WorldWideScience

Sample records for vickers micro hardness

  1. Effect of intracrystalline water on micro-Vickers hardness in tetragonal hen egg-white lysozyme single crystals

    International Nuclear Information System (INIS)

    Koizumi, H; Kawamoto, H; Tachibana, M; Kojima, K

    2008-01-01

    Mechanical properties of high quality tetragonal hen egg-white lysozyme single crystals which are one type of protein crystal were investigated by the indentation method. The indentation marks were clearly observed on the crystal surface and no elastic recovery of them occurred. The value of the micro-Vickers hardness in the wet condition was estimated to be about 20 MPa at room temperature. The hardness greatly depended on the amount of intracrystalline water (mobile water) contained in the crystals. The hardness increased with increasing evaporation time to air at room temperature. It reached the maximum at about 260 MPa, which is 13 times as much as that in the wet condition. The origin of such a change in hardness was explained in terms of the dislocation mechanisms in lysozyme single crystals

  2. Design of Vickers Hardness Loading Controller

    Directory of Open Access Journals (Sweden)

    Sihai Zhao

    2014-09-01

    Full Text Available Traditionally Vickers testing needs manual works, as a result, it will induce low precision and automatization. So this paper design a new type of loading controlling system, it is based on single chip computer 89S52, used PZT as the force generator in micro Vickers hardness testing. It primarily includes the designing of hardware, software of collecting data and PZT signals by AD667. This article has given the sketch of electrical circuit and controlling software, it also offers the experiment data. The experiments have showed that using this system can exactly control the loading results, and the average tolerance is less than 0.43 %.

  3. Statistical analysis of the Vickers micro hardness of precipitates in a Cu-10% wt. Ni-3% wt. Al alloy using the Weibull distribution function

    International Nuclear Information System (INIS)

    Diaz, Gerardo; Donoso, Eduardo; Varschavsky, Ari

    2004-01-01

    A statistical analysis was carried out of the distribution of Vickers micro hardness values of nickel and aluminum atom precipitates from a solid solution of Cu-Ni-Al. Non isothermal calorimetric curves confirmed the formation of two types of precipitates: Ni Al from 45 K to 600 K, and Ni 3 Al from 650 K to 800 K. The micro hardness measurements were done at room temperature in the previously quenched material and submitted to isothermal and iso chronic annealing treatments. A lower dispersion in the distribution of the Vickers micro hardness values in the Ni Al precipitate for the entire formation temperature was determined with a lesser average micro hardness than the Ni 3 Al precipitate. The Weibull modules were estimated from the respective Weibull diagrams. The lesser dispersion was proven by the elevated values of the Wobble modules. The maximum average micro hardness attained by the Ni Al phase was 148, with a Weibull module of 26 and an annealing temperature of 553 K maintained for 40 minutes. The Ni 3 Al reached a maximum average micro hardness of 248 with a Weibull module of 10 and a annealing temperature of 793 K during 40 minutes (CW)

  4. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture

    International Nuclear Information System (INIS)

    Song, Yanli; Hua, Lin; Chu, Dongning; Lan, Jian

    2012-01-01

    Highlights: ► Relationship between Vickers hardness and material parameters was quantitatively built. ► Inhomogeneous weld properties were determined by hardness test combined the rule of mixture. ► Instrumented indentation tests verified these calculated properties of welds. ► Deviations between the calculated and experimental results were limited to 8.0%. -- Abstract: A novel approach has been proposed to characterize the inhomogeneous mechanical properties of weld materials by using the micro-Vickers hardness test combined with the rule of mixture. This proposed method has introduced the influences of the inhomogeneous properties of weld materials by considering the variations in plastic behaviour across the weld cross-section. The inhomogeneous properties of laser welding beams for tailor welded blanks (TWBs), which were three different types of combinations of DX56D and DP600 automotive steel sheets, were extracted by using this proposed method. The instrumented indentation tests were conducted to verify the measured inhomogeneous properties of weld materials. The fact that the calculated true stress–strain curves agreed well with the experimental ones has confirmed the reliability and accuracy of the proposed method.

  5. Determination of Formula for Vickers Hardness Measurements Uncertainty

    International Nuclear Information System (INIS)

    Purba, Asli

    2007-01-01

    The purpose of formula determination is to obtain the formula of Vickers hardness measurements uncertainty. The approach to determine the formula: influenced parameters identification, creating a cause and effect diagram, determination of sensitivity, determination of standard uncertainty and determination of formula for Vickers hardness measurements uncertainty. The results is a formula for determination of Vickers hardness measurements uncertainty. (author)

  6. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  7. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  8. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  9. Vickers Hardness of Diamond and cBN Single Crystals: AFM Approach

    Directory of Open Access Journals (Sweden)

    Sergey Dub

    2017-12-01

    Full Text Available Atomic force microscopy in different operation modes (topography, derivative topography, and phase contrast was used to obtain 3D images of Vickers indents on the surface of diamond and cBN single crystals with high spatial resolution. Confocal Raman spectroscopy and Kelvin probe force microscopy were used to study the structure of the material in the indents. It was found that Vickers indents in diamond has no sharp and clear borders. However, the phase contrast operation mode of the AFM reveals a new viscoelastic phase in the indent in diamond. Raman spectroscopy and Kelvin probe force microscopy revealed that the new phase in the indent is disordered graphite, which was formed due to the pressure-induced phase transformation in the diamond during the hardness test. The projected contact area of the graphite layer in the indent allows us to measure the Vickers hardness of type-Ib synthetic diamond. In contrast to diamond, very high plasticity was observed for 0.5 N load indents on the (001 cBN single crystal face. Radial and ring cracks were absent, the shape of the indents was close to a square, and there were linear details in the indent, which looked like slip lines. The Vickers hardness of the (111 synthetic diamond and (111 and (001 cBN single crystals were determined using the AFM images and with account for the elastic deformation of the diamond Vickers indenter during the tests.

  10. Changes in Vickers hardness during the decomposition of bone: Possibilities for forensic anthropology.

    Science.gov (United States)

    Walden, Steven J; Evans, Sam L; Mulville, Jacqui

    2017-01-01

    The purpose of this study was to determine how the Vickers hardness (HV) of bone varies during soft tissue putrefaction. This has possible forensic applications, notably for determining the postmortem interval. Experimental porcine bone samples were decomposed in surface and burial deposition scenarios over a period of 6 months. Although the Vickers hardness varied widely, it was found that when transverse axial hardness was subtracted from longitudinal axial hardness, the difference showed correlations with three distinct phases of soft tissue putrefaction. The ratio of transverse axial hardness to longitudinal axial hardness showed a similar correlation. A difference of 10 or greater in HV with soft tissue present and signs of minimal decomposition, was associated with a decomposition period of 250 cumulative cooling degree days or less. A difference of 10 (+/- standard error of mean at a 95% confidence interval) or greater in HV associated with marked decomposition indicated a decomposition period of 1450 cumulative cooling degree days or more. A difference of -7 to +8 (+/- standard error of mean at a 95% confidence interval) was thus associated with 250 to 1450 cumulative cooling degree days' decomposition. The ratio of transverse axial HV to longitudinal HV, ranging from 2.42 to 1.54, is a more reliable indicator in this context and is preferable to using negative integers These differences may have potential as an indicator of postmortem interval and thus the time of body deposition in the forensic context. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Distribution of Microstructure and Vickers Hardness in Spur Bevel Gear Formed by Cold Rotary Forging

    Directory of Open Access Journals (Sweden)

    Wuhao Zhuang

    2014-11-01

    Full Text Available Cold rotary forging is a novel metal forming technology which is widely used to produce the high performance gears. Investigating the microstructure and mechanical property of cold rotary forged gears has a great significance in improving their service performance. In this study, the grain morphology in different regions of the spur bevel gear which is processed by cold rotary forging is presented. And the distribution regulars of the grain deformation and Vickers hardness in the transverse and axial sections of the gear tooth are studied experimentally. A three-dimensional rigid-plastic FE model is developed to simulate the cold rotary forging process of a spur bevel gear under the DEFORM-3D software environment. The variation of effective strain in the spur bevel gear has been investigated so as to explain the distribution regulars of the microstructure and Vickers hardness. The results of this research thoroughly reveal the inhomogeneous deformation mechanisms in cold rotary forging of spur bevel gears and provide valuable guidelines for improving the performance of cold rotary forged spur bevel gears.

  12. Initial permeability and vickers hardness of thermally aged FeCu alloy

    International Nuclear Information System (INIS)

    Kikuchi, H.; Onuki, T.; Kamada, Y.; Ara, K.; Kobayashi, S.; Takahashi, S.

    2007-01-01

    The initial permeability obtained from small AC field excitation is a more useful parameter for nondestructive evaluation (NDE) of ferromagnetic materials than one obtained from a major hysteresis loop from the viewpoints of electricity consumption and real-time measurements. In this paper, in order to study the possibility of applying magnetic methods to pressure vessel surveillance at nuclear power plants, permeability of the thermally aged Fe-Cu specimens were evaluated using impedance measurements and the hardness of those specimens was also evaluated. The Vickers hardness increases as aging time increases. The permeability of the cold-rolled specimen decreases with thermal aging. On the other hand, the permeability of as-received specimens increased at first then decreases as thermal aging goes

  13. Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method

    International Nuclear Information System (INIS)

    Xue Fei; Yu Weiwei; Wang Zhaoxi; Ma Qinzheng; Liu Wei

    2012-01-01

    The investigation was carried out on the changes in mechanical properties of the primary pipe material Z3CN20.09M after 10000 h aging at 400℃ by using micro- Vickers and impact testing machine. The results show that the impact energy of testing material decreases. However, the micro-Vickers hardness of ferrite phase and austenite phase which constitute the testing material increase and keep constant, respectively. The intrinsic relations were analyzed between the micro-Vickers hardness and the impact energy to make an attempt to present the micro-Vickers hardness measurement as a method applicable to evaluating the thermal aging of the primary pipe material. (authors)

  14. Thermomechanical Properties of Sb2O3-TeO2-V2O5 Glassy Systems: Thermal Stability, Glass Forming Tendency and Vickers Hardness

    Science.gov (United States)

    Souri, Dariush; Torkashvand, Ziba

    2017-04-01

    Three-component 40TeO2-(60- x)V2O5- xSb2O3 glasses with 0 ≤ x ≤ 10 (in mol.%) were obtained by the rapid melt-quenching method. These glasses were studied with respect to some mechanical properties with the goal of obtaining information about their structure. The Vickers hardness test was employed to obtain Vickers micro-hardness ( H V) at two different loads, which was within the range of 13.187-17.557 GPa for a typical 0.1 HV (0.9807 N) load. In addition, theoretical micro-hardness ( H) was investigated and compared with experimental H V, showing the elevating trend with increase of Sb2O3 content, as for H V. Furthermore, differential scanning calorimetry (DSC) was employed within the range of 150-500°C at heating rates of φ = 3 K/min, 6 K/min, 9 K/min, 10 K/min, and 13 K/min. In this work, thermal stability ( T s = T cr - T x) and glass forming tendency ( K gl) were measured and reported for these glasses to determine the relationship between the chemical composition and the thermal stability, in order to interpret the structure of glass. Generally, from the ascertained outputs [analysis of mechanical data, titration study, the values of reduced fraction of vanadium ions ( C V) and oxygen molar volume ( V_{{O}}^{*} )], it was found that the micro-hardness had an increasing trend with increasing the Sb2O3 content. Among the studied glasses, the sample with x = 8 had a higher average micro-hardness value, the highest average thermal stability and glass forming tendency with respect to the other samples, which makes it a useful material (owning very good resistance against thermal attacks) for device manufacturing.

  15. Micro-hardness of non-irradiated uranium dioxide

    International Nuclear Information System (INIS)

    Kim, Sung-Sik; Takagi, Osamu; Obata, Naomi; Kirihara, Tomoo.

    1983-01-01

    In order to obtain the optimum conditions for micro-hardness measurements of sintered UO 2 , two kinds of hardness tests (Vickers and Knoop) were examined with non-irradiated UO 2 of 2.5 and 5 μm in grain size. The hardness values were obtained as a function of the applied load in the load range of 25 -- 1,000 g. In the Vickers test, cracks were generated around the periphery of an indentation even at lower load of 50 g, which means the Vickers hardness is not suitable for UO 2 specimens. In the Knoop test, three stages of load dependence were observed for sintered pellet as well as for a single crystal by Bates. Load dependence of Knoop hardness and crack formation were discussed. In the range of applied load around 70 -- 100 g there were plateau region where hardness values were nearly unchanged and did not contain any cracks in the indentation. The plateau region represents a hardness of a specimen. From a comparison between the hardness values of 2.5 μm and those of 5 μm UO 2 , it was approved that the degree of sintering controls the hardness in the plateau region. (author)

  16. Relationship between 0.2% proof stress and Vickers hardness of work-hardened low carbon austenitic stainless steel, 316SS

    International Nuclear Information System (INIS)

    Matsuoka, Saburo

    2004-01-01

    Stress corrosion cracking (SCC) occurs in shrouds and piping made of low carbon austenitic stainless steels at nuclear power plants. A work-hardened layer is considered to be one of the probable causes for this occurrence. The maximum Vickers hardness measured at the work-hardened layer is 400 HV. It is important to determine the yield strength and tensile strength of the work-hardened layer in the investigation on the causes of SCC. However, the tensile specimen cannot be obtained since the thickness of the work-hardened layer is as mall as several hundred μm, therefore, it is useful if we can estimate these strengths from its Vickers hardness. Consequently, we investigated the relationships between Vickers hardness versus yield strength and tensile strength using the results obtained on various steels in a series of Fatigue Data Sheets published by the National Institute for Materials Science and results newly obtained on a parent material and rolled materials (reduction of area: 10 - 50%, maximum hardness: 350 HV) for a low carbon stainless steel. The results showed that (1) the relationship between the 0.2% proof stress and the Vickers hardness can be described by a single straight line regardless of strength, structure, and rolling ratio, however, (2) the tensile strength is not correlated with the Vickers hardness, and the austenitic stainless steel in particular shows characteristics different from those of other steels. (author)

  17. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  18. Light energy transmission and Vickers hardness ratio of bulk-fill resin based composites at different thicknesses cured by a dual-wave or a single-wave light curing unit.

    Science.gov (United States)

    Santini, Ario; Naaman, Reem Khalil; Aldossary, Mohammed Saeed

    2017-04-01

    To quantify light energy transmission through two bulk-fill resin-based composites and to measure the top to bottom surface Vickers hardness ratio (VHratio) of samples of various incremental thicknesses, using either a single-wave or dual-wave light curing unit (LCU). Tetric EvoCeram Bulk Fill (TECBF) and SonicFill (SF) were studied. Using MARC-RC, the irradiance delivered to the top surface of the samples 2, 3, 4 and 5 mm thick (n= 5 for each thickness) was adjusted to 800 mW/cm2 for 20 seconds (16 J/cm2) using either a single-wave, Bluephase or a dual-wave, Bluephase G2 LCUs. Light energy transmission through to the bottom surface of the specimens was measured at real time using MARC-RC. The Vickers hardness (VH) was determined using Vickers micro hardness tester and the VHratio was calculated. Data were analyzed using a general linear model in Minitab 16; α= 0.05. TECBF was more translucent than SF (Pwave Bluephase G2). SF showed significantly higher VH ratio than TECBF at all different thickness levels (P 0.05). TECBF showed significantly greater VH ratio when cured with the single-wave Bluephase than when using the dual-wave Bluephase G2 (Penergy through to the bottom surface and the VHratio are material dependent. Although TECBF is more translucent than SF, it showed lower VHratio compared to SF when cured with dual-wave Bluephase G2.

  19. Measurement of elastic modulus and Vickers hardness of surround bone implant using dynamic microindentation--parameters definition.

    Science.gov (United States)

    Soares, Priscilla Barbosa Ferreira; Nunes, Sarah Arantes; Franco, Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa, Darceny; Soares, Carlos José

    2014-01-01

    The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.

  20. Influence of the final temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Pedro César Garcia Oliveira

    2007-02-01

    Full Text Available The aim of the work was to evaluate the influence of the temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy casting. Were obtained for the tensile strength test dumbbell rods that were invested in the Rematitan Plus investment and casting in the Discovery machine cast. Thirty specimens were obtained, fiftten to the CP Titanium and fifteen to the Ti-6Al-4V alloy, five samples to each an of the three temperatures of investment: 430ºC (control group, 480ºC and 530ºC. The tensile test was measured by means of a universal testing machine, MTS model 810, at a strain of 1.0 mm/min. After the tensile strenght test the specimens were secctioned, embedded and polished to hardness measurements, using a Vickers tester, Micromet 2100. The means values to tensile tests to the temperatures 430ºC, 480 and 530: CP Ti (486.1 - 501.16 - 498.14 -mean 495.30 MPa and Ti-6Al-4V alloy (961.33 - 958.26 - 1005.80 - mean 975.13 MPa while for the Vickers hardness the values were (198.06, 197.85, 202.58 - mean 199.50 and (352.95, 339.36, 344.76 - mean 345.69, respectively. The values were submitted to Analysis of Variance (ANOVA and Tukey,s Test that indicate differences significant only between the materials, but not between the temperature, for both the materias. It was conclued that increase of the temperature of investment its not chance the tensile strength and the Vickers hardness of the CP Titanium and Ti-6Al-4V alloy.

  1. In Vitro Comparative Study of Two Different Bleaching Agents on Micro-hardness Dental Enamel.

    Science.gov (United States)

    Fatima, Nazish; Ali Abidi, Syed Yawar; Meo, Ashraf Ali

    2016-02-01

    To evaluate the effect of home-use bleaching agent containing 16% Carbamide Peroxide (CP) and in-office bleaching agent containing 38% Hydrogen Peroxide (HP) on enamel micro-hardness. An in vitroexperimental study. Department of Operative Dentistry and Science of Dental Materials at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences and Material Engineering Department of NED University of Engineering and Technology, Karachi, from July to December 2014. Atotal of 90 enamel slabs from 45 sound human 3rd molar were randomly divided into 3 groups. Each group contained 30 specimens (n=30). Group 1 was kept in artificial saliva at 37°C in incubator during the whole experiment. However, Groups 2 and 3 were treated with power whitening gel and tooth whitening pen respectively. After bleaching session, specimens were thoroughly rinsed with deionized water again for 10 seconds and then stored in artificial saliva at 37°C in incubator. Artificial saliva was changed after every 2 days. The Vickers hardness tester (Wolpert 402 MVD, Germany) was adjusted to a load of 0.1 kg (100 gm) and dwell time of 5 seconds. Three Vickers were performed on each specimen using a hardness tester according to the ISO 6507-3:1998 specification. Micro-hardness measurements were performed before and after bleaching at day 1, 7 and 14. In the control group, the baseline micro-hardness was 181.1 ±9.3 which was reduced after the storage on day 1, 7 and 14 (p = 0.104). In Group 2, baseline micro-hardness was 180.4 ±10.1 which was reduced to 179.79 ±10.0 units after day 1. Whereas, on day 7 and 14, the values of micro-hardness were 179.8 ±10 and 179.7 ±10.29, respectively (p=0.091). Furthermore, the baseline micro-hardness in Group 3 was 174.0 ±22.9 units which was reduced to 173 ±23 on day 1, 170 ±30 on day 7 and 173 ±23 on day 14 (p = 0.256). The statistically insignificant difference was found among micro-hardness values of different bleaching

  2. In Vitro Comparative Study of Two Different Bleaching Agents on Micro-hardness Dental Enamel

    International Nuclear Information System (INIS)

    Fatima, N.; Abidi, S. Y. A.; Meo, A. A.

    2016-01-01

    Objective: To evaluate the effect of home-use bleaching agent containing 16 percentage Carbamide Peroxide (CP) and in-office bleaching agent containing 38 percentage Hydrogen Peroxide (HP) on enamel micro-hardness. Study Design: An in vitro experimental study. Place and Duration of Study: Department of Operative Dentistry and Science of Dental Materials at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences and Material Engineering Department of NED University of Engineering and Technology, Karachi, from July to December 2014. Methodology: A total of 90 enamel slabs from 45 sound human 3rd molar were randomly divided into 3 groups. Each group contained 30 specimens (n=30). Group 1 was kept in artificial saliva at 37 Degree C in incubator during the whole experiment. However, Groups 2 and 3 were treated with power whitening gel and tooth whitening pen respectively. After bleaching session, specimens were thoroughly rinsed with deionized water again for 10 seconds and then stored in artificial saliva at 37 Degree C in incubator. Artificial saliva was changed after every 2 days. The Vickers hardness tester (Wolpert 402 MVD, Germany) was adjusted to a load of 0.1 kg (100 gm) and dwell time of 5 seconds. Three Vickers were performed on each specimen using a hardness tester according to the ISO 6507-3:1998 specification. Micro-hardness measurements were performed before and after bleaching at day 1, 7 and 14. Results: In the control group, the baseline micro-hardness was 181.1 ± 9.3 which was reduced after the storage on day 1, 7 and 14 (p = 0.104). In Group 2, baseline micro-hardness was 180.4 ±10.1 which was reduced to 179.79 ± 10.0 units after day 1. Whereas, on day 7 and 14, the values of micro-hardness were 179.8 ±10 and 179.7 ±10.29, respectively (p=0.091). Furthermore, the baseline micro-hardness in Group 3 was 174.0 ±22.9 units which was reduced to 173 ± 23 on day 1, 170 ±30 on day 7 and 173 ± 23 on day 14 (p = 0

  3. Effects of the bleaching procedures on enamel micro-hardness: Plasma Arc and diode laser comparison.

    Science.gov (United States)

    Nematianaraki, Saeid; Fekrazad, Reza; Naghibi, Nasim; Kalhori, Katayoun Am; Junior, Aldo Brugnera

    2015-10-02

    One of the major side effects of vital bleaching is the reduction of enamel micro-hardness. The purpose of this study was to evaluate the influence of two different bleaching systems, Plasma Arc and GaAlAs laser, on the enamel micro-hardness. 15 freshly extracted human third molars were sectioned to prepare 30 enamel blocks (5×5 mm). These samples were then randomly divided into 2 groups of 15 each (n=15): a plasma arc bleaching group (: 350-700 nm) + 35% Hydrogen Peroxide whitening gel and a laser bleaching group (GaAlAs laser, λ: 810 nm, P: 10 W, CW, Special Tip) + 35% Hydrogen Peroxide whitening gel. Samples were subjected to the Vickers micro-hardness test (VHN) at a load of 50 g for 15s before and after treatment. Data were statistically analyzed by a Mann-Whitney test (p≤0.05). In the GaAlAs laser group, the enamel micro-hardness was 618.2 before and was reduced to 544.6 after bleaching procedures. In the plasma arc group, the enamel micro-hardness was 644.8 before and 498.9 after bleaching. Although both techniques significantly reduced VHN, plasma arc bleaching resulted in a 22.62% reduction in VHN for enamel micro-hardness, whereas an 11.89% reduction in VHN was observed for laser bleaching; this difference is statistically significant (plaser than with the plasma arc. Therefore GaAlAs laser bleaching has fewer harmful effects than plasma arc in respect to enamel micro-hardness reduction.

  4. Influence of light-curing units and restorative materials on the micro hardness of resin cements

    Directory of Open Access Journals (Sweden)

    Kuguimiya Rosiane

    2010-01-01

    Full Text Available Aim: The aim of this study was to evaluate the effect of indirect restorative materials (IRMs and light-curing units (LCUs on the micro hardness of dual-cured resin cement. Materials and Methods: A total of 36 cylindrical samples (2 mm thick were prepared with dual-cured resin cement (Relyx ARC photo-activated with either a QTH (Optilight Plus for 40s or a LED (Radii light-curing unit for 65s. Photo-activation was performed through the 2-mm- thick IRMs and the samples were divided into six groups (n=6 according to the combination of veneering materials (without, ceramic and indirect resin and LCUs (QTH and LED. In the control group, the samples were light-cured with a QTH unit without the interposition of any restorative material. Vickers micro hardness test was performed on the top and bottom surfaces of each sample (load of 50 g for 15 secs. The data were statistically analyzed using a three-way ANOVA followed by Tukey x s post-hoc test ( P < 0.05. Results: There were no statistically significant differences on the top surface between the light curing-units ( P > 0.05; however, the LED provided greater hardness on the bottom surface when a ceramic material was used ( P < 0.05. The mean hardness in photo-activated samples, in which there was no interposition of indirect materials, was significantly greater ( P < 0.01. Conclusions: It may be concluded that the interposition of the restorative material decreased the micro hardness in the deeper cement layer. Such decrease, however, was lower when the ceramic was interposed and the cement light-cured with LED.

  5. The Effect of Diode Laser Treatment for Root Canal Disinfection on Fracture Resistance and Micro-hardness of the Tooth

    International Nuclear Information System (INIS)

    Elmiligy, H.H; Diab, A.H.; Sabet, N.E.; Saafan, A.M.

    2014-01-01

    This study evaluated the effect of diode laser treatment for root canal disinfection on fracture resistance and micro-hardness of the tooth. Sixty freshly extracted mandibular and maxillary premolars were accessed under coolant then root canals were flared up to apical preparation size 40 MFA coupled with 5.25% NaOCl as an irrigant. Teeth were divided into two groups, control group (group I) and lased group (group II) that was lased by diode laser with average power 2 w through fibrooptic into the canal 2 mm shorter than the apex. Each tooth was embedded in acrylic block, and then subjected to the fracture resistance test. Each root was then sectioned transversely and polished to record dentin Vickers hardness. Data was analysed with student t-test then with linear regression test. The Lased samples presented a significantly higher resistance to fracture than unlased samples. There was no statistically significant differences found between Vickers hardness (HV) of lased and unlased samples and there was no relation between fracture resistance and microhardness. Diode laser (980 nm) treatment had no adverse effect on dentin microhardness, also it increased the fracture resistance of dentin. Diode laser (980 nm) treatment could attain better function ability and maintenance of tooth after endodontic treatment.

  6. The remineralization potential of cocoa (Theobroma cacao bean extract to increase the enamel micro hardness

    Directory of Open Access Journals (Sweden)

    Sulistianingsih Sulistianingsih

    2017-08-01

    Full Text Available Introduction: Remineralization is the process of returning mineral ions into a hydroxyapatite structure characterized by mineral deposition on the enamel surface. The presence of mineral deposition would affect the micro hardness of tooth enamel. The use of fluorine as remineralization agent with side effects such as fluorosis. Cocoa bean extract contains theobromin that can be used as an alternative remineralization ingredients. The objectives was to determine micro hardness email after remineralization using cocoa bean extract as natural material and to compare with fluorine use as synthetic material. Methods: Thirty-six maxillary first premolar tooth crown was cut and planted in the epoxy resin. Teeth were then immersed in demineralization solution at pH 4 for 6 hours. The sample were divided into 2 groups, 18 for the fluorine group and the remaining group of cocoa extract. Vickers microhardness test was used before treatment, after demineralized and after remineralization. Results: Enamel microhardness value before treatment in the fluorine group average value was 376.17 VHN and the cocoa extract group was 357.33 VHN. After demineralization in fluorine group was 268,13 VHN and cocoa extract group was 235,93 VHN. After remineralization in fluorine group was 321,08 VHN and cocoa extract group was 293,86 VHN. The results of the analysis showed that the level of micro hardness email after remineralization was not significantly different in two groups (p > 0.05. Conclusions: Cocoa extract is able to increase the microhardness of enamel so it can act as a substitution for fluorine remineralization.

  7. Micro-computer cards for hard industrial environment

    Energy Technology Data Exchange (ETDEWEB)

    Breton, J M

    1984-03-15

    Approximately 60% of present or future distributed systems have, or will have, operational units installed in hard environments. In these applications, which include canalization and industrial motor control, robotics and process control, systems must be easily applied in environments not made for electronic use. The development of card systems in this hard industrial environment, which is found in petrochemical industry and mines is described. National semiconductor CIM card system CMOS technology allows the real time micro computer application to be efficient and functional in hard industrial environments.

  8. Improvement of micro endmill geometry for micro hard milling application

    NARCIS (Netherlands)

    Li, P.; Oosterling, J.A.J.; Hoogstrate, A.M.; Langen, H.H.

    2008-01-01

    One of the applications of the micromilling technology is to machine micro features on moulds by direct machining of hardened tool steels. However at this moment, this process is not industrial applicable because of the encountered problems, such as the big tool deflection, severe tool wear, and

  9. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    Directory of Open Access Journals (Sweden)

    Tahereh-Sadat Jafarzadeh

    2015-12-01

    Full Text Available Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm. Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan was performed at the top and bottom (depth=2 mm surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  10. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    Science.gov (United States)

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  11. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  12. The comparison of the effects of different whitening toothpastes on the micro hardness of a nano hybrid composite resin.

    Science.gov (United States)

    Nainan, Mohan Thomas; Balan, Ashok Kalappurakkal; Sharma, Roshni; Thomas, Sabeena Susan; Deveerappa, Santhosh B

    2014-11-01

    The aim of this study was to compare the micro hardness of a nanohybrid composite resin after brushing with two herbal and one non-herbal whitening toothpastes. We divided Eighty disk-shaped specimens of a nanohybrid composite (Tetric N Ceram, Ivoclar Vivadent, Asia) into 4 groups of 20 specimens each: Groups A, B, C, and D. Group A was control, Group B was brushed with Colgate total advanced whitening (Colgate-Palmolive (India) Limited), Group C with Salt and Lemon, Dabur (Dabur International Limited, Dubai, UAE), and Group D with HiOra Shine, Himalaya (The Himalaya Drug Company, India). The specimens were polished using medium, fine, and superfine discs (Sof-lex, 3M, ESPE, USA) and subsequently placed at 37°C in distilled water. They were brushed for 2 minutes twice daily with a soft motorized toothbrush (Colgate 360 sonic power battery-operated tooth brush, Colgate Palmolive, India) for 30 days. The samples were rinsed under running water to remove the toothpaste and stored in distilled water at 37°C until the readout was taken on the Vickers's hardness tester for microhardness. The results revealed that the difference among the groups was statistically significant (P < 0.001). Tukey's test showed that reduction in microhardness for Group B was significantly higher than that for Group C and Group D (P < 0.001). Within the limitations of this study, non-herbal whitening toothpaste had a greater impact on the microhardness of nanohybrid resin composite than herbal whitening toothpastes.

  13. Electroerosion micro- and nanopowders for the production of hard alloys

    Science.gov (United States)

    Latypov, R. A.; Ageeva, E. V.; Kruglyakov, O. V.; Latypova, G. R.

    2016-06-01

    The shape and the surface morphology of the powder particles fabricated by the electroerosion dispersion of tungsten-containing wastes in illuminating oil are studied. The hard alloy fabricated from these powder particles is analyzed by electron-probe microanalysis. The powder synthesized by the electroerosion dispersion of the wastes of sintered hard alloys is found to consist of particles of a spherical or elliptical shape, an irregular shape (conglomerates), and a fragment shape. It is shown that W, Ti, and Co are the main elements in the hard alloy fabricated from the powder synthesized by electroerosion dispersion in illuminating oil.

  14. Effect of Bi-content on hardness and micro-creep behavior of Sn-3.5Ag rapidly solidified alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M. [Metal Physics Laboratory, Faculty of Science, Mansoura University (Egypt); Gouda, El Said [Metal Physics Laboratory, Department of Solid State Physics, Physics Division, National Research Center, Dokki, Giza (Egypt); Marei, L.K. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2009-12-15

    In the present paper, the influence of 1, 3, 5 and 10 % Bi (weight %) as ternary additions on structure, melting and mechanical properties of rapidly solidified Sn-3.5Ag alloy has been investigated. The effect of Bi was discussed based on the experimental results. The experimental results showed that the alloys of Sn-3.5Ag, Sn-3.5Ag-1Bi and Sn-3.5Ag-3Bi are composed of two phases; Ag{sub 3}Sn IMC embedded in Sn matrix phase, which indicated that the solubility of Bi phase in Sn-matrix was extended to 3 % as a result of rapid solidification. Bi precipitation in Sn matrix was only observed in Sn-3.5Ag-5Bi and Sn-3.5Ag-10Bi alloys. Also, addition of Bi decreased continuously the melting point of the eutectic Sn-3.5Ag alloy to 202.6 C at 10 % Bi. Vickers hardness of Sn-3.5Ag rapidly solidified alloy increased with increasing Bi content up to 3 % due to supersaturated solid solution strengthening hardening mechanism of Bi phase in Sn matrix, while the alloys contain 5 and 10 % Bi exhibited lower values of Vickers hardness. The lower values can be attributed to the precipitation of Bi as a secondary phase which may form strained regions due to the embrittlement of Bi atom. In addition, the effect of Bi addition on the micro-creep behavior of Sn-3.5Ag alloy as well as the creep rate have been described and has been calculated at room temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Micro Structure and Hardness Analysis of Brass Metal Welded

    Science.gov (United States)

    Lukman Faris, N.; Muljadi; Djuhana

    2018-01-01

    Brass metals are widely used for plumbing fittings. High tensile brasses are more highly alloyed and find uses in marine engineering. The welding of brass metal has been done by using electrical weld machine (SMAW). The microstructure of brass metal welded was observed by optical microscope. The result can see that the microstructure has been changed due to heat from welding. The microstructure of original brass metal is seen a fine laminar stucture, but the microstructure at HAZ appears bigger grains and some area at HAZ is seen coarser microstructure. The microstructure at weld zone can be seen that it was found some of agglomeration of materials from reaction between brass metal and electrode coating wire. According the hardness measurement, it is found highest hardness value about 301.92 HV at weld zone, and hardness value at base metal is 177.84 HV

  16. The effect of three whitening oral rinses on enamel micro-hardness

    OpenAIRE

    Potgieter, E; Osman, Y; Grobler, SR

    2014-01-01

    The purpose of this study was to determine the effect on human enamel micro-hardness of three over-the-counter whitening oral rinses available in South Africa. Enamel fragments were gathered into three groups of 15 each. One group was exposed to Colgate Plax Whitening Blancheur, the second group to White Glo 2 in 1 and the third to Plus White, in each case for periods recommended by the respective manufacturers. Surface micro-hardness of all groups was measured before and after a 14 day treat...

  17. Cathodoluminescence study of vickers indentations in magnesium ...

    African Journals Online (AJOL)

    Vickers diamond pyramid indentations made in single crystal of magnesium oxide (MgO) were examined in an environmental scanning electron microscope interfaced with an AVS-2000 spectrophotometer for luminescence. Three distinct zones around the indentations were identified to exhibit cathodoluminescence, which ...

  18. The effect of three whitening oral rinses on enamel micro-hardness.

    Science.gov (United States)

    Potgieter, E; Osman, Y; Grobler, S R

    2014-05-01

    The purpose of this study was to determine the effect on human enamel micro-hardness of three over-the-counter whitening oral rinses available in South Africa. Enamel fragments were gathered into three groups of 15 each. One group was exposed to Colgate Plax Whitening Blancheur, the second group to White Glo 2 in 1 and the third to Plus White, in each case for periods recommended by the respective manufacturers. Surface micro-hardness of all groups was measured before and after a 14 day treatment period. pH levels of the oral rinses were also determined with a combination pH electrode. Pre- and post- treatment data were analysed by the Wilcoxon Signed Rank Sum Test. According to the micro-hardness values no significant (p > 0.05) enamel damage was found as a result of treatment. However, it was observed that Colgate Pax and White Glo decreased the enamel hardness, an early sign of enamel damage, while Plus White showed a small increase in hardness. The three whitening oral rinses on the South African market do not damage the tooth enamel significantly when used as recommended by the manufacturers. However, extending the contact period and increasing the frequency of application might lead to damage of enamel.

  19. Final report on RMO Vickers key comparison COOMET M.H-K1

    Science.gov (United States)

    Aslanyan, E.; Menelao, F.; Herrmann, K.; Aslanyan, A.; Pivovarov, V.; Galat, E.; Dovzhenko, Y.; Zhamanbalin, M.

    2013-01-01

    This report describes a COOMET key comparison on Vickers hardness scales involving five National Metrology Institutes: PTB (Germany), BelGIM (Belarus), NSC IM (Ukraine), KazInMetr (Kazakhstan) and VNIIFTRI (Russia). The pilot laboratory was VNIIFTRI, and PTB acted as the linking institute to key comparisons CCM.H-K1.b and CCM.H-K1.c conducted for the Vickers hardness scales HV1 and HV30, respectively. The comparison was also conducted for the HV5 Vickers hardness scale, since this scale is most frequently used in practice in Russia and CIS countries that work according to GOST standards. In the key comparison, two sets of hardness reference blocks for the Vickers hardness scales HV1, HV5 and HV30 consisting each of three hardness reference blocks with hardness levels of 450 HV and 750 HV were used. The measurement results and uncertainty assessments for HV1 and HV30 hardness scales, as announced by BelGIM, NSC IM, KazInMetr and VNIIFTRI, are in good agreement with the key comparison reference values of CCM.H-K1.b and CCM.H-K1.c. The comparison results for the HV5 hardness scale are viewed as additional information, since up to today no CCM key comparisons on this scale have yet been carried out. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. A novel method to predict the highest hardness of plasma sprayed coating without micro-defects

    Science.gov (United States)

    Zhuo, Yukun; Ye, Fuxing; Wang, Feng

    2018-04-01

    The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.

  1. Process optimization for ultrasonic vibration assisted polishing of micro-structured surfaces on super hard material

    Science.gov (United States)

    Sun, Zhiyuan; Guo, Bing; Rao, Zhimin; Zhao, Qingliang

    2014-08-01

    In consideration of the excellent property of SiC, the ground micro-structured surface quality is hard to meet the requirement - consequently the ultrasonic vibration assisted polishing (UVAP) of micro-structures of molds is proposed in this paper. Through the orthogonal experiment, the parameters of UVAP of micro-structures were optimized. The experimental results show that, abrasive polishing process, the effect of the workpiece feed rate on the surface roughness (Ra), groove tip radius (R) and material removal rate (MRR) of micro-structures is significant. While, the UVAP, the most significant effect factor for Ra, R and MRR is the ultrasonic amplitude of the ultrasonic vibration. In addition, within the scope of the polishing process parameters selected by preliminary experiments, ultrasonic amplitude of 2.5μm, polishing force of 0.5N, workpiece feed rate of 5 mm·min-1, polishing wheel rotational speed of 50rpm, polishing time of 35min, abrasive size of 100nm and the polishing liquid concentration of 15% is the best technology of UVAP of micro-structures. Under the optimal parameters, the ground traces on the micro-structured surface were removed efficiently and the integrity of the edges of the micro-structure after grinding was maintained efficiently.

  2. Life evaluation of FR-CV cable on thermal-radiation combined aging by micro-hardness

    International Nuclear Information System (INIS)

    Sugiyama, Masahiko; Ogata, Akimasa; Nitta, Makoto; Tani, Tsuneo; Yagi, Toshiaki; Seguchi, Tadao.

    1996-01-01

    For the evaluation of cable life for the application to nuclear facilities, the accelerated test was conducted by the combination of radiation and thermal oxidation. The degradation of FR-CV cable by the aging was monitored by tensile test, micro-hardness test, and gel-fraction measurement. The micro-hardness increased with the progress of degradation and related well with decrease of ultimate elongation of the sheath material, and was also reflected by the loss of plasticizer. The micro-hardness technique has a possibility to detect the degradation of cable as a non-destructive detector. (author)

  3. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    Science.gov (United States)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  4. Indentation size effects in the nano- and micro-hardness of a Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, F., E-mail: xufu@xtu.edu.cn; Ding, Y.H.; Deng, X.H.; Zhang, P.; Long, Z.L.

    2014-10-01

    Hardness of a Fe-based bulk metallic glass (BMG) was evaluated by both atomic force microscopy (AFM) nanoindentation (nano-hardness) and instrumented indentation with a traditional indenter setup (micro-hardness) under different maximum loads at room temperature. The nano-hardness and the micro-hardness were found to be comparable. For both of the indentation methods, indentation size effect (ISE) is detected as increase in hardness with decrease in indentation peak load. It is proposed that strain rate dependent softening, loading history and the lag between free volume creation and mechanical softening should be responsible for the ISE in this BMG. Furthermore, ISE is found to be more significant in AFM nanoindentation than in instrumented indentation. This can be explained by taking into account the effect of exerted peak load and the face angle of the indenter in a qualitative manner.

  5. Vickers microhardness studies on solution-grown single crystals of potassium boro-succinate

    Science.gov (United States)

    Lakshmipriya, M.; Rajan Babu, D.; Ezhil Vizhi, R.

    2015-02-01

    The semiorganic crystals of potassium boro-succinate (KBS) were grown by slow evaporation method. KBS crystallizes in monoclinic system which was confirmed by powder XRD analysis. Vickers microhardness study has been carried out over a load range of 25-100 g. The Vickers hardness numbers (Hv) of the material increases as the load increases so the material is suitable for device fabrication. The Meyer index 'n' is estimated to be greater than 1.6, the crystal system belongs to the soft material category. The elastic stiffness coefficient, c11, has also been calculated using Wooster's empirical relation from the hardness data. The fracture toughness values 'Kc', determined from measurements of crack lengths, were estimated to be 0.15166 MN/m3/2. The brittleness indices 'Bi' were estimated as 276 m-1/2.

  6. Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying

    International Nuclear Information System (INIS)

    Alijani, Fatemeh; Amini, Rasool; Ghaffari, Mohammad; Alizadeh, Morteza; Okyay, Ali Kemal

    2014-01-01

    Highlights: • Potential to produce B1′ (thermal- and stress-induced) and B2 was established. • Martensitic transformation occurred without the formation of intermediate R-phase. • Formation of unwanted intermetallics during heating was hindered by milling. • During milling, microhardness was increased, then reduced, and afterward re-increased. • By milling evolution, thermal crystallization steps changed from 3 to 2. - Abstract: In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti–41Ni–9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0–12 h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19′) and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time

  7. Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation

    Directory of Open Access Journals (Sweden)

    O. Akdogan

    2018-05-01

    Full Text Available The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…. However recent worldwide reserve and export limitation problem of rare earths, shifted researchers’ focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …, Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.

  8. Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation

    Science.gov (United States)

    Akdogan, O.

    2018-05-01

    The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…). However recent worldwide reserve and export limitation problem of rare earths, shifted researchers' focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …), Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.

  9. Ceramic tools insert assesment based on vickers indentation methodology

    Science.gov (United States)

    Husni; Rizal, Muhammad; Aziz M, M.; Wahyu, M.

    2018-05-01

    In the interrupted cutting process, the risk of tool chipping or fracture is higher than continues cutting. Therefore, the selection of suitable ceramic tools for interrupted cutting application become an important issue to assure that the cutting process is running effectively. At present, the performance of ceramics tools is assessed by conducting some cutting tests, which is required time and cost consuming. In this study, the performance of ceramic tools evaluated using hardness tester machine. The technique, in general, has a certain advantage compare with the more conventional methods; the experimental is straightforward involving minimal specimen preparation and the amount of material needed is small. Three types of ceramic tools AS10, CC650 and K090 have been used, each tool was polished then Vickers indentation test were performed with the load were 0.2, 0.5, 1, 2.5, 5 and 10 kgf. The results revealed that among the load used in the tests, the indentation loads of 5 kgf always produce well cracks as compared with others. Among the cutting tool used in the tests, AS10 has produced the shortest crack length and follow by CC 670, and K090. It is indicated that the shortest crack length of AS10 reflected that the tool has a highest dynamic load resistance among others insert.

  10. Coating of Ultra-Small Micro End Mills: Analysis of Performance and Suitability of Eight Different Hard-Coatings

    Directory of Open Access Journals (Sweden)

    Martin Bohley

    2018-03-01

    Full Text Available Due to the constant need for better functionalized surfaces or smaller, function integrated components, precise and efficient manufacturing processes have to be established. Micro milling with micro end mills is one of the most promising processes for this task as it combines a high geometric flexibility in a wide range of machinable materials with low set-up costs. A downside of this process is the wear of the micro end mills. Due to size effects and the relatively low cutting speed, the cutting edge is especially subjected to massive abrasive wear. One possibility to minimize this wear is coating of micro end mills. This research paper describes the performance of eight different hard coatings for micro end mills with a diameter <40 µm and discusses some properties for the best performing coating type. With this research, it is therefore possible to boost the possibilities of micro milling for the manufacture of next generation products.

  11. Hybrid setup for micro- and nano-computed tomography in the hard X-ray range

    Science.gov (United States)

    Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon

    2017-12-01

    With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.

  12. Micro Hard-X Ray Camera: From Caliste 64 to Caliste 256

    International Nuclear Information System (INIS)

    Meuris, A.; Limousin, O.; Le Mer, I.; Pinsard, F.; Blondel, C.; Daly, F.; Lugiez, F.; Gevin, O.; Delagnes, E.; Chavassieux, M.; Vassal, M.C.; Bocage, R.; Soufflet, F.

    2009-01-01

    Caliste project aims at hybridizing 1 cm 2 Cd(Zn)Te detectors with low noise front-end electronics, in a single component standing in a 1 * 1 * 2 cm 3 volume. The micro-camera is a spectroscopic imager for X and gamma rays detection, with time-tagging capability. Hybridization consists in stacking full custom ASICs perpendicular to the detection surface. The first prototype Caliste 64 integrates a detector of 8 * 8 pixels of 1 mm pitch. Fabrication and characterizations of nine cameras units validate the design and the hybridization concept. Spectroscopic tests result in a mean energy resolution of ∼0.7 keV FWHM at 14 keV and ∼0.85 keV FWHM at 60 keV using 1 mm-thick Al Schottky CdTe detectors biased at -400 V and cooled down to 15 degrees C. The new prototype called Caliste 256 integrates 16 * 16 pixels of 580 m pitch in the same volume as Caliste 64. Electrical tests with the first sample fabricated without detector result in a mean equivalent noise charge of 64e - rms (9.6 μs, no leakage current). Caliste devices are 4-side buttable and can be used as elementary detection units of a large hard X-ray focal plane, as for the 64 cm 2 high energy detector of the Simbol-X astronomical space mission. (authors)

  13. The effects of hard particles on the surface quality when micro-cutting aluminum 6061 T6

    International Nuclear Information System (INIS)

    Ding, X; Lee, L C; Butler, D L; Cheng, C K

    2009-01-01

    Studies of micro-cutting have so far largely been carried out on single-phase materials. Due to the size effect, the workpiece material microstructure can have a significant influence on the cutting force, chip formation and surface quality. Previous investigations have shown that hard particles in materials such as aluminum alloy can play a significant role in the generation of defects such as cracks and voids on the work surface. This paper will examine the extent of the problem during the micro-cutting of Al6061 T6 and propose how it can be mitigated

  14. Investigation on the effect of Friction Stir Processing Parameters on Micro-structure and Micro-hardness of Rice Husk Ash reinforced Al6061 Metal Matrix Composites

    Science.gov (United States)

    Fatchurrohman, N.; Farhana, N.; Marini, C. D.

    2018-03-01

    Friction stir processing (FSP) is an alternative way to produce the surface composites of aluminium alloy in order to modify the microstructure and improve the mechanical properties. In this experiment, Al6061 aluminium alloy has been chosen to be used as the matrix base plate for the FSP. Al606 has potential for the use in advanced application but it has low wear resistance. While, the reinforced used was rice husk ash (RHA) in order to produce surface composites which increased the micro hardness of the plate composites. The Al6061 was stirred individually and with 5 weight % of RHA at three different tool rotational speeds of 800 rpm, 1000 rpm and 1200 rpm. After running the FSP, the result in the distribution of particles and the micro hardness of the specimens were identified. The result showed that Al6061 plate with the existing 5 weight % of RHA reinforced at the highest of tool rotational speeds of 1200rpm has the best distribution of particles and the highest result in average of micro hardness with 80Hv.

  15. Design and development of PCD micro straight edge end mills for micro/nano machining of hard and brittle materials

    International Nuclear Information System (INIS)

    Cheng, Xiang; Wang, Zhigang; Yamazaki, Kazuo; Nakamoto, Kazuo

    2010-01-01

    One of the biggest challenges for mechanical micro/nano milling is the design and fabrication of high precision and high efficiency micro milling tools. Commercially available micro milling tools are either too expensive (around several hundred US dollars) or simply made from downsizing of macro milling tools, which is sometimes not appropriate for the specific micro/nano milling requirements. So the design and fabrication of custom micro milling tools are necessary. In this paper, a micro straight edge endmill (SEE) is designed. Static and dynamic FEM analyses have been done for the SEEs with different rake angles trying to identify their stiffness and natural frequencies. By wire electrical discharge machining (WEDM), the SEEs made of polycrystalline diamond (PCD) with three different rake angles have been fabricated. The evaluation milling on tungsten carbide (WC) and silicon wafer have processed on a nano milling center. Experimental results show the SEEs have a good ability to simultaneously micro/nano milling of both the side and bottom surfaces with submicron surface roughness, and the SEE has high accuracy for large aspect ratio thin wall machining. The milling experiments on silicon wafer have successfully demonstrated that ductile mode machining was achieved and the coolant played an important role in silicon wafer milling

  16. Production and mechanical properties of sintered carbides (hard steels WC-Co)

    International Nuclear Information System (INIS)

    Batalha, G.F.

    1987-09-01

    Densification and mechanical characteristics or WC-Co Cemented Carbides, were investigated by dilatometry, Hardness and bending tests, as a function of the two principal micro-structural parameters: the cobalt content and the particle size of carbide crystals. Vickers hardness of the studied compositions showed a linear variation with the increase of the cobalt content. By three point bending, the transverse rupture strenght increases with cobalt content, however, for larger grain size reaches a maximum, eventually reduced by brittle phases and incomplete dispersion. The results of brittle facture tests were statistically analised and fitted better to the 'Weakest Link Model' (Weibull distribution) than the 'Chain Model' (Gaussian distribution). (author) [pt

  17. Parameters optimization, microstructure and micro-hardness of silicon carbide laser deposited on titanium alloy

    CSIR Research Space (South Africa)

    Adebiyia, DI

    2016-06-01

    Full Text Available Silicon carbide (SiC), has excellent mechanical properties such as high hardness and good wear resistance, and would have been a suitable laser-coating material for titanium alloy to enhance the poor surface hardness of the alloy. However, SiC has...

  18. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template.

    Science.gov (United States)

    Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen

    2014-09-01

    In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.

  19. LIBS, LA-ICPMS and synchrotron hard x-ray micro-radiography and micro-tomography complementary study of elemental distributions in biominerals

    International Nuclear Information System (INIS)

    Kaiser, J.; Novotny, K.; Hola, M.; Kanicky, V.; Martinec, P.; Hahn, D.W.; Diwakar, P.K.; Mancini, L.; Tromba, G.; Sodini, N.

    2009-01-01

    Full text: Analysis of bio-minerals can provide information about the chronology, diet and palaeoenvironment of past populations. More specifically, e.g. line scans of uroliths cross-sections may be used to detect the accumulation history of the selected elements. This can be linked to the patients' exposure to environmental effects. Together with the main components, biogenous and toxic trace elements can be monitored. We report on utilization of two laser-ablation based analytical techniques for mapping elemental distribution in bio-minerals, coupled to hard x-ray microradiography and micro-CT measurements for visualization of the inner structure of the investigated samples. (author)

  20. Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique

    International Nuclear Information System (INIS)

    Yin Zhijian; Tao Shunyan; Zhou Xiaming; Ding Chuanxian

    2007-01-01

    In this work, the microhardness of plasma sprayed Al 2 O 3 coatings was evaluated using the Vickers indentation technique, and the effects of measurement direction, location and applied loads were investigated. The measured data sets were then statistically analysed employing the Weibull distribution to evaluate their variability within the coatings. It was found that the Vickers hardness (VHN) increases with decreasing applied indenter load, which can be explained in terms of Kick's law and the Meyer index k of 1.93, as well as relating to the microstructural characteristics of plasma sprayed coatings and the elastic recovery taking place during indentation. In addition, VHN, measured on the cross section of coatings, was obviously higher than that on its top surface. The obtained Weibull modulus and variation coefficient indicate that the VHN was less variable when measured at a higher applied load and on the cross section of coating. The obvious dependence of the VHN on the specific indentation location within through-thickness direction was also realized. These phenomena described above in this work were related to the special microstructure and high anisotropic behaviour of plasma sprayed coatings

  1. Comparison of local and imported osteosynthetic mandibular bone plates in terms of micro hardness in modified simulated body fluid at periodic intervals

    International Nuclear Information System (INIS)

    Anwar, R.; Kaleem, M.; Baig, AM.; Jamal, M.

    2015-01-01

    To determine the micro hardness of novel Pakistani manufactured osteosynthetic titanium bone mini plates (MPP) and imported osteosynthetic titanium bone mini plates (MPG) in body like conditions. Study Design: Descriptive study. Place and Duration of Study: This study was carried out at School of Chemical and Material Engineering, NUST from March to May 2013. Material and Methods: Microvicker hardness tester was used for assessment of micro hardness of two types of plates. The hardness was checked before conditioning and after conditioning at (six different places) on interval of 1, 7,14,21,28 and 40 days in modified simulated body fluid with ph 7.4 and temperature 37 degree C. Results: Result showed that hardness of MPG was higher than MPP and after conditioning in simulated body fluid at all time periods, hardness of both types of plates was increased. Conclusion: It can be concluded from this study that micro hardness of imported plates is more than local plates so recommendations should be sent to manufacturers of local industry of Pakistan to improve the hardness of local plates so that they can meet international standards. (author)

  2. Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects.

    Science.gov (United States)

    Choudhury, Dipankar; Rebenda, David; Sasaki, Shinya; Hekrle, Pavel; Vrbka, Martin; Zou, Min

    2018-05-01

    This study evaluates the impact of dimple shapes on lubricant film formation in artificial hip joints. Micro-dimples with 20-50 µm lateral size and 1 ± 0.2 µm depths were fabricated on CrCoMo hip joint femoral heads using a picosecond laser. Tribological studies were performed using a pendulum hip joint simulator to apply continuous swing flexion-extension motions. The results revealed a significantly enhanced lubricant film thickness (≥ 500 nm) with micro-dimpled prosthesis heads at equilibrium position after the lubricant film has fully developed. The average lubricant film thickness of dimpled prostheses with square- and triangular-shaped dimple arrays over time is about 3.5 that of the non-dimpled prosthesis (204 nm). Remarkably, the prosthesis with square-shaped dimple arrays showed a very fast lubricant film formation reaching their peak values within 0.5 s of pendulum movement, followed by prosthesis with triangular-shaped dimple arrays with a transition period of 42.4 s. The fully developed lubricant film thicknesses (≥ 700 nm) are significantly higher than the surface roughness (≈ 25 nm) demonstrating a hydrodynamic lubrication. Hardly any scratches appeared on the post-experimental prosthesis with square-shaped dimple array and only a few scratches were found on the post-experimental prosthesis with triangular-shaped dimple arrays. Thus, prostheses with square-shaped dimple arrays could be a potential solution for durable artificial hip joints. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. "I Found out the Hard Way": Micro-Political Workings in Professional Football

    Science.gov (United States)

    Thompson, Andrew; Potrac, Paul; Jones, Robyn

    2015-01-01

    This paper examines the micro-political experiences of Adam (a pseudonym), a newly appointed fitness coach at a Football Association Premier League club, in his search for acceptance by senior colleagues. Data were collected through a series of in-depth, semi-structured interviews, before being subject to a process of inductive analysis. Goffman's…

  4. Microstructural, Micro-hardness and Sensitization Evaluation in HAZ of Type 316L Stainless Steel Joint with Narrow Gap Welds

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Faisal Shafiqul; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kang, Shi Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    From Micro-hardness measurement HAZ zone was found approximately 1-1.5 mm in NGW and DL-EPR test confirmed that 316L NGW HAZ was not susceptible to sensitization as DOS <1% according to sensitization criteria based on reference. In nuclear power plants 316L stainless steels are commonly used material for their metallurgical stability, high corrosion resistance, and good creep and ductility properties at elevated temperatures. Welding zone considered as the weakest and failure initiation source of the components. For safety and economy of nuclear power plants accurate and dependable structural integrity assessment of main components like pressure vessels and piping are need as it joined by different welding process. In similar and dissimilar metal weld it has been observed that weld microstructure cause the variation of mechanical properties through the thickness direction. In the Heat Affected Zone (HAZ) relative to the fusion line face a unique thermal experience during welding.

  5. Microstructure and micro-hardness analyses of titanium alloy Ti-6Al-4V parts manufactured by selective laser melting

    Directory of Open Access Journals (Sweden)

    Lancea Camil

    2017-01-01

    Full Text Available Selective Laser Melting (SLM is one of the powder based additive manufacturing technologies and it is, as well, the most rapidly growing technique in Rapid Prototyping. In this paper is presented a microstructure analysis using Scanning Electron Microscope (LEO 1525 SEM, of Ti6Al4V parts exposed into a corrosion environment. The corrosion environment was generated using a salt chamber with 5% and 10% NaCl concentration and an ACS-Sunrise climatic chamber. The parts were also subjected to tests in order to determine their micro-hardness, followed by a statistical processing of the obtained data. The parts, having a lattice structure, were built on a Selective Laser Melting machine.

  6. Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.Y.; Jing, X.; Sheng, J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Sun, G.F. [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Yan, Z. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Lu, J.Z., E-mail: jzlu@ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-07-15

    The effects of massive laser shock peening (LSP) treatment on micro-hardness, residual stress and microstructure in four different zones of laser cladding coating was investigated. Furthermore, micro-hardness curves and residual stress distributions with and without massive LSP treatment were presented and compared, and typical microstructure in different zones of both coatings were characterized by transmission electron microscope (TEM) and cross-sectional optical microscope (OM) observations. Results and analyses showed that massive LSP treatment had an important influence on micro-hardness and residual stress of the cladding coating. Special attempt was made to the effects of massive LSP treatment on microstructure in three zones of the cladding coating. In addition, the underlying mechanism of massive LSP treatment on microstructure and mechanical properties of the cladding coating was revealed clearly. - Highlights: • Micro-hardness and residual stress curves of both coatings were presented and compared. • Typical microstructure in different zones of both coatings were characterized and analyzed. • LSP causes increased micro-activities, and induces plastic deformation layer in three zones. • Underlying mechanism of LSP on mechanical properties of cladding coating was revealed.

  7. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  8. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    International Nuclear Information System (INIS)

    Agrawal, Ashish; Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-01-01

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility

  9. Kekerasan mikro enamel gigi permanen muda setelah aplikasi bahan pemutih gigi dan pasta remineralisasi (Enamel micro hardness of young permanent tooth after bleaching and remineralization paste application

    Directory of Open Access Journals (Sweden)

    Budianto Liwang

    2014-12-01

    Full Text Available Background: Studies showed that bleaching agent had demineralization effect to enamel, and encourage use of remineralization paste after bleaching treatment especially in young permanent tooth which in post-eruptive enamel maturation. Purpose: The study ere aimed to determine the bleaching agent effect on enamel surface micro hardness, and to determine the effect of remineralization paste application on enamel surface micro hardness of young permanent tooth after bleaching treatment. Methods: Fourteen young permanent teeth were placed in a block of resin with a window on the buccal surface enamel. The initial enamel surface hardness was measured using Microvickers Hardness Tester. Then the application of hydrogen peroxide bleaching materials 30% was done three times for 15 minutes and followed by surface hardness of enamel measurement. Samples were divided into 2 groups; the first group was applied paste of Hydroxy apatite + NaF 1450ppm , and the second group was applied paste of CPP–ACP + NaF 900ppm. Each paste was applied for 30 minutes for 7 days, then the enamel surface hardness of samples were measured. Results: The enamel surface micro hardness decreased after bleaching from 333.09 ± 10.49 VHN to 299.15±5.70 VHN. Micro hardness after application of Hidroxy apatite + NaF 1450ppm was 316.61±5.87 VHN and after application of CPP-ACP + NaF 900ppm was 319.94±3.25 VHN, however the micro hardness still lower than initial micro hardness. Conclusion: Tooth bleaching agent caused a decrease of enamel surface micro hardness in young permanent tooth. The use of remineralization paste enabled to increase the enamel surface micro hardness young permanent tooth.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa produk pemutih gigi memiliki efek demineralisasi enamel gigi, dan mendorong penggunaan pasta remineralisasi setelah pemutihan gigi terutama di gigi muda permanen yang enamelnya masih dalam proses maturasi pasca-erupsi. Tujuan

  10. Caliste 64, an innovative CdTe hard X-ray micro-camera

    International Nuclear Information System (INIS)

    Meuris, A.; Limousin, O.; Pinsard, F.; Le Mer, I.; Lugiez, F.; Gevin, O.; Delagnes, E.; Vassal, M.C.; Soufflet, F.; Bocage, R.

    2008-01-01

    A prototype 64 pixel miniature camera has been designed and tested for the Simbol-X hard X-ray observatory to be flown on the joint CNES-ASI space mission in 2014. This device is called Caliste 64. It is a high performance spectro-imager with event time-tagging capability, able to detect photons between 2 keV and 250 keV. Caliste 64 is the assembly of a 1 or 2 min thick CdTe detector mounted on top of a readout module. CdTe detectors equipped with Aluminum Schottky barrier contacts are used because of their very low dark current and excellent spectroscopic performance. Front-end electronics is a stack of four IDeF-X V1.1 ASICs, arranged perpendicular to the detection plane, to read out each pixel independently. The whole camera fits in a 10 * 10 * 20 mm 3 volume and is juxtaposable on its four sides. This allows the device to be used as an elementary unit in a larger array of Caliste 64 cameras. Noise performance resulted in an ENC better than 60 electrons rms in average. The first prototype camera is tested at -10 degrees C with a bias of -400 V. The spectrum summed across the 64 pixels results in a resolution of 697 eV FWHM at 13.9 keV and 808 eV FWFM at 59.54 keV. (authors)

  11. Caliste 64, an innovative CdTe hard X-ray micro-camera

    Energy Technology Data Exchange (ETDEWEB)

    Meuris, A.; Limousin, O.; Pinsard, F.; Le Mer, I. [CEA Saclay, DSM, DAPNIA, Serv. Astrophys., F-91191 Gif sur Yvette (France); Lugiez, F.; Gevin, O.; Delagnes, E. [CEA Saclay, DSM, DAPNIA, Serv. Electron., F-91191 Gif sur Yvette (France); Vassal, M.C.; Soufflet, F.; Bocage, R. [3D-plus Company, F-78532 Buc (France)

    2008-07-01

    A prototype 64 pixel miniature camera has been designed and tested for the Simbol-X hard X-ray observatory to be flown on the joint CNES-ASI space mission in 2014. This device is called Caliste 64. It is a high performance spectro-imager with event time-tagging capability, able to detect photons between 2 keV and 250 keV. Caliste 64 is the assembly of a 1 or 2 min thick CdTe detector mounted on top of a readout module. CdTe detectors equipped with Aluminum Schottky barrier contacts are used because of their very low dark current and excellent spectroscopic performance. Front-end electronics is a stack of four IDeF-X V1.1 ASICs, arranged perpendicular to the detection plane, to read out each pixel independently. The whole camera fits in a 10 * 10 * 20 mm{sup 3} volume and is juxtaposable on its four sides. This allows the device to be used as an elementary unit in a larger array of Caliste 64 cameras. Noise performance resulted in an ENC better than 60 electrons rms in average. The first prototype camera is tested at -10 degrees C with a bias of -400 V. The spectrum summed across the 64 pixels results in a resolution of 697 eV FWHM at 13.9 keV and 808 eV FWFM at 59.54 keV. (authors)

  12. 2D beam hardening correction for micro-CT of immersed hard tissue

    Science.gov (United States)

    Davis, Graham; Mills, David

    2016-10-01

    Beam hardening artefacts arise in tomography and microtomography with polychromatic sources. Typically, specimens appear to be less dense in the center of reconstructions because as the path length through the specimen increases, so the X-ray spectrum is shifted towards higher energies due to the preferential absorption of low energy photons. Various approaches have been taken to reduce or correct for these artefacts. Pre-filtering the X-ray beam with a thin metal sheet will reduce soft energy X-rays and thus narrow the spectrum. Correction curves can be applied to the projections prior to reconstruction which transform measured attenuation with polychromatic radiation to predicted attenuation with monochromatic radiation. These correction curves can be manually selected, iteratively derived from reconstructions (this generally works where density is assumed to be constant) or derived from a priori information about the X-ray spectrum and specimen composition. For hard tissue specimens, the latter approach works well if the composition is reasonably homogeneous. In the case of an immersed or embedded specimen (e.g., tooth or bone) the relative proportions of mineral and "organic" (including medium and plastic container) species varies considerably for different ray paths and simple beam hardening correction does not give accurate results. By performing an initial reconstruction, the total path length through the container can be determined. By modelling the X-ray properties of the specimen, a 2D correction transform can then be created such that the predicted monochromatic attenuation can be derived as a function of both the measured polychromatic attenuation and the container path length.

  13. Whole-field macro- and micro-deformation characteristic of unbound water-loss in dentin hard tissue.

    Science.gov (United States)

    Chen, Zhenning; Nadeau, Bobby; Yu, Kevin; Shao, Xinxing; He, Xiaoyuan; Goh, M Cynthia; Kishen, Anil

    2018-04-06

    High-resolution deformation measurements in a functionally graded hard tissue such as human dentin are essential to understand the unbound water-loss mediated changes and their role in its mechanical integrity. Yet a whole-field, 3-dimensional (3D) measurement and characterization of fully hydrated dentin in both macro- and micro-scales remain to be a challenge. This study was conducted in 2 stages. In stage-1, a stereo-digital image correlation approach was utilized to determine the water-loss and load-induced 3D deformations of teeth in a sagittal section over consecutively acquired frames, from a fully hydrated state to nonhydrated conditions for a period up to 2 hours. The macroscale analysis revealed concentrated residual deformations at the dentin-enamel-junction and the apical regions of root in the direction perpendicular to the dentinal tubules. Significant difference in the localized deformation characteristics was observed between the inner and outer aspects of the root dentin. During quasi-static loadings, further increase in the residual deformation was observed in the dentin. In stage-2, dentin microstructural variations induced by dynamic water-loss were assessed with environmental scanning electron microscopy and atomic force microscopy (AFM), showing that the dynamic water-loss induced distention of dentinal tubules with concave tubular edges, and concurrent contraction of intertubular dentin with convex profile. The findings from the current macro- and micro-scale analysis provided insight on the free-water-loss induced regional deformations and ultrastructural changes in human dentin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging

    Science.gov (United States)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Pinsard, F.; Vassal, M. C.; Soufflet, F.; Le Mer, I.

    2009-10-01

    In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 ASICs from CEA and a 1 cm 2 Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to -10 °C and biased at -500 V.

  15. Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging

    International Nuclear Information System (INIS)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Pinsard, F.; Vassal, M.C.; Soufflet, F.; Le Mer, I.

    2009-01-01

    In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 ASICs from CEA and a 1 cm 2 Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to -10 deg. C and biased at -500 V.

  16. Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meuris, A. [CEA, Irfu, Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)], E-mail: aline.meuris@cea.fr; Limousin, O. [CEA, Irfu, Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Lugiez, F.; Gevin, O. [CEA, Irfu, Service d' Electronique, de Detecteurs et d' Informatique, F-91191 Gif-sur-Yvette (France); Blondel, C.; Pinsard, F. [CEA, Irfu, Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Vassal, M.C.; Soufflet, F. [3D Plus, 641 rue Helene Boucher, F-78532 Buc (France); Le Mer, I. [CEA, Irfu, Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2009-10-21

    In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 ASICs from CEA and a 1 cm{sup 2} Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to -10 deg. C and biased at -500 V.

  17. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness

    Directory of Open Access Journals (Sweden)

    Marco Lombardini

    2012-01-01

    Conclusion: Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.

  18. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    Science.gov (United States)

    2012-01-01

    4140-steel [29] as well as composites such as Al/Al2O3 [30] and Ni– YSZ cermets [27]. The RUS apparatus used in this study consists of a computer...Microstructure and lattice parameter of LLZO specimens In this study , the LLZO microstructure was observed on a (i) fracture surface of LLZO-01 (Fig. 1a) and... study are consistent with the trend (Eq. 2) of a power law decrease in mechanical properties with increasing lattice parameter observed for other garnet

  19. Final report on COOMET Vickers PTB/VNIIFTRI key comparison (COOMET.M.H-K1.b and COOMET.M.H-K1.c)

    Science.gov (United States)

    Aslanyan, E.; Herrmann, K.

    2013-01-01

    This report describes a COOMET key comparison on Vickers hardness scales of two National Metrology Institutes—PTB and VNIIFTRI. The pilot laboratory was PTB, which was the linking institute with the key comparison reference values of CCM.H-K1. In the key comparison two sets of hardness reference blocks for the Vickers hardness scales HV1 and HV30, each consisting of three hardness reference blocks with the hardness levels 240 HV, 540 HV and 840 HV, are used. The same hardness reference blocks were used previously in the key comparison CCM.H-K1. The measurement results and uncertainty assessments, announced by VNIIFTRI, are in good agreement with the key comparison reference values of CCM.H-K1. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Study of Micro-hardness of High-Speed W9Mo4Co8 Steel Plates in Pendulum Grinding by Abrasive Wheel Periphery

    OpenAIRE

    Soler, Yakov Iosifovich; Nguyen, Van Canh

    2017-01-01

    In cutting tool assembly, grinding is the most important technological step of the finishing treatment, largely determining the workmanship. An increase of micro-hardness after grinding relative to the original one indicates the dominant role of abrasive tool force impact on the ground surface. A decrease, in contrast, evidences a significant softening under the influence of heat source. This research based on nonparametric statistics to predict the effect of wheel characteristics with abrasi...

  1. The effect of nitrogen gas flow rate on heat treatment of AISI SS-430: Study of microstructure and hardness

    Science.gov (United States)

    Sebayang, Perdamean; Darmawan, Bobby Aditya; Simbolon, Silviana; Alfirano, Sudiro, Toto; Aryanto, Didik

    2018-05-01

    The aim of this research was to obtain the austenite phase from ferritic stainless steel through sample heat treatment. The AISI 430 ferritic steel with the thickness of about 0.4 mm was used. The heat treatment was conducted in a tube furnace at elevated temperature of 1150, 1200, 1250 °C and nitrogen gas flow rate of 0.57 and 0.73 l/s. The samples were then rapidly quenched in water bath. An optical microscope, XRD, SEM-EDS and micro vickers hardness tester were used to characterize the sample before and after het treatment. The presence of anneal twins indicated the formation of austenite phase in the sample. Its fraction was varied from 10.89 wt% to 35.10 wt%. In addition, the heat treatment temperature strongly affected the sample hardness. The optimum hardness obtained was about 542.69 HV. According to the results, this material can be considered for biomedical applications.

  2. Generalized bond-strength model of Vickers hardness: application to Cr.sub.4./sub.B, CrB, CrB.sub.2./sub., CrB.sub.4./sub., Mo.sub.2./sub.B, MoB.sub.2./sub., OsB.sub.2./sub., ReB.sub.2./sub., WB.sub.2./sub., WB.sub.3./sub. and Ti.sub.1.87./sub.B.sub.50./sub.

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Antonín; Dušek, Michal

    2017-01-01

    Roč. 112, Sep (2017), s. 71-75 ISSN 0167-6636 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : hardness * microscopic model * transition-metal borides * hard and superhard materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.651, year: 2016

  3. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Ding, Zhaonan; Su, Changhao; Yan, Tingxing; Song, Yin; Cheng, Yuguang

    2018-01-01

    Hardness testing is an efficient means of assessing the mechanical properties of materials due to the small sampling volume requirement. Previous studies have established the correlation between flow stress and Vickers hardness. However, the damage layer produced by ions irradiation with low energy is too thin to perform Vickers hardness test, which is usually measured by nano-indentation. Therefore, it is necessary to correlate the Vickers hardness and nano-hardness for the convenience of assessing mechanical properties of materials under irradiation. In this study, various materials (pure nickel, nickel base alloys and oxide dispersion strengthened steel) were irradiated with high-energy heavy ions to different damage levels. After irradiation, micro- and nano-indentation were performed to characterize the change in hardness. Due to indentation size effect (ISE), the hardness was dependent of load or depth. Therefore, Nix-Gao model was used to obtain the hardness without ISE (Hv0 and Hnano_0). The determined Hv0 was plotted as a function of the corresponding Hnano_0, then a good linear relation was found between Vickers hardness and nano-hardness, and a coefficient was determined to be 81.0 ± 10.5, namely, Hv 0 = 81.0Hnano _ 0 (Hv0 with unit of kgf/mm2, Hnano_0 with unit of GPa). This correlation was based on the data from various materials, therefore it was independent of materials. Based on the established correlation and nano-indentation results, the change fraction in yield stress of Inconel 718 and pure Ni with ion irradiation was compared with that with neutron irradiation. The data of Inconel 718 with heavy ion irradiation was in good agreement with the data with neutron irradiation, which was a good demonstration for the validation of the established correlation. However, a distinctive difference in change fraction of yield stress was seen for pure Ni under heavy ion irradiation and neutron irradiation, which was attributed to the difference in samples

  4. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    Science.gov (United States)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  5. Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

    OpenAIRE

    Salah Gariani; Islam Shyha; Fawad Inam; Dehong Huo

    2017-01-01

    A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main cr...

  6. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    Science.gov (United States)

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  7. The relationship between vickers microhardness and compressive strength of functional surface geopolymers

    Science.gov (United States)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.

  8. Finite element analysis of stresses in Berkovich, Vickers and Knoop indentation for densifying and non-densifying glasses

    Science.gov (United States)

    Chen, Kanghua

    2002-08-01

    during a material removal experiment of magnetorheological finishing (MRF) of fused silica. The explanation of indentation size effect (ISE) is attempted using numerical indentation simulations. Vickers indentation simulations on the five selected brittle materials (FS, BK7, Si, LHG8 and CaF2.) show no size dependence of Vickers hardness when the material is modeled as elastic-perfectly plastic (with or without densification). The simulation results on axisymmetric conical indentation also indicate that the bluntness of the indenter tip is not the reason for the indentation size effect. A new constitutive model accounting for the material length scale is needed in order to explain the well-observed indentation size effect during indentation tests.

  9. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    Science.gov (United States)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  10. Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins.

    Science.gov (United States)

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Price, Richard B T; Sullivan, Braden; Moeginger, Bernhard

    2015-02-01

    An inhomogeneous irradiance distribution from a light-curing unit (LCU) can locally cause inhomogeneous curing with locally inadequately cured and/or over-cured areas causing e.g. monomer elution or internal shrinkage stresses, and thus reduce the lifetime of dental resin based composite (RBC) restorations. The aim of the study is to determine both the irradiance distribution of two light curing units (LCUs) and its influence on the local mechanical properties of a RBC. Specimens of Arabesk TOP OA2 were irradiated for 5, 20, and 80s using a Bluephase® 20i LCU in the Low mode (666mW/cm(2)), in the Turbo mode (2222mW/cm(2)) and a Celalux® 2 (1264mW/cm(2)). The degree of conversion (DC) was determined with an ATR-FTIR. The Knoop micro-hardness (average of five specimens) was measured on the specimen surface after 24h of dark and dry storage at room temperature. The irradiance distribution affected the hardness distribution across the surface of the specimens. The hardness distribution corresponded well to the inhomogeneous irradiance distributions of the LCU. The highest reaction rates occurred after approximately 2s light exposure. A DC of 40% was reached after 3.6 or 5.7s, depending on the LCU. The inhomogeneous hardness distribution was still evident after 80s of light exposure. The irradiance distribution from a LCU is reflected in the hardness distribution across the surface. Irradiance level of the LCU and light exposure time do not affect the pattern of the hardness distribution--only the hardness level. In areas of low irradiation this may result in inadequate resin polymerization, poor physical properties, and hence premature failure of the restorations as they are usually much smaller than the investigated specimens. It has to be stressed that inhomogeneous does not necessarily mean poor if in all areas of the restoration enough light intensity is introduced to achieve a high degree of cure. Copyright © 2014 Academy of Dental Materials. Published by

  11. Fracture Toughness and Micro-Strain of Y-TZP Nanoceramics at Different Sintering Temperature

    Directory of Open Access Journals (Sweden)

    Rabiha S. Yaseen

    2017-11-01

    Full Text Available The objective of this research is to study the effect of sintering temperature on the mechanical properties and micro-strain of yttria tetragonal zirconia polycrystalls (Y-TZP nanostructure.   Where green disk formed by uniaxially press, sintered at (1500 – 1550 – 1600⁰C in air for 2hr then polished to mirror shape for fracture toughness and micro-hardness measurement by Vickers indenter at (60 kg to 100gm loads. Atomic force microscopy (AFM technique was use to measure the change in grain size and shape of the samples, X-ray diffraction (XRD evaluated to identify the phases and to measure the micro-strain of the samples.          The Results show that increasing sintering temperature will increase the grain size with increasing the average of micro-strain. Tetragonal  phase is the prevailing phase with small amount of cubic phase and the amount of monoclinic phase was under detection limite after sintering but there is increas in lattice dimension according to micro-strain calculation and grinding process produce micro-strain. With increasing the sintering temperature micro-hardness and fracture toughness will increas.

  12. Anisotropy of hardness and laser damage threshold of unidirectional organic NLO crystal in relation to the internal structure

    International Nuclear Information System (INIS)

    Natarajan, V.; Arivanandhan, M.; Sankaranarayanan, K.; Hayakawa, Y.

    2011-01-01

    Highlights: · Growth rate of the unidirectional organic crystals were measured and the variation in the growth rate was explained based on the attachment energy model. · Anisotropic behaviors of hardness and laser damage threshold of the unidirectional materials were analyzed. · The obtained results were explained based on the crystal structure of the material. - Abstract: Unidirectional benzophenone crystals were grown along , and directions by uniaxially solution crystallization method at ambient temperature. The growth rate of the grown crystals was varied with orientation. The optical absorption coefficients of benzophenone were measured as a function of wavelength. The optical absorption study reveals that the benzophenone crystal has very low absorption in the wavelength range of interest. Moreover, the laser damage threshold and micro hardness for , and oriented unidirectional benzophenone crystals were measured using a Q-switched Nd:YAG laser operating at 1064 nm radiation and Vicker's micro hardness tester, respectively. The laser damage threshold is larger for the and oriented crystals compared to oriented crystal at 1064 nm wavelength. The result is consistent with the hardness variation observed for the three different crystallographic directions of benzophenone crystal. The relation between the laser damage profile and mechanical hardness anisotropy is discussed based on the crystal structure of benzophenone.

  13. Assessing accumulated hard-tissue debris using micro-computed tomography and free software for image processing and analysis.

    Science.gov (United States)

    De-Deus, Gustavo; Marins, Juliana; Neves, Aline de Almeida; Reis, Claudia; Fidel, Sandra; Versiani, Marco A; Alves, Haimon; Lopes, Ricardo Tadeu; Paciornik, Sidnei

    2014-02-01

    The accumulation of debris occurs after root canal preparation procedures specifically in fins, isthmus, irregularities, and ramifications. The aim of this study was to present a step-by-step description of a new method used to longitudinally identify, measure, and 3-dimensionally map the accumulation of hard-tissue debris inside the root canal after biomechanical preparation using free software for image processing and analysis. Three mandibular molars presenting the mesial root with a large isthmus width and a type II Vertucci's canal configuration were selected and scanned. The specimens were assigned to 1 of 3 experimental approaches: (1) 5.25% sodium hypochlorite + 17% EDTA, (2) bidistilled water, and (3) no irrigation. After root canal preparation, high-resolution scans of the teeth were accomplished, and free software packages were used to register and quantify the amount of accumulated hard-tissue debris in either canal space or isthmus areas. Canal preparation without irrigation resulted in 34.6% of its volume filled with hard-tissue debris, whereas the use of bidistilled water or NaOCl followed by EDTA showed a reduction in the percentage volume of debris to 16% and 11.3%, respectively. The closer the distance to the isthmus area was the larger the amount of accumulated debris regardless of the irrigating protocol used. Through the present method, it was possible to calculate the volume of hard-tissue debris in the isthmuses and in the root canal space. Free-software packages used for image reconstruction, registering, and analysis have shown to be promising for end-user application. Copyright © 2014. Published by Elsevier Inc.

  14. Elasticity and hardness of nano-polycrystalline boron nitrides: The apparent Hall-Petch effect

    International Nuclear Information System (INIS)

    Nagakubo, A.; Ogi, H.; Hirao, M.; Sumiya, H.

    2014-01-01

    Nano-polycrystalline boron nitride (BN) is expected to replace diamond as a superhard and superstiff material. Although its hardening was reported, its elasticity remains unclear and the as-measured hardness could be significantly different from the true value due to the elastic recovery. In this study, we measured the longitudinal-wave elastic constant of nano-polycrystalline BNs using picosecond ultrasound spectroscopy and confirmed the elastic softening for small-grain BNs. We also measured Vickers and Knoop hardness for the same specimens and clarified the relationship between hardness and stiffness. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearly unchanged. We attribute the apparent increase in Vickers hardness to the elastic recovery and propose a model to support this insight.

  15. An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation

    Science.gov (United States)

    Hosemann, P.; Swadener, J. G.; Kiener, D.; Was, G. S.; Maloy, S. A.; Li, N.

    2008-03-01

    The superior properties of ferritic/martensitic steels in a radiation environment (low swelling, low activation under irradiation and good corrosion resistance) make them good candidates for structural parts in future reactors and spallation sources. While it cannot substitute for true reactor experiments, irradiation by charged particles from accelerators can reduce the number of reactor experiments and support fundamental research for a better understanding of radiation effects in materials. Based on the nature of low energy accelerator experiments, only a small volume of material can be uniformly irradiated. Micro and nanoscale post irradiation tests thus have to be performed. We show here that nanoindentation and micro-compression testing on T91 and HT-9 stainless steel before and after ion irradiation are useful methods to evaluate the radiation induced hardening.

  16. Surface hardness of hybrid ionomer cement after immersion in antiseptic solution

    Directory of Open Access Journals (Sweden)

    Anita Yuliati

    2006-06-01

    Full Text Available Hybrid ionomer cement or resin modified glass ionomer cement is a developed form of conventional glass ionomer cement. This hybrid ionomer cement can be eroded if in direct contact with acid solution which will affect surface hardness. The aim of this study is to learn surface hardness of hybrid ionomer cement after immersion in methyl salicylate 0.06% (pH 3.6 and povidon iodine 1% (pH 2.9 solution. Sample of hybrid ionomer cement with 5 mm diameter and 3 mm thickness was immersed in sterile aquadest solution (control, methyl salicylate pH 3.6, povidon iodine pH 2.9 for 1 minute, 7 and 14 minutes. Surface hardness was measured with Micro Vickers Hardness Tester. The obtained data was analyzed statistically with ANOVA followed by LSD test. The result of hybrid ionomer cement after immersion in sterile aquadest, methyl salicylate 0.06% pH 3.6 and povidon iodine 1% pH 2.9 for one minute, showed no significant difference; while immersion for 7 and 14 minutes showed a significant difference. The conclusion states that hybrid ionomer cement after 14 minutes immersion in povidon iodine 1% pH 2.9 has the lowest surface hardness.

  17. Quality assurance in design: policy adopted by Vickers Barrow Engineering Works

    International Nuclear Information System (INIS)

    Aubrey, J.H.

    1976-01-01

    The quality assurance system operated by the Vickers Barrow Engineering Works is described, with special reference to the design of the reactor shield and above core structure for the first commercial fast reactor. Section headings are: introduction; what is quality assurance of design; attitude of designer; design discipline; customers attitude; Engineering Company system; future application of Design Quality Assurance Record system. (U.K.)

  18. Work Hard / Play Hard

    OpenAIRE

    Burrows, J.; Johnson, V.; Henckel, D.

    2016-01-01

    Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with AntiUniversity.org. As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B

  19. Effect of conventional and sugar free pediatric syrup formulations on primary tooth enamel hardness: An in vitro study

    Directory of Open Access Journals (Sweden)

    Gaurao Vasant Mali

    2015-01-01

    Full Text Available Objectives: To assess and compare the effect of conventional and sugar free pediatric syrup formulations on primary tooth enamel hardness over a period of 14 days. Materials and Methods: An in vitro study was done on 40 noncarious deciduous teeth. 10 teeth in each group were dipped in 4 pediatric medicinal syrups (1 sugarfree and 3 conventional for 1 min thrice daily for 14 days and the enamel surface micro hardness was checked at baseline, 7 th day and 14 th day by Vickers hardness testing machine. The pH, titratable acidity and buffering capacity of the syrups were assessed. Results: The pH of syrups were above critical pH for demineralization of the tooth but tiratable acidity and buffering capacity differed. ANOVA test indicated that the reduction in mean micro hardness was maximum in Group D (Conventional Analgesic syrup and least in Group A (Sugarfree cough syrup on 7 th and 14 th day. On intergroup comparison there was no difference (P > 0.05 in micro hardness between Group B (Conventional Cough syrup and Group C (Conventional Antibiotic. However, highly significant (P < 0.01 difference between the either pair of Group B with Group D, and Group C with Group D on 14 th day. The percentage reduction in micro hardness on 14 th day was maximum for Group D (24.4 ± 2.2 and minimum for Group A (14.0 ± 1.3 which was statistically significant (P < 0.01. Conclusion: Sugar free pediatric medicines can be effective in reducing dental erosion and efforts should be made to incorporate sugar substitutes in formulation of pediatric medicines.

  20. Roughness Influence On Macro- And Micro-Tribology Of Multi-Layered Hard Coatings On Carbon Fibre Polymer Composite

    Directory of Open Access Journals (Sweden)

    Lackner J.M.

    2015-09-01

    Full Text Available Goal of this work is the investigation of roughness influences on the abrasive wear behaviour of magnetron sputtered multi-layered, low-friction coatings on carbon-fibre reinforced polymers (CFRP. Higher coating roughness at similar CFRP quality was realized by higher deposition rates, leading to increased heat flux to the substrates during deposition. Thermal expansion of the epoxy matrix on the micro scale results in a wavy, wrinkled surface topography. Both in scratch and reciprocal sliding testing against alumina, the friction coefficients are lower for the smooth coatings, but their wear rate is higher due to low-cycle fatigue caused abrasion.

  1. Hardness and microstructure of Al-10.0 wt% Zn-4.0 wt% Mg alloy

    International Nuclear Information System (INIS)

    Iqbal, M.; Shaikh, M.A.; Ahmad, W.; Ali, K.L.

    1996-01-01

    Al-Zn-Mg alloys are widely used in industries as these have excellent physical and mechanical properties. However some aspects of the effect of heat treatment on these alloys are not yet clear. In order to understand the precipitation phenomena in these alloys, microstructure of a locally prepared alloy Al-10.0 wt% Zn-4.0 wt% Mg heat treated under different conditions has been examined in scanning electron microscope/electron probe micro analyser. Precipitates MgZn/sub 2/, MgZn/sub 4/ and Mg/sub 2/Zn/sub 11/ have been observed and these are caused by heat treatment. Correlation between these precipitates and Vickers's hardness has also been studied. In the present paper results of this investigation have been presented and discussed. (author)

  2. Effect of Cryogenic Treatment on Microstructure and Micro Hardness of Aluminium (LM25 - SiC Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    G Elango

    2014-06-01

    Full Text Available The basic aim of this paper is to increase awareness amongst the researchers and to draw their attention towards the present approach to deal with the cryogenic treatment for the nonferrous metals. Cryogenic treated nonferrous metals will exhibit longer wear and more durability. During metal making process, when solidification takes place, some molecules get caught in a random pattern. The molecules do move about at subzero and deep cryogenic treatment slowly. In this experimental study, the effect of cryogenic treatment on microstructure changes and the hardness properties varies for LM25 alloy and LM25-SiC metal matrix composite at -196°C. It is analyzed for different durations. The execution of cryogenic treatment on both alloy and MMCs changed the distribution of

  3. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    Science.gov (United States)

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds. (c) 2009 Elsevier Inc. All rights reserved.

  4. A novel patterning effect during high frequency laser micro-cutting of hard ceramics for microelectronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Savriama, Guillaume, E-mail: guillaume.savriama@gmail.com [GREMI-UMR 7344, CNRS/Univ-Orléans, 14 rue d’Issoudun, BP 6744, F-45067 Orléans (France); STMicroelectronics, 10 rue Thalès de Milet, CS 97155, 37071 Tours Cedex 2 (France); Jarry, Vincent; Barreau, Laurent [STMicroelectronics, 10 rue Thalès de Milet, CS 97155, 37071 Tours Cedex 2 (France); Boulmer-Leborgne, Chantal; Semmar, Nadjib [GREMI-UMR 7344, CNRS/Univ-Orléans, 14 rue d’Issoudun, BP 6744, F-45067 Orléans (France)

    2014-05-01

    This paper investigates the laser micro-cutting of wide band gap materials for microelectronics industry purposes. An ultraviolet (355 nm) diode-pumped solid-state (DPSS) nanosecond laser was used in this investigation. The laser energy varied from 7 to 140 μJ/pulse with typical frequencies from 40 to 200 kHz. The effect of pulse energy and scanning speed on the depth of the cutting street of α-Al{sub 2}O{sub 3} and glass was studied. Typical depths of 200 μm were achieved on α-Al{sub 2}O{sub 3} for 140 μJ/pulse, 40 kHz at 13 mm/s. SEM images showed periodic patterns produced by periodic explosive boiling that can influence the achieved depth. The shape, size and periodicity of the recast material depended on the feed rate and the laser beam frequency. This periodic removal mechanism seems to be specific to dielectrics since it was not observed for semiconductors such as silicon or silicon carbide.

  5. A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Douissard, P.A.; Martin, T.; Chevalier, V.; Rack, A. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Cecilia, A.; Baumbach, T.; Rack, A. [Karlsruhe Inst Technol ANKA, D-76021 Karlsruhe, (Germany); Couchaud, M. [CEA LETI, F-38054 Grenoble, (France); Dupre, K. [FEE GmbH, D-55743 Idar Oberstein, (Germany); Kuhbacher, M. [Helmholtz Zentrum Berlin Mat and Energie, D-14109 Berlin, (Germany)

    2010-07-01

    The efficiency of high-resolution pixel detectors for hard X-rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron-based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency a novel scintillator based on doped Lu{sub 2}SiO{sub 5} (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO-based thin crystal together with the high stopping power of the material allows for high-performance indirect X-ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible-light and the afterglow are investigated. A set-up to study the effect of the thin-film scintillator's temperature on its conversion efficiency is described as well it delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X-ray imaging systems based on different diffraction-limited visible-light optics and CCD cameras using among others LSO-based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high-resolution computed tomography for life sciences. (authors)

  6. Correlation between hardness and stress in Al-(Nb, Mo, Ta) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T., E-mail: car@irb.h [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Radic, N. [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Panjan, P.; Cekada, M. [Jozef Stefan Institute, Ljubljana (Slovenia); Tonejc, A. [Department of Physics, Bijenicka cesta 32, 10000 Zagreb, P.O.B. 331 (Croatia)

    2009-06-30

    The thin films of Al{sub x}Nb{sub 1-x} (95 {>=} x {>=} 20), Al{sub x}Mo{sub x} (90 {>=} x {>=} 20) and Al{sub x}Ta{sub 1-x} (95 {>=} x {>=} 20) were prepared by magnetron codeposition at room temperature. The average film thickness was from 325 to 400 nm, depending on the film composition. The structure of the as-deposited films was examined by the X-ray diffraction. The stress of the films was determined from the substrate deformation by the profilometer, and the microhardness (load 2 mN) was examined by the micro- and nano-hardness device. For the purpose of the examination of the hardness, the samples were deposited onto the sapphire wafers, while the examination of the film stress, was performed by using thin glass substrates. For all the Al-(Nb, Mo, Ta) alloy compositions, the microhardness is predominantly under the influence of the harder element, and monotonically decreases with the increase of the aluminum content. However, the microhardness of the amorphous AlTa films was higher than the bulk value of a harder element (Ta) in the alloy. A simple empirical linear relationship between the Vickers hardness, the bulk value hardness of the transition metal (harder element) and the elastic energy fraction of the identation deformation, was established. The elastic energy fraction in the microhardness is also linearly correlated with the stress in films.

  7. Fracture toughness of glasses and hydroxyapatite: a comparative study of 7 methods by using Vickers indenter

    OpenAIRE

    HERVAS , Isabel; MONTAGNE , Alex; Van Gorp , Adrien; BENTOUMI , M.; THUAULT , A.; IOST , Alain

    2016-01-01

    International audience; Numerous methods have been proposed to estimate the indentation fracture toughness Kic for brittle materials. These methods generally uses formulæ established from empirical correlations between critical applied force, or average crack length, and classical fracture mechanics tests. This study compares several models of fracture toughness calculation obtained by using Vickers indenters. Two optical glasses (Crown and Flint), one vitroceramic (Zerodur) and one ceramic (...

  8. Vickers Attenuator. Volume 3C(VA) - Technical appraisal. Consultants' 1983 report

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A report is given by a team of Consultants on the estimated cost of converting wave energy to electrical energy by a 2 GW array of Vickers Attenuator wave energy devices and delivering this to a sub-station on the west coast of Skye. Comparisons of the estimates made by the team developing the concept are presented and discrepancies discussed. A detailed engineering assessment is given.

  9. Vickers Terminator. Volume 3C(VT) - Technical appraisal. Consultants' 1983 report

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A report is given by a team of consultants on the estimated cost of converting wave energy to electrical energy by a 2 GW array of Vickers Terminator wave energy devices and delivering the electricity to a sub-station on the west coast of Skye. Comparisons with the estimates made by the team developing the concept are presented and are largely in agreement, except for the capital cost per device and the power chain efficiency. A detailed engineering assessment is given.

  10. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array

    International Nuclear Information System (INIS)

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Mancini, Derrick C.; Ilavsky, Jan

    2015-01-01

    A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is reported. The needs both for increased experimental throughput and for in operando characterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to follow the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample under identical experimental conditions in simultaneous measurements. In the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around

  11. The effect of liquid phase separation on the Vickers microindentation shear bands evolution in a Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Askari-Paykani, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Nili Ahmadabadi, M., E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Seiffodini, A. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Yazd University, Department of Material Science and Engineering, Yazd 84196 (Iran, Islamic Republic of)

    2013-11-15

    The Vickers microindentation experiments and associated plastic deformation in as-cast and annealed (Fe{sub 0.9}Ni{sub 0.1}){sub 77}Mo{sub 5}P{sub 9}C{sub 7.5}B{sub 1.5} bulk metallic glass was conducted. In addition to the bulk indentation behavior, the shear band morphology underneath the Vickers microindenter was examined by employing the bonded interface technique. Microstructural characterization revealed that a liquid phase separation occurred during melting process. Atomic force microscopy of the glassy matrix of the as-cast specimen reveals the composition inhomogeneity induced by the liquid phase separation. This effect generates shear band branching or deflection during the shear band propagation. For the bulk indentation, the trends in the hardness vs. indentation load were found related to the pressure sensitive index and the phase separation process simultaneously. The results show that the as-cast as well as the annealed specimens are deformed through semi-circular and radial shear bands. In addition, in the partially crystalized specimen, the change in the properties and microstructure of the BMG induced by the partial crystallization treatment and phase separation process resulted in tertiary shear bands formation.

  12. Role of elastic deformation in determining the mixed alkaline earth effect of hardness in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Potuzak, M.

    2015-01-01

    been investigated previously, but the link between the resistance to elastic deformation and hardness has not yet been studied. In this work, we investigate the link between elastic deformation during indentation and Vickers hardness in a series of mixed magnesium-barium boroaluminosilicate glasses. We...

  13. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  14. The effect of acidulated phosphate fluoride application on dental enamel surfaces hardness

    Directory of Open Access Journals (Sweden)

    Edhie Arief P

    2007-09-01

    Full Text Available Enamel demineralization by acid is the first step of caries process. It has recently been shown that acidulated phosphate fluoride (APF can maintain the hardness of enamel surface. The aim of this study was examine the effect of APF application in the hardest of enamel surface. Fifty extracted teeth were cut at their crown, 40 teeth were taken randomly then divided into 4 groups, group 1 as the control, group 2 was treated with APF for 1 minute, group 3 for 4 minutes and group 4 for 7 minutes, then all the samples were washed with demineralized water. To see the effect of APF, all of the samples were soaked in lactic acid demineralization solution with pH 4,5 for 72 hours., the hardness of the surfaces of those samples before and after the treatment was measured by Micro Vickers Hardness Tester. The data were analyzed using One-Way ANOVA and LSD tests. In conclusion, 1.23% APF gel can reduce higher enamel demineralization.

  15. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    Science.gov (United States)

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  16. Vickers microhardness comparison of 4 composite resins with different types of filler.

    Directory of Open Access Journals (Sweden)

    René García-Contreras

    2015-10-01

    Full Text Available Composite resins are the material of choice to restore minimal invasive cavities; conversely, it is important to explore the mechanical properties of commercially available dental materials. Objective: To compare the Vickers microhardness (VHN of four available commercial composite resins using standardized samples and methods. Methodology: Composite cylinders were manufactured in a Teflon mould. We used the follow composite resins (n=4/gp: Microhybrid resins [Feeling Lux (Viarden and Amelogen Plus (Ultradent], Hybrid resin [Te-Econom Plus (Ivoclar] and Nanohybrid resin [Filtek Z350 (3M ESPE]. All samples were incubated in distilled water at 37ºC for five days. The test was carried out with microhardness indenter at 10 N, and a dwelling time of 10 s for 9 indentations across the specimens resulting in a total of 36 indentations for each group. Data were subjected to Kolmogorov-Smirnov normality test and ANOVA (post-hoc Tukey test. Results: The VHN mean values ranged from harder to softer as follows: Filtek Z350 (71.96±6.44 (p Amelogen Plus (59.90±4.40 (p Feeling lux (53.52±5.72> Te-Econom Plus (53.26±5.19. Conclusion: According to our results, the microhardness of the evaluated conventional composite resins can withstand the masticatory forces; however nanohybrid composite resins showed better Vickers microhardness and therefore are a more clinically suitable option for minimal invasion treatments.

  17. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    Science.gov (United States)

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  18. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian)

    OpenAIRE

    Daniela Ogrean

    2001-01-01

    The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes) indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Tim...

  19. Influence of 1,3,6 naphthalene trisulfonic acid on microstructure & hardness in electrodeposited Ni-layers

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Møller, Per; Somers, Marcel A. J.

    2002-01-01

    The influence of the additive 1,3,6 naphthalene trisulfonic acid on the microstructure and hardness of electrodeposited nickel layers was investigated. The microstructure was characterized using transmission electron microscopy; the Vickers hardness was measured in cross sections. The additive wa...

  20. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Pérez-Bustamante, R.; Bolaños-Morales, D.; Bonilla-Martínez, J.; Estrada-Guel, I.; Martínez-Sánchez, R.

    2014-01-01

    Highlights: • Pure aluminum was reinforced with graphene-platelets by using mechanical milling. • The composites were studied after sintering condition. • Milling time and graphene-platelet enhance the mechanical behavior of the composites. - Abstract: Graphene can be considered as an ideal reinforcement for the production of composites due to its outstanding mechanical properties. These characteristics offer an increased opportunity for their study in the production of metal matrix composites (MMCs). In this research, the studied composites were produced by mechanical alloying (MA). The employed milling times were of 1, 3 and 5 h. GNPs were added in 0.25, 0.50 and 1.0 wt% into an aluminum powder matrix. Milled powders were cold consolidated and subsequently sintered. Composites were microstructurally characterized with Raman spectroscopy and electron microscopy and X-ray diffraction. The hardness behavior in composites was evaluated with a Vickers micro-hardness test. A homogeneous dispersion of graphene during MA and the proper selection of sintering conditions were considered to produce optimized composites. The obtained results with electron microscopy indicate a homogeneous dispersion of GNPs into the aluminum matrix. Analyses showed GNPs edges where the structure of the graphene layers conserved after MA is observed

  1. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    Science.gov (United States)

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Effect of processing on fracture toughness of silicon carbide as determined by Vickers indentations

    Science.gov (United States)

    Dannels, Christine M.; Dutta, Sunil

    1989-01-01

    Several alpha-SiC materials were processed by hot isostatic pressing (HIPing) and by sintering an alpha-SiC powder containing boron and carbon. Several beta-SiC materials were processed by HIPing a beta-SiC powder with boron and carbon additions. The fracture toughnesses K(sub 1c) of these beta- and alpha-SiC materials were estimated from measurements of Vickers indentations. The three formulas used to estimate K(sub 1c) from the indentation fracture patterns resulted in three ranges of K(sub 1c) estimates. Furthermore, each formula measured the effects of processing differently. All three estimates indicated that fine-grained HIPed alpha-SiC has a higher K(sub 1c) than coarsed-grained sintered alpha-SiC. Hot isostatically pressed beta-SiC, which had an ultrafine grain structure, exhibited a K(sub 1c) comparable to that of HIPed alpha-SiC.

  3. A new approach to the estimation of surface free energy based on Vickers microhardness data

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A relation between surface free energy (σMHV and Meyer’s lines cut-values has been established using Vickers microhardness (MHV method and empirical physical laws. This relation allows the calculation of σMHV only from MHV data. The parameters required are Meyer’s lines cut-values and the mean value of diagonal length of the impression at different loads applied (drealmean. Our study of 12 samples of ultra high molecular weight polyethylene (PE-UHMW showed that the new approach is applicable when the slope value of Meyer’s lines equals 2 (i.e. n = 2. A γ-60Co source was used for the irradiation of 11 samples (one of the samples investigated is un-irradiated at room temperature in air. Doses of 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 and 1500 kGy were applied. The values of σMHV obtained are in a good agreement with the literature. The dependence of σMHV on the dose applied strictly corresponds to the radiation effects theory. MHV was measured at seven different loads – 0.0123, 0.0245, 0.049, 0.098, 0.196, 0.392, 0.785 N at a loading time of 30 s.

  4. Study of microcracks morphology produced by Vickers indentation on AISI 1045 borided steels

    International Nuclear Information System (INIS)

    Campos, I.; Ramirez, G.; VillaVelazquez, C.; Figueroa, U.; Rodriguez, G.

    2008-01-01

    In this work, we analyzed the roughness morphology of indentation microcracks produced by the Vickers microindentation in the iron boride Fe 2 B. Using the paste boriding process, the boride layers were formed at the surface of AISI 1045 steels. The diffusion processes were carried out with 5 mm of boron paste thickness over the substrate surface at three different temperatures (1193, 1223 and 1273 K) with two different time exposures. The indentations in each Fe 2 B layer were made using a constant load of 200 g at four different distances from the surface. The fracture behavior of the Fe 2 B borided phase is found to be brittle in nature. The profiles of microcracks formed at the corners of the indentations were obtained using the scanning electronic microscopy and were analyzed within the framework of fractal geometry. We found that all indentation microcracks display a self-affine invariance characterized by the same roughness (Hurst) exponent H = 0.8 ± 0.1. The effect of the self-affine roughness of indentation microcracks on the measured fracture toughness is discussed within the framework of the mechanics of self-affine cracks. It is pointed out that the arrest of indentation microcracks is controlled by the fractal fracture toughness, which for the Fe 2 B borided phase is found to be K fc = 0.42 ± 0.02 MPa m 0.75 at all distances from the surface

  5. An electro-thermally activated rotary micro-positioner for slider-level dual-stage positioning in hard disk drives

    International Nuclear Information System (INIS)

    Lau, Gih Keong; Chong, Nyok Boon; Yang, Jiaping; Tan, Cheng Peng

    2016-01-01

    Slider-level micro-positioners are useful to assist a voice coil motor to perform fine head positioning over a Tb/in 2 magnetic disk. Recently, a new kind of slider-level micro-positioner was developed using the thermal unimorph of the Si/SU8 composite. It has the advantages of a very small footprint and high mechanical resonant frequency, but its stroke generation is inadequate, with a 50 nm dynamic stroke at 1 kHz. There is a need for a larger thermally induced stroke. This paper presents a rotary design of an electrothermal micro-positioner to address the stroke requirements without consuming more power or decreasing the mechanical resonant frequency. Experimental studies show the present rotary design can produce a six-fold larger displacement, as compared to the previous lateral design, while possessing a 35 kHz resonant frequency. In addition, simple analytical models were developed to estimate: (i) the rotational stiffness and system’s natural frequency, (ii) thermal unimorph bending and stage rotation, and (iii) the system’s thermal time constant for this rotary electro-thermal micro-positioner. This study found that this rotary electro-thermal micro-positioner can meet the basic stroke requirement and high mechanical resonant frequency for a moving slider, but its thermal cut-off frequency needs to be increased further. (paper)

  6. Scratch Hardness and Wear Performance of Laser-Melted Steels : Effects of Anisotropy

    NARCIS (Netherlands)

    Beurs, H. de; Minholts, G.; Hosson, J.Th.M. De

    Effects of the orientation of dendrites on the scratch hardness and wear performance of laser-melted steels have been investigated. Scratch experiments have been carried out with a Vickers indenter and wear experiments with a pin-on-disk tester. The deformed structure is investigated, using

  7. Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys

    CSIR Research Space (South Africa)

    Milman, YV

    1999-01-01

    Full Text Available temperatures: ?196, ?80, 20, 200, 300, 400, 500, 600, 700, 800 and 900?C. In the range 20?900?C the hardness is measured using a 60 N load in a BIM-1 installation [2] in a vacuum of about 10?3 Pa. In this installation the load on the Vickers indenter...

  8. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network.

    Science.gov (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico

    2016-11-10

    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  9. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Luigi Alberto Ciro De Filippis

    2016-11-01

    Full Text Available A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable and the mechanical properties (output responses of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls. The simulation model was based on the adoption of the Artificial Neural Networks (ANNs characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  10. Hard x-ray micro-tomography of a human head post-mortem as a gold standard to compare X-ray modalities

    DEFF Research Database (Denmark)

    Dalstra, Michel; Schulz, Georg; Dagassan-Berndt, Dorothea

    2016-01-01

    in a larger study comparing the image quality of various cone beam CT systems currently used in dentistry. The image quality of the micro-CT scans was indeed better than the ones of the clinical imaging modalities, both with regard to noise and streak artifacts due to metal dental implants. Bony features...

  11. Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mehrdad Mahdavi Jafari

    2017-06-01

    Full Text Available Among artificial intelligence approaches, artificial neural networks (ANNs and genetic algorithm (GA are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN and genetic algorithm (GA were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall carbon nanotubes (MWCNTs through modeling of nanocomposite characteristics. After examination the different ANN architectures an optimal structure of the model, i.e. 6-18-1, is obtained with 1.52% mean absolute error and R2 = 0.987. The proposed structure was used as fitting function for genetic algorithm. The results of GA simulation predicted that the combination sintering temperature 346 °C, sintering time 0.33 h, compact pressure 284.82 MPa, milling time 19.66 h and vial speed 310.5 rpm give the optimum hardness, (i.e., 87.5 micro Vickers in the composite with 0.53 wt% CNT. Also, sensitivity analysis shows that the sintering time, milling time, compact pressure, vial speed and amount of MWCNT are the significant parameter and sintering time is the most important parameter. Comparison of the predicted values with the experimental data revealed that the GA–ANN model is a powerful method to find the optimal conditions for preparing of Al6061-MWCNT.

  12. Evaluation of mechanical hardness and fracture toughness of Co and Al co-doped ZnO

    International Nuclear Information System (INIS)

    Siddheswaran, R.; Mangalaraja, R.V.; Avila, Ricardo E.; Manikandan, D.; Esther Jeyanthi, C.; Ananthakumar, S.

    2012-01-01

    Combustion synthesized nanocrystalline Co and Al co-doped ZnO powders [(Zn 1−x−y Co x Al y O; x=0.04, 0.03, 0.02; y=0.01, 0.02, 0.03)] were fabricated into cylindrical discs by uni-axial pressing and sintered intentionally at 1000 °C for 2 h to assess the mechanical performance. The crystallinity of the pure and doped ZnO was confirmed by X-ray diffraction analysis. The microstructures of the sintered samples were investigated by scanning electron microscopy (SEM) to examine the density, porosity, grain size and its distribution. Grains of 0.5–3 μm were observed for the samples sintered at 1000 °C. The mechanical properties such as micro-hardness, fracture toughness and strain hardening co-efficient were investigated by the Vickers indentation method. It was found that the crack mode observed during the indentation on the samples belongs to median cracks under a load of 19.6 N. Also, the hardness was enhanced with increasing mol% of Co, while the trend was reversed with the increase of Al content. In addition, the strain hardening coefficient and fracture toughness were calculated using the indentation data.

  13. Effect of Interlayer Coating Thickness on the Hardness and Adhesion for the Tungsten Carbide Cutting Tool

    Directory of Open Access Journals (Sweden)

    Kamil Jawad Kadhim

    2017-12-01

    Full Text Available The thin film of the (Al,TiN coating is studied with the aid of two parameters: hardness and adhesion.  These parameters are very close to each other; however, in deposition field they could be interpreted differently.  Several coatings of (Al,TiN layers are developed on tungsten carbide insert using the standard commercial Al0.67Ti0.33 cathodes in cathodic arc plating system(PVD. The influence of coating layer thickness on the mechanical properties of the coatings was investigated via two parameters: hardness and adhesion are characterized by the Rockwell tester Vickers tester.  The measurements reveal that the highest hardness appears for the (Al,TiN thickness of 5.815 µm while the highest adhesion appears at a thickness of 3.089 µm.  At the opposite extreme, the lowest hardness appears at 2.717 µm and the lowest hardness at 5.815 µm. Overall, the (Al/Ti N coating of the thickness of 5.815 µm is controversial as it exhibits the highest hardness and the lowest adhesion. This result could be related to the effect of the formation of the micro-particle (MPs which has a direct effect on the hardness because these MPs appear mainly on the surface and their presence at the interface is very limited.  In addition, the creation of Ti buffering layer to reduce the delamination has its major effect on the adhesion but has no effect on the morphology of the surface.  For these two reasons and the effect of the bias voltage, the results presented in this paper might show slight differences with other published papers.  The composition of the (Al,TiN layer is characterized and, seemingly, it shows one important result which is showing that the ultimate composition of the (Al,TiN layer (Ti0.62Al0.38 is very close to the original target used in this study (Al0.67Ti0.33.

  14. Investigation on the Effect of Sub-Zero Treatment on Micro-Hardness and Microstructure of GTAW Welded Al-Si-Mg-Mn Alloy

    Science.gov (United States)

    Devanathan, R.; Yuvarajan, D.; Christopher Selvam, D.; Venkatamuni, T.

    2018-02-01

    In this work, the effect of sub-zero treatment on the mechanical properties of an Al-Si-Mg-Mn alloy welded by GTAW (gas tungsten arc welding) leads to significant softening in the welded region. The latter is due to melting and resolidification in the welded region, which have resulted in decomposition of the strengthening precipitates. The experiments were performed on GTAW welded plates of 6 mm thickness by varying the heat inputs, namely, of 370, 317.1, 277.5, 246.4, and 222 J/mm, and sub-zero treatment time periods. The Sub-Zero treatment was performed at-45°C using dry ice; hardness and microstructure investigations were performed in the welded region of the Al‒Si-Mg-Mn alloy that was studied in two different conditions, namely, as-welded and in that formed after post weld sub-zero treatment with artificial aging. It was found that the post weld Sub-Zero treatment followed by artificial aging had led to realization of significantly higher hardness values in the welded region due to the recurrence of the precipitation sequence.

  15. The influence of material hardness on liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Takano, Shotaro; Saito, Kengo; Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio

    2015-01-01

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5

  16. The influence of material hardness on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Takano, Shotaro; Saito, Kengo [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio [Central Research Institute of Electric Power Industry, 2-11-1, Iwatokita, Komae, Tokyo 201-8511 (Japan)

    2015-07-15

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5.

  17. The Influence of Calcium Carbonate Composition and Activated Carbon in Pack Carburizing Low Carbon Steel Process in The Review of Hardness and Micro Structure

    Science.gov (United States)

    Hafni; Hadi, Syafrul; Edison

    2017-12-01

    Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC

  18. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  19. Hot hardness studies on zircaloy 2 pressure tube along three orientations

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ravi, K.; Jarvis, T.; Sengupta, A.K.; Majumdar, S.; Tewari, R.; Shrivastava, D.; Dey, G.K.

    2002-01-01

    Zirconium based alloys are the natural choice for both the fuel element cans and in-core structural components in water cooled nuclear reactors. In this paper, the hot hardness behaviour of zircaloy 2 pressure tubes has been examined from room temperature to 400 degC using a hot hardness tester. For the purpose of comparison, the hardness of the as cast and room temperature rolled specimens has also been carried out. For this, the samples were cut along three orientations and hardness was measured in each of these directions using Vickers diamond pyramid indenter. The variation in hardness of the pressure tube samples show that the hardness was highest along circumferential direction and least along the axial direction. The room temperature rolled samples showed highest hardness along the rolling planes. These variations in hardness could be explained in terms of development of texture during working on the material. (author)

  20. Degree of conversion and surface hardness of resin cement cured with different curing units.

    Science.gov (United States)

    Ozturk, Nilgun; Usumez, Aslihan; Usumez, Serdar; Ozturk, Bora

    2005-01-01

    The aim of this study was to evaluate the degree of conversion and Vickers surface hardness of resin cement under a simulated ceramic restoration with 3 different curing units: a conventional halogen unit, a high-intensity halogen unit, and a light-emitting diode system. A conventional halogen curing unit (Hilux 550) (40 s), a high-intensity halogen curing unit used in conventional and ramp mode (Optilux 501) (10 s and 20 s, respectively), and a light-emitting diode system (Elipar FreeLight) (20 s, 40 s) were used in this study. The dual-curing resin cement (Variolink II) was cured under a simulated ceramic restoration (diameter 5 mm, height 2 mm), and the degree of conversion and Vickers surface hardness were measured. For degree of conversion measurement, 10 specimens were prepared for each group. The absorbance peaks were recorded using the diffuse-reflection mode of Fourier transformation infrared spectroscopy. For Vickers surface hardness measurement, 10 specimens were prepared for each group. A load of 200 N was applied for 15 seconds, and 3 evaluations of each of the samples were performed. Degree of conversion achieved with Optilux 501 (20 s) was significantly higher than those of Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). For Vickers surface hardness measurement, Optilux 501 (20 s) produced the highest surface hardness value. No significant differences were found among the Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). The high-intensity halogen curing unit used in ramp mode (20 s) produced harder resin cement surfaces than did the conventional halogen curing unit, high-intensity halogen curing unit used in conventional mode (10 s) and light-emitting diode system (20 s, 40 s), when cured through a simulated ceramic restoration.

  1. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  2. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  3. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tucho, Wakshum M., E-mail: wakshum.m.tucho@uis.no [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Cuvillier, Priscille [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Sjolyst-Kverneland, Atle [Roxar/Emerson Process Management, POB 112, 4065 Stavanger (Norway); Hansen, Vidar [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway)

    2017-03-24

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  4. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    International Nuclear Information System (INIS)

    Tucho, Wakshum M.; Cuvillier, Priscille; Sjolyst-Kverneland, Atle; Hansen, Vidar

    2017-01-01

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  5. In vitro Comparison of the Effct Cola Beverage on Surface Hardness of Siloran-Based (p90 and Methyl Methacrylate-Based (p60 Composites

    Directory of Open Access Journals (Sweden)

    Z.Khamverdi

    2016-11-01

    Full Text Available Introduction: Th characteristics of a suitable restoration material is having acceptable mechanical properties, protecting teeth against decay and ease of use in clinics. Diet can affct properties of restorative materials in the mouth. Since amongst important properties of composite restorations are mechanical properties such as hardness, the aim of this study was evaluation of the effct of Coca-Cola Beverages on surface hardness of a silorane based p90( and methyl methacrylate p60( composites. Methods: In this experimental study, thirty disc-shaped specimens 5 × 2 mm( of each of methyl methacrylate based Filtek p60, 3M Dental Products, USA( and a silorane based Filtek p90, 3M Dental Products, USA( composite resins were prepared, according to manufacturers' instructions. Specimens were randomly divided to four groups as follows N = 15(: G1: Filtek p90 without exposure to Coca-Cola, G2: Filtek p90 with exposure to Coca-Cola, G3: Filtek p60 without expure to Coca-Cola, G4: Filtek p60 with expure to Coca-Cola. Th specimens were exposed to regular sof drinks Coca-Cola, Khoshgovar, Tehran, Iran( at room temperature for seven days with a frequency of three times daily for 20 minutes at a time. In the remaining times of the day, they were kept in distilled water. Thn, micro hardness measurements were made for each specimen with a Vickers hardness testing machine Buehler, Lake Bluff IL, USA( under 500 g of force for 15 seconds. Data were analyzed using SPSS 18 and independent t-test at a signifiance level of 0.05. Results: Micro hardness values of four groups were G1: 68.28 ± 2.65; G2:59.56 ± 6.61; G3: 93.5 ± 2.38; and G4:86.76 ± 5.47, respectively. Th results of this study showed that Coca-Cola reduces the surface hardness of the two composite materials P > 0.05(. Conclusions: Th results showed the hardness of both Filtek p90 and Filtek p60 composite signifiantly decreases with Coca-Cola but the reduction was equal.

  6. DETERMINATION OF VICKERS MICROHARDNESS IN β-Ga2O3 SINGLE CRYSTALS GROWN FROM THEIR OWN MELT

    Directory of Open Access Journals (Sweden)

    L. I. Guzilova

    2015-05-01

    Full Text Available The results of microhardness measurements of β-Ga2O3 single crystals for (001 crystallographic face are reported. The crystals were grown by the free crystallization with the "Garnet-2M" equipment. Microhardness values ​​ were determined by the Vickers method at varying loads. A four-sided diamond pyramid was used as an indenter. The average value of gallium oxide microhardness was equal to 8.91 GPa. We have carried out comparison of the values ​​obtained with the microhardness for the other wide bandgap semiconductors - epitaxial GaN layers grown on 6H-SiC and GaP layers grown on GaP:S. The findings are usable for machining process development of β-Ga2O3 single crystal substrates. In particular, silicon carbide and electrocorundum may be recommended for β-Ga2O3 machine processing.

  7. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  8. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  9. Theoretical Conversions of Different Hardness and Tensile Strength for Ductile Materials Based on Stress-Strain Curves

    Science.gov (United States)

    Chen, Hui; Cai, Li-Xun

    2018-04-01

    Based on the power-law stress-strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength ( σ b ) and Hollomon parameters ( K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength ( σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -( K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.

  10. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean

    2001-04-01

    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  11. Hardness properties and microscopic investigation of crack- crystal interaction in SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramic system.

    Science.gov (United States)

    Roy, Shibayan; Basu, Bikramjit

    2010-01-01

    In view of the potential engineering applications requiring machinability and wear resistance, the present work focuses to evaluate hardness property and to understand the damage behavior of some selected glass-ceramics having different crystal morphologies with SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F composition, using static micro-indentation tests as well as dynamic scratch tests, respectively. Vickers hardness of up to 5.5 GPa has been measured in glass-ceramics containing plate like mica crystals. Scratch tests at a high load of 50 Nin artificial saliva were carried out in order to simulate the crack-microstructure interaction during real-time abrasion wear and machining operation. The experimental observations indicate that the novel "spherulitic-dendritic shaped "crystals, similar to the plate like crystals, have the potential to hinder the scratching induced crack propagation. In particular, such potential of the 'spherulitic-dendritic' crystals become more effective due to the larger interfacial area with the glass matrix as well as the dendritic structure of each mica plate, which helps in crack deflection and crack blunting, to a larger extent.While modest damage tolerant behavior is observed in case of 'spherulitic-dendritic' crystal containing material, severe brittle fracture of plate like crystals were noted, when both were scratched at 50 N load.

  12. Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique

    Energy Technology Data Exchange (ETDEWEB)

    Messaoud Aberkane, S., E-mail: smessaoud@cdta.dz [Centre de Développement des Technologies Avancées, Baba Hassen, Alger (Algeria); Bendib, A. [Université des Sciences et de Technologie Houari Boumediene, Bab-Ezzouar, Alger (Algeria); Yahiaoui, K.; Boudjemai, S.; Abdelli-Messaci, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, Baba Hassen, Alger (Algeria); Amara, S.E. [Université des Sciences et de Technologie Houari Boumediene, Bab-Ezzouar, Alger (Algeria); Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)

    2014-05-01

    Highlights: • New application of LIBS in industry. • Hardness of metallic alloys estimation using LIBS calibration curves. • Linear correlation between the plasma temperature and the hardness of metallic alloys. • The shock wave is fast when the material is hard. - Abstract: Surface hardness is a very important characteristic of metals. Its monitoring plays a key role in industry. In the present paper, using laser induced breakdown spectroscopy (LIBS), Fe–V{sub 18%}–C{sub 1%} alloys with different heat treatments have been used for making the correlation between surface hardness and laser-induced plasma temperatures. All investigated samples were characterized by the same ferrite phase with different Vickers surface hardnesses. The differences in hardness values were attributed to the crystallite size changes. A linear relationship has been obtained between the Vickers surface hardness and the laser induced plasma temperature. For comparison the relation between surface hardness and the ratio of the vanadium ionic to atomic spectral lines intensities (VII/VI) provided good linear results too. However, adopting the proposed approach of using the plasma temperature, instead, is more reliable in view of the difficulties that could be encountered in choosing the proper ionic and atomic spectral lines. To validate this approach we have investigated the shock wave speed induced by laser interaction with the used samples. It was found that harder is the material faster is the shock wave. The determination of the surface hardness via measuring T{sub e} shows the feasibility of using LIBS as an easy and reliable method for in situ industrial application for production control.

  13. Evaluation of crystalline changes and resistance to demineralization of the surface of human dental enamel treated with Er:YAG laser and fluoride using x-ray diffraction analysis and Vickers microhardness

    Science.gov (United States)

    Behroozibakhsh, Marjan; Shahabi, Sima; Ghavami-Lahiji, Mehrsima; Sadeghian, Safura; Sadat Faal Nazari, Neda

    2018-06-01

    This study aimed to investigate the changes in crystalline structure and resistance to demineralization of human dental surface enamel treated with erbium-doped yttrium aluminium garnet laser (Er:YAG) laser and fluoride. The enamel surfaces were divided into four groups according to the treatment process including, (L): irradiated with Er:YAG; (F): treated with acidulated phosphate fluoride gel (LF): Pre-irradiated surfaces with Er:YAG subjected to acidulated phosphate fluoride gel and (FL): laser irradiation was performed on the fluoridated enamel surface. Before and after the treatment procedure, the samples were evaluated using X-ray diffraction, scanning electron microscope (SEM) and the Vickers microhardness test. The surface microhardness values also were measured after a pH-cycling regime and acid challenge. The a-axis of all lased groups was contracted after treatment procedure. Measurement of the area under the peaks showed the highest crysallinity in the FL group. The hardness values of all laser treated samples significantly reduced after treatment procedure compared to the F group (p  ⩽  0.001). The morphological observations showed remarkable changes on the lased enamel surfaces including cracks, craters and exposed prisms. These findings suggest, irradiation of the Er:YAG laser accompanying with fluoride application can induce some beneficial crystalline changes regarding the acid-resistance properties of enamel, however, the craters and cracks produced by laser irradiation can promote enamel demineralization and consequently the positive effects of the Er:YAG laser will be eliminated.

  14. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  15. Comparison of time-dependent changes in the surface hardness of different composite resins

    Science.gov (United States)

    Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek

    2013-01-01

    Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724

  16. The rf-power dependences of the deposition rate, the hardness and the corrosion-resistance of the chromium nitride film deposited by using a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Lim, Jongmin; Lee, Chongmu

    2006-01-01

    The hexavalent chromium used in chromium plating is so toxic that it is very hazardous to human body and possibly causes cancer in humans. Therefore, it is indispensable to develop an alternative deposition technique. Dependences of the deposition rate, the phases, the hardness, the surface roughness and the corrosion-resistance of CrN x deposited on the high speed steel substrate by using a dual ion beam sputtering system on the rf-power were investigated to see the feasibility of sputtering as an alternative technique for chromium plating. The dual ion beam sputtering system used in this study was designed in such a way as the primary argon ion beam and the secondary nitrogen ion beam are injected toward the target and the substrate, respectively so that the chromium atoms at the chromium target surface may not nearly react with nitrogen atoms. The hardness and the surface roughness were measured by a micro-Vicker's hardness tester and an atomic force microscope (AFM), respectively. X-ray diffraction analyses were performed to identify phases in the films. The deposition rate of CrN x depends more strongly upon the rf-power for argon ion beam than that for nitrogen ion beam. The hardness of the CrN x film is highest when the volume percent of the Cr 2 N phase in the film is highest. Amorphous films are obtained when the rf-power for nitrogen ion beam is much higher than that for argon ion beam. The CrN x film deposited by using the sputtering technique under the optimal condition provides corrosion-resistance comparable to that of the electroplated chromium

  17. Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe{sub 78}Si{sub 9}B{sub 13} Alloy Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: acpr@nuclear.inin.mx [Instituto Nacional de Investigaciones Nucleares, Department of Chemistry (Mexico); Garcia-Santibanez, F.; Lopez, A.; Lopez-Castanares, R.; Olea Cardoso, O. [Universidad Autonoma del Estado de Mexico, El Cerrillo Piedras Blancas, Facultad de Ciencias (Mexico)

    2005-02-15

    Amorphous Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T{sub x} = 722 K, the other one partially crystallized at T{sub x} = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Moessbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.

  18. Evaluation and Comparison of the Effects of RRA, T73 and T6 Heat Treatments on Hardness, Tensile and Bending Strengths of 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Assadi

    2016-09-01

    20 min and in the third stage aging process was repeated like T6 treatment. Evaluation of the microstructures and fractured surfaces were performed with optical microscopes (OM and scanning electron microscopes (SEM. Energy dispersive spectroscopy (EDS was used to study the chemical composition of precipitates. Hardness, tensile and bending strength were evaluated according to ASTM E384-11e1, ASTM B557-06 and DIN 50121 standards. RRA treatment increased tensile strength from 466 to 485 MPa and hardness from 110 to 165 Vickers. After T6 treatment, tensile strength increased from 466 to 505 MPa and hardness from 110 to 160 Vickers. In T73 process, the tensile strength remained almost constant (465 MPa but yield strength increased from 394 to 410 MPa and hardness decreased from 110 to 84 Vickers. The bending strength increased from 797 to 844, 920 and 1030 MPa in T73, RRA and T6 processes, respectively. By applying RRA process in optimized temperature and time, hardness, tensile and bending strengths of 7075 aluminum alloy were enhanced from 5 to 15% compared to that of T6 and T73 processes.

  19. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  20. Estimation of the Ultimate Tensile Strength of Steel from Its HB and HV Hardness Numbers and Coercive Force

    Science.gov (United States)

    Sandomirskii, S. G.

    2017-11-01

    A formula is derived to accurately describe the tabulated relation between the Brinell ( HB) and Vickers ( HV) hardnesses of steel over the entire range of their possible variation. This formula and the formulas describing the relation between the HB hardness of chromium-molybdenum and chromium-nickel steels and their ultimate tensile strength σu are used to analyze the change in σu of 38KhNM steel upon quenching and tempering. The data that reveal a relation between σu of 38KhNM steel and its coercive force are obtained.

  1. Microindentation hardness evaluation of iridium alloy clad vent set cups

    International Nuclear Information System (INIS)

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1993-01-01

    An iridium alloy, DOP-26, is used as cladding for 238 PuO 2 fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors

  2. Microindentation hardness evaluation of iridium alloy clad vent set cups

    International Nuclear Information System (INIS)

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1992-01-01

    An iridium alloy, DOP-26, is used as cladding for 238 PuO 2 fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors

  3. Surface roughness and hardness of yttria stabilized zirconia (Y-TZP after 10 years of simulated brushing

    Directory of Open Access Journals (Sweden)

    Lucas Miguel Candido

    Full Text Available Introduction: The Y-TZP zirconia used for prosthetic infrastructure, in some clinical situations, can be exposed to the oral environment. In these situations, a polished surface without changes is extremely important. Objective: The aim of this study was to evaluate the mean roughness (Ra and Vickers hardness of Y-TZP zirconia (Lava™ after simulating ten years of brushing. Material and method: Thirty-six Y-TZP bar-shaped specimens (20mm X 4mm X 1.2mm were divided into three groups: storage in distilled water (DW, n=12, control; brushing with distilled water (BDW, n=12 and brushing with distilled water and fluoride toothpaste (BFT, n=12. Brushing was performed using a brushing machine with a soft-bristled toothbrush, simulating 10 years of brushing (878.400 cycles, 100gf. The mean roughness (Ra in μm and Vickers hardness (VHN of all specimens were measured twice: before and after the experimental treatment, in profilometer and microhardness tester (500gf, 30 seconds, respectively. Data were analyzed using the two-way ANOVA test (α = 0.05. Result: The interaction between groups was not significant for roughness (p = 0.701 nor for hardness (p = 0.928. The final averages for Ra (μm were equal to: DW - 0.63; BDW - 0.64; and, BFT - 0.68. The final averages for Vickers hardness (VHN were: DW - 1301.16; BDW - 1316.60; and, BFT - 1299.58. Conclusion: It was concluded that the brushing with distilled or fluoridated toothpaste was not able to change the roughness and hardness of Y-TZP zirconia used in this study.

  4. Comparative study of carp otolith hardness: lapillus and asteriscus.

    Science.gov (United States)

    Ren, Dongni; Meyers, Marc André; Zhou, Bo; Feng, Qingling

    2013-05-01

    Otoliths are calcium carbonate biominerals in the inner ear of vertebrates; they play a role in balance, movement, and sound perception. Two types of otoliths in freshwater carp are investigated using nano- and micro-indentation: asteriscus and lapillus. The hardness, modulus, and creep of asteriscus (vaterite crystals) and lapillus (aragonite crystals) are compared. The hardness and modulus of lapillus are higher than those of asteriscus both in nano- and micro-testing, which is attributed to the different crystal polymorphs. Both materials exhibit a certain degree of creep, which indicates some time dependence of the mechanical behavior and is attributed to the organic components. The nano-indentation hardnesses are higher than micro-hardnesses for both otoliths, a direct result of the scale dependence of strength; fewer flaws are encountered by the nano than by the microindenter. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Effect of heat-treatment on the hardness and mechanical properties of Boron Alloyed Steel

    Directory of Open Access Journals (Sweden)

    bin Khiyon Mohammad Raffik

    2017-01-01

    Full Text Available In an automotive industry, hot stamped, die quenched structural components have been widely used to provide extra protection against crash intrusion. Boron alloyed steel exhibit limited ductility, but it also promotes improvement in impact performance. This study analyzed the effect of cooling rate on the hardness and energy absorption. Self-quenched specimens were heated to 850°C and cooled in air of room temperature, water at room temperature and cold water. Vickers hardness test and tensile test was then carried out to analyze the effect of different quenching rate. Self-quenched specimens were compared to the properties of the die-quenched specimens obtained from commercial automobile body. Result shows that boron steel with the highest cooling rate has the highest value of hardness but low in strength.

  6. Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling

    Science.gov (United States)

    Zare, S.; Bruland, A.

    2013-01-01

    Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.

  7. Effect of Crystallisation Degree on Hardness of Basaltic Glass-Ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    The dependence of hardness of basaltic glass-ceramics on their crystallisation degree has been explored by means of differential scanning calorimetry, optical microscopy, X-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses have been obtained...... by varying the temperature of heat treatment. The change of the relative degree of crystallisation with the heat treatment temperature can be described by an empirical model established in this work. The predominant crystalline phase in the glass has been identified as the pyroxene augite. The hardness...... principle calculations. It is found that the hardness of the glass phase decreases slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreases....

  8. Micro Engineering

    DEFF Research Database (Denmark)

    Alting, Leo; Kimura, F.; Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products. The implica......The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products...

  9. Effects of deposited nuclear and electronic energy on the hardness of R7T7-type containment glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuget, S. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France)]. E-mail: sylvain.peuget@cea.fr; Noel, P.-Y. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Loubet, J.-L. [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, Ecole Centrale de Lyon 36, avenue Guy de Collongue, 69134 Ecully Cedex (France); Pavan, S. [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, Ecole Centrale de Lyon 36, avenue Guy de Collongue, 69134 Ecully Cedex (France); Nivet, P. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Chenet, A. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2006-05-15

    The effects of elastic and inelastic interactions induced by cumulative alpha decay on the hardness of R7T7-type nuclear containment glass were investigated on actinide-doped glass specimens and by external irradiation of inactive glass by light and heavy ions. Vickers microindentation and nanoindentation hardness measurements showed that in the deposited energy range investigated (below 3 x 10{sup 22} keV/cm{sup 3}) inelastic effects have no influence on the plastic response of the glass. Conversely, identical hardness variations versus the nuclear energy deposited in the material were observed on curium-doped glass and on glass irradiated by ion bombardment. The observed hardness variation stabilized after the deposited energy reached about 3 x 10{sup 2} keV{sub nucl}/cm{sup 3}. These findings indicate that the change in the plastic response of the glass is a consequence of ballistic effects.

  10. Effect of sintering atmosphere on the hardness of ThO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Baena, Angela; Cardinaels, Thomas [Belgian Nuclear Research Centre (SCK-CEN), Institute for Nuclear Materials Science, Fuel Materials Group, Boeretang 200, B-2400, Mol (Belgium); KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box 2404, B-3001, Heverlee (Belgium); Van Eyken, Jelle; Puzzolante, Jean Louis [Belgian Nuclear Research Centre (SCK-CEN), Institute for Nuclear Materials Science, Fuel Materials Group, Boeretang 200, B-2400, Mol (Belgium); Binnemans, Koen [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box 2404, B-3001, Heverlee (Belgium); Verwerft, Marc, E-mail: marc.verwerft@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Institute for Nuclear Materials Science, Fuel Materials Group, Boeretang 200, B-2400, Mol (Belgium)

    2016-08-15

    The hardness and toughness of ThO{sub 2} sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO{sub 2} is H{sub 0} = 10.5 ± 0.3 GPa for oxidizing conditions and H{sub 0} = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: K{sub IC} = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO{sub 2} sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO{sub 2} sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions. - Highlights: • Reducing sintering conditions increase the hardness of polycrystalline ThO{sub 2}. • Systematic series of hardness versus porosity of ThO{sub 2} were obtained. • Reducing sintering conditions improve grinding of ThO{sub 2}.

  11. Effect of sintering atmosphere on the hardness of ThO_2

    International Nuclear Information System (INIS)

    Baena, Angela; Cardinaels, Thomas; Van Eyken, Jelle; Puzzolante, Jean Louis; Binnemans, Koen; Verwerft, Marc

    2016-01-01

    The hardness and toughness of ThO_2 sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO_2 is H_0 = 10.5 ± 0.3 GPa for oxidizing conditions and H_0 = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: K_I_C = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO_2 sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO_2 sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions. - Highlights: • Reducing sintering conditions increase the hardness of polycrystalline ThO_2. • Systematic series of hardness versus porosity of ThO_2 were obtained. • Reducing sintering conditions improve grinding of ThO_2.

  12. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  13. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.

    Science.gov (United States)

    Lippert, F; Lynch, R J M

    2014-07-01

    The aims of the present laboratory study were twofold: a) to investigate the suitability of Knoop and Vickers surface microhardness (SMH) in comparison to transverse microradiography (TMR) to investigate early enamel caries lesion formation; b) to compare the kinetics of caries lesion initiation and progression between human and bovine enamel. Specimens (90×bovine and 90×human enamel) were divided into six groups (demineralization times of 8/16/24/32/40/48h) of 15 per enamel type and demineralized using a partially saturated lactic acid solution. SMH was measured before and after demineralization and changes in indentation length (ΔIL) calculated. Lesions were characterized using TMR. Data were analyzed (two-way ANOVA) and Pearson correlation coefficients calculated. ΔIL increased with increasing demineralization times but plateaued after 40h, whereas lesion depth (L) and integrated mineral loss (ΔZ) increased almost linearly throughout. No differences between Knoop and Vickers SMH in their ability to measure enamel demineralization were observed as both correlated strongly. Overall, ΔIL correlated strongly with ΔZ and L but only moderately with the degree of surface zone mineralization, whereas ΔZ and L correlated strongly. Bovine demineralized faster than human enamel (all techniques). Lesions in bovine formed faster than in human enamel, although the resulting lesions were almost indistinguishable in their mineral distribution characteristics. Early caries lesion demineralization can be sufficiently studied by SMH, but its limitations on the assessment of the mineral status of more demineralized lesions must be considered. Ideally, complementary techniques to assess changes in both physical and chemical lesion characteristics would be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  15. Micro Vision

    OpenAIRE

    Ohba, Kohtaro; Ohara, Kenichi

    2007-01-01

    In the field of the micro vision, there are few researches compared with macro environment. However, applying to the study result for macro computer vision technique, you can measure and observe the micro environment. Moreover, based on the effects of micro environment, it is possible to discovery the new theories and new techniques.

  16. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  17. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  18. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  19. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jennifer E [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Case, Eldon D., E-mail: casee@egr.msu.edu [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Khabir, Kristen N; Stewart, Ryan C [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Wu, Chun-I; Hogan, Timothy P [Electrical and Computer Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Timm, Edward J [Mechanical Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Girard, Steven N; Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University, Evanston, IL (United States)

    2010-06-15

    Two-phase PbTe-PbS materials, in which PbS is a nanostructured phase, are promising thermoelectric materials for the direct conversion of heat energy into electricity. In this study, a Vickers indentation mean hardness of 1.18 {+-} 0.09 GPa was measured for hot pressed specimens Pb{sub 0.95}Sn{sub 0.05}Te-PbS 8% while the mean hardness of cast specimens was 0.68 {+-} 0.07 GPa. The mean fracture toughness of the not pressed specimens was estimated as 0.35 {+-} 0.04 MPa m{sup 1/2} via Vickers indentation. Resonant Ultrasound Spectroscopy (RUS) measurements on hot pressed specimens gave mean values of Young's modulus, shear modulus and Poisson's ratio of 53.1 GPa, 21.4 GPa and 0.245, respectively while for the cast specimens the Young's and shear moduli were about 10% lower than for the hot pressed, with a mean value of Poisson's ratio of 0.245. The differences between the hardness and elastic moduli values for the cast and hot pressed specimens are discussed.

  20. Computer-assisted acoustic emission analysis in alternating current magnetization and hardness testing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Blochwitz, M.; Kretzschmar, F.; Rattke, R.

    1985-01-01

    Non-destructive determination of material characteristics such as nilductility transition temperature is of high importance in component monitoring during long-term operation. An attempt has been made to obtain characteristics correlating with mechanico-technological material characteristics by both acoustic resonance through magnetization (ARDM) and acoustic emission analysis in Vickers hardness tests. Taking into account the excitation mechanism of acoustic emission generation, which has a quasistationary stochastic character in a.c. magnetization and a transient nature in hardness testing, a microcomputerized device has been constructed for frequency analysis of the body sound level in ARDM evaluation and for measuring the pulse sum and/or pulse rate during indentation of the test specimen in hardness evaluation. Prerequisite for evaluating the measured values is the knowledge of the frequency dependence of the sensors and the instrument system. The results obtained are presented. (author)

  1. Comparing natural and artificial carious lesions in human crowns by means of conventional hard x-ray micro-tomography and two-dimensional x-ray scattering with synchrotron radiation

    Science.gov (United States)

    Botta, Lea Maria; White, Shane N.; Deyhle, Hans; Dziadowiec, Iwona; Schulz, Georg; Thalmann, Peter; Müller, Bert

    2016-10-01

    Dental caries, one of the most prevalent infectious bacterial diseases in the world, is caused by specific types of acid-producing bacteria. Caries is a disease continuum resulting from the earliest loss of ions from apatite crystals through gross cavitation. Enamel dissolution starts when the pH-value drops below 5.5. Neutralizing the pH-value in the oral cavity opposes the process of demineralization, and so caries lesions occur in a dynamic cyclic de-mineralizing/remineralizing environment. Unfortunately, biomimetic regeneration of cavitated enamel is not yet possible, although remineralization of small carious lesions occurs under optimal conditions. Therefore, the development of methods that can regenerate carious lesions, and subsequently recover and retain teeth, is highly desirable. For the present proceedings we analyzed one naturally occurring sub-surface and one artificially produced lesion. For the characterization of artificial and natural lesions micro computed tomography is the method of choice when looking to determine three-dimensional mineral distribution and to quantify the degree of mineralization. In this pilot study we elucidate that the de-mineralized enamel in natural and artificially induced lesions shows comparable X-ray attenuation behavior, thereby implying that the study protocol employed herein seems to be appropriate. Once we know that the lesions are comparable, a series of well-reproducible in vitro experiments on enamel regeneration could be performed. In order to quantify further lesion morphology, the anisotropy of the enamel's nanostructure can be characterized by using spatially resolved, small-angle X-ray scattering. We wanted to demonstrate that the artificially induced defect fittingly resembles the natural carious lesion.

  2. Microhardness of the YbxY1-xInCu4 alloy system: the of electronic structure on hardness

    International Nuclear Information System (INIS)

    Ocko, M; Sarrao, J L; Stubicar, N; Aviani, I; Simek, Z; Stubicar, M

    2003-01-01

    We show that the Vickers microhardness, measured on flux grown single crystals of the Yb x Y 1-x InCu 4 alloy system, although sample dependent, exhibits clear concentration dependence; it increases with decreasing x. Such a dependence is not expected because the cubic lattice parameter increases with decreasing x and one expects then a decrease of hardness with decreasing x. Also, such a concentration dependence is in accordance with neither the Mott-Nabarro theory nor other known experimental results. We ascribe the observed dependence to the change of the electronic structure of the Yb x Y 1-x InCu 4 alloy system with x

  3. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods.

    Science.gov (United States)

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

  4. Characterization of age-hardening behavior of eutectic surface on rheo-cast A356-T5 alloy by using nano/micro-indentation, scratching and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Youn, S.W. [Department of Precision and Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)]. E-mail: youn.sung-won@aist.go.jp; Kang, C.G. [National Research Laboratory of Thixo/Rheo Forming, School of Mechanical Engineering, Pusan National University, JangJun-Dong, Gumjung-Gu, Pusan 609-735 (Korea, Republic of)]. E-mail: cgkang@pusan.ac.kr

    2006-11-10

    This study investigates the nano/microstructure, the aging response (in T5 heat treatment), and the mechanical/tribological properties of the eutectic regions in rheo-cast A356 alloy parts using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. The aging responses of the eutectic regions in the rheo-cast A356 alloys aged at 150 deg. C for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness and indentation test results showed a similar trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found. The friction coefficient for the eutectic region was lower than that for the primary Al region.

  5. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    Science.gov (United States)

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  6. Effect of sintering atmosphere on the hardness of ThO2

    Science.gov (United States)

    Baena, Angela; Cardinaels, Thomas; Van Eyken, Jelle; Puzzolante, Jean Louis; Binnemans, Koen; Verwerft, Marc

    2016-08-01

    The hardness and toughness of ThO2 sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO2 is H0 = 10.5 ± 0.3 GPa for oxidizing conditions and H0 = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: KIC = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO2 sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO2 sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions.

  7. Characterisation of weldment hardness, impact energy and microstructure in API X65 steel

    International Nuclear Information System (INIS)

    Hashemi, S.H.; Mohammadyani, D.

    2012-01-01

    The variation of microstructure and mechanical properties in various sub-zones of double submerged arc welded line pipe steel of grade API X65 was investigated. Instrumented Charpy V-notch tests and Vickers hardness experiments were conducted on the fusion zone, base metal and heat affected zone of the weld joint in 14.3 mm thick, 1219 mm outside diameter spiral pipeline. The lowest impact energy and the highest hardness level (160J and 218 HV, respectively) were recorded in the fusion zone. The low energy and high hardness characteristics of the seam weld can be attributed to its cast microstructure and the presence of grain boundary phases (such as proeutectoid ferrite), confirmed by standard metallographic observation. Despite this, service requirements set by the API 5L industry code (minimum impact energy of 73J, maximum hard spots of 350 HV) were fulfilled by the tested steel. Highlights: ► Experimental study of API X65 steel microstructure. ► Analysis of the relationship between X65 steel microstructure and hardness. ► Analysis of the relationship between X65 steel microstructure and impact energy. ► Presentation of detailed technical information on DSA welding in spiral pipes.

  8. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.

    1995-09-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  9. Hard exclusive QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, W.

    2007-01-15

    Hard exclusive processes in high energy electron proton scattering offer the opportunity to get access to a new generation of parton distributions, the so-called generalized parton distributions (GPDs). This functions provide more detailed informations about the structure of the nucleon than the usual PDFs obtained from DIS. In this work we present a detailed analysis of exclusive processes, especially of hard exclusive meson production. We investigated the influence of exclusive produced mesons on the semi-inclusive production of mesons at fixed target experiments like HERMES. Further we give a detailed analysis of higher order corrections (NLO) for the exclusive production of mesons in a very broad range of kinematics. (orig.)

  10. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  11. Hard times; Schwere Zeiten

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Markus

    2012-10-02

    The prices of silicon and solar wafers keep dropping. According to market research specialist IMS research, this is the result of weak traditional solar markets and global overcapacities. While many manufacturers are facing hard times, big producers of silicon are continuing to expand.

  12. Hardness of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Hardness of Clustering. Both k-means and k-medians intractable (when n and d are both inputs even for k =2). The best known deterministic algorithms. are based on Voronoi partitioning that. takes about time. Need for approximation – “close” to optimal.

  13. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  14. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  15. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  16. Influência do método de polimerização na microdureza de compósitos microhíbridos armazenados em água destilada = Influence of curing method on the micro hardness of microhybrid composites immersed in distilled water

    Directory of Open Access Journals (Sweden)

    Herbstrith Segundo, Regênio Mahfuz

    2007-01-01

    Full Text Available O objetivo do presente estudo é comparar e avaliar a microdureza Vickers de um compósito restaurador microhíbrido ativado por dois tipos de unidades polimerizadoras e armazenados em água destilada. Trinta espécimes foram feitos com resina Charisma B1, para cada um dos regimes de polimerização: fotopolimerização por luz halógena, fotopolimerização por LED e fotopolimerização mais ciclo adicional em autoclave. Foram feitas duas leituras de microdureza Vickers por corpo de prova em 1 dia, 7 dias e 14 dias de imersões. O ciclo adicional de polimerização mostrou uma tendência de aumentar os valores de microdureza dos compósitos restauradores, não mostrando diferenças estatisticamente significantes entre LED e Luz Halógena (p > 0,05

  17. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...

  18. Microstructure evolution and hardness change in ordered Ni3V intermetallic alloy by energetic ion irradiation

    International Nuclear Information System (INIS)

    Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Yoshizaki, H.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2014-01-01

    Ni 3 V bulk intermetallic compounds with ordered D0 22 structure were irradiated with 16 MeV Au ions at room temperature. The irradiation induced phase transformation was examined by means of the transmission electron microscope (TEM), the extended X-ray absorption fine structure measurement (EXAFS) and the X-ray diffraction (XRD). We also measured the Vickers hardness for unirradiated and irradiated specimens. The TEM observation shows that by the Au irradiation, the lamellar microstructures and the super lattice spot in diffraction pattern for the unirradiated specimen disappeared. This TEM result as well as the result of XRD and EXAFS measurements means that the intrinsic D0 22 structure of Ni 3 V changes into the A1 (fcc) structure which is the lattice structure just below the melting point in the thermal equilibrium phase diagram. The lattice structure change from D0 22 to A1 (fcc) accompanies a remarkable decrease in Vickers microhardness. The change in crystal structure was discussed in terms of the thermal spike and the sequential atomic displacements induced by the energetic heavy ion irradiation

  19. Hard Copy Market Overview

    Science.gov (United States)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  20. Hard Electromagnetic Processes

    International Nuclear Information System (INIS)

    Richard, F.

    1987-09-01

    Among hard electromagnetic processes, I will use the most recent data and focus on quantitative test of QCD. More specifically, I will retain two items: - hadroproduction of direct photons, - Drell-Yan. In addition, I will briefly discuss a recent analysis of ISR data obtained with AFS (Axial Field Spectrometer) which sheds a new light on the e/π puzzle at low P T

  1. Hardness distribution and effect of irradiation in FSW-ODS ferritic steels

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Kasada, Ryuta; Kimura, Akihiko; Nagasaka, Takuya; Sokolov, M.A.; Yamamoto, T.

    2014-01-01

    Oxide dispersion strengthened ferritic steels (ODS-FS) have been considered as one of the most promising structural materials for advanced nuclear systems such as fusion reactors and next generation fission reactors, because of its excellent elevated temperature strength, corrosion and radiation resistance. Especially, irradiation resistance is a critical issue for the high performance of ODS-FS. In this study, effects of the irradiation on hardness properties of friction stri processed (FSP) ODS-FS were investigated. FSP technique was employed on ODS-FS. A plate specimen was cut out from the cross section and irradiated to 1.2 dpa at 573K in the High Flux Isotope Reactor (HFIR). To investigate the effect of neutron irradiation on processed area, the hardness distributions were evaluated on the cross section. Hardness of FSP ODS-FS was various with each microstructure after irradiation to 1.2 dpa at 573K. The increase of Vickers hardness was significant in the stirred zone and heat affected zone. Base material exhibited the lowest hardening about 38HV. Since nano-oxide particles in stirred zone showed identical mean diameter and number density, it is considered that hardening differences between stirred zone and base material is due to differences in initial dislocation density. (author)

  2. Determination of the penetration hardness and analysis of stainless steel alloys by means of Laser Induced Breakdown Spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    mohamad Vahid Dastjerdi

    2017-11-01

    Full Text Available A significant feature of alloys is the surfaces hardness that is always accompanied by challenges when it’s measured by common mechanical techniques. In this investigation, we used Laser Induced Breakdown Spectroscopy (LIBS as a replacement method for common mechanical techniques to measure the surfaces hardness of different alloys. After recording the spectrum of alloy samples in order to identify the surface hardness of analyzed sample, K-Nearest Neighbors method (KNN was used and obtained results showed that the LIBS-KNN method can separate and identify the surfaces hardness of samples with precision of 93.3%. In addition, in order to identify the percentage of constituent elements of alloys and their hardness, calibration approach was investigated that showed there is an appropriate linear relation between recorded emission lines from the LIB spectra of sample alloys and the percentage of their constituent elements and also their Vickers hardness numbers. Therefore, According to exclusive advantages of LIBS technique i.e. high speed analysis, non-destructive analysis and being portable, some of available difficulties in conventional mechanical techniques can be removed.

  3. Enhancing the Hardness of Sintered SS 17-4PH Using Nitriding Process for Bracket Orthodontic Application

    Science.gov (United States)

    Suharno, B.; Supriadi, S.; Ayuningtyas, S. T.; Widjaya, T.; Baek, E. R.

    2018-01-01

    Brackets orthodontic create teeth movement by applying force from wire to bracket then transferred to teeth. However, emergence of friction between brackets and wires reduces load for teeth movement towards desired area. In order to overcome these problem, surface treatment like nitriding chosen as a process which could escalate efficiency of transferred force by improving material hardness since hard materials have low friction levels. This work investigated nitriding treatment to form nitride layer which affecting hardness of sintered SS 17-4PH. The nitride layers produced after nitriding process at various temperature i.e. 470°C, 500°C, 530°C with 8hr holding time under 50% NH3 atmosphere. Optical metallography was conducted to compare microstructure of base and surface metal while the increasing of surface hardness then observed using vickers microhardness tester. Hardened surface layer was obtained after gaseous nitriding process because of nitride layer that contains Fe4N, CrN and Fe-αN formed. Hardness layers can achieved value 1051 HV associated with varies thickness from 53 to 119 μm. The presence of a precipitation process occurring in conjunction with nitriding process can lead to a decrease in hardness due to nitrogen content diminishing in solid solution phase. This problem causes weakening of nitrogen expansion in martensite lattice.

  4. First-principle calculations on the structural and electronic properties of hard C11N4

    International Nuclear Information System (INIS)

    Li, Dongxu; Shi, Jiancheng; Lai, Mengling; Li, Rongkai; Yu, Dongli

    2014-01-01

    A graphite-like C 11 N 4 model was built by stacking graphene and a C 3 N 4 triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C 11 N 4 is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C 11 N 4 was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C 11 N 4 is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy

  5. Accelerated aging effects on surface hardness and roughness of lingual retainer adhesives.

    Science.gov (United States)

    Ramoglu, Sabri Ilhan; Usumez, Serdar; Buyukyilmaz, Tamer

    2008-01-01

    To test the null hypothesis that accelerated aging has no effect on the surface microhardness and roughness of two light-cured lingual retainer adhesives. Ten samples of light-cured materials, Transbond Lingual Retainer (3M Unitek) and Light Cure Retainer (Reliance) were cured with a halogen light for 40 seconds. Vickers hardness and surface roughness were measured before and after accelerated aging of 300 hours in a weathering tester. Differences between mean values were analyzed for statistical significance using a t-test. The level of statistical significance was set at P statistically significant (P statistically significant (P .05). Accelerated aging significantly increased the surface microhardness of both light-cured retainer adhesives tested. It also significantly increased the surface roughness of the Transbond Lingual Retainer.

  6. Mechanical properties of materials used for temporary fixed dentures – in vitro study

    Directory of Open Access Journals (Sweden)

    Celej-Piszcz Elzbieta

    2017-06-01

    Full Text Available Objectives. The objective of the research was to define the mechanical properties of currently marketed temporary filling materials. Methods. Eight temporary filling materials: Boston, Dentalon, Protemp II, Revotek LC, Structure 2, Structure 3, UniFast LC, UniFast Trad were used to make 5 samples each of measurements 2 × 2 × 25 mm, in order to define the flexural strength, and 10 rings each of measurements 2 × 5 mm, in order to carry out the Vickers micro-hardness test. After preparation, the samples were stored in distilled water of temperature of 370°C, for 7 days. Subsequently, flexural strength and Vickers hardness testing was undertaken. Results. Composite temporary materials showed considerably better mechanical properties, both in flexural strength and in Vickers micro-hardness testing. Conclusions. the best mechanical properties, both in terms of flexural strength, as well as Vickers micro-hardness test can be observe among composite materials.

  7. Revisiting the definition of local hardness and hardness kernel.

    Science.gov (United States)

    Polanco-Ramírez, Carlos A; Franco-Pérez, Marco; Carmona-Espíndola, Javier; Gázquez, José L; Ayers, Paul W

    2017-05-17

    An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.

  8. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  9. Leveraging Innovation Capabilities of Asian Micro, Small and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Leveraging Innovation Capabilities of Asian Micro, Small and Medium Enterprises through Intermediary Organizations. Micro, small and medium enterprises (MSMEs) are a source of livelihood for billions of poor people worldwide. The current global economic downturn has hit these enterprises particularly hard, putting ...

  10. Thermal-aging evaluation of on site aged cast duplex stainless steel

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Fujii, Katsuhiko; Aoki, Masanori; Arioka, Koji

    2013-01-01

    In this study, thermal-aging evaluation has been performed using service aged elbow pipe in PWR plant, aged at 320degC for 196,500h. As a result, micro Vickers hardness of ferrite in service material (SCS14A), HV(0.025) was 616∼630. Since micro Vickers hardness of un-aged ferrite phase is about HV(0.025)=300 in commercial SCS14A, the increasing of ferrite hardness during aging was 300. Cr-rich and Fe-rich regions were observed in the ferrite phase using Atom-probe analysis. In addition, Ni, Si and Mo clustering were also observed in the ferrite phase. So the ferrite phase was hardened caused by these micro-structural changes. Micro Vickers hardness of austenite phase, HV(0.025) was 155∼180. Since micro Vickers hardness of un-aged austenite phase is about HV(0.025)=180∼200, and no micro-structural change was observed in the austenite phase, so on change was observed in the austenite phase during aging. To compare the micro Vickers hardness of ferrite in service and accelerated materials using activation energy, Q=100 kJ/mol, the ferrite hardness of in service material was very low rather than predictive line. This seems the activation energy was too conservative. (author)

  11. Local microstructures, Hardness and mechanical properties of a stainless steel pipe-welded joint

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Gao Qing; Cai Lixun

    2000-01-01

    An experimental investigation is carefully performed into the local microstructures, hardness values and monotonic mechanical properties of the three zones (the base metal, heat affecting zone and weld metal) of 1Cr18Ni9Ti stainless steel pipe-welded joint. The local microstructures are observed by a metallurgical test and a surface replica technology, the local hardness values are measures by a random Vickers hardness test, and the local mechanical properties are characterized by the Ramberg-Osgood and modified Ramberg-Osgood stress-stain relations. The investigation reveals that there are significant differences of the three zones in the local microstructures, hardness values and monotonic mechanical properties, especially of the three zones in the local microstructure, hardness values and monotonic mechanical properties, especially of the weld metal. The weld metal exhibits the largest heterogeneity of local microstructures and monotonic mechanical properties, and the largest scatter of local hardness values. It is necessary to consider these difference and introduce the reliability method to model the scatter in the pipe analysis. In addition, it is verified that a columnar grain structure, which is made up of matrix-rich δ ferrite bands, can characterize the weld metal and the distance between the neighboring rich δ ferrite bands is an appropriate measurement of the columnar grain structure. This measurement is in accordance with the transition point between the microstructural short crack and physical small crack stages, which are generally used for characterizing the short fatigue crack behavior of materials. This indicates that the microstructure controls the fatigue damage character of the present material

  12. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHN V. VICKERS in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 1992-08-16 to 1992-10-21 (NODC Accession 0115003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115003 includes chemical, discrete sample, physical and profile data collected from JOHN V. VICKERS in the Bering Sea, North Pacific Ocean and South...

  13. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case...

  14. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  15. Effects of delayed finishing/polishing on surface roughness, hardness and gloss of tooth-coloured restorative materials.

    Science.gov (United States)

    Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren

    2010-01-01

    The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P .05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The effect of delayed finishing/polishing on surface roughness, gloss and hardness appears to be material dependent.

  16. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  17. Correlation between yield stress and hardness of nickel–silicon–boron-based alloys by nanoindentation

    International Nuclear Information System (INIS)

    Şerban, Viorel-Aurel; Codrean, Cosmin; Vodă, Mircea; Chicot, Didier; Decoopman, Xavier

    2014-01-01

    Based on the relation proposed by Tabor in 1951, which connects the ultimate tensile strength and the yield stress of classical materials to the Brinell or Vickers hardness numbers by a simple factor of proportionality, we propose an extended analytical model for the determination of the yield stress of brittle materials using nanoindentation data. This model considers the nanoindentation hardness calculated from the projected actual contact area between the indenter and the material which is representative of the real mean pressure exerted by the indenter compared to classical hardness numbers. A coefficient is introduced in the model to integrate the extent of the elastic recovery of the indented material occurring after the withdrawal of the indenter. This is possible by using the criterion defined by the residual to maximum indenter displacements ratio, this criterion being already related to the deformation mode under indentation. Indeed, this criterion allows identifying the piling-up deformation observed for complete or fully plastic deformation materials or the sinking-in deformation for purely elastic materials. The proposed model thus allows a good estimation of the yield stress of brittle materials for which classical tensile tests are not applicable. The model is validated on a variety of amorphous nickel–silicon-based alloy ribbons, i.e., Ni 89 Si 9 B 2 , Ni 78 Si 9 B 13 and Ni 68 Fe 3 Cr 7 Si 8 B 14 on which both nanoindentation tests and tensile experiments have been performed

  18. Hardness and Wear Resistance of TiC-Fe-Cr Locally Reinforcement Produced in Cast Steel

    Directory of Open Access Journals (Sweden)

    Olejnik E.

    2016-06-01

    Full Text Available In order to increase wear resistance cast steel casting the TiC-Fe-Cr type composite zones were fabricated. These zones were obtained by means of in situ synthesis of substrates of the reaction TiC with a moderator of a chemical composition of white cast iron with nickel of the Ni-Hard type 4. The synthesis was carried out directly in the mould cavity. The moderator was applied to control the reactive infiltration occurring during the TiC synthesis. The microstructure of composite zones was investigated by electron scanning microscopy, using the backscattered electron mode. The structure of composite zones was verified by the X-ray diffraction method. The hardness of composite zones, cast steel base alloy and the reference samples such as white chromium cast iron with 14 % Cr and 20 % Cr, manganese cast steel 18 % Mn was measured by Vickers test. The wear resistance of the composite zone and the reference samples examined by ball-on-disc wear test. Dimensionally stable composite zones were obtained containing submicron sizes TiC particles uniformly distributed in the matrix. The macro and microstructure of the composite zone ensured three times hardness increase in comparison to the cast steel base alloy and one and a half times increase in comparison to the white chromium cast iron 20 % Cr. Finally ball-on-disc wear rate of the composite zone was five times lower than chromium white cast iron containing 20 % Cr.

  19. Janka hardness using nonstandard specimens

    Science.gov (United States)

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  20. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  1. Effect of Nb element content in U-Zr-Nb alloy on hardness, microstructure and phase formation

    International Nuclear Information System (INIS)

    Masrukan; M Husna Al Hasa; Jan Setiawan; Slamet Pribadi

    2015-01-01

    Experiments to determine the effect of Nb element in the U-Zr alloys on hardness, microstructure and phase formation has been done. The addition of Nb element would effect the hardness, microstructure and phase which formed. The U-Zr-Nb alloy was made with the variation of Nb 2%, 5% and 8% by melting in an electric arc melting furnace that equipped with water cooling and the argon atmosphere. The U-Zr-Nb alloy to be cut divided to some testing, such as hardness test, microstructure, and phase analysis. Hardness testing was done by Vickers hardness testing equipment, microstructure by an optical microscope, and diffraction pattern by XRD and phase analysis was done by GSAS. Hardness testing results showed that the addition of 2% to 5% Nb element in U-Zr alloys will increased in hardness, but the addition of Nb element over 5% the hardness was decreased. Observations the microstructure showed that the addition of 2% to 5% Nb element, grains were formed from fine into coarse. Phase analysis for diffraction pattern showed that the phase changed from αU and γU (Zr,Nb)at 2% Nb to be αU, γU (Zr,Nb) and δ1 (UZr_2) phase at 5% and 8% Nb. Phase changes was followed by changes in its compositions. The composition of αU at 2% Nb was 40% increased to 81% at 5% Nb and decreased to 3.9% at 8% Nb. The composition of γU decreased from 59,86% to 14,91% with increased Nb from 2% to 5% and further increased to 52,74% at 8% Nb. (author)

  2. Hard processes. Vol. 1

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Khoze, V.A.; Lipatov, L.N.

    1984-01-01

    Deep inelastic (hard) processes are now at the epicenter of modern high-energy physics. These processes are governed by short-distance dynamics, which reveals the intrinsic structure of elementary particles. The theory of deep inelastic processes is now sufficiently well settled. The authors' aim was to give an effective tool to theoreticians and experimentalists who are engaged in high-energy physics. This book is intended primarily for physicists who are only beginning to study the field. To read the book, one should be acquainted with the Feynman diagram technique and with some particular topics from elementary particle theory (symmetries, dispersion relations, Regge pole theory, etc.). Theoretical consideration of deep inelastic processes is now based on quantum chromodynamics (QCD). At the same time, analysis of relevant physical phenomena demands a synthesis of QCD notions (quarks, gluons) with certain empirical characteristics. Therefore, the phenomenological approaches presented are a necessary stage in a study of this range of phenomena which should undoubtedly be followed by a detailed description based on QCD and electroweak theory. The authors were naturally unable to dwell on experimental data accumulated during the past decade of intensive investigations. Priority was given to results which allow a direct comparison with theoretical predictions. (Auth.)

  3. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  4. Micro Programming

    OpenAIRE

    Spanjersberg , Herman

    2012-01-01

    International audience; In the 1970s a need arose to perform special arithmetic operations on minicomputers much more quickly than had been possible in the past. This paper tells the story of why micro programming was needed for special arithmetic operations on mini computers in the 1970s and how it was implemented. The paper tells how the laboratory in which the first experiment took place had a PDP-9 minicomputer from Digital Equipment Corporation and how the author, with several colleagues...

  5. Effects of alpha radiation on hardness and toughness of the borosilicate glass applied to radioactive wastes immobilization

    International Nuclear Information System (INIS)

    Prado, Miguel Oscar; Bernasconi, Norma B. Messi de; Bevilacqua, Arturo Miguel; Arribere, Maria Angelica; Heredia, Arturo D.; Sanfilippo, Miguel

    1999-01-01

    Borosilicate german glass SG7 samples, obtained by frit sintering, were irradiated with different fluences of thermal neutrons in the nucleus of a nuclear reactor. The nuclear reaction 10 B(n,α) 7 Li, where the 10 B isotope is one of the natural glass components, was used to generate alpha particles throughout the glass volume. The maximum alpha disintegration per unit volume achieved was equivalent to that accumulated in a borosilicate glass with nuclear wastes after 3.8 million years. Through Vickers indentations values for microhardness, stress for 50% fracture probability (Weibull statistics) and estimation of the toughness were obtained as a function of alpha radiation dose. Two counterbalanced effects were found: that due to the disorder created by the alpha particles in the glass and that due to the annealing during irradiation (temperature below 240 deg C). Considering the alpha radiation effect, glasses tend decrease Vickers hardness, and to increase thr 50% fracture probability stress with the dose increase. (author)

  6. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  7. A study on hardness behavior of geopolymer paste in different condition

    Science.gov (United States)

    Zainal, Farah Farhana; Hussin, Kamarudin; Rahmat, Azmi; Abdullah, Mohd Mustafa Al Bakri; Shamsudin, Shaiful Rizam

    2016-07-01

    This study has been conducted to understand the hardness behavior of geopolymer paste in different conditions; with and without being immersed in water. Geopolymer paste has been used nowadays as an alternative way to reduce global warming pollution by carbon dioxide (CO2) released to the air caused from the production of Ordinary Portland Cement (OPC). Geopolymer has many advantages such as high compressive strength, lower water absorption and lower porosity. Geopolymer paste in this study was made from a mixture of fly ash and alkaline activators. The alkaline activators that have been used were sodium hydroxide (NaOH) solution and sodium silicate (Na2SiO3) solution. Then the mixture was allowed to harden for 24hrs at ambient temperature and then placed in the oven for 24hrs with 60°C for the curing process. The hardness testing was conducted after a few months when the samples already achieved the optimum design. The samples were divided to two conditions; without immersion which was placed at ambient temperature (S1) and immersed in water for one week (S2). The samples then are divided into two at the center and testing was conducted into 4 parts which are part 1, part 2, part 3 and part 4. Various methods of non-destructively testing concrete and mortar have been in use for many years such as Vickers hardness test, Rockwell hardness test, Brinell hardness test and many more. The Rockwell hardness test method as defined in ASTM E-18 is the most commonly used hardness test method which is also used in this study. From the results, S1 has higher hardness value than S2 for all parts with the maximum value of S1 is 118.6 and the minimum value is 71.8. The maximum value of S2 is 114.4 and the minimum value is 0. The central part of the geopolymer paste also showed greater hardness values than the edge area of the samples.

  8. Phase formation kinetics, hardness and magnetocaloric effect of sub-rapidly solidified LaFe11.6Si1.4 plates during isothermal annealing

    Science.gov (United States)

    Dai, Yuting; Xu, Zhishuai; Luo, Zhiping; Han, Ke; Zhai, Qijie; Zheng, Hongxing

    2018-05-01

    High-temperature phase transition behavior and intrinsic brittleness of NaZn13-type τ1 phase in La-Fe-Si magnetocaloric materials are two key problems from the viewpoint of materials production and practical applications. In the present work, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation was introduced to quantitatively characterize the formation kinetics of τ1 phase in sub-rapidly solidified LaFe11.6Si1.4 plates during the isothermal annealing process. Avrami index was estimated to be 0.43 (∼0.5), which suggests that the formation of τ1 phase is in a diffusion-controlled one-dimensional growth mode. Meanwhile, it is found that the Vickers hardness as a function of annealing time for sub-rapidly solidified plates also agrees well with the JMAK equation. The Vickers hardness of τ1 phase was estimated to be about 754. Under a magnetic field change of 30 kOe, the maximum magnetic entropy change was about 22.31 J/(kg·K) for plates annealed at 1323 K for 48 h, and the effective magnetic refrigeration capacity reached 191 J/kg.

  9. Hardness variability in commercial technologies

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-01-01

    The radiation hardness of commercial Floating Gate 256K E 2 PROMs from a single diffusion lot was observed to vary between 5 to 25 krad(Si) when irradiated at a low dose rate of 64 mrad(Si)/s. Additional variations in E 2 PROM hardness were found to depend on bias condition and failure mode (i.e., inability to read or write the memory), as well as the foundry at which the part was manufactured. This variability is related to system requirements, and it is shown that hardness level and variability affect the allowable mode of operation for E 2 PROMs in space applications. The radiation hardness of commercial 1-Mbit CMOS SRAMs from Micron, Hitachi, and Sony irradiated at 147 rad(Si)/s was approximately 12, 13, and 19 krad(Si), respectively. These failure levels appear to be related to increases in leakage current during irradiation. Hardness of SRAMs from each manufacturer varied by less than 20%, but differences between manufacturers are significant. The Qualified Manufacturer's List approach to radiation hardness assurance is suggested as a way to reduce variability and to improve the hardness level of commercial technologies

  10. Investigation of stand-off distance effect on structure, adhesion and hardness of copper coatings obtained by the APS technique

    Science.gov (United States)

    Masoumeh, Goudarzi; Shahrooz, Saviz; Mahmood, Ghoranneviss; Ahmad, Salar Elahi

    2018-03-01

    The outbreak of the disease and infection in the hospital environment and medical equipment is one of the concerns of modern life. One of the effective ways for preventing and reducing the complications of infections is modification of the surface. Here, the handmade atmospheric plasma spray system is used for accumulating copper as an antibacterial agent on the 316L stainless steel substrate, which applies to hospital environment and medical equipment. As a durable coating with proper adhesion is needed on the substrate, the effect of stand-off distance (SOD) which is an important parameter of the spray on the microstructure, the hardness and adhesion of the copper coating on the 316L stainless steel were investigated. The structure and phase composition of copper depositions were investigated using scanning electron microscopy and X-ray diffraction. The adhesion and hardness of depositions are evidenced using the cross cut tester and Vickers hardness tester, respectively. The findings confirm that the voids in the coatings increase with increasing SOD, which leads to decreasing the hardness of coatings and also the adhesion strength between depositions and substrate. In addition, by increasing the SOD, the oxygen content and the size of grains in the lamellae (fine structure) of coatings also increase.

  11. Enhanced electrical conductivity and hardness of silver-nickel composites by silver-coated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Dongmok; Sim, Jeonghyun; Baik, Seunghyun; Kim, Wonyoung; Moon, Chuldong; Cho, Wookdong

    2015-01-01

    We investigated electrical conductivity and Vickers hardness of Ag- and Ni-based composites prepared by powder metallurgy involving spark plasma sintering. The starting composition was Ag:Ni = 61:39 vol%, which provided an electrical conductivity of 3.30 × 10"5 S cm"−"1 and a hardness of 1.27 GPa. The addition of bare multi-walled carbon nanotubes (MWNTs, 1.45 vol%) increased hardness (1.31 GPa) but decreased electrical conductivity (2.99 × 10"5 S cm"−"1) and carrier mobility (11 cm"2 V"−"1 s"−"1) due to the formation of Ni_3C in the interface between the MWNTs and Ni during spark plasma sintering. The formation of Ni_3C was prevented by coating the surface of the nanotubes with Ag (nAgMWNTs), concomitantly increasing electrical conductivity (3.43 × 10"5 S cm"−"1) and hardness (1.37 GPa) of the sintered specimen (Ag:Ni:nAgMWNTs = 59.55:39:1.45 vol%). The electrical contact switching time (133 357) was also increased by 30%, demonstrating excellent feasibility as electrical contact materials for electric power industries. (paper)

  12. Analysis of enamel microhardness at various hard tissue states and depth of the microfissures

    Directory of Open Access Journals (Sweden)

    S. P. Yarova

    2013-08-01

    Full Text Available In clinical practice are often diagnosed precervical lesions: wedge-shaped defects and cracks. Long phases of the confrontation of the body as a damaging influence in the formation of thicker tissue sections of higher salinity, density and sustainability occur prior to the integrity of the enamel. Micro-hardness is one of the important characteristics of the micro-mechanical strength of the tooth-related physical and chemical changes that occur in the enamel as a result of external and internal influences. The purpose of the study was to identify possible differences in the micro-hardness of enamel, depending on the depth of fissures and pathology of hard tissues of the teeth. We investigated the longitudinal sections of 27 teeth (18 - intact, 5 - with wedge-shaped defect, 4 - with cervical caries of both jaws removed for clinical indications in patients aged 25-54 years, who were diagnosed three types of fractures (SB Ivanov, 1984. Hardness was determined in the outer, middle, inner layers of enamel in three topographical locations: in the cusp tip (cutting edge of the tooth equator and neck as in previously described technique (S. Remizov, 1965. The obtained results showed decrease in strength with micro-cracks enamel, compared with apparently intact ones, on the average 10% more in the incisal areas (tuber, less - in the equatorial zone. In intact teeth with micro-cracks and having a wedge-shaped defect the indices differed significantly depending on the depth of the defects of the cutting edge (tuber and the equator: they were the smallest in the deep type III micro-cracks (p <0.05. The opposite picture was observed in samples with cervical caries. Thus, the statistically significant difference in terms of the micro-hardness of the enamel, depending on the depth of defects has been identified only in the area of cutting edge (tuber: in samples with deep micro-cracks of enamel type III they were the highest (P = 0.017. The greatest values of

  13. On scale dependence of hardness

    International Nuclear Information System (INIS)

    Shorshorov, M.Kh.; Alekhin, V.P.; Bulychev, S.I.

    1977-01-01

    The concept of hardness as a structure-sensitive characteristic of a material is considered. It is shown that in conditions of a decreasing stress field under the inventor the hardness function is determined by the average distance, Lsub(a), between the stops (fixed and sessile dislocations, segregation particles, etc.). In the general case, Lsub(a) depends on the size of the impression and explains the great diversity of hardness functions. The concept of average true deformation rate on depression is introduced

  14. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  15. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    Science.gov (United States)

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  16. First-principle calculations on the structural and electronic properties of hard C{sub 11}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongxu, E-mail: lidongxu@hqu.edu.cn [College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 (China); Shi, Jiancheng; Lai, Mengling; Li, Rongkai [College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 (China); Yu, Dongli [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2014-09-15

    A graphite-like C{sub 11}N{sub 4} model was built by stacking graphene and a C{sub 3}N{sub 4} triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C{sub 11}N{sub 4} is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C{sub 11}N{sub 4} was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C{sub 11}N{sub 4} is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy.

  17. Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhaoyun, E-mail: zhaoyunchenlaoshi@126.com [College of Materials Science and Chemical Engineering, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Nantong ST 145, Harbin 150001 (China); Zhou Guijuan, E-mail: zgjghpx@126.com [College of Materials Science and Chemical Engineering, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Nantong ST 145, Harbin 150001 (China); Chen Zhonghua, E-mail: jickdahua@163.com [College of Materials Science and Chemical Engineering, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Nantong ST 145, Harbin 150001 (China)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Surface hardening of 17-4PH is highly achieved by laser transformation hardening. Black-Right-Pointing-Pointer A hardened layer with a thickness of 1.75 mm is formed. Black-Right-Pointing-Pointer The phase similar to {epsilon}-Cu precipitates re-segregation after dissolved. Black-Right-Pointing-Pointer The strengthening phase is composed of classic lath martensite, coarse NbC and a lot of finer fcc copper-rich phases. - Abstract: Surface hardening of 17-4PH was achieved by laser transformation hardening using 5 kW continuous wave CO{sub 2} laser system. The microstructure of the laser-quenched sample was investigated by optical microscopy, transmission electron microscope and {sup 57}Fe Moessbauer spectrometer. The hardness profile was determined by a Vickers hardness tester. The hardened layer with a thickness of 1.75 mm was formed, and it was composed of classic lath martensite, coarse NbC and a lot of finer fcc copper-rich phases which were similar to {epsilon}-Cu precipitates. The maximal hardness value of hardened zone is 446 HV which is 50 HV higher than that of the substrate (386-397 HV). The higher hardness in laser transformation layer of the 17-4PH steel could be attributed to the following aspects: the matrix with a high dislocation density; the fine microstructure; the finer fcc copper-rich phases that were similar to the {epsilon}-Cu precipitates as well as the transforming of retained austenite into lath martensite.

  18. High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature

    International Nuclear Information System (INIS)

    Kumar, Devender; Singh, K.

    2016-01-01

    WC-Co nanocomposites with variable VC content are synthesized by liquid phase sintering at two different temperatures. The as synthesized samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and optical microscope. The mechanical properties are obtained by Vickers indentation method. The high content of VC, lead to high porosity when sintering temperature is increased from 1350 to 1400 °C. The relative density of all the samples is more than 95%. Microstructure reveals that agglomeration of W-Co-C and V-W-C increases at 1400 °C, which generates layered interfaces in radial direction and hence the material inhomogeneity. XRD pattern shows that the formation of η phase increases at 1400 °C, which is responsible to decrease the fracture toughness of the present samples. The average particle size of 102 nm, highest hardness of 1870.6 kgf/mm"2 with fracture toughness of 14.4 MN/mm"3"/"2 is observed in sample having 7.5 wt% VC, sintered at 1350 °C for one minute. This combination shows the highest hardness and reasonably high toughness as compared to conventionally sintered materials reported so far.

  19. Surface roughness and hardness of a composite resin: influence of finishing and polishing and immersion methods

    Directory of Open Access Journals (Sweden)

    Ana Luísa Botta Martins de Oliveira

    2010-09-01

    Full Text Available This study evaluated the finishing and polishing effect on the surface roughness and hardness of the Filtek Supreme XT, in fluoride solutions. Specimens were prepared (n = 140 with half of the samples finished and polished with Super-Snap® disks. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard. The specimens remained immersed in artificial saliva for 24 hours and were then subjected to initial analysis (baseline of surface roughness and Vickers microhardness. Next, they were immersed in different fluoride solutions for 1 min/day, for 60 days. Afterwards, a new surface roughness and microhardness reading was conducted. The data were submitted to a two-way ANOVA and Tukey's test (5% significance level. For the comparison of mean roughness and hardness at baseline and after 60 days, the paired Student t test was used. The results showed that the surface roughness and microhardness of the Filtek Supreme XT were influenced by the finishing and polishing procedure, independently of the immersion methods.

  20. Use of variations in unit cell length, reflectance and hardness for determining the origin of Fe disulphides in sedimentary rocks

    Science.gov (United States)

    Dill, H. G.; Eberhard, E.; Hartmann, B.

    1997-01-01

    Fe disulphides are common opaque accessories in sedimentary rocks. Both marcasite and pyrite may shed some light on the depositional environment and help determine the diagenesis of their host rocks. Quantitative ore microscopy (reflectance measurements, Vickers hardness numbers) and X-ray diffraction methods, supplemented with scanning electron microscopy and chemical analyses, were applied to pyrite (and some marcasite) hosted by sedimentary rocks spanning the interval from the Devonian to the Pliocene, and formed in various marine and continental environments. Quantitative ore microscopy of pyrites of sedimentary origin does not seem to be an efficient tool for analyzing the environment owing to the inhomogeneous nature of sulphide aggregates when viewed under the ore microscope, and the variable amounts of minor elements (e.g., As, Ni, and Co) that control the reflectance values (RV) and Vickers hardness numbers (VHN) of the host sulphides. However, such parameters as crystal habit and unit cell length of pyrite, which correlate with FeS x, are useful for environmental analysis. The redox conditions and the presence of organic remains during formation are the main factors determining these crystallographic parameters. Differences in these parameters from those of pure, ideal FeS 2 can be related to substitution of, e.g., wustite in the pyrite lattice, reflecting moderate oxidation (i.e. in the microenvironment). As far as crystal habit and length of the cell edge are concerned, late stage diagenesis is obviously less important than the microenvironment attending initial formation. The environment of deposition (i.e. the macroenvironment) of pyrite-bearing rocks has no influence on the crystal morphology or the length of the unit cell of Fe disulphide. X-ray diffraction measurements demonstrate that this method provides useful evidence on the microenvironment of sulphide precipitation around a single, equant pyrite, as well as around pyritized fossils.

  1. MicroED data collection and processing

    Energy Technology Data Exchange (ETDEWEB)

    Hattne, Johan; Reyes, Francis E.; Nannenga, Brent L.; Shi, Dan; Cruz, M. Jason de la [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 (United States); Leslie, Andrew G. W. [Medical Research Council Laboratory of Molecular Biology, Cambridge (United Kingdom); Gonen, Tamir, E-mail: gonent@janelia.hhmi.org [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 (United States)

    2015-07-01

    The collection and processing of MicroED data are presented. MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges.

  2. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  3. Optimization of Micro-Alloying Elements for Mechanical Properties in Normalized Cast Steel Using Taguchi Technique

    Directory of Open Access Journals (Sweden)

    Chokkalingam B.

    2017-06-01

    Full Text Available In this study, Taguchi method is used to find out the effect of micro alloying elements like vanadium, niobium and titanium on the hardness and tensile strength of the normalized cast steel. Based on this method, plan of experiments were made by using orthogonal arrays to acquire the data on hardness and tensile strength. The signal to noise ratio and analysis of variance (ANOVA are used to investigate the effect of these micro alloying elements on these two mechanical properties of the micro alloyed normalized cast steel. The results indicated that in the micro alloyed normalized cast steel both these properties increases when compared to non-micro-alloyed normalized cast steel. The effect of niobium addition was found to be significantly higher to obtain higher hardness and tensile strength when compared to other micro alloying elements. The maximum hardness of 200HV and the maximum tensile strength of 780 N/mm2 were obtained in 0.05%Nb addition micro alloyed normalized cast steel. Micro-alloyed with niobium normalized cast steel have the finest and uniform microstructure and fine pearlite colonies distributed uniformly in the ferrite. The optimum condition to obtain higher hardness and tensile strength were determined. The results were verified with experiments.

  4. Micro club

    CERN Multimedia

    Micro club

    2014-01-01

    Opération NEMO   Pour finir en beauté les activités spéciales que le CMC a réalisé pendant cette année 2014, pour commémorer le 60ème anniversaire du CERN, et le 30ème du Micro Club, l’ Opération NEMO aura cette année un caractère très particulier. Nous allons proposer 6 fabricants de premier ordre qui offriront chacun deux ou trois produits à des prix exceptionnels. L’opération débute le lundi 17 novembre 2014. Elle se poursuivra  jusqu’au samedi 6 décembre inclus. Les délais de livraison seront de deux à trois semaines, selon les fabricants. Donc les commandes faites la dernière semaine, du 1 au 6 décembre, risquent d’arriver qu'au début du mois de janvier 2015. Liste de fabricants part...

  5. Micro club

    CERN Multimedia

    Micro Club

    2014-01-01

    Jeudi 18 septembre 2014 à 18h30 au Bât. 567 R-029 Le CERN MICRO CLUB organise un Atelier sur la sécurité informatique. La Cyber-sécurité : Ce qui se passe vraiment, comment ne pas en être victime ! Orateur : Sebastian Lopienski Adjoint au Computer Security Officer du Département IT. Sujet : Cet exposé vous présentera les modes de sécurité actuels et les problèmes touchants les applications logicielles des ordinateurs, les réseaux ainsi que leurs utilisateurs. Cela inclus des informations sur les nouveaux types de vulnérabilité, les vecteurs d'attaque récents et une vue d'ensemble sur le monde de la cyber-sécurité en 2014. Biographie : Sebastian Lopienski travaille au CERN depuis 2001. Il est actuellement adjoint au Computer Security Officer et s'occupe de la protection de...

  6. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  7. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.

    2007-08-02

    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)

  8. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.

    1999-01-01

    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  9. Calorimeter triggers for hard collisions

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.

    1978-01-01

    We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering processes, and investigate the conditions when instead a multiple- scattering mechanism might dominate. With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally accessible at avalues of the beam energy in the region of 100 GeV/c

  10. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  11. Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying

    International Nuclear Information System (INIS)

    Pérez-Bustamante, R.; Pérez-Bustamante, F.; Estrada-Guel, I.; Licea-Jiménez, L.; Miki-Yoshida, M.; Martínez-Sánchez, R.

    2013-01-01

    Carbon nanotube/2024 aluminum alloy (CNT/Al 2024 ) composites were fabricated with a combination of mechanical alloying (MA) and powder metallurgy routes. Composites were microstructurally and mechanically evaluated at sintering condition. A homogeneous dispersion of CNTs in the Al matrix was observed by a field emission scanning electron microscopy. High-resolution transmission electron microscopy confirmed not only the presence of well dispersed CNTs but also needle-like shape aluminum carbide (Al 4 C 3 ) crystals in the Al matrix. The formation of Al 4 C 3 was suggested as the interaction between the outer shells of CNTs and the Al matrix during MA process in which crystallization took place after the sintering process. The mechanical behavior of composites was evaluated by Vickers microhardness measurements indicating a significant improvement in hardness as function of the CNT content. This improvement was associated to a homogeneous dispersion of CNTs and the presence of Al 4 C 3 in the aluminum alloy matrix. - Highlights: ► The 2024 aluminum alloy was reinforced by CNTs by mechanical alloying process. ► Composites were microstructural and mechanically evaluated after sintering condition. ► The greater the CNT concentration, the greater the hardness of the composites. ► Higher hardness in composites is achieved at 20 h of milling. ► The formation of Al 4 C 3 does not present a direct relationship with the milling time.

  12. Microstructure and Hardness of Cold Work Vanadis 6 Steel after Subzero Treatment at −140°C

    Directory of Open Access Journals (Sweden)

    Juraj Ďurica

    2018-01-01

    Full Text Available The microstructure, phase constitution, and hardness of Cr-V ledeburitic tool steel Vanadis 6 subjected to subzero treatment at −140°C and for different soaking times have been investigated. The light microscopy, scanning electron microscopy, and X-ray diffraction have been used for microstructural investigations. The hardness has been evaluated by the Vickers method. The obtained results assist to draw that subzero treatment reduces the retained austenite amount and increases the population density of carbides, compared to conventional heat treatment. The extent of decrease in the retained austenite amount makes around 85%, and the increase in population density of small globular carbides was approximately fivefold. High compressive stresses were identified in the retained austenite, and their values follow the increase in carbide count. This makes a serious support to the theory explaining the formation of “extra” carbides as a by-product of more complete martensitic transformation. As a result of the mentioned microstructural changes, the material hardness increased from 875 ± 16 HV 10 up to 954.6 ± 14 HV 10 for conventionally quenched and SZT steels, respectively.

  13. Chemical hardness and density functional theory

    Indian Academy of Sciences (India)

    Unknown

    RALPH G PEARSON. Chemistry Department, University of California, Santa Barbara, CA 93106, USA. Abstract. The concept of chemical hardness is reviewed from a personal point of view. Keywords. Hardness; softness; hard & soft acids bases (HSAB); principle of maximum hardness. (PMH) density functional theory (DFT) ...

  14. Microindentation hardness testing of coatings: techniques and interpretation of data

    Science.gov (United States)

    Blau, P. J.

    1986-09-01

    This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.

  15. The relationship between the hardness and the point-defect-density in neutron-irradiated MgO·3.0Al2O3 and AlN

    International Nuclear Information System (INIS)

    Suematsu, H.; Yatsui, K.; Yano, T.

    2001-01-01

    MgO·3.0Al 2 O 3 single crystals and sintered AlN polycrystals were irradiated with fast neutrons in various conditions and the hardness of the irradiated and unirradiated samples was measured with a Vickers hardness tester. The hardness of as-irradiated MgO·3.0Al 2 O 3 and AlN samples increased by 23 and 51%, respectively. After isochronal annealing, the hardness gradually decreased and mostly recovered to that of the unirradiated one up to 1400degC. Volume of the sample also increased after the irradiation and changed in the same way as the hardness by annealing. A relationship between the hardness and the density of point defects is proposed and the experimental results agree with the relationship. It implies that the point defects generated by the irradiation pin down dislocations and increase the hardness of neutron irradiated MgO·3.0Al 2 O 3 samples. (author)

  16. Materials and Manufacturing Processing; Special Issue on Hard Carbon Films

    Science.gov (United States)

    1993-01-01

    AZ 85721 G. SMOLIK, P.O. Box 1625, Idaho National Engineering Laboratory, Idaho Falls, ID 83415 J.B. TERRELL, Reynolds Metals Company, P.O. Box 27003 ...18%Si alloy using inserts of ISO SPGN120308 and HEHN532FN. The damage to diamond films after cutting was examined by SEM and micro-laser Raman...uncoated cemented carbide insert corresponding to ISO K10 grade and sintered diamond insert were also used. Milling a hard carbon under dry condition The

  17. Seismic signals hard clipping overcoming

    Science.gov (United States)

    Olszowa, Paula; Sokolowski, Jakub

    2018-01-01

    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  18. Hard equality constrained integer knapsacks

    NARCIS (Netherlands)

    Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.

    2002-01-01

    We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve

  19. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  20. Hard processes in hadronic interactions

    International Nuclear Information System (INIS)

    Satz, H.; Wang, X.N.

    1995-01-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks' duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley

  1. Effect of storage in water and thermocycling on hardness and roughness of resin materials for temporary restorations

    Directory of Open Access Journals (Sweden)

    Jerusa Cleci de Oliveira

    2010-09-01

    Full Text Available PURPOSE: This study evaluated the effect of storage in water and thermocycling on hardness and roughness of resin materials for temporary restorations. MATERIAL AND METHODS: Three acrylic resins (Dencor-De, Duralay-Du, and Vipi Cor-VC were selected and one composite resin (Opallis-Op was used as a parameter for comparison. The materials were prepared according to the manufacturers' instructions and were placed in stainless steel moulds (20 mm in diameter and 5 mm thick. Thirty samples of each resin were made and divided into three groups (n = 10 according to the moment of Vickers hardness (VHN and roughness (Ra analyses: C (control group: immediately after specimen preparation; Sw: after storage in distilled water at 37 °C for 24 hours; Tc: after thermocycling (3000 cycles; 5-55 °C, 30 seconds dwell time. Data were submitted to 2-way ANOVA followed by Tukey's test (α = 0.05. RESULTS: Op resin had higher surface hardness values (p 0.05 in roughness among materials (De = 0.31 ± 0.07; Du = 0.51 ± 0.20; VC = 0.41 ± 0.15; Op = 0.42 ± 0.18. Storage in water did not change hardness and roughness of the tested materials (p > 0.05. There was a significant increase in roughness after thermocycling (p < 0.05, except for material Du, which showed no significant change in roughness in any evaluated period (p = 0.99. CONCLUSION: Thermocycling increased the roughness in most tested materials without affecting hardness, while storage in water had no significant effect in the evaluated properties.

  2. Ni–Mo–Co ternary alloy as a replacement for hard chrome

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Meenu, E-mail: meenu_srivas@yahoo.co.uk; Anandan, C.; Grips, V.K. William

    2013-11-15

    Hard chrome is the most extensively used electroplated coating in the aerospace and automotive industries due to its attractive properties such as high hardness and excellent wear resistance. However, due to the health risks associated with the use of hexavalent chromium baths during electroplating, there is a need to identify an alternative to this coating. In this study a nickel–molybdenum alloy with cobalt as the alloying element has been developed. The coating was characterized for its micro hardness, wear resistance, coefficient of friction and corrosion resistance. The coating was also subjected to heat treatment at temperatures in the range of 200°–600 °C. It was observed that the micro hardness of Ni–Mo–Co (730 KHN) alloy coating under optimized conditions is apparently quiet similar to that of the most probable substitute Co–P (745 VHN) and hard chrome (800 VHN) coatings. The tribological properties like the wear rate and coefficient of friction of the 400 °C heat treated Ni–Mo–Co coating were noticed to be better compared to hard chrome coating. The electrochemical impedance and polarization studies showed that the corrosion resistance of heat treated Ni–Mo–Co alloy was better than as-deposited Ni–Mo–Co and Ni–Mo coating.

  3. Ni–Mo–Co ternary alloy as a replacement for hard chrome

    International Nuclear Information System (INIS)

    Srivastava, Meenu; Anandan, C.; Grips, V.K. William

    2013-01-01

    Hard chrome is the most extensively used electroplated coating in the aerospace and automotive industries due to its attractive properties such as high hardness and excellent wear resistance. However, due to the health risks associated with the use of hexavalent chromium baths during electroplating, there is a need to identify an alternative to this coating. In this study a nickel–molybdenum alloy with cobalt as the alloying element has been developed. The coating was characterized for its micro hardness, wear resistance, coefficient of friction and corrosion resistance. The coating was also subjected to heat treatment at temperatures in the range of 200°–600 °C. It was observed that the micro hardness of Ni–Mo–Co (730 KHN) alloy coating under optimized conditions is apparently quiet similar to that of the most probable substitute Co–P (745 VHN) and hard chrome (800 VHN) coatings. The tribological properties like the wear rate and coefficient of friction of the 400 °C heat treated Ni–Mo–Co coating were noticed to be better compared to hard chrome coating. The electrochemical impedance and polarization studies showed that the corrosion resistance of heat treated Ni–Mo–Co alloy was better than as-deposited Ni–Mo–Co and Ni–Mo coating.

  4. Hard-to-fill vacancies.

    Science.gov (United States)

    Williams, Ruth

    2010-09-29

    Skills for Health has launched a set of resources to help healthcare employers tackle hard-to-fill entry-level vacancies and provide sustainable employment for local unemployed people. The Sector Employability Toolkit aims to reduce recruitment and retention costs for entry-level posts and repare people for employment through pre-job training programmes, and support employers to develop local partnerships to gain access to wider pools of candidates and funding streams.

  5. Pushing hard on the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-09-15

    The quest for new techniques to drive future generations of particle accelerators has been pushed hard in recent years, efforts having been highlighted by workshops in Europe, organized by the European Committee for Future Accelerators, and in the US. The latest ECFA Workshop on New Developments in Particle Acceleration Techniques, held at Orsay from 29 June to 4 July, showed how the initial frantic search for innovation is now maturing.

  6. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  7. Playing Moderately Hard to Get

    Directory of Open Access Journals (Sweden)

    Stephen Reysen

    2013-12-01

    Full Text Available In two studies, we examined the effect of different degrees of attraction reciprocation on ratings of attraction toward a potential romantic partner. Undergraduate college student participants imagined a potential romantic partner who reciprocated a low (reciprocating attraction one day a week, moderate (reciprocating attraction three days a week, high (reciprocating attraction five days a week, or unspecified degree of attraction (no mention of reciprocation. Participants then rated their degree of attraction toward the potential partner. The results of Study 1 provided only partial support for Brehm’s emotion intensity theory. However, after revising the high reciprocation condition vignette in Study 2, supporting Brehm’s emotion intensity theory, results show that a potential partners’ display of reciprocation of attraction acted as a deterrent to participants’ intensity of experienced attraction to the potential partner. The results support the notion that playing moderately hard to get elicits more intense feelings of attraction from potential suitors than playing too easy or too hard to get. Discussion of previous research examining playing hard to get is also re-examined through an emotion intensity theory theoretical lens.

  8. CMOS optimization for radiation hardness

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Fossum, J.G.

    1975-01-01

    Several approaches to the attainment of radiation-hardened MOS circuits have been investigated in the last few years. These have included implanting the SiO 2 gate insulator with aluminum, using chrome-aluminum layered gate metallization, using Al 2 O 3 as the gate insulator, and optimizing the MOS fabrication process. Earlier process optimization studies were restricted primarily to p-channel devices operating with negative gate biases. Since knowledge of the hardness dependence upon processing and design parameters is essential in producing hardened integrated circuits, a comprehensive investigation of the effects of both process and design optimization on radiation-hardened CMOS integrated circuits was undertaken. The goals are to define and establish a radiation-hardened processing sequence for CMOS integrated circuits and to formulate quantitative relationships between process and design parameters and the radiation hardness. Using these equations, the basic CMOS design can then be optimized for radiation hardness and some understanding of the basic physics responsible for the radiation damage can be gained. Results are presented

  9. Surface hardness evaluation of different composite resin materials: influence of sports and energy drinks immersion after a short-term period

    Directory of Open Access Journals (Sweden)

    Ugur Erdemir

    2013-04-01

    Full Text Available Objectives: This study evaluated the effect of sports and energy drinks on the surface hardness of different composite resin restorative materials over a 1-month period. Material and Methods: A total of 168 specimens: Compoglass F, Filtek Z250, Filtek Supreme, and Premise were prepared using a customized cylindrical metal mould and they were divided into six groups (N=42; n=7 per group. For the control groups, the specimens were stored in distilled water for 24 hours at 37°C and the water was renewed daily. For the experimental groups, the specimens were immersed in 5 mL of one of the following test solutions: Powerade, Gatorade, X-IR, Burn, and Red Bull, for two minutes daily for up to a 1-month test period and all the solutions were refreshed daily. Surface hardness was measured using a Vickers hardness measuring instrument at baseline, after 1-week and 1-month. Data were statistically analyzed using Multivariate repeated measure ANOVA and Bonferroni's multiple comparison tests (α=0.05. Results: Multivariate repeated measures ANOVA revealed that there were statistically significant differences in the hardness of the restorative materials in different immersion times (p<0.001 in different solutions (p<0.001. The effect of different solutions on the surface hardness values of the restorative materials was tested using Bonferroni's multiple comparison tests, and it was observed that specimens stored in distilled water demonstrated statistically significant lower mean surface hardness reductions when compared to the specimens immersed in sports and energy drinks after a 1-month evaluation period (p<0.001. The compomer was the most affected by an acidic environment, whereas the composite resin materials were the least affected materials. Conclusions: The effect of sports and energy drinks on the surface hardness of a restorative material depends on the duration of exposure time, and the composition of the material.

  10. Impact of aging on radiation hardness

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.

    1997-01-01

    Burn-in effects are used to demonstrate the potential impact of thermally activated aging effects on functional and parametric radiation hardness. These results have implications on hardness assurance testing. Techniques for characterizing aging effects are proposed

  11. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower that sends out ... and choices. Addiction changes the signals in your brain and makes it hard to feel OK without ...

  12. Coherent Synchrotron-Based Micro-Imaging Employed for Studies of Micro-Gap Formation in Dental Implants

    International Nuclear Information System (INIS)

    Rack, T.; Stiller, M.; Nelson, K.; Zabler, S.; Rack, A.; Riesemeier, H.; Cecilia, A.

    2011-01-01

    Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.

  13. Micro robot bible

    International Nuclear Information System (INIS)

    Yoon, Jin Yeong

    2000-08-01

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  14. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  15. Micro robot bible

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin Yeong

    2000-08-15

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  16. Effect of Mo concentration and aging time on the magnetic and mechanical hardness of Fe-xMo-5Ni-0.05C alloys (x = 5, 8, 11 and 15 wt. (%

    Directory of Open Access Journals (Sweden)

    Mauro Carlos Lopes Souza

    2009-01-01

    Full Text Available Changes to the microestructure during thermal aging treatment at 610 ºC in Fe-xMo-5Ni-0.05C alloys were studied for different aging times with different Mo concentrations. The heat treatment at 610 ºC induces carbide precipitation into the metallic matrix near Fe2Mo phase. The X-ray diffraction studies revealed a more intense precipitation of α-FeMo, Fe3Mo, R(Fe63Mo37 phases and MoC, Fe2MoC carbides for the alloys containing 15 and 11% Mo, respectively. This work shows that hardness and coercive force changes are function of the molybdenum content and aging time variation. Vickers hardness and coercive force both increase with the increase of molybdenum content and reach maximum values at 4 and 1h of aging, respectively.

  17. Micro rapid prototyping system for micro components

    International Nuclear Information System (INIS)

    Li Xiaochun; Choi Hongseok; Yang Yong

    2002-01-01

    Similarities between silicon-based micro-electro-mechanical systems (MEMS) and Shape Deposition Manufacturing (SDM) processes are obvious: both integrate additive and subtractive processes and use part and sacrificial materials to obtain functional structures. These MEMS techniques are two-dimensional (2-D) processes for a limited number of materials while SDM enables the building of parts that have traditionally been impossible to fabricate because of their complex shapes or of their variety in materials. This work presents initial results on the development of a micro rapid prototyping system that adapts SDM methodology to micro-fabrication. This system is designed to incorporate microdeposition and laser micromachining. In the hope of obtaining a precise microdeposition, an ultrasonic-based micro powder-feeding mechanism was developed in order to form thin patterns of dry powders that can be cladded or sintered onto a substrate by a micro-sized laser beam. Furthermore, experimental results on laser micromachining using a laser beam with a wavelength of 355 nm are also presented. After further improvement, the developed micro manufacturing system could take computer-aided design (CAD) output to reproduce 3-D heterogeneous micro-components from a wide selection of materials

  18. The hard problem of cooperation.

    Directory of Open Access Journals (Sweden)

    Kimmo Eriksson

    Full Text Available Based on individual variation in cooperative inclinations, we define the "hard problem of cooperation" as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior.

  19. The hard problem of cooperation.

    Science.gov (United States)

    Eriksson, Kimmo; Strimling, Pontus

    2012-01-01

    Based on individual variation in cooperative inclinations, we define the "hard problem of cooperation" as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition) change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior.

  20. Hard electroproduction of hybrid mesons

    International Nuclear Information System (INIS)

    Anikin, I.V.; LPT Universite Paris-Sud, Orsay; Szymanowski, L.; Teryaev, O.V.; ); Wallon, S.

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC = 1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as 1/Q 2 . This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in as and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. (author)

  1. Hard Identity and Soft Identity

    Directory of Open Access Journals (Sweden)

    Hassan Rachik

    2006-04-01

    Full Text Available Often collective identities are classified depending on their contents and rarely depending on their forms. Differentiation between soft identity and hard identity is applied to diverse collective identities: religious, political, national, tribal ones, etc. This classification is made following the principal dimensions of collective identities: type of classification (univocal and exclusive or relative and contextual, the absence or presence of conflictsof loyalty, selective or totalitarian, objective or subjective conception, among others. The different characteristics analysed contribute to outlining an increasingly frequent type of identity: the authoritarian identity.

  2. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and 'compomers'.

    Science.gov (United States)

    Aliping-McKenzie, M; Linden, R W A; Nicholson, J W

    2004-11-01

    The interaction of tooth-coloured dental restorative materials (a conventional glass-ionomer, two resin-modified glass-ionomers and two compomers) with acidic beverages has been studied with the aim of investigating how long-term contact affects solution pH and specimen surface hardness. For each material (ChemFil Superior, ChemFlex, Vitremer Core Build-Up/Restorative, Fuji II LC, Dyract AP and F2000) disc-shaped specimens were prepared and stored in sets of six in the following storage media: 0.9% NaCl (control), Coca-Cola, apple juice and orange juice. After time intervals of 1 day, 1 week, 1 month, 3 months, 4 months, 6 months and 1 year, solution pH and Vickers Hardness Number were determined for each individual specimen. Differences were analysed by anova followed by Student-Newman-Keuls post hoc analysis. All materials were found to reduce the pH of the 0.9% NaCl, but to increase the pH of the acidic beverages. The conventional glass-ionomers dissolved completely in apple juice and orange juice, but survived in Coca-Cola, albeit with a significantly reduced hardness after 1 year. The other materials survived in apple juice and orange juice, but showed greater reductions in surface hardness in these beverages than in Coca-Cola. Fruit juices were thus shown to pose a greater erosive threat to tooth coloured materials than Coca-Cola, a finding which is similar to those concerning dentine and enamel towards these drinks.

  3. Effects of various light curing methods on the leachability of uncured substances and hardness of a composite resin.

    Science.gov (United States)

    Moon, H-J; Lee, Y-K; Lim, B-S; Kim, C-W

    2004-03-01

    The purpose of this study was to evaluate the effect of the various light curing units (plasma arc, halogen and light-emitting diodes) and irradiation methods (one-step, two-step and pulse) using different light energy densities on the leachability of unreacted monomers (Bis-GMA and UDMA) and the surface hardness of a composite resin (Z250, 3M). Leachability of the specimens immersed for 7 days in ethanol was analysed by HPLC. Vicker's hardness number (VHN) was measured immediately after curing (IC) and after immersion in ethanol for 7 days. Various irradiation methods with three curing units resulted in differences in the amount of leached monomers and VHN of IC when light energy density was lower than 17.0 J cm(-2) (P = 0.05). However, regardless of curing units and irradiation methods, these results were not different when the time or light energy density increased. When similar light energy density was irradiated (15.6-17.7 J cm(-2)), the efficiency of irradiation methods was different by the following order: one-step > or = two-step > pulse. These results suggest that the amount of leached monomers and VHN were influenced by forming polymer structure in activation and initiation stages of polymerization process with different light source energies and curing times.

  4. Influences of pretreatment and hard baking on the mechanical reliability of SU-8 microstructures

    International Nuclear Information System (INIS)

    Morikaku, Toshiyuki; Kaibara, Yoshinori; Inoue, Shozo; Namazu, Takahiro; Inoue, Masatoshi; Miura, Takuya; Suzuki, Takaaki; Oohira, Fumikazu

    2013-01-01

    In this paper, the influences of pretreatment and hard baking on the mechanical characteristics of SU-8 microstructures are described. Four types of samples with different combinations of O 2 plasma ashing, primer coating and hard baking were prepared for shear strength tests and uniaxial tensile tests. Specially developed shear test equipment was used to experimentally measure the shear adhesion strength of SU-8 micro posts on a glass substrate. The adhesiveness was strengthened by hard baking at 200 °C for 60 min, whereas other pretreatment processes hardly affected the strength. The pretreatment and hard baking effects on the adhesive strength were compared with those on the fracture strength measured by uniaxial tensile testing. There were no influences of O 2 plasma ashing on both the strengths, and primer coating affected only tensile strength. The primer coating effect as well as the hard baking effect on stress relaxation phenomena in uniaxial tension was observed as well. Fourier transform infrared spectroscopy demonstrated that surface degradation and epoxide-ring opening polymerization would have given rise to the primer coating effect and the hard baking effect on the mechanical characteristics, respectively. (paper)

  5. Influences of pretreatment and hard baking on the mechanical reliability of SU-8 microstructures

    Science.gov (United States)

    Morikaku, Toshiyuki; Kaibara, Yoshinori; Inoue, Masatoshi; Miura, Takuya; Suzuki, Takaaki; Oohira, Fumikazu; Inoue, Shozo; Namazu, Takahiro

    2013-10-01

    In this paper, the influences of pretreatment and hard baking on the mechanical characteristics of SU-8 microstructures are described. Four types of samples with different combinations of O2 plasma ashing, primer coating and hard baking were prepared for shear strength tests and uniaxial tensile tests. Specially developed shear test equipment was used to experimentally measure the shear adhesion strength of SU-8 micro posts on a glass substrate. The adhesiveness was strengthened by hard baking at 200 °C for 60 min, whereas other pretreatment processes hardly affected the strength. The pretreatment and hard baking effects on the adhesive strength were compared with those on the fracture strength measured by uniaxial tensile testing. There were no influences of O2 plasma ashing on both the strengths, and primer coating affected only tensile strength. The primer coating effect as well as the hard baking effect on stress relaxation phenomena in uniaxial tension was observed as well. Fourier transform infrared spectroscopy demonstrated that surface degradation and epoxide-ring opening polymerization would have given rise to the primer coating effect and the hard baking effect on the mechanical characteristics, respectively.

  6. Micro-turbines

    International Nuclear Information System (INIS)

    Tashevski, Done

    2003-01-01

    In this paper a principle of micro-turbines operation, type of micro-turbines and their characteristics is presented. It is shown their usage in cogeneration and three generation application with the characteristics, the influence of more factors on micro-turbines operation as well as the possibility for application in Macedonia. The paper is result of the author's participation in the training program 'Micro-turbine technology' in Florida, USA. The characteristics of different types micro-turbines by several world producers are shown, with accent on US micro-turbines producers (Capstone, Elliott). By using the gathered Author's knowledge, contacts and the previous knowledge, conclusions and recommendations for implementation of micro-turbines in Macedonia are given. (Author)

  7. Aespoe hard rock laboratory Sweden

    International Nuclear Information System (INIS)

    1992-01-01

    The aim of the new Aespoe hard rock laboratory is to demonstrate state of the art of technology and evaluation methods before the start of actual construction work on the planned deep repository for spent nuclear fuel. The nine country OECD/NEA project in the Stripa mine in Sweden has been an excellent example of high quality international research co-operation. In Sweden the new Aespoe hard rock laboratory will gradually take over and finalize this work. SKB very much appreciates the continued international participation in Aespoe which is of great value for the quality efficiency, and confidence in this kind of work. We have invited a number of leading experts to this first international seminar to summarize the current state of a number of key questions. The contributions show the great progress that has taken place during the years. The results show that there is a solid scientific basis for using this knowledge on site specific preparation and work on actual repositories. (au)

  8. Micro-mechanical properties of different sites on woodpecker's skull.

    Science.gov (United States)

    Ni, Yikun; Wang, Lizhen; Liu, Xiaoyu; Zhang, Hongquan; Lin, Chia-Ying; Fan, Yubo

    2017-11-01

    The uneven distributed microstructure featured with plate-like spongy bone in woodpecker's skull has been found to further help reduce the impact during woodpecker's pecking behavior. Therefore, this work was to investigate the micro-mechanical properties and composition on different sites of Great Spotted woodpecker's (GSW) skull. Different sites were selected on forehead, tempus and occiput, which were also compared with those of Eurasian Hoopoe (EH) and Lark birds (LB). Micro structural parameters assessed from micro computed tomography (μCT) occurred significantly difference between GSW, EH and LB. The micro finite element (micro-FE) models were developed and the simulation was performed as a compression process. The maximal stresses of GSW's micro-FE models were all lower than those of EH and LB respectively and few concentrated stresses were noticed on GSW's trabecular bone. Fourier transform infrared mapping suggesting a greater organic content in the occiput of GSW's cranial bone compared with others. The nano-hardness of the GSW's occiput was decreasing from forehead to occiput. The mechanical properties, site-dependent hardness distribution and special material composition of GSW's skull bone are newly found in this study. These factors may lead to a new design of bulk material mimicking these characteristics.

  9. Plasma-nitriding assisted micro-texturing into stainless steel molds

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Micro-texturing has grown up to be one of the most promising procedures. This related application required for large-area, fine micro-texturing onto the stainless steel mold materials. A new method other than laser-machining, micro-milling or micro-EDM was awaited for further advancement of this micro-texturing. In the present paper, a plasma nitriding assisted micro-texturing was developed to make various kinds of micro-patterns onto the martensitic stainless steels. First, original patterns were printed onto the surface of substrate by using the ink-jet printer. Then, the masked substrate was subjected to high density plasma nitriding; the un-masked surfaces were nitrided to have higher hardness. This nitrided substrate was further treated by sand-blasting to selectively dig the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel substrate was fabricated as a mold to duplicate these micro-patterns onto the work materials. The spatial resolution and depth profile controllability of this plasma nitriding assisted micro-texturing was investigated for variety of initial micro-patterns. The original size and dimension of initial micro-patterns were precisely compared with the three dimensional geometry of micro-textures after blasting treatment. The plastic cover case for smart cellular phones was employed to demonstrate how useful this processing is in practice.

  10. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  11. Development of radiation hard scintillators

    International Nuclear Information System (INIS)

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G.; Blackburn, R.

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro

  12. Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material

    Science.gov (United States)

    Ni, Xiu-ying; Zhao, Jun; Sun, Jia-lin; Gong, Feng; Li, Zuo-li

    2017-07-01

    The Al2O3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). Mechanical properties such as flexural strength, fracture toughness, and Vickers hardness were also measured. Results show that the main phases A12O3 and (W,Ti)C were detected by XRD. Compound MoNi also existed in sintered nanocomposites. The fracture modes of the nanocomposites were both intergranular and transgranular fractures. The plastic deformation of metal particles and crack bridging were the main toughening mechanisms. The maximum flexural strength and fracture toughness were obtained for 9vol% and 12vol% additions of Ni and Mo, respectively. The hardness of the composites reduced gradually with increasing content of metals Ni and Mo.

  13. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    Science.gov (United States)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2018-01-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  14. Micro-propulsion and micro-combustion; Micropropulsion microcombustion

    Energy Technology Data Exchange (ETDEWEB)

    Ribaud, Y.; Dessornes, O.

    2002-10-01

    The AAAF (french space and aeronautic association) organized at Paris a presentation on the micro-propulsion. The first part was devoted to the thermal micro-machines for micro drones, the second part to the micro-combustion applied to micro-turbines. (A.L.B.)

  15. Effect of Mo-Fe substitution on glass forming ability, thermal stability, and hardness of Fe-C-B-Mo-Cr-W bulk amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E.; Cheney, Justin L. [University of California, San Diego Materials Science and Engineering Program, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States); Vecchio, Kenneth S. [University of California, San Diego Department of NanoEngineering, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)], E-mail: kvecchio@ucsd.edu

    2008-08-25

    Amorphous Fe{sub 67-x}C{sub 10}B{sub 9}Mo{sub 7+x}Cr{sub 4}W{sub 3} (x = 1-7 at.%) plates with 640 {mu}m thickness were prepared by copper mold casting. The thermal properties and microstructural development during heat treatments were investigated by a combination of differential scanning calorimetry (DSC), differential thermal analysis, and X-ray diffractometry (XRD). The glass forming ability (GFA) and activation energy for crystallization have a distinct dependence on Mo content. Fe{sub 62}C{sub 10}B{sub 9}Mo{sub 12}Cr{sub 4}W{sub 3} is the best glass former in this study, demonstrating a supercooled liquid region, {delta}T{sub x} = 51 K, and an activation energy for crystallization, Q = 453 kJ/mol. The GFA of alloys in this system was governed by elastic strain optimization resulting directly from the variation in Mo content. Heat treatments were performed to demonstrate resistance to crystallization under typical processing conditions. Alloys in this system exhibited a three-phase evolution during crystallization. A second set of heat treatments was performed to identify each phase. Hardness data was collected at each of the heat treatment conditions, and a bulk metallic glasses (BMG)-derived composite containing a Mo-rich phase exhibited Vickers Hardness in excess of 2000. The fully amorphous alloys had an average hardness approaching 1500.

  16. Micro-hole drilling and cutting using femtosecond fiber laser

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2014-05-01

    Micro-hole drilling and cutting in ambient air are presented by using a femtosecond fiber laser. At first, the micro-hole drilling was investigated in both transparent (glasses) and nontransparent (metals and tissues) materials. The shape and morphology of the holes were characterized and evaluated with optical and scanning electron microscopy. Debris-free micro-holes with good roundness and no thermal damage were demonstrated with the aspect ratio of 8∶1. Micro-hole drilling in hard and soft tissues with no crack or collateral thermal damage is also demonstrated. Then, trench micromachining and cutting were studied for different materials and the effect of the laser parameters on the trench properties was investigated. Straight and clean trench edges were obtained with no thermal damage.

  17. Micro-Organ Device

    Science.gov (United States)

    Gonda, Steve R. (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  18. Micro-indentation fracture behavior of human enamel.

    Science.gov (United States)

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  19. Soft And Hard Skills of Social Worker

    OpenAIRE

    HANTOVÁ, Libuše

    2011-01-01

    The work deals with soft and hard skills relevant to the profession of social worker. The theoretical part at first evaluates and analyzes important soft and hard skills necessary for people working in the field of social work. Then these skills are compared. The practical part illustrates the use of soft and hard skills in practice by means of model scenes and deals with the preferences in three groups of people ? students of social work, social workers and people outside the sphere, namely ...

  20. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  1. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  2. Characterization and hardness of TiCu–Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing

    International Nuclear Information System (INIS)

    Akbarpour, Mohammad Reza; Hesari, Feridoun Alikhani

    2016-01-01

    In this research, the microstructural and phase evolutions during mechanical alloying (MA) and subsequent heat treatment of Cu–Ti powder mixture are investigated through x-ray diffraction, scanning electron microscopy, transmission electron microscopy and micro-hardness measurements. The obtained experimental results demonstrated that after an optimum MA time of 30 h, TiCu intermetallic compound was achieved with a mean grain size of ≈8 nm and a high micro-hardness value of ≈634 Hv. Annealing the milled powder at different temperatures resulted in formation of major TiCu and Ti 2 Cu 3 , and minor Ti 2 Cu and Cu 4 Ti nanocrystalline phases, release of internal strain, and coarsening of grains. The amount of TiCu phase and the grain size increased with increase of the annealing temperature. Micro-hardness value of ≈765 Hv was recorded when the milled TiCu powder was annealed at 850 °C. This superior high micro-hardness value can be attributed to formation of higher amount of TiCu phase. (paper)

  3. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology

    OpenAIRE

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Background Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This pap...

  4. 'Micro-8' micro-computer system

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Nakahara, Yoshinori; Yamada, Takayuki; Takeuchi, Norio; Koyama, Kinji

    1978-08-01

    The micro-computer Micro-8 system has been developed to organize a data exchange network between various instruments and a computer group including a large computer system. Used for packet exchangers and terminal controllers, the system consists of ten kinds of standard boards including a CPU board with INTEL-8080 one-chip-processor. CPU architecture, BUS architecture, interrupt control, and standard-boards function are explained in circuit block diagrams. Operations of the basic I/O device, digital I/O board and communication adapter are described with definitions of the interrupt ramp status, I/O command, I/O mask, data register, etc. In the appendixes are circuit drawings, INTEL-8080 micro-processor specifications, BUS connections, I/O address mappings, jumper connections of address selection, and interface connections. (author)

  5. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  6. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  7. Hard disks with SCSI interface

    CERN Document Server

    Denisov, O Yu

    1999-01-01

    The testing of 20 models of hard SCSI-disks is carried out: the Fujitsu MAE3091LP; the IBM DDRS-39130, DGHS-318220, DNES-318350, DRHS-36V and DRVS-18V; the Quantum Atlas VI 18.2; the Viking 11 9.1; the Seagate ST118202LW, ST118273LW, ST118273W, ST318203LW, ST318275LW, ST34520W, ST39140LW and ST39173W; and the Western Digital WDE9100-0007, WDE9100-AV0016, WDE9100-AV0030 and WDE9180-0048. All tests ran under the Windows NT 4.0 workstation operating system with Service Pack 4, under video mode with 1024*768 pixel resolution, 32- bit colour depth and V-frequency equal to 85 Hz. The detailed description and characteristics of SCSI stores are presented. Test results (ZD Winstone 99 and ZD WinBench 99 tests) are given in both table and diagram (disk transfer rate) forms. (0 refs).

  8. Development of a hard microcontroller

    International Nuclear Information System (INIS)

    Measel, P.R.; Sivo, L.L.; Quilitz, W.E.; Davidson, T.K.

    1976-01-01

    The applicability of commercially available microprocessors to certain systems requiring radiation survival was assessed. A microcontroller was designed and built to perform a monitor and control function of military operational ground equipment, and demonstrated to exceed the radiation hardness goal. The preparation of the microcontroller module required hardware and software design, selection of LSI and other piece part types, development of piece part and module electrical and radiation test techniques, and the performance of radiation tests on the LSI piece parts and the completed module. The microcontroller has a 16-bit central processor unit, a 4096 word read only memory, and a 256 word read-write memory. The module has circumvention circuitry, including a PIN diode radiation detector. The processor device used was the MMI 6701 T 2 L Schottky bipolar 4-bit slice. Electrical exerciser circuits were developed for in-situ electrical testing of microprocessors and memories during irradiation. A test program was developed for a Terradyne J283 microcircuit tester for more complete electrical characterization of the MMI 6701 microprocessor. A simple self-test algorithm was used in the microcontroller for performance testing during irradiation. For the operational demonstration of the microcontroller a TI 960A minicomputer was used to provide the required complex inputs to the module and verify the module outputs

  9. Building memristive and radiation hardness TiO{sub 2}-based junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ghenzi, N., E-mail: n.ghenzi@gmail.com [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Rubi, D. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Mangano, E.; Gimenez, G. [Instituto Nacional de Tecnología Industrial (INTI) (Argentina); Lell, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Zelcer, A. [Gerencia Química, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Stoliar, P. [ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); IMN, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes (France); and others

    2014-01-01

    We study micro-scale TiO{sub 2} junctions that are suitable to be used as resistive random-access memory nonvolatile devices with radiation hardness memristive properties. The fabrication and structural and electrical characterization of the junctions are presented. We obtained a retentivity of 10{sup 5} s, an endurance of 10{sup 4} cycles and reliable switching with short electrical pulses (time-width below 10 ns). Additionally, the devices were exposed to 25 MeV oxygen ions. Then, we performed electrical measurements comparing pristine and irradiated devices in order to check the feasibility of using these junctions as memory elements with memristive and radiation hardness properties. - Highlights: • We fabricated radiation hardness memristive metal insulator metal junctions. • We characterized the structural properties of the devices. • We showed the feasibility of the junctions as a non-volatile memory.

  10. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  11. A top-down approach for the prediction of hardness and toughness of hierarchical materials

    International Nuclear Information System (INIS)

    Carpinteri, Alberto; Paggi, Marco

    2009-01-01

    Many natural and man-made materials exhibit structure over more than one length scale. In this paper, we deal with hierarchical grained composite materials that have recently been designed to achieve superior hardness and toughness as compared to their traditional counterparts. Their nested structure, where meso-grains are recursively composed of smaller and smaller micro-grains at the different scales with a fractal-like topology, is herein studied from a hierarchical perspective. Considering a top-down approach, i.e. from the largest to the smallest scale, we propose a recursive micromechanical model coupled with a generalized fractal mixture rule for the prediction of hardness and toughness of a grained material with n hierarchical levels. A relationship between hardness and toughness is also derived and the analytical predictions are compared with experimental data.

  12. Complex technique for materials hardness measurement

    Energy Technology Data Exchange (ETDEWEB)

    Krashchenko, V P; Oksametnaya, O B

    1984-01-01

    A review of existing methods of measurement of material hardness in national and foreign practice has been made. A necessity of improving the technique of material hardness measurement in a wide temperature range and insuring load change with indenting, continuity of imprint application, smooth changing of temperatures along a sample length, and deformation rate control has been noted.

  13. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  14. ERRATUM: Work smart, wear your hard hat

    CERN Multimedia

    2003-01-01

    An error appeared in the article «Work smart, wear your hard hat» published in Weekly Bulletin 27/2003, page 5. The impact which pierced a hole in the hard hat worn by Gerd Fetchenhauer was the equivalent of a box weighing 5 kg and not 50 kg.

  15. 7 CFR 201.57 - Hard seeds.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.57 Hard seeds. Seeds which remain hard at the end of the prescribed test because they have not absorbed water, due to an impermeable seed coat... percentage of germination. For flatpea, continue the swollen seed in test for 14 days when germinating at 15...

  16. Metal oxide multilayer hard mask system for 3D nanofabrication

    Science.gov (United States)

    Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko

    2018-02-01

    We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

  17. Thermal spray coatings replace hard chrome

    International Nuclear Information System (INIS)

    Schroeder, M.; Unger, R.

    1997-01-01

    Hard chrome plating provides good wear and erosion resistance, as well as good corrosion protection and fine surface finishes. Until a few years ago, it could also be applied at a reasonable cost. However, because of the many environmental and financial sanctions that have been imposed on the process over the past several years, cost has been on a consistent upward trend, and is projected to continue to escalate. Therefore, it is very important to find a coating or a process that offers the same characteristics as hard chrome plating, but without the consequent risks. This article lists the benefits and limitations of hard chrome plating, and describes the performance of two thermal spray coatings (tungsten carbide and chromium carbide) that compared favorably with hard chrome plating in a series of tests. It also lists three criteria to determine whether plasma spray or hard chrome plating should be selected

  18. Correlating particle hardness with powder compaction performance.

    Science.gov (United States)

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  19. Vascular imaging with contrast agent in hard and soft tissues using microcomputed-tomography.

    Science.gov (United States)

    Blery, P; Pilet, P; Bossche, A Vanden-; Thery, A; Guicheux, J; Amouriq, Y; Espitalier, F; Mathieu, N; Weiss, P

    2016-04-01

    Vascularization is essential for many tissues and is a main requisite for various tissue-engineering strategies. Different techniques are used for highlighting vasculature, in vivo and ex vivo, in 2-D or 3-D including histological staining, immunohistochemistry, radiography, angiography, microscopy, computed tomography (CT) or micro-CT, both stand-alone and synchrotron system. Vascularization can be studied with or without a contrast agent. This paper presents the results obtained with the latest Skyscan micro-CT (Skyscan 1272, Bruker, Belgium) following barium sulphate injection replacing the bloodstream in comparison with results obtained with a Skyscan In Vivo 1076. Different hard and soft tissues were perfused with contrast agent and were harvested. Samples were analysed using both forms of micro-CT, and improved results were shown using this new micro-CT. This study highlights the vasculature using micro-CT methods. The results obtained with the Skyscan 1272 are clearly defined compared to results obtained with Skyscan 1076. In particular, this instrument highlights the high number of small vessels, which were not seen before at lower resolution. This new micro-CT opens broader possibilities in detection and characterization of the 3-D vascular tree to assess vascular tissue engineering strategies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  20. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology.

    Science.gov (United States)

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This paper discusses the use of the neutral electrolyzed oxidizing water (EOW) as a biocide for the disinfection of diagnostic rooms and equipment. The CT and MRI rooms were aerosolized with EOW using aerosolization device. The presence of micro-organisms before and after the aerosolization was recorded with the help of sedimentation and cyclone air sampling. Total body count (TBC) was evaluated in absolute and log values. The number of micro-organisms in hospital rooms was low as expected. Nevertheless, a possible TBC reduction between 78.99-92.50% or 50.50-70.60% in log values was recorded. The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of micro-organisms and consequently the possibility of hospital infections. It has also demonstrated that the sedimentation procedure is insufficient for the TBC determination. The use of Biocide aerosolization proved to be efficient and safe in all applied ways. Also, no eventual damage to exposed devices or staff was recorded.

  1. Search for Bs0 --> micro+ micro- and B0 --> micro+ micro- decays with 2 fb-1 of pp collisions.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-14

    We have performed a search for B(s)(0) --> micro(+) micro(-) and B(0) --> micro(+) micro(-) decays in pp collisions at square root s = 1.96 TeV using 2 fb(-1) of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron Collider. The observed number of B(s)(0) and B0 candidates is consistent with background expectations. The resulting upper limits on the branching fractions are B(B(s)0) --> micro(+) micro(-)) micro(+) micro(-))<1.8 x 10(-8) at 95% C.L.

  2. Micro Elector Mechanical Systems

    International Nuclear Information System (INIS)

    Yun, Jun Bo; Jo, Il Ju; Choi, Yoon Seok

    1996-09-01

    This book consists of seven chapters, which are the flow of the age from macro world to micro world, what is MEMS, semiconductor, micro machining and MEMS, where do MEMS goes to?, How to make MEMS, MEMS in the future and knowing about MEMS more than. This book is written to explain in ease and fun. It deals with MEMS in IT, BT, NT, ST, micro robot technology, basic process for making MEMS such as Bulk micromachining, surface micromachining LGA technology, DARPA and organization in domestic and overseas and academy and journal related MEMS.

  3. Plasma carburizing with surface micro-melting

    Science.gov (United States)

    Balanovsky, A. E.; Grechneva, M. V.; Van Huy, Vu; Ponomarev, B. B.

    2018-03-01

    This paper presents carburizing the surface of 20 low carbon steel using electric arc and graphite prior. A carbon black solution was prepared with graphite powder and sodium silicate in water. A detailed analysis of the phase structure and the distribution profile of the sample hardness after plasma treatment were given. The hardened layer consists of three different zones: 1 – the cemented layer (thin white zone) on the surface, 2 – heat-affected zone (darkly etching structure), 3 – the base metal. The experimental result shows that the various microstructures and micro-hardness profiles were produced depending on the type of graphite coating (percentage of liquid glass) and processing parameters. The experiment proved that the optimum content of liquid glass in graphite coating is 50–87.5%. If the amount of liquid glass is less than 50%, adhesion to metal is insufficient. If liquid glass content is more than 87.5%, carburization of a metal surface does not occur. A mixture of the eutectic lamellar structure, martensite and austenite was obtained by using graphite prior with 67% sodium silicate and the levels of the hardness layer increased to around 1000 HV. The thickness of the cemented layer formed on the surface was around 200 μm. It is hoped that this plasma surface carburizing treatment could improve the tribological resistance properties.

  4. Micro and nanohardness testing of laser welds

    Czech Academy of Sciences Publication Activity Database

    Šebestová, H.; Čtvrtlík, Radim; Chmelíčková, H.; Tomáštík, J.

    2014-01-01

    Roč. 15, č. 3 (2014), s. 247-253 ISSN 1454-9069 R&D Projects: GA TA ČR TA01010517 Institutional support: RVO:68378271 Keywords : Vickers microhardness * depth sensing indentation * laser welding Subject RIV: JP - Industrial Processing Impact factor: 1.658, year: 2014

  5. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  6. Micro-educational reproduction

    DEFF Research Database (Denmark)

    Andrade, Stefan Bastholm; Thomsen, Jens Peter

    2017-01-01

    This study analyzes the persistence of educational inequality in advanced industrialized societies with expanding and differentiated education systems. Using Denmark as a case, we investigate changes in immobility patterns for cohorts born 1960–1981 and develop a new micro-educational classificat...... forms of reproduction. In addition, the micro-educational approach far better explains the immobility of sons than it explains that of daughters, revealing important gender differences in the immobility patterns for sons and daughters......., in particular for sons. We also find great variation in immobility for specific micro-educations within the university level. Studies of educational immobility would therefore benefit from paying attention to micro-educational classifications, because they capture patterns of multidimensional, disaggregated...

  7. Micro metal forming

    CERN Document Server

    2013-01-01

    Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...

  8. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad; Masri, Assaad Rachid

    2014-01-01

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable

  9. Micro Wire-Drawing: Experiments And Modelling

    International Nuclear Information System (INIS)

    Berti, G. A.; Monti, M.; Bietresato, M.; D'Angelo, L.

    2007-01-01

    In the paper, the authors propose to adopt the micro wire-drawing as a key for investigating models of micro forming processes. The reasons of this choice arose in the fact that this process can be considered a quasi-stationary process where tribological conditions at the interface between the material and the die can be assumed to be constant during the whole deformation. Two different materials have been investigated: i) a low-carbon steel and, ii) a nonferrous metal (copper). The micro hardness and tensile tests performed on each drawn wire show a thin hardened layer (more evident then in macro wires) on the external surface of the wire and hardening decreases rapidly from the surface layer to the center. For the copper wire this effect is reduced and traditional material constitutive model seems to be adequate to predict experimentation. For the low-carbon steel a modified constitutive material model has been proposed and implemented in a FE code giving a better agreement with the experiments

  10. Micro-surgical endodontics.

    Science.gov (United States)

    Eliyas, S; Vere, J; Ali, Z; Harris, I

    2014-02-01

    Non-surgical endodontic retreatment is the treatment of choice for endodontically treated teeth with recurrent or residual disease in the majority of cases. In some cases, surgical endodontic treatment is indicated. Successful micro-surgical endodontic treatment depends on the accuracy of diagnosis, appropriate case selection, the quality of the surgical skills, and the application of the most appropriate haemostatic agents and biomaterials. This article describes the armamentarium and technical procedures involved in performing micro-surgical endodontics to a high standard.

  11. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  12. Urban micro-grids

    International Nuclear Information System (INIS)

    Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel

    2017-02-01

    ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases

  13. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    OpenAIRE

    Gerda Vaitkūnaitė; Vladislav Markovič; Olegas Černašėjus

    2015-01-01

    The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS) method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treat...

  14. Effect of Repeated Microwave Disinfection on Surface Hardness and Dimensional Accuracy of Two Dental Stone Materials

    Directory of Open Access Journals (Sweden)

    Mahmood Robati Anaraki

    2015-01-01

    Full Text Available There is controversial evidence in relation to the effect of microwave on mechanical properties of stone casts. The present study was designed to evaluate the effect of repeated microwave disinfection on surface hardness and dimensional accuracy of dental stone. In this in vitro study, 48 cylindrical stone samples were prepared using two products of type IV stone to assess surface hardness and 48 impressions were taken from a model and poured by these stones to assess the dimensional accuracy. The evaluation of the samples was carried out consequently by a micro-hardness tester and a digital caliper after the stone samples were exposed to 7 consecutive rounds of 900 watts (W microwave irradiation for five minutes each time after cooling. Data were analyzed by t-test and ANOVA. According to the obtained results, multiple disinfections of the stone casts by microwave do not negatively affect their surface hardness and dimensional accuracy.   Key words: Dental stone; Dimensional accuracy; Hardness; Microwave

  15. Weibull modulus of hardness, bend strength, and tensile strength of Ni−Ta−Co−X metallic glass ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Henry J., E-mail: hjn2@case.edu [Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH (United States); Petersen, Alex S.; Cheung, Andrew M.; Poon, S. Joseph; Shiflet, Gary J. [University of Virginia, 395 McCormick Road, P.O. Box 400745, Charlottesville, VA 22904 (United States); Widom, Mike [Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213 (United States); Lewandowski, John J. [Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH (United States)

    2015-05-14

    In this study, the variations in mechanical properties of Ni−Co−Ta-based metallic glasses have been analyzed. Three different chemistries of metallic glass ribbons were analyzed: Ni{sub 45}Ta{sub 35}Co{sub 20}, Ni{sub 40}Ta{sub 35}Co{sub 20}Nb{sub 5}, and Ni{sub 30}Ta{sub 35}Co{sub 30}Nb{sub 5}. These alloys possess very high density (approximately 12.5 g/cm{sup 3}) and very high strength (e.g. >3 GPa). Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) were used to characterize the amorphicity of the ribbons. Mechanical properties were measured via a combination of Vickers hardness, bending strength, and tensile strength for each chemistry. At least 50 tests were conducted for each chemistry and each test technique in order to quantify the variability of properties using both 2- and 3-parameter Weibull statistics. The variability in properties and their source(s) were compared to that of other engineering materials, while the nature of deformation via shear bands as well as fracture surface features have been determined using scanning electron microscopy (SEM). Toughness, the role of defects, and volume effects are also discussed.

  16. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  17. Hard X-ray Photoelectric Polarimeter

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to determine the gas mixtures and pressures that would enable a sensitive, hard X-ray polarimeter using existing flight components with the goal of...

  18. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  19. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... it free Find out why Close Why Are Drugs So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed ...

  20. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... YouTube Red. Working... Not now Try it free Find out why Close Why Are Drugs So Hard ... hotline to help you or a loved one find treatment. For more information, visit http://www.easyread. ...

  1. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe ...

  2. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Feb 7, 2012 Quitting drugs is hard because addiction is a brain disease. Your brain is like ... out signals to direct your actions and choices. Addiction changes the signals in your brain and makes ...

  3. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Drugs So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe ...

  4. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... in your brain and makes it hard to feel OK without the drug. This video from NIDA ... Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign in to ...

  5. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on Feb 7, 2012 Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower ...

  6. A theoretical overview on single hard diffraction

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1996-01-01

    The concept of the Pomeron structure function and its application in Single Hard Diffraction at hadron colliders and in diffractive Deep Inelastic Scattering is critically reviewed. Some alternative approaches are briefly surveyed with a focus on QCD inspired models

  7. Double hard scattering without double counting

    International Nuclear Information System (INIS)

    Diehl, Markus; Gaunt, Jonathan R.

    2017-02-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  8. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  9. Hard scattering and gauge/string duality

    International Nuclear Information System (INIS)

    Polchinski, Joseph; Strassler, Matthew J.

    2002-01-01

    We consider high-energy fixed-angle scattering of glueballs in confining gauge theories that have supergravity duals. Although the effective description is in terms of the scattering of strings, we find that the amplitudes are hard (power law). This is a consequence of the warped geometry of the dual theory, which has the effect that in an inertial frame the string process is never in the soft regime. At small angle we find hard and Regge behaviors in different kinematic regions

  10. Soft skills, hard skills, and individual innovativeness

    DEFF Research Database (Denmark)

    Hendarman, Achmad Fajar; Cantner, Uwe

    2018-01-01

    of Indonesian firms from different industries are used from an online survey on manager and worker perceptions related to individual innovation performance on the one hand and individual skills on the other hand. The results show that soft skills and hard skills are significantly and positively associated...... with individual level innovativeness. However, no complementarity (positive interaction effect) is found between soft skills and hard skills....

  11. Hard template synthesis of metal nanowires

    OpenAIRE

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production o...

  12. Radiation-Hard Quartz Cerenkov Calorimeters

    International Nuclear Information System (INIS)

    Akgun, U.; Onel, Y.

    2006-01-01

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment

  13. Radiation hard memory cell and array thereof

    International Nuclear Information System (INIS)

    Gunckel, T.L. II; Rovell, A.; Nielsen, R.L.

    1978-01-01

    A memory cell configuration that is implemented to be relatively hard to the adverse effects of a nuclear event is discussed. The presently disclosed memory cell can be interconnected with other like memory cells to form a high speed radiation hard register file. Information is selectively written into and read out of a memory cell comprising the register file, which memory cell preserves previously stored data without alteration in the event of exposure to high levels of nuclear radiation

  14. Correlation between intrinsic hardness and defect structures of ion irradiated Fe alloys

    International Nuclear Information System (INIS)

    Shin, C.; Jin, H. H.; Kwon, J.

    2008-01-01

    Evolution of micro structures and mechanical properties during an in-service irradiation is one of the key issues to be addressed in nuclear materials. Ion irradiation is an effective method to study these irradiation effects thanks to an ease in handling post-irradiated specimens. But the characteristics of an ion irradiation pose a certain difficulty in evaluating irradiation effects. For example, ion irradiated region extends only a few hundred nano-meters from the surface of a sample and the depth profile of an irradiation damage level is quite heterogeneous. Thus it requires special care to quantify the changes in properties after an ion irradiation. We measured changes in a hardness by using a nano-indentation combined with a continuous stiffness measurement (CSM technique. Although the SM technique allows for a continuous measurement of hardness along penetration depth of an indenter; it is difficult to obtain an intrinsic hardness of an irradiation hardened region because one is measuring hardness of a hard layer located on a soft matrix. Thus we modeled the nano-indentation test by using a finite element method. We can extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. We investigated the irradiation effects on Fe-Cr binary alloy by using the methods mentioned above. TEM analysis revealed that an irradiation forms dislocation loops with Burgers vector of and 1/2 . These loops varied in size and density with the Cr content and dose level. We discuss in detail a correlation between the measured irradiation-induced changes in the surface hardness and an irradiation induced defect. (authors)

  15. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  16. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  17. Hardness and stability of a carburized surface layer on AISI 316L stainless steel after irradiation in a spallation neutron environment

    International Nuclear Information System (INIS)

    McClintock, David A.; Hyres, James W.; Vevera, Bradley J.

    2014-01-01

    The inner surfaces of mercury target vessels at the Spallation Neutron Source (SNS) experience material erosion caused by proton-beam induced cavitation of the liquid mercury. One approach developed and deployed to inhibit erosion of the target vessel material was surface hardening via a proprietary low-temperature carburization treatment, called Kolsterising®, to the target surfaces most susceptible to cavitation-induced erosion. Previous testing has shown that the hardened surface produced by the Kolsterising® treatment can delay the onset of erosion and inhibit erosion once initiated. But the stability of the carbon atmosphere in the treated surface layer after radiation to doses prototypic to the SNS target was unknown. Therefore, as part of the target Post Irradiation Examination program at the SNS, optical microscopy and microhardness testing were performed on material sampled from the first and second operational SNS target vessels. Optical micrographs contained no noticeable precipitation in the super-saturated carbon layer extending into the base material and several micrographs contained evidence of a proposed mechanism for mass wastage from the vessel surface. The hardened layer was characterized using Vickers microhardness testing and results show that the shape of hardness profile of the treated layer corresponded well with known pre-irradiation hardness values, though the microhardness results show some hardening occurred during irradiation. The results suggest that the hardened surface layer produced by the Kolsterising® treatment is stable at the operational temperatures and dose levels experienced by the first and second operational SNS target modules

  18. Barbed micro-spikes for micro-scale biopsy

    Science.gov (United States)

    Byun, Sangwon; Lim, Jung-Min; Paik, Seung-Joon; Lee, Ahra; Koo, Kyo-in; Park, Sunkil; Park, Jaehong; Choi, Byoung-Doo; Seo, Jong Mo; Kim, Kyung-ah; Chung, Hum; Song, Si Young; Jeon, Doyoung; Cho, Dongil

    2005-06-01

    Single-crystal silicon planar micro-spikes with protruding barbs are developed for micro-scale biopsy and the feasibility of using the micro-spike as a micro-scale biopsy tool is evaluated for the first time. The fabrication process utilizes a deep silicon etch to define the micro-spike outline, resulting in protruding barbs of various shapes. Shanks of the fabricated micro-spikes are 3 mm long, 100 µm thick and 250 µm wide. Barbs protruding from micro-spike shanks facilitate the biopsy procedure by tearing off and retaining samples from target tissues. Micro-spikes with barbs successfully extracted tissue samples from the small intestines of the anesthetized pig, whereas micro-spikes without barbs failed to obtain a biopsy sample. Parylene coating can be applied to improve the biocompatibility of the micro-spike without deteriorating the biopsy function of the micro-spike. In addition, to show that the biopsy with the micro-spike can be applied to tissue analysis, samples obtained by micro-spikes were examined using immunofluorescent staining. Nuclei and F-actin of cells which are extracted by the micro-spike from a transwell were clearly visualized by immunofluorescent staining.

  19. Short-pulse-width micromachining of hard materials using DPSS Nd:YAG lasers

    Science.gov (United States)

    Heglin, Michael; Govorkov, Sergei V.; Scaggs, Michael J.; Theoharidis, Haris; Schoelzel, T.

    2002-06-01

    The material processing of an industrial, short-pulse duration DPPS YAG laser producing peak powers greater than 0.2MW is discussed in this paper. This peak power provides sufficient materials processing capability to meet the micro machining needs in the automotive, semiconductor, micro- electronic, medical and telecommunication industries. All hard and soft materials including: plastics, metals, ceramics, diamond and other crystalline materials are suitable candidates for the processing capability of this laser. Micro level features can be machined in these materials to a depth in excess of 1mm with high quality results. In most applications feature sizes can be achieved that are not possible or economical with existing technologies. The optical beam delivery system requirements, and overall micro-machining set-up are also described. The drilling and cutting versatility down to feature sizes of less than 7 micrometers , as well as, complex shapes are shown. The wavelength, pulse length, and peakpower are described and relate to their effect on recast, micro-cracking and material removal rates. Material removal effects related to progressive penetration into the material will be reviewed. The requirements of this DPSS laser technology to meet the operational requirements for high duty cycle operation in industrial environments is covered along with processing flexibility and lower operating cost.

  20. Experimental study of micro dimple fabrication based on laser shock processing

    Science.gov (United States)

    Li, Kangmei; Hu, Yongxiang; Yao, Zhenqiang

    2013-06-01

    Micro-dimple array has been generally considered as a valuable texture for sliding surfaces. It can improve lubrication and reduce wear by acting as reservoirs of lubricants and grinding debris. Laser shock processing (LSP) is an innovative process which can not only improve fatigue, corrosion and wearing resistance but also shape metallic parts accurately. In this study, a new process for the fabrication of micro dimples based on LSP was proposed, which was named as laser peen texturing (LPT). Experiments were performed on 2024 aluminum alloy, Oxygen-Free High Conductivity (OFHC) copper and SUS304 stainless steel to study the effects of processing parameters of LPT on surface integrity of the specimen. Surface morphology, micro hardness and microstructure of the micro dimples were investigated under various laser power densities, laser spot diameters and repeated shock numbers. It was found that the depth of the micro dimples induced by LPT is strongly dependent on material properties. The diameter, depth as well as aspect ratio of micro dimples were increased with the laser power density and the repeated shock number under the conditions in this study. But when the laser spot diameter changed, the variation laws of the diameter, depth and aspect ratio of the dimple were different from each other. The results of micro hardness measurements suggested that LPT is beneficial for the improvement of the micro hardness beneath the dimple. Grain refinement was found significantly on 2024 aluminum alloy and OFHC copper but not clearly on SUS304 stainless steel. Both the hardening effect and the grain refinement have close relationship with the depth of the micro dimple.

  1. Evaluation of the surface hardness of composite resins before and after polishing at different times Avaliação da dureza superficial de resinas compostas antes e após o polimento em diferentes tempos

    Directory of Open Access Journals (Sweden)

    Michelle Alexandra Chinelatti

    2006-06-01

    Full Text Available PURPOSE: The aim of this study was to evaluate the surface hardness of six composite resins: Revolution, Natural Flow, Fill Magic Flow, Flow-it! (flowables, Silux Plus (microfilled and Z100 (minifilled before and after polishing at different times. MATERIALS AND METHODS: For this purpose, 240 specimens (5mm diameter, 1.4mm high were prepared. Vickers hardness was determined before and after polishing at different times: immediately, 24h, 7 and 21 days after preparation of the samples. Statistical analysis was performed by ANOVA and Tukey test. RESULTS: There was no difference in the hardness of flowable resins, which had lower hardness than the minifilled resin. The minifilled resin showed the highest surface hardness as compared to the other materials (pPROPOSIÇÃO: O objetivo deste estudo foi avaliar a dureza superficial de seis resinas compostas - Revolution, Natural Flow, Fill Magic Flow, Flow-it! (flowables, Silux Plus (micropartículas e Z100 (híbrida - antes e após o polimento realizado em diferentes tempos. MATERIAL E MÉTODO: Foram confeccionados 240 corpos-de-prova circulares (5mm de diâmetro e 1,4mm de altura. A dureza Vickers foi obtida antes e após o polimento realizado em diferentes tempos: imediatamente, 24 horas, 7 dias e 21 dias após a confecção do corpo-de-prova. Os dados foram analisados estatisticamente por meio da ANOVA e do Teste de Tukey. RESULTADOS: Não houve diferença entre as resinas compostas flowable, as quais apresentaram os menores valores de dureza. A resina composta híbrida demonstrou os melhores resultados. Todos os materiais exibiram aumento de dureza após a realização do polimento, que foi mais evidente após 7 dias. CONCLUSÃO: Pôde-se concluir que, independente do tipo de resina composta, a dureza superficial foi consideravelmente maior quando o polimento foi realizado 1 semana após a confecção dos corpos-de-prova.

  2. Etch Defect Characterization and Reduction in Hard-Mask-Based Al Interconnect Etching

    International Nuclear Information System (INIS)

    Lee, H.J.; Hung, C.L.; Leng, C.H.; Lian, N.T.; Young, L.W.

    2009-01-01

    This paper identifies the defect adders, for example, post hard-mask etch residue, post metal etch residue, and blocked etch metal island and investigates the removal characteristics of these defects within the oxide-masked Al etching process sequence. Post hard-mask etch residue containing C atom is related to the hardening of photoresist after the conventional post-RIE ashing at 275 degree C. An in situ O 2 -based plasma ashing on RIE etcher was developed to prevent the photoresist hardening from the high-ashing temperature; followed wet stripping could successfully eliminate such hardened polymeric residue. Post metal etch residue was caused from the attack of the Al sidewall by Cl atoms, and too much CHF 3 addition in the Al main etch step passivated the surface of Al resulting in poor capability to remove the Al-containing residue. The lower addition of CHF 3 in the Al main etch step would benefit from the residue removal. One possibility of blocked etch metal island creating was due to the micro masking formed on the opening of Ti N during the hard-mask patterning. We report that an additional Ti N surface pretreatment with the Ar/CHF 3 /N 2 plasmas could reduce the impact of the micro masking residues on blocked metal etch.

  3. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    Science.gov (United States)

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  4. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  5. A novel micro wiggler

    International Nuclear Information System (INIS)

    Liu Qingxiang; Xu Yong

    1995-01-01

    A novel structure of the micro-wiggler is presented. The authors developed a simplified theoretical model of the micro-wiggler. According to the model, an analytic formula of the magnetic field in two dimensions is got. A calculated program (PWMW-I) is developed from the formula. PWMW-I can calculate the field on the axis and the off-axis for the number of periods N, and the entrance or the exit of the micro-wiggler. Three model with different period (10 mm, 5 mm and 3 mm) is designed on the program. The 5T peak field for the period of 3 mm at the gap of 1 mm is got

  6. Micro Mobility Marketing

    DEFF Research Database (Denmark)

    Hosbond, Jens Henrik; Skov, Mikael B.

    2008-01-01

    , in our case a medium-sized retail supermarket. Two prototypes based on push and pull marketing strategies are implemented and evaluated. Taking outset in a synthesis of central issues in contemporary research on mobile marketing, we discuss their role in micro mobility marketing to point to similarities......Mobile marketing refers to marketing of services or goods using mobile technology and mobile marketing holds potentially great economical opportunities. Traditionally, mobile marketing has been viewed as mobility in the large taking place virtually anywhere, anytime. Further, research shows...... considerable number of studies on push-based SMS mobile marketing campaigns. This paper explores a related yet different form of mobile marketing namely micro mobility marketing. Micro mobility marketing denotes mobility in the small, meaning that promotion of goods takes place within a circumscribed location...

  7. Methods and systems for micro machines

    Energy Technology Data Exchange (ETDEWEB)

    Stalford, Harold L.

    2018-03-06

    A micro machine may be in or less than the micrometer domain. The micro machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft is operable to be driven by the micro actuator. A tool is coupled to the micro shaft and is operable to perform work in response to at least motion of the micro shaft.

  8. Novel hard compositions and methods of preparation

    Science.gov (United States)

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  9. Micro energy harvesting

    CERN Document Server

    Briand, Danick; Roundy, Shad

    2015-01-01

    With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, e

  10. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  11. Micro-RNAs

    DEFF Research Database (Denmark)

    Taipaleenmäki, H.; Hokland, L. B.; Chen, Li

    2012-01-01

    Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, a novel class of regulatory factors termed microRNAs has been identified as playing an important role in the regulation of many aspects of osteoblast biology...... including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass. This review highlights the current knowledge of microRNA biology and their role in bone formation...

  12. Lectures in Micro Meteorology

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling

    This report contains the notes from my lectures on Micro scale meteorology at the Geophysics Department of the Niels Bohr Institute of Copenhagen University. In the period 1993-2012, I was responsible for this course at the University. At the start of the course, I decided that the text books...... available in meteorology at that time did not include enough of the special flavor of micro meteorology that characterized the work of the meteorology group at Risø (presently of the Institute of wind energy of the Danish Technical University). This work was focused on Boundary layer flows and turbulence...

  13. Micro-manufacturing: design and manufacturing of micro-products

    National Research Council Canada - National Science Library

    Koç, Muammer; Özel, Tuğrul

    2011-01-01

    .... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...

  14. Micro-Avionics Multi-Purpose Platform (MicroAMPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro-Avionics Multi-Purpose Platform (MicroAMPP) is a common avionics architecture supporting microsatellites, launch vehicles, and upper-stage carrier...

  15. Structure of catalase determined by MicroED

    Science.gov (United States)

    Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir

    2014-01-01

    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. DOI: http://dx.doi.org/10.7554/eLife.03600.001 PMID:25303172

  16. Structure, production and properties of high-melting compounds and systems (hard materials and hard metals)

    International Nuclear Information System (INIS)

    Holleck, H.; Thuemmler, F.

    1979-07-01

    The report contains contributions by various authors to the research project on the production, structure, and physical properties of high-melting compounds and systems (hard metals and hard materials), in particular WC-, TaC-, and MoC-base materials. (GSCH) [de

  17. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  18. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  19. Aespoe Hard Rock Laboratory. Annual Report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The Aespoe Hard Rock Laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual Report 1993 for the Aespoe Hard Rock Laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are carried out in parallel. As of December 1993, 2760 m of the tunnel had been excavated to a depth of 370 m below the surface. An important and integral part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. Detailed plans have been prepared for several experiments to be conducted after the end of the construction work. Eight organizations from seven countries are now participating in the work at the Aespoe Hard Rock Laboratory and are contributing in different ways to the results being achieved

  20. Hard template synthesis of metal nanowires

    Directory of Open Access Journals (Sweden)

    Go eKawamura

    2014-11-01

    Full Text Available Metal nanowires (NWs have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  1. Hard template synthesis of metal nanowires

    Science.gov (United States)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  2. Liquid agents for dispersion of hard alloys

    International Nuclear Information System (INIS)

    Putintseva, M.N.

    2006-01-01

    Effects of dispersant properties on granulometric, chemical, and phase composition of the products of WC hard alloy electroerosion are considered. It is established that an increase of liquid dispersant permittivity results in enhanced powder dispersity, and an increase of boiling temperature and kinematic viscosity of a hydrocarbon liquid promotes a carbon loss from WC and intensifies pyrolysis of the liquid.On electroerosion of WC base hard alloy in oil a powder particle consists of b-WC+W 2 C phases, in kerosine - of a-WC+b-WC, in distilled water - of W+W 2 C. The viscosity of liquid dispersants practically has no effect on powder particle size [ru

  3. Induction surface hardening of hard coated steels

    DEFF Research Database (Denmark)

    Pantleon, Karen; Kessler, Olaf; Hoffmann, Franz

    1999-01-01

    The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD-process is......The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD...

  4. Rad Hard Active Media For Calorimeters

    CERN Document Server

    Norbeck, E; Möller, A; Onel, Y

    2006-01-01

    Zero-degree calorimeters have limited space and extreme levels of radiation. A simple, low cost, radiation hard design uses tungstenmetal as the absorber and a suitable liquid as the ˇCerenkov radiator. In other applications a PPAC (Parallel Plate Avalanche Counter) operatingwith a suitable atmosphericpressure gas is an attractive active material for a calorimeter. It can be made radiation hard and has sufficient gain in the gas that no electronic components are needed near the detector. It works well even with the highest concentration of shower particles. For this pressure range, R134A (used in auto air conditioners) has many desirable features.

  5. Effects of explosions in hard rocks

    International Nuclear Information System (INIS)

    Heuze, F.E.; Walton, O.R.; Maddix, D.M.; Shaffer, R.J.; Butkovich, T.R.

    1993-01-01

    This work relates to explosions in hard rocks (ex: basalt, granite, limestone...). Hard rock masses typically have a blocky structure created by the existence of geologic discontinuities such as bedding contacts, faults, and joints. At very high pressure - hundreds of kilobars and above - these discontinuities do not act separately, and the rock appears to be an equivalent continuous medium. At stress of a few tens of kilobars and below, the geologic discontinuities control the kinematics of the rock masses. Hence, the simulation of rock dynamics, anywhere but in the very-near source region, should account for those kinematics

  6. Novel Aspects of Hard Diffraction in QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency

  7. Radiation hardness of undoped BGO crystals

    International Nuclear Information System (INIS)

    Sahu, S.K.; Peng, K.C.; Huang, H.C.; Wang, C.H.; Chang, Y.H.; Hou, W.S.; Ueno, K.; Chou, F.I.; Wei, Y.Y.

    1997-01-01

    We measured the radiation hardness of undoped BGO crystals from two different manufacturers. Such crystals are proposed to be used in a small-angle calorimeter of the BELLE detector of the KEK B-factory. Transparency and scintillation light output of the crystals were monitored to see the effect of radiation damage. The crystals show considerable radiation hardness up to 10.2 Mrad equivalent dose, which is much higher than the maximum expected dosage of 500 krad per year of running at BELLE. (orig.)

  8. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  9. Diffusion corrections to the hard pomeron

    CERN Document Server

    Ciafaloni, Marcello; Müller, A H; Ciafaloni, Marcello; Taiuti, Martina

    2001-01-01

    The high-energy behaviour of two-scale hard processes is investigated in the framework of small-x models with running coupling, having the Airy diffusion model as prototype. We show that, in some intermediate high-energy regime, the perturbative hard Pomeron exponent determines the energy dependence, and we prove that diffusion corrections have the form hinted at before in particular cases. We also discuss the breakdown of such regime at very large energies, and the onset of the non-perturbative Pomeron behaviour.

  10. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  11. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  12. Micro-Scale Thermoacoustics

    Science.gov (United States)

    Offner, Avshalom; Ramon, Guy Z.

    2016-11-01

    Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).

  13. Fertilizer micro-dosing

    International Development Research Centre (IDRC) Digital Library (Canada)

    Localized application of small quantities of fertilizer (micro-dosing), combined with improved planting pits for rainwater harvesting, has generated greater profits and food security for women farmers in the Sahel. • Women are 25% more likely to use combined applications, and have expanded areas of food crops (cowpea,.

  14. Micro- and Nanoengineering

    NARCIS (Netherlands)

    Schroen, C.G.P.H.

    2015-01-01

    There are two overall themes, micro- and nanotechnology, which are capable of changing the future of food considerably. In microtechnology, production of foods and food ingredients is investigated at small scale; the results are thus that larger scale production is considered through operating many

  15. MicroRNA pharmacogenomics

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Shomron, Noam

    2011-01-01

    polymorphisms, copy number variations or differences in gene expression levels of drug metabolizing or transporting genes and drug targets. In this review paper, we focus instead on microRNAs (miRNAs): small noncoding RNAs, prevalent in metazoans, that negatively regulate gene expression in many cellular...

  16. Programming the BBC micro

    CERN Document Server

    Ferguson, John D; Macari, Louie; Williams, Peter H

    1983-01-01

    Programming the BBC Micro is a 12-chapter book that begins with a description of the BBC microcomputer, its peripheral, and faults. Subsequent chapters focus on practice in programming, program development, graphics, words, numbers, sound, bits, bytes, and assembly language. The interfacing, file handling, and detailed description of BBC microcomputer are also shown.

  17. Hardness and microstructural characterization of API 5L X70 steel pipes welded by HF/ERW process; Caracterizacao microestrutural e de dureza em tubos de aco API 5L X70 soldados pelo processo HF/ERW

    Energy Technology Data Exchange (ETDEWEB)

    Calcada, Mauricio Vieira; Voorwald, Herman Jacobus Cornelis; Nascimento, Marcelino Pereira do [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia

    2010-07-01

    The materials that stand in the manufacture of steel pipes are called API, that should have, high mechanical resistance, high corrosion resistance, high fatigue resistance, good weldability, and other properties. Thus, the purpose of this project was to evaluate the microstructure and hardness of welded joints by the HF/ERW process of API 5L X70 steel pipes. The microstructural analysis was performed using a surface finish with grit sizes from 220 to 25 {mu}m e polishing with diamond paste from 9 {mu}m to 0.05 {mu}m; the revelation was made with 3% Nital attack. The Vickers hardness was performed across the welded joint by 33 points to indentation. The results were: 80.5 {+-} 3.4% of ferrite and 19.5 {+-} 3.4% of perlite for microanalysis. As for hardness, the values were: 215.69 HV10 for weld line, 218.65 HV10 for ZTA and 218.95 HV10 for base metal. (author)

  18. [Treatment of adult bimaxillary arch protrusion with micro-implant anchorage].

    Science.gov (United States)

    Chen, Cheng; Zhang, Xiao-Rong

    2015-02-01

    In this study, micro-implants were used in 15 adult patients with mild and moderate bimaxillary arch protrusion or crowding. Cephalometric analysis was used to analyze hard and soft-tissues change before and after treatment, with the aim to investigate the effects of treatment on adult bimaxillary arch protrusion with micro-implant anchorage. Fifteen adult patients with mild and moderate bimaxillary arch protrusion were selected in this study. Micro-implants were inserted into the zygomaticoalveolar ridge of maxilla and the external oblique line of mandible. A NiTi coil spring was attached to the micro-implant to drag the whole upper and lower dentition for distal movement. Cephalometrics were taken before and after treatment, and the changes of soft and hard-tissue profile were studied. SPSS13.0 software package was used to analyze the data. (1)Sixty micro-implants remained stable.(2)SNA, SNB had no significant changes (P>0.05), and the relationship between the maxilla and the mandible did not change significantly. U1/NA, U1-NA, L1/NB, L1-NB and U1/L1 changes in hard tissue had significant difference in cephalometric measurement (PMicro-implant can provide not only excellent skeletal anchorage but also a novel way to distalize the whole dentition efficiently.

  19. The hardness and chemical changes in demineralized primary dentin treated by fluoride and glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Gisele Fernandes DIAS

    Full Text Available Abstract Background Fluoride plays an important role in the control of dental caries. Aim To evaluate the chemical exchange between restoration of glass ionomer cement of high viscosity (GIC and primary dentin with application of sodium fluoride (NaF 2% through changes in hardness from uptake of calcium, phosphate and fluoride. Material and method Class I cavities were prepared in 40 sound primary molars, and the sample was divided into two groups (n=20 according to dentin condition: sound (1 and demineralized (2. Sub-groups (n=10 were formed to investigate the isolated action of the GIC or the association with NaF (F. This in vitro study examined the chemical exchange under two conditions, sound and demineralized dentin (pH cycling, to simulate the occurrence of mineral loss for the caries lesion. G1 and G2 received GIC restoration only; groups G1F and G2F received NaF before GIC restoration. The specimens were prepared for Knoop hardness test and micro-Raman spectroscopy. A two-way ANOVA test (α = 0.05 was used for statistical analysis. Micro-Raman data were qualitatively described. Result Increased hardness was observed in all the sites of direct contact with GIC in sound and demineralized dentin for all groups (p0.05. In the evaluation of micro-Raman, direct contact between GIC and dentin for sound and demineralized dentin resulted in increased peaks of phosphate. Conclusion The exchange between GIC and demineralized dentin may induce changes of mechanical properties of the substrate, and uptake of mineral ions (phosphate occurs without the influence of NaF.

  20. Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions

    Science.gov (United States)

    Beltrán Bernal, Lina M.; Shayeganrad, Gholamreza; Kosa, Gabor; Zelechowski, Marek; Rauter, Georg; Friederich, Niklaus; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.

  1. Pyramid solar micro-grid

    Science.gov (United States)

    Huang, Bin-Juine; Hsu, Po-Chien; Wang, Yi-Hung; Tang, Tzu-Chiao; Wang, Jia-Wei; Dong, Xin-Hong; Hsu, Hsin-Yi; Li, Kang; Lee, Kung-Yen

    2018-03-01

    A novel pyramid solar micro-grid is proposed in the present study. All the members within the micro-grid can mutually share excess solar PV power each other through a binary-connection hierarchy. The test results of a 2+2 pyramid solar micro-grid consisting of 4 individual solar PV systems for self-consumption are reported.

  2. Micro-hardness of InxGa(1-x)As superlattices. 'The Frogley conjecture'

    International Nuclear Information System (INIS)

    Jayaweera, N.B.

    2000-01-01

    Coherently strained In x Ga (1-x) As superlattices with alternating layers of opposite strain have been grown on InP substrates using Molecular Beam Epitaxy. Control of the layer strains is achieved by varying the indium composition and the structures are characterized using high-resolution x-ray diffraction. An optimized mathematical treatment of high-resolution x-ray data is presented for the determination of strain, composition and tilt of epitaxial strained layers. This analysis also provides guidance as to the best sets of reflections to measure. The method is applied explicitly to reciprocal space mapping, where errors are normally different in different reciprocal space directions, and compare results from rocking curve and reciprocal space analysis. Results are reported on the onset of plasticity in semiconductor strained layer superlattices, using nanoindentation with spherical indenters to observe the full stress-strain curve. The yield pressure is reduced by as much as a factor of two by the presence of the coherency strain. Varying the thicknesses and strains of the layers enables us to show that both sets of layers, compressive and tensile, reduce the yield pressure. This requires that a yield criterion must be satisfied over a finite volume, large enough to include layers of both signs. It is shown that the relevant yield criterion for our experimental data is the rate of change of elastic strain energy with plastic relaxation, integrated over a volume of the order of a micron across. In these studies, we have observed a large and reproducible size effect in the yield pressure and we show how the requirement of meeting a yield criterion over a finite volume naturally leads to the size effect. A theoretical analysis is given and quantative agreement with experiment is obtained. This is a crucial result for the understanding of nanoindentation and other systems in which stresses are highly inhomogeneous on a small scale. The result also has implications for finite-element modeling of point contact, and for the design and understanding of materials with coherency-strained microstructure. (author)

  3. Rad-hard Reconfigurable Bi-Directional Level Shifters Technology for Micro- and Nanosatellites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Various technologies available to space system designers that operate at different voltage levels. It is, however, important to interface, maintain, and update these...

  4. Analysis of the development and performance of hard disks

    OpenAIRE

    Novak, Davorin

    2010-01-01

    With the emergence of new technologies in the field of hard drives we can witness a significant increase of surface density and transfer rate of interfaces which, as a result, enables greater performance and reliability of hard disks. The reason for this are increasing needs for higher capacities and data transfer rate to or from the hard disk. This thesis presents the structure of hard drives, features, performance and reliability of hard drives and alternative data storage technologies. Par...

  5. Sputter deposition and characterisation of hard wear-resistant Ti/TiN multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Simmonds, M.C.; Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Multilayered Ti/TiN thin films have been synthesized by magnetron sputter deposition. Alternating layers of Ti and TiN with layer thickness in the 5-50 nm range are sequentially deposited. The structure of the films have been characterised by atomic force microscopy (AFM), X-ray diffraction and reflection and Auger depth profiling. The mechanical properties have been investigated using pin-on-disc wear rate testing, nanoindentation determination of hardness and micro scratch testing. (author) 1 fig., 3 refs.

  6. Effect of Laser Preheating AISI 4140 Specimens for Micro-Forging

    Directory of Open Access Journals (Sweden)

    Jung C.

    2017-06-01

    Full Text Available Many high performance and permanent service parts require suitable material characteristics-high fatigue strength is one of the most important characteristics. For this reason, surface treatment processes are essential to increase the material performance and avoid the use of costly ineffective material. There exist various surface treatment processes for various applications. Each process has advantages and disadvantages and hybridization can solve various problems. The micro-forging process delivers a controlled and uniform surface hardness, but the depth of the forged surface is limited. On the other hand, laser heat treatment can increase the hardness drastically, but the surface may become brittle, which reduces the fatigue life. Laser-assisted micro-forging is a novel hybrid process of laser heat treatment and micro-forging that has the potential to increase the forging depth and relax the stress caused by the high temperature of the forging process.

  7. Possible connections between hard and soft processes

    International Nuclear Information System (INIS)

    Blankenbecler, R.

    1977-10-01

    Three topics in constituent hadron models are reviewed: the connection between fixed angle and Regge behavior, the validity of the hard scattering expansion and restrictions on the effects of the transverse momentum of constituents, and the x distribution in the fragmentation region at low transverse momentum. 6 figures

  8. Parallel Narrative Structure in Paul Harding's "Tinkers"

    Science.gov (United States)

    Çirakli, Mustafa Zeki

    2014-01-01

    The present paper explores the implications of parallel narrative structure in Paul Harding's "Tinkers" (2009). Besides primarily recounting the two sets of parallel narratives, "Tinkers" also comprises of seemingly unrelated fragments such as excerpts from clock repair manuals and diaries. The main stories, however, told…

  9. Registration of 'Prevail' hard red spring wheat

    Science.gov (United States)

    Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...

  10. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  11. Systematic hardness studies on lithium niobate crystals

    Indian Academy of Sciences (India)

    Unknown

    crystals with different growth origins, and a Fe-doped sample. The problem of load ... The true hardness of LiNbO3 is found to be 630 ± 30 kg/mm2. .... Experimental. Pure lithium ... the index of d strikes at this simple and meaningful defini-.

  12. "Work smart, wear your hard hat"

    CERN Multimedia

    2003-01-01

    Falling objects and collisions are frequent occurrences in work sites and hazardous areas. Hard hats can help prevent many types of accident and can even save lives. Just imagine an 800 g spanner falling from a 13 m high scaffold onto the head of someone standing below - a nightmare scenario! The impact to the head is equivalent to that of a 5 kg weight falling from 2 metres. That is just what happened to Gerd Fetchenhauer when he was working on the UA1 experiment. Fortunately, he was wearing a hard hat at the time. "That hat saved my life," he explains. "It punched a hole right through the hat and I was a bit dazed for a couple of hours but otherwise I was OK." Since that day, Gerd Fetchenhauer, now working on CMS, is never seen on a work site without his hard hat on. Work sites have proliferated at CERN with the construction of the LHC and its detectors, and the wearing of hard hats is compulsory (not to mention life-saving). In the underground caverns and experiment halls, where gantry cranes and other h...

  13. Cobalt allergy in hard metal workers

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, T; Rystedt, I

    1983-03-01

    Hard metal contains about 10% cobalt. 853 hard metal workers were examined and patch tested with substances from their environment. Initial patch tests with 1% cobalt chloride showed 62 positive reactions. By means of secondary serial dilution tests, allergic reactions to cobalt were reproduced in 9 men and 30 women. Weak reactions could not normally be reproduced. A history of hand eczema was found in 36 of the 39 individuals with reproducible positive test reactions to cobalt, while 21 of 23 with a positive initial patch test but negative serial dilution test had never had any skin problems. Hand etching and hand grinding, mainly female activities and traumatic to the hands, were found to involve the greatest risk of cobalt sensitization. 24 individuals had an isolated cobalt allergy. They had probably been sensitized by hard metal work, while the individuals, all women, who had simultaneous nickel allergy had probably been sensitized to nickel before their employment and then became sensitized to cobalt by hard metal work. A traumatic occupation, which causes irritant contact dermatitis and/or a previous contact allergy or atopy is probably a prerequisite for the development of cobalt allergy.

  14. Sustaining Transformation: "Resiliency in Hard Times"

    Science.gov (United States)

    Guarasci, Richard; Lieberman, Devorah

    2009-01-01

    The strategic, systemic, and encompassing evolution of a college or university spans a number of years, and the vagaries of economic cycles inevitably catch transforming institutions in mid-voyage. "Sustaining Transformation: Resiliency in Hard Times" presents a study of Wagner College as it moves into its second decade of purposeful…

  15. Induction surface hardening of hard coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, K.; Kessler, O.; Hoffann, F.; Mayr, P. [Stiftung Inst. fuer Werkstofftechnik, Bremen (Germany)

    1999-11-01

    The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence the substrate properties, especially in the case of low alloyed steels. Therefore, a subsequent heat treatment is necessary to restore the properties of steel substrates. Here, induction surface hardening is used as a method of heat treatment after the deposition of TiN hard coatings on AISI 4140 (DIN42CrMo4) substrates. The influences of the heat treatment on both the coating and the substrate properties are discussed in relation to the parameters of induction heating. Thereby, the heating time, heating atmosphere and the power input into the coating-substrate compounds are varied. As a result of induction surface hardening, the properties of the substrates are improved without losing good coating properties. High hardness values in the substrate near the interface allow the AISI 4140 substrates to support TiN hard coatings very well. Consequently, higher critical loads are measured in scratch tests after the heat treatment. Also, compressive residual stresses in the substrate are generated. In addition, only a very low distortion appears. (orig.)

  16. Hard scattering in γp interactions

    International Nuclear Information System (INIS)

    Ahmed, T.; Andreev, V.; Andrieu, B.

    1992-10-01

    We report on the investigation of the final state in interactions of quasi-real photons with protons. The data were taken with the H1 detector at the HERA ep collider. Evidence for hard interactions is seen in both single particle spectra and jet formation. The data can best be described by inclusion of resolved photon processes as predicted by QCD. (orig.)

  17. Soft gluon contributions to hard processes

    International Nuclear Information System (INIS)

    Ciafaloni, M.

    1981-10-01

    The main concern of this paper is in trying to elucidate the origin of large QCD perturbative corrections and explain how to deal with them to all orders. They come essentially from the phase space regions close to the kinematical boundary of a hard process, in which one or many gluons become soft

  18. Hard Pseudocompact Spaces | Ghosh | Quaestiones Mathematicae

    African Journals Online (AJOL)

    ... which was absent in the literature. Finally, under smallness restrictions on hyper-real remainder of the Stone Cech compactification of a Tychonoff space we have achieved in producing a representation for hard pseudocompact space. Keywords: Compactification, Hewitt realcompactification, pseudocompact, realcompact

  19. Diffractive hard scattering and the SSC

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-01-01

    Events in high energy hadron collisions are discussed that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 12 refs., 6 figs

  20. Effect of gum hardness on chewing pattern.

    Science.gov (United States)

    Plesh, O; Bishop, B; McCall, W

    1986-06-01

    Chewing rhythms are set by a putative central pattern generator whose output is influenced by sensory feedback. In this study we assessed how an altered feedback imposed by changing the hardness of a gum bolus modifies the timing of chewing, the maximal gape, and the activity in the masseter muscle on the chewing side. Ten adult subjects with no orofacial dysfunction chewed a standard piece of soft or hard gum for at least 3 min in random order. Vertical jaw movements were recorded with a kinesiograph and activity of the masseter muscle was recorded and integrated from surface EMG electrodes. The subjects sat in a dental chair and viewed a video lecture to distract their attention from chewing; they were instructed to chew on the right molars. Cycle-by-cycle analysis showed that 9 of the 10 subjects chewed the hard gum more slowly than the soft with no significant change in gape. The increases in cycle duration were due to changes in the duration of the opening and occlusal phases. The duration of closing was not significantly changed even though the duration and level of masseter activity were both significantly increased. We conclude that gum hardness by altering proprioceptive feedback modifies the output of the masticatory central pattern generator in such a way that the temporal aspects of chewing and the output of the masseteric motor pool are affected.

  1. Decision-theoretic troubleshooting: Hardness of approximation

    Czech Academy of Sciences Publication Activity Database

    Lín, Václav

    2014-01-01

    Roč. 55, č. 4 (2014), s. 977-988 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Decision-theoretic troubleshooting * Hardness of approximation * NP-completeness Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.451, year: 2014

  2. Remember Hard but Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Directory of Open Access Journals (Sweden)

    Jiushu Xie

    2016-09-01

    Full Text Available Previous studies have found that bodily stimulation, such as hardness, biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between hard and rigid and between soft and flexible in Chinese, to investigate whether the experience of hardness affected cognitive functions requiring either rigidity (memory or flexibility (creativity. In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition than a cushioned one (the soft condition. In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity and flexibility. They support the embodiment proposition that cognitive functions and representations could be grounded via metaphorical association in bodily states.

  3. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  4. Effects of aging temperature on electrical conductivity and hardness of Cu-3 at. pct Ti alloy aged in a hydrogen atmosphere

    KAUST Repository

    Semboshi, S.

    2011-08-01

    To improve the balance of the electrical conductivity and mechanical strength for dilute Cu-Ti alloys by aging in a hydrogen atmosphere, the influence of aging temperature ranging from 673 K to 773 K (400 °C to 500 °C) on the properties of Cu-3 at. pct Ti alloy was studied. The Vickers hardness increases steadily with aging time and starts to fall at 3 hours at 773 K (500 °C), 10 hours at 723 K (450 °C), or over 620 hours at 673 K (400 °C), which is the same as the case of conventional aging in vacuum. The maximum hardness increases from 220 to 236 with the decrease of aging temperature, which is slightly lower than aging at the same temperature in vacuum. The electrical conductivity at the maximum hardness also increases from 18 to 32 pct of pure copper with the decrease of the temperature, which is enhanced by a factor of 1.3 to 1.5 in comparison to aging in vacuum. Thus, aging at 673 K (400 °C) in a hydrogen atmosphere renders fairly good balance of strength and conductivity, although it takes nearly a month to achieve. The microstructural changes during aging were examined by transmission electron microscopy (TEM) and atom-probe tomography (APT), it was confirmed that precipitation of the Cu4Ti phase occurs first and then particles of TiH2 form as the third phase, thereby efficiently removing the Ti solutes in the matrix.

  5. Hard Distraction and Deep Inelastic Scattering

    International Nuclear Information System (INIS)

    BJORKEN, J.D.

    1994-01-01

    Since the advent of hard-collision physics, the study of diffractive processes- 'shadow physics' - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word 'diffraction' is sometimes used by high-energy physicists in a loose way. So I here begin by defining what I mean by the term: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the 'lego' phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing sub energy Δη, but behaves at most like some power of pseudorapidity Δη∼ logs. The term 'hard diffraction' shall simply refer to those diffractive processes which have jets in the final-state phase-space. We may also distinguish, if desired, two subclasses, as suggested by Ingelman i) Diffractive hard processes have jets on only one side of the rapidity gap. ii) Hard diffractive processes have jets on both sides of the rapidity gap

  6. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    International Nuclear Information System (INIS)

    Cabral P, A.; Garcia S, I.; Contreras V, J. A.; Garcia S, F.; Nava, N.

    2010-01-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  7. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  8. Micro Information Systems

    DEFF Research Database (Denmark)

    Ulslev Pedersen, Rasmus; Kühn Pedersen, Mogens

    2014-01-01

    such as medical and manufacturing. These new sensor applications have implications for information systems (IS) and, the authors visualize this new class of information systems as fractals growing from an established class of systems; namely that of information systems (IS). The identified applications...... and implications are used as an empirical basis for creating a model for these small new information systems. Such sensor systems are called embedded systems in the technical sciences, and the authors want to couple it with general IS. They call the merger of these two important research areas (IS and embedded...... systems) for micro information systems (micro-IS). It is intended as a new research field within IS research. An initial framework model is established, which seeks to capture both the possibilities and constraints of this new paradigm, while looking simultaneously at the fundamental IS and ICT aspects...

  9. CERN MicroClub

    CERN Multimedia

    CERN MicroClub

    2016-01-01

    Le CERN Micro Club (en partenariat avec Google Education et EU Code Week) organise un évènement éducatif exceptionnel autour de trois kits scientifiques basés sur le mini-ordinateur Raspberry Pi : Le Bras Robotique "Poppy Ergo Jr", conçu par l'équipe-projet Flowers (Centre de recherche Inria Bordeaux Sud-Ouest, ENSTA Paris Tech). Le kit de détection de rayons cosmiques "Muon Hunter", conçu en partenariat entre Mr Mihaly Vadai et les membres du CERN Micro Club. La voiture radio-commandée programmable Wifi "GianoPi", conçue en partenariat avec le campus "La Chataigneraie", pour l'Ecole Internationale de Genève.   Le vendredi 7 octobre (de 18h à 20h) : Une conférence gratuite et ouverte à tous (limitée à 100 personnes), pendant laquelle v...

  10. Fabrication of a metallic roll stamp with low internal stress and high hardness for large area display applications by a pulse reverse current electroforming process

    International Nuclear Information System (INIS)

    Kim, Joongeok; Han, Jungjin; Kim, Taekyung; Kang, Shinill

    2014-01-01

    With the increasing demand for large scale micro/nano components in the fields of display, energy and electrical devices, etc, the establishment of a roll imprinting process has become a priority. The fabrication of a roll stamp with high dimensional accuracy and uniformity is one of the key issues in the roll imprinting process, because the roll stamp determines the properties of the replicated micro/nano structures. In this study, a method to fabricate a metallic roll stamp with low internal stress, high flatness, and high hardness was proposed by a pulse reverse current (PRC) electroforming process. The effects of PRC electroforming processes on the internal stress, hardness, and grain size of the electroformed stamp were examined, and the optimum process conditions were suggested. As a practical example of the proposed method, various micro-patterns for electronic circuits were fabricated via the roll imprinting process using a PRC electroformed stamp. (paper)

  11. Micro dynamics in mediation

    OpenAIRE

    Boserup, Hans

    2014-01-01

    The author has identified a number of styles in mediation, which lead to different processes and different outcomes. Through discourse and conversation analysis he examines the micro dynamics in three of these, the postmodern styles: systemic, transformative and narrative mediation. The differences between the three mediation ideologies and practice is illustrated through role play scripts enacted in each style. Mediator and providers of mediation and trainers in mediation are encouraged to a...

  12. Rectenna session: Micro aspects

    Science.gov (United States)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of rectenna design are discussed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  13. Fabrication and Characterization of Silicon Micro-Funnels and Tapered Micro-Channels for Stochastic Sensing Applications

    Directory of Open Access Journals (Sweden)

    Frances S. Ligler

    2008-06-01

    Full Text Available We present a simplified, highly reproducible process to fabricate arrays of tapered silicon micro-funnels and micro-channels using a single lithographic step with a silicon oxide (SiO2 hard mask on at a wafer scale. Two approaches were used for the fabrication. The first one involves a single wet anisotropic etch step in concentrated potassium hydroxide (KOH and the second one is a combined approach comprising Deep Reactive Ion Etch (DRIE followed by wet anisotropic etching. The etching is performed through a 500 mm thick silicon wafer, and the resulting structures are characterized by sharp tapered ends with a sub-micron cross-sectional area at the tip. We discuss the influence of various parameters involved in the fabrication such as the size and thickness variability of the substrate, dry and wet anisotropic etching conditions, the etchant composition, temperature, diffusion and micro-masking effects, the quality of the hard mask in the uniformity and reproducibility of the structures, and the importance of a complete removal of debris and precipitates. The presence of apertures at the tip of the structures is corroborated through current voltage measurements and by the translocation of DNA through the apertures. The relevance of the results obtained in this report is discussed in terms of the potential use of these structures for stochastic sensing.

  14. Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids

    International Nuclear Information System (INIS)

    Zhou, Y.; Hall, C.K.; Stell, G.

    1995-01-01

    We find that first-order thermodynamic perturbation theory (TPT1) which incorporates the reference monomer fluid used in the generalized Flory--AB (GF--AB) theory yields an equation of state for fused hard-sphere (FHS) chain fluids that has accuracy comparable to the GF--AB and GF--dimer--AC theories. The new TPT1 equation of state is significantly more accurate than other extensions of the TPT1 theory to FHS chain fluids. The TPT1 is also extended to two-dimensional fused hard-disk chain fluids. For the fused hard-disk dimer fluid, the extended TPT1 equation of state is found to be more accurate than the Boublik hard-disk dimer equation of state. copyright 1995 American Institute of Physics

  15. Hard diffraction and small-x

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the United States, phrases such as ''small-x evolution'', ''the BFKL Pomeron'', ''deep-inelastic rapiditygap events'' and ''hard-diffraction'' do not generate the same intensity of discussion amongst high-energy physicists that they do in Europe. However, for three days in the fall such discussion filled the air at Fermilab. The ''2nd Workshop on Small-x and Diffractive Physics at the Tevatron'' was a review of the rapid theoretical and experimental progress taking place in this field. Although Quantum Chromo-dynamics (QCD) has been established as the theory of strong interactions for twenty years, as yet neither perturbative high-energy calculations nor low-energy non-perturbative techniques have been successfully extended to the mixture of high energy and low transverse momenta which characterize traditional ''soft'' diffractive processes. The simplest soft diffractive process is elastic scattering. In this case it is easiest to accept that there is an exchanged ''pomeron'', which can be pictured as a virtual entity with no electric charge or strong charge (colour), perhaps like an excitation of the vacuum. The same pomeron is expected to appear in all diffractive processes. Understanding the pomeron in QCD is a fundamental theoretical and experimental challenge. In the last two or three years the ''frontier'' in this challenging area of QCD has been pushed back significantly in both theory and experiment. Progress has been achieved by studying the evolution of hard collisions to relatively smaller constituent momenta (small x) and by studying ''hard'' diffractive collisions containing simultaneous signatures of diffraction and hard perturbative processes. The hard processes have included high transverse momentum jet production, deep inelastic lepton scattering, and (most recently) W

  16. An investigation into the mechanical and tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy

    International Nuclear Information System (INIS)

    Malayoglu, Ugur; Tekin, Kadir C.; Malayoglu, Ufuk; Shrestha, Suman

    2011-01-01

    Highlights: → Mechanical properties of PEO and anodised coatings were studied using ultra-micro hardness tester. → Elastic modulus and hardness of the PEO coating were found much higher than those of the anodised coating. → Improved sliding wear of PEO coating is due to presence of hard α and γ-Al 2 O 3 phases. - Abstract: A ceramic coating on AA6082 aluminum alloy prepared by plasma electrolytic oxidation (PEO) has been studied and compared against a sulphuric acid hard-anodized coating on the same alloy. Surface morphology and microstructures of the coatings have been examined by scanning electron microscopy. X-ray diffraction is used to determine the phase composition of the coatings. The adhesion strength of the coatings has been evaluated using a scratch test method. The coating's mechanical properties such elastic modulus and hardness data have been generated using a dynamic ultra-microhardness tester. Sliding wear tests with different loading rates are performed on the coatings in order to assess their wear resistance. Test results show that the PEO treated samples exhibit significantly better mechanical properties compared to hard anodized samples. The elastic modulus and hardness of the PEO coating are 2-3 times greater than of the hard anodized coating and subsequently, an improved wear resistance of the PEO coating has been achieved. The mechanical properties of the coatings and their relations to their tribological performance are discussed.

  17. Micro-structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited using LAAM

    Science.gov (United States)

    Bi, G.; Sun, C. N.; Nai, M. L.; Wei, J.

    In this paper, deposition of Ni-base Inconel 625 mixed with nano-TiC powders using laser aided additive manufacturing (LAAM) was studied. Micro-structure and mechanical properties were intensively investigated. The results showed that nano-size TiC distributed uniformly throughout the Ni- matrix. Inconel 625 can be reinforced by the strengthened grain boundaries with nano-size TiC. Improved micro-hardness and tensile properties were observed.

  18. Microbiological quality of soft, semi-hard and hard cheeses during the shelf-life

    Directory of Open Access Journals (Sweden)

    Josip Vrdoljak

    2016-03-01

    Full Text Available Cheeses as ready-to-eat food should be considered as a potential source of foodborne pathogens, primarily Listeria monocytogenes. The aim of present study was to determine the microbiological quality of soft, semi-hard and hard cheeses during the shelf-life, with particular reference to L. monocytogenes. Five types of cheeses were sampled at different timepoints during the cold storage and analyzed for presence of Salmonella and L. monocytogenes, as well as lactic acid bacteria, Escherichia coli, coagulase-positive staphylococci, yeasts, molds, sulfite-reducing clostridia and L. monocytogenes counts. Water activity, pH and NaCl content were monitored in order to evaluate the possibility of L. monocytogenes growth. Challenge test for L. monocytogenes was performed in soft whey cheese, to determine the growth potential of pathogen during the shelf-life of product. All analyzed cheeses were compliant with microbiological criteria during the shelf-life. In soft cheeses, lactic acid bacteria increased in the course of the shelf-life period (1.2-2.6 log increase, while in semi-hard and hard cheeses it decreased (1.6 and 5.2 log decrease, respectively. Soft cheeses support the growth of L. monocytogenes according to determined pH values (5.8-6.5, water activity (0.99-0.94, and NaCl content (0.3-1.2%. Challenge test showed that L. monocytogenes growth potential in selected soft cheese was 0.43 log10 cfu/g during 8 days at 4°C. Water activity in semi-hard and hard cheeses was a limiting factor for Listeria growth during the shelf-life. Soft, semi-hard and hard cheeses were microbiologically stable during their defined shelf-life. Good manufacturing and hygienic practices must be strictly followed in the production of soft cheeses as Listeria-supporting food and be focused on preventing (recontamination.

  19. Bond-orientational analysis of hard-disk and hard-sphere structures.

    Science.gov (United States)

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  20. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Science.gov (United States)

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G.

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between “hard” and “rigid” and between “soft” and “flexible” in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations. PMID:27672373

  1. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  2. Developing very hard nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Amel-Farzad, H., E-mail: hh_amel@yahoo.com [Department of Materials Engineering and Metallurgy, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Faridi, H.R., E-mail: faridihr@yahoo.com [Department of Materials Engineering and Metallurgy, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of); Rajabpour, F.; Abolhasani, A.; Kazemi, Sh.; Khaledzadeh, Y. [Department of Materials Engineering and Metallurgy, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2013-01-01

    Novel nanostructured high carbon high silicon, carbide-free bainitic steels with very high strength and good ductility have been developed in the recent decade. In this work, an alloy with a high carbon content and no manganese was designed and cast. The prepared samples were heat treated through an austempering process in the range 200-350 Degree-Sign C. Optical and scanning electron microscopes and XRD were used to analyze the microstructures precisely. Bainitic ferrite plates of just a few tens of nanometer thickness were obtained with the hardness of 697{+-}6 HV. It is reasonable to say that the unprecedented hardness values obtained in this work are mostly caused by the extraordinary carbon content of the alloy.

  3. Nanoindentation hardness of banded Australian sedimentary opal

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P S; Smallwood, A S; Ray, A S [Department of Chemistry, Material and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Briscoe, B J; Parsonage, D [Department of Chemical Engineering and Chemical Technology, Imperial College of Science, Technology and Medicine, London, SW7 2AZ (United Kingdom)], E-mail: paul.thomas@uts.edu.au

    2008-04-07

    Nanoindentation hardness data in continuous stiffness mode are reported for banded potch and play of colour opals sourced from Lightning Ridge in New South Wales and Andamooka in South Australia. Despite the significant visible heterogeneities observed and the significant differences in origin and microstructures, as observed by SEM, and subtle differences in the elemental distributions between bands within specimens, little difference was observed in the mechanical properties. Specimens were found to be mechanically homogeneous and values of the hardness and moduli were found to be similar between samples. The creep behaviour of the specimens was also observed to be similar. It was concluded that the similarities in mechanical properties were due to the similarities in the silica morphology of the specimens, formed in similar geological environments, as differences in microstructure and trace element distribution were found not to significantly influence the observed bulk mechanical properties.

  4. The underlying event in hard scattering processes

    International Nuclear Information System (INIS)

    Field, R.

    2002-01-01

    The authors study the behavior of the underlying event in hard scattering proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo models. The underlying event is everything except the two outgoing hard scattered jets and receives contributions from the beam-beam remnants plus initial and final-state radiation. The data indicate that neither ISAJET or HERWIG produce enough charged particles (with p T > 0.5 GeV/c) from the beam-beam remnant component and that ISAJET produces too many charged particles from initial-state radiation. PYTHIA which uses multiple parton scattering to enhance the underlying event does the best job describing the data

  5. Biological and ecological aspects of hard ticks

    Directory of Open Access Journals (Sweden)

    Diana Nayibe Polanco Echeverry

    2016-01-01

    Full Text Available Hard ticks are blood-sucking ectoparasites of Ixodidae family. These mites have been always considered disrupting agents of livestock systems, where they are recognized as the cause of economic and production losses. However, their ecological role is important for the dynamic equilibrium of the production systems bovine meat or milk. Knowing their biolog y and ecolog y can shed light on the sanitary decisions made in relation to these organisms. This review article presents issues related to classification, characteristics, and life cycle of hard ticks and relations vector-parasite-host. In addition, it addresses the control of ectoparasites on conventional livestock systems and the implica-tions that these models of intervention might have on agro-ecosystem.

  6. Fixed target electroweak and hard scattering physics

    International Nuclear Information System (INIS)

    Brock, R.; Brown, C.N.; Montgomery, H.E.; Corcoran, M.D.

    1990-02-01

    The possibilities for future physics and experiments involving weak and electromagnetic interactions, neutrino oscillations, general hard scattering and experiments involving nuclear targets were explored. The studies were limited to the physics accessible using fixed target experimentation. While some of the avenues explored turn out to be relatively unrewarding in the light of competition elsewhere in the world, there are a number of positive conclusions reached about experimentation in the energy range available to the Main Injector and Tevatron. Some of the experiments would benefit from the increased intensity available from the Tevatron utilizing the Main Injector, while some require this increase. Finally, some of the experiments would use the Main Injector low energy, high intensity extracted beams directly. A program of electroweak and hard scattering experiments at fixed target energies retains the potential for important contributions to physics. The key to major parts of this program would appear to be the existence of the Main Injector. 115 refs, 17 figs

  7. SURFACES OF HARD-SPHERE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2014-07-01

    Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.

  8. Aespoe hard rock laboratory. Annual report 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The Aespoe hard rock laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual report 1992 for the Aespoe hard rock laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are being carried out in parallel. December 1992 1925 m of the tunnel has been excavated to a depth of 255 m below surface. An important and integrated part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. This work is carried out in cooperation with seven organizations from six countries that participate in the project. (25 refs.)

  9. Hard Spheres on the Primitive Surface

    Science.gov (United States)

    Dotera, Tomonari; Takahashi, Yusuke

    2015-03-01

    Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.

  10. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    This thesis deals with the development of silicon compound refractive lenses (Si-CRLs) for shaping hard x-ray beams. The CRLs are to be fabricated using state of the art microfabrication techniques. The primary goal of the thesis work is to produce Si-CRLs with considerably increased structure...... and characterized with respect to their shape. Their optical performances were tested at the European Synchrotron Radiation Facility (ESRF). Two 1D-focusing Si-CRLs suitable as condensers in hard-XRM were developed utilizing the aforementioned two different strategies. The first Si-condenser showed focusing of a 56...... of space for sample surroundings and ensure low-divergent and wide x-ray beams with narrow waists. Both results are substantial improvements to what was available at the start of this thesis work. The challenge of making x-ray objectives in silicon by interdigitation of lenslets alternately focusing...

  11. Anomalous structural transition of confined hard squares.

    Science.gov (United States)

    Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2016-11-01

    Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.

  12. The hardness test: a real mechanical test

    International Nuclear Information System (INIS)

    Rezakhanlou, R.

    1993-02-01

    During the service life, the mechanical properties of the PWR components change. It is necessary to determine precisely this evolution, but it is not always possible to draw a sample with the adequate size for the characterization. For this latter case we intend to calculate the stress-strain curve of a material from a hardness test results, because it is appropriate for testing on site and do not need any particular sample shape. This paper is the first bibliographical part of a larger study on the relation between the values measured during a hardness test (applied load, indentation diameter) and the mechanical properties of a solid obtained by a traction test. We have treated the problem within the general setting of two solids in contact. Thus, we expose general elastic, elasto-plastic and plastic models describing the indentation of a solid by a rigid indenter

  13. Magnetic hyperthermia with hard-magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kashevsky, Bronislav E., E-mail: bekas@itmo.by [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Kashevsky, Sergey B.; Korenkov, Victor S. [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Istomin, Yuri P. [N. N. Alexandrov National Cancer Center of Belarus, Lesnoy-2, Minsk 223040 (Belarus); Terpinskaya, Tatyana I.; Ulashchik, Vladimir S. [Institute of Physiology, Belarus Academy of Sciences, Akademicheskaya str. 28, Minsk 220072 (Belarus)

    2015-04-15

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner–Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner–Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body. - Highlights: • Hard-magnetic nanoparticles are shown superior for hyperthetmia to superparamagnetic. • Optimal system parameters are found from magnetic reversal model in movable particle. • Penetrating suspension of HM particles with aggregation-independent SAR is developed. • For the first time, mice with tumors are healed in AC field acceptable for human body.

  14. Mining technology development for hard rock excavation

    International Nuclear Information System (INIS)

    Hustrulid, W.; Cudnick, R.; Trent, R.; Holmberg, R.

    1980-01-01

    A research facility has been established in the granitic gneiss of the CSM Experimental Mine at Idaho Springs, Colorado, for the purpose of evaluating/developing mining, geologic and geotechnical procedures appropriate for use in establishing nuclear waste repositories in hard rock. An experimental room has been excavated using careful blasting procedures. The extent and magnitude of blast damage is being evaluated. Structural geology is being mapped to assess continuity

  15. Hard-tip, soft-spring lithography.

    Science.gov (United States)

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.

  16. Hard Diffraction - from Blois 1985 to 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gunnar, Ingelman [Uppsala Univ., High Energy Physics (Sweden)

    2005-07-01

    The idea of diffractive processes with a hard scale involved, to resolve the underlying parton dynamics, was presented at the first Blois conference in 1985 and experimentally verified a few years later. Today hard diffraction is an attractive research field with high-quality data and new theoretical models. The trend from Regge-based pomeron models to QCD-based parton level models has given insights on QCD dynamics involving perturbative gluon exchange mechanisms. In the new QCD-based models, the pomeron is not part of the proton wave function, but diffraction is an effect of the scattering process. Models based on interactions with a colour background field provide an interesting approach which avoids conceptual problems of pomeron-based models, such as the pomeron flux, and provide a basis for common theoretical framework for all final states, diffractive gap events as well as non-diffractive events. Finally, the new process of gaps between jets provides strong evidence for the BFKL dynamics as predicted since long by QCD, but so far hard to establish experimentally.

  17. Hard diffraction and deep inelastic scattering

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the open-quotes legoclose quotes phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing subenergy s=e Δη , but behaves at most like some power of pseudorapidity Δη∼log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space

  18. Hard and soft acids and bases: atoms and atomic ions.

    Science.gov (United States)

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  19. Flexible micro flow sensor for micro aerial vehicles

    Science.gov (United States)

    Zhu, Rong; Que, Ruiyi; Liu, Peng

    2017-12-01

    This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

  20. Fundamental size limitations of micro four-point probes

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Petersen, Dirch Hjorth; Hansen, Ole

    2009-01-01

    The continued down-scaling of integrated circuits and magnetic tunnel junctions (MTJ) for hard disc read heads presents a challenge to current metrology technology. The four-point probes (4PP), currently used for sheet resistance characterization in these applications, therefore must be down......-scaled as well in order to correctly characterize the extremely thin films used. This presents a four-point probe design and fabrication challenge. We analyze the fundamental limitation on down-scaling of a generic micro four-point probe (M4PP) in a comprehensive study, where mechanical, thermal, and electrical...

  1. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure.

    Science.gov (United States)

    Armstead, Andrea L; Li, Bingyun

    As the number of commercial and consumer products containing engineered nanomaterials (ENMs) continually rises, the increased use and production of these ENMs presents an important toxicological concern. Although ENMs offer a number of advantages over traditional materials, their extremely small size and associated characteristics may also greatly enhance their toxic potentials. ENM exposure can occur in various consumer and industrial settings through inhalation, ingestion, or dermal routes. Although the importance of accurate ENM characterization, effective dosage metrics, and selection of appropriate cell or animal-based models are universally agreed upon as important factors in ENM research, at present, there is no "standardized" approach used to assess ENM toxicity in the research community. Of particular interest is occupational exposure to tungsten carbide cobalt (WC-Co) "dusts," composed of nano- and micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. Inhalation of WC-Co dust is known to cause "hard metal lung disease" and an increased risk of lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is followed by a review of the known literature regarding the effects of WC-Co particle exposure. The risk of WC-Co exposure in occupational settings and the updates of in vitro and in vivo studies of both micro- and nano-WC-Co particles are discussed.

  2. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    International Nuclear Information System (INIS)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-01-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  3. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  4. Remote micro hydro

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    The micro-hydro project, built on a small tributary of Cowley Creek, near Whitehorse, Yukon, is an important step in the development of alternative energy sources and in conserving expensive diesel fuel. In addition to demonstrating the technical aspects of harnessing water power, the project paved the way for easier regulatory procedures. The power will be generated by a 9 meter head and a 6 inch crossflow turbine. The 36 V DC power will be stored in three 12 V batteries and converted to ac on demand by a 3,800 watt inverter. The system will produce 1.6 kW or 14,016 kWh per year with a firm flow of 1.26 cfs. This is sufficient to supply electricity for household needs and a wood working shop. The project is expected to cost about $18,000 and is more economical than tying into the present grid system, or continuing to use a gasoline generator. An environmental study determined that any impact of the project on the stream would be negligible. It is expected that no other water users will be affected by the project. This pilot project in micro-hydro applications will serve as a good indicator of the viability of this form of alternate energy in the Yukon. The calculations comparing the micro-hydro and grid system indicate that the mico-hydro system is a viable source of inflation-proof power. Higher heads and larger flow resulting in ac generation in excess of 10 kW would yield much better returns than this project. 3 tabs.

  5. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  6. Review of Micro Magnetic Generator

    OpenAIRE

    Lin DU; Gengchen SHI; Jingjing ZHAO

    2014-01-01

    This paper discusses the research progress of micro magnetic generator systems. Micro magnetic generator systems convert energy from the environment to electric energy with advantages as high reliability, high power density, long life time and can be applied to extreme environment. This paper summarizes methods for improving generator performance of micro magnetic generator, including rotational magnetic generator, vibrational magnetic generator and hybrid magnetic generator, analyzes and com...

  7. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    Science.gov (United States)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  8. Wear Resistance of Steel 20MnCr5 After Surfacing with Micro-jet Cooling

    Directory of Open Access Journals (Sweden)

    Tarasiuk W.

    2016-09-01

    Full Text Available This paper presents results of experimental research concerning the impact of an innovative method of micro-jet cooling on the padding weld performed with MIG welding. Micro-jet cooling is a novel method patented in 2011. It enables to steer the parameters of weld cooling in a precise manner. In addition, various elements which may e.g. enhance hardness or alter tribological properties can be entered into its top surface, depending on the applied cooling gas. The material under study was steel 20MnCr5, which was subject to the welding process with micro-jet cooling and without cooling. Nitrogen was used as a cooling gas. The main parameter of weld assessment was wear intensity. The tests were conducted in a tribological pin-on-disc type position. The following results exhibit growth at approximately 5% in wear resistance of padding welds with micro-jet cooling.

  9. Visual inspection technology in the hard disc drive industry

    CERN Document Server

    Muneesawang, Paisarn

    2015-01-01

    A presentation of the use of computer vision systems to control manufacturing processes and product quality in the hard disk drive industry. Visual Inspection Technology in the Hard Disk Drive Industry is an application-oriented book borne out of collaborative research with the world's leading hard disk drive companies. It covers the latest developments and important topics in computer vision technology in hard disk drive manufacturing, as well as offering a glimpse of future technologies.

  10. Micro manufacturing techniques and applications

    CERN Document Server

    Du, Ruxu; Li, Zifu

    2013-01-01

    Micro/meso-scale manufacturing has been developed in research fields of machining, forming, materials and others, but its potential to industries are yet to be fully realized. The theme of the current volume was to build a bridge joining academic research and industrial needs in micro manufacturing. Among the 12 papers selected for publication are three keynote addresses onmicro and desktop factories for micro/meso-scale manufacturing applicationsand future visions, tissue cutting mechanics and applications for needlecore biopsy and guidance, and micro-texturing onto amorphous carbonmaterials

  11. Effect of an Intermediate Heat-treatment on a Change of the Corrosion Resistance and Hardness of a HANA-4 Outer Strip

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Jung, Yang Il; Park, Sang Yoon; Choi, Byoung Kwon; Park, Jeong Yong; Jeong, Yong Hwan; Eom, Kyong Bo; Park, Nam Gyu; Lim, Yoon Soo

    2008-01-01

    KAERI (Korea Atomic Energy Research Institute) in collaboration with KNF (Korea Nuclear Fuel) undertook some researches on the applicability of HANA-4 and HANA-6 alloys for the spacer grid for a PWR (Pressurized Water Reactor) nuclear fuel. As a part of the research, KAERI studied the effect of the final heat-treatment on the mechanical and corrosion properties of a HANA-4 inner strip. The strip was manufactured with a sheet which had been intermediately heat-treated at about 580 .deg. C for 2.5-4 hours after each cold rolling before being processed into the final strip product. It was mentioned that the process with the intermediate heat treatment needed reviewing to establish an improved manufacturing process for the cold rolling. So, this work tried to check the effect of an intermediate heat-treatment on the properties of a HANA-4 strip using a specimen that was taken from a second hot rolled material before a cold-rolling. The manufacturing processes, with three different kinds of annealings, were introduced to investigate the applicable intermediate heat-treatment process. After all the cold-rolling processes, the Vickers hardness was measured for the final annealed specimens and 60 days of corrosion tests were carried out to check on the effect of the intermediate heat-treatment. Finally, an appropriate intermediate heat-treatment was proposed to improve the manufacturability of the HANA-4 strip

  12. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    Science.gov (United States)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  13. Development of method for evaluating cell hardness and correlation between bacterial spore hardness and durability

    Directory of Open Access Journals (Sweden)

    Nakanishi Koichi

    2012-06-01

    Full Text Available Abstract Background Despite the availability of conventional devices for making single-cell manipulations, determining the hardness of a single cell remains difficult. Here, we consider the cell to be a linear elastic body and apply Young’s modulus (modulus of elasticity, which is defined as the ratio of the repulsive force (stress in response to the applied strain. In this new method, a scanning probe microscope (SPM is operated with a cantilever in the “contact-and-push” mode, and the cantilever is applied to the cell surface over a set distance (applied strain. Results We determined the hardness of the following bacterial cells: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and five Bacillus spp. In log phase, these strains had a similar Young’s modulus, but Bacillus spp. spores were significantly harder than the corresponding vegetative cells. There was a positive, linear correlation between the hardness of bacterial spores and heat or ultraviolet (UV resistance. Conclusions Using this technique, the hardness of a single vegetative bacterial cell or spore could be determined based on Young’s modulus. As an application of this technique, we demonstrated that the hardness of individual bacterial spores was directly proportional to heat and UV resistance, which are the conventional measures of physical durability. This technique allows the rapid and direct determination of spore durability and provides a valuable and innovative method for the evaluation of physical properties in the field of microbiology.

  14. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Usta, Metin

    2012-01-01

    Highlights: ► The commercial pure magnesium was coated by MAO in sodium silicate and sodium phosphate. ► Coatings produced in the phosphate electrolyte are thicker than ones in the silicate electrolyte. ► Coatings in the silicate electrolyte are harder than ones in the phosphate electrolyte. ► Adhesion strength of coatings increases with increasing coating thickness. ► The wear resistance of the coated commercial pure magnesium is improved. - Abstracts: The commercial pure magnesium was coated by micro arc oxidation method in different aqueous solution, containing sodium silicate and sodium phosphate. Micro arc oxidation process was carried out at 0.060 A/cm 2 , 0.085 A/cm 2 and 0.140 A/cm 2 current densities for 30 min. The thickness, phase composition, morphology, hardness, adhesion strength and wear resistance of coatings were analyzed by eddy current, X-ray diffraction (XRD), scanning electron microscope (SEM), micro hardness tester, scratch tester and ball-on disk tribometer, respectively. The average thicknesses of the micro arc oxidized coatings ranged from 27 to 48 μm for sodium silicate solution and from 45 to 75 μm for sodium phosphate solution. The dominant phases formed on the pure magnesium were found to be a mixture of spinel Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. The average hardnesses of the micro arc oxidized coatings were between 260 HV and 470 HV for sodium silicate solution and between 175 HV and 260 HV for sodium phosphate solution. Adhesion strengths and wear resistances of coatings produced in sodium silicate solution were higher than those of the ones in sodium phosphate solution due to high hardness of coatings produced in sodium silicate solution.

  15. Nozzle fabrication for Micro Propulsion of a Micro-Satellite

    NARCIS (Netherlands)

    Louwerse, M.C.; Jansen, Henricus V.; Groenendijk, M.N.W.; Elwenspoek, Michael Curt

    2008-01-01

    To enable formation flying of micro satellites, small sized propulsion systems are required. Our research focuses on the miniaturization of a feeding and thruster system by means of micro system technology (MST). Three fabrication methods have been investigated to make a conical converging-diverging

  16. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    International Nuclear Information System (INIS)

    Masanta, Manoj; Ganesh, P.; Kaul, Rakesh; Nath, A.K.; Roy Choudhury, A.

    2009-01-01

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al 2 O 3 -TiB 2 -TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO 2 ) and boron carbide (B 4 C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV 0.025 was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al 2 O 3 ), titanium di-boride (TiB 2 ) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB 2 and Al 2 O 3 , which are discussed in detail.

  17. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Masanta, Manoj [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India); Ganesh, P.; Kaul, Rakesh [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Nath, A.K. [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India); Roy Choudhury, A., E-mail: roychoudhuryasimava@gmail.com [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India)

    2009-05-20

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al{sub 2}O{sub 3}-TiB{sub 2}-TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO{sub 2}) and boron carbide (B{sub 4}C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV{sub 0.025} was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al{sub 2}O{sub 3}), titanium di-boride (TiB{sub 2}) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB{sub 2} and Al{sub 2}O{sub 3}, which are discussed in detail.

  18. Micro-structural study and Rietveld analysis of fast reactor fuels: U–Mo fuels

    International Nuclear Information System (INIS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K.B.; Kumar, Arun

    2015-01-01

    U–Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U–Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U–Mo alloys as fast reactor fuel. - Highlights: • U–Mo alloys in as-cast as well as in annealed conditions have been studied using Optical Microscope, SEM, XRD. • The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. • The dendritic microstructure of γ-(U,Mo) and B.C.C. ‘Mo’ phase of 33 at.% U–Mo alloy have been analysed. • Rietveld analysis has been done to optimize lattice parameters and calculate phase fractions in annealed alloys. • The Vickers microhardness of U_2Mo phase shows lower hardness than two phase microstructures in annealed alloys.

  19. Micro-structural study and Rietveld analysis of fast reactor fuels: U–Mo fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S., E-mail: sibasis@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Choudhuri, G. [Atomic Fuels Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Banerjee, J. [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Agarwal, Renu [Product Development Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Khan, K.B.; Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2015-12-15

    U–Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U–Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U–Mo alloys as fast reactor fuel. - Highlights: • U–Mo alloys in as-cast as well as in annealed conditions have been studied using Optical Microscope, SEM, XRD. • The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. • The dendritic microstructure of γ-(U,Mo) and B.C.C. ‘Mo’ phase of 33 at.% U–Mo alloy have been analysed. • Rietveld analysis has been done to optimize lattice parameters and calculate phase fractions in annealed alloys. • The Vickers microhardness of U{sub 2}Mo phase shows lower hardness than two phase microstructures in annealed alloys.

  20. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  1. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  2. A micro-coupling for micro mechanical systems

    Science.gov (United States)

    Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya

    2016-05-01

    The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and

  3. Seismic loads in modularized and unmodularized large pools located on hard or intermediate hard sites

    Energy Technology Data Exchange (ETDEWEB)

    Dong, R G [California Univ., Livermore (USA). Lawrence Livermore Lab.

    1977-12-01

    To augment the present capacity of pools for storing spent nuclear fuel elements, pools larger than those in current use are being planned. These pools may or may not be modularized into cells. Because of the large size of the pools, seismic loads are of significant interest. In particular, the effects of modularization and site hardness are of concern. The study presented in this paper reveals that modularization is generally unfavourable, because it creates the option of leaving one or more cells empty which in turn results in higher structural loads. The wall which separates a filled cell from an empty cell, or the wall which bears against earth on one side and faces an empty cell on the other, becomes very highly stressed. For the particular pool geometries examined, a hard site is generally preferred over an intermediate hard site in terms of structural loads.

  4. Hard production of exotic hybrid mesons

    Energy Technology Data Exchange (ETDEWEB)

    Anikin, I.; Teryaev, O.V. [Bogoliubov Lab. of Theoretical Physics, JINR, Dubna (Russian Federation); Pire, B.; Anikin, I. [Ecole Polytechnique, CPHT, 91 - Palaiseau (France); Szymanowski, I. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Liege Univ. (Belgium); Anikin, I.; Wallon, S. [Paris-11 Univ., Lab. de Physique Theorique, 91 - Orsay (France)

    2005-07-01

    Exotic hybrid mesons H, with quantum numbers J{sup PC} = 1{sup -+} may be copiously produced in the hard exclusive processes {gamma}{sup *}(Q{sup 2}){gamma} {yields} H and {gamma}{sup *}(Q{sup 2})P(p) {yields} HP(p') because they have a leading twist distribution amplitude with a sizable coupling constant f{sub H}, which may be estimated through QCD sum rules. The reaction rates scale in the same way as the corresponding rates for usual mesons. (authors)

  5. Hardness and Approximation for Network Flow Interdiction

    OpenAIRE

    Chestnut, Stephen R.; Zenklusen, Rico

    2015-01-01

    In the Network Flow Interdiction problem an adversary attacks a network in order to minimize the maximum s-t-flow. Very little is known about the approximatibility of this problem despite decades of interest in it. We present the first approximation hardness, showing that Network Flow Interdiction and several of its variants cannot be much easier to approximate than Densest k-Subgraph. In particular, any $n^{o(1)}$-approximation algorithm for Network Flow Interdiction would imply an $n^{o(1)}...

  6. Nonvolatile Rad-Hard Holographic Memory

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Han-Ying; Reyes, George; Dragoi, Danut; Hanna, Jay

    2001-01-01

    We are investigating a nonvolatile radiation-hardened (rad-hard) holographic memory technology. Recently, a compact holographic data storage (CHDS) breadboard utilizing an innovative electro-optic scanner has been built and demonstrated for high-speed holographic data storage and retrieval. The successful integration of this holographic memory breadboard has paved the way for follow-on radiation resistance test of the photorefractive (PR) crystal, Fe:LiNbO3. We have also started the investigation of using two-photon PR crystals that are doubly doped with atoms of iron group (Ti, Cr, Mn, Cu) and of rare-earth group (Nd, Tb) for nonvolatile holographic recordings.

  7. Hard target LIDAR calibration for SO2

    CSIR Research Space (South Africa)

    Du Plessis, A

    2006-01-01

    Full Text Available calibration for SO2 A du Plessis, DE Roberts CSIR National Laser Centre, Pretoria Slide 2 © CSIR 2006 www.csir.co.za Project background • Las-R-MAP: Laser – Remote – Measurement of Atmospheric Pollutants • Mobile laser system....csir.co.za Hard target backscatter ∫ = − R dRRn p e R RcE RS 0 )(2 2 )()( λσ λ β S R Slide 10 © CSIR 2006 www.csir.co.za Las-R-MAP hardware: laser system Slide 11 © CSIR 2006 www.csir.co.za Las-R...

  8. Tomography for amplitudes of hard exclusive processes

    International Nuclear Information System (INIS)

    Polyakov, M.V.

    2008-01-01

    We discuss which part of information about hadron structure encoded in the Generalized Parton Distributions (GPDs) [part of total GPD image] can be restored from the known amplitude of a hard exclusive process. The physics content of this partial image is analyzed. Among other things, we show that this partial image contains direct information about how the target hadron responses to the (string) quark-antiquark operator of arbitrary spin J. Explicit equations relating physics content of the partial image of GPDs directly to the data are derived. Also some new results concerning the dual parametrization of GPDs are presented

  9. Hard diffraction at HERA and Tevatron

    International Nuclear Information System (INIS)

    Kaidalov, A.B.

    2001-01-01

    A relation between hard diffraction at HERA and Tevatron is discussed. A model, which takes into account unitarity effects is developed for interaction of high-energy virtual photons with nucleons. It is shown that this model gives a good description of HERA data on both total γ* p total cross section and diffractive dissociation of virtual photons in a broad region of Q 2 . It is shown how to describe the CDF data on diffractive jet production at Tevatron using an information on distribution of partons in the Pomeron from HERA experiments

  10. Sorption of radionuclides on hard rocks

    International Nuclear Information System (INIS)

    Berry, J.A.; Bourke, P.J.; Green, A.; Littleboy, A.K.

    1987-09-01

    Methods for measuring sorption on hard rocks, particularly of strontium, caesium, neptunium and americium on Darley Dale sandstone and Welsh slate have been investigated. The methods tried included batch tests with crushed rock and tests of simultaneous diffusion and convection with sorption on intact rock. High pressures (800m H 2 O) were used in the convective tests to pump water quickly through the rock samples and to measure high sorptivities in times shorter than those needed in the diffusive methods with intact samples. (author)

  11. Burning actinides in very hard spectrum reactors

    International Nuclear Information System (INIS)

    Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

    1978-01-01

    The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs

  12. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    Science.gov (United States)

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  13. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    Science.gov (United States)

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  14. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  15. Micro Electro Discharge Machining of Electrically Nonconductive Ceramics

    International Nuclear Information System (INIS)

    Schubert, A.; Zeidler, H.; Hackert, M.; Wolf, N.

    2011-01-01

    EDM is a known process for machining of hard and brittle materials. Due to its noncontact and nearly forceless behaviour, it has been introduced into micro manufacturing and through constant development it is now an important means for producing high-precision micro geometries. One restriction of EDM is its limitation to electrically conducting materials.Today many applications, especially in the biomedical field, make use of the benefits of ceramic materials, such as high strength, very low wear and biocompatibility. Common ceramic materials such as Zirconium dioxide are, due to their hardness in the sintered state, difficult to machine with conventional cutting techniques. A demand for the introduction of EDM to these materials could so far not be satisfied because of their nonconductive nature.At the Chemnitz University of Technology and the Fraunhofer IWU, investigations in the applicability of micro-EDM for the machining of nonconductive ceramics are being conducted. Tests are undertaken using micro-EDM drilling with Tungsten carbide tool electrodes and ZrO 2 ceramic workpieces. A starting layer, in literature often referred to as 'assisting electrode' is used to set up a closed electric circuit to start the EDM process. Combining carbon hydride based dielectric and a specially designed low-frequency vibration setup to excite the workpiece, the process environment can be held within parameters to allow for a constant EDM process even after the starting layer is machined. In the experiments a cylindrical 120 μm diameter Tungsten carbide tool electrode and Y 2 O 3 - and MgO- stabilized ZrO 2 worpieces are used. The current and voltage signals of the discharges within the different stages of the process (machining of the starting layer, machining of the base material, transition stage) are recorded and their characteristics compared to discharges in metallic material. Additionally, the electrode feed is monitored. The influences of the process parameters are

  16. Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments

    Directory of Open Access Journals (Sweden)

    Yuan Zhanwei

    2014-04-01

    Full Text Available By using instrumental micro-indentation technique, the microhardness and Young’s modulus of SiC particles reinforced aluminum matrix composites were investigated with micro-compression-tester (MCT. The micro-indentation experiments were performed with different maximum loads, and with three loading speeds of 2.231, 4.462 and 19.368 mN/s respectively. During the investigation, matrix, particle and interface were tested by micro-indentation experiments. The results exhibit that the variations of Young’s modulus and microhardness at particle, matrix and interface were highly dependent on the loading conditions (maximum load and loading speed and the locations of indentation. Micro-indentation hardness experiments of matrix show the indentation size effects, i.e. the indentation hardness decreased with the indentation depth increasing. During the analysis, the effect of loading conditions on Young’s modulus and microhardness were explained. Besides, the elastic–plastic properties of matrix were analyzed. The validity of calculated results was identified by finite element simulation. And the simulation results had been preliminarily analyzed from statistical aspect.

  17. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    Science.gov (United States)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  18. Hard And Soft QCD Physics In ATLAS

    Directory of Open Access Journals (Sweden)

    Adomeit Stefanie

    2014-04-01

    Full Text Available Hard and soft QCD results using proton-proton collisions recorded with the ATLAS detector at the LHC are reported. Charged-particle distributions and forward-backward correlations have been studied in low-luminosity minimum bias data taken at centre-of-mass energies of √s = 0.9, 2.36 and 7 TeV. Recent measurements on underlying event characteristics using charged-particle jets are also presented. The results are tested against various phenomenological soft QCD models implemented in Monte-Carlo generators. A summary of hard QCD measurements involving high transverse momentum jets is also given. Inclusive jet and dijet cross-sections have been measured at a centre-of-mass energy of 7 TeV and are compared to expectations based on NLO pQCD calculations corrected for non-perturbative effects as well as to NLO Monte Carlo predictions. Recent studies exploiting jet substructure techniques to identify hadronic decays of boosted massive particles are reported.

  19. Hard processes in photon-photon interactions

    International Nuclear Information System (INIS)

    Duchovni, E.

    1985-03-01

    In this thesis, the existence of hard component in two-photon collisions is investigated. Due to the relative simplicity of the photon, such processes can be exactly calculated in QCD. Untagged (low Q 2 ) two-photon events are used. This leads to relatively high statistics, but to severe background problem due mainly to e + e - annihilation. The background contamination is reduced to a tolerable level using a special set of cuts. Moreover, the remaining contamination is shown to be calculable with a small systematic error. A large number of events of the hard ''γγ'' type is found. An attempt to explain these events using the simplest QCD diagram (the Born term) is done. This process is found to be capable of explaining only a 1/4 of the data. Other options like the constituent intercharge model, integer charged quarks, and higher order diagrams are therefore also discussed. The large cross-section for the production of ρ 0 ρ 0 pairs in ''γγ'' collisions has not been understood yet. Inorder to look at closely related processes, a search for φρ 0 and φφ was initiated. The cross-section for θπ + π - was found to be sizeable. Only upper limits for the production of φρ 0 and φφ are obtained

  20. Exotic hybrid mesons in hard electroproduction

    International Nuclear Information System (INIS)

    Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC =1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e., as 1/Q 2 . This is due to the nonvanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy-momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in α S and we explore the consequences of fixing the renormalization scale ambiguity through the Brodsky-Lepage-Mackenzie (BLM) procedure. We study the particular case where the hybrid meson decays through a πη meson pair. We discuss the πη generalized distribution amplitude and then calculate the production amplitude for this process. We propose a forward-backward asymmetry in the production of π and η mesons as a signal for the hybrid meson production. We briefly comment on hybrid electroproduction at very high energy, in the diffractive limit where a QCD Odderon exchange mechanism should dominate. The conclusion of our study is that hard electroproduction is a promising way to study exotic hybrid mesons, in particular, at JLAB, HERA (HERMES), or CERN (Compass)