices and structure of quantum mechanics; simplest atom; indistinguishable particles; and stationary-state perturbation theory.
Mechanical Measurements Laboratory
Maximilien Brice
2007-01-01
The CERN mechanical measurements team check the sensors on one of the ATLAS inner detector end-caps using high precision measurement equipment. Remote checks like this must be made on these sensitive detector components before they can be transported to make sure that all systems are working correctly.
Fracture mechanics and microstructures
International Nuclear Information System (INIS)
Gee, M.G.; Morrell, R.
1986-01-01
The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness
Mechanism of Intermittent Atomization
1993-06-01
6] and Dolenc [7] that the dynamic pressure input to the nozzle is very important to engine efficiency. In their dis- cussion of optimizing fuel...Injection in Diesel Engines." Proceedings of the Institute of Mechanical Engineers, Vol. 199 No. D3, 1985, ppl6l-174. [7] Dolenc , A. "The Injection
Residential Mechanical Precooling
Energy Technology Data Exchange (ETDEWEB)
German, a. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)
2014-12-01
This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.
Lifetime of Mechanical Equipment
Energy Technology Data Exchange (ETDEWEB)
Leland, K.
1999-07-01
The gas plant at Kaarstoe was built as part of the Statpipe gas transport system and went on stream in 1985. In 1993 another line was routed from the Sleipner field to carry condensate, and the plant was extended accordingly. Today heavy additional supply- and export lines are under construction, and the plant is extended more than ever. The main role of the factory is to separate the raw gas into commercial products and to pump or ship it to the markets. The site covers a large number of well-known mechanical equipment. This presentation deals with piping, mechanical and structural disciplines. The lifetime of mechanical equipment is often difficult to predict as it depends on many factors, and the subject is complex. Mechanical equipment has been kept in-house, which provides detailed knowledge of the stages from a new to a 14 years old plant. The production regularity has always been very high, as required. The standard of the equipment is well kept, support systems are efficient, and human improvisation is extremely valuable.
Zadpoor, A.A.
2016-01-01
The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed
Hesse, Constanze; Franz, Volker H.
2009-01-01
The availability of visual information influences the execution of goal-directed movements. This is very prominent in memory conditions, where a delay is introduced between stimulus presentation and execution of the movement. The corresponding effects could be due to a decay of the visual information or to different processing mechanisms used for…
DEFF Research Database (Denmark)
Sonne, David P; Hansen, Morten; Knop, Filip K
2014-01-01
Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, ...
Multidomain multiphase fluid mechanics
International Nuclear Information System (INIS)
Sha, W.T.; Soo, S.L.
1976-10-01
A set of multiphase field equations--conversion of mass, momentum and energy--based on multiphase mechanics is developed. Multiphase mechanics applies to mixtures of phases which are separated by interfaces and are mutually exclusive. Based on the multiphase mechanics formulation, additional terms appear in the field equations when the physical size of the dispersed phase (bubble or droplet) is many times larger than the inter-molecular spacing. These terms are the inertial coupling due to virtual mass and the additional viscous coupling due to unsteadiness of the flow field. The multiphase formulation given here takes into account the discreteness of particles of dispersed phases and, at the same time, the necessity of the distributive representation of field variables via space-time averaging when handling a large number of particles. The provision for multidomain transition further permits us to treat dispersed phases which are large compared to the characteristic dimension of the flow system via interdomain relations. The multidomain multiphase approach provides a framework for us to model the various flow regimes. Because some of the transport parameters associated with the system equations are not well known at the present time, an idealized two-domain two-phase solution approach is proposed as a first step. Finally, comparisons are made between the field equations formulated based on the multidomain-multiphase fluid mechanics and the pertinent existing models, and their relative significances are discussed. The desirability of consistent approximation and simplifications possible for dilute suspensions are discussed
International Nuclear Information System (INIS)
Hart, V.E.
1976-01-01
A prime goal of the mechanical design effort associated with the PIGMI (Pion Generator for Medical Irradiations) program is to investigate new materials and fabrication techniques in an effort to obtain increased machine efficiency and reliability at a reasonable cost. The following discussion deals with the modeling program that LASL is pursuing for 450-MHz and 1350-MHz PIGMI development. (author)
Mechanical cleaning of graphene
Goossens, A.M.; Calado, V.E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L.M.K.
2012-01-01
Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces electron mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode atomic force
Molecular Mechanisms of Preeclampsia
Directory of Open Access Journals (Sweden)
N. Vitoratos
2012-01-01
Full Text Available Preeclampsia is one of the leading causes of maternal morbidity/mortality. The pathogenesis of preeclampsia is still under investigation. The aim of this paper is to present the molecular mechanisms implicating in the pathway leading to preeclampsia.
K. Dijkstra (Katinka); L.S. Post (Lysanne)
2015-01-01
textabstractThis paper is a critical review of recent studies demonstrating the mechanism of sensorimotor simulation in different cognitive domains. Empirical studies that specify conditions under which embodiment occurs in different domains will be discussed and evaluated. Examples of relevant
DEFF Research Database (Denmark)
Hansen, John Michael
1999-01-01
These notes describe an automated procedure for analysis and synthesis of mechanisms. The analysis method is based on the body coordinate formulation, and the synthesis is based on applying optimization methods, used to minimize the difference between an actual and a desired behaviour...
Why ductile fracture mechanics
International Nuclear Information System (INIS)
Ritchie, R.O.
1983-01-01
Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep
Fracture mechanics and parapsychology
Cherepanov, G. P.
2010-08-01
The problem of postcritical deformation of materials beyond the ultimate strength is considered a division of fracture mechanics. A simple example is used to show the relationship between this problem and parapsychology, which studies phenomena and processes where the causality principle fails. It is shown that the concept of postcritical deformation leads to problems with no solution
Mechanical integrity of canisters
International Nuclear Information System (INIS)
Nilsson, Fred
1992-12-01
This document constitutes the final report from 'SKBs reference group for mechanical integrity of canisters for spent nuclear fuel'. A complete list of all reports initiated by the reference group can be found in the summary report in this document. The main task of the reference group has been to advice SKB regarding the choice (ranking of alternatives) of canister type for different types of storage. The choice should be based on requirements of impermeability for a given time period and identification of possible limiting mechanisms. The main conclusions from the work were: From mechanical point of view, low phosphorous oxygen free copper (Cu-OFP) is a preferred canisters material. It exhibits satisfactory ductility both during tensile and creep testing. The residual stresses in the canisters are of such a magnitude that the estimated time to creep rupture with the data obtained for the Cu-OFP material is essentially infinite. Based on the present knowledge of stress corrosion cracking of copper there appears to be a small risk for such to occur in the projected environment. This risk need some further study. Rock shear movements of the size of 10 cm should pose no direct threat to the integrity of the canisters. Considering mechanical integrity, the composite copper/steel canister is an advantageous alternative. The recommendations for further research included continued studies of the creep properties of copper and of stress corrosion cracking. However, the studies should focus more directly on the design and fabrication aspect of the canister
Geerligs, M.
2010-01-01
The human skin is composed of several layers, each with an unique structure and function. Knowledge about the mechanical behavior of these skin layers is important for clinical and cosmetic research, such as the development of personal care products and the understanding of skin diseases. Until
Abstractions for Mechanical Systems
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2012-01-01
mechanical system. The tangential manifolds are generated using constants of motion, which can be derived from Noether's theorem. The transversal manifolds are subsequently generated on a reduced space, given by the Routhian, via action-angle coordinates. The method fully applies for integrable systems. We...
Mechanisms of multidrug transporters
Bolhuis, H; van Veen, H.W.; Poolman, B.; Driessen, A.J.M.; Konings, W.N
Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of
Mechanisms of neuroblastoma regression
Brodeur, Garrett M.; Bagatell, Rochelle
2014-01-01
Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179
International Nuclear Information System (INIS)
Weinberg, Steven
2015-01-01
Quantum mechanics represents the central revolution of modern natural science and reaches in its importance farely beyond physics. Neither chemistry nor biology on the molecular scale would be understandable without it. Modern information technology from the laptop over the mobile telephone and the flat screen until the supercomputer would be unthinkable without quantum-mechanical effects. It desribes the world on the atomic and subatomic scale and is by this the starting point of our modern worldview. The Nobel-prize carrier Steven Weinberg has done ever among others by his theory of the unification of the weak and the electromagnetic interaction one of the most important contributions to this revolution. In this book he reproduces his personal view of quantum mechanics, which captivates by its strictly logic construction, precise linguistic representation, and mathematical clearness and completeness. This book appeals to studyings of natural sciences, especially of physics. Accompanied is the test by exercise problems, which allow the studying to apply immediately the knowledge, but also test their understanding. Because of its precision and clearness ''Lectures on Quantum Mechanics'' by Weinberg is also essentially suited for the self-study.
Weinberg, Steven
2015-09-01
Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.
International Nuclear Information System (INIS)
Mohan, Ashok; Soni, N.C.; Moorthy, V.K.
1980-01-01
The basic mechanisms by which the material moves during sintering have not only held a strange fascination but are also very important in determining the properties of the end product. Kuczynski's exponent method has been subsequently refined by several schools to make it increasingly reliable. There is now a fairly good understanding of mechanisms in some of the materials. However in others the issue is complicated by their basic nature. The problems of ambiguity in criterion and that of more than one mechanism being simultaneously operative have been tackled with dexterity by Ashby for drawing sintering mechanism diagrams. The method has been modified to give Relative Contribution Diagrams (RCD). These yield additional information and have been used for analysis. The main criticism against this is that it uses a very large number of rate equations and material properties, which can communicate their inaccuracies to the diagram. A case study of UO 2 was undertaken and it has been shown quantitatively that inaccuracies in a smaller number of properties only affect the diagrams to any significant extent. (auth.)
Turboprop Propulsion Mechanic.
Chanute AFB Technical Training Center, IL.
This instructional package consists of a plan of instruction, glossary, and student handouts and exercises for use in training Air Force personnel to become turboprop propulsion mechanics. Addressed in the individual lessons of the course are the following: common hand tools, hardware, measuring devices, and safety wiring; aircraft and engine…
Statistical mechanics of solitons
International Nuclear Information System (INIS)
Bishop, A.
1980-01-01
The status of statistical mechanics theory (classical and quantum, statics and dynamics) is reviewed for 1-D soliton or solitary-wave-bearing systems. Primary attention is given to (i) perspective for existing results with evaluation and representative literature guide; (ii) motivation and status report for remaining problems; (iii) discussion of connections with other 1-D topics
Principles of Mechanical Excavation
Energy Technology Data Exchange (ETDEWEB)
Lislerud, A. [Tamrock Corp., Tampere (Finland)
1997-12-01
Mechanical excavation of rock today includes several methods such as tunnel boring, raiseboring, roadheading and various continuous mining systems. Of these raiseboring is one potential technique for excavating shafts in the repository for spent nuclear fuel and dry blind boring is promising technique for excavation of deposition holes, as demonstrated in the Research Tunnel at Olkiluoto. In addition, there is potential for use of other mechanical excavation techniques in different parts of the repository. One of the main objectives of this study was to analyze the factors which affect the feasibility of mechanical rock excavation in hard rock conditions and to enhance the understanding of factors which affect rock cutting so as to provide an improved basis for excavator performance prediction modeling. The study included the following four main topics: (a) phenomenological model based on similarity analysis for roller disk cutting, (b) rock mass properties which affect rock cuttability and tool life, (c) principles for linear and field cutting tests and performance prediction modeling and (d) cutter head lacing design procedures and principles. As a conclusion of this study, a test rig was constructed, field tests were planned and started up. The results of the study can be used to improve the performance prediction models used to assess the feasibility of different mechanical excavation techniques at various repository investigation sites. (orig.). 21 refs.
Social mechanisms and social causation
Friedel Weinert
2014-01-01
The aim of this paper is to examine the notion of social mechanisms by comparison with the notions of evolutionary and physical mechanisms. It is argued that social mechanisms are based on trends, and not lawlike regularities, so that social mechanisms are different from mechanisms in the natural sciences. Taking as an example of social causation the abolition of the slave trade, this paper argues that social mechanisms should be incorporated in Weber’s wider ...
DEFF Research Database (Denmark)
van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde
2015-01-01
In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....
International Nuclear Information System (INIS)
Omnes, R.
2000-01-01
The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)
Imaging the Antikythera Mechanism
Energy Technology Data Exchange (ETDEWEB)
Malzbender, Thomas
2012-02-10
In 1900, a party of sponge divers chanced on the wreck of a Roman merchant vessel between Crete and mainland Greece. It was found to contain numerous ancient Greek treasures, among them a mysterious lump of clay that split open to reveal ‘mathematical gears’ as it dried out. This object is now known as the Antikythera Mechanism, one of the most enlightening artifacts in terms of revealing the advanced nature of ancient Greek science and technology. In 2005 we travelled to the National Archeological Museum in Athens to apply our Reflectance Imaging methods to the mechanism in the hopes of revealing ancient writing on the device. We were successful, and along with the results of Microfocus CT imaging, epigraphers were able to decipher 3000 characters.
Li, Yaning; Song, Juha; Ortiz, Christine; Boyce, Mary; Ortiz Group/DMSE/MIT Team; Boyce Group/ME/MIT Team
2011-03-01
Biological sutures are joints which connect two stiff skeletal or skeletal-like components. These joints possess a wavy geometry with a thin organic layer providing adhesion. Examples of biological sutures include mammalian skulls, the pelvic assembly of the armored fish Gasterosteus aculeatus (the three-spined stickleback), and the suture joints in the shell of the red-eared slider turtle. Biological sutures allow for movement and compliance, control stress concentrations, transmit loads, reduce fatigue stress and absorb energy. In this investigation, the mechanics of the role of suture geometry in providing a naturally optimized joint is explored. In particular, analytical and numerical micromechanical models of the suture joint are constructed. The anisotropic mechanical stiffness and strength are studied as a function of suture wavelength, amplitude and the material properties of the skeletal and organic components, revealing key insights into the optimized nature of these ubiquitous natural joints.
International Nuclear Information System (INIS)
Futatsugi, Masao; Goto, Mikihiko.
1976-01-01
Purpose: To provide a control rod drive mechanism using water as an operating source, which prevents a phenomenon for forming two-layers of water in the neighbourhood of a return nozzle in a reactor to limit formation of excessive thermal stress to improve a safety. Constitution: In the control rod drive mechanism of the present invention, a heating device is installed in the neighbourhood of a pressure container for a reactor. This heating device is provided to heat return water in the reactor to a level equal to the temperature of reactor water thereby preventing a phenomenon for forming two-layers of water in the reactor. This limits formation of thermal stress in the return nozzle in the reactor. Accordingly, it is possible to minimize damages in the return nozzle portion and yet a possibility of failure in reactor water. (Kawakami, Y.)
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Csanády, Etele
2013-01-01
Wood is one of the most valuable materials for mankind, and since our earliest days wood materials have been widely used. Today we have modern woodworking machine and tools; however, the raw wood materials available are continuously declining. Therefore we are forced to use this precious material more economically, reducing waste wherever possible. This new textbook on the “Mechanics of Wood Machining” combines the quantitative, mathematical analysis of the mechanisms of wood processing with practical recommendations and solutions. Bringing together materials from many sources, the book contains new theoretical and experimental approaches and offers a clear and systematic overview of the theory of wood cutting, thermal loading in wood-cutting tools, dynamic behaviour of tool and work piece, optimum choice of operational parameters and energy consumption, the wear process of the tools, and the general regularities of wood surface roughness. Diagrams are provided for the quick estimation of various process ...
Epigenetic mechanisms in schizophrenia.
Akbarian, Schahram
2014-09-01
Schizophrenia is a major psychiatric disorder that lacks a unifying neuropathology, while currently available pharmacological treatments provide only limited benefits to many patients. This review will discuss how the field of neuroepigenetics could contribute to advancements of the existing knowledge on the neurobiology and treatment of psychosis. Genome-scale mapping of DMA methylation, histone modifications and variants, and chromosomal loopings for promoter-enhancer interactions and other epigenetic determinants of genome organization and function are likely to provide important clues about mechanisms contributing to dysregulated expression of synaptic and metabolic genes in schizophrenia brain, including the potential links to the underlying genetic risk architecture and environmental exposures. In addition, studies in animal models are providing a rapidly increasing list of chromatin-regulatory mechanisms with significant effects on cognition and complex behaviors, thereby pointing to the therapeutic potential of epigenetic drug targets in the nervous system.
Neuroepigenetic mechanisms in disease.
Christopher, Michael A; Kyle, Stephanie M; Katz, David J
2017-10-16
Epigenetics allows for the inheritance of information in cellular lineages during differentiation, independent of changes to the underlying genetic sequence. This raises the question of whether epigenetic mechanisms also function in post-mitotic neurons. During the long life of the neuron, fluctuations in gene expression allow the cell to pass through stages of differentiation, modulate synaptic activity in response to environmental cues, and fortify the cell through age-related neuroprotective pathways. Emerging evidence suggests that epigenetic mechanisms such as DNA methylation and histone modification permit these dynamic changes in gene expression throughout the life of a neuron. Accordingly, recent studies have revealed the vital importance of epigenetic players in the central nervous system and during neurodegeneration. Here, we provide a review of several of these recent findings, highlighting novel functions for epigenetics in the fields of Rett syndrome, Fragile X syndrome, and Alzheimer's disease research. Together, these discoveries underscore the vital importance of epigenetics in human neurological disorders.
Energy Technology Data Exchange (ETDEWEB)
Suwa, M; Furukawa, K; Makinouchi, A; Mizoguchi, T; Mizoguchi, F; Yamasaki, H
1982-01-01
One of the principal goals of the Fifth Generation Computer System Project for the coming decade is to develop a methodology for building knowledge information processing systems which will provide people with intelligent agents. The key notion of the fifth generation computer system is knowledge used for problem solving. In this paper the authors describe the plan of Randd on knowledge base mechanisms. A knowledge representation system is to be designed to support knowledge acquisition for the knowledge information processing systems. The system will include a knowledge representation language, a knowledge base editor and a debugger. It is also expected to perform as a kind of meta-inference system. In order to develop the large scale knowledge base systems, a knowledge base mechanism based on the relational model is to be studied in the earlier stage of the project. Distributed problem solving is also one of the main issues of the project. 19 references.
Classical mechanics with Mathematica
Romano, Antonio
2018-01-01
This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dyna...
Salbreux, Guillaume; Jülicher, Frank
2017-09-01
We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.
Responding to Mechanical Antigravity
Millis, Marc G.; Thomas, Nicholas E.
2006-01-01
Based on the experiences of the NASA Breakthrough Propulsion Physics Project, suggestions are offered for constructively responding to proposals that purport breakthrough propulsion using mechanical devices. Because of the relatively large number of unsolicited submissions received (about 1 per workday) and because many of these involve similar concepts, this report is offered to help the would-be submitters make genuine progress as well as to help reviewers respond to such submissions. Devices that use oscillating masses or gyroscope falsely appear to create net thrust through differential friction or by misinterpreting torques as linear forces. To cover both the possibility of an errant claim and a genuine discovery, reviews should require that submitters meet minimal thresholds of proof before engaging in further correspondence; such as achieving sustained deflection of a level-platform pendulum in the case of mechanical thrusters.
Dijkstra, Katinka; Post, Lysanne
2015-01-01
This paper is a critical review of recent studies demonstrating the mechanism of sensorimotor simulation in different cognitive domains. Empirical studies that specify conditions under which embodiment occurs in different domains will be discussed and evaluated. Examples of relevant domains are language comprehension (Tucker and Ellis, 1998), autobiographical memory (Dijkstra et al., 2007), gestures (Alibali et al., 2014), facial mimicry (Stel and Vonk, 2010), and problem solving (Wiemers et al., 2014). The focus of the review is on supporting claims regarding sensorimotor simulation as well as on factors that modulate dynamic relationships between sensorimotor components in action and cognitive domains, such as expertise (Boschker et al., 2002). This discussion takes place within the context of currently debated issues, specifically the need to specify the underlying mechanisms of embodied representations (Zwaan, 2014; Körner et al., 2015).
Directory of Open Access Journals (Sweden)
Katinka eDijkstra
2015-10-01
Full Text Available This paper is a critical review of recent studies demonstrating the mechanism of sensorimotor simulation in different cognitive domains. Empirical studies that specify conditions under which embodiment occurs in different domains will be discussed and evaluated. Examples of relevant domains are language comprehension (Tucker & Ellis, 2004, autobiographical memory (Dijkstra, Kaschak, & Zwaan, 2007, gestures (Alibali, Boncoddo, & Hostetter, 2014, facial mimicry (Stel & Vonk, 2010, and problem solving (Wiemers, Bekkering, & Lindemann, 2014. The focus of the review is on supporting claims regarding sensorimotor simulation as well as on factors that modulate dynamic relationships between sensorimotor components in action and cognitive domains, such as expertise (Boschker, Bakker, & Michaels, 2002. This discussion takes place within the context of currently debated issues, specifically the need to specify the underlying mechanisms of embodied representations (Zwaan, 2014; Körner, Topolinski, & Strack, 2015.
International Nuclear Information System (INIS)
Dienes, J.K.
1993-01-01
Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives
Directory of Open Access Journals (Sweden)
Guangjian Ni
2014-01-01
Full Text Available The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM. Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.
Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)
1996-01-01
A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.
PARALLEL MOVING MECHANICAL SYSTEMS
Directory of Open Access Journals (Sweden)
Florian Ion Tiberius Petrescu
2014-09-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.
Mayato, R; Egusquiza, I
2002-01-01
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the theory. This book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory, such as the parametric (clock) time, tunneling times, decay times, dwell times, delay times, arrival times or jump times. This multiauthored book, written as an introductory guide for the non-initiated as well as a useful source of information for the expert, covers many of the open questions. A brief historical overview is to be found in the introduction. It is followed by 12 chapters devoted to conceptual and theoretical investigations as well as experimental issues in quantum-mechanical time measurements. This unique monograph should attract physicists as well as philosophers of science working in the foundations of quantum physics.
Acoustic Mechanical Feedthroughs
Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea
2013-01-01
Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be
International Nuclear Information System (INIS)
Lowery, G.B.
1983-01-01
The experimental plans and timing for completion of the mechanical seal program for both the slurry and transfer pumps are given. The slurry pump seal program will be completed by April 1984 with turnover of two seals in pumps to SRP Tank 15H. Transfer pump seal design will be released for plant use by May 1984. Also included are various other pump and seal related tests
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
International Nuclear Information System (INIS)
Kreider, J.F.
1985-01-01
This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements
Classical fracture mechanics methods
International Nuclear Information System (INIS)
Schwalbe, K.H.; Heerens, J.; Landes, J.D.
2007-01-01
Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.02 of this volume and is structured as follows: Test techniques; Analysis; Fracture behavior; Fracture toughness tests for nonmetals
Time Dependent Quantum Mechanics
Morrison, Peter G.
2012-01-01
We present a systematic method for dealing with time dependent quantum dynamics, based on the quantum brachistochrone and matrix mechanics. We derive the explicit time dependence of the Hamiltonian operator for a number of constrained finite systems from this formalism. Once this has been achieved we go on to calculate the wavevector as a function of time, in order to demonstrate the use of matrix methods with respect to several concrete examples. Interesting results are derived for elliptic ...
Semiclassical statistical mechanics
International Nuclear Information System (INIS)
Stratt, R.M.
1979-04-01
On the basis of an approach devised by Miller, a formalism is developed which allows the nonperturbative incorporation of quantum effects into equilibrium classical statistical mechanics. The resulting expressions bear a close similarity to classical phase space integrals and, therefore, are easily molded into forms suitable for examining a wide variety of problems. As a demonstration of this, three such problems are briefly considered: the simple harmonic oscillator, the vibrational state distribution of HCl, and the density-independent radial distribution function of He 4 . A more detailed study is then made of two more general applications involving the statistical mechanics of nonanalytic potentials and of fluids. The former, which is a particularly difficult problem for perturbative schemes, is treated with only limited success by restricting phase space and by adding an effective potential. The problem of fluids, however, is readily found to yield to a semiclassical pairwise interaction approximation, which in turn permits any classical many-body model to be expressed in a convenient form. The remainder of the discussion concentrates on some ramifications of having a phase space version of quantum mechanics. To test the breadth of the formulation, the task of constructing quantal ensemble averages of phase space functions is undertaken, and in the process several limitations of the formalism are revealed. A rather different approach is also pursued. The concept of quantum mechanical ergodicity is examined through the use of numerically evaluated eigenstates of the Barbanis potential, and the existence of this quantal ergodicity - normally associated with classical phase space - is verified. 21 figures, 4 tables
Radiation Bystander Effects Mechanism
Directory of Open Access Journals (Sweden)
Shokohzaman Soleymanifard
2009-06-01
Full Text Available Introduction: Radiation Induced Bystander Effect (RIBE which cause radiation effects in non-irradiated cells, has challenged the principle according to which radiation traversal through the nucleus of a cell is necessary for producing biological responses. What is the mechanism of this phenomenon? To have a better understanding of this rather ambiguous concept substantial number of original and reviewed article were carefully examined. Results: Irradiated cells release molecules which can propagate in cell environment and/or transmit through gap junction intercellular communication. These molecules can reach to non-irradiated cells and transmit bystander signals. In many investigations, it has been confirmed that these molecules are growth factors, cytokines, nitric oxide and free radicals like reactive oxygen species (ROS. Transmission of by stander signal to neighboring cells persuades them to produce secondary growth factors which in their turn cause further cell injuries. Some investigators suggest, organelles other than nucleus (mitochondria and cell membrane are the origin of these signals. There is another opinion which suggests double strand breaks (DSB are not directly generated in bystander cells, rather they are due to smaller damage like single strand breaks which accumulate and end up to DSB. Although bystander mechanisms have not been exactly known, it can be confirmed that multiple mechanisms and various pathways are responsible for this effect. Cell type, radiation type, experimental conditions and end points identify the dominant mechanism. Conclusion: Molecules and pathways which are responsible for RIBE, also cause systemic responses to other non-irradiation stresses. So RIBE is a kind of systemic stress or innate immune responses, which are performed by cell microenvironment. Irradiated cells and their signals are components of microenvironment for creating bystander effects.
Journey Through Statistical Mechanics
Yang, C. N.
2013-05-01
My first involvement with statistical mechanics and the many body problem was when I was a student at The National Southwest Associated University in Kunming during the war. At that time Professor Wang Zhu-Xi had just come back from Cambridge, England, where he was a student of Fowler, and his thesis was on phase transitions, a hot topic at that time, and still a very hot topic today...
Probability in quantum mechanics
Directory of Open Access Journals (Sweden)
J. G. Gilson
1982-01-01
Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.
Mechanics of collective unfolding
Caruel, M.; Allain, J.-M.; Truskinovsky, L.
2015-03-01
Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and the structure of the folding-unfolding energy barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which persists in the continuum limit. We argue that both, the synchronization and the non-equivalence of the mechanical responses in hard and soft devices, have their origin in the dominance of long-range interactions. We then apply our minimal model to skeletal muscles where the power-stroke in acto-myosin crossbridges can be interpreted as passive folding. A quantitative analysis of the muscle model shows that the relative rigidity of myosin backbone provides the long-range interaction mechanism allowing the system to effectively synchronize the power-stroke in individual crossbridges even in the presence of thermal fluctuations. In view of the prototypical nature of the proposed model, our general conclusions pertain to a variety of other biological systems where elastic interactions are mediated by effective backbones.
Quantum mechanics and computation
International Nuclear Information System (INIS)
Cirac Sasturain, J. I.
2000-01-01
We review how some of the basic principles of Quantum Mechanics can be used in the field of computation. In particular, we explain why a quantum computer can perform certain tasks in a much more efficient way than the computers we have available nowadays. We give the requirements for a quantum system to be able to implement a quantum computer and illustrate these requirements in some particular physical situations. (Author) 16 refs
Section of mechanized timbering
Energy Technology Data Exchange (ETDEWEB)
Balaganskiy, S Ye; Aksanov, Sh I; Ardashev, K A; Mednik, L Ye; Mikhaylov, P G
1980-09-05
A section of mechanized timbering is claimed which contains a base, roof timber, hydraulic stand, hydraulic packing cylinders, packing telescopic shield hinged to the roof timber by means of guides. To improve the reliability of forming the filling massif, the packing telescopic shield is made in the form of individual telescopic beams with guards which are interconnected by means of cross beams, while the gaps between the telescopic beams are covered with elasic plates.
Mechanisms for generating froissaron
International Nuclear Information System (INIS)
Glushko, N.I.; Kobylinski, N.A.; Martynov, E.S.; Shelest, V.P.
1982-01-01
From a common point of view, we consider the mechanisms for generating froissaron which arise due to the quasieikonal approximation, the U-matrix approach and the method of continued unitarity. A realistic model for the input pomeron is suggested and the data on high-energy pp-scattering are described. Likeness and difference of asymptotic and preasymptotic regimes for three variants of froissaron are discussed
MECHANISMS OF BACTERIAL POLYHOSTALITY
Directory of Open Access Journals (Sweden)
Markova Yu.A.
2007-12-01
Full Text Available In the review data about factors of pathogenicity of the bacteria, capable to amaze both animals, and a plant are collected. Such properties of microorganisms as adhesion, secretion of some enzymes, mobility, a phenomenon of cooperative sensitivity - play an essential role at defeat of different organisms. They are used for many universal offensive strategy overcoming protection of an organism, irrespective of its evolutionary origin. Studying of these mechanisms, will allow to provide new approaches to monitoring illnesses.
International Nuclear Information System (INIS)
Post, R.F.; Vann, C.S.
1996-10-01
Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam
Discrete variational Hamiltonian mechanics
International Nuclear Information System (INIS)
Lall, S; West, M
2006-01-01
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms
Statistical mechanics of anyons
International Nuclear Information System (INIS)
Arovas, D.P.
1985-01-01
We study the statistical mechanics of a two-dimensional gas of free anyons - particles which interpolate between Bose-Einstein and Fermi-Dirac character. Thermodynamic quantities are discussed in the low-density regime. In particular, the second virial coefficient is evaluated by two different methods and is found to exhibit a simple, periodic, but nonanalytic behavior as a function of the statistics determining parameter. (orig.)
Kolling, Nils; Behrens, Timothy EJ; Mars, Rogier B; Rushworth, Matthew FS
2012-01-01
Behavioural economic studies, involving limited numbers of choices, have provided key insights into neural decision-making mechanisms. By contrast, animals’ foraging choices arise in the context of sequences of encounters with prey/food. On each encounter the animal chooses to engage or whether the environment is sufficiently rich that searching elsewhere is merited. The cost of foraging is also critical. We demonstrate humans can alternate between two modes of choice, comparative decision-ma...
Mechanisms of Memory Enhancement
Stern, Sarah A.
2012-01-01
The ongoing quest for memory enhancement is one that grows necessary as the global population increasingly ages. The extraordinary progress that has been made in the past few decades elucidating the underlying mechanisms of how long-term memories are formed has provided insight into how memories might also be enhanced. Capitalizing on this knowledge, it has been postulated that targeting many of the same mechanisms, including CREB activation, AMPA/NMDA receptor trafficking, neuromodulation (e.g. via dopamine, adrenaline, cortisol or acetylcholine) and metabolic processes (e.g. via glucose and insulin) may all lead to the enhancement of memory. These and other mechanisms and/or approaches have been tested via genetic or pharmacological methods in animal models, and several have been investigated in humans as well. In addition, a number of behavioral methods, including exercise and reconsolidation, may also serve to strengthen and enhance memories. By capitalizing on this knowledge and continuing to investigate these promising avenues, memory enhancement may indeed be achieved in the future. PMID:23151999
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Fracture Mechanics of Concrete
DEFF Research Database (Denmark)
Ulfkjær, Jens Peder
Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... and the goveming equations are explicit and simple. These properties of the model make it a very powerful tool, which is applicable for the designing engineer. The method is also extended to reinforced concrete, where the results look very promising. The large experimental investigation on high-strength concrete...
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Time Asymmetric Quantum Mechanics
Directory of Open Access Journals (Sweden)
Arno R. Bohm
2011-09-01
Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
International Nuclear Information System (INIS)
Rovelli, C.
1996-01-01
I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the open-quotes measurement problemclose quotes) could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion that generates the unease with quantum mechanics is the notion of open-quotes observer-independent stateclose quotes of a system, or open-quotes observer-independent values of physical quantities.close quotes I reformulate the problem of the open-quotes interpretation of quantum mechanicsclose quotes as the problem of deriving the formalism from a set of simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete
Spent fuel dissolution mechanisms
International Nuclear Information System (INIS)
Ollila, K.
1993-11-01
This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)
Mechanical design in arteries.
Shadwick, R E
1999-12-01
The most important mechanical property of the artery wall is its non-linear elasticity. Over the last century, this has been well-documented in vessels in many animals, from humans to lobsters. Arteries must be distensible to provide capacitance and pulse-smoothing in the circulation, but they must also be stable to inflation over a range of pressure. These mechanical requirements are met by strain-dependent increases in the elastic modulus of the vascular wall, manifest by a J-shaped stress-strain curve, as typically exhibited by other soft biological tissues. All vertebrates and invertebrates with closed circulatory systems have arteries with this non-linear behaviour, but specific tissue properties vary to give correct function for the physiological pressure range of each species. In all cases, the non-linear elasticity is a product of the parallel arrangement of rubbery and stiff connective tissue elements in the artery wall, and differences in composition and tissue architecture can account for the observed variations in mechanical properties. This phenomenon is most pronounced in large whales, in which very high compliance in the aortic arch and exceptionally low compliance in the descending aorta occur, and is correlated with specific modifications in the arterial structure.
Mechanical Design of Spacecraft
1962-01-01
In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.
Supersymmetry in quantum mechanics
International Nuclear Information System (INIS)
Lahiri, A.; Roy, P.K.; Bagghi, B.
1990-01-01
A pedagogical review on supersymmetry in quantum mechanics is presented which provides a comprehensive coverage of the subject. First, the key ingredients of the quantization of the systems with anticommuting variables are discussed. The supersymmetric Hamiltonian in quantum mechanics is then constructed by emphasizing the role of partner potentials and the superpotentials. The authors also make explicit the mathematical formulation of the Hamiltonian by considering in detail the N = 1 and N = 2 supersymmetric (quantum) mechanics. Supersymmetry is then discussed in the context of one-dimensional problems and the importance of the factorization method is highlighted. They treat in detail the technique of constructing a hierarchy of Hamiltonians employing the so-called 'shape-invariance' of potentials. To make transparent the relationship between supersymmetry and solvable potentials, they also solve several examples. They then go over the formulation of supersymmetry in radial problems, paying a special attention to the Coulomb and isotropic oscillator potentials. They show that the ladder operator technique may be suitable modified in higher dimensions for generating isospectral Hamiltonians. Next, the criteria for the breaking of supersymmetry is considered and their range of applicability is examined by suitably modifying he definition of Witten's index. Finally, the authors perform some numerical calculations for a class of potentials to show how a modified WKB approximation works in supersymmetric cases
Fay, James A.; Sonwalkar, Nishikant
1996-05-01
This CD-ROM is designed to accompany James Fay's Introduction to Fluid Mechanics. An enhanced hypermedia version of the textbook, it offers a number of ways to explore the fluid mechanics domain. These include a complete hypertext version of the original book, physical-experiment video clips, excerpts from external references, audio annotations, colored graphics, review questions, and progressive hints for solving problems. Throughout, the authors provide expert guidance in navigating the typed links so that students do not get lost in the learning process. System requirements: Macintosh with 68030 or greater processor and with at least 16 Mb of RAM. Operating System 6.0.4 or later for 680x0 processor and System 7.1.2 or later for Power-PC. CD-ROM drive with 256- color capability. Preferred display 14 inches or above (SuperVGA with 1 megabyte of VRAM). Additional system font software: Computer Modern postscript fonts (CM/PS Screen Fonts, CMBSY10, and CMTT10) and Adobe Type Manager (ATM 3.0 or later). James A. Fay is Professor Emeritus and Senior Lecturer in the Department of Mechanical Engineering at MIT.
Directory of Open Access Journals (Sweden)
C.U. Atuanya
2014-01-01
Full Text Available This work presents a systematic approach to evaluate the physio-mechanical properties of bean pod ash particles (BPAp reinforced recycled polyethylene (RLDPE polymer based composites. The bean pod ash particles of 75 μm with a weight percentage of 0, 5, 10, 15, 20, 25, 30 (wt% and recycled polyethylene (RLDPE were prepared. The surface morphology, physical and the mechanical properties of the composites were examined. The results showed that the fair distribution of the bean pod ash particles in the microstructure of the polymer composites is the major factor responsible for the improvement in the mechanical properties. The bean pod ash particles added to the RLDPE polymer increased the percentage of water absorption and improved its rigidity, modulus and hardness values of the composites. The tensile and flexural strengths increased to a maximum of 20.1 and 39.0 N/mm2 at 20 wt% BPAp respectively. Based on the results obtained in this study, it is recommended that the composites can be used in the production of indoor and outdoor applications.
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
Relativistic Quantum Mechanics
International Nuclear Information System (INIS)
Antoine, J-P
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Mechanical stop mechanism for overcoming MEMS fabrication tolerances
International Nuclear Information System (INIS)
Hussein, Hussein; Bourbon, Gilles; Le Moal, Patrice; Lutz, Philippe; Haddab, Yassine
2017-01-01
A mechanical stop mechanism is developed in order to compensate MEMS fabrication tolerances in discrete positioning. The mechanical stop mechanism is designed to be implemented on SOI wafers using a common DRIE etching process. The various fabrication tolerances obtained due to the etching process are presented and discussed in the paper. The principle and design of the mechanism are then presented. Finally, experiments on microfabricated positioning prototypes show accurate steps unaffected by the fabrication tolerances. (technical note)
Game mechanics : advanced game design
Adams, Ernest; Dormans, Joris
2012-01-01
Game Mechanics is aimed at game design students and industry professionals who want to improve their understanding of how to design, build, and test the mechanics of a game. Game Mechanics will show you how to design, test, and tune the core mechanics of a game—any game, from a huge role-playing
Bistable Mechanisms for Space Applications.
Zirbel, Shannon A; Tolman, Kyler A; Trease, Brian P; Howell, Larry L
2016-01-01
Compliant bistable mechanisms are monolithic devices with two stable equilibrium positions separated by an unstable equilibrium position. They show promise in space applications as nonexplosive release mechanisms in deployment systems, thereby eliminating friction and improving the reliability and precision of those mechanical devices. This paper presents both analytical and numerical models that are used to predict bistable behavior and can be used to create bistable mechanisms in materials not previously feasible for compliant mechanisms. Materials compatible with space applications are evaluated for use as bistable mechanisms and prototypes are fabricated in three different materials. Pin-puller and cutter release mechanisms are proposed as potential space applications.
Craniofacial Pain: Brainstem Mechanisms
Directory of Open Access Journals (Sweden)
Barry J Sessle
1996-01-01
Full Text Available This article reviews recent research advances in animals that have identified critical neural elements in the brainstem receiving and transmitting craniofacial nociceptive inputs, as well as some of the mechanisms involved in the modulation and plasticity of nociceptive transmission. Nociceptive neurones in the trigeminal (V brainstem sensory nuclear complex can be classified as nociceptive-specific (NS or wide dynamic range (WDR. Some of these neurones respond exclusively to sensory inputs evoked by stimulation of facial skin or oral mucosa and have features suggesting that they are critical neural elements involved in the ability to localize an acute superficial pain and sense its intensity and duration. Many of the V brainstem nociceptive neurones, however, receive convergent inputs from afferents supplying deep craniofacial tissues (eg, dural vessel, muscle and skin or mucosa. These neurones are likely involved in deep pain, including headache, because few nociceptive neurones receive inputs exclusively from afferents supplying these tissues. These extensive convergent input patterns also appear to be important factors in pain spread and referral, and in central mechanisms underlying neuroplastic changes in V neuronal properties that may occur with injury and inflammation. For example, application of the small fibre excitant and inflammatory irritant mustard oil into the temporomandibular joint, masseter or tongue musculature induces a prolonged but reversible enhancement of responses to cutaneous and deep afferent inputs of most WDR and NS neurones. These effects may be accompanied by increased electromyographic activity reflexly induced in the masticatory muscles by mustard oil, and involve endogenous N-methyl-D-aspartate and opioid neurochemical mechanisms. Such peripherally induced modulation of brainstem nociceptive neuronal properties reflects the functional plasticity of the central V system, and may be involved in the development of
International Nuclear Information System (INIS)
Vrillon, Bernard.
1973-01-01
The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr
Turbulent current drive mechanisms
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-08-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.
International Nuclear Information System (INIS)
Cisneros S, A.; McIntosh, H.V.
1982-01-01
A discussion of the nature of quantum mechanical resonances is presented from the point of view of the spectral theory of operators. In the case of Bohr-Feshbach resonances, graphs are presented to illustrate the theory showing the decay of a doubly excited metastable state and the excitation of the resonance by an incident particle with proper energy. A characterization of resonances is given as well as a procedure to determine widths using the spectral density function. A sufficient condition is given for the validity of the Breit-Wigner formula for Bohr-Feshbach resonances. (author)
International Nuclear Information System (INIS)
Torre, A.C. de la; Mirabella, D.; Izus, G.
1990-01-01
The so called diffraction experiments are explained making no reference to any wave whatsoever. It is proposed that these waves are a mere mathematical artifact without any physical reality. If propensities and transmission between them are accepted as a physical reality, then the wave concept can be set aside along with duality and complementarity, thus eliminating controversy on the interpretation of quantum mechanics. An outline is made of the formulation of the theory based on the preparation of the system according to propensities and the transmission between them. (Author). 19 refs., 1 fig
Mechanical engineering principles
Bird, John
2014-01-01
A student-friendly introduction to core engineering topicsThis book introduces mechanical principles and technology through examples and applications, enabling students to develop a sound understanding of both engineering principles and their use in practice. These theoretical concepts are supported by 400 fully worked problems, 700 further problems with answers, and 300 multiple-choice questions, all of which add up to give the reader a firm grounding on each topic.The new edition is up to date with the latest BTEC National specifications and can also be used on undergraduate courses in mecha
Introduction to continuum mechanics
Rubin, David; Lai, W Michael
1994-01-01
Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive e
Incretin secretion: direct mechanisms
DEFF Research Database (Denmark)
Balk-Møller, Emilie; Holst, Jens Juul; Kuhre, Rune Ehrenreich
2014-01-01
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are secreted from gastro-intestinal K- and L-cells, respectively, and play an important role in post-prandial blood glucose regulation. They do this by direct stimulation of the pancreatic β...... enzyme responsible for incretin degradation (dipeptidyl peptidase-4) is inhibited (drugs are already on the market) while the secretion of endogenous GLP-1 secretion is stimulated at the same time may prove particularly rewarding. In this section we review current knowledge on the mechanisms for direct...
Fracture mechanics safety approaches
International Nuclear Information System (INIS)
Roos, E.; Schuler, X.; Eisele, U.
2004-01-01
Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)
Mechanical spectral shift reactor
International Nuclear Information System (INIS)
Doshi, P.K.; George, R.A.; Dollard, W.J.
1982-01-01
A mechanical spectral shift arrangement for controlling a nuclear reactor includes a plurality of reactor coolant displacer members which are inserted into a reactor core at the beginning of the core life to reduce the volume of reactor coolant-moderator in the core at start-up. However, as the reactivity of the core declines with fuel depletion, selected displacer members are withdrawn from the core at selected time intervals to increase core moderation at a time when fuel reactivity is declining. (author)
Directory of Open Access Journals (Sweden)
Chen Rou-Xi
2013-01-01
Full Text Available Fabrication of crimped fibers has been caught much attention recently due to remarkable improvement surface-to-volume ratio. The precise mechanism of the fiber crimp is, however, rare and preliminary. This paper finds that pulsation of fibers is the key factor for fiber crimp, and its configuration (wave formation corresponds to its nature frequency after solidification. Crimping performance can be improved by temperature control of the uncrimped fibers. In the paper, polylactide/ dimethylfomamide solution is fabricated into crimped nanofibers by the bubble electrospinning, an approximate period- amplitude relationship of the wave formation is obtained.
Energy Technology Data Exchange (ETDEWEB)
O`Mahoney, H.
1999-04-01
Continuous ship unloaders (CSUs) are continuing to become more popular than grab unloaders for dealing with greater capacities of coal. The article surveys current major manufacturers` equipment. Krupp Foerdertechnik, for example, offers seven mechanical ship unloaders, including CSU with scraper chain or L-shaped bucket-elevators, CSU with vertical screw conveyor and horizontal screw-type feeder conveyors. CSU with bucket-elevator and feeding scraper and a continuous barge unloader with bucket elevator, BMH Marine Siwertell continues to be the benchmark for technology advances. HW Carlsan has recently entered the field with a new screw-type ship unloader. 4 photos.
Reliability and mechanical design
International Nuclear Information System (INIS)
Lemaire, Maurice
1997-01-01
A lot of results in mechanical design are obtained from a modelisation of physical reality and from a numerical solution which would lead to the evaluation of needs and resources. The goal of the reliability analysis is to evaluate the confidence which it is possible to grant to the chosen design through the calculation of a probability of failure linked to the retained scenario. Two types of analysis are proposed: the sensitivity analysis and the reliability analysis. Approximate methods are applicable to problems related to reliability, availability, maintainability and safety (RAMS)
Nanoantenna using mechanical resonance
Chang Hwa Lee,
2010-11-01
Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.
Mechanically Invisible Polymer Coatings
DEFF Research Database (Denmark)
2014-01-01
phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically......The present invention relates to a composition comprising encapsulated particles in a polymeric material. The composition comprises a continuous phase and a discontinuous phase incorporated therein, wherein the continuous phase comprises a first polymeric material and wherein the discontinuous...... invisible polymer coatings....
Axiomation of quantum mechanics
International Nuclear Information System (INIS)
Kotecky, R.
1975-01-01
Deeper understanding of the basic structure of the formalism of the modern quantum theory (as has been established during its 50 years' stormy development) has been brought about by its axiomatization - by founding the formalism merely on experimentally directly accountable postulates without referring to historical development, without any a priori nonessential or empirically nonexplicable assumptions. A summary is given of the common formalism of quantum mechanics and its most significant axiomatizations. The assumptions are discussed under which respective axiomatically described abstract structures may be modelled by means of the common formalisn of quantum theory (established on the theory of Hilbert spaces). (author)
Chemical kinetics and reaction mechanism
International Nuclear Information System (INIS)
Jung, Ou Sik; Park, Youn Yeol
1996-12-01
This book is about chemical kinetics and reaction mechanism. It consists of eleven chapters, which deal with reaction and reaction speed on reaction mechanism, simple reaction by rate expression, reversible reaction and simultaneous reaction, successive reaction, complicated reaction mechanism, assumption for reaction mechanism, transition state theory, successive reaction and oscillating reaction, reaction by solution, research method high except kinetics on reaction mechanism, high reaction of kinetics like pulsed radiolysis.
Mechanisms of Plasma Therapeutics
Graves, David
2015-09-01
In this talk, I address research directed towards biomedical applications of atmospheric pressure plasma such as sterilization, surgery, wound healing and anti-cancer therapy. The field has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that plasmas readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. It is postulated that cold atmospheric plasma (CAP) can trigger a therapeutic shielding response in tissue in part by creating a time- and space-localized, burst-like form of oxy-nitrosative stress on near-surface exposed cells through the flux of plasma-generated RONS. RONS-exposed surface layers of cells communicate to the deeper levels of tissue via a form of the ``bystander effect,'' similar to responses to other forms of cell stress. In this proposed model of CAP therapeutics, the plasma stimulates a cellular survival mechanism through which aerobic organisms shield themselves from infection and other challenges.
Residential Mechanical Precooling
Energy Technology Data Exchange (ETDEWEB)
German, Alea [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI); Hoeschele, Marc [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI)
2014-12-01
Residential air conditioning (AC) represents a challenging load for many electric utilities with poor load factors. Mechanical precooling improves the load factor by shifting cooling operation from on-peak to off-peak hours. This provides benefits to utilities and the electricity grid, as well as to occupants who can take advantage of time-of-use (TOU) electricity rates. Performance benefits stem from reduced compressor cycling, and shifting condensing unit operation to earlier periods of the day when outdoor temperatures are more favorable to operational efficiency. Finding solutions that save energy and reduce demand on the electricity grid is an important national objective and supports key Building America goals. The Alliance for Residential Building Innovation team evaluated mechanical AC precooling strategies in homes throughout the United States. EnergyPlus modeling was used to evaluate two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes. A successful off-peak AC strategy offers the potential for increased efficiency and improved occupant comfort, and promotes a more reliable and robust electricity grid. Demand response capabilities and further integration with photovoltaic TOU generation patterns provide additional opportunities to flatten loads and optimize grid impacts.
International Nuclear Information System (INIS)
2014-01-01
The French capacity mechanism has been design to ensure security of supply in the context of the energy transition. This energy transition challenges the electricity market design with several features: peak load growth, the development of renewables, demand response,... To ensure security of supply in this context, a capacity mechanism is being implemented in France. It is a market wide capacity obligation on electricity suppliers, based on market principles. Suppliers are responsible for forecasting their obligation, which corresponds to their contribution to winter peak load, and must procure enough capacity certificates to meet their obligations. Capacity certificates are granted to capacities through a certification process, which assesses their contribution to security of supply on the basis of availability commitments. This certification process is technology neutral and performance based, associated with controls and penalties in case of non compliance. Demand Side is fully integrated in the market, either through the reduction of suppliers' capacity obligation or direct participation after certification. In addition to the expected benefits in terms of security of supply, the French capacity market will foster the development of demand response. The participation of foreign capacities will require adaptations which are scheduled in a road-map, and could pave the way for further European integration of energy policies. (authors)
Neugebauer, Volker
2015-01-01
A limbic brain area the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the “nociceptive amygdala”) accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms. PMID:25846623
Peripheral Auditory Mechanisms
Hall, J; Hubbard, A; Neely, S; Tubis, A
1986-01-01
How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...
Basdevant, Jean-Louis
2007-01-01
Beautifully illustrated and engagingly written, Lectures on Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant's style is clear and stimulating, in the manner of a brisk classroom lecture that students can follow with ease and enjoyment. Here is a sample of the book's style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be 'E = mc2'. Nevertheless, the formula 'E=hV' which was written in the same year 1905 by the same Albert Einstein, and which started quantum theory, concerns their daily life considerably more. In fact, of the three watershed years for physics toward the beginning of the 20th century - 1905: the Special Relativity of Einstein, Lorentz and Poincaré; 1915: the General Relativity of Einstein, with its extraordinary reflections on gravitation, space and time; and 1925: the full development of Quantum Mechanics - it is surely the last which has the mos...
International Nuclear Information System (INIS)
Higgy, H.R.; Abdel-Rassoul, A.A.
1983-01-01
A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)
Rod drive and latching mechanism
International Nuclear Information System (INIS)
Veronesi, L.; Sherwood, D.G.
1982-01-01
Hydraulic drive and latching mechanisms for driving reactivity control mechanisms in nuclear reactors are described. Preferably, the pressurized reactor coolant is utilized to raise the drive rod into contact with and to pivot the latching mechanism so as to allow the drive rod to pass the latching mechanism. The pressure in the housing may then be equalized which allows the drive rod to move downwardly into contact with the latching mechanism but to hold the shaft in a raised position with respect to the reactor core. Once again, the reactor coolant pressure may be utilized to raise the drive rod and thus pivot the latching mechanism so that the drive rod passes above the latching mechanism. Again, the mechanism pressure can be equalized which allows the drive rod to fall and pass by the latching mechanism so that the drive rod approaches the reactor core. (author)
1st National Mechanics Congress
Nieuwstadt, F
1990-01-01
The Department of Applied Mechanics of the Royal Institution of Engineers in the Netherlands (Koninklijk Instituut van Ingenieurs) organised on April 2-4, 1990 the first National Applied Mechanics Congress about the theme: "Integration of Theory and Applications in Applied Mechanics" The idea behind this initiative was to bring together the Applied Mechanics communities in The Netherlands and Belgium and to create an environment in which new developments in the field could be discussed and in which connections to other disciplines could be established. Among an extensive list of possible subjects the following were selected as congress topics: - non-linear material behaviour, - chaos, - mechatronics, - liquid-solid interactions, - mathematics and applied mechanics, - integration of Applied Mechanics and other disciplines. Applied Mechanics comprises both solid mechanics and fluid mechanics. These can be subdivided further into: rheology, plasticity, theory of plates and shells, theory of elasticity, multibody...
Energy Technology Data Exchange (ETDEWEB)
Laouafa, F.; Kazmierczak, J.B. [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, 60 - Verneuil en Halatte (France); Armand, G. [Agence Nationale pour la Gestion des Dechets Radioactifs, Lab. de Souterrain de Meuse/Haute-Marne, 55 - Bure (France); Vaunat, J. [Catalonia UPC- Technical Univ., Barcelona (Spain); Jobmann, M.; Polster, M. [DBETEC- DBE Technology GmbH, Peine (Germany); Su, K.; Lebon, P.; Plas, F.; Armand, G.; Abou-Chakra Guery, A.; Cormery, F.; Shao, J.F.; Kondo, D. [ANDRA - Agence Nationale pour la Gestion des Dechets Radioactifs, 92 - Chatenay Malabry (France); Souley, M. [Institut National de l' Environnement Industriel et des Risques (INERIS), 54 - Nancy (France); Coll, C.; Charlier, R.; Collin, F.; Gerard, P. [Liege Univ., Dept. ArGEnCo (Belgium); Xiang Ling, Li [ESV EURIDICE, SCK.CEN, Belgian Nuclear Research Centre, Mol (Belgium); Collin, F. [Liege Univ., Charge de Recherches FNRS (Belgium); Pellet, F.L.; Fabre, G. [University Joseph Fourier, Laboratory 3S-R, 38 - Grenoble (France); Garcia-Sineriz, J.L.; Rey, M. [AITEMIN - Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid (Spain); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Castellanos, E.; Romero, E.; Lloret, A.; Gens, A. [Catalunya Univ. Politecnica, UPC (Spain); Villar, M.V. [CIEMAT - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Chambon, R. [Laboratoire 3S, UJF-INPG-CNRS, 38 - Grenoble (France); Czaikowski, O.; Lux, K.H. [Clausthal Univ. of Technology, Professorship for Waste Disposal and Geomechanics, Clausthal-Zellerfeld (Germany); Van Geet, M.; Bastiaens, W.; Volckaert, G.; Weetjens, E.; Sillen, X. [SCK-CEN, Waste and Disposal dept., Mol (Belgium); ONDRAF/NIRAS, Brussel (Belgium); Imbert, Ch. [CEA Saclay, Dept. de Physico-Chimie (DPC/SCCME/LECBA), 91 - Gif sur Yvette (France)] [and others
2007-07-01
This session gathers 13 articles dealing with: three-dimensional and time stepping modelling of the whole Meuse/Haute-Marne ANDRA URL (F. Laouafa, J.B. Kazmierczak, G. Armand, J. Vaunat, M. Jobmann, M. Polster); a constitutive model for a deep argillaceous rock using Hoek-Brown criteria (K. Su, C. Chavant, M. Souley); the long term behaviour of the Boom clay: influence of viscosity on the pore pressure distribution (C. Coll, R. Charlier, X.L. Li, F. Collin); the microstructural changes induced by viscoplastic deformations in argillaceous rocks (F.L. Pellet, G. Fabre, K. Su, P. Lebon); the engineered barrier experiment at Mont Terri rock laboratory (J.L. Garcia-Sineriz, M. Rey, J.C. Mayor); the chemical influence on the Hydro-Mechanical behaviour of high-density FEBEX bentonite (E. Castellanos, M.V. Villar, E. Romero, A. Lloret, A. Gens); the influence of water exchanges on the gallery convergence (P. Gerard, R. Charlier, R. Chambon, F. Collin); a new method for ageing resistant storage of argillaceous rock samples to achieve reproducible experimental results even after long intermediate storage times (O. Czaikowski, K.H. Lux); the installation and evaluation of a large-scale in-situ shaft seal experiment in Boom clay the RESEAL project M. Van Geet, W. Bastiaens, G. Volckaert, E. Weetjens, X. Sillen, A. Gens, M.V. Villar, Ch. Imbert, M. Filippi, F. Plas); the hydro-Mechanical response of the Callovo-Oxfordian mud-stone around a deep vertical drift (J. Vaunat, B. Garitte, A. Gens, K. Su, G. Armand); the sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite (J.F. Harrington, D.J. Birchall, P. Sellin); the comparison of the poro-elastic behavior of Meuse/Haute Marne and Tournemire argillites: effect of loading and saturation states (E. Bemer, A. Noiret, F. Homand, A. Rejeb); and the multi-scale modelling of the argillites mechanical behaviour (A. Abou-Chakra Guery, F. Cormery, K. Su, J.F. Shao, D. Kondo)
Cellular mechanics and motility
Hénon, Sylvie; Sykes, Cécile
2015-10-01
The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in
Computational mechanics research at ONR
International Nuclear Information System (INIS)
Kushner, A.S.
1986-01-01
Computational mechanics is not an identified program at the Office of Naval Research (ONR), but rather plays a key role in the Solid Mechanics, Fluid Mechanics, Energy Conversion, and Materials Science programs. The basic philosophy of the Mechanics Division at ONR is to support fundamental research which expands the basis for understanding, predicting, and controlling the behavior of solid and fluid materials and systems at the physical and geometric scales appropriate to the phenomena of interest. It is shown in this paper that a strong commonalty of computational mechanics drivers exists for the forefront research areas in both solid and fluid mechanics
Principles of discrete time mechanics
Jaroszkiewicz, George
2014-01-01
Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.
Stochastic mechanics and quantum theory
International Nuclear Information System (INIS)
Goldstein, S.
1987-01-01
Stochastic mechanics may be regarded as both generalizing classical mechanics to processes with intrinsic randomness, as well as providing the sort of detailed description of microscopic events declared impossible under the traditional interpretation of quantum mechanics. It avoids the many conceptual difficulties which arise from the assumption that quantum mechanics, i.e., the wave function, provides a complete description of (microscopic) physical reality. Stochastic mechanics presents a unified treatment of the microscopic and macroscopic domains, in which the process of measurement plays no special physical role and which reduces to Newtonian mechanics in the macroscopic limit
Mechanical relaxation in glasses
International Nuclear Information System (INIS)
Hiki, Y.
2004-01-01
The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other
International Nuclear Information System (INIS)
Young, G.A.
1970-01-01
Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)
Fundamentals of quantum mechanics
Erkoc, Sakir
2006-01-01
HISTORICAL EXPERIMENTS AND THEORIESDates of Important Discoveries and Events Blackbody RadiationPhotoelectrice Effect Quantum Theory of Spectra TheComptone Effect Matterwaves, the de Broglie HypothesisThe Davisson -Germer Experiment Heisenberg's Uncertainity PrincipleDifference Between Particles and Waves Interpretation of the Wavefunction AXIOMATIC STRUCTURE OF QUANTUM MECHANICSThe Necessity of Quantum TheoryFunction Spaces Postulates of Quantum Mechanics The Kronecker Delta and the Dirac Delta Function Dirac Notation OBSERVABLES AND SUPERPOSITIONFree Particle Particle In A Box Ensemble Average Hilbert -Space Interpretation The Initial Square Wave Particle Beam Superposition and Uncertainty Degeneracy of States Commutators and Uncertainty TIME DEVELOPMENT AND CONSERVATION THEOREMSTime Development of State Functions, The Discrete Case The Continuous Case, Wave Packets Particle Beam Gaussian Wave Packet Free Particle Propagator The Limiting Cases of the Gaussian Wave Packets Time Development of Expectation Val...
Molecular mechanisms in gliomagenesis
DEFF Research Database (Denmark)
Hulleman, Esther; Helin, Kristian
2005-01-01
Glioma, and in particular high-grade astrocytoma termed glioblastoma multiforme (GBM), is the most common primary tumor of the brain. Primarily because of its diffuse nature, there is no effective treatment for GBM, and relatively little is known about the processes by which it develops. Therefore......, in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal...... brain development, such as the differentiation of neural stem cells (NSCs) into astrocytes, might contribute to GBM formation. These pathways include growth factor-induced signal transduction routes and processes that control cell cycle progression, such as the p16-CDK4-RB and the ARF-MDM2-p53 pathways...
Nonlocality in Bohmian mechanics
Ghafar, Zati Amalina binti Mohd Abdul; Radiman, Shahidan bin; Siong, Ch'ng Han
2018-04-01
The Einstein-Podolsky-Rosen (EPR) paradox demonstrates that entangled particles can interact in such a way that it is possible to measure both their position and momentum instantaneously. The position or momentum of one particle can be determined by measuring another identical particle that exists in another space. This instantaneous action is actually called nonlocality. The nonlocality has been proved by Bell's theorem that states that all quantum theories must be nonlocal. The Bell's theorem gives a strong support to the hidden variable theory, i.e. Bohmian mechanics. Using nonlocality, we present that the velocity field of one particle can be obtained by measuring the velocity of other particles. The trajectory of these particles is perhaps surrealistic trajectory due to the nonlocality.
[Oesophagitis during mechanical ventilation].
Gastinne, H; Canard, J M; Pillegand, B; Voultoury, J C; Catanzano, A; Claude, R; Gay, R
1982-10-16
Twenty-one patients whose condition required mechanical ventilation with nasogastric intubation were investigated for oesophagitis before the 3rd day and on the 15th day of treatment, including endoscopy and biopsy. Lesions of oesophagitis were detected in 14 cases during the initial examination and in 19 cases on the second endoscopy. The course of the lesions varied from one patient to another and appeared to be unrelated to the course of the primary disease. Oesophagitis in these patients is probably due to frequent episodes of gastro-oesophageal reflux encouraged by cough, impaired consciousness and the presence of a tube. Reflux may also be the cause of inapparent and recurrent lung aspiration.
Mechanical ventilation strategies.
Keszler, Martin
2017-08-01
Although only a small proportion of full term and late preterm infants require invasive respiratory support, they are not immune from ventilator-associated lung injury. The process of lung damage from mechanical ventilation is multifactorial and cannot be linked to any single variable. Atelectrauma and volutrauma have been identified as the most important and potentially preventable elements of lung injury. Respiratory support strategies for full term and late preterm infants have not been as thoroughly studied as those for preterm infants; consequently, a strong evidence base on which to make recommendations is lacking. The choice of modalities of support and ventilation strategies should be guided by the specific underlying pathophysiologic considerations and the ventilatory approach must be individualized for each patient based on the predominant pathophysiology at the time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantum mechanics and electrodynamics
Zamastil, Jaroslav
2017-01-01
This book highlights the power and elegance of algebraic methods of solving problems in quantum mechanics. It shows that symmetries not only provide elegant solutions to problems that can be solved exactly, but also substantially simplify problems that must be solved approximately. Furthermore, the book provides an elementary exposition of quantum electrodynamics and its application to low-energy physics, along with a thorough analysis of the role of relativistic, magnetic, and quantum electrodynamic effects in atomic spectroscopy. Included are essential derivations made clear through detailed, transparent calculations. The book’s commitment to deriving advanced results with elementary techniques, as well as its inclusion of exercises will enamor it to advanced undergraduate and graduate students.
Young, Ken (Inventor); Hindle, Timothy (Inventor)
2014-01-01
A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.
Mechanisms of cascade collapse
International Nuclear Information System (INIS)
Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.
1988-12-01
The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab
Postulates of quantum mechanics
International Nuclear Information System (INIS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.
1977-01-01
Postulates of quantum mechanics and physical interpretation on observables and their measurement are presented. The physical content of Schroedinger equation, the superposition principle and the physical forecastings are also exposed. In complement are also presented: physical study of a particle in a infinite potential well; study of probability current; mean deviations of two conjugate observables; measurements on a part only of a physical system; density operator; evolution operator; Heisenberg and Schoredinger pictures; gauge invariance; propagator of the Schroedinger equation; unsteady levels lifetime; bound states of a particle in a potential well of any shape; non-bound states of a particle in a well or a potential barrier of some shape; quantum properties of a particle in a one-dimensional periodic structure [fr
Mechanisms of Phosphine Toxicity
Directory of Open Access Journals (Sweden)
Nisa S. Nath
2011-01-01
Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.
Continuum mechanics for engineers
Mase, G Thomas; Mase, George E
2009-01-01
Continuum TheoryContinuum MechanicsStarting OverNotationEssential MathematicsScalars, Vectors and Cartesian TensorsTensor Algebra in Symbolic Notation - Summation ConventionIndicial NotationMatrices and DeterminantsTransformations of Cartesian TensorsPrincipal Values and Principal DirectionsTensor Fields, Tensor CalculusIntegral Theorems of Gauss and StokesStress PrinciplesBody and Surface Forces, Mass DensityCauchy Stress PrincipleThe Stress TensorForce and Moment Equilibrium; Stress Tensor SymmetryStress Transformation LawsPrincipal Stresses; Principal Stress DirectionsMaximum and Minimum Stress ValuesMohr's Circles For Stress Plane StressDeviator and Spherical Stress StatesOctahedral Shear StressKinematics of Deformation and MotionParticles, Configurations, Deformations and MotionMaterial and Spatial CoordinatesLangrangian and Eulerian DescriptionsThe Displacement FieldThe Material DerivativeDeformation Gradients, Finite Strain TensorsInfinitesimal Deformation TheoryCompatibility EquationsStretch RatiosRot...
Energy Technology Data Exchange (ETDEWEB)
Young, G A [Engineering, Agbabian-Jacobsen Associates, Los Angeles (United States)
1970-05-15
Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)
International Nuclear Information System (INIS)
Kraeling, J.B.; Netkowicz, R.J.; Schnall, I.H.
1983-01-01
The mechanical strainer unit is connected to a flanged conduit which originates in and extends out of a suppression chamber in a nuclear reactor. The strainer includes a plurality of centrally apertured plates positioned along a common central axis and in parallel and spaced relationship. The plates have a plurality of bores radially spaced about the central axis. Spacer means such as washers are positioned between adjacent plates to maintain the plates is spaced relationship and form communicating passages of a predetermined size to the central apertures. Connecting means such as bolts or studs extend through the aligned bores to maintain the unit in assembled relationship and secure the unit to the pipe. By employing perforated plates and blocking off certain of the communicating passages, a dual straining effect can be achieved
Zwerger, Monika; Ho, Chin Yee; Lammerding, Jan
2015-01-01
Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell’s microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can affect not only nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer. PMID:21756143
Dolev, S; Kolenda, N
2005-01-01
For more than a century, quantum mechanics has served as a very powerful theory that has expanded physics and technology far beyond their classical limits, yet it has also produced some of the most difficult paradoxes known to the human mind. This book represents the combined efforts of sixteen of today's most eminent theoretical physicists to lay out future directions for quantum physics. The authors include Yakir Aharonov, Anton Zeilinger; the Nobel laureates Anthony Leggett and Geradus 't Hooft; Basil Hiley, Lee Smolin and Henry Stapp. Following a foreword by Roger Penrose, the individual chapters address questions such as quantum non-locality, the measurement problem, quantum insights into relativity, cosmology and thermodynamics, and the possible bearing of quantum phenomena on biology and consciousness.
Banichuk, Nikolay; Neittaanmäki, Pekka; Saksa, Tytti; Tuovinen, Tero
2014-01-01
This book deals with theoretical aspects of modelling the mechanical behaviour of manufacturing, processing, transportation or other systems in which the processed or supporting material is travelling through the system. Examples of such applications include paper making, transmission cables, band saws, printing presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles and other materials. The work focuses on out-of-plane dynamics and stability analysis for isotropic and orthotropic travelling elastic and viscoelastic materials, with and without fluid-structure interaction, using analytical and semi-analytical approaches. Also topics such as fracturing and fatigue are discussed in the context of moving materials. The last part of the book deals with optimization problems involving physical constraints arising from the stability and fatigue analyses, including uncertainties in the parameters. The book is intended for researchers and specialists in the field, providin...
Mechanisms of oxygen evolution
Energy Technology Data Exchange (ETDEWEB)
Radmer, R; Cheniae, G
1976-08-01
The production of O/sub 2/ from water requires the collaboration of four oxidizing equivalents. When dark-adapted O/sub 2/ evolving photosynthetic material is illuminated by a sequence of short (less than 2 ..mu..sec) saturating flashes, the amount of O/sub 2/ evolved per flash oscillates with a period of four. This indicates that a charge-collector, operating with its own reaction center, successively collects and stores four oxidizing equivalents, which are used in a concerted oxidation of two water molecules. Luminescence, fluorescence, and pH changes also reflect this cycle of four. The O/sub 2/ precursor states are quite stable; under some conditions they can have a lifetime of several minutes. The O/sub 2/-yielding reactions and reactions associated with trap recovery are fast relative to the rate-limiting step of photosynthesis. The molecular identity of the charge-collector is unknown, but correlative evidence suggests that a manganese containing catalyst (approximately 4 Mn/charge collector) participates, possibly directly. Formation of the active Mn-containing catalyst occurs via a multi-quantum process occurring within the System II reaction center. The photoactivated catalyst, located on the inner face of the thylakoid membrane, remains permanently active and essentially inaccessible to chemicals other than analogs of H/sub 2/O (e.g., NH/sub 3/, NH/sub 2/OH). This O/sub 2/ evolving catalyst can be deactivated by a variety of treatments that do not alter the system II reaction center. Anions such as chloride seem to participate rather directly in the O/sub 2/ evolution process via unknown mechanism(s).
Teaching Continuum Mechanics in a Mechanical Engineering Program
Liu, Yucheng
2011-01-01
This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…
Mechanisms of mechanical strain memory in airway smooth muscle.
Kim, Hak Rim; Hai, Chi-Ming
2005-10-01
We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.
High mechanical advantage design of six-bar Stephenson mechanism for servo mechanical presses
Directory of Open Access Journals (Sweden)
Jianguo Hu
2016-06-01
Full Text Available This article proposed a two-phase design scheme of Stephenson six-bar working mechanisms for servo mechanical presses with high mechanical advantage. In the qualitative design phase, first, a Stephenson six-bar mechanism with a slide was derived from Stephenson six-bar kinematic chains. Second, based on the instant center analysis method, the relationship between mechanical advantage and some special instant centers was founded, and accordingly a primary mechanism configuration with high mechanical advantage was designed qualitatively. Then, a parameterized prototype model was established, and the influences of design parameters toward slide kinematical characteristics were analyzed. In the quantitative design phase, a multi-objective optimization model, aiming at high mechanical advantage and dwelling characteristics, was built, and a case design was done to find optimal dimensions. Finally, simulations based on the software ADAMS were conducted to compare the transmission characteristics of the optimized working mechanism with that of slide-crank mechanism and symmetrical toggle mechanism, and an experimental press was made to validate the design scheme. The simulation and experiment results show that, compared with general working mechanisms, the Stephenson six-bar working mechanism has higher mechanical advantage and better dwelling characteristics, reducing capacities and costs of servo motors effectively.
On Galilean covariant quantum mechanics
International Nuclear Information System (INIS)
Horzela, A.; Kapuscik, E.; Kempczynski, J.; Joint Inst. for Nuclear Research, Dubna
1991-08-01
Formalism exhibiting the Galilean covariance of wave mechanics is proposed. A new notion of quantum mechanical forces is introduced. The formalism is illustrated on the example of the harmonic oscillator. (author)
New Physical Mechanism for Lightning
Artekha, Sergey N.; Belyan, Andrey V.
2018-02-01
The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.
TREND MECHANISMS IN CONTEMPORARY FASHION
DEFF Research Database (Denmark)
Mackinney-Valentin, Maria
2013-01-01
Explores a spatial approach to trend mechanisms that is argued to be more contemporary than the traditional temporal appraoch.......Explores a spatial approach to trend mechanisms that is argued to be more contemporary than the traditional temporal appraoch....
Vibrating Wingstroke Mechanism, Phase I
National Aeronautics and Space Administration — This proposed work will develop a new method and mechanism for generating wing stroke motion of any shape and orientation. The mechanism will provide power, lift and...
Martensite and bainite in steels: transformation mechanism and mechanical properties
International Nuclear Information System (INIS)
Bhadeshia, H.K.D.H.
1997-01-01
Many essential properties of iron alloys depend on what actually happens when one allotropic form gives way to another, i.e. on the mechanism of phase change. The dependence of the mechanical properties on the atomic mechanism by which bainite and martensite grow is the focus of this paper. The discussion is illustrated in the context of some common engineering design parameters, and with a brief example of the inverse problem in which the mechanism may be a function of the mechanical properties. (orig.)
MECHANISM TO DRAW MACLAURIN TRISECTRIX
Directory of Open Access Journals (Sweden)
Mirela CHERCIU
2013-05-01
Full Text Available It is used a geometrical method for generating Maclaurin trisectrix and based on it , thesynthesis of a mechanism that can draw it, is made. The structure of the found mechanism is R-RTRTtype, having two driving elements with correlated movements. This mechanism is analysedand the desired curve is obtained just for certain dimensions of the mechanism. The mechanism’smovement is studied based on some diagrams and different outputs are obtained for certain initialdimensions of the mechanism’s.
Trace of Korean mechanical industry
International Nuclear Information System (INIS)
1996-12-01
This book reports 50 years of Korean mechanical engineers, which includes birth and history, remembrance and future of Korean society of mechanical engineers, current situation and development of mechanical industry such as national industry and 50 years of mechanical industry, track, airline industry, ship and marine engine, a precision instrument, cutting work, casting, welding, plastic working freeze and air handling nuclear power and textile machinery.
Statistical mechanics of nonequilibrium liquids
Evans, Denis J; Craig, D P; McWeeny, R
1990-01-01
Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,
International Nuclear Information System (INIS)
Vladimirov, V.S.; Volovich, I.V.
1988-01-01
Quantum mechanics above the field of p-adic numbers is constructed. Three formulations of p-adic quantum mechanics are considered: 1) quantum mechanics with complex-valued wave functions and p-adic coordinates and pulses; an approach based on Weyl representation is suggested; 2) the probability (Euclidean) formulation; 3) the secondary quantization representation (Fock representation) with p-adic wave functions
Quantum mechanics. 2. printing (paperback).
International Nuclear Information System (INIS)
Lipkin, H.J.
1986-01-01
Intended for a first year graduate course in quantum mechanics, this collection of topics can also be considered as a set of self-contained 'monographs for pedestrians' on the Moessbauer effect, many-body quantum mechanics, kaon physics, scattering theory, Feynman diagrams, symmetries and relativistic quantum mechanics. (Auth.)
Pricing Mechanism in Information Goods
Li, Xinming; Wang, Huaqing
2018-01-01
We study three pricing mechanisms' performance and their effects on the participants in the data industry from the data supply chain perspective. A win-win pricing strategy for the players in the data supply chain is proposed. We obtain analytical solutions in each pricing mechanism, including the decentralized and centralized pricing, Nash Bargaining pricing, and revenue sharing mechanism.
Collected papers on wave mechanics
Schrödinger, Erwin
1929-01-01
Quantisation as a problem of proper values ; the continuous transition from micro- to macro-mechanics ; on the relation between the quantum mechanics of Heisenberg, Born, and Jordan, and that of Schrödinger ; the Compton effect ; the energy-momentum theorem for material waves ; the exchange of energy according to wave mechanics
44th Aerospace Mechanisms Symposium
Boesiger, Edward A. (Compiler)
2018-01-01
The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.
Barati Farimani, Amir; Gomes, Joseph; Pande, Vijay
2017-11-01
We have developed a new data-driven model paradigm for the rapid inference and solution of the constitutive equations of fluid mechanic by deep learning models. Using generative adversarial networks (GAN), we train models for the direct generation of solutions to steady state heat conduction and incompressible fluid flow without knowledge of the underlying governing equations. Rather than using artificial neural networks to approximate the solution of the constitutive equations, GANs can directly generate the solutions to these equations conditional upon an arbitrary set of boundary conditions. Both models predict temperature, velocity and pressure fields with great test accuracy (>99.5%). The application of our framework for inferring and generating the solutions of partial differential equations can be applied to any physical phenomena and can be used to learn directly from experiments where the underlying physical model is complex or unknown. We also have shown that our framework can be used to couple multiple physics simultaneously, making it amenable to tackle multi-physics problems.
Mechanical properties of ceramics
Pelleg, Joshua
2014-01-01
This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work. Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...
Topics in statistical mechanics
International Nuclear Information System (INIS)
Elser, V.
1984-05-01
This thesis deals with four independent topics in statistical mechanics: (1) the dimer problem is solved exactly for a hexagonal lattice with general boundary using a known generating function from the theory of partitions. It is shown that the leading term in the entropy depends on the shape of the boundary; (2) continuum models of percolation and self-avoiding walks are introduced with the property that their series expansions are sums over linear graphs with intrinsic combinatorial weights and explicit dimension dependence; (3) a constrained SOS model is used to describe the edge of a simple cubic crystal. Low and high temperature results are derived as well as the detailed behavior near the crystal facet; (4) the microscopic model of the lambda-transition involving atomic permutation cycles is reexamined. In particular, a new derivation of the two-component field theory model of the critical behavior is presented. Results for a lattice model originally proposed by Kikuchi are extended with a high temperature series expansion and Monte Carlo simulation. 30 references
Noncommutative Lagrange Mechanics
Directory of Open Access Journals (Sweden)
Denis Kochan
2008-02-01
Full Text Available It is proposed how to impose a general type of ''noncommutativity'' within classical mechanics from first principles. Formulation is performed in completely alternative way, i.e. without any resort to fuzzy and/or star product philosophy, which are extensively applied within noncommutative quantum theories. Newton-Lagrange noncommutative equations of motion are formulated and their properties are analyzed from the pure geometrical point of view. It is argued that the dynamical quintessence of the system consists in its kinetic energy (Riemannian metric specifying Riemann-Levi-Civita connection and thus the inertia geodesics of the free motion. Throughout the paper, ''noncommutativity'' is considered as an internal geometric structure of the configuration space, which can not be ''observed'' per se. Manifestation of the noncommutative phenomena is mediated by the interaction of the system with noncommutative background under the consideration. The simplest model of the interaction (minimal coupling is proposed and it is shown that guiding affine connection is modified by the quadratic analog of the Lorentz electromagnetic force (contortion term.
International Nuclear Information System (INIS)
Truckenbrodt, E.
1980-01-01
The second volume contains the chapter 4 to 6. Whereas chapter 1 deals with the introduction into the mechanics of fluids and chapter 2 with the fundamental laws of fluid and thermal fluid dynamics, in chapter 3 elementary flow phenomena in fluids with constant density are treated. Chapter 4 directly continues chapter 3 and describes elementary flow phenomena in fluids with varying density. Fluid statics again is treated as a special case. If compared with the first edition the treatment of unsteady laminar flow and of pipe flow for a fluid with varying density were subject to a substantial extension. In chapter 5 rotation-free and rotating potential flows are presented together. By this means it is achieved to explain the behaviour of the multidimensional fictionless flow in closed form. A subchapter describes some related problems of potential theory like the flow along a free streamline and seepage flow through a porous medium. The boundary layer flows in chapter 6 are concerned with the flow and temperature boundary layer in laminar and turbulent flows at a fired wall. In it differential and integral methods are applied of subchapter reports on boundary layer flows without a fixed boundary, occurring e.g. in an open jet and in a wake flow. The problems of intermittence and of the Coanda effect are briefly mentioned. (orig./MH)
Filoviral Immune Evasion Mechanisms
Directory of Open Access Journals (Sweden)
Christopher F. Basler
2011-09-01
Full Text Available The Filoviridae family of viruses, which includes the genera Ebolavirus (EBOV and Marburgvirus (MARV, causes severe and often times lethal hemorrhagic fever in humans. Filoviral infections are associated with ineffective innate antiviral responses as a result of virally encoded immune antagonists, which render the host incapable of mounting effective innate or adaptive immune responses. The Type I interferon (IFN response is critical for establishing an antiviral state in the host cell and subsequent activation of the adaptive immune responses. Several filoviral encoded components target Type I IFN responses, and this innate immune suppression is important for viral replication and pathogenesis. For example, EBOV VP35 inhibits the phosphorylation of IRF-3/7 by the TBK-1/IKKε kinases in addition to sequestering viral RNA from detection by RIG-I like receptors. MARV VP40 inhibits STAT1/2 phosphorylation by inhibiting the JAK family kinases. EBOV VP24 inhibits nuclear translocation of activated STAT1 by karyopherin-α. The examples also represent distinct mechanisms utilized by filoviral proteins in order to counter immune responses, which results in limited IFN-α/β production and downstream signaling.
Ecological transfer mechanisms - Terrestrial
International Nuclear Information System (INIS)
Martin, W.E.; Raines, Gilbert E.; Bloom, S.G.; Levin, A.A.
1969-01-01
Radionuclides produced by nuclear excavation detonations and released to the environment may enter a variety of biogeochemical cycles and follow essentially the same transfer pathways as their stable-element counterparts. Estimation of potential internal radiation doses to individuals and/or populations living in or near fallout-contaminated areas requires analysis of the food-chain and other ecological pathways by which radionuclides released to the environment may be returned to man. A generalized materials transfer diagram, applicable to the forest, agricultural, freshwater and marine ecosystems providing food and water to the indigenous population of Panama and Colombia in regions that could be affected by nuclear excavation of a sea-level canal between the Atlantic and Pacific Oceans, is presented. Transfer mechanisms effecting the movement of stable elements and radionuclides in terrestrial ecosystems are discussed, and methods used to simulate these processes by means of mathematical models are described to show how intake values are calculated for different radionuclides in the major ecological pathways leading to man. These data provide a basis for estimating potential internal radiation doses for comparison with the radiation protection criteria established by recognized authorities; and this, in turn, provides a basis for recommending measures to insure the radiological safety of the nuclear operation plan. (author)
Quantum mechanics of leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Mendizabal Cofre, Sebastian
2010-08-15
Leptogenesis is an attractive mechanism that simultaneously explains the matterantimatter asymmetry of the universe as well as the small masses of the standard model neutrinos. This is performed by naturally extending the standard model with the insertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical Boltzmann equations. However, these equations suffer from basic conceptual problems and they lack to include many quantum phenomena, such as memory effects and coherence oscillations. In order to fully describe leptogenesis, a full quantum treatment is required. In this work we show how to address leptogenesis systematically in a purely quantum way. We start by studying scalar and fermionic excitations in a plasma by solving the Kadanoff-Baym equations of motion for Green's functions, with significant emphasis on the initial and boundary conditions of the solutions. We compute analytically the asymmetry generated from the departure of equilibrium of a particle in a thermal bath. The comparison with the semi-classical Boltzmann approach is also analysed, leading to a qualitative difference between both methods. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry, effects that cannot be studied with the Boltzmann equations. The insertion of standard model interactions like the decay widths for the particles of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes, i.e. we regain the Boltzmann equations. (orig.)
Quantum mechanics and experience
Albert, David Z
1992-01-01
The more science tells us about the world, the stranger it looks. Ever since physics first penetrated the atom, early in this century, what it found there has stood as a radical and unanswered challenge to many of our most cherished conceptions of nature. It has literally been called into question since then whether or not there are always objective matters of fact about the whereabouts of subatomic particles, or about the locations of tables and chairs, or even about the very contents of our thoughts. A new kind of uncertainty has become a principle of science. This book is an original and provocative investigation of that challenge, as well as a novel attempt at writing about science in a style that is simultaneously elementary and deep. It is a lucid and self-contained introduction to the foundations of quantum mechanics, accessible to anyone with a high school mathematics education, and at the same time a rigorous discussion of the most important recent advances in our understanding of that subject, some...
Tsianos, George A; Loeb, Gerald E
2017-03-16
Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Mechanisms of Antibiotic Resistance
Munita, Jose M.; Arias, Cesar A.
2015-01-01
Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291
Ecological transfer mechanisms - Terrestrial
Energy Technology Data Exchange (ETDEWEB)
Martin, W E; Raines, Gilbert E; Bloom, S G; Levin, A A [Battelle Memorial Institute, CoIumbus, OH (United States)
1969-07-01
Radionuclides produced by nuclear excavation detonations and released to the environment may enter a variety of biogeochemical cycles and follow essentially the same transfer pathways as their stable-element counterparts. Estimation of potential internal radiation doses to individuals and/or populations living in or near fallout-contaminated areas requires analysis of the food-chain and other ecological pathways by which radionuclides released to the environment may be returned to man. A generalized materials transfer diagram, applicable to the forest, agricultural, freshwater and marine ecosystems providing food and water to the indigenous population of Panama and Colombia in regions that could be affected by nuclear excavation of a sea-level canal between the Atlantic and Pacific Oceans, is presented. Transfer mechanisms effecting the movement of stable elements and radionuclides in terrestrial ecosystems are discussed, and methods used to simulate these processes by means of mathematical models are described to show how intake values are calculated for different radionuclides in the major ecological pathways leading to man. These data provide a basis for estimating potential internal radiation doses for comparison with the radiation protection criteria established by recognized authorities; and this, in turn, provides a basis for recommending measures to insure the radiological safety of the nuclear operation plan. (author)
Directory of Open Access Journals (Sweden)
Pacheco, G.
1991-06-01
Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena.
In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting.
Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG.
In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.
En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos.
Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso.
Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG.
De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.
Quantum mechanics of leptogenesis
International Nuclear Information System (INIS)
Mendizabal Cofre, Sebastian
2009-07-01
Leptogenesis is an attractive mechanism that simultaneously explains the matterantimatter asymmetry of the universe as well as the small masses of the standard model neutrinos. This is performed by naturally extending the standard model with the insertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical Boltzmann equations. However, these equations suffer from basic conceptual problems and they lack to include many quantum phenomena, such as memory effects and coherence oscillations. In order to fully describe leptogenesis, a full quantum treatment is required. In this work we show how to address leptogenesis systematically in a purely quantum way. We start by studying scalar and fermionic excitations in a plasma by solving the Kadanoff-Baym equations of motion for Green's functions, with significant emphasis on the initial and boundary conditions of the solutions. We compute analytically the asymmetry generated from the departure of equilibrium of a particle in a thermal bath. The comparison with the semi-classical Boltzmann approach is also analysed, leading to a qualitative difference between both methods. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry, effects that cannot be studied with the Boltzmann equations. The insertion of standard model interactions like the decay widths for the particles of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes, i.e. we regain the Boltzmann equations. (orig.)
Mechanisms of ouabain resistance
International Nuclear Information System (INIS)
Schulz, J.T. III.
1987-01-01
Experiments were designed to investigate the mechanism of ouabain resistance in two distinct types of transfected cells derived from ouabain-sensitive CV-1 cell parents. The first type of transfectant is the recipient of a gene encoding the alpha subunit of the rodent renal Na,K-ATPase (R-alphal gene); the second type of transfectant is the recipient of the mouse ouabain resistance gene. Measurements of 86 Rb + uptake and Na,K=ATPase activity in R-alphal gene transfectant cells and CV-1 parent cells indicate that the ouabain-resistant phenotype of the transfectants is due to expression of a relatively ouabain-insensitive Na,K=ATPase. CV-1 parent cells express one component of ouabain sensitive 86 Rb + uptake and one component of ouabain-sensitive Na, K-ATPase activity. R-alpha 1 gene transfectants express the parental forms of ouabain-sensitive 86 Rb + uptake and Na,K-ATPase activity, but in addition express new,relatively ouabain-insensitive forms of 86 Rb + uptake activity and Na,K-ATPase activity
White, Harold
2011-01-01
This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive technology coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a Chicago Pile moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing
2018-03-01
The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The
Mechanical properties of papercrete
Directory of Open Access Journals (Sweden)
Zaki Harith
2018-01-01
Full Text Available This paper studies the uses, of waste paper as an additional material in concrete mixes. Papercrete is a term as the name seems, to imply a mixture of paper and concrete. It is a new, composite material using waste paper, as a partial addition of Portland cement, and is a sustainable, building material due to, reduced amount of waste paper being put to use. It gains, latent strength due to presence of hydrogen bonds in microstructure of paper. Papercrete has been, reported to be a low cost alternative, building construction, material and has, good sound absorption, and thermal insulation; to be a lightweight and fire-resistant material. The percent of waste paper used (after treating namely (5%, 10%, 15% and 20% by weight of cement to explore the mechanical properties of the mixes (compressive strength, splitting tensile strength, flexural strength, density, as compared with references mixes, it was found that fresh properties affected significantly by increasing the waste paper content. The compressive strength, splitting tensile strength, flexural strength and density got decreased with increase in the percentage of paper.
Mechanical behavior of superalloys
International Nuclear Information System (INIS)
Floreen, S.
1986-04-01
Recent developments affecting the mechanical behavior of superalloys over three ranges of operating temperatures are reviewed. At lower temperatures, activity has been focused on stress corrosion cracking susceptibility in light water reactor and sour gas well environments. The susceptibility to intergranular crack growth is critically dependent upon the grain boundary chemistry, and a method of minimizing the sensitivity of the boundaries to attack has been pursued. At intermediate temperatures, considerable effort has been directed toward increasing the tensile and fatigue strengths. The higher strength materials, however, show increased fracture sensitivity. In particular, embrittlement due to diffusion into the grain boundaries of aggressive species, such as oxygen or sulfur from the environments, becomes a problem. Minor element alloying additions of boron, zirconium, magnesium, etc., are helpful in retarding the degradation caused by the environment. At higher temperatures, the major thrust is toward improving the creep strength. The weak link in the materials, which is the transverse grain boundaries, has been eliminated by the use of specialized processing steps to produce either directionally solidified materials with minimum transverse grain boundaries, or single crystal materials. Single crystal materials permit alloying and heat treating modifications that further enhance the creep strength. The materials are very anisotropic in properties, but are successfully used in turbine blades and could be useful in other special applications
Understanding mechanical ventilators.
Chatburn, Robert L
2010-12-01
The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.
Mechanical configuration and maintenance
International Nuclear Information System (INIS)
Brown, T.G.; Casini, G.; Churakov, G.F.
1982-01-01
The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations. The most apparent configuration design feature is the access provided for torus maintenance. Particular attention was given to the size and location of superconducting magnets and the location of vacuum boundaries. All of the poloidal field (PF) coils are placed outside of the bore of the toroidal field (TF) coils and located above and below an access opening between adjacent TF coils through which torus sectors are removed. A magnet structural configuration consisting of mechanically attached reinforcing members has been designed which facilitates the open access space for torus sector removal. For impurity control, a single null poloidal divertor was selected over a double null design in order to maintain sufficient access for pumping and maintenance of the collector. A double null divertor was found to severely limit access to the torus with the addition of divertor collectors and pumping at the top. For this reason, a single null concept was selected in spite of the more difficult design problems associated with the required asymmetric PF system and higher particle loadings
International Nuclear Information System (INIS)
Larson, R.B.
1980-01-01
The large but temporary increase in radius accompanying the recurrent flare-ups of the FU Ori stars can be produced only by strong transient heating of a thin outer layer of the star. Simple composite polytropic models show that the observed changes in radius and luminosity can be accounted for if the outer 0.5 per cent of the mass gains a thermal energy comparable to the kinetic energy it would have in rapid rotation. The models also imply that the masses of the FU Ori stars are near 1 solar mass. The most plausible heating mechanism is an instability due to rapid rotation, and it is suggested that the secular instability of a convective rotating star to bar-like deformations is responsible; this will produce strong shocks, turbulence, and heating of the outermost layers of the star. Matter will also be ejected, and this could account for much of the mass and angular momentum lost from young stars. The most luminous T Tauri stars may have experienced recent FU Ori flare-ups and may still be a magnitude or more brighter than normal. (author)
On complexified mechanics and coquaternions
International Nuclear Information System (INIS)
Brody, Dorje C; Graefe, Eva-Maria
2011-01-01
While real Hamiltonian mechanics and Hermitian quantum mechanics can both be cast in the framework of complex canonical equations, their complex generalizations have hitherto remained tangential. In this communication, quaternionic and coquaternionic (split-signature analogue of quaternions) extensions of Hamiltonian mechanics are introduced and are shown to offer a unifying framework for complexified classical and quantum mechanics. In particular, quantum theories characterized by complex Hamiltonians invariant under spacetime reflection are shown to be equivalent to certain coquaternionic extensions of Hermitian quantum theories. One of the interesting consequences is that the spacetime dimension of these systems is six, not four, on account of the structures of coquaternionic quantum mechanics. (fast track communication)
Axiomatic electrodynamics and microscopic mechanics
International Nuclear Information System (INIS)
Yussouff, M.
1981-04-01
A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)
Theoretical physics 2 analytical mechanics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to analytical mechanics, one of the core components of undergraduate physics courses.It follows on naturally from the previous volumes in this series, thus expanding the knowledge in classical mechanics. The book starts with a thorough introduction into Lagrangian mechanics, detailing the d’Alembert principle, Hamilton’s principle and conservation laws. It continues with an in-depth explanation of Hamiltonian mechanics, illustrated by canonical and Legendre transformation, the generalization to quantum mechanics through Poisson brackets and all relevant variational principles. Finally, the Hamilton-Jacobi theory and the transition to wave mechanics are presented in detail. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by ...
Management mechanisms by education
Directory of Open Access Journals (Sweden)
Vladimir G. Gamayunov
2017-01-01
Full Text Available Donbas is an industrial region; its diversified cities unite similar problems that have been considerably intensified. Military operations on territory of Donbas assisted the appearance of the new state – Donetsk Republic (DPR of People’s, that result in native socio-economic and political transformations which rendered substantial influence on the processes of organization of vital functions of region. Building of the new state system, as the strategic purpose of DPR, demanded mobilization all kinds and forms of state-economic policy. For the achievement of this policy the is key trends are the preparation of highly skilled specialists providing not only administrative activity of the again formed organs of the system of state administration but also able to adapt oneself to the new terms. As the folded practice of education in a country shows, the forms and methods of educational activity, that used now, does not allow, to a full degree, to provide the decision of the tasks due to objective and subjective reasons. At the same time, presently, in Donetsk Republic of People’s, the process of search of ways of perfection of education began. So, an Act “About education”, that pawned legal framework of creation of its integral system, was passed in 2015. So, the basic principles of public policy and legal adjusting of relations are certain in the field of education, the new standards of education are developed. But as practice shows, in the folded system of education, an effective educational policy is not yet mine-out and management mechanisms are not produced by education, called to provide preparation of specialists, both for a socio-economic sphere and for the system of public authorities. A purpose was put in this connection, using innovative forms and methods of development of educational complex to conduct the search of approach that in the present conditions of development of the state system of DPR would allow to conduct
The Mechanism of Dishabituation
Directory of Open Access Journals (Sweden)
Genevieve Z. Steiner
2014-02-01
Full Text Available The dual-process theory of habituation attributes dishabituation, an increase in responding to a habituated stimulus after an interpolated deviant, to sensitisation, a change in arousal. Our previous investigations into elicitation and habituation of the electrodermal Orienting Reflex (OR showed that dishabituation is independent of sensitisation for indifferent stimuli, arguing against dual-process theory’s explanation. However, this could not be tested for significant stimuli in that study, because sensitisation was confounded with incomplete resolution of the preceding OR. This study aimed to clarify the mechanism of dishabituation for significant stimuli by extending the stimulus onset asynchrony (SOA beyond the time required for the phasic response to resolve. Participants completed an auditory dishabituation task with a random SOA of 13-15 s while their electrodermal activity was recorded. The stimulus sequence was 10 standards, 1 deviant, 2-4 standards; counterbalanced innocuous tones. Two counterbalanced conditions were used: silently count all stimuli (significant and no task (indifferent. Skin conductance responses (SCRs and pre-stimulus skin conductance levels (SCLs both decremented over trials 1-10. In both conditions, SCRs showed response recovery and dishabituation, indicating habituation, and post-deviant SCL sensitisation was apparent. Across all trials, phasic ORs were dependent on the pre-stimulus SCL (arousal level; this did not differ with condition. Importantly, dishabituation was independent of sensitisation for both conditions. Findings indicate that sensitisation, the change in state, is a process separate from phasic response resolution, and that arousal consistently predicts OR magnitude, including the dishabituation response. This argues against dual-process theory’s explanation, and instead suggests that dishabituation is a disruption of the habituation process, with magnitude determined by the current arousal
International Nuclear Information System (INIS)
Nuttall, K.R.; Gardner, P.R.
1991-01-01
Westinghouse Hanford Company is developing a desk-top simulation based training program on the operation of the Remote Mechanical C (RMC) Line process in the Plutonium Finishing Plant on the Hanford site, Richland, Washington. Simulations display aod contioually update current values of system parameters on computer graphics of RMC line equipment. Students are able to operate a variety of controllers to maintain proper system status. Programmed faults, selectable by the course instructor, can be used to test student responses to off-normal events. Prior to operation of the simulation, students are given computer-based tutorials on the function, processes, operation, and error conditions associated with individual components. By including the capability of operating each individual component - valves, heaters, agitators, etc. - the computer-based training (CBT) lessons become an interactive training manual. From one perspective RMC represents one step in the diffusion of the well-known and well-documented simulator training activities for nuclear reactor operators to other training programs, equally critical, perhaps, but less well scrutinized in the past. Because of the slowly responding nature of the actual process, RMC can retain many of the capabilities of practice and testing in a simulated work environment while avoiding the cost of a full scale simulator and the exposure and waste developed by practice runs of the RMC line. From another perspective RMC suggests training advances even beyond the most faithful simulators. For example, by integrating CBT lessons with the simulation, RMC permits students to focus in on specific processes occurring inside chosen components. In effect, the interactive training manual is available on-line with the simulation itself. Cost are also discussed
Modelling the fragmentation mechanisms
International Nuclear Information System (INIS)
Bougault, R.; Durand, D.; Gulminelli, F.
1998-01-01
We have investigated the role of high amplitude collective motion in the nuclear fragmentation by using semi-classical macroscopic, as well as, microscopic simulations (BUU). These studies are motivated by the search of instabilities responsible for nuclear fragmentation. Two cases were examined: the bubble formation following the collective expansion of the compressed nucleus in case of very central reactions and, in the case of the semi-central collisions, the fast fission of the two partners issued from a binary reaction, in their corresponding Coulomb field. In the two cases the fragmentation channel is dominated by the inter-relation between the Coulomb and nuclear fields, and it is possible to obtain semi-quantitative predictions as functions of interaction parameters. The transport equations of BUU type predicts for central reactions formation of a high density transient state. Of much interest is the mechanism subsequent to de-excitation. It seems reasonable to conceive that the pressure stocked in the compressional mode manifests itself as a collective expansion of the system. As the pressure is a increasing function of the available energy one can conceive a variety of energy depending exit channels, starting from the fragmentation due the amplification of fluctuations interior to the spinodal zone up to the complete vaporization of the highly excited system. If the reached pressure is sufficiently high the reaction final state may preserve the memory of the entrance channel as a collective radial energy superimposed to the thermal disordered motion. Distributions of particles in the configuration space for both central and semi-central reactions for the Pb+Au system are presented. The rupture time is estimated to the order of 300 fm/c, and is strongly dependent on the initial temperature. The study of dependence of the rupture time on the interaction parameters is under way
Material removal mechanisms in electrochemical-mechanical polishing of tantalum
International Nuclear Information System (INIS)
Gao, F.; Liang, H.
2009-01-01
Material removal mechanisms in tantalum chemical-mechanical polishing (CMP) and electrochemical-mechanical polishing (ECMP) were investigated using the single frequency electrochemical impedance spectroscopy (EIS). Through measuring the impedance of the tantalum surface, the single frequency EIS scan made it possible to observe the CMP and ECMP processes in situ. The impedance results presented competing mechanisms of removal and formation of a surface oxide layer of tantalum. Analysis indicated that the thickness of the oxide layer formed during polishing was related to the mechanical power correlated to the friction force and the rotating speed. Furthermore, the rate of growth and removal of the oxide film was a function of the mechanical power. This understanding is beneficial for optimization of CMP and ECMP processes.
Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism
DEFF Research Database (Denmark)
Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik
2016-01-01
)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers......The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R...... indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site...
Quantum mechanics as a natural generalization of classical statistical mechanics
International Nuclear Information System (INIS)
Xu Laizi; Qian Shangwu
1994-01-01
By comparison between equations of motion of geometrical optics (GO) and that of classical statistical mechanics (CSM), it is found that there should be an analogy between GO and CSM instead of GO and classical mechanics (CM). Furthermore, by comparison between the classical limit (CL) of quantum mechanics (QM) and CSM, the authors find that CL of QM is CSM not CM, hence they demonstrated that QM is a natural generalization of CSM instead of CM
Analogies between classical statistical mechanics and quantum mechanics
International Nuclear Information System (INIS)
Uehara, M.
1986-01-01
Some analogies between nonequilibrium classical statistical mechanics and quantum mechanics, at the level of the Liouville equation and at the kinetic level, are commented on. A theorem, related to the Vlasov equation applied to a plasma, is proved. The theorem presents an analogy with Ehrenfest's theorem of quantum mechanics. An analogy between the plasma kinetic theory and Bohm's quantum theory with 'hidden variables' is also shown. (Author) [pt
6th International Conference on Mechanism Science
Flores, Paulo
2017-01-01
This book collects the most recent advances in mechanism science and machine theory with application to engineering. It contains selected peer-reviewed papers of the sixth International Conference on Mechanism Science, held in Nantes, France, 20-23 September 2016, covering topics on mechanism design and synthesis, mechanics of robots, mechanism analysis, parallel manipulators, tensegrity mechanisms, cable mechanisms, control issues in mechanical systems, history of mechanisms, mechanisms for biomechanics and surgery and industrial and nonindustrial applications.
Fluid mechanics fundamentals and applications
Cengel, Yunus
2013-01-01
Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...
Accelerated testing of space mechanisms
Murray, S. Frank; Heshmat, Hooshang
1995-01-01
This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.
Mathematical modelling in solid mechanics
Sofonea, Mircea; Steigmann, David
2017-01-01
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...
Mechanical ventilation in neurosurgical patients
Directory of Open Access Journals (Sweden)
Keshav Goyal
2013-01-01
Full Text Available Mechanical ventilation significantly affects cerebral oxygenation and cerebral blood flow through changes in arterial carbon dioxide levels. Neurosurgical patients might require mechanical ventilation for correction and maintenance of changes in the pulmonary system that occur either due to neurosurgical pathology or following surgery during the acute phase. This review discusses the basics of mechanical ventilation relevant to the neurosurgeon in the day-to-day management of neurosurgical patient requiring artificial support of the respiration.
Bell's theorem and quantum mechanics
Rosen, Nathan
1994-02-01
Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor
Quantum mechanics and Bell's inequalities
International Nuclear Information System (INIS)
Jones, R.T.; Adelberger, E.G.
1994-01-01
Santos argues that, if one interprets probabilities as ratios of detected events to copies of the physical system initially prepared, the quantum mechanical predictions for the classic tests of Bell's inequalities do not violate the inequalities. Furthermore, he suggests that quantum mechanical states which do violate the inequalities are not physically realizable. We discuss a physically realizable experiment, meeting his requirements, where quantum mechanics does violate the inequalities
A textbook of quantum mechanics
International Nuclear Information System (INIS)
Mathews, P.M.; Venkatesan, K.
1977-01-01
After briefly surveying the inadequacy of the classical ideas and elementary older quantum theory, the ideas of wave mechanics, the postulates of quantum mechanics, exactly soluble problems, approximation techniques, scattering theory, angular momentum, time dependent problems and the basic ideas of relativistic quantum mechanics are discussed. The book is meant for the Master of Science degree course students of Indian Universities. (M.G.B.)
Qualitative insights on fundamental mechanics
Mardari, G. N.
2002-01-01
The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. They cannot be predicted, because they cannot have internal causes. However, it is possible to describe them in the language of classical mechanics. We invoke philosophical reas...
Quantum Mechanics as Classical Physics
Sebens, CT
2015-01-01
Here I explore a novel no-collapse interpretation of quantum mechanics which combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
Dynamical systems in classical mechanics
Kozlov, V V
1995-01-01
This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics
Awareness Mechanisms in Groupware Systems
Byrne, Peter
2004-01-01
The main focus of this dissertation is to study the awareness mechanisms in groupware computing. The object of this study is to create a platform for testing awareness mechanisms in a general and empirical fashion. The platform will allow different awareness schemes to be enabled and disabled as required. The awareness mechanisms that will be supported in this project are the use of colour as a carrier of embodiment information, the use of radars and telepointers to present location awaren...
Generalized mechanics as a representation of the ordinary mechanics
International Nuclear Information System (INIS)
Knapecz, G.
1974-01-01
It is shown that the generalized mechanics of one masspoint may be interpreted as a special representation of the ordinary mechanics of a system of masspoints. The hormorphism of both representations is shown in the case of two masspoints coupled by a harmonic force. The new representation is applied in the special relativic meachanics of mass-points. (author)
Mechanical and dynamic mechanical behaviour of novel glass ...
Indian Academy of Sciences (India)
M Rajesh
the intra-ply woven fabric hybridization enhances impact and damping properties of the composite ... Keywords. Intra-ply hybrid; natural fibre; mechanical properties; dynamic mechanical analysis; vibration; .... analysis test is conducted in nitrogen environment over a ..... Mnson J A and Jolliet O 2001 Life cycle assessment of.
The equivalence principle in classical mechanics and quantum mechanics
Mannheim, Philip D.
1998-01-01
We discuss our understanding of the equivalence principle in both classical mechanics and quantum mechanics. We show that not only does the equivalence principle hold for the trajectories of quantum particles in a background gravitational field, but also that it is only because of this that the equivalence principle is even to be expected to hold for classical particles at all.
Statistical ensembles in quantum mechanics
International Nuclear Information System (INIS)
Blokhintsev, D.
1976-01-01
The interpretation of quantum mechanics presented in this paper is based on the concept of quantum ensembles. This concept differs essentially from the canonical one by that the interference of the observer into the state of a microscopic system is of no greater importance than in any other field of physics. Owing to this fact, the laws established by quantum mechanics are not of less objective character than the laws governing classical statistical mechanics. The paradoxical nature of some statements of quantum mechanics which result from the interpretation of the wave functions as the observer's notebook greatly stimulated the development of the idea presented. (Auth.)
Statistical mechanics in a nutshell
Peliti, Luca
2011-01-01
Statistical mechanics is one of the most exciting areas of physics today, and it also has applications to subjects as diverse as economics, social behavior, algorithmic theory, and evolutionary biology. Statistical Mechanics in a Nutshell offers the most concise, self-contained introduction to this rapidly developing field. Requiring only a background in elementary calculus and elementary mechanics, this book starts with the basics, introduces the most important developments in classical statistical mechanics over the last thirty years, and guides readers to the very threshold of today
Mechanisms in Chronic Multisymptom Illnesses
National Research Council Canada - National Science Library
Clauw, Daniel J
2006-01-01
The overall objectives of this cooperative agreement are to conduct research in pursuit of identifying the physiologic mechanisms responsible for the symptoms of pain, fatigue, and memory difficulties...
Quantum Mechanics for Electrical Engineers
Sullivan, Dennis M
2011-01-01
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at
Mechanics lectures on theoretical physics
Sommerfeld, Arnold Johannes Wilhelm
1952-01-01
Mechanics: Lectures on Theoretical Physics, Volume I covers a general course on theoretical physics. The book discusses the mechanics of a particle; the mechanics of systems; the principle of virtual work; and d'alembert's principle. The text also describes oscillation problems; the kinematics, statics, and dynamics of a rigid body; the theory of relative motion; and the integral variational principles of mechanics. Lagrange's equations for generalized coordinates and the theory of Hamilton are also considered. Physicists, mathematicians, and students taking Physics courses will find the book
Learn new mechanisms from life
International Nuclear Information System (INIS)
Ji Qing; Luo Mingyan; Tong Xiaolin; Zhang Bo; Zhang Hui
2005-01-01
On the basis of the important experimental results of molecular motors, it was pointed out that the moving process of molecular motors is a coupling biological process of chemical-electrical-mechanical processes. This clever mechanism of energy conversion on the molecular level with several processes coupled together had never been observed before. The understanding of this new mechanism is an important step towards the understanding of life and an important content of what we can learn from life. The authors introduced here the status of the investigations on the mechanism for the force generation of kinesin and the studies of the authors in this field. (authors)
Conceptual foundations of quantum mechanics
International Nuclear Information System (INIS)
Shimony, A.
1989-01-01
Radical innovation in the quantum mechanical framework such as objective indefiniteness, objective chance, objective probability, potentiality, entanglement and quantum nonlocality are discussed and related to the standard formalism. Examples are given which though problematic in classical mechanics are simply explained with these new concepts. Evidence is presented that the conceptual innovations of quantum mechanics cannot be separated from its predictive power. Proposals for solving ''the reduction of the wave packet'' anomaly are presented. Further radical innovations in quantum mechanics are anticipated. (U.K.)
Introductory Education for Mechanical Engineering by Exercise in Mechanical Disassembly
Matsui, Yoshio; Asakawa, Naoki; Iwamori, Satoru
An introductory program “Exercise for engineers in mechanical disassembly” is an exercise that ten students of every team disassemble a motor scooter to the components and then assemble again to the initial form in 15 weeks. The purpose of this program is to introduce mechanical engineering by touching the real machine and learning how it is composed from various mechanical parts to the students at the early period after the entrance into the university. Additional short lectures by young teachers and a special lecture by a top engineer in the industry encourage the students to combine the actual machine and the mechanical engineering subjects. Furthermore, various educations such as group leader system, hazard prediction training, parts filing are included in this program. As a result, students recognize the importance of the mechanical engineering study and the way of group working.
Mechanical Behaviour of Materials Volume II Fracture Mechanics and Damage
François, Dominique; Zaoui, André
2013-01-01
Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydogen embrittlement and to environment assisted cracking, chapter VIII...
Introduction to quantum statistical mechanics
International Nuclear Information System (INIS)
Bogolyubov, N.N.; Bogolyubov, N.N.
1980-01-01
In a set of lectures, which has been delivered at the Physical Department of Moscow State University as a special course for students represented are some basic ideas of quantum statistical mechanics. Considered are in particular, the Liouville equations in classical and quantum mechanics, canonical distribution and thermodynamical functions, two-time correlation functions and Green's functions in the theory of thermal equilibrium
Vibrant times for mechanical metamaterials
DEFF Research Database (Denmark)
Christensen, Johan; Kadic, Muamer; Kraft, Oliver
2015-01-01
Metamaterials are man-made designer matter that obtains its unusual effective properties by structure rather than chemistry. Building upon the success of electromagnetic and acoustic metamaterials, researchers working on mechanical metamaterials strive at obtaining extraordinary or extreme...... mass density, negative modulus, pentamode, anisotropic mass density, Origami, nonlinear, bistable, and reprogrammable mechanical metamaterials....
Mechanical Paradox: The Uphill Roller
Cortes, Emilio; Cortes-Poza, D.
2011-01-01
We analyse in detail the dynamics of a mechanical system which is a rigid body with the geometry of a double cone. This double cone is apparently able to spontaneously roll uphill along inclined rails. The experiment has been known for some centuries, and because of its peculiar behaviour, it has been named "mechanical paradox". Although this…
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES
International Nuclear Information System (INIS)
Geiger, G.
2000-01-01
The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory
Quantum mechanics with quantum time
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)
Basic Mechanics with Engineering Applications
Jones, J; Fawcett, J N
2012-01-01
This book gives a sufficient grounding in mechanics for engineers to tackle a significant range of problems encountered in the design and specification of simple structures and machines. It also provides an excellent background for students wishing to progress to more advanced studies in three-dimensional mechanics.
Unusual cause of mechanical ileus
Energy Technology Data Exchange (ETDEWEB)
Strobel, E S; Beck, A H
1987-07-01
A patient with the signs of mechanic ileus is reported. Past history of dilative cardiomyopathy with atrial fibrillation and the recent occlusion of the left renal artery suggested arterial mesenteric embolism. Celiacography ruled out mesenteric thromboembolism and vigorous enemas resulted in the delivery of the foreign bodies causing the mechanic ileus: 2 '10-Pfennig' coins.
Quantum mechanics and its limits
International Nuclear Information System (INIS)
Lamehi-Rachti, M.; Mittig, W.
1977-01-01
Bell has shown (Bell's inequality) that local hidden variable theories lead to predictions in contradiction with quantum mechanics. This has been tested in low energy proton-proton scattering by the simultaneous measurement of the polarisation of the two protons. The results are in agreement with quantum mechanics and thus in contradiction with the inequality of Bell [fr
Mechanical generation of spin current
Directory of Open Access Journals (Sweden)
Mamoru eMatsuo
2015-07-01
Full Text Available We focus the recent results on spin-current generation from mechanical motion such as rigid rotation and elastic deformations. Spin transport theory in accelerating frames is constructed by using the low energy expansion of the generally covariant Dirac equation. Related issues on spin-manipulation by mechanical rotation are also discussed.
Standardized Curriculum for Automotive Mechanics.
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…
Molecular mechanism of insulin resistance
Indian Academy of Sciences (India)
Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, ...
Kaehler geometry and SUSY mechanics
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen
2001-01-01
We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed
Persistence Mechanisms of Conjugative Plasmids
DEFF Research Database (Denmark)
Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes
2009-01-01
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the suc...
Mechanics in Steels through Microscopy
Tirumalasetty, G.K.
2013-01-01
The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP
Mechanical design of DNA nanostructures
Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua
2015-03-01
Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k
Testing Mechanisms for Philanthropic Behaviour
Bekkers, R.H.F.P.; Wiepking, P.
2011-01-01
This special issue of the International Journal of Nonprofit and Voluntary Sector Marketing presents a collection of nine papers testing mechanisms that drive philanthropic behaviour. By testing one or more specific mechanisms that were derived from the philanthropic literature, the authors of the
General presentation of projects mechanisms
International Nuclear Information System (INIS)
2003-01-01
This guide provides recommendations and tools to implement projects mechanisms, in the framework of the kyoto protocol. It precises the place of the projects mechanisms in the display of tools involved in the climatic change fight policies, at the national as international scale. It recalls the main characteristics and the rules of utilization and illustrates the corresponding interests. (A.L.B.)
Mechanisms and mechanics of porosity formation in ductile iron castings
Directory of Open Access Journals (Sweden)
M. Perzyk
2007-12-01
Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.
Ludwig Boltzmann, mechanics and vitalism
International Nuclear Information System (INIS)
Broda, E.
1990-01-01
During most of his life Boltzmann considered classical mechanics, based on the ideas of material points and central forces, as the fundament of physics. On this basis he became one of the founders of Statistical Mechanics, through which thermodynamics was interpreted on an atomistic basis. In this work, Boltzmann was opposed by his colleague, Ernst Mach. Boltzmann also devoted much work to attempts to interpret Maxwell's theory of the electromagnetic field, of which he was a main protagonist in Central Europe, through mechanics. However, as a supporter of mechanics Boltzmann was by no means dogmatic. While he was adamant in his rejection of Wilhelm Ostwald's energism, he was openminded in respect to the relationship of mechanics, electromagnetism and atomistics. Personally, Boltzmann wanted to conserve and transmit the enormous achievements of mechanics, especially in connection with the mechanical theory of heat, so that these results should not be lost to future generations, but he encouraged attempts to proceed in new directions. While within the framework of statistical mechanics the atoms were treated like the material points of classical mechanics, Boltzmann resisted the initial, unwarranted, ideas about the structure and the properties of the atoms. When later valid ideas were evolved, Boltzmann warmly welcomed this progress, without however personally taking part in the new developments. In his later years, Boltzmann took an intense interest in biology. He supported Darwin's theories, and he contributed to them. He may be called an 'absolute Darwinist'. In his search for a natural explanation of the phenomena of life, he used the term 'mechanical', without meaning to limit them to the realm of classical mechanics. This terminological laxity is considered as unfortunate. Extending his application of Darwinian principles to advanced species, including man, Boltzmann put forward 'mechanical' explanations of thought, of morality, of the sense of beauty, and of
System dynamics for mechanical engineers
Davies, Matthew
2015-01-01
This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: · Reinforces the connection between the subject matter and engineering reality · Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements · Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...
Solid mechanics a variational approach
Dym, Clive L
2013-01-01
Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems. Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as ...
Rigid body dynamics of mechanisms
Hahn, Hubert
2003-01-01
The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.
Continuum mechanics of anisotropic materials
Cowin, Stephen C
2013-01-01
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Clinical challenges in mechanical ventilation.
Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J
2016-04-30
Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of kinetic reaction mechanisms
Turányi, Tamás
2014-01-01
Chemical processes in many fields of science and technology, including combustion, atmospheric chemistry, environmental modelling, process engineering, and systems biology, can be described by detailed reaction mechanisms consisting of numerous reaction steps. This book describes methods for the analysis of reaction mechanisms that are applicable in all these fields. Topics addressed include: how sensitivity and uncertainty analyses allow the calculation of the overall uncertainty of simulation results and the identification of the most important input parameters, the ways in which mechanisms can be reduced without losing important kinetic and dynamic detail, and the application of reduced models for more accurate engineering optimizations. This monograph is invaluable for researchers and engineers dealing with detailed reaction mechanisms, but is also useful for graduate students of related courses in chemistry, mechanical engineering, energy and environmental science and biology.
Quantum mechanics the theoretical minimum
Susskind, Leonard
2014-01-01
From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
A primer of analytical mechanics
Strocchi, Franco
2018-01-01
This book presents the basic elements of Analytical Mechanics, starting from the physical motivations that favor it with respect to the Newtonian Mechanics in Cartesian coordinates. Rather than presenting Analytical Mechanics mainly as a formal development of Newtonian Mechanics, it highlights its effectiveness due to the following five important achievements: 1) the most economical description of time evolution in terms of the minimal set of coordinates, so that there are no constraint forces in their evolution equations; 2) the form invariance of the evolution equations, which automatically solves the problem of fictitious forces; 3) only one scalar function encodes the formulation of the dynamics, rather than the full set of vectors which describe the forces in Cartesian Newtonian Mechanics; 4) in the Hamiltonian formulation, the corresponding evolution equations are of first order in time and are fully governed by the Hamiltonian function (usually corresponding to the energy); 5) the emergence of the Hami...
Auction and Game Theory Based Recommendations for DOD Acquisitions
2015-03-24
exchange—the future of B2B . Harvard Business Review, 78(6), 86. Acquisition Research Program Graduate School of Business & Public Policy - 29 - Naval...mechanism: To illustrate the VCG mechanism, suppose that there are two items for sale (A and B) and two bidders. Each bidder n = 1,2 submits bids: vˆn...Bidder A’s perspective. The demands of all bidders other than Bidder A (i.e., 1 + 2 + 1 + 0) total only 4, while 5 licenses are available for sale
Survey report on smart-tribo-mechanics; Smart tribo mechanics
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-03-01
Survey results of smart-tribo-mechanics are described. For the smart-tribo-mechanics differing from the conventional tribology, an intelligent system is constructed by making full use of various science and technology ranging from basic to application, to solve problems. Self-diagnosis and self-remediation, active control, passive control, and smart-biotribo-mechanics are typical methods. Electronics, telecommunication, healthcare, and new biotechnology are new and advanced application areas. In these areas, tribology to control and act to the material surface in the atomic and molecular scale should be the key technology. In addition, the smart-tribo-mechanics is expected to be used for sustaining basic industry, such as material, transportation, and life industries. 101 refs., 67 figs., 14 tabs.
Fluid mechanics of heart valves.
Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S
2004-01-01
Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.
Mechanics of fiber reinforced materials
Sun, Huiyu
This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.
Advances in Soft Matter Mechanics
Li, Shaofan
2012-01-01
"Advances in Soft Matter Mechanics" is a compilation and selection of recent works in soft matter mechanics by a group of active researchers in the field. The main objectives of this book are first to disseminate the latest developments in soft matter mechanics in the field of applied and computational mechanics, and second to introduce soft matter mechanics as a sub-discipline of soft matter physics. As an important branch of soft matter physics, soft matter mechanics has developed rapidly in recent years. A number of the novel approaches discussed in this book are unique, such as the coarse grained finite element method for modeling colloidal adhesion, entropic elasticity, meshfree simulations of liquid crystal elastomers, simulations of DNA, etc. The book is intended for researchers and graduate students in the field of mechanics, condensed matter physics and biomaterials. Dr. Shaofan Li is a professor of the University of California-Berkeley, U.S.A; Dr. Bohua Sun is a professor of Cape Peninsula Universit...
Mechanical CPR: Who? When? How?
Poole, Kurtis; Couper, Keith; Smyth, Michael A; Yeung, Joyce; Perkins, Gavin D
2018-05-29
In cardiac arrest, high quality cardiopulmonary resuscitation (CPR) is a key determinant of patient survival. However, delivery of effective chest compressions is often inconsistent, subject to fatigue and practically challenging.Mechanical CPR devices provide an automated way to deliver high-quality CPR. However, large randomised controlled trials of the routine use of mechanical devices in the out-of-hospital setting have found no evidence of improved patient outcome in patients treated with mechanical CPR, compared with manual CPR. The limited data on use during in-hospital cardiac arrest provides preliminary data supporting use of mechanical devices, but this needs to be robustly tested in randomised controlled trials.In situations where high-quality manual chest compressions cannot be safely delivered, the use of a mechanical device may be a reasonable clinical approach. Examples of such situations include ambulance transportation, primary percutaneous coronary intervention, as a bridge to extracorporeal CPR and to facilitate uncontrolled organ donation after circulatory death.The precise time point during a cardiac arrest at which to deploy a mechanical device is uncertain, particularly in patients presenting in a shockable rhythm. The deployment process requires interruptions in chest compression, which may be harmful if the pause is prolonged. It is recommended that use of mechanical devices should occur only in systems where quality assurance mechanisms are in place to monitor and manage pauses associated with deployment.In summary, mechanical CPR devices may provide a useful adjunct to standard treatment in specific situations, but current evidence does not support their routine use.
Respiratory mechanics to understand ARDS and guide mechanical ventilation.
Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo
2017-11-30
As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.
Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.
Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori
2016-10-11
The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.
Contact geometry and quantum mechanics
Herczeg, Gabriel; Waldron, Andrew
2018-06-01
We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.
Toward a fundamental mechanics. III
International Nuclear Information System (INIS)
Phipps, T.E. Jr.
1976-01-01
The possibility was examined of accomplishing the entirety of physical description by means of mechanics, without help from field-theoretical ideas. Apart from some easily obtained qualitative agreements with general descriptive features of nuclei and elementary particles, one was balked in this program by an inability to handle in purely mechanical terms the relativistic many-body problem. The latter problem is considered. No quantitative calculations are attempted, but three suggestions are made--each of a quite radical nature--concerning the reformulation that will be necessary to restore mechanics to the mainstream of physics
International Nuclear Information System (INIS)
Jodoi, Takashi.
1976-01-01
Purpose: To prevent falling of control rods due to malfunction. Constitution: The device of the present invention has a scram function in particular, and uses principally a fluid pressure as a scram accelerating means. The control rod is held by upper and lower holding devices, which are connected by a connecting mechanism. This connecting mechanism is designed to be detachable only at the lower limit of driving stroke of the control rod so that there occurs no erroneous scram resulting from careless disconnection of the connecting mechanism. Further, scramming operation due to own weight of the scram operating portion such as control rod driving shaft may be effected to increase freedom. (Kamimura, M.)
Mechanics of bioinspired imaging systems
Directory of Open Access Journals (Sweden)
Zhengwei Li
2016-01-01
Full Text Available Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics. Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates.
Qualitative insights on fundamental mechanics
International Nuclear Information System (INIS)
Mardari, Ghenadie N
2007-01-01
The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. Moreover, such models must also contain discrete identical entities with constant properties. These conclusions appear to support the work of Kaniadakis on subquantum mechanics. A qualitative analysis is offered to suggest compatibility with relevant phenomena, as well as to propose new means for verification
Quantum mechanics in Hilbert space
Prugovecki, Eduard
1981-01-01
A critical presentation of the basic mathematics of nonrelativistic quantum mechanics, this text is suitable for courses in functional analysis at the advanced undergraduate and graduate levels. Its readable and self-contained form is accessible even to students without an extensive mathematical background. Applications of basic theorems to quantum mechanics make it of particular interest to mathematicians working in functional analysis and related areas.This text features the rigorous proofs of all the main functional-analytic statements encountered in books on quantum mechanics. It fills the
The essentials of quantum mechanics
International Nuclear Information System (INIS)
Omnes, R.
2006-09-01
This book is an introduction to quantum mechanics, the author explains the foundation, interpretation and today limits of this science. The consequences of quantum concepts are reviewed through the lens of recent experimental data. In that way, issues like wave-particle duality, uncertainty principle, decoherence, relationship with classical mechanics or the unicity of reality, issues that were difficult to grasp before, appear now clearer. The book has been divided into 8 chapters: 1) possibility and chance, 2) quantum formalism, 3) fundamental quantum concepts, 4) how to deal with quantum mechanics, 5) decoherence theory, 6) the quantum logic system, 7) the emergence of classical physics, and 8) quantum measurements. (A.C.)
Advanced intelligence and mechanism approach
Institute of Scientific and Technical Information of China (English)
ZHONG Yixin
2007-01-01
Advanced intelligence will feature the intelligence research in next 50 years.An understanding of the concept of advanced intelligence as well as its importance will be provided first,and detailed analysis on an approach,the mechanism approach.suitable to the advanced intelligence research will then be flolowed.And the mutual relationship among mechanism approach,traditional approaches existed in artificial intelligence research,and the cognitive informatics will be discussed.It is interesting to discover that mechanism approach is a good one to the Advanced Intelligence research and a tmified form of the existed approaches to artificial intelligence.
Variational principle in quantum mechanics
International Nuclear Information System (INIS)
Popiez, L.
1986-01-01
The variational principle in a standard, path integral formulation of quantum mechanics (as proposed by Dirac and Feynman) appears only in the context of a classical limit n to 0 and manifests itself through the method of abstract stationary phase. Symbolically it means that a probability amplitude averaged over trajectories denotes a classical evolution operator for points in a configuration space. There exists, however, the formulation of quantum dynamics in which variational priniple is one of basic postulates. It is explained that the translation between stochastic and quantum mechanics in this case can be understood as in Nelson's stochastic mechanics
Mechanical harvesting of pumpkin seeds
Sito, Stjepan; Ivančan, Stjepan; Barković, Edi; Mucalo, Ana
2009-01-01
One of the key problems in production technology of pumpkin seed for oil production is mechanized harvesting and losses of seed during mechanical harvesting. The losses of pumpkin seed during mechanical harvesting at peripheral velocity of 1.57 m/s (optimally adjusted machine) were 4.4% for Gleisdorf species, 5.2% for Slovenska species and 7.8% for pumpkin with husk. The higher average losses of pumpkin seed with husk were caused by tight connection of seed and pumpkin fruit.
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Control mechanisms for ecological-economic systems
Burkov, Vladimir N; Shchepkin, Alexander V
2015-01-01
This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.
Low-energy mechanical ventilation
DEFF Research Database (Denmark)
Andersen, Claus Wessel; Hviid, Christian Anker
2014-01-01
and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....
Theoretical physics 1 classical mechanics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to classical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction to the mathematical tools needed, to make this textbook self-contained for learning. The second part of the book introduces the mechanics of the free mass point and details conservation principles. The third part expands the previous to mechanics of many particle systems. Finally the mechanics of the rigid body is illustrated with rotational forces, inertia and gyroscope movement. Ideally suited to undergraduate students in their first year, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series...
Quantum mechanics I the fundamentals
Rajasekar, S
2015-01-01
Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems.
Quantum mechanics II advanced topics
Rajasekar, S
2015-01-01
Quantum Mechanics II: Advanced Topics uses more than a decade of research and the authors’ own teaching experience to expound on some of the more advanced topics and current research in quantum mechanics. A follow-up to the authors introductory book Quantum Mechanics I: The Fundamentals, this book begins with a chapter on quantum field theory, and goes on to present basic principles, key features, and applications. It outlines recent quantum technologies and phenomena, and introduces growing topics of interest in quantum mechanics. The authors describe promising applications that include ghost imaging, detection of weak amplitude objects, entangled two-photon microscopy, detection of small displacements, lithography, metrology, and teleportation of optical images. They also present worked-out examples and provide numerous problems at the end of each chapter.
Stochastic incompleteness of quantum mechanics
International Nuclear Information System (INIS)
Suppes, P.; Zanotti, M.
1976-01-01
This article brings out in as conceptually clear terms as possible what seems to be a major incompleteness in the probability theory of particles offered by classical quantum mechanics. The exact nature of this incompleteness is illustrated by consideration of some simple quantum-mechanical examples. In addition, these examples are contrasted with the fundamental assumptions of Brownian motion in classical physics on the one hand, and with a controversey of a deecade ago in mathematical physchology. The central claim is that clasical quantum mechanics is radically incomplete in its probabilistic account of the motion of particles. In the last part of the article the time-dependent joint distribution of position and momentum of the linear harmonic oscillator is derived, and it is shown how the apparently physically paradoxical statistical independence of position and momentum has a natural explanation. The explanation is given within the framework of the non-quantum-mechanical stochastic theory constructed for such oscillators. (Auth.)
Singular potentials in quantum mechanics
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Koo, E. Ley
1995-10-01
This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs
Blanks, Robert F.
1979-01-01
A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)
Lamins, laminopathies and disease mechanisms
Indian Academy of Sciences (India)
2011-07-08
Jul 8, 2011 ... Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of ... Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of different ... June 2018.
Mechanical design of machine components
Ugural, Ansel C
2015-01-01
Mechanical Design of Machine Components, Second Edition strikes a balance between theory and application, and prepares students for more advanced study or professional practice. It outlines the basic concepts in the design and analysis of machine elements using traditional methods, based on the principles of mechanics of materials. The text combines the theory needed to gain insight into mechanics with numerical methods in design. It presents real-world engineering applications, and reveals the link between basic mechanics and the specific design of machine components and machines. Divided into three parts, this revised text presents basic background topics, deals with failure prevention in a variety of machine elements and covers applications in design of machine components as well as entire machines. Optional sections treating special and advanced topics are also included.Key Features of the Second Edition:Incorporates material that has been completely updated with new chapters, problems, practical examples...