WorldWideScience

Sample records for vicinal silicon surfaces

  1. Infrared spectroscopy of one-dimensional metallic nanostructures on silicon vicinal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Chung Vu

    2010-06-23

    Vicinal silicon(111) surfaces are used as templates for the growth of lead nanowires as well as gold and indium atom chains. The morphology of the Au atom chains was studied by use of Scanning Tunneling Microscopy (STM) and Reflection High Energy Electron Diffraction (RHEED). The In chains were investigated by infrared spectroscopy with the electrical field component of the IR light polarized either parallel or perpendicular to the wires. It is shown that at room temperature, In atom-chains display a plasmonic absorption feature along the chain but not in the perpendicular direction. Furthermore, upon cooling down to liquid nitrogen temperature, a metal to insulator transition is observed. A structural distortion is also confirmed by RHEED. As for the result of Pb nanowires, by means of infrared spectroscopy, it is now possible to control the average length of parallel nanowire arrays by monitoring four experimental parameters that influence on the nucleation density; namely: Pb coverage, evaporation rate, substrate temperature and the surface itself. The system shows an enhancement of the absorption at the antenna frequency in the low temperature regime. This scenario is assigned to the reduction of electron-phonon scattering due to low temperature. (orig.)

  2. Infrared spectroscopy of one-dimensional metallic nanostructures on silicon vicinal surfaces

    International Nuclear Information System (INIS)

    Hoang, Chung Vu

    2010-01-01

    Vicinal silicon(111) surfaces are used as templates for the growth of lead nanowires as well as gold and indium atom chains. The morphology of the Au atom chains was studied by use of Scanning Tunneling Microscopy (STM) and Reflection High Energy Electron Diffraction (RHEED). The In chains were investigated by infrared spectroscopy with the electrical field component of the IR light polarized either parallel or perpendicular to the wires. It is shown that at room temperature, In atom-chains display a plasmonic absorption feature along the chain but not in the perpendicular direction. Furthermore, upon cooling down to liquid nitrogen temperature, a metal to insulator transition is observed. A structural distortion is also confirmed by RHEED. As for the result of Pb nanowires, by means of infrared spectroscopy, it is now possible to control the average length of parallel nanowire arrays by monitoring four experimental parameters that influence on the nucleation density; namely: Pb coverage, evaporation rate, substrate temperature and the surface itself. The system shows an enhancement of the absorption at the antenna frequency in the low temperature regime. This scenario is assigned to the reduction of electron-phonon scattering due to low temperature. (orig.)

  3. Vicinal surfaces for functional nanostructures.

    Science.gov (United States)

    Tegenkamp, Christoph

    2009-01-07

    Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF(2), MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior.

  4. Vicinal surfaces for functional nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)], E-mail: tegenkamp@fkp.uni-hannover.de

    2009-01-07

    Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF{sub 2}, MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior. (topical review)

  5. Vicinal surfaces for functional nanostructures

    International Nuclear Information System (INIS)

    Tegenkamp, Christoph

    2009-01-01

    Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF 2 , MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior. (topical review)

  6. Modelling nanostructures with vicinal surfaces

    International Nuclear Information System (INIS)

    Mugarza, A; Schiller, F; Kuntze, J; Cordon, J; Ruiz-Oses, M; Ortega, J E

    2006-01-01

    Vicinal surfaces of the (111) plane of noble metals are characterized by free-electron-like surface states that scatter at one-dimensional step edges, making them ideal model systems to test the electronic properties of periodic lateral nanostructures. Here we use high-resolution, angle-resolved photoemission to analyse the evolution of the surface state on a variety of vicinal surface structures where both the step potential barrier and the superlattice periodicity can vary. A transition in the electron dimensionality is found as we vary the terrace size in single-phase step arrays. In double-phase, periodic faceted surfaces, we observe surface states that characterize each of the phases

  7. TOPICAL REVIEW: Vicinal surfaces for functional nanostructures

    Science.gov (United States)

    Tegenkamp, Christoph

    2009-01-01

    Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF2, MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior.

  8. Step patterns on vicinal reconstructed surfaces

    Science.gov (United States)

    Vilfan, Igor

    1996-04-01

    Step patterns on vicinal (2 × 1) reconstructed surfaces of noble metals Au(110) and Pt(110), miscut towards the (100) orientation, are investigated. The free energy of the reconstructed surface with a network of crossing opposite steps is calculated in the strong chirality regime when the steps cannot make overhangs. It is explained why the steps are not perpendicular to the direction of the miscut but form in equilibrium a network of crossing steps which make the surface to look like a fish skin. The network formation is the consequence of competition between the — predominantly elastic — energy loss and entropy gain. It is in agreement with recent scanning tunnelling microscopy observations on vicinal Au(110) and Pt(110) surfaces.

  9. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    Science.gov (United States)

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  10. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted...... instability of vicinal metal surfaces is at variance with the almost generally observed stability of these surfaces. We argue that the unstable orientations undergo a defaceting transition at relatively low temperatures, driven by the high vibrational entropy of steps....

  11. Optical characterization of gold chains and steps on the vicinal Si(557) surface: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Physics and European Theoretical Spectroscopy Facility (ETSF), University of Rome ' ' Tor Vergata' ' , Via della Ricerca Scientifica 1, 00133 Rome (Italy); McAlinden, Niall; McGilp, John F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2012-06-15

    We present a joint experimental-theoretical study of the reflectance anisotropy of clean and gold-covered Si(557), a vicinal surface of Si(111) upon which gold forms quasi-one-dimensional (1D) chains parallel to the steps. By means of first-principles calculations, we analyse the close relationship between the various surface structural motifs and the optical properties. Good agreement is found between experimental and computed spectra of single-step models of both clean and Au-adsorbed surfaces. Spectral fingerprints of monoatomic gold chains and silicon step edges are identified. The role of spin-orbit coupling (SOC) on the surface optical properties is examined, and found to have little effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Determining the energetics of vicinal perovskite oxide surfaces

    NARCIS (Netherlands)

    Wessels, W.A.; Bollmann, Tjeerd Rogier Johannes; Koster, Gertjan; Zandvliet, Henricus J.W.; Rijnders, Augustinus J.H.M.

    2017-01-01

    The energetics of vicinal SrTiO3(001) and DyScO3(110), prototypical perovskite vicinal surfaces, has been studied using topographic atomic force microscopy imaging. The kink formation and strain relaxation energies are extracted from a statistical analysis of the step meandering. Both perovskite

  13. Twenty-fold plasmon-induced enhancement of radiative emission rate in silicon nanocrystals embedded in silicon dioxide

    International Nuclear Information System (INIS)

    Gardelis, S; Gianneta, V.; Nassiopoulou, A.G

    2016-01-01

    We report on a 20-fold enhancement of the integrated photoluminescence (PL) emission of silicon nanocrystals, embedded in a matrix of silicon dioxide, induced by excited surface plasmons from silver nanoparticles, which are located in the vicinity of the silicon nanocrystals and separated from them by a silicon dioxide layer of a few nanometers. The electric field enhancement provided by the excited surface plasmons increases the absorption cross section and the emission rate of the nearby silicon nanocrystals, resulting in the observed enhancement of the photoluminescence, mainly attributed to a 20-fold enhancement in the emission rate of the silicon nanocrystals. The observed remarkable improvement of the PL emission makes silicon nanocrystals very useful material for photonic, sensor and solar cell applications.

  14. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  15. Inertia of rough and vicinal surfaces of helium-4 crystals

    International Nuclear Information System (INIS)

    Amrit, J.; Legros, P.; Poitrenaud, J.

    1995-01-01

    This paper reports a study of the inertia of rough and vicinal of 4 He crystals. We have measured the transmission coefficient of ultrasonic waves at frequencies 10, 30, 50 and 70 MHz, across the liquid-solid interface. The experiments are carried out at temperatures ranging between 0.4 and 1.0 K for four crystallographic orientations. Two important phenomena are put to evidence for the first time. We have found the first experimental evidence that the inertia of rough surfaces depends on temperature. For vicinal surfaces, we have shown the strong increase of the inertia as the tilt angle decreases. Our experimental results agree very well with the theoretical predictions

  16. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  17. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  18. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  19. Metallization of DNA on silicon surface

    International Nuclear Information System (INIS)

    Puchkova, Anastasiya Olegovna; Sokolov, Petr; Petrov, Yuri Vladimirovich; Kasyanenko, Nina Anatolievna

    2011-01-01

    New simple way for silver deoxyribonucleic acid (DNA)-based nanowires preparation on silicon surface was developed. The electrochemical reduction of silver ions fixed on DNA molecule provides the forming of tightly matched zonate silver clusters. Highly homogeneous metallic clusters have a size about 30 nm. So the thickness of nanowires does not exceed 30–50 nm. The surface of n-type silicon monocrystal is the most convenient substrate for this procedure. The comparative analysis of DNA metallization on of n-type silicon with a similar way for nanowires fabrication on p-type silicon, freshly cleaved mica, and glass surface shows the advantage of n-type silicon, which is not only the substrate for DNA fixation but also the source of electrons for silver reduction. Images of bound DNA molecules and fabricated nanowires have been obtained using an atomic force microscope and a scanning ion helium microscope. DNA interaction with silver ions in a solution was examined by the methods of ultraviolet spectroscopy and circular dichroism.

  20. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  1. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  2. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  3. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  4. Metrology of nanosize biopowders using porous silicon surface

    International Nuclear Information System (INIS)

    Zhuravel', L.V.; Latukhina, N.V.; Pisareva, E.V.; Vlasov, M.Yu.; Volkov, A.V.; Volodkin, B.O.

    2008-01-01

    Powders of hydroxyapatite deposited on porous silicon surface were investigated by TEM and STM methods. Thickness of porous lay was 1-100 micrometers; porous diameter was 0.01-10 micrometers. Images of porous silicon surface with deposited particles give possibility to estimate particles size and induce that only proportionate porous diameter particles have good adhesion to porous silicon surface.

  5. Effect of the roughening transition on the vicinal surface in the step droplet zone

    Science.gov (United States)

    Akutsu, Noriko

    2017-06-01

    For vicinal surfaces around the (001) surface inclined towards the 〈 111 〉 direction, the influence of roughening transitions on the surface tension and on step droplets is studied numerically. The surface tension is calculated using a restricted solid-on-solid model with a point-contact type step-step attraction (p-RSOS model) on a square lattice. To ensure the reliability of the calculations, the density matrix renormalization group method is used. The growth rate of the vicinal surface near equilibrium is also calculated by the Monte Carlo method. It is found that the roughening transition changes the morphology around the (001) surface, and the roughening transition affects the size of locally merged steps (step droplets).

  6. Surface Effects in Segmented Silicon Sensors

    OpenAIRE

    Kopsalis, Ioannis

    2017-01-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO2 layers at the surface, thus changing the sensor properties and limiting their...

  7. Silicon and Germanium (111) Surface Reconstruction

    Science.gov (United States)

    Hao, You Gong

    Silicon (111) surface (7 x 7) reconstruction has been a long standing puzzle. For the last twenty years, various models were put forward to explain this reconstruction, but so far the problem still remains unsolved. Recent ion scattering and channeling (ISC), scanning tunneling microscopy (STM) and transmission electron diffraction (TED) experiments reveal some new results about the surface which greatly help investigators to establish better models. This work proposes a silicon (111) surface reconstruction mechanism, the raising and lowering mechanism which leads to benzene -like ring and flower (raised atom) building units. Based on these building units a (7 x 7) model is proposed, which is capable of explaining the STM and ISC experiment and several others. Furthermore the building units of the model can be used naturally to account for the germanium (111) surface c(2 x 8) reconstruction and other observed structures including (2 x 2), (5 x 5) and (7 x 7) for germanium as well as the (/3 x /3)R30 and (/19 x /19)R23.5 impurity induced structures for silicon, and the higher temperature disordered (1 x 1) structure for silicon. The model is closely related to the silicon (111) surface (2 x 1) reconstruction pi-bonded chain model, which is the most successful model for the reconstruction now. This provides an explanation for the rather low conversion temperature (560K) of the (2 x 1) to the (7 x 7). The model seems to meet some problems in the explanation of the TED result, which is explained very well by the dimer, adatom and stacking fault (DAS) model proposed by Takayanagi. In order to explain the TED result, a variation of the atomic scattering factor is proposed. Comparing the benzene-like ring model with the DAS model, the former needs more work to explain the TED result and the later has to find a way to explain the silicon (111) surface (1 x 1) disorder experiment.

  8. Surface thiolation of silicon for antifouling application.

    Science.gov (United States)

    Zhang, Xiaoning; Gao, Pei; Hollimon, Valerie; Brodus, DaShan; Johnson, Arion; Hu, Hongmei

    2018-02-07

    Thiol groups grafted silicon surface was prepared as previously described. 1H,1H,2H,2H-perfluorodecanethiol (PFDT) molecules were then immobilized on such a surface through disulfide bonds formation. To investigate the contribution of PFDT coating to antifouling, the adhesion behaviors of Botryococcus braunii (B. braunii) and Escherichia coli (E. coli) were studied through biofouling assays in the laboratory. The representative microscope images suggest reduced B. braunii and E. coli accumulation densities on PFDT integrated silicon substrate. However, the antifouling performance of PFDT integrated silicon substrate decreased over time. By incubating the aged substrate in 10 mM TCEP·HCl solution for 1 h, the fouled PFDT coating could be removed as the disulfide bonds were cleaved, resulting in reduced absorption of algal cells and exposure of non-fouled silicon substrate surface. Our results indicate that the thiol-terminated substrate can be potentially useful for restoring the fouled surface, as well as maximizing the effective usage of the substrate.

  9. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    Science.gov (United States)

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  10. Surface Science in an MOCVD Environment: Arsenic on Vicinal Ge(100)

    International Nuclear Information System (INIS)

    Olson, J.M.; McMahon, W.E.

    1998-01-01

    Scanning tunneling microscope (STM) images of arsine-exposed vicinal Ge(100) surfaces show that most As/Ge steps are reconstructed, and that a variety of different step structures exist. The entire family of reconstructed As/Ge steps can be divided into two types, which we have chosen to call ''single-row'' steps and ''double-row'' steps. In this paper we propose a model for a double-row step created by annealing a vicinal Ge(100) substrate under an arsine flux in a metal-organic chemical vapor deposition (MOCVD) chamber

  11. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  12. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  13. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  14. Radiolysis of water in the vicinity of passive surfaces

    International Nuclear Information System (INIS)

    Moreau, S.; Fenart, M.; Renault, J.P.

    2014-01-01

    Highlights: • HO° production through water radiolysis is enhanced near metal surfaces. • Hastelloy and Stainless steel surfaces can also produce HO° radicals through hydrogen peroxide activation. • There is a deficit in solvated electron production compared to hydroxyl radicals near metal surfaces. - Abstract: Porous metals were used to describe the water radiolysis in the vicinity of metal surfaces. The hydroxyl radical production under gamma irradiation was measured by benzoate scavenging in water confined in a 200 nm porous Ni base alloy or in Stainless steel. The presence of the metallic surfaces changed drastically the HO° production level and lifetime. The solvated electron production was measured via glycylglycine scavenging for Stainless steel and was found to be significantly smaller than hydroxyl production. These observations imply that interfacial radiolysis may deeply impact the corrosion behavior of the SS and Ni based alloys

  15. Surface effects in segmented silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kopsalis, Ioannis

    2017-05-15

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO{sub 2} layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO{sub 2} and at the Si-SiO{sub 2} interface. In this thesis the surface radiation damage of the Si-SiO{sub 2} system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO{sub 2} of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO{sub 2}) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO{sub 2} interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface

  16. Surface effects in segmented silicon sensors

    International Nuclear Information System (INIS)

    Kopsalis, Ioannis

    2017-05-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO 2 layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO 2 and at the Si-SiO 2 interface. In this thesis the surface radiation damage of the Si-SiO 2 system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO 2 of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO 2 ) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO 2 interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface radiation damage of silicon sensors.

  17. Surface topography and morphology characterization of PIII irradiated silicon surface

    International Nuclear Information System (INIS)

    Sharma, Satinder K.; Barthwal, Sumit

    2008-01-01

    The effect of plasma immersion ion implantation (PIII) treatment on silicon surfaces was investigated by micro-Raman and atomic force microscopy (AFM) technique. The surface damage was given by the implantation of carbon, nitrogen, oxygen and argon ions using an inductively coupled plasma (ICP) source at low pressure. AFM studies show that surface topography of the PIII treated silicon wafers depend on the physical and chemical nature of the implanted species. Micro-Raman spectra indicate that the significant reduction of intensity of Raman peak after PIII treatment. Plasma immersion ion implantation is a non-line-of-sight ion implantation method, which allows 3D treatment of materials. Therefore, PIII based surface modification and plasma immersion ion deposition (PIID) coatings are applied in a wide range of situations.

  18. Low surface damage dry etched black silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym M.; Gaudig, Maria; Davidsen, Rasmus Schmidt

    2017-01-01

    Black silicon (bSi) is promising for integration into silicon solar cell fabrication flow due to its excellent light trapping and low reflectance, and a continuously improving passivation. However, intensive ion bombardment during the reactive ion etching used to fabricate bSi induces surface dam...

  19. Optimization of the Surface Structure on Black Silicon for Surface Passivation.

    Science.gov (United States)

    Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing

    2017-12-01

    Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.

  20. Natural Contamination and Surface Flashover on Silicone Rubber Surface under Haze–Fog Environment

    Directory of Open Access Journals (Sweden)

    Ang Ren

    2017-10-01

    Full Text Available Anti-pollution flashover of insulator is important for power systems. In recent years, haze-fog weather occurs frequently, which makes discharge occurs easily on the insulator surface and accelerates insulation aging of insulator. In order to study the influence of haze-fog on the surface discharge of room temperature vulcanized silicone rubber, an artificial haze-fog lab was established. Based on four consecutive years of insulator contamination accumulation and atmospheric sampling in haze-fog environment, the contamination configuration appropriate for RTV-coated surface discharge test under simulation environment of haze-fog was put forward. ANSYS Maxwell was used to analyze the influence of room temperature vulcanized silicone rubber surface attachments on electric field distribution. The changes of droplet on the polluted room temperature vulcanized silicone rubber surface and the corresponding surface flashover voltage under alternating current (AC, direct current (DC positive polar (+, and DC negative polar (− power source were recorded by a high speed camera. The results are as follows: The main ion components from haze-fog atmospheric particles are NO3−, SO42−, NH4+, and Ca2+. In haze-fog environment, both the equivalent salt deposit density (ESDD and non-soluble deposit density (NSDD of insulators are higher than that under general environment. The amount of large particles on the AC transmission line is greater than that of the DC transmission line. The influence of DC polarity power source on the distribution of contamination particle size is not significant. After the deposition of haze-fog, the local conductivity of the room temperature vulcanized silicone rubber surface increased, which caused the flashover voltage reduce. Discharge is liable to occur at the triple junction point of droplet, air, and room temperature vulcanized silicone rubber surface. After the deformation or movement of droplets, a new triple junction

  1. Instrumental studies on silicone oil adsorption to the surface of intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Ho [Lab. of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Joo, Choun-Ki [Department of Ophthalmology and Visual Science, Medical College of Catholic University, Seoul 137-701 (Korea, Republic of); Chun, Heung Jae, E-mail: chunhj@catholic.ac.kr [Institute of Cell and Tissue Engineering, Medical College of Catholic University, Seoul 137-701 (Korea, Republic of); Yoo, Bok Ryul [Organosilicone Chemistry Laboratory, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Noh, Dong Il; Shim, Young Bock [Research Institute of Biomedical Engineering, Korea Bone Bank Co. Ltd., Seoul 153-782 (Korea, Republic of)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer It was found that PHEMA and Acrysof IOLs possess silicone oil repellant ability. Black-Right-Pointing-Pointer The residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. Black-Right-Pointing-Pointer XPS studies showed that silicone oil coverage of PMMA lenses was 12%. Black-Right-Pointing-Pointer Silicone oil covered the entire surface of the silicone IOLs. - Abstract: The purpose of this study was to examine the degree of adherence of silicone oil to various intraocular lenses (IOLs) through comparison of the physico-chemical properties of the oil and IOLs. Four kinds of IOLs comprising various biomaterials were examined: PMMA (720A Trade-Mark-Sign ), PHEMA (IOGEL 1103 Trade-Mark-Sign ), Acrysof (MA60BM Trade-Mark-Sign ), and silicone (SI30NB Trade-Mark-Sign ). Each lens was immersed in silicone oil or carboxylated silicone (CS-PDMS) oil for 72 h. For determination of the changes in chemical and elemental compositions on the surfaces of IOLs caused by the contact with silicone oil, IOLs were washed and rinsed with n-pentane to remove as much of the adsorbed silicone oil as possible, then subjected to Fourier transform infrared spectroscopic (FTIR) and X-ray photoelectron spectroscopic (XPS) analyses. The results of FTIR studies strongly indicate that washing with n-pentane completely removed the adhered silicone oil on the surfaces of PHEMA and Acrysof IOLs, whereas the residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. XPS studies showed that silicone oil coverage of PMMA lenses was 12%, even after washing with n-pentane. In the case of silicone IOLs, the relative O1s peak area of carboxyl group in the residual CS-PDMS oil was found to be {approx}2.7%. Considering that 2.8% carboxyl group-substituted silicone oil was used in the present study, CS-PDMS oil covered the entire surface of the silicone IOLs.

  2. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  3. Porous silicon structures with high surface area/specific pore size

    Science.gov (United States)

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  4. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  5. Surface etching technologies for monocrystalline silicon wafer solar cells

    Science.gov (United States)

    Tang, Muzhi

    With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.

  6. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    Science.gov (United States)

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  7. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber

    Science.gov (United States)

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice

    2003-01-01

    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  8. Covalent biofunctionalization of silicon nitride surfaces

    NARCIS (Netherlands)

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  9. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  10. Grafting of functionalized polymer on porous silicon surface using Grignard reagent

    Science.gov (United States)

    Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.

    2017-11-01

    Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).

  11. Extrinsic passivation of silicon surfaces for solar cells

    OpenAIRE

    Bonilla, R.S.; Reichel, C.; Hermle, M.; Martins, G.; Wilshaw, P.R.

    2015-01-01

    In the present work we study the extent to which extrinsic chemical and field effect passivation can improve the overall electrical passivation quality of silicon dioxide on silicon. Here we demonstrate that, when optimally applied, extrinsic passivation can produce surface recombination velocities below 1.2 cm/s in planar 1 Omega cm n-type Si. This is largely due to the additional field effect passivation component which reduces the recombination velocity below 2.13 cm/s. On textured surface...

  12. Hydrogen Incorporation during Aluminium Anodisation on Silicon Wafer Surfaces

    International Nuclear Information System (INIS)

    Lu, Pei Hsuan Doris; Strutzberg, Hartmuth; Wenham, Stuart; Lennon, Alison

    2014-01-01

    Hydrogen can act to reduce recombination at silicon surfaces for solar cell devices and consequently the ability of dielectric layers to provide a source of hydrogen for this purpose is of interest. However, due to the ubiquitous nature of hydrogen and its mobility, direct measurements of hydrogen incorporation in dielectric layers are challenging. In this paper, we report the use of secondary ion mass spectrometry measurements to show that deuterium from an electrolyte can be incorporated in an anodic aluminium oxide (AAO) layer and be introduced into an underlying amorphous silicon layer during anodisation of aluminium on silicon wafers. After annealing at 400 °C, the concentration of deuterium in the AAO was reduced by a factor of two, as the deuterium was re-distributed to the interface between the amorphous silicon and AAO and to the amorphous silicon. The assumption that hydrogen, from an aqueous electrolyte, could be similarly incorporated in AAO, is supported by the observation that the hydrogen content in the underlying amorphous silicon was increased by a factor of ∼ 3 after anodisation. Evidence for hydrogen being introduced into crystalline silicon after aluminium anodisation was provided by electrochemical capacitance voltage measurements indicating boron electrical deactivation in the underlying crystalline silicon. If introduced hydrogen can electrically deactivate dopant atoms at the surface, then it is reasonable to assume that it could also deactivate recombination-active states at the crystalline silicon interface therefore enabling higher minority carrier lifetimes in the silicon wafer

  13. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  14. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  15. Study of double porous silicon surfaces for enhancement of silicon solar cell performance

    Science.gov (United States)

    Razali, N. S. M.; Rahim, A. F. A.; Radzali, R.; Mahmood, A.

    2017-09-01

    In this work, design and simulation of double porous silicon surfaces for enhancement of silicon solar cell is carried out. Both single and double porous structures are constructed by using TCAD ATHENA and TCAD DEVEDIT tools of the SILVACO software respectively. After the structures were created, I-V characteristics and spectral response of the solar cell were extracted using ATLAS device simulator. Finally, the performance of the simulated double porous solar cell is compared with the performance of both single porous and bulk-Si solar cell. The results showed that double porous silicon solar cell exhibited 1.8% efficiency compared to 1.3% and 1.2% for single porous silicon and bulk-Si solar cell.

  16. Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces

    Directory of Open Access Journals (Sweden)

    Chris J. Allender

    2013-03-01

    Full Text Available This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2 however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS were used to study these affects.

  17. Nanolayer surface passivation schemes for silicon solar cells

    NARCIS (Netherlands)

    Dingemans, G.

    2011-01-01

    This thesis is concerned with nanolayer surface passivation schemes and corresponding deposition processes, for envisaged applications in crystalline silicon solar cells. Surface passivation, i.e. the reduction of electronic recombination processes at semiconductor surfaces, is essential for

  18. Demultiplexing Surface Waves With Silicon Nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Bogdanov, A.; Komissarenko, F.

    2017-01-01

    We demonstrate directional launching of surface plasmon polaritons on thin gold film with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation within extremely narrow spectral hand (! 50 nm), which is driven...... by the mutual interference of magnetic and electric dipole moments supported by the dielectric nanoantenna....

  19. Surface wave photonic device based on porous silicon multilayers

    International Nuclear Information System (INIS)

    Guillermain, E.; Lysenko, V.; Benyattou, T.

    2006-01-01

    Porous silicon is widely studied in the field of photonics due to its interesting optical properties. In this work, we present theoretical and first experimental studies of a new kind of porous silicon photonic device based on optical surface wave. A theoretical analysis of the device is presented using plane-wave approximation. The porous silicon multilayered structures are realized using electrochemical etching of p + -type silicon. Morphological and optical characterizations of the realized structures are reported

  20. Silicon quantum dots: surface matters

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  1. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  2. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.

    Science.gov (United States)

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-11-24

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.

  3. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Rafiq, Muhammad; Seo, Sung-Yum [Department of Biology, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Lee, Ki Hwan, E-mail: khlee@kongju.ac.kr [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of)

    2014-07-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  4. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2014-01-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  5. Vertically etched silicon nano-rods as a sensitive electron detector

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, M; Akbari, M; Soleimani-Amiri, S; Sadeghipari, M; Shahsafi, A; Akhavan Farahani, A; Mohajerzadeh, S

    2015-01-01

    We have used vertically etched silicon nano-rods to realize electron detectors suitable for scanning electron microscopes. The results of deep etching of silicon nano-structures are presented to achieve highly ordered arrays of nano-rods. The response of the electron detector to energy of the primary electron beam and the effects of various sizes and materials has been investigated, indicating its high sensitivity to secondary and back-scattered electrons. The miniaturized structure of this electron detector allows it to be placed in the vicinity of the specimen to improve the resolution and contrast. This detector collects electrons and converts the electron current to voltage directly by means of n-doped silicon nano-rods on a p-type silicon substrate. Silicon nano-rods enhance the surface-to-volume ratio of the detector as well as improving the yield of electron detection. The use of nano-structures and silicon nanowires as an electron detector has led to higher sensitivities than with micro-structures. (paper)

  6. A silicon-based electrical source for surface plasmon polaritons

    NARCIS (Netherlands)

    Walters, Robert J.; van Loon, Rob V.A.; Brunets, I.; Schmitz, Jurriaan; Polman, Albert

    2009-01-01

    This work demonstrates the fabrication of a silicon-based electrical source for surface plasmon polaritons (SPPs) at low temperatures using silicon nanocrystal doped alumina within a metal-insulator-metal (MIM) waveguide geometry. The fabrication method uses established microtechnology processes

  7. Low surface damage dry etched black silicon

    Science.gov (United States)

    Plakhotnyuk, Maksym M.; Gaudig, Maria; Davidsen, Rasmus Schmidt; Lindhard, Jonas Michael; Hirsch, Jens; Lausch, Dominik; Schmidt, Michael Stenbæk; Stamate, Eugen; Hansen, Ole

    2017-10-01

    Black silicon (bSi) is promising for integration into silicon solar cell fabrication flow due to its excellent light trapping and low reflectance, and a continuously improving passivation. However, intensive ion bombardment during the reactive ion etching used to fabricate bSi induces surface damage that causes significant recombination. Here, we present a process optimization strategy for bSi, where surface damage is reduced and surface passivation is improved while excellent light trapping and low reflectance are maintained. We demonstrate that reduction of the capacitively coupled plasma power, during reactive ion etching at non-cryogenic temperature (-20 °C), preserves the reflectivity below 1% and improves the effective minority carrier lifetime due to reduced ion energy. We investigate the effect of the etching process on the surface morphology, light trapping, reflectance, transmittance, and effective lifetime of bSi. Additional surface passivation using atomic layer deposition of Al2O3 significantly improves the effective lifetime. For n-type wafers, the lifetime reaches 12 ms for polished and 7.5 ms for bSi surfaces. For p-type wafers, the lifetime reaches 800 μs for both polished and bSi surfaces.

  8. Photoluminescent silicon nanocrystals with chlorosilane surfaces - synthesis and reactivity

    Science.gov (United States)

    Höhlein, Ignaz M. D.; Kehrle, Julian; Purkait, Tapas K.; Veinot, Jonathan G. C.; Rieger, Bernhard

    2014-12-01

    We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place.We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place. Electronic supplementary information (ESI) available: Detailed experimental procedures and additional NMR, PL, EDX, DLS and TEM data. See DOI: 10.1039/C4NR05888G

  9. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  10. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  11. Morphology of IR and UV Laser-induced Structural Changes on Silicon Surfaces

    International Nuclear Information System (INIS)

    Jimenez-Jarquin, J.; Haro-Poniatowski, E.; Fernandez-Guasti, M.; Hernandez-Pozos, J.L.

    2005-01-01

    Using scanning electronic microscopy, we analyze the structural changes induced in silicon (100) wafers by focused IR (1064 nm) and UV (355 nm) nanosecond laser pulses. The experiments were performed in the laser ablation regime. When a silicon surface is irradiated by laser pulses in an O2 atmosphere conical microstructures are obtained. The changes in silicon surface morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however the final result consist of an array of microcones when the experiment is carried out in oxygen. We employ a random scanning technique to irradiate silicon surfaces over large areas. In this form we have obtained large patterned areas

  12. Silicon surface biofunctionalization with dopaminergic tetrahydroisoquinoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Lucena-Serrano, A.; Lucena-Serrano, C.; Contreras-Cáceres, R.; Díaz, A.; Valpuesta, M. [Dep. Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Cai, C. [Dep. Chemistry, University of Houston, Houston, TX 77204-5003 (United States); López-Romero, J.M., E-mail: jmromero@uma.es [Dep. Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain)

    2016-01-01

    Graphical abstract: - Highlights: • Two dopaminergic tetrahydroisoquinolines (THI) were synthesized. • Vinyl-terminated THI incorporated onto the H−Si(1 1 1) substrates via a hydrosilylation. • The highest yield in coverage was obtained in DMSO, at 4 h of irradiation and 0.1 mbar of vacuum. • Alkynyl-terminated Si surface was produced for incorporation of azide-THI by click reaction. • Best yields on grafted molecule were obtained by click reaction in absence of ascorbic acid. - Abstract: In this work we grafted vinyl- and azido-terminated tetrahydroisoquinolines (compounds 1 and 2, respectively) onto H−Si(1 1 1) silicon wafers obtaining highly stable modified surfaces. A double bond was incorporated into the tetrahydroisoquinoline structure of 1 to be immobilized by a light induced hydrosilylation reaction on hydrogen-terminated Si(1 1 1). The best results were obtained employing a polar solvent (DMSO), rather than a non-polar solvent (toluene). The azide derivative 2 was grafted onto alkenyl-terminated silicon substrates with copper-catalyzed azide-alkyne cycloaddition (CuAAC). Atomic force microscopy (AFM), contact angle goniometry (CA) and X-ray photoemission spectroscopy (XPS) were used to demonstrate the incorporation of 1 and 2 into the surfaces, study the morphology of the modified surfaces and to calculate the yield of grafting and surface coverage. CA measurements showed the increase in the surface hydrophobicity when 1 or 2 were incorporated into the surface. Moreover, compounds 1 and 2 were prepared starting from 1-(p-nitrophenyl)tetrahydroisoquinoline 3 under smooth conditions and in good yields. The structures of 1 and 2 were designed with a reduced A-ring, two substituents at positions C-6 and C-7, an N-methyl group and a phenyl moiety at C-1 in order to provide a high affinity against dopaminergic receptors. Moreover, O-demethylation of 1 was carried out once it was adsorbed onto the surface by treatment with BBr{sub 3}. The method

  13. Surface elastic properties in silicon nanoparticles

    Science.gov (United States)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  14. Removal of dangling bonds and surface states on silicon (001) with a monolayer of selenium

    International Nuclear Information System (INIS)

    Tao Meng; Udeshi, Darshak; Basit, Nasir; Maldonado, Eduardo; Kirk, Wiley P.

    2003-01-01

    Dangling bonds and surface states are inherent to semiconductor surfaces. By passivating dangling bonds on the silicon (001) surface with a monolayer of selenium, surface states are removed from the band gap. Magnesium contacts on selenium-passivated silicon (001) behave ohmically, as expected from the work function of magnesium and the electron affinity of silicon. After rapid thermal annealing and hot-plate annealing, magnesium contacts on selenium-passivated silicon (001) show better thermal stability than on hydrogen-passivated silicon (001), which is attributed to the suppression of silicide formation by selenium passivation

  15. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  16. Conciliating surface superhydrophobicities and mechanical strength of porous silicon films

    Science.gov (United States)

    Wang, Fuguo; Zhao, Kun; Cheng, Jinchun; Zhang, Junyan

    2011-01-01

    Hydrophobic surfaces on Mechanical stable macroporous silicon films were prepared by electrochemical etching with subsequent octadecyltrichlorosilane (OTS) modification. The surface morphologies were controlled by current densities and the mechanical properties were adjusted by their corresponding porosities. Contrast with the smooth macroporous silicon films with lower porosities (34.1%) and microporous silicon with higher porosities (97%), the macroporous film with a rough three-dimension (3D) surface and a moderate pore to cross-section area ratio (37.8%, PSi2‧) exhibited both good mechanical strength (Yong' modulus, shear modulus and collapse strength are 64.2, 24.1 and 0.32 GPa, respectively) and surface superhydrophobicity (water contact angle is 158.4 ± 2° and sliding angle is 2.7 ± 1°). This result revealed that the surface hydrophobicities (or the surface roughness) and mechanical strength of porous films could be conciliated by pore to cross-section area ratios control and 3D structures construction. Thus, the superhydrophobic surfaces on mechanical stable porous films could be obtained by 3D structures fabrication on porous film with proper pore to cross-section area ratios.

  17. DEPTH MEASUREMENT OF DISRUPTED LAYER ON SILICON WAFER SURFACE USING AUGER SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    V. A. Solodukha

    2016-01-01

    Full Text Available The paper proposes a method for depth measurement of a disrupted layer on silicon wafer surface which is based on application of Auger spectroscopy with the precision sputtering of surface silicon layers and registration of the Auger electron yield intensity. In order to measure the disrupted layer with the help of Auger spectroscopy it is necessary to determine dependence of the released Auger electron amount on sputtering time (profile and then the dependence is analyzed. Silicon amount in the disrupted layer is less than in the volume. While going deeper the disruptive layer is decreasing that corresponds to an increase of atom density in a single layer. The essence of the method lies in the fact the disruptive layer is removed by ion beam sputtering and detection of interface region is carried out with the help of registration of the Auger electron yield intensity from the sputtered surface up to the moment when it reaches the value which is equal to the Auger electron yield intensity for single-crystal silicon. While removing surface silicon layers the registration of the Auger electron yield intensity from silicon surface makes it possible to control efficiently a presence of the disrupted layer on the silicon wafer surface. In this case depth control locality is about 1.0 nm due to some peculiarities of Auger spectroscopy method. The Auger electron yield intensity is determined automatically while using Auger spectrometer and while removing the disrupted layer the intensity is gradually increasing. Depth of the disrupted layer is determined by measuring height of the step which has been formed as a result of removal of the disrupted layer from the silicon wafer surface. Auger spectroscopy methods ensures an efficient depth control surface disruptions at the manufacturing stages of silicon wafers and integrated circuits. The depth measurement range of disruptions constitutes 0.001–1.000 um.

  18. Self-assembling peptide hydrogels immobilized on silicon surfaces

    International Nuclear Information System (INIS)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele; Zamuner, Annj; Dettin, Monica; Iucci, Giovanna

    2016-01-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  19. Self-assembling peptide hydrogels immobilized on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy); Zamuner, Annj; Dettin, Monica [Department of Industrial Engineering, University of Padua, Via Marzolo, 9, Padua, 35131 (Italy); Iucci, Giovanna, E-mail: giovanna.iucci@uniroma3.it [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy)

    2016-12-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  20. Electroless deposition of Ni-P on a silicon surface

    Directory of Open Access Journals (Sweden)

    hassan El Grini

    2017-06-01

    Full Text Available The present article concerns the metallization of silicon substrates by deposition of the nickel-phosphorus alloy produced by an autocatalytic chemical process. The deposition electrolyte is composed of a metal salt, a reducing agent (sodium hypophosphite, a complexing agent (sodium citrate and a buffer (ammonium acetate. The deposition could only be carried out after activation of the silicon by fixing catalytic species on its surface. The immersion of the silicon samples in palladium chloride made it possible to produce relatively thick and regular Ni-P coatings. The immersion time was optimized. The activation of Si was characterized by XPS and the Ni-P coating by XPS and M.E.B. The electrochemical study did not show any real mechanism changes compared to the Ni-P deposition on a conductive surface

  1. Chemical modification of silicon surfaces for the application in soft lithography

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, S.

    2007-05-15

    The objective of this work was to chemically modify silicon surfaces by anchoring functional molecules. A major part was devoted to the investigation and improvement of the self-assembly process of organosilanes on oxidized silicon surfaces. The formation of a release agent layer with perfluorinated alkylsilanes was performed by vapor phase deposition. An advanced vapor phase deposition device, called CASINO device, was built to enhance the qualities of the thin films. It is possible to carry out cleaning and silanization in a closed chamber without exposing the samples to air in between. Thereby surface contamination is avoided. Experiments with the new device were performed following examples given in literature. To optimize the silanization process in the CASINO device, it was also planned to apply heat treatment of the sample during or after the deposition process. Surface layers of thiolterminated and of aminoterminated molecules were investigated as adhesive layer for the linkage of metal structures to silicon surfaces, e.g. Shuttle-Transfer Printing with gold crossbar electrodes. First, thiol- and aminoterminated organosilane SAMs were tested as adhesive layers for gold. The surface modified with thiolterminated silane molecules was further examined. Adhesion was promoted only after heat treatment of a thiolmodified silicon substrate with a gold layer on top. (orig.)

  2. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics.......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  3. Radiation- stimulated adsorption of n-hexane on the surface of silicon

    International Nuclear Information System (INIS)

    Hajiyeva, N.N.

    2014-01-01

    Full text : This paper presents the results of studies of radiation-stimulated adsorption of n-hexane on a silicon surface, obtained by infrared reflection-absorption spectroscopy method. It has been used a monocrystal silicon plate with high reflectance coefficient of the surface. Irradiation of the samples was carried out on gamma-quantum source of 60Co

  4. Beam Simulation Studies of Plasma-Surface Interactions in Fluorocarbon Etching of Silicon and Silicon Dioxide

    Science.gov (United States)

    Gray, David C.

    1992-01-01

    A molecular beam apparatus has been constructed which allows the synthesis of dominant species fluxes to a wafer surface during fluorocarbon plasma etching. These species include atomic F as the primary etchant, CF _2 as a potential polymer forming precursor, and Ar^{+} or CF _{rm x}^{+} type ions. Ionic and neutral fluxes employed are within an order of magnitude of those typical of fluorocarbon plasmas and are well characterized through the use of in -situ probes. Etching yields and product distributions have been measured through the use of in-situ laser interferometry and line-of-sight mass spectrometry. XPS studies of etched surfaces were performed to assess surface chemical bonding states and average surface stoichiometry. A useful design guide was developed which allows optimal design of straight -tube molecular beam dosers in the collisionally-opaque regime. Ion-enhanced surface reaction kinetics have been studied as a function of the independently variable fluxes of free radicals and ions, as well as ion energy and substrate temperature. We have investigated the role of Ar ^{+} ions in enhancing the chemistries of F and CF_2 separately, and in combination on undoped silicon and silicon dioxide surfaces. We have employed both reactive and inert ions in the energy range most relevant to plasma etching processes, 20-500 eV, through the use of Kaufman and ECR type ion sources. The effect of increasing ion energy on the etching of fluorine saturated silicon and silicon dioxide surfaces was quantified through extensions of available low energy physical sputtering theory. Simple "site"-occupation models were developed for the quantification of the ion-enhanced fluorine etching kinetics in these systems. These models are suitable for use in topography evolution simulators (e.g. SAMPLE) for the predictive modeling of profile evolution in non-depositing fluorine-based plasmas such as NF_3 and SF_6. (Copies available exclusively from MIT Libraries, Rm. 14

  5. A dielectric matrix calculation of the surface-plasmon energy for the silicon (100) surface

    International Nuclear Information System (INIS)

    Forsyth, A.J.; Smith, A.E.; Josefsson, T.W.

    1996-01-01

    Full text: As an extension of previous work, we present preliminary calculations for the dielectric properties of the silicon (100) surface. In particular, the |q|→0 and |q|=2π/a(1,0,0) surface loss function, and corresponding surface plasmon energies have been calculated within a simple model for the silicon surface. The results have been obtained from the Adler and Wiser dielectric matrix (DM). The bandstructure used for the calculation was based on the highly successful empirical pseudopotential method of Cohen and Chelikovsky. We have used a 59 plane wave basis for the bandstructure, and have chosen a DM size of 59 x 59. Results are compared and contrasted with volume plasmon calculations, free electron calculations and experiment

  6. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  7. High surface area silicon materials: fundamentals and new technology.

    Science.gov (United States)

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  8. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  9. Formation of silicon carbide by laser ablation in graphene oxide-N-methyl-2-pyrrolidone suspension on silicon surface

    Science.gov (United States)

    Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz

    2018-01-01

    Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction‌ (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy‌ (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV‌-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.

  10. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  11. Surface functionalization of HF-treated silicon nanowires

    Indian Academy of Sciences (India)

    Administrator

    place when silicon nanowires reacted with 2,2,2-trifluoroethyl acrylate, and reductive deposition reaction occurred in the ... detection of fM level of protein. 14 and DNA. 15 ... surfaces can be easily modified to act as both elec- tron-transfer ...

  12. Covalent Attachment of Bent-Core Mesogens to Silicon Surfaces

    NARCIS (Netherlands)

    Scheres, L.; Achten, R.; Giesbers, M.; Smet, de L.; Arafat, A.; Sudhölter, E.J.R.; Marcelis, A.T.M.; Zuilhof, H.

    2009-01-01

    Two vinyl-terminated bent core-shaped liquid crystalline molecules that exhibit thermotropic antiferroelectric SmCPA phases have been covalently attached onto a hydrogen-terminated silicon(111) surface. The surface attachment was achieved via a mild procedure from a mesitylene solution, using

  13. Fabrication of multi-functional silicon surface by direct laser writing

    Science.gov (United States)

    Verma, Ashwani Kumar; Soni, R. K.

    2018-05-01

    We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.

  14. Dielectric properties of DNA oligonucleotides on the surface of silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: bagraev@mail.ioffe.ru [St. Petersburg Polytechnic University (Russian Federation); Chernev, A. L. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation); Klyachkin, L. E. [St. Petersburg Polytechnic University (Russian Federation); Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Emel’yanov, A. K.; Dubina, M. V. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)

    2016-10-15

    Planar silicon nanostructures that are formed as a very narrow silicon quantum well confined by δ barriers heavily doped with boron are used to study the dielectric properties of DNA oligonucleotides deposited onto the surface of the nanostructures. The capacitance characteristics of the silicon nanostructures with oligonucleotides deposited onto their surface are determined by recording the local tunneling current–voltage characteristics by means of scanning tunneling microscopy. The results show the possibility of identifying the local dielectric properties of DNA oligonucleotide segments consisting of repeating G–C pairs. These properties apparently give grounds to correlate the segments with polymer molecules exhibiting the properties of multiferroics.

  15. Formation of a silicon terminated (100) diamond surface

    International Nuclear Information System (INIS)

    Schenk, Alex; Sear, Michael; Pakes, Chris; Tadich, Anton; O'Donnell, Kane M.; Ley, Lothar; Stacey, Alastair

    2015-01-01

    We report the preparation of an ordered silicon terminated diamond (100) surface with a two domain 3 × 1 reconstruction as determined by low energy electron diffraction. Based on the dimensions of the surface unit cell and on chemical information provided by core level photoemission spectra, a model for the structure is proposed. The termination should provide a homogeneous, nuclear, and electron spin-free surface for the development of future near-surface diamond quantum device architectures

  16. Dry Etch Black Silicon with Low Surface Damage: Effect of Low Capacitively Coupled Plasma Power

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Plakhotnyuk, Maksym; Gaudig, Maria

    2017-01-01

    Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we pr...... carrier lifetime thanks to reduced ion energy. Surface passivation using atomic layer deposition of Al2O3 improves the effective lifetime to 7.5 ms and 0.8 ms for black silicon n- and p-type wafers, respectively.......Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we...... present a RIE optimization leading to reduced surface damage while retaining excellent light trapping and low reflectivity. In particular, we demonstrate that the reduction of the capacitively coupled power during reactive ion etching preserves a reflectance below 1% and improves the effective minority...

  17. Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.

    Science.gov (United States)

    Qiu, J; Ran, D F; Liu, Y B; Liu, L H

    2016-07-10

    Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.

  18. Direct modification of silicon surface by nanosecond laser interference lithography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Wang, Zuobin, E-mail: wangz@cust.edu.cn [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Zhang, Ziang [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); Yue, Yong [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Li, Dayou [JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Maple, Carsten [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom)

    2013-10-01

    Periodic and quasi-periodic structures on silicon surface have numerous significant applications in photoelectronics and surface engineering. A number of technologies have been developed to fabricate the structures in various research fields. In this work, we take the strategy of direct nanosecond laser interference lithography technology, and focus on the silicon material to create different well-defined surface structures based on theoretical analysis of the formation of laser interference patterns. Two, three and four-beam laser interference systems were set up to fabricate the grating, regular triangle and square structures on silicon surfaces, respectively. From the AFM micrographs, the critical features of structures have a dependence on laser fluences. For a relative low laser fluence, grating and dot structures formed with bumps due to the Marangoni Effect. With the increase of laser fluences, melt and evaporation behaviors can be responsible for the laser modification. By properly selecting the process parameters, well-defined grating and dot structures can been achieved. It can be demonstrated that direct laser interference lithography is a facile and efficient technology with the advantage of a single process procedure over macroscale areas for the fabrication of micro and nano structures.

  19. Anchoring of alkyl chain molecules on oxide surface using silicon alkoxide

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Ayumi, E-mail: narita.ayumi@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan); Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Yaita, Tsuyoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan)

    2012-01-01

    Chemical states of the interfaces between octadecyl-triethoxy-silane (ODTS) molecules and sapphire surface were measured by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) using synchrotron soft X-rays. The nearly self-assembled monolayer of ODTS was formed on the sapphire surface. For XPS and NEXAFS measurements, it was elucidated that the chemical bond between silicon alkoxide in ODTS and the surface was formed, and the alkane chain of ODTS locates upper side on the surface. As a result, it was elucidated that the silicon alkoxide is a good anchor for the immobilization of organic molecules on oxides.

  20. A surface code quantum computer in silicon

    Science.gov (United States)

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  1. A surface code quantum computer in silicon.

    Science.gov (United States)

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  2. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. [Belarusian State University of Information and RadioElectronics (Belarus)

    2016-03-15

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  3. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    International Nuclear Information System (INIS)

    Chubenko, E. B.; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P.

    2016-01-01

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  4. Characterization of the silicon nanopillar-surface filled and grafted with nanomaterials

    International Nuclear Information System (INIS)

    He, Yuan; Che, Xiangchen; Que, Long

    2014-01-01

    This paper reports the characterization of the silicon nanopillar-surface filled and grafted with nanomaterials. Usually a silicon nanopillar-surface contains nanopillars and air among them. The air is not a good medium to absorb and trap the incoming photons. In order to improve this capability, the air should be replaced with other material. To this end, copper sulfide–gold (CuS–Au) core–shell nanostructures and silver nanoplates are used as two representative substitutes for air among the nanopillars. Experiments find that the reflectance of the nanomaterial-coated nanopillar-surface can be reduced at least 50% compared to that of the bare nanopillar-surface. Different nanomaterial-coated nanopillar-surface can tune the optical reflectance and absorption profile, thereby trapping photons in different wavelength ranges. (paper)

  5. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    Science.gov (United States)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  6. Application of a LEED apparatus provided with a lens to the study of vicinal surfaces

    International Nuclear Information System (INIS)

    Laydevant, Louis; Dupuy, J.C.

    1979-01-01

    Steps presence on vicinal surfaces changes the low energy electron difraction (LEED) pattern: a system of regulary spaced steps is causing some spots to be splitted. Using a high voltage LEED apparatus allows an easy explanation of the patterns: the spot position does not depend about energy and so some cristallographic parameters can be easily measured [fr

  7. Doping profile measurement on textured silicon surface

    Science.gov (United States)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  8. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  9. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M J; Wielunski, L S; Netterfield, R P; Martin, P J; Leistner, A [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  10. Laser direct writing of oxide structures on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Müllenborn, Matthias; Birkelund, Karen; Grey, Francois

    1996-01-01

    on amorphous and crystalline silicon surfaces in order to determine the depassivation mechanism. The minimum linewidth achieved is about 450 nm using writing speeds of up to 100 mm/s. The process is fully compatible with local oxidation of silicon by scanning probe lithography. Wafer-scale patterns can...

  11. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  12. Role of oxygen in surface segregation of metal impurities in silicon poly- and bicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Amarray, E.; Deville, J.P.

    1987-07-01

    Metal impurities at surfaces of polycrystalline silicon ribbons have been characterized by surface sensitive methods. Oxygen and heat treatments were found to be a driving force for surface segregation of these impurities. To better analyse their influence and their possible incidence in gettering, model studies were undertaken on Czochralski grown silicon bicrystals. Two main factors of surface segregation have been studied: the role of an ultra-thin oxide layer and the effect of heat treatments. The best surface purification was obtained after an annealing process at 750/sup 0/C of a previously oxidized surface at 450/sup 0/C. This was related to the formation of SiO clusters, followed by a coalescence of SiO/sub 4/ units leading to the subsequent injection of silicon self-interstitials in the lattice.

  13. Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces

    Science.gov (United States)

    Hu, Huan; Siu, Vince S.; Gifford, Stacey M.; Kim, Sungcheol; Lu, Minhua; Meyer, Pablo; Stolovitzky, Gustavo A.

    2017-12-01

    The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. We discovered that 6 minutes of etching results in a surface containing silicon nanospikes with optimal geometry. The bactericidal properties of the silicon nanospikes were supported by bacterial plating results, fluorescence images, and scanning electron microscopy images.

  14. Occupied and unoccupied electronic states on vicinal Si(111) surfaces decorated with monoatomic gold chains; Besetzte und unbesetzte elektronische Zustaende vizinaler Si(111)-Oberflaechen mit atomaren Goldketten

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Kerstin

    2012-07-12

    In this work, the occupied and unoccupied electronic states of vicinal Si(111)-Au surfaces were investigated. The research focused on amending the experimental electronic band structure by two-photon photoemission and laser-based photoemission and bringing it in line with theoretical band structure calculations. This work dealt with the Si(553)-Au, the Si(111)-(5x2)-Au and the Si(557)-Au surface. Angle-resolved UV-photoelectron spectroscopy gave access to the occupied part of the band structure and thus to the energetic position, the dispersion and the symmetry of the occupied states. Bichromatic two-photon photoemission, however, revealed information about the energetics and, in addition, about the dynamics of unoccupied states on a femtosecond timescale. Notably, the selective polarization of the laser pulses allowed for distinguishing and classifying many of the states with respect to their symmetry. All three surfaces exhibited both surface and bulk states in the occupied part of the band structure. They could be clearly identified and separated from surface contributions by means of tight-binding calculations of the bulk band structure of silicon and by comparison to each other. An added similarity of these surfaces are the one-dimensional Rashba-split gold states, which definitely show dispersion along the chains but not perpendicular to them. All surfaces exhibit states which can easily be assigned to the gold chains. Additional features, however, cannot be attributed clearly to the characteristics of the complex surface reconstruction in all cases. An assignment to surface states was only successfully accomplished for Si(553)-Au. The primary emphasis of this photoemission study was on the Si(553)-Au surface, which shows the smallest defect density in comparison to the other surfaces and hence exhibits the sharpest peaks in the experimental spectra. In accordance with ab-initio band structure calculations this surface also displays, in addition to one

  15. Elementary structural building blocks encountered in silicon surface reconstructions

    International Nuclear Information System (INIS)

    Battaglia, Corsin; Monney, Claude; Didiot, Clement; Schwier, Eike Fabian; Garnier, Michael Gunnar; Aebi, Philipp; Gaal-Nagy, Katalin; Onida, Giovanni

    2009-01-01

    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface. (topical review)

  16. Improvement of crystalline silicon surface passivation by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Martin, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P.

    2004-01-01

    A completely dry low-temperature process has been developed to passivate 3.3 Ω cm p-type crystalline silicon surface with excellent results. Particularly, we have investigated the use of a hydrogen plasma treatment, just before hydrogenated amorphous silicon carbide (a-SiC x :H) deposition, without breaking the vacuum. We measured effective lifetime, τ eff , through a quasi-steady-state photoconductance technique. Experimental results show that hydrogen plasma treatment improves surface passivation compared to classical HF dip. S eff values lower than 19 cm s -1 were achieved using a hydrogen plasma treatment and an a-SiC x :H film deposited at 300 deg. C

  17. Attachment chemistry of aromatic compounds on a Silicon(100) surface

    Science.gov (United States)

    Henriksson, Anders; Nishiori, Daiki; Maeda, Hiroaki; Miyachi, Mariko; Yamanoi, Yoshinori; Nishihara, Hiroshi

    2018-03-01

    A mild method was developed for the chemical attachment of aromatic compounds directly onto a hydrogen-terminated Si(100) (H-Si(100)) surface. In the presence of palladium catalyst and base, 4-iodophenylferrocene and a π-conjugated iron complex were attached to H-Si(100) electrodes and hydrogen-terminated silicon nanowires (H-SiNWs), both of which have predominant dihydride species on their surfaces. The reactions were conducted in 1,4-dioxane at 100 °C and the immobilization of both 4-ferrocenylphenyl group and π-conjugated molecular wires were confirmed and quantified by XPS and electrochemical measurements. We reported densely packed monolayer whose surface coverage (Γ), estimated from the electrochemical measurements are in analogue to similar monolayers prepared via thermal or light induced hydrosilylation reactions with alkenes or alkynes. The increase in electrochemical response observed on nanostructured silicon surfaces corresponds well to the increase in surface area, those strongly indicating that this method may be applied for the functionalization of electrodes with a variety of surface topographies.

  18. Nanowires and nanoneedles nucleation on vicinal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxubetter@gmail.com [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China); Xie, Dan; Huang, Genling [Zhengzhou Railway Vocational and Technical College, Zhengzhou 450052 (China); Sun, Xiao-Hong [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-01-01

    An analytic stress-driven nucleation model of nanowires (NWs) and nanoneedles (NNs) growing on a mismatched vicinal substrate is proposed. It is demonstrated that the formation enthalpy of NWs and NNs is a function of three independent variables, the base radius, aspect ratio and miscut angle of the vicinal surface. Theoretical analysis shows that the minimum nucleation barrier of an island decreases with increment of substrate misorientation, which means the nucleation of islands on a vicinal substrate is more favorable than that on a flat substrate.

  19. The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface

    International Nuclear Information System (INIS)

    Ciampi, Simone; Choudhury, Moinul H.; Ahmad, Shahrul Ainliah Binti Alang; Darwish, Nadim; Brun, Anton Le; Gooding, J.Justin

    2015-01-01

    Graphical abstract: The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface. ABSTRACT: The impact of the coverage of ferrocene moieties, attached to a silicon electrode modified via hydrosilylation of a dialkyne, on the kinetics of electron transfer between the redox species and the electrode is explored. The coverage of ferrocene is controlled by varying the coupling time between azidomethylferrocene and the distal alkyne of the monolayer via the copper assisted azide-alkyne cycloaddition reaction. All other variables in the surface preparation are maintained identical. What is observed is that the higher the surface coverage of the ferrocene moieties the faster the apparent rates of electron transfer. This surface coverage-dependent kinetic effect is attributed to electrons hopping between ferrocene moieties across the redox film toward hotspots for the electron transfer event. The origin of these hotspots is tentatively suggested to result from minor amounts of oxide on the underlying silicon surface that reduce the barrier for the electron transfer.

  20. All-(111) surface silicon nanowire field effect transistor devices: Effects of surface preparations

    NARCIS (Netherlands)

    Masood, M.N.; Carlen, Edwin; van den Berg, Albert

    2014-01-01

    Etching/hydrogen termination of All-(111) surface silicon nanowire field effect (SiNW-FET) devices developed by conventional photolithography and plane dependent wet etchings is studied with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and

  1. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics.......We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...

  2. Ion-step method for surface potential sensing of silicon nanowires

    NARCIS (Netherlands)

    Chen, S.; van Nieuwkasteele, Jan William; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected.

  3. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    Science.gov (United States)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRVSi surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and

  4. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    Science.gov (United States)

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  5. Three-dimensional immobilization of beta-galactosidase on a silicon surface.

    Science.gov (United States)

    Betancor, Lorena; Luckarift, Heather R; Seo, Jae H; Brand, Oliver; Spain, Jim C

    2008-02-01

    Many alternative strategies to immobilize and stabilize enzymes have been investigated in recent years for applications in biosensors. The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity and enhanced mechanical stability. Here we report a strategy for chemically associating silica nanospheres containing entrapped enzyme to a silicon support. beta-galactosidase from E. coli was used as a model enzyme due to its versatility as a biosensor for lactose. The immobilization strategy resulted in a three-dimensional network of silica attached directly at the silicon surface, providing a significant increase in surface area and a corresponding 3.5-fold increase in enzyme loading compared to enzyme attached directly at the surface. The maximum activity recovered for a silicon square sample of 0.5 x 0.5 cm was 0.045 IU using the direct attachment of the enzyme through glutaraldehyde and 0.16 IU when using silica nanospheres. The immobilized beta-galactosidase prepared by silica deposition was stable and retained more than 80% of its initial activity after 10 days at 24 degrees C. The ability to generate three-dimensional structures with enhanced loading capacity for biosensing molecules offers the potential to substantially amplify biosensor sensitivity. (c) 2007 Wiley Periodicals, Inc.

  6. Porous silicon surfaces for metabonomics: Detection and identification of nucleotides without matrix interference

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, D.; Azcarate, Sabino [Dpto. de Micro y Nanotecnologias, Fundacion Tekniker, Av. Otaola 20, 20600 Eibar (Spain); Fernandez, Jose A.; Astigarraga, Egoitz [Dpto. de Quimica Fisica, Universidad del Pais Vasco, Campus de Lejona, Lejona (Spain); Marcaide, Arrate [Dpto. de Procesos de Fabricacion, Fundacion Tekniker, Av. Otaola 20, 20600 Eibar (Spain)

    2007-07-01

    In present work, porous silicon surfaces (PSS) have been developed for time of flight mass spectrometric experiments (TOF-MS) in the monitoring of nucleotides, commonly found as metabolites in the cell. The mass range of the studied molecules ({proportional_to} 400 amu) is common to several important messengers and other metabolites. Different porosified surfaces have been developed by means of electrochemical etching and different degree of porosity and pore size achieved as function of silicon dopant concentration, silicon resistivity, current density and the presence or absence of illumination along the process. As main conclusion, it can be said that an interesting commercial nucleotide (Cyclic adenosine monophosphate, c-AMP) has been detected on low concentrations ({proportional_to}hundreds of femtomols) for some of the fabricated porous surfaces. Taking into account that these concentrations are similar to the ones found in real samples, this result opens the possibility to the fabrication of DIOS (Desorption Ionization On Silicon) chips for the detection of nucleotides in biological fluids. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Directional radiative properties of anisotropic rough silicon and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J.; Chen, Y.B.; Zhang, Z.M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2006-11-15

    Recent studies have shown that the topography of some chemically etched microrough silicon surfaces is non-Gaussian and may be strongly anisotropic. However, the bidirectional reflectance distribution function (BRDF) of anisotropic surfaces has not been fully understood. The present study uses the Monte Carlo method to investigate the out-of-plane BRDF, multiple scattering, and the change of the polarization state upon reflection. Two ray-tracing algorithms are developed that incorporate the surface topography or slope distribution of the samples obtained by the use of an atomic force microscope. The predicted BRDFs for silicon surfaces with or without a gold coating are in reasonable agreement with the results measured using a laser scatterometer at a wavelength of 635nm. The employment of surface topographic data is indispensable to the BRDF modeling of anisotropic surfaces. While first-order scattering makes the dominant contribution to reflections from the studied surfaces, it is critical to consider the polarization state change in order to correctly predict the out-of-plane BRDF. The versatile Monte Carlo modeling tools developed through the present study help gain a better understanding of the directional radiative properties of microrough surfaces and, furthermore, will have an impact on thermal metrology in the semiconductor industry. (author)

  8. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  9. Strain of laser annealed silicon surfaces

    Science.gov (United States)

    Nemanich, R. J.; Haneman, D.

    1982-05-01

    High resolution Raman scattering measurements have been carried out on pulse and continuous-wave laser annealed silicon samples with various surface preparations. These included polished and ion-bombarded wafers, and saw-cut crystals. The pulse annealing treatments were carried out in ultrahigh vacuum and in air. The residual strain was inferred from the frequency shift of the first-order Raman active mode of Si, and was detectable in the range 10-2-10-3 in all except the polished samples.

  10. Gold Nanostructures for Surface-Enhanced Raman Spectroscopy, Prepared by Electrodeposition in Porous Silicon

    Directory of Open Access Journals (Sweden)

    Yukio H. Ogata

    2011-04-01

    Full Text Available Electrodeposition of gold into porous silicon was investigated. In the present study, porous silicon with ~100 nm in pore diameter, so-called medium-sized pores, was used as template electrode for gold electrodeposition. The growth behavior of gold deposits was studied by scanning electron microscope observation of the gold deposited porous silicon. Gold nanorod arrays with different rod lengths were prepared, and their surface-enhanced Raman scattering properties were investigated. We found that the absorption peak due to the surface plasmon resonance can be tuned by changing the length of the nanorods. The optimum length of the gold nanorods was ~600 nm for surface-enhanced Raman spectroscopy using a He-Ne laser. The reason why the optimum length of the gold nanorods was 600 nm was discussed by considering the relationship between the absorption peak of surface plasmon resonance and the wavelength of the incident laser for Raman scattering.

  11. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    Science.gov (United States)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  12. Fast surface modification by microwave assisted click reactions on silicon substrates

    NARCIS (Netherlands)

    Haensch, C.; Erdmenger, T.; Fijten, M.W.M.; Höppener, S.; Schubert, U.S.

    2009-01-01

    Microwave irradiation has been used for the chemical modification of functional monolayers on silicon surfaces. The thermal and chemical stability of these layers was tested under microwave irradiation to investigate the possibility to use this alternative heating process for the surface

  13. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces

    Science.gov (United States)

    Linklater, Denver P.; Khuong Duy Nguyen, Huu; Bhadra, Chris M.; Juodkazis, Saulius; Ivanova, Elena P.

    2017-06-01

    The nanostructuring of materials to create bactericidal and antibiofouling surfaces presents an exciting alternative to common methods of preventing bacterial adhesion. The fabrication of synthetic bactericidal surfaces has been inspired by the anti-wetting and anti-biofouling properties of insect wings, and other topologies found in nature. Black silicon is one such synthetic surfaces which has established bactericidal properties. In this study we show that time-dependent plasma etching of silicon wafers using 15, 30, and 45 min etching intervals, is able to produce different surface geometries with linearly increasing heights of approximately 280, 430, and 610 nm, respectively. After incubation on these surfaces with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacterial cells it was established that smaller, more densely packed pillars exhibited the greatest bactericidal activity with 85% and 89% inactivation of bacterial cells, respectively. The decrease in the pillar heights, pillar cap diameter and inter-pillar spacing corresponded to a subsequent decrease in the number of attached cells for both bacterial species.

  14. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    Science.gov (United States)

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-02

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  15. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    Science.gov (United States)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  16. Covalent and stable CuAAC modification of silicon surfaces for control of cell adhesion

    DEFF Research Database (Denmark)

    Vutti, Surendra; Buch-Månson, Nina; Schoffelen, Sanne

    2015-01-01

    in the vapor or liquid phase. In this work, we compared these two methods for oxidized silicon surfaces and thoroughly characterized the functionalization steps by tagging and fluorescence imaging. We demonstrate that the vapor-phase functionalization only provided transient surface modification that was lost...... on extensive washing. For stable surface modification, a liquid-phase method was developed. In this method, silicon wafers were decorated with azides, either by silanization with (3-azidopropyl)triethoxysilane or by conversion of the amine groups of an aminopropylated surface by means of the azido...

  17. Formation of quasi-periodic nano- and microstructures on silicon surface under IR and UV femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Golosov, E V; Kolobov, Yu R; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Novoselov, Yurii N; Seleznev, L V; Sinitsyn, D V

    2011-01-01

    Quasi-periodic nano- and microstructures have been formed on silicon surface using IR ( λ ≈ 744 nm) and UV ( λ ≈ 248 nm) femtosecond laser pulses. The influence of the incident energy density and the number of pulses on the structured surface topology has been investigated. The silicon nanostructurisation thresholds have been determined for the above-mentioned wavelengths. Modulation of the surface relief at the doubled spatial frequency is revealed and explained qualitatively. The periods of the nanostructures formed on the silicon surface under IR and UV femtosecond laser pulses are comparatively analysed and discussed.

  18. Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide

    Science.gov (United States)

    Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan

    2006-01-01

    Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.

  19. UV laser ablation of silicon carbide ring surfaces for mechanical seal applications

    Science.gov (United States)

    Daurelio, Giuseppe; Bellosi, Alida; Sciti, Diletta; Chita, Giuseppe; Allegretti, Didio; Guerrini, Fausto

    2000-02-01

    Silicon carbide ceramic seal rings are treated by KrF excimer laser irradiation. Surface characteristics, induced by laser treatment, depend upon laser fluence, the number of laser pulses, their energy and frequency, the rotation rate of the ring and the processing atmosphere. It was ascertained that silicon carbide has to be processed under an inert atmosphere to avoid surface oxidation. Microstructural analyses of surface and cross section of the laser processed samples showed that the SiC surface is covered by a scale due to the melting/resolidification processes. At high fluence there are no continuous scales on the surfaces; materials is removed by decomposition/vaporization and the ablation depth is linearly dependent on the number of pulses. Different surface morphologies are observed. The evolution of surface morphology and roughness is discussed with reference to compositions, microstructure and physical and optical properties of the ceramic material and to laser processing parameters. Preliminary results on tribological behavior of the treated seals are reported.

  20. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    Science.gov (United States)

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  1. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  2. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  3. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  4. Investigations of surface characterization of silicone rubber due to ...

    Indian Academy of Sciences (India)

    Unknown

    †Department of Polymer Technology, Crescent Engineering College, Chennai 600 048, India. Abstract. In the present work, tracking ... Silicone rubber; surface degradation; tracking; WAXD; TG–DTA. 1. Introduction. Power transmission at ... mena in polymer insulators under d.c. voltages. Hence the tracking phenomena ...

  5. Microscopic alterations in silicone tubes surface after application of ophthalmological lubricants

    Directory of Open Access Journals (Sweden)

    Jacqueline Sousa

    2015-02-01

    Full Text Available Objective: To identify microscopic morphological alterations in the surface of silicone tubes used for intubation of the lachrymal system after exposure to ophthalmological lubricants. Methods: Experimental, descriptive and longitudinal study consisted of the application of ophthalmological lubricants in silicone tubes. The tubes were divided in: Group 1 (Cylocort®, 2 (Epitezan®, 3 (Labcaína®, 4 (Liposic®, 5 (Maxinom® and 6 (Vista Gel®. One tube was not exposed to any lubricant, used as control. The tubes were observed and photographed after 2 hours, 30 days, 45 days before and after cleaning the surface and lumen. The following aspects were observed: surface (regularity, transparency, quantity, size and shape of the substances and lumen (obstruction. Results: Control: irregular surface with pores after 2 hours: Group 1 – irregular surface with presence of film; Groups 2, 3 and 5 – abundant and irregular quantity of ointment at the surface; Group 4 – discrete modification at the surface; Group 6 – growth of pigmented (brownish structures with filaments in the lumen, with discrete film in the surface. 30 Days: Groups 1, 4 and 5 – increase of the irregular superficial film; Group 2 – crust with notorious horizontal lines; Group 3 – diminution of the superficial film; Group 4 – crust less evident. Group 6 – increase of the structure seen with 2 hours of exposition, arboriform aspect. Forty-five days pre cleaning: Group 4 – diminution of the surface crust; Group 6 – expansion of the arboriform structure; unaltered findings in other groups. 45 days after cleaning: Groups 1 and 5 – light diminution of the surface crust; Groups 2, 3 and 4 – kept the modifications; Group 6 – the structure inside the lumen was not identified, clear surface, without evidence of film. Conclusions: Microscopic morphological alterations in the surface and lumen of silicone tubes can occur when those remain in contact with determined

  6. Selective Growth and SERS Property of Gold Nanoparticles on Amorphized Silicon Surface

    International Nuclear Information System (INIS)

    Matsuoka, T; Nishi, M; Sakakura, M; Shimotsuma, Y; Miura, K; Hirao, K

    2011-01-01

    We have fabricated gold patterns on a silicon substrate by a simple three-step method using a focused ion beam (FIB). The obtained gold patterns consisted of a large number of gold nanoparticles which grew selectively on the preprocessed silicon surface from an Au ion-containing solution dropped on the substrate. The solution was prepared by reacting HAuCl 4 aqueous solution with (3-mercaptopropyl)trimethoxysilane (MPTMS). It was found that the size and shape of the precipitating gold nanoparticles is controllable by changing the mixing ratio between HAuCl 4 aqueous solution and MPTMS. Additionally, we confirmed that the fabricated gold structures were surface enhanced Raman scattering (SERS)-active; the enhanced Raman peaks of rhodamin 6G (R6G) were detected on the fabricated gold structures, whereas no peak was detected on the alternative silicon surface. We also demonstrated the gold patterning using a femtosecond laser instead of an FIB. We believe that our method is a favorable candidate for fabricating SERS-active substrates, since the substrates can be prepared very simply and flexibly.

  7. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  8. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    Science.gov (United States)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  9. Influence of Surface Chemistry on the Release of an Antibacterial Drug from Nanostructured Porous Silicon.

    Science.gov (United States)

    Wang, Mengjia; Hartman, Philip S; Loni, Armando; Canham, Leigh T; Bodiford, Nelli; Coffer, Jeffery L

    2015-06-09

    Nanostructured mesoporous silicon possesses important properties advantageous to drug loading and delivery. For controlled release of the antibacterial drug triclosan, and its associated activity versus Staphylococcus aureus, previous studies investigated the influence of porosity of the silicon matrix. In this work, we focus on the complementary issue of the influence of surface chemistry on such properties, with particular regard to drug loading and release kinetics that can be ideally adjusted by surface modification. Comparison between drug release from as-anodized, hydride-terminated hydrophobic porous silicon and the oxidized hydrophilic counterpart is complicated due to the rapid bioresorption of the former; hence, a hydrophobic interface with long-term biostability is desired, such as can be provided by a relatively long chain octyl moiety. To minimize possible thermal degradation of the surfaces or drug activity during loading of molten drug species, a solution loading method has been investigated. Such studies demonstrate that the ability of porous silicon to act as an effective carrier for sustained delivery of antibacterial agents can be sensitively altered by surface functionalization.

  10. Characterization of Al2O3 surface passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Albadri, Abdulrahman M.

    2014-01-01

    A study of the passivation of silicon surface by aluminum oxide (Al 2 O 3 ) is reported. A correlation of fixed oxide charge density (Q f ) and interface trap density (D it ) on passivation efficiency is presented. Low surface recombination velocity (SRV) was obtained even by as-deposited Al 2 O 3 films and this was found to be associated to the passivation of interface states. Fourier transfer infrared spectroscopy spectra show the existence of an interfacial silicon oxide thin layer in both as-deposited and annealed Al 2 O 3 films. Q f is found positive in as-deposited films and changing to negative upon subsequent annealing, providing thus an enhancement of the passivation in p-type silicon wafers, associated to field effects. Secondary ion mass spectrometry analysis confirms the correlation between D it and hydrogen concentration at the Al 2 O 3 /Si interface. A lowest SRV of 15 cm/s was obtained after an anneal at 400 °C in nitrogen atmosphere. - Highlights: • Al 2 O 3 provides superior passivation for silicon surfaces. • Atomic layer deposition-Al 2 O 3 was deposited at a low temperature of 200 °C. • A lowest surface passivation velocity of 15 cm/s was obtained after an anneal at 400 °C in nitrogen. • As-deposited Al 2 O 3 films form very thin SiO 2 layer responsible of low interface trap densities. • High negative fixed charge density of (− 2 × 10 12 cm −2 ) was achieved upon annealing at 400 °C

  11. Lewis basicity, adhesion thermodynamic work and coordinating ability on aminated silicon surfaces

    International Nuclear Information System (INIS)

    Sánchez, M. Alejandra; Paniagua, Sergio A.; Borge, Ignacio; Viales, Christian; Montero, Mavis L.

    2014-01-01

    Highlights: • Silicon(1 0 0) surfaces with diamines followed by anchoring of copper complexes over the diamine layer, an approach that could be used for advanced functionalization of semiconducting surfaces. • Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. • Higher basicity and thermodynamic work correlate with selective copper acetate monolayer grow. The cyclic voltammetry studies confirm the confined copper redox activity. - Abstract: Silicon(1 0 0) surfaces have been modified with three different amines (aniline, benzylamine and dodecylamine) and diamines (4-aminopyridine, 4-aminomethylpyridine, 1,12-dodecyldiamine). The surface energy was measured by contact angle technique. For Si-diamine surfaces, Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. We related these data, the amine/diamine nature and their geometry on the surface (via DFT calculations) with the consequent ability to coordinate copper(II) acetate. Finally, copper(II) acetate monolayers behavior was studied by cyclic voltammetry

  12. Characterisation and stabilisation of the surface region of a highly polished silicon crystal sphere

    International Nuclear Information System (INIS)

    Kenny, M.J.; Wielunski, L.S.

    1999-01-01

    Full text: Typically a single crystal silicon wafer has a native oxide layer a few nm thick which changes slowly with time. A number of parameters such as hydrocarbons, water vapour, storage environment can affect this layer. The thickness of the layer is also orientation dependent. In the case of a silicon sphere the situation becomes more complex, because all orientations are present and the process of polishing involves a higher pressure and also high local temperatures. A highly polished single crystal sphere 93.6 mm in diameter is being used to determine the Avogadro constant with an uncertainty of ≤ 1 x 10 -8 . This will then be used to obtain an atomic definition of the kilogram. The composition and structure of the surface oxide layer play an important role in this measurement. Firstly the density of the oxide layer is different from that of silicon. Secondly since the diameter is measured by optical interferometry, corrections must be applied for the phase change in the reflected light beam due to the surface layer. Thirdly the orientation dependence of the layer complicated the corrections to be applied. Fourthly if measurements are made over a period of time, any changes in the surface layer must be taken into account. Given the accuracy required in the determination, the surface layer is a determining factor in the final result. A number of techniques such as spectroscopic ellipsometry and ion beam analysis are being used to study the composition and structure of the surface of a silicon sphere. Cleaning techniques such as HF and low temperature ultraviolet (ozone) are being developed to produce a clean surface. The next step involves deposition of a stable and uniform surface oxide layer a few nm thick. Techniques being investigated for this include ultra violet ozone deposition at 450 deg C and plasma deposition. The paper describes work at the NML in achieving an appropriate stable surface on the silicon sphere

  13. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  14. The influence of noble-gas ion bombardment on the electrical and optical properties of clean silicon surfaces

    International Nuclear Information System (INIS)

    Martens, J.W.D.

    1980-01-01

    A study of the effect of argon and helium ion bombardment on the electrical and optical properties of the clean silicon (211) surface is described. The objective of the study was to determine the effect of noble gas ions on the density of surface states at the clean silicon surface. (Auth.)

  15. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  16. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  17. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    Science.gov (United States)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  18. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    International Nuclear Information System (INIS)

    Pomaska, M.; Beyer, W.; Neumann, E.; Finger, F.; Ding, K.

    2015-01-01

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO x :H/intrinsic a-SiO x :H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO x :H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO x :H/a-SiO x :H stack a promising front layer configuration • Void expansion at a-SiO x :H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  19. One - step nanosecond laser microstructuring, sulfur hyperdoping, and annealing of silicon surfaces in liquid carbondisulfide

    Science.gov (United States)

    Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.

    2017-09-01

    We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices

  20. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Functionality of novel black silicon based nanostructured surfaces studied by TOF SIMS

    DEFF Research Database (Denmark)

    Talian, Ivan; Aranyosiova, M.; Orinak, A.

    2010-01-01

    A functionality of the novel black silicon based nanostructured surfaces (BS 2) with different metal surface modifications was tested by time-of-flight secondary ion mass spectrometry (TOF SIMS). Mainly two surface functions were studied: analytical signal enhancement and analyte pre-ionization e......A functionality of the novel black silicon based nanostructured surfaces (BS 2) with different metal surface modifications was tested by time-of-flight secondary ion mass spectrometry (TOF SIMS). Mainly two surface functions were studied: analytical signal enhancement and analyte pre......-ionization effect in SIMS due to nanostructure type and the assistance of the noble metal surface coating (Ag or Au) for secondary ion formation. As a testing analyte a Rhodamine 6G was applied. Bi+ has been used as SIMS primary ions. It was found out that SIMS signal enhancement of the analyte significantly...... depends on Ag layer thickness and measured ion mode (negative, positive). The best SIMS signal enhancement was obtained at BS2 surface coated with 400 nm of Ag layer. SIMS fragmentation schemes were developed for a model analyte deposited onto a silver and gold surface. Significant differences in pre...

  2. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    International Nuclear Information System (INIS)

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-01

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO 2 ), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide

  3. Charged particle discrimination with silicon surface barrier detectors

    International Nuclear Information System (INIS)

    Coote, G.E.; Pithie, J.; Vickridge, I.C.

    1996-01-01

    The application for materials analysis of nuclear reactions that give rise to charged particles is a powerful surface analytical and concentration depth profiling technique. Spectra of charged particles, with energies in the range 0.1 to 15 MeV, emitted from materials irradiated with beams of light nuclei such as deuterons are measured with silicon surface barrier detectors. The spectra from multi-elemental materials typically encountered in materials research are usually composed of an overlapping superposition of proton, alpha, and other charged particle spectra. Interpretation of such complex spectra would be simplified if a means were available to electronically discriminate between the detector response to the different kinds of charged particle. We have investigated two methods of discriminating between different types of charged particles. The fast charge pulses from a surface barrier detector have different shapes, depending on the spatial distribution of energy deposition of the incident particle. Fast digitisation of the pulses, followed by digital signal processing provides one avenue for discrimination. A second approach is to use a thin transmission detector in front of a thick detector as a detector telescope. For a given incident energy, different types of charged particles will lose different amounts of energy in the thin detector, providing an alternative means of discrimination. We show that both approaches can provide significant simplification in the interpretation of charged particle spectra in practical situations, and suggest that silicon surface barrier detectors having graded electronic properties could provide improved discrimination compared to the current generation of detectors having homogeneous electronic properties. (author).12 refs., 2 tabs., 28 figs

  4. Statistical characterization of surface defects created by Ar ion bombardment of crystalline silicon

    International Nuclear Information System (INIS)

    Ghazisaeidi, M.; Freund, J. B.; Johnson, H. T.

    2008-01-01

    Ion bombardment of crystalline silicon targets induces pattern formation by the creation of mobile surface species that participate in forming nanometer-scale structures. The formation of these mobile species on a Si(001) surface, caused by sub-keV argon ion bombardment, is investigated through molecular dynamics simulation of Stillinger-Weber [Phys. Rev. B 31, 5262 (1985)] silicon. Specific criteria for identifying and classifying these mobile atoms based on their energy and coordination number are developed. The mobile species are categorized based on these criteria and their average concentrations are calculated

  5. SiN sub x passivation of silicon surfaces

    Science.gov (United States)

    Olsen, L. C.

    1986-01-01

    The objectives were to perform surface characterization of high efficiency n+/p and p+/n silicon cells, to relate surface density to substrate dopant concentration, and to identify dominant current loss mechanisms in high efficiency cells. The approach was to measure density of states on homogeneously doped substrates with high frequency C-V and Al/SiN sub x/Si structures; to investigate density of states and photoresponse of high efficiency N+/P and P+/N cells; and to conduct I-V-T studies to identify current loss nechanisms in high efficiency cells. Results are given in tables and graphs.

  6. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2017-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker. In order to minimise the amount of material in the detector, circuit boards with readout electronics will be glued on to the active area of the sensor. Several adhesives investigated to be used for the construction of detector modules were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high- radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By pointing the beam both inside the sensor and parallel to the sensor surface, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibility of silicon strip sensors to light contamination from fluorescent mate...

  7. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    Science.gov (United States)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  8. The Covalent Binding of Photosensitive Dyes to Monocrystalline Silicon Surface and Their Spectral Response

    Institute of Scientific and Technical Information of China (English)

    郭志新; 郝纪祥; 张祖训; 曹子祥

    1993-01-01

    A chemical method is proposed to bond photo-sensitive dyes directly to the surface of polished monocrystalline silicon. A methincyanine dye and a trimethincyanine dye have been bonded covalently onto silicon surface through Si—N bond, which are characterized by XPS technique and laser Raman spectra. Photovoltaic effect has been observed with the In/dye/n-Si sandwich devices composed of the dye-bonded n-Si wafers. Significant spectral response shows the characteristic absorptance maxima of the bonded dyes.

  9. Precision Surface Grinding of Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Mohamed Konneh

    2016-12-01

    Full Text Available Silicon carbide (SiC is well known for its excellent material properties, high durability, high wear resistance, light weight and extreme hardness. Among the engineering applications of this material, it is an excellent candidate for optic mirrors used in an Airbone Laser (ABL device. However, the low fracture toughness and extreme brittleness characteristics of SiC are predominant factors for its poor machinability. This paper presents surface grinding of SiC using diamond cup wheels to assess the performance of diamond grits with respect to the roughness produced on the machined surfaces and also the morphology of the ground work-piece. Resin bonded diamond cup wheels of grit sizes 46 µm, 76 µm and 107 µm; depth of cut of 10 µm, 20 µm and 30 µm; and feed rate of 2 mm/min, 12 mm/min and 22 mm/min were used during this machining investigation. It has been observed that the 76 grit performs better in terms of low surface roughness value and morphology.

  10. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  11. Discovery of deep and shallow trap states from step structures of rutile TiO2 vicinal surfaces by second harmonic and sum frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Takahashi, Hiroaki; Watanabe, Ryosuke; Miyauchi, Yoshihiro; Mizutani, Goro

    2011-01-01

    In this report, local electronic structures of steps and terraces on rutile TiO 2 single crystal faces were studied by second harmonic and sum frequency generation (SHG/SFG) spectroscopy. We attained selective measurement of the local electronic states of the step bunches formed on the vicinal (17 18 1) and (15 13 0) surfaces using a recently developed step-selective probing technique. The electronic structures of the flat (110)-(1x1) (the terrace face of the vicinal surfaces) and (011)-(2x1) surfaces were also discussed. The SHG/SFG spectra showed that step structures are mainly responsible for the formation of trap states, since significant resonances from the trap states were observed only from the vicinal surfaces. We detected deep hole trap (DHT) states and shallow electron trap (SET) states selectively from the step bunches on the vicinal surfaces. Detailed analysis of the SHG/SFG spectra showed that the DHT and SET states are more likely to be induced at the top edges of the step bunches than on their hillsides. Unlike the SET states, the DHT states were observed only at the step bunches parallel to [1 1 1][equivalent to the step bunches formed on the (17 18 1) surface]. Photocatalytic activity for each TiO 2 sample was also measured through methylene blue photodegradation reactions and was found to follow the sequence: (110) < (17 18 1) < (15 13 0) < (011), indicating that steps along [0 0 1] are more reactive than steps along [1 1 1]. This result implies that the presence of the DHT states observed from the step bunches parallel to [1 1 1] did not effectively contribute to the methylene blue photodegradation reactions.

  12. Investigation into the surface of implanted monocrystalline silicon with the aid of wetting angle

    International Nuclear Information System (INIS)

    Lebedeva, N.N.; Bakovets, V.V.; Sedymova, E.A.; Pridachin, N.B.

    1986-01-01

    The dependence of silicon wetting margical angle on its irradiation dose by ions of electrically active and neutral materials is studied. It has been found that the system of immiscible liquids - ether and water can be successfully used for studying the silicon ion implantation effect on its water wetting. Changing of implanted silicon wetting is bound up with the increase of the defects presence level of surface layers. The specimens annealing reestablishes silicon wetting up to parameters characteristic of non irradiated specimens. The most effective annealing region is within the 550-700 deg C range. The implanted silicon wetting by melts at increased temperatures can be employed for studying kinetics and defect annealing mechanism

  13. Degradation of Silicon Carbide Reflective Surfaces in the LEO Environment

    Science.gov (United States)

    Mileti, Sandro; Coluzzi, Plinio; Marchetti, Mario

    2009-01-01

    Space mirrors in Low Earth Orbit (LEO) encounter a degradation problem caused by the impact of atomic oxygen (ATOX) in the space environment. This paper presents an experiment of the atomic oxygen impact degradation and UV synergic effects on ground simulation. The experiment was carried out in a dedicated ATOX simulation vacuum chamber. As target materials, a polished CVD Beta-silicon carbide (SiC) coating was investigated. The selection of silicon carbide is due to its high potential candidate as a mirror layer substrate material for its good reflectance at UV wavelengths and excellent thermal diffusivity. It has highly desirable mechanical and thermal properties and can achieve an excellent surface finish. The deposition of the coatings were on carbon-based material substrate; i.e., silicon impregnated carbon fiber composite (C/SiC). Mechanical and thermal properties of the coatings such as hardness and Coefficient of Thermal Expansion (CTE) were achieved. Several atomic oxygen impact angles were studied tilting the target samples respect to the flux direction. The various impact angles permitted to analyze the different erosion rates and typologies which the mirrors would encounter in LEO environment. The degradation was analyzed in various aspects. Macroscopic mass loss per unit area, surface roughness and morphology change were basically analyzed. The exposed surfaces of the materials were observed through a Scanning Electron Microscope (SEM). Secondly, optical diagnostic of the surfaces were performed in order to investigate their variation in optical properties as the evaluation of reflectance degradation. The presence of micro-cracks caused by shrinkage, grinding, polishing or thermal cycling and the porosity in the coatings, could have led to the undercutting phenomenon. Observation of uprising of undercutting was also conducted. Remarks are given regarding capabilities in short-term mission exposures to the LEO environment of this coating.

  14. A parametric study of laser induced ablation-oxidation on porous silicon surfaces

    International Nuclear Information System (INIS)

    De Stefano, Luca; Rea, Ilaria; Nigro, M Arcangela; Della Corte, Francesco G; Rendina, Ivo

    2008-01-01

    We have investigated the laser induced ablation-oxidation process on porous silicon layers having different porosities and thicknesses by non-destructive optical techniques. In particular, the interaction between a low power blue light laser and the porous silicon surfaces has been characterized by variable angle spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The oxidation profiles etched on the porous samples can be tuned as functions of the layer porosity and laser fluence. Oxide stripes of width less than 2 μm and with thicknesses between 100 nm and 5 μm have been produced, depending on the porosity of the porous silicon, by using a 40 x focusing objective

  15. Surface evolution and stability transition of silicon wafer subjected to nano-diamond grinding

    Directory of Open Access Journals (Sweden)

    Shisheng Cai

    2017-03-01

    Full Text Available In order to obtain excellent physical properties and ultrathin devices, thinning technique plays an important role in semiconductor industry with the rapid development of wearable electronic devices. This study presents a physical nano-diamond grinding technique without any chemistry to obtain ultrathin silicon substrate. The nano-diamond with spherical shape repeats nano-cutting and penetrating surface to physically etch silicon wafer during grinding process. Nano-diamond grinding induces an ultrathin “amorphous layer” on silicon wafer and thus the mismatch strain between the amorphous layer and substrate leads to stability transition from the spherical to non-spherical deformation of the wafer. Theoretical model is proposed to predict and analyze the deformation of amorphous layer/silicon substrate system. Furthermore, the deformation bifurcation behavior of amorphous layer/silicon substrate system is analyzed. As the mismatch strain increases or thickness decreases, the amorphous layer/silicon substrate system may transit to non-spherical deformation, which is consistent to the experimental results. The amorphous layer stresses are also obtained to predict the damage of silicon wafer.

  16. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    International Nuclear Information System (INIS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; Ostrikov, Kostya; Vasilev, Krasimir

    2016-01-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces. (paper)

  17. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuang-Tung Cheng

    2010-01-01

    Full Text Available The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD. The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been discussed in this research. Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4 coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. Open circuit (Voc is 616 mV, short circuit current (Jsc is 34.1 mA/cm2, and minority carrier diffusion length is 474.16 μm. The isotropic texturing and silicon nitride layers coating approach contribute to lowering cost and achieving high efficiency in mass production.

  18. Fabrication and characterization of surface barrier detector from commercial silicon substrate

    International Nuclear Information System (INIS)

    Silva, Julio Batista Rodrigues

    2016-01-01

    In this work it was developed radiation detectors silicon surface barrier that were capable of detecting the presence of gamma radiation from a low energy of iodine-125 seeds used in brachytherapy treatments. >From commercial silicon substrates detectors were developed, one sequence left of chemical treatments to the surfaces of these substrates with the intention of minimizing the possible noise generated, validation of the samples obtained as diodes, ensuring detector characteristics and effective use as detector for Iodine-125 radioactive sources with energy of about 25 keV and Americium-251 with energy on the order of 59 keV. Finished performing the analysis of the obtained energy spectra and so it was possible to observe the ability of these detectors to measure the energy from these seeds. (author)

  19. The decoration of vicinal copper polycrystalline surface by Antimony

    CSIR Research Space (South Africa)

    Ndlovu, GF

    2011-07-01

    Full Text Available in the vicinity of the step edges illustrative of the Frank van der Merwe type of growth. Kinks provide for the adsorbates a site with a coordination that is higher than for sites at the straight step edge. Thus, kinks act as efficient nucleation sites...

  20. Electric field strength and plasma delay in silicon surface barrier detector

    International Nuclear Information System (INIS)

    Kanno, I.; Inbe, T.; Kanazawa, S.; Kimura, I.

    1994-01-01

    The resistivity change of a silicon irradiated by high energy neutrons became an interest of study associated with the large scale accelerator projects . The increase of the resistivity of the silicon of a silicon surface barrier detector (SSBD) was studied as a function of neutron fluence. The plasma delay, which was an interesting but not favorite timing property of the SSBD, was reported being dependent on the resistivity of silicon . The neutron irradiation brings the change of timing property as well as the resistivity change on the SSBD. The resistivity dependence of the plasma delay should be studied for the purpose of high energy accelerator experiments. Some empirical formulae of the plasma delay were reported, however, there were no discussions on the physical meanings of the resistivity dependence of the plasma delay. The plasma delay in a SSBD is discussed in the light of electric field strength in the depletion layer of the SSBD. The explanation of the plasma delay is presented taking into account of the competing two electric forces. The resistivity of the silicon affects the plasma delay through the electric forces. 3 figs, 3 refs. (author)

  1. Comparison of structural re-organisations observed on pre-patterned vicinal Si(1 1 1) and Si(1 0 0) surfaces during heat treatment

    International Nuclear Information System (INIS)

    Kraus, A.; Neddermeyer, H.; Wulfhekel, W.; Sander, D.; Maroutian, T.; Dulot, F.; Martinez-Gil, A.; Hanbuecken, M.

    2004-01-01

    The creation of distinct, periodically structured vicinal Si(1 1 1) and (1 0 0) substrates has been studied using scanning tunnelling microscopy at various temperatures. The vicinal Si(1 1 1) and (1 0 0) surfaces transform under heat treatment in a self-organised way into flat and stepped regions. Optical and electron beam lithography is used to produce a regular hole pattern on the surfaces, which interferes with the temperature-driven morphological changes. The step motions are strongly influenced by this pre-patterning. Pre-patterned Si(1 1 1) surfaces transform into regular one-dimensional (1D) and two-dimensional (2D) morphologies, which consist of terraces and arrangements of step bunches and facets. On pre-patterned Si(1 0 0) substrates different re-organisations were observed where checkerboard-like 2D structures are obtained

  2. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  3. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    OpenAIRE

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Lee, William J.; Tsai, Song-Yeu; Lu, Yung-An; Liou, Jia-Jhe; Chang, Shun-Hsyung; Wang, Kang L.

    2010-01-01

    The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si) wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD). The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been d...

  4. Surface Wettability of Oxygen Plasma Treated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2014-01-01

    Full Text Available Oxygen plasma treatment on porous silicon (p-Si surfaces was studied as a practical and effective means to modify wetting properties of as-fabricated p-Si surfaces, that is, contact angles of the p-Si materials. P-Si samples spanning a wide range of surface nanostructures have been fabricated which were subjected to a series of oxygen plasma treatments. Reduction of the p-Si surface contact angles has been systematically observed, and the surface activation rate constant as a function of different pore geometries has been analyzed to achieve an empirical equation. The underlying diffusion mechanisms have been discussed by taking into account of different pore diameters of p-Si samples. It is envisaged that such an approach as well as the corresponding empirical equation may be used to provide relevant process guidance in order to achieve precise control of p-Si contact angles, which is essential for many p-Si applications especially in biosensor areas.

  5. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    Science.gov (United States)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  6. Immunophenotypic characterization of human T cells after in vitro exposure to different silicone breast implant surfaces.

    Directory of Open Access Journals (Sweden)

    Giuseppe Cappellano

    Full Text Available The most common complication of silicone breast implants is capsular contracture (massive scar formation around the implant. We postulate that capsular contracture is always a sequel to inflammatory processes, with both innate and adaptive immune mechanisms participating. In general, fibroblasts and macrophages have been used as cell types to evaluate in vitro the biocompatibility of breast implant surfaces. Moreover, also T cells have been found at the implant site at the initial stage of fibrous capsule formation. However, only few studies have addressed the influence of surfaces with different textures on T-cell responses. The aim of the present study was to investigate the immune response of human peripheral blood mononuclear cells (PBMC to commercially available silicone breast implants in vitro. PBMC from healthy female blood donors were cultured on each silicone surface for 4 days. Proliferation and phenotype of cultured cells were assessed by flow cytometry. Cytokine levels were determined by multiplex and real-time assay. We found that silicone surfaces do not induce T-cell proliferation, nor do they extensively alter the proportion of T cell subsets (CD4, CD8, naïve, effector memory. Interestingly, cytokine profiling identified matrix specific differences, especially for IL-6 and TNF-α on certain surface topographies that could lead to increased fibrosis.

  7. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    Science.gov (United States)

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  8. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Kiraly, Brian; Yang, Shikuan; Huang, Tony Jun

    2013-01-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. (paper)

  9. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  10. Engineering the size and density of silicon agglomerates by controlling the initial surface carbonated contamination

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł., E-mail: Lukasz.Borowik@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Chevalier, N.; Mariolle, D.; Martinez, E.; Bertin, F.; Chabli, A.; Barbé, J.-C. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-04-01

    Actually, thermally induced thin-films dewetting silicon in the silicon-on-insulator is a way to obtain silicon agglomerates with a size and a density fixed by the silicon film thickness. In this paper we report a new method to monitor both the size and the density of the Si agglomerates thanks to the deposition of a carbon-like layer. We show that using a 5-nm thick layer of silicon and additional ≤1-nm carbonated layer; we obtain agglomerates sizes ranging from 35 nm to 60 nm with respectively an agglomerate density ranging from 38 μm{sup −2} to 18 μm{sup −2}. Additionally, for the case of strained silicon films an alternative dewetting mechanism can be induced by monitoring the chemical composition of the sample surface.

  11. Temporary surface passivation for characterisation of bulk defects in silicon : a review

    OpenAIRE

    Grant, Nicholas E.; Murphy, John D.

    2017-01-01

    Accurate measurements of the bulk minority carrier lifetime in high-quality silicon materials is challenging due to the influence of surface recombination. Conventional surface passivation processes such as thermal oxidation or dielectric deposition often modify the bulk lifetime significantly before measurement. Temporary surface passivation processes at room or very low temperatures enable a more accurate measurement of the true bulk lifetime, as they limit thermal reconfiguration of bulk d...

  12. Effect of the back surface topography on the efficiency in silicon solar cells

    International Nuclear Information System (INIS)

    Guo Aijuan; Ye Famin; Feng Shimeng; Guo Lihui; Ji Dong

    2009-01-01

    Different processes are used on the back surface of silicon wafers to form cells falling into three groups: textured, planar, and sawed-off pyramid back surface. The characteristic parameters of the cells, I SC , V OC , FF, Pm, and E ff , are measured. All these parameters of the planar back surface cells are the best. The FF, Pm, and E ff of sawed-off pyramid back surface cells are superior to textured back surface cells, although I SC and V OC are lower. The parasitic resistance is analyzed to explain the higher FF of the sawed-off pyramid back surface cells. The cross-section scanning electron microscopy (SEM) pictures show the uniformity of the aluminum-silicon alloy, which has an important effect on the back surface recombination velocity and the ohmic contact. The measured value of the aluminum back surface field thickness in the SEM picture is in good agreement with the theoretical value deduced from the Al-Si phase diagram. It is shown in an external quantum efficiency (EQE) diagram that the planar back surface has the best response to a wavelength between 440 and 1000 nm and the sawed-off back surface has a better long wavelength response.

  13. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  14. Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface

    International Nuclear Information System (INIS)

    Haendel, S.; Marchant, A. L.; Wiles, T. P.; Hopkins, S. A.; Cornish, S. L.

    2012-01-01

    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of 85 Rb and 87 Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum. To maintain excellent optical access to the region surrounding the surface, magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally, we demonstrate the loading of a hybrid optical-magnetic trap with 87 Rb and the creation of Bose-Einstein condensates via forced evaporative cooling close to the dielectric surface.

  15. Aggregation performance of CdO grains grown on surface of N silicon crystal

    International Nuclear Information System (INIS)

    Zhang Jizhong; Zhao Huan

    2010-01-01

    Four kinds of aggregation patterns of CdO grains were formed on the surface of N silicon substrate heated at 580 deg. C for 1 h in an evaporation-deposition device. They were ellipse-shaped or quasi-circular-shaped aggregate, long ribbon-shaped aggregate, long chain-shaped or long double-chain-shaped aggregate, and long ellipse-chain-shaped aggregate. These aggregates consisted of numerous grains or tiny crystals, and deposited on top of the CdO bush-like long crystal clusters grown earlier. They exhibited clearly spontaneous self-organization aggregation performance. Surface defects of the virgin N silicon crystal were analyzed, and mechanism of the self-organization aggregation was discussed with a defect induced aggregation (DIA) model.

  16. The effect of texture unit shape on silicon surface on the absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xiao-She; Zhang, Yi-Jie; Wang, Hao-Wei [Institute of Ecological and Environmental Materials, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-02-15

    Improving the utilization ratio of sunlight is a key factor for the development of solar cell. In this work, different structures including triangular pyramid, rectangular pyramid, hexangular pyramid and cone structure are established to investigate the influences of many factors, like geometrical shape, density and the top angle of the texture unit on silicon front surface to sunlight absorption. Ray-tracing technology is used for simulation. The simulation results indicate that the triangular pyramid texture on silicon front surface performs the best, and its total absorption rate is more than 90% for the light with wavelength between 640 and 1080 nm when the top angle of pyramid is less than 100 . (author)

  17. Evolution of arsenic in high fluence plasma immersion ion implanted silicon : Behavior of the as-implanted surface

    NARCIS (Netherlands)

    Vishwanath, V.; Demenev, E.; Giubertoni, D.; Vanzetti, L.; Koh, A. L.; Steinhauser, G.; Pepponi, G.; Bersani, M.; Meirer, F.; Foad, M. A.

    2015-01-01

    High fluence (>1015 ions/cm2) low-energy (3 + on (1 0 0) silicon was investigated, with the focus on stability and retention of the dopant. At this dose, a thin (∼3 nm) amorphous layer forms at the surface, which contains about 45% arsenic (As) in a silicon and oxygen matrix. The presence of silicon

  18. Surface-water quality, Oneida Reservation and vicinity, Wisconsin, 1997-98

    Science.gov (United States)

    Schmidt, Morgan A.; Scudder, Barbara C.; Richards, Kevin D.

    2000-01-01

    Streamwater samples were collected at 19 sites in the vicinity of the Oneida Tribe of Indians of Wisconsin Reservation. Samples were collected during 5 sampling periods in 1997-98. Field measurements were made and samples were analyzed for nutrients, suspended sediment, major ions, and pesticides.

  19. High-Pressure Water-Vapor Annealing for Enhancement of a-Si:H Film Passivation of Silicon Surface

    International Nuclear Information System (INIS)

    Guo Chun-Lin; Wang Lei; Zhang Yan-Rong; Zhou Hai-Feng; Liang Feng; Yang Zhen-Hui; Yang De-Ren

    2014-01-01

    We investigate the effect of amorphous hydrogenated silicon (a-Si:H) films passivated on silicon surfaces based on high-pressure water-vapor annealing (HWA). The effective carrier lifetime of samples reaches the maximum value after 210°C, 90min HWA. Capacitance-voltage measurement reveals that the HWA not only greatly reduces the density of interface states (D it ), but also decreases the fixed charges (Q fixed ) mainly caused by bulk defects. The change of hydrogen and oxygen in the film is measured by a spectroscopic ellipsometer and a Fourier-transform infrared (FTIR) spectrometer. All these results show that HWA is a useful method to improve the passivation effect of a-Si:H films deposited on silicon surfaces

  20. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility

    International Nuclear Information System (INIS)

    Liu, Pingsheng; Chen, Qiang; Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong; Shen, Jian

    2013-01-01

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. Highlights: • Facile surface modification of silicone rubber with functional brushes • Modified SR surfaces have improved resistance to nonspecific protein adsorption. • Modified SR surfaces have excellent resistance to platelet adhesion. • Zwitteironic surface significant improvement in blood compatibility • Could inspire many creative uses of SR based materials for biomedical

  1. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pingsheng [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen, Qiang, E-mail: chem100@nju.edu.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); High Technology Research Institute of Nanjing University, Changzhou 213164 (China); Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Shen, Jian, E-mail: shenj1957@yahoo.com.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2013-10-15

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. Highlights: • Facile surface modification of silicone rubber with functional brushes • Modified SR surfaces have improved resistance to nonspecific protein adsorption. • Modified SR surfaces have excellent resistance to platelet adhesion. • Zwitteironic surface significant improvement in blood compatibility • Could inspire many creative uses of SR based materials for biomedical.

  2. Fabrication and characterization of surface barrier detector from commercial silicon substrate

    International Nuclear Information System (INIS)

    Costa, Fabio Eduardo da; Silva, Julio Batista Rodrigues da

    2015-01-01

    This work used 5 silicon substrates, n-type with resistivity between 500-20,000 Ω.cm, with 12 mm diameter and 1 mm thickness, from Wacker - Chemitronic, Germany. To produce the surface barrier detectors, the substrates were first cleaned, then, they were etched with HNO 3 solution. After this, a deposition of suitable materials on the crystal was made, to produce the desired population inversion of the crystal characteristics. The substrates received a 10 mm diameter gold contact in one of the surfaces and a 5 mm diameter aluminum in the other. The curves I x V and the energy spectra for 28 keV and 59 keV, for each of the produced detectors, were measured. From the 5 substrates, 4 of them resulted in detectors and one did not present even diode characteristics. The results showed that the procedures used are suitable to produce detectors with this type of silicon substrates. (author)

  3. Modulated surface textures for enhanced scattering in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.; Battaglia, C.; Ballif, C.; Zeman, M.

    2012-01-01

    Nano-scale randomly textured front transparent oxides are superposed on micro-scale etched glass substrates to form modulated surface textures. The resulting enhanced light scattering is implemented in single and double junction thin-film silicon solar cells.

  4. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation

    Directory of Open Access Journals (Sweden)

    Lei ZY

    2016-10-01

    Full Text Available Ze-yuan Lei, Ting Liu, Wei-juan Li, Xiao-hua Shi, Dong-li Fan Department of Plastic and Cosmetic Surgery, XinQiao Hospital, The Third Military Medical University, ChongQing, People’s Republic of China Purpose: Silicone rubber implants have been widely used to repair soft tissue defects and deformities. However, poor biocompatibility can elicit capsule formation, usually resulting in prosthesis contracture and displacement in long-term usage. To overcome this problem, this study investigated the properties of silicone rubber materials with or without a microgroove-patterned surface and with or without carbon (C-ion implantation. Materials and methods: Atomic force microscopy, X-ray photoelectron spectroscopy, and a water contact angle test were used to characterize surface morphology and physicochemical properties. Cytocompatibility was investigated by a cell adhesion experiment, immunofluorescence staining, a Cell Counting Kit-8 assay, and scanning electron microscopy in vitro. Histocompatibility was evaluated by studying the inflammatory response and fiber capsule formation that developed after subcutaneous implantation in rats for 7 days, 15 days, and 30 days in vivo. Results: Parallel microgrooves were found on the surfaces of patterned silicone rubber (P-SR and patterned C-ion-implanted silicone rubber (PC-SR. Irregular larger peaks and deeper valleys were present on the surface of silicone rubber implanted with C ions (C-SR. The silicone rubber surfaces with microgroove patterns had stable physical and chemical properties and exhibited moderate hydrophobicity. PC-SR exhibited moderately increased dermal fibroblast cell adhesion and growth, and its surface microstructure promoted orderly cell growth. Histocompatibility experiments on animals showed that both the anti-inflammatory and antifibrosis properties of PC-SR were slightly better than those of the other materials, and there was also a lower capsular contracture rate and less

  5. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    Science.gov (United States)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  6. Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study.

    Science.gov (United States)

    Yang, Zhenyu; Gonzalez, Christina M; Purkait, Tapas K; Iqbal, Muhammad; Meldrum, Al; Veinot, Jonathan G C

    2015-09-29

    Hydrosilylation is among the most common methods used for modifying silicon surface chemistry. It provides a wide range of surface functionalities and effective passivation of surface sites. Herein, we report a systematic study of radical initiated hydrosilylation of silicon nanocrystal (SiNC) surfaces using two common radical initiators (i.e., 2,2'-azobis(2-methylpropionitrile) and benzoyl peroxide). Compared to other widely applied hydrosilylation methods (e.g., thermal, photochemical, and catalytic), the radical initiator based approach is particle size independent, requires comparatively low reaction temperatures, and yields monolayer surface passivation after short reaction times. The effects of differing functional groups (i.e., alkene, alkyne, carboxylic acid, and ester) on the radical initiated hydrosilylation are also explored. The results indicate functionalization occurs and results in the formation of monolayer passivated surfaces.

  7. Hydrogen-terminated mesoporous silicon monoliths with huge surface area as alternative Si-based visible light-active photocatalysts

    KAUST Repository

    Li, Ting; Li, Jun; Zhang, Qiang; Blazeby, Emma; Shang, Congxiao; Xu, Hualong; Zhang, Xixiang; Chao, Yimin

    2016-01-01

    Silicon-based nanostructures and their related composites have drawn tremendous research interest in solar energy storage and conversion. Mesoporous silicon with a huge surface area of 400-900 m2 g-1 developed by electrochemical etching exhibits

  8. Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues

    Science.gov (United States)

    Tzur-Balter, Adi; Shatsberg, Zohar; Beckerman, Margarita; Segal, Ester; Artzi, Natalie

    2015-01-01

    Nanostructured porous silicon (PSi) is emerging as a promising platform for drug delivery owing to its biocompatibility, degradability and high surface area available for drug loading. The ability to control PSi structure, size and porosity enables programming its in vivo retention, providing tight control over embedded drug release kinetics. In this work, the relationship between the in vitro and in vivo degradation of PSi under (pre)clinically relevant conditions, using breast cancer mouse model, is defined. We show that PSi undergoes enhanced degradation in diseased environment compared with healthy state, owing to the upregulation of reactive oxygen species (ROS) in the tumour vicinity that oxidize the silicon scaffold and catalyse its degradation. We further show that PSi degradation in vitro and in vivo correlates in healthy and diseased states when ROS-free or ROS-containing media are used, respectively. Our work demonstrates that understanding the governing mechanisms associated with specific tissue microenvironment permits predictive material performance. PMID:25670235

  9. Characterization of Ag-porous silicon nanostructured layer formed by an electrochemical etching of p-type silicon surface for bio-application

    Science.gov (United States)

    Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.

    2017-06-01

    Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.

  10. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  11. CHARACTERIZATION OF THE ELECTROPHYSICAL PROPERTIES OF SILICON-SILICON DIOXIDE INTERFACE USING PROBE ELECTROMETRY METHODS

    Directory of Open Access Journals (Sweden)

    V. А. Pilipenko

    2017-01-01

    Full Text Available Introduction of submicron design standards into microelectronic industry and a decrease of the gate dielectric thickness raise the importance of the analysis of microinhomogeneities in the silicon-silicon dioxide system. However, there is very little to no information on practical implementation of probe electrometry methods, and particularly scanning Kelvin probe method, in the interoperational control of real semiconductor manufacturing process. The purpose of the study was the development of methods for nondestructive testing of semiconductor wafers based on the determination of electrophysical properties of the silicon-silicon dioxide interface and their spatial distribution over wafer’s surface using non-contact probe electrometry methods.Traditional C-V curve analysis and scanning Kelvin probe method were used to characterize silicon- silicon dioxide interface. The samples under testing were silicon wafers of KEF 4.5 and KDB 12 type (orientation <100>, diameter 100 mm.Probe electrometry results revealed uniform spatial distribution of wafer’s surface potential after its preliminary rapid thermal treatment. Silicon-silicon dioxide electric potential values were also higher after treatment than before it. This potential growth correlates with the drop in interface charge density. At the same time local changes in surface potential indicate changes in surface layer structure.Probe electrometry results qualitatively reflect changes of interface charge density in silicon-silicon dioxide structure during its technological treatment. Inhomogeneities of surface potential distribution reflect inhomogeneity of damaged layer thickness and can be used as a means for localization of interface treatment defects.

  12. Surface nanostructuring in the carbon–silicon(100) system upon microwave plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yafarov, R. K., E-mail: pirpc@yandex.ru; Shanygin, V. Ya. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics, Saratov Branch (Russian Federation)

    2017-04-15

    The study is concerned with the physical and chemical processes and the mechanisms of the effect of plasma preparation of a surface on the systematic features of condensation and surface phase transformations during the formation of Si–C mask domains on p-Si(100) crystals by the deposition of submonolayer C coatings in the microwave plasma of low-pressure ethanol vapors. It is shown that, at short durations of the deposition of carbon onto silicon wafers with a natural-oxide coating at a temperature of 100°C, the formation of domains is observed. The lateral dimensions of the domains lie in the range from 10–15 to 200 nm, and the heights of ridges produced by the plasma chemical etching of silicon through the mask domain coatings vary in the range from 40 to 80 nm.

  13. Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in silicon

    NARCIS (Netherlands)

    Büyükköse, S.; Vratzov, B.; van der Veen, Johan (CTIT); Santos, P.V.; van der Wiel, Wilfred Gerard

    2013-01-01

    We demonstrate piezo-electrical generation of ultrahigh-frequency surface acoustic waves on silicon substrates, using high-resolution UV-based nanoimprint lithography, hydrogen silsequioxane planarization, and metal lift-off. Interdigital transducers were fabricated on a ZnO layer sandwiched between

  14. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Yanping Yuan

    2016-02-01

    Full Text Available In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2 is used to irradiate multi-walled carbon nanotubes (MWCNTs on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM. For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation.

  15. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Science.gov (United States)

    Yuan, Yanping; Chen, Jimin

    2016-01-01

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation. PMID:28344293

  16. Surface modification on silicon with chitosan and biological research

    International Nuclear Information System (INIS)

    Lue Xiaoying; Cui Wei; Huang Yan; Zhao Yi; Wang Zhigong

    2009-01-01

    The aim of the present study was to investigate the effect of chitosan modification of silicon (Si) on protein adsorption, cell adhesion and cell proliferation. Chitosan was first immobilized on the Si surface through a (3-aminopropyl)triethoxysilane (APTES) bridge. The surface was then characterized by contact angle measurement, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX). The amount of protein adsorbed on the native Si and chitosan-modified Si surface was evaluated by a modified Coomassie brilliant blue (CBB) protein assay. The adhesion and proliferation behavior of L-929 and pc12 cells were then assessed by microscopy and methylthiazoltetrazolium (MTT) tests. The results showed that the chitosan modification could resist protein adsorption and inhibit the adhesion and proliferation of two kinds of cells on Si.

  17. Structural and optical properties of surface-hydrogenated silicon nanocrystallites prepared by reactive pulsed laser ablation

    International Nuclear Information System (INIS)

    Makino, Toshiharu; Inada, Mitsuru; Umezu, Ikurou; Sugimura, Akira

    2005-01-01

    Pulsed laser ablation (PLA) in an inert background gas is a promising technique for preparing Si nanoparticles. Although an inert gas is appropriate for preparing pure material, a reactive background gas can be used to prepare compound nanoparticles. We performed PLA in hydrogen gas to prepare hydrogenated silicon nanoparticles. The mean diameter of the primary particles measured using transmission electron microscopy was approximately 5 nm. The hydrogen content in the deposits was very high and estimated to be about 20%. The infrared absorption corresponding to Si-H n (n = 1, 2, 3) bonds on the surface were observed at around 2100 cm -1 . The Raman scattering peak corresponding to crystalline Si was observed, and that corresponding to amorphous Si was negligibly small. These results indicate that the Si nanoparticles were not an alloy of Si and hydrogen but Si nanocrystallite (nc-Si) covered by hydrogen or hydrogenated amorphous silicon. This means that PLA in reactive H 2 gas is a promising technique for preparing surface passivated nc-Si. The deposition mechanism and optical properties of the surface passivated silicon nanocrystallites are discussed

  18. The Influence of Deformation on the Surface Structure of Silicon Under Irradiation by $^{86}$Kr Ions with Energy 253 MeV

    CERN Document Server

    Vlasukova, L A; Hofmann, A; Komarov, F F; Semina, V K; Yuvchenko, V N

    2006-01-01

    The influence of the previously produced deformation in silicon structure by means of macro-scratch surface covering on the sputtering processes under following irradiation by swift $^{86}$Kr ions is studied. The significant leveling of surface relief of irradiated silicon was observed using atomic force microscopy method (AFM), in particular it takes place for smoothing of micro-scratches produced by mechanical polishing of silicon initial plates. The experimental studies of irradiated surface allowed one to conclude that it is impossible to explain the surface changes only by elastic cascade mechanism as it was calculated using the computer code TRIM-98, because the calculated sputtered layers of silicon at ion fluence $\\Phi_{\\rm Kr} = 1{.}3\\cdot10^{14}$ ion/cm$^{2}$ should be $\\Delta H_{\\rm Sputtering}^{\\rm Kr} = 5{.}5\\cdot10^{-3 }${\\AA}. Correspondingly, the surface changes should be explained by one of mechanisms of inelastic sputtering. The macro-cracks on the surface were observed near the scratches. I...

  19. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  20. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

    Science.gov (United States)

    Shivapooja, Phanindhar; Wang, Qiming; Szott, Lizzy M; Orihuela, Beatriz; Rittschof, Daniel; Zhao, Xuanhe; López, Gabriel P

    2015-01-01

    Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.

  1. Anomalous optical surface absorption in nominally pure silicon samples at 1550 nm

    Science.gov (United States)

    Bell, Angus S.; Steinlechner, Jessica; Martin, Iain W.; Craig, Kieran; Cunningham, William; Rowan, Sheila; Hough, Jim; Schnabel, Roman; Khalaidovski, Alexander

    2017-10-01

    The announcement of the direct detection of gravitational waves (GW) by the LIGO and Virgo collaboration in February 2016 has removed any uncertainty around the possibility of GW astronomy. It has demonstrated that future detectors with sensitivities ten times greater than the Advanced LIGO detectors would see thousands of events per year. Many proposals for such future interferometric GW detectors assume the use of silicon test masses. Silicon has low mechanical loss at low temperatures, which leads to low displacement noise for a suspended interferometer mirror. In addition to the low mechanical loss, it is a requirement that the test masses have a low optical loss. Measurements at 1550 nm have indicated that material with a low enough bulk absorption is available; however there have been suggestions that this low absorption material has a surface absorption of  >100 ppm which could preclude its use in future cryogenic detectors. We show in this paper that this surface loss is not intrinsic but is likely to be a result of particular polishing techniques and can be removed or avoided by the correct polishing procedure. This is an important step towards high gravitational wave detection rates in silicon based instruments.

  2. Anomalous optical surface absorption in nominally pure silicon samples at 1550 nm

    International Nuclear Information System (INIS)

    Bell, Angus S; Steinlechner, Jessica; Martin, Iain W; Craig, Kieran; Cunningham, William; Rowan, Sheila; Hough, Jim; Schnabel, Roman; Khalaidovski, Alexander

    2017-01-01

    The announcement of the direct detection of gravitational waves (GW) by the LIGO and Virgo collaboration in February 2016 has removed any uncertainty around the possibility of GW astronomy. It has demonstrated that future detectors with sensitivities ten times greater than the Advanced LIGO detectors would see thousands of events per year. Many proposals for such future interferometric GW detectors assume the use of silicon test masses. Silicon has low mechanical loss at low temperatures, which leads to low displacement noise for a suspended interferometer mirror. In addition to the low mechanical loss, it is a requirement that the test masses have a low optical loss. Measurements at 1550 nm have indicated that material with a low enough bulk absorption is available; however there have been suggestions that this low absorption material has a surface absorption of  >100 ppm which could preclude its use in future cryogenic detectors. We show in this paper that this surface loss is not intrinsic but is likely to be a result of particular polishing techniques and can be removed or avoided by the correct polishing procedure. This is an important step towards high gravitational wave detection rates in silicon based instruments. (paper)

  3. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    International Nuclear Information System (INIS)

    Chen Yong; Luo Guanghong; Diao Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-01-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3xω Nd:YAG laser in air, SF 6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ∼2 μm in SF 6 gas and to ∼5 μm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (∼10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits

  4. Process induced sub-surface damage in mechanically ground silicon wafers

    International Nuclear Information System (INIS)

    Yang Yu; De Munck, Koen; Teixeira, Ricardo Cotrin; Swinnen, Bart; De Wolf, Ingrid; Verlinden, Bert

    2008-01-01

    Micro-Raman spectroscopy, scanning electron microcopy, atomic force microscopy and preferential etching were used to characterize the sub-surface damage induced by the rough and fine grinding steps used to make ultra-thin silicon wafers. The roughly and ultra-finely ground silicon wafers were examined on both the machined (1 0 0) planes and the cross-sectional (1 1 0) planes. They reveal similar multi-layer damage structures, consisting of amorphous, plastically deformed and elastically stressed layers. However, the thickness of each layer in the roughly ground sample is much higher than its counterpart layers in the ultra-finely ground sample. The residual stress after rough and ultra-fine grinding is in the range of several hundreds MPa and 30 MPa, respectively. In each case, the top amorphous layer is believed to be the result of sequential phase transformations (Si-I to Si-II to amorphous Si). These phase transformations correspond to a ductile grinding mechanism, which is dominating in ultra-fine grinding. On the other hand, in rough grinding, a mixed mechanism of ductile and brittle grinding causes multi-layer damage and sub-surface cracks

  5. IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Jarquin, J.; Fernandez-Guasti, M.; Haro-Poniatowski, E.; Hernandez-Pozos, J.L. [Laboratorio de Optica Cuantica, Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico D.F. (Mexico)

    2005-08-01

    We irradiated silicon (100) wafers with IR (1064 nm) and UV (355 nm) nanosecond laser pulses with energy densities within the ablation regime and used scanning electron microscopy to analyze the morphological changes induced on the Si surface. The changes in the wafer morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however if the experiment is carried out in O{sub 2} the final result is an array of microcones. We also employed a random scanning technique to irradiate the silicon wafer over large areas, in this case the microstructure patterns consist of a ''semi-ordered'' array of micron-sized cones. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A New Understanding of Near-Threshold Damage for 200 keV Irradiation In Silicon

    International Nuclear Information System (INIS)

    Stoddard, Nathan; Duscher, Gerd J.M.; Windl, Wolfgang; Rozgonyi, G.A.

    2005-01-01

    Recently we reported room temperature point defect creation and subsequent extended defect nucleation in nitrogen-doped silicon during 200 kV electron irradiation, while identical irradiation of nitrogen-free silicon produced no effect. In this paper, first principles calculations are combined with new transmission electron microscope (TEM) observations to support a new model for elastic electron-silicon interactions in the TEM, which encompasses both nitrogen doped and nitrogen free silicon. Specifically, the nudged elastic band method was used to study the energetics along the diffusion path during an electron collision event in the vicinity of a nitrogen pair. It was found that the 0 K estimate for the energy barrier of a knock-on event is lowered from ∼12 to 6.2 eV. However, this is still inadequate to explain the observations. We therefore propose an increase in the energy barrier for Frenkel pair recombination associated with N 2 -V bonding. Concerning pure silicon, stacking fault formation near irradiation-induced holes demonstrates the participation of bulk processes. In low oxygen float zone material, 2--5 nm voids were formed, while oxygen precipitation in Czochralski Si has been verified by electron energy-loss spectroscopy. Models of irradiation-induced point defect aggregation are presented and it is concluded that these must be bulk and not surface mediated phenomena.

  7. Fabrication of wear-resistant silicon microprobe tips for high-speed surface roughness scanning devices

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.

  8. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    Science.gov (United States)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  9. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns.

    Science.gov (United States)

    Ynsa, M D; Dang, Z Y; Manso-Silvan, M; Song, J; Azimi, S; Wu, J F; Liang, H D; Torres-Costa, V; Punzon-Quijorna, E; Breese, M B H; Garcia-Ruiz, J P

    2014-04-01

    Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.

  10. Improved the Surface Roughness of Silicon Nanophotonic Devices by Thermal Oxidation Method

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zujun; Shao Shiqian; Wang Yi, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037, Luoyu Street, Wuhan 430074 (China)

    2011-02-01

    The transmission loss of the silicon-on-insulator (SOI) waveguide and the coupling loss of the SOI grating are determined to a large extent by the surface roughness. In order to obtain smaller loss, thermal oxidation is a good choice to reduce the surface roughness of the SOI waveguide and grating. Before the thermal oxidation, the root mean square of the surface roughness is over 11 nm. After the thermal oxidation, the SEM figure shows that the bottom of the grating is as smooth as quartz surface, while the AFM shows that the root mean square of the surface is less than 5 nm.

  11. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals.

    Science.gov (United States)

    Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C

    2017-01-27

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .

  12. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    Science.gov (United States)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  13. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon

    International Nuclear Information System (INIS)

    Barberoglou, M.; Zorba, V.; Stratakis, E.; Spanakis, E.; Tzanetakis, P.; Anastasiadis, S.H.; Fotakis, C.

    2009-01-01

    We report here an efficient method for preparing stable superhydrophobic and highly water repellent surfaces by irradiating silicon wafers with femtosecond laser pulses and subsequently coating them with chloroalkylsilane monolayers. By varying the laser pulse fluence on the surface one can successfully control its wetting properties via a systematic and reproducible variation of roughness at micro- and nano-scale, which mimics the topology of natural superhydrophobic surfaces. The self-cleaning and water repellent properties of these artificial surfaces are investigated. It is found that the processed surfaces are among the most water repellent surfaces ever reported. These results may pave the way for the implementation of laser surface microstructuring techniques for the fabrication of superhydrophobic and self-cleaning surfaces in different kinds of materials as well

  14. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Zhou Bin; Sun Qi; Huang Yaodong; Shen Jun; Wu Guangming; Wang Jue

    2004-01-01

    The developments of the surface perturbation target and the thin silicon foil target used to research Rayleigh-Taylor instability in the resolved experiments of Inertial Confinement Fusion (ICF) are carried out. Based on the laser interference process combined with the figure-transfer process, the surface perturbation target with sine modulated perturbation is gotten, the wavelength is in the range of 20-100 μm and the amplitude is several micrometers. The thin silicon foil within the thickness about 3-4 μm is prepared by semiconductor process together with heavy-doped self-stop etching. Combined with ion beam etching, the check or the stripe patterns are transferred to the surface of thin silicon foils, and then the silicon grating foil is obtained

  15. Effect of PECVD SiNx/SiOy Nx –Si interface property on surface passivation of silicon wafer

    International Nuclear Information System (INIS)

    Jia Xiao-Jie; Zhou Chun-Lan; Zhou Su; Wang Wen-Jing; Zhu Jun-Jie

    2016-01-01

    It is studied in this paper that the electrical characteristics of the interface between SiO y N x /SiN x stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiO y N x layer on interface parameters, such as interface state density Di t and fixed charge Q f , and the surface passivation quality of silicon are observed. Capacitance–voltage measurements reveal that inserting a thin SiO y N x layer between the SiN x and the silicon wafer can suppress Q f in the film and D it at the interface. The positive Q f and D it and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiO y N x film increasing. Prepared by deposition at a low temperature and a low ratio of N 2 O/SiH 4 flow rate, the SiO y N x /SiN x stacks result in a low effective surface recombination velocity (S eff ) of 6 cm/s on a p-type 1 Ω·cm–5 Ω·cm FZ silicon wafer. The positive relationship between S eff and D it suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. (paper)

  16. Improved surface quality of anisotropically etched silicon {111} planes for mm-scale optics

    International Nuclear Information System (INIS)

    Cotter, J P; Hinds, E A; Zeimpekis, I; Kraft, M

    2013-01-01

    We have studied the surface quality of millimetre-scale optical mirrors produced by etching CZ and FZ silicon wafers in potassium hydroxide to expose the {111} planes. We find that the FZ surfaces have four times lower noise power at spatial frequencies up to 500 mm −1 . We conclude that mirrors made using FZ wafers have higher optical quality. (technical note)

  17. Reaction dynamics of molecular hydrogen on silicon surfaces

    DEFF Research Database (Denmark)

    Bratu, P.; Brenig, W.; Gross, A.

    1996-01-01

    of the preexponential factor by about one order of magnitude per lateral degree of freedom. Molecular vibrations have practically no effect on the adsorption/desorption dynamics itself, but lead to vibrational heating in desorption with a strong isotope effect. Ab initio calculations for the H-2 interaction...... between the two surfaces. These results indicate that tunneling, molecular vibrations, and the structural details of the surface play only a minor role for the adsorption dynamics. Instead, they appear to be governed by the localized H-Si bonding and Si-Si lattice vibrations. Theoretically, an effective......Experimental and theoretical results on the dynamics of dissociative adsorption and recombinative desorption of hydrogen on silicon are presented. Using optical second-harmonic generation, extremely small sticking probabilities in the range 10(-9)-10(-5) could be measured for H-2 and D-2 on Si(111...

  18. Studying the InAs quantum points on the vicinal surface of a GaAs crystal by the atomic force microscopy

    CERN Document Server

    Evtikhiev, V P; Kotelnikov, E Y; Matveentsev, A V; Titkov, A N; Shkolnik, A S

    2002-01-01

    The methodology for processing the images, obtained through the atomic force microscopy, is proposed. It is shown by the concrete example, how the parameters of the InAs clusters on the vicinal surface of the GaAs crystal are determined. This makes it possible to calculate the energy levels of the electrons and holes in the quantum point with application of the previously developed cluster spherical model

  19. Process for forming a porous silicon member in a crystalline silicon member

    Science.gov (United States)

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  20. Understanding and controlling the step bunching instability in aqueous silicon etching

    Science.gov (United States)

    Bao, Hailing

    Chemical etching of silicon has been widely used for more than half a century in the semiconductor industry. It not only forms the basis for current wafer cleaning processes, it also serves as a powerful tool to create a variety of surface morphologies for different applications. Its potential for controlling surface morphology at the atomic scale over micron-size regions is especially appealing. In spite of its wide usage, the chemistry of silicon etching is poorly understood. Many seemingly simple but fundamental questions have not been answered. As a result, the development of new etchants and new etching protocols are based on expensive and tedious trial-and-error experiments. A better understanding of the etching mechanism would direct the rational formulation of new etchants that produce controlled etch morphologies. Particularly, micron-scale step bunches spontaneously develop on the vicinal Si(111) surface etched in KOH or other anisotropic aqueous etchants. The ability to control the size, orientation, density and regularity of these surface features would greatly improve the performance of microelectromechanical devices. This study is directed towards understanding the chemistry and step bunching instability in aqueous anisotropic etching of silicon through a combination of experimental techniques and theoretical simulations. To reveal the cause of step-bunching instability, kinetic Monte Carlo simulations were constructed based on an atomistic model of the silicon lattice and a modified kinematic wave theory. The simulations showed that inhomogeneity was the origin of step-bunching, which was confirmed through STM studies of etch morphologies created under controlled flow conditions. To quantify the size of the inhomogeneities in different etchants and to clarify their effects, a five-parallel-trench pattern was fabricated. This pattern used a nitride mask to protect most regions of the wafer; five evenly spaced etch windows were opened to the Si(110

  1. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.

    Science.gov (United States)

    Li, Kun; Ng, Kar Wei; Tran, Thai-Truong D; Sun, Hao; Lu, Fanglu; Chang-Hasnain, Connie J

    2015-11-11

    The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.

  2. Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%

    Science.gov (United States)

    Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun

    2017-08-01

    We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.

  3. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  4. Study of the thermal effect on silicon surface induced by ion beam from plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Z., E-mail: pscientific5@aec.org.sy [Scientific Service Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Chemistry Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic)

    2017-04-01

    Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.

  5. Nanoscale fabrication and characterization of chemically modified silicon surfaces using conductive atomic force microscopy in liquids

    Science.gov (United States)

    Kinser, Christopher Reagan

    This dissertation examines the modification and characterization of hydrogen-terminated silicon surfaces in organic liquids. Conductive atomic force microscope (cAFM) lithography is used to fabricate structures with sub-100 nm line width on H:Si(111) in n-alkanes, 1-alkenes, and 1-alkanes. Nanopatterning is accomplished by applying a positive (n-alkanes and 1-alkenes) or a negative (1-alkanes) voltage pulse to the silicon substrate with the cAFM tip connected to ground. The chemical and kinetic behavior of the patterned features is characterized using AFM, lateral force microscopy, time-of-flight secondary ion mass spectroscopy (TOF SIMS), and chemical etching. Features patterned in hexadecane, 1-octadecene, and undecylenic acid methyl ester exhibited chemical and kinetic behavior consistent with AFM field induced oxidation. The oxide features are formed due to capillary condensation of a water meniscus at the AFM tip-sample junction. A space-charge limited growth model is proposed to explain the observed growth kinetics. Surface modifications produced in the presence of neat 1-dodecyne and 1-octadecyne exhibited a reduced lateral force compared to the background H:Si(111) substrate and were resistant to a hydrofluoric acid etch, characteristics which indicate that the patterned features are not due to field induced oxidation and which are consistent with the presence of the methyl-terminated 1-alkyne bound directly to the silicon surface through silicon-carbon bonds. In addition to the cAFM patterned surfaces, full monolayers of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromoethyl ester (SAM-2) were grown on H:Si(111) substrates using ultraviolet light. The structure and chemistry of the monolayers were characterized using AFM, TOF SIMS, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). These combined analyses provide evidence that SAM-1 and SAM-2 form dense monolayers

  6. Reduction of absorption loss in multicrystalline silicon via combination of mechanical grooving and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, Mohamed; Mohamed, Seifeddine Belhadj; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-03-15

    Surface texturing of silicon wafer is a key step to enhance light absorption and to improve the solar cell performances. While alkaline-texturing of single crystalline silicon wafers was well established, no efficient chemical solution has been successfully developed for multicrystalline silicon wafers. Thus, the use of alternative new methods for effective texturization of multicrystalline silicon is worth to be investigated. One of the promising texturing techniques of multicrystalline silicon wafers is the use of mechanical grooves. However, most often, physical damages occur during mechanical grooves of the wafer surface, which in turn require an additional step of wet processing-removal damage. Electrochemical surface treatment seems to be an adequate solution for removing mechanical damage throughout porous silicon formation. The topography of untreated and porous silicon-treated mechanically textured surface was investigated using scanning electron microscopy (SEM). As a result of the electrochemical surface treatment, the total reflectivity drops to about 5% in the 400-1000 nm wavelength range and the effective minority carrier diffusion length enhances from 190 {mu}m to about 230 {mu}m (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Influence of surface pre-treatment on the electronic levels in silicon MaWCE nanowires.

    Science.gov (United States)

    Venturi, Giulia; Castaldini, Antonio; Schleusener, Alexander; Sivakov, Vladimir; Cavallini, Anna

    2015-05-15

    Deep level transient spectroscopy (DLTS) was performed on n-doped silicon nanowires grown by metal-assisted wet chemical etching (MaWCE) with gold as the catalyst in order to investigate the energetic scheme inside the bandgap. To observe the possible dependence of the level scheme on the processing temperature, DLTS measurements were performed on the nanowires grown on a non-treated Au/Si surface and on a thermally pre-treated Au/Si surface. A noticeable modification of the configuration of the energy levels was observed, induced by the annealing process. Based on our results on these MaWCE nanowires and on literature data about deep levels in bulk silicon, some hypotheses were advanced regarding the identification of the defects responsible of the energy levels revealed.

  8. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  9. Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon

    International Nuclear Information System (INIS)

    Chen, H. Y.; Peng, Y.; Hong, M.; Zhang, Y. B.; Cai, Bin; Zhu, Y. M.; Yuan, G. D.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Li, J. M.

    2014-01-01

    We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production

  10. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    International Nuclear Information System (INIS)

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-01-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method. (paper)

  11. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    Science.gov (United States)

    Agosto, William N.

    1993-01-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  12. Excitation of nanowire surface plasmons by silicon vacancy centers in nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Davydov, Valery A.; Agafonov, Viatcheslav N.

    2017-01-01

    Silicon vacancy (SiV) centers in diamonds have emerged as a very promising candidate for quantum emitters due to their narrow emission line resulting in their indistinguishability. While many different quantum emitters have already been used for the excitation of various propagating plasmonic modes......, the corresponding exploitation of SiV centers has remained so far uncharted territory. Here, we report on the excitation of surface plasmon modes supported by silver nanowires using SiV centers in nanodiamonds. The coupling of SiV center fluorescence to surface plasmons is observed, when a nanodiamond situated...

  13. Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(1 0 0)

    International Nuclear Information System (INIS)

    Rodriguez, P.; Herrero, E.; Solla-Gullon, J.; Vidal-Iglesias, F.J.; Aldaz, A.; Feliu, J.M.

    2005-01-01

    The electrochemical behavior of germanium irreversibly adsorbed at stepped surfaces vicinal to the Pt(1 0 0) pole is reported. The process taking part on the (1 0 0) terraces is evaluated from charge density measurements and calibration lines versus the terrace dimension are plotted. On the series Pt(2n - 1,1,1) having (1 1 1) monoatomic steps, the charge involved in the redox process undergone by the irreversibly adsorbed germanium is able to account for (n - 0.5) terrace atoms, thus suggesting some steric difficulties in the growth of the adlayer on the (1 0 0) terraces. Conversely, no steric problems are apparent in the series Pt(n,1,0) in which more open (1 0 0) steps are present on the (1 0 0) terraces. In this latter case the charge density under the germanium redox peaks is proportional to the number of terrace atoms. Some comparison is made with other stepped surfaces to understand the behavior and stability of germanium irreversibly adsorbed on the different platinum surface sites

  14. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  15. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  16. Evolution of arsenic in high fluence plasma immersion ion implanted silicon: Behavior of the as-implanted surface

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, V. [Applied Materials, 3225 Oakmead Village Drive, Santa Clara, CA 95052 (United States); Demenev, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Department of Molecular Science and Nanosystems, Ca’Foscari University, Dorsoduro 2137, 30123 Venice (Italy); Giubertoni, D., E-mail: giuberto@fbk.eu [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Vanzetti, L. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Koh, A.L. [Stanford Nanocharacterization Laboratory, Stanford University, 476 Lomita Mall, Stanford, CA 94305 (United States); Steinhauser, G. [Colorado State University, Environmental and Radiological Health Sciences, Fort Collins, CO 80523 (United States); Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz, 30419 Hannover (Germany); Pepponi, G.; Bersani, M. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Meirer, F., E-mail: f.meirer@uu.nl [Inorganic Chemistry and Catalysis, Utrecht University, Utrecht 3584 CG (Netherlands); Foad, M.A. [Applied Materials, 3225 Oakmead Village Drive, Santa Clara, CA 95052 (United States)

    2015-11-15

    Highlights: • Samples prepared by high fluence, low-energy PIII of AsH{sub 3}{sup +} on Si(1 0 0) were studied. • PIII is of high technological interest for ultra-shallow doping and activation. • We used a multi-technique approach to study the As-implanted surface. • We show that PIII presents a new set of problems that needs to be tackled. • The presented study goes toward understanding the root mechanisms involved. - Abstract: High fluence (>10{sup 15} ions/cm{sup 2}) low-energy (<2 keV) plasma immersion ion implantation (PIII) of AsH{sub 3}{sup +} on (1 0 0) silicon was investigated, with the focus on stability and retention of the dopant. At this dose, a thin (∼3 nm) amorphous layer forms at the surface, which contains about 45% arsenic (As) in a silicon and oxygen matrix. The presence of silicon indicates that the layer is not only a result of deposition, but predominantly ion mixing. High fluence PIII introduces high concentration of arsenic, modifying the stopping power for incoming ions resulting in an increased deposition. When exposed to atmosphere, the arsenic rich layer spontaneously evolves forming arsenolite As{sub 2}O{sub 3} micro-crystals at the surface. The micro-crystal formation was monitored over several months and exhibits typical crystal growth kinetics. At the same time, a continuous growth of native silicon oxide rich in arsenic was observed on the exposed surface, suggesting the presence of oxidation enhancing factors linked to the high arsenic concentration at the surface.

  17. Surface modification of silicon wafer by grafting zwitterionic polymers to improve its antifouling property

    Science.gov (United States)

    Sun, Yunlong; Chen, Changlin; Xu, Heng; Lei, Kun; Xu, Guanzhe; Zhao, Li; Lang, Meidong

    2017-10-01

    Silicon (111) wafer was modified by triethoxyvinylsilane containing double bond as an intermedium, and then P4VP (polymer 4-vinyl pyridine) brush was "grafted" onto the surface of silicon wafer containing reactive double bonds by adopting the "grafting from" way and Si-P4VP substrate (silicon wafer grafted by P4VP) was obtained. Finally, P4VP brush of Si-P4VP substrate was modified by 1,3-propanesulfonate fully to obtain P4VP-psl brush (zwitterionic polypyridinium salt) and the functional Si-P4VP-psl substrate (silicon wafer grafted by zwitterionic polypyridinium salt based on polymer 4-vinyl pyridine) was obtained successfully. The antifouling property of the silicon wafer, the Si-P4VP substrate and the Si-P4VP-psl substrate was investigated by using bovine serum albumin, mononuclear macrophages (RAW 264.7) and Escherichia coli (E. coli) ATTC25922 as model bacterium. The results showed that compared with the blank sample-silicon wafer, the Si-P4VP-psl substrate had excellent anti-adhesion ability against bovine serum albumin, cells and bacterium, due to zwitterionic P4VP-psl brush (polymer 4-vinyl pyridine salt) having special functionality like antifouling ability on biomaterial field.

  18. Electrical transport in strained silicon quantum wells on vicinal substrates

    International Nuclear Information System (INIS)

    Kaya, S.

    1999-01-01

    This thesis deals with the electrical transport studies of strained Si quantum wells grown on tilted Si substrates. Magnetotransport measurements at very low temperatures are used to investigate the high electron mobility, scattering processes and modified band structure for four different substrate orientations (2, 4, 6 and 10 deg.) and in two different directions of transport. We first discuss the morphology of the tilted system with the aid of, atomic force and optical microscopy. A clear change of surface morphology of tilted layers in comparison with the (001) type surfaces is explained by the degree of tilt in the system. The electron mobility and in-plane effective mass becomes anisotropic, which scale roughly with the tilt angle. The mobility anisotropy is shown to be the result of extra scattering when electrons travel across the steps common to vicinal surfaces. The extra scattering has characteristics similar to interface roughness scattering, as inferred from the trend that the transport (τ t ) and quantum scattering (τ q ) times follow. As the tilt angle grows, it is found that τ t /τ q →1 in the direction perpendicular to the steps. Electrons in tilted channels of multivalley semiconductors can involve a new interband scattering mechanism due to a one dimensional minigap opening in the conduction band. This effect, known from bulk Si MOSFETs, is investigated in strained Si for the first time in this thesis. First, the effect of applied electric fields on electron conduction is considered. Shubnikov-de Haas oscillations in the magnetoresistance data indicate a remarkably different electron scattering behaviour in tilted samples with increasing fields in directions parallel and perpendicular to the tilt direction. An FFT analysis of the data produces extra peaks in the electron density spectra. By clear contrast, flat samples grown under similar conditions do not show any unusual features. The difference is attributed to the existence of a minigap

  19. Hydrogen-terminated mesoporous silicon monoliths with huge surface area as alternative Si-based visible light-active photocatalysts

    KAUST Repository

    Li, Ting

    2016-07-21

    Silicon-based nanostructures and their related composites have drawn tremendous research interest in solar energy storage and conversion. Mesoporous silicon with a huge surface area of 400-900 m2 g-1 developed by electrochemical etching exhibits excellent photocatalytic ability and stability after 10 cycles in degrading methyl orange under visible light irradiation, owing to its unique mesoporous network, abundant surface hydrides and efficient light harvesting. This work showcases the profound effects of surface area, crystallinity, pore topology on charge migration/recombination and mass transportation. Therein the ordered 1D channel array has outperformed the interconnected 3D porous network by greatly accelerating the mass diffusion and enhancing the accessibility of the active sites on the extensive surfaces. © 2016 The Royal Society of Chemistry.

  20. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Science.gov (United States)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and

  1. Synthesis of thermoresponsive poly(N-isopropylacrylamide) brush on silicon wafer surface via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Eylem; Demirci, Serkan [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey); Caykara, Tuncer, E-mail: caykara@gazi.edu.t [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey)

    2010-08-31

    Thermoresponsive poly(N-isopropylacrylamide) [poly(NIPAM)] brush on silicon wafer surface was prepared by combining the self-assembled monolayer of initiator and atom transfer radical polymerization (ATRP). The resulting polymer brush was characterized by in situ reflectance Fourier transform infrared spectroscopy, atomic force microscopy and ellipsometry techniques. Gel permeation chromatography determination of the number-average molecular weight and polydispersity index of the brush detached from the silicon wafer surface suggested that the surface-initiated ATRP method can provide relatively homogeneous polymer brush. Contact angle measurements exhibited a two-stage increase upon heating over the board temperature range 25-45 {sup o}C, which is in contrast to the fact that free poly(NIPAM) homopolymer in aqueous solution exhibits a phase transition at ca. 34 {sup o}C within a narrow temperature range. The first de-wetting transition takes place at 27 {sup o}C, which can be tentatively attributed to the n-cluster induced collapse of the inner region of poly(NIPAM) brush close to the silicon surface; the second de-wetting transition occurs at 38 {sup o}C, which can be attributed to the outer region of poly(NIPAM) brush, possessing much lower chain density compared to that of the inner part.

  2. The behavior of silicon and boron in the surface of corroded nuclear waste glasses: an EFTEM study

    International Nuclear Information System (INIS)

    Buck, E. C.; Smith, K. L.; Blackford, M. G.

    1999-01-01

    Using electron energy-loss filtered transmission electron microscopy (EFTEM), we have observed the formation of silicon-rich zones on the corroded surface of a West Valley (WV6) glass. This layer is approximately 100-200 nm thick and is directly underneath a precipitated smectite clay layer. Under conventional (C)TEM illumination, this layer is invisible; indeed, more commonly used analytical techniques, such as x-ray energy dispersive spectroscopy (EDS), have failed to describe fully the localized changes in the boron and silicon contents across this region. Similar silicon-rich and boron-depleted zones were not found on corroded Savannah River Laboratory (SRL) borosilicate glasses, including SRL-EA and SRL-51, although they possessed similar-looking clay layers. This study demonstrates a new tool for examining the corroded surfaces of materials

  3. Development of silicon growth techniques from melt with surface heating

    Science.gov (United States)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  4. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya [Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201308 (India)

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  5. Diagnostic x-ray spectra measurements using a silicon surface barrier detector

    International Nuclear Information System (INIS)

    Pani, R.; Laitano, R.F.

    1987-01-01

    A silicon surface barrier detector having a low efficiency for x-ray is used to analyse diagnostic x-ray spectra. This characteristic is advantageous in overcoming experimental problems caused by high fluence rates typical of diagnostic x-ray beams. The pulse height distribution obtained with silicon surface barrier detectors is very different from the true photon spectra because of the presence of escaped Compton photons and the fact that detection efficiency falls abruptly when photon energy increases. A detailed analysis of the spurious effects involved in detection is made by a Monte Carlo method. A stripping procedure is described for implementation on a personal computer. The validity of this method is tested by comparison with experimental results obtained with a Ge detector. The spectra obtained with the Si detector are in fairly good agreement with the analogous spectra measured with a Ge detector. The advantages of using Si as opposed to Ge detectors in x-ray spectrometry are: its simplicity of use, its greater economy for use in routine diagnostic x-ray spectroscopy and the possibility that the stripping procedure can be implemented on a personal computer. (author)

  6. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  7. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces

    Science.gov (United States)

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-01

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  8. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  9. Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si:H after rapid thermal annealing

    NARCIS (Netherlands)

    Macco, B.; Melskens, J.; Podraza, N.J.; Arts, K.; Pugh, C.; Thomas, O.; Kessels, W.M.M.

    2017-01-01

    Using an inductively coupled plasma, hydrogenated amorphous silicon (a-Si:H) films have been prepared at very low temperatures (<50 °C) to provide crystalline silicon (c-Si) surface passivation. Despite the limited nanostructural quality of the a-Si:H bulk, a surprisingly high minority carrier

  10. Surface effects on the thermal conductivity of silicon nanowires

    Science.gov (United States)

    Li, Hai-Peng; Zhang, Rui-Qin

    2018-03-01

    Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field. Project supported by the National Natural Science Foundation ofChina (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).

  11. Ellipsometry measurements of thickness of oxide and water layers on spherical and flat silicon surfaces

    International Nuclear Information System (INIS)

    Kenny, M.J.; Netterfield, R.; Wielunski, L.S.

    1998-01-01

    Full text: Ellipsometry has been used to measure the thickness of oxide layers on single crystal silicon surfaces, both flat and spherical and also to measure the extent of adsorption of moisture on the surface as a function of partial water vapour pressure. The measurements form part of an international collaborative project to make a precise determination of the Avogadro constant (ΔN A /N A -8 ) which will then be used to obtain an absolute definition of the kilogram, rather than one in terms of an artefact. Typically the native oxide layer on a cleaned silicon wafer is about 2 nm thick. On a polished sphere this oxide layer is typically 8 to 10 nm thick, the increased thickness being attributed to parameters related to the polishing process. Ellipsometry measurements on an 89 mm diameter polished silicon sphere at both VUW and CSIRO indicated a SiO 2 layer at 7 to 10 nm thick. It was observed that this thickness varied regularly. The crystal orientation of the sphere was determined using electron patterns generated from an electron microscope and the oxide layer was then measured through 180 arcs of great circles along (110) and (100) planes. It was observed that the thickness varied systematically with orientation. The minimum thickness was 7.4 nm at the axis (softest direction in silicon) and the greatest thickness was 9.5 nm at the axis (hardest direction in silicon). This is similar to an orientation dependent cubic pattern which has been observed to be superimposed on polished silicon spheres. At VUW, the sphere was placed in an evacuated bell jar and the ellipsometry signal was observed as the water vapour pressure was progressively increased up to saturation. The amount of water vapour adsorbed at saturation was one or two monolayers, indicating that the sphere does not wet

  12. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  13. Surface State Capture Cross-Section at the Interface between Silicon and Hafnium Oxide

    Directory of Open Access Journals (Sweden)

    Fu-Chien Chiu

    2013-01-01

    Full Text Available The interfacial properties between silicon and hafnium oxide (HfO2 are explored by the gated-diode method and the subthreshold measurement. The density of interface-trapped charges, the current induced by surface defect centers, the surface recombination velocity, and the surface state capture cross-section are obtained in this work. Among the interfacial properties, the surface state capture cross-section is approximately constant even if the postdeposition annealing condition is changed. This effective capture cross-section of surface states is about 2.4 × 10−15 cm2, which may be an inherent nature in the HfO2/Si interface.

  14. Microstructure and initial growth characteristics of the low temperature microcrystalline silicon films on silicon nitride surface

    International Nuclear Information System (INIS)

    Park, Young-Bae; Rhee, Shi-Woo

    2001-01-01

    Microstructure and initial growth characteristics of the hydrogenated microcrystalline Si (μc-Si:H) films grown on hydrogenated amorphous silicon nitride (a-SiN x :H) surface at low temperature were investigated using high resolution transmission electron microscope and micro-Raman spectroscopy. With increasing the Si and Si - H contents in the SiN x :H surfaces, μc-Si crystallites, a few nanometers in size, were directly grown on amorphous nitride surfaces. It is believed that the crystallites were grown through the nucleation and phase transition from amorphous to crystal in a hydrogen-rich ambient of gas phase and growing surface. The crystallite growth characteristics on the dielectric surface were dependent on the stoichiometric (x=N/Si) ratio corresponding hydrogen bond configuration of the SiN x :H surface. Surface facetting and anisotropic growth of the Si crystallites resulted from the different growth rate on the different lattice planes of Si. No twins and stacking faults were observed in the (111) lattice planes of the Si crystallites surrounding the a-Si matrix. This atomic-scale structure was considered to be the characteristic of the low temperature crystallization of the μc-Si:H by the strain relaxation of crystallites in the a-Si:H matrix. [copyright] 2001 American Institute of Physics

  15. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    Directory of Open Access Journals (Sweden)

    Robert E. Peale

    2016-09-01

    Full Text Available An electronic detector of surface plasmon polaritons (SPPs is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  16. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  17. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  18. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  19. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  20. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  1. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  2. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  3. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  4. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  5. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  6. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2018-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker (ITk). In order to minimise the amount of material in the ITk, circuit boards with readout electronics will be glued onto the active area of the sensor. Several adhesives, investigated to be used for the construction of detector modules, were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high-radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By positioning the beam parallel to the sensor surfave and pointing it both inside the sensor and above the sensor surface inside the deposited glue, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibilit...

  7. Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction

    International Nuclear Information System (INIS)

    Dadgar, A; Schulze, F; Wienecke, M; Gadanecz, A; Blaesing, J; Veit, P; Hempel, T; Diez, A; Christen, J; Krost, A

    2007-01-01

    GaN-on-silicon is a low-cost alternative to growth on sapphire or SiC. Today epitaxial growth is usually performed on Si(111), which has a threefold symmetry. The growth of single crystalline GaN on Si(001), the material of the complementary metal oxide semiconductor (CMOS) industry, is more difficult due to the fourfold symmetry of this Si surface leading to two differently aligned domains. We show that breaking the symmetry to achieve single crystalline growth can be performed, e.g. by off-oriented substrates to achieve single crystalline device quality GaN layers. Furthermore, an exotic Si orientation for GaN growth is Si(110), which we show is even better suited as compared to Si(111) for the growth of high quality GaN-on-silicon with a nearly threefold reduction in the full width at half maximum (FWHM) of the (1 1-bar 0 0)ω-scan. It is found that a twofold surface symmetry is in principal suitable for the growth of single crystalline GaN on Si

  8. Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Berger, S.; Quoizola, S.; Fave, A.; Kaminski, A.; Perichon, S.; Barbier, D.; Laugier, A.

    2001-01-01

    The aim of this experiment is to grow a thin silicon layer ( 2 atmosphere, and finally LPE silicon growth with different temperature profiles in order to obtain a silicon layer on the sacrificial porous silicon (p-Si). We observed a pyramidal growth on the surface of the (100) porous silicon but the coalescence was difficult to obtain. However, on a p-Si (111) oriented wafer, homogeneous layers were obtained. (orig.)

  9. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  10. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  11. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    International Nuclear Information System (INIS)

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-01-01

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF_6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF_6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF_6 thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF_6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF_6 thin film, the covalent interaction between ImPF_6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  12. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Gusain, Rashi [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Kokufu, Sho [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Bakshi, Paramjeet S. [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Khatri, Om P., E-mail: opkhatri@iip.res.in [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF{sub 6}) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF{sub 6} thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF{sub 6} thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF{sub 6} thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF{sub 6} thin film, the covalent interaction between ImPF{sub 6} ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  13. Investigations of the surface conductivity of silicon dioxide and methods to reduce it

    NARCIS (Netherlands)

    Voorthuyzen, J.A.; Keskin, K.; Bergveld, Piet

    1987-01-01

    In this paper we describe our investigations of the electrical conductivity of the silicon dioxide-air interface. It appears that this conductivity is caused by the adsorption of water vapour on the oxide surface and strongly depends on the relative humidity of the surrounding air. Considering this

  14. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  15. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  16. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  17. Colloidal characterization of silicon nitride and silicon carbide

    Science.gov (United States)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  18. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  19. Aan der Waals terminated silicon(111) surfaces and interfaces. Preparation, morphology, and electronic properties

    International Nuclear Information System (INIS)

    Fritsche, R.

    2004-01-01

    The aim of this thesis is the implementation of the concept of the quasi-van der Waals epitaxy as a new perspective for the integration of reactive and lattice-defect fitted materials into the silicon technology. The experimental characterization of this approach pursues in two subsequent sections. First the chemical and electronic passivation of a three-dimensional substrate (silicon) is studied by means of an ultrathin buffer layer from the material class of the layered-lattice chalcogenides (GaSe). The substrate surface (Si(111):GaSe) modified in this way possesses an inert van der Waals surface and serves in the following as base for the deposition of the against the non-passivated substrate really reactive and lattice-defect fitted materials (II-VI-compound semiconductors and metals) The characterization of the electronic and chemical properties of the surfaces and interfaces pursues with highly resolved photoelectron spectroscopy (SXPS). The results are supplemented by the characterization of the morphology by the diffraction of low-energy electrons (LEED) and the scanning tunnel microscopy (STM)

  20. Silicon surface damage caused by reactive ion etching in fluorocarbon gas mixtures containing hydrogen

    International Nuclear Information System (INIS)

    Norstroem, H.; Blom, H.; Ostling, M.; Nylandsted Larsen, A.; Keinonen, J.; Berg, S.

    1991-01-01

    For selective etching of SiO 2 on silicon, gases or gas mixtures containing hydrogen are often used. Hydrogen from the glow discharge promotes the formation of a thin film polymer layer responsible for the selectivity of the etching process. The reactive ion etch (RIE) process is known to create damage in the silicon substrate. The influence of hydrogen on the damage and deactivation of dopants is investigated in the present work. The distribution of hydrogen in silicon, after different etching and annealing conditions have been studied. The influence of the RIE process on the charge carrier concentration in silicon has been investigated. Various analytical techniques like contact resistivity measurements, four point probe measurements, and Hall measurements have been used to determine the influence of the RIE process on the electrical properties of processed silicon wafers. The hydrogen profile in as-etched and post annealed wafers was determined by the 1 H( 15 N,αγ) 12 C nuclear reaction. The depth of the deactivated surface layer is discussed in terms of the impinging hydrogen ion energy, i.e., the possibility of H + ions to pick up an energy equal to the peak-to-peak voltage of the rf signal

  1. Different size biomolecules anchoring on porous silicon surface: fluorescence and reflectivity pores infiltration comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannozzi, Andrea M.; Rossi, Andrea M. [National Institute for Metrological Research, Thermodynamic Division, Strada delle Cacce 91, 10135 Torino (Italy); Renacco, Chiara; Farano, Alessandro [Ribes Ricecrhe Srl, Via Lavoratori Vittime del Col du Mont 24, 11100 Aosta (Italy); Derosas, Manuela [Biodiversity Srl, Via Corfu 71, 25124 Brescia (Italy); Enrico, Emanuele [National Institute for Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy)

    2011-06-15

    The performance of porous silicon optical based biosensors strongly depends on material nanomorphology, on biomolecules distribution inside the pores and on the ability to link sensing species to the pore walls. In this paper we studied the immobilization of biomolecules with different size, such as antibody anti aflatoxin (anti Aflatox Ab, {proportional_to}150 KDa), malate dehydrogenase (MDH, {proportional_to}36KDa) and metallothionein (MT, {proportional_to}6KDa) at different concentrations on mesoporous silicon samples ({proportional_to}15 nm pores diameter). Fluorescence measurements using FITC- labeled biomolecules and refractive index analysis based on reflectivity spectra have been employed together to detect the amount of proteins bound to the surface and to evaluate their diffusion inside the pores. Here we suggest that these two techniques should be used together to have a better understanding of what happens at the porous silicon surface. In fact, when pores dimensions are not perfectly tuned to the protein size a higher fluorescence signal doesn't often correspond to a higher biomolecules distribution inside the pores. When a too much higher concentration of biomolecule is anchored on the surface, steric crowd effects and repulsive interactions probably take over and hinder pores infiltration, inducing a small or absent shift in the fringe pattern even if a higher fluorescence signal is registered. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  3. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  4. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    NARCIS (Netherlands)

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated

  5. Dispersion of inorganic contaminants in surface water in the vicinity of Potchefstroom

    Science.gov (United States)

    Manyatshe, A.; Fosso-Kankeu, E.; van der Berg, D.; Lemmer, N.; Waanders, F.; Tutu, H.

    2017-08-01

    Potchefstroom and the neighbouring cities rely mostly on the Mooi River and Vaal River for their water needs. These rivers flow through the gold mining areas and farms, and are therefore likely to be contaminated with substantial amounts of inorganic pollutants. Water was collected along the rivers network, streams, canals and dams in Potchefstroom and the vicinity. The samples were characterized for geochemical parameters, metals and anions concentrations. The results showed high concentrations of potentially toxic elements such as As (4.53 mg/L - 5.74 mg/L), Cd (0.25 mg/L - 0.7 mg/L), Pb (1.14 mg/L - 5.13 mg/L) and U (0.04 mg/L - 0.11 mg/L) which were predominantly found around the mining areas. Elevated concentrations of anions such SO42- and CN- were detected around mining areas while NO3- was dominant near farms. The relatively high levels of anions and metals in the surface water made it unfit for domestic or agricultural use. The study showed that contaminants in mining and agricultural facilities were potentially mobilised, thus impacting the nearby water systems.

  6. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  7. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Energy Technology Data Exchange (ETDEWEB)

    Balpande, Suresh S., E-mail: balpandes@rknec.edu [Ph.D.. Scholar, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India); Pande, Rajesh S. [Professor, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India)

    2016-04-13

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  8. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    International Nuclear Information System (INIS)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-01-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  9. Porous Silicon Hydrogen Sensor at Room Temperature: The Effect of Surface Modification and Noble Metal Contacts

    Directory of Open Access Journals (Sweden)

    Jayita KANUNGO

    2009-04-01

    Full Text Available Porous silicon (PS was fabricated by anodization of p-type crystalline silicon of resistivity 2-5 Ω cm. After formation, the PS surface was modified by the solution containing noble metal like Pd. Pd-Ag catalytic contact electrodes were deposited on porous silicon and on p-Silicon to fabricate Pd-Ag/PS/p-Si/Pd-Ag sensor structure to carry out the hydrogen sensing experiments. The Sensor was exposed to 1% hydrogen in nitrogen as carrier gas at room temperature (270C. Pd modified sensor showed minimum fluctuations and consistent performance with 86% response, response time and recovery time of 24 sec and 264 sec respectively. The stability experiments were studied for both unmodified and Pd modified sensor structures for a period of about 24 hours and the modified sensors showed excellent durability with no drift in response behavior.

  10. Investigation of the quenched surfaces of visibly luminescent macro/nanoporous silicon under the exposure of typical neuron culture media

    International Nuclear Information System (INIS)

    Unal, B.

    2015-01-01

    In this research paper, the quenching effects of visible photoluminescence of porous silicon relevant to doping types under an exposure of culture media such as Dulbecco's Modified Eagle's Medium and Phosphate-Buffered Saline have been studied extensively in order to realize the application of a cell culture growth technique for porous silicon, in which biocompatibility is directly based on its size-dependent structures and morphologies. This could restrain the combination of either macro or micro-/nano-dimensional silicon morphologies by stain-etching single crystalline Si surfaces. The dopant-related quenching effect of well-known neuron culture media over visible photoluminescent porous silicon surface is found to be quite obvious for the two culture media mentioned above. Scanning electron microscope images of the cultured neuron cells over porous Si show how they have been linked to, and communicated with, each other, and directed along porous channels, fabricated by a photo lithographic technique. (authors)

  11. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  12. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    Science.gov (United States)

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  13. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan

    2010-09-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  14. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan; Xiao, Zhiyong; Chan, Philip C H; Lee, Yi-Kuen

    2010-01-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  15. Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography

    International Nuclear Information System (INIS)

    Palmans, J; Faraz, T; Verheijen, M A; Kessels, W M M; Creatore, M

    2016-01-01

    The nucleation of microcrystalline silicon thin-films has been investigated for various substrate natures and topographies. An earlier nucleation onset on aluminium-doped zinc oxide compared to glass substrates has been revealed, associated with a microstructure enhancement and reduced surface energy. Both aspects resulted in a larger crystallite density, following classical nucleation theory. Additionally, the nucleation onset was (plasma deposition) condition-dependent. Therefore, surface chemistry and its interplay with the plasma have been proposed as key factors affecting nucleation and growth. As such, preliminary proof of the substrate nature’s role in microcrystalline silicon growth has been provided. Subsequently, the impact of nano-imprint lithography prepared surfaces on the initial microcrystalline silicon growth has been explored. Strong topographies, with a 5-fold surface area enhancement, led to a reduction in crystalline volume fraction of ∼20%. However, no correlation between topography and microstructure has been found. Instead, the suppressed crystallization has been partially ascribed to a reduced growth flux, limited surface diffusion and increased incubation layer thickness, originating from the surface area enhancement when transiting from flat to nanostructured surfaces. Furthermore, fundamental plasma parameters have been reviewed in relation with surface topography. Strong topographies are not expected to affect the ion-to-growth flux ratio. However, the reduced ion flux (due to increasing surface area) further limited the already weak ion energy transfer to surface processes. Additionally, the atomic hydrogen flux, i.e. the driving force for microcrystalline growth, has been found to decrease by a factor of 10 when transiting from flat to nanostructured topography. This resulted in an almost 6-fold reduction of the hydrogen-to-growth flux ratio, a much stronger effect than the ion-to-growth flux ratio. Since previous studies regarding

  16. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    INSPIRE-00335524; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichhorn, T.; Lalwani, K.; Messineo, A.; Printz, M.; Ranjan, K.

    2015-04-23

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collec...

  17. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.

    Science.gov (United States)

    Lämmerhardt, Nico; Merzsch, Stephan; Ledig, Johannes; Bora, Achyut; Waag, Andreas; Tornow, Marc; Mischnick, Petra

    2013-07-02

    The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA

  18. Nanoshaving and Nanografting of Water Soluble Polymers on Glass and Silicon Dioxide Surfaces with Applications to DNA Localization

    Science.gov (United States)

    Davis, Brian; Conley, Hiram; Ochoa, Rosie; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Here we present a scanning probe lithography technique that allows for patterning of aqueous polymers on glass or silicon dioxide surfaces. The surfaces were functionalized by covalently bonding a silane monolayer with a known surface charge to either a glass slide or a silicon wafer. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer, passivating the functionalized surface. An Atomic Force Microscope (AFM) probe was used to remove a portion of the polymer layer, exposing the functional silane layer underneath. Employing this method we made chemically active submicron regions. These regions were backfilled with a fluorescent polymer and Lambda-DNA. Chemical differentiation was verified through tapping mode AFM and optical fluorescent microscopy. Lines with a pitch as small as 20nm were observed with AFM height and phase mode data.

  19. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    Science.gov (United States)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  20. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  1. Study of organic grafting of the silicon surface from 4-nitrobenzene diazonium tetrafluoroborate

    International Nuclear Information System (INIS)

    Ait El Hadj, F.; Amiar, A.; Cherkaoui, M.; Chazalviel, J.-N.; Ozanam, F.

    2012-01-01

    The hydrogenated silicon surface has outstanding electronic properties. However, its resistance to oxidation is insufficient. An alternative is the substitution of the Si-H bonds with Si-organic groups. This modification of the silicon surface by grafting of organic molecules was carried out by electrochemical reduction of 4-nitrobenzene diazonium tetrafluoroborate in an aqueous medium containing HF and H 2 SO 4 . The choice fell on this electrochemical reaction because it allows for fast grafting. The reduction of nitrobenzene diazonium is confirmed by the presence of a voltammetric peak around −0.1 V/SCE. The grafting was also characterized by in situ infrared spectroscopy (FTIR) which, via the detection of vibrations characteristic of chemical bonds, allows one to identify the chemical functions present. In addition, electrochemical impedance measurements allowed us to approach the interfacial mechanisms. It appears that the cathodic grafting leads to the formation of a polymeric layer, but the same grafting also occurs spontaneously within a few tens of seconds at open circuit potential, an expected phenomenon indeed in view of the reduction potential of 4-nitrobenzene diazonium.

  2. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    Science.gov (United States)

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  3. Irradiation effects of swift heavy ions on gallium arsenide, silicon and silicon diodes

    International Nuclear Information System (INIS)

    Bhoraskar, V.N.

    2001-01-01

    The irradiation effects of high energy lithium, boron, oxygen and silicon ions on crystalline silicon, gallium arsenide, porous silicon and silicon diodes were investigated. The ion energy and fluence were varied over the ranges 30 to 100 MeV and 10 11 to 10 14 ions/cm 2 respectively. Semiconductor samples were characterized with the x-ray fluorescence, photoluminescence, thermally stimulated exo-electron emission and optical reflectivity techniques. The life-time of minority carriers in crystalline silicon was measured with a pulsed electron beam and the lithium depth distribution in GaAs was measured with the neutron depth profiling technique. The diodes were characterized through electrical measurements. The results of optical reflectivity, life-time of minority carriers and photoluminescence show that swift heavy ions induce defects in the surface region of crystalline silicon. In the ion-irradiated GaAs, migration of silicon, oxygen and lithium atoms from the buried region towards the surface was observed, with orders of magnitude enhancement in the diffusion coefficients. Enhancement in the photoluminescence intensity was observed in the GaAs and porous silicon samples that, were irradiated with silicon ions. The trade-off between the turn-off time and the voltage, drop in diodes irradiated with different swift heavy ions was also studied. (author)

  4. Rare earth silicide nanowires on silicon surfaces

    International Nuclear Information System (INIS)

    Wanke, Martina

    2008-01-01

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti Γ point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi 2 -monolayer and the Dy 3 Si 5 -multilayer on the Si(111) surface are investigated in comparison to the known ErSi 2 /Si(111) and Er 3 Si 5 /Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the vector k parallel space is elliptical at the anti M points, while the hole pocket at the anti Γ point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas of the sample surface, which are oriented

  5. Communication: Photoinduced carbon dioxide binding with surface-functionalized silicon quantum dots

    Science.gov (United States)

    Douglas-Gallardo, Oscar A.; Sánchez, Cristián Gabriel; Vöhringer-Martinez, Esteban

    2018-04-01

    Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.

  6. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Flavel, Benjamin S., E-mail: ben.flavel@flinders.edu.a [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5001 (Australia); Garrett, David J.; Lehr, Joshua [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Private Bag 4800, Christchurch 8140 (New Zealand); Shapter, Joseph G. [School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5001 (Australia); Downard, Alison J., E-mail: alison.downard@canterbury.ac.n [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Private Bag 4800, Christchurch 8140 (New Zealand)

    2010-04-30

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH{sub 3}){sub 6}{sup +3/+2} couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10{sup -3} cm s{sup -1} at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  7. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    International Nuclear Information System (INIS)

    Flavel, Benjamin S.; Garrett, David J.; Lehr, Joshua; Shapter, Joseph G.; Downard, Alison J.

    2010-01-01

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH 3 ) 6 +3/+2 couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10 -3 cm s -1 at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  8. Engineering of silicon surfaces at the micro- and nanoscales for cell adhesion and migration control

    Directory of Open Access Journals (Sweden)

    Torres-Costa V

    2012-02-01

    Full Text Available Vicente Torres-Costa1, Gonzalo Martínez-Muñoz2, Vanessa Sánchez-Vaquero3, Álvaro Muñoz-Noval1, Laura González-Méndez3, Esther Punzón-Quijorna1,4, Darío Gallach-Pérez1, Miguel Manso-Silván1, Aurelio Climent-Font1,4, Josefa P García-Ruiz3, Raúl J Martín-Palma11Department of Applied Physics, 2Department of Computer Science, 3Department of Molecular Biology, 4Centre for Micro Analysis of Materials, Universidad Autónoma de Madrid, Madrid, SpainAbstract: The engineering of surface patterns is a powerful tool for analyzing cellular communication factors involved in the processes of adhesion, migration, and expansion, which can have a notable impact on therapeutic applications including tissue engineering. In this regard, the main objective of this research was to fabricate patterned and textured surfaces at micron- and nanoscale levels, respectively, with very different chemical and topographic characteristics to control cell–substrate interactions. For this task, one-dimensional (1-D and two-dimensional (2-D patterns combining silicon and nanostructured porous silicon were engineered by ion beam irradiation and subsequent electrochemical etch. The experimental results show that under the influence of chemical and morphological stimuli, human mesenchymal stem cells polarize and move directionally toward or away from the particular stimulus. Furthermore, a computational model was developed aiming at understanding cell behavior by reproducing the surface distribution and migration of human mesenchymal stem cells observed experimentally.Keywords: surface patterns, silicon, hMSCs, ion-beam patterning

  9. Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide

    International Nuclear Information System (INIS)

    Kukushkin, S A; Osipov, A V

    2017-01-01

    The paper focuses on the study of transformation of silicon crystal into silicon carbide crystal via substitution reaction with carbon monoxide gas. As an example, the Si(1 0 0) surface is considered. The cross section of the potential energy surface of the first stage of transformation along the reaction pathway is calculated by the method of nudged elastic bands. It is found that in addition to intermediate states associated with adsorption of CO and SiO molecules on the surface, there is also an intermediate state in which all the atoms are strongly bonded to each other. This intermediate state significantly reduces the activation barrier of transformation down to 2.6 eV. The single imaginary frequencies corresponding to the two transition states of this transformation are calculated, one of which is reactant-like, whereas the other is product-like. By methods of quantum chemistry of solids, the second stage of this transformation is described, namely, the transformation of precarbide silicon into silicon carbide. Energy reduction per one cell is calculated for this ‘collapse’ process, and bond breaking energy is also found. Hence, it is concluded that the smallest size of the collapsing islet is 30 nm. It is shown that the chemical bonds of the initial silicon crystal are coordinately replaced by the bonds between Si and C in silicon carbide, which leads to a high quality of epitaxy and a low concentration of misfit dislocations. (paper)

  10. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube

    Science.gov (United States)

    Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.

    2018-05-01

    Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.

  11. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  12. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite

    Science.gov (United States)

    Chiu, Hsien Tang; Sukachonmakul, Tanapon; Kuo, Ming Tai; Wang, Yu Hsiang; Wattanakul, Karnthidaporn

    2014-02-01

    Polysilazane (PSZ) and its polymer-derived amorphous silicon oxycarbide (SiOC) ceramic were coated on aluminum nitride (AlN) by using a dip-coating method to allow moisture-crosslinking of PSZ on AlN, followed by heat treatment at 700 °C in air to convert PSZ into SiOC on AlN. The results from FTIR, XPS and SEM indicated that the surface of AlN was successfully coated by PSZ and SiOC film. It was found that the introduction of PSZ and SiOC film help improve in the interfacial adhesion between the modified AlN (PSZ/AlN and SiOC/AlN) and silicone rubber lead to the increase in the thermal conductivity of the composites since the thermal boundary resistance at the filler-matrix interface was decreased. However, the introduction of SiOC as an intermediate layer between AlN and silicone rubber could help increase the thermal energy transport at the filler-matrix interface rather than using PSZ. This result was due to the decrease in the surface roughness and thickness of SiOC film after heat treatment at 700 °C in air. Thus, in the present work, a SiOC ceramic coating could provide a new surface modification for the improvement of the interfacial adhesion between the thermally conductive filler and the matrix in which can enhance the thermal conductivity of the composites.

  13. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  14. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck

    2016-12-01

    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  15. Gold Nanoparticles Assembly on Silicon and Gold Surfaces: Mechanism, Stability and Efficiency in Diclofenac Biosensing

    OpenAIRE

    Ben Haddada , Maroua; Hübner , Maria; Casale , Sandra; Knopp , Dietmar; Niessner , Reinhard; Salmain , Michele; Boujday , Souhir

    2016-01-01

    International audience; We investigated the assembly of Gold nanoparticles (AuNPs) on Gold and Silicon sensors with two final objectives: (i) understanding the factors governing the interaction and (ii) building up a nanostructured piezoelectric immunosensor for diclofenac, a small-sized pharmaceutical pollutant. Different surface chemistries were devised to achieve AuNPs assembly on planar substrates. These surface chemistries included amines to immobilize AuNPs via electrostatic interaction...

  16. Surface and interfacial chemistry of high-k dielectric and interconnect materials on silicon

    Science.gov (United States)

    Kirsch, Paul Daniel

    Surfaces and interfaces play a critical role in the manufacture and function of silicon based integrated circuits. It is therefore reasonable to study the chemistries at these surfaces and interfaces to improve existing processes and to develop new ones. Model barium strontium titanate high-k dielectric systems have been deposited on ultrathin silicon oxynitride in ultrahigh vacuum. The resulting nanostructures are characterized with secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS). An interfacial reaction between Ba and Sr atoms and SiOxNy was found to create silicates, BaSixOy or SrSi xOy. Inclusion of N in the interfacial oxide decreased silicate formation in both Ba and Sr systems. Furthermore, inclusion of N in the interfacial oxide decreased the penetration of Ba and Sr containing species, such as silicides and silicates. Sputter deposited HfO2 was studied on nitrided and unnitrided Si(100) surfaces. XPS and SIMS were used to verify the presence of interfacial HfSixOy and estimate its relative amount on both nitrided and unnitrided samples. More HfSixOy formed without the SiNx interfacial layer. These interfacial chemistry results are then used to explain the electrical measurements obtained from metal oxide semiconductor (MOS) capacitors. MOS capacitors with interfacial SiNx exhibit reduced leakage current and increased capacitance. Lastly, surface science techniques were used to develop a processing technique for reducing thin films of copper (II) and copper (I) oxide to copper. Deuterium atoms (D*) and methyl radicals (CH3*) were shown to reduce Cu 2+ and/or Cu1+ to Cu0 within 30 min at a surface temperature of 400 K under a flux of 1 x 1015 atoms/cm2s. Temperature programmed desorption experiments suggest that oxygen leaves the surface as D2O and CO2 for the D* and CH3* treated surfaces, respectively.

  17. Adsorbate-induced facetting reconstruction and self-organized domain patterning of vicinal Ag(111) surfaces; Adsorbatinduzierte richtungsabhaengige Facettierung und selbstorganisierte Domaenen-Musterbildung auf vizinalen Ag(111)-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Stefan

    2007-02-05

    This thesis investigates structural aspects of adsorbate-induced facetting of vicinal Ag(111) surfaces. It is mainly based on scanning tunneling microscope (STM) and low energy electron diffraction (LEED) experiments performed under UHV conditions. The planar dye-molecule perylene-3,4,9,10-tetracarboxilicacid-dianhydride (PTCDA) adsorbs preferentially at the step edges of the 8.5 Ag(111) vicinal surfaces used in the experiments. It causes a facetting reconstruction by the formation of (111) terraces and facets with a high step density. Moreover, two distinct preferential inclinations of facets were observed, which can only be explained by the selective influence of the adsorbate superstructure. In terms of thermodynamics, the facetting reconstruction can be described as an orientational phase separation, adapted to the constraints of planar surfaces. This concept is capable of explaining the local facetting phenomena. The formalism used predicts an important role of nucleation kinetics. This aspect is taken into account by introducing an additional phase of mobile molecules (2D molecular gas), which cannot be measured directly. Furthermore, strong arguments for the appearance of a critical island size for the PTCDA/ Ag(111) superstructure were found. This work presents structural information of all stable superstructures of PTCDA on vicinal Ag(111) surfaces. Altogether 16 such superstructures were found, 3 of which had been observed and published before. Density and commensurability were found to systematically depend on the step-structure. The two preferred inclinations of facets are related to two characteristic types of domain boundaries of the herringbone superstructure to the adjacent (111)-terrace. On the (111) terraces, small islands of metastable superstructures were found. Facets and (111) terraces form a regular grating-like domain pattern with a variable structural width of 5 to 75 nm. STM measurements show direct evidence for a long-range interaction

  18. General specifications for silicon semiconductors for use in radiation dosimetry

    International Nuclear Information System (INIS)

    Rikner, G.; Grusell, E.

    1987-01-01

    Silicon semiconductor detectors used in radiation dosimetry have different properties, just as e.g. ionisation chambers, affecting the interaction of radiation with matter in the vicinity of the sensitive volume of the detector, e.g. wall materials, and also the collection of the charges liberated in the detector by the radiation. The charge collection depends on impurities, lattice imperfections and other properties of the semiconductor crystal. In this paper the relevant parameters of a silicon semiconductor detector intended for dosimetry are reviewed. The influence of doping material, doping level, various effects of radiation damage, mechanical construction, detector size, statistical noise and connection to the electrometer are discussed. (author)

  19. Chemical functionalization of crystalline silicon surface with complexes of type (M3 (Dpa) 4X2) for the development of electronic devices

    International Nuclear Information System (INIS)

    Sanchez Zamora, Maria Alejandra

    2012-01-01

    New surfaces on crystalline silicon (100) diamines have been developed. The diamines 4-aminopyridine, 4-aminomethylpyridine and 1,12-dodecildiame, and self-assembled surfaces Si-diamine-metallic complexes, with cooper (II) acetate and trimetal Cu 3 (dpa) 4 CI 2 were studied. These surfaces are characterized with X-ray photoelectron spectroscopy (XPS), chemical force microscopy (CFM), by contact angle and cyclic voltammetry (CV). The XPS has suggested the formation of diamines monolayers with covalent binding to crystalline silicon, and modification of these surfaces, with metal complexes by coordination chemistry. The CFM has confirmed that surfaces are modified with diamines and cooper (II) acetate, and that were determined different chemical forces according to the change. The contact angle has been suggested that the functionalized surface with 4-aminomethylpyridine has had similar basicity to 1,12-dodecildiame, and more than 4-aminopyridine. This implies that the coordination with metallics complexes is benefited with 4-aminopyridine, which in turn is reflected with electrochemical data. Cyclic voltammetry analysis have showed that silicon surfaces with 4-aminomethylpyridine and 4-aminopyridine with cooper (II) acetate and trimetal have been electrochemically active. Thus, the surfaces could to have interesting applications in molecular electronics. (author) [es

  20. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  1. Use of hydroxypropylmethylcellulose 2% for removing adherent silicone oil from silicone intraocular lenses

    OpenAIRE

    Wong , S Chien; Ramkissoon , Yashin D; Lopez , Mauricio; Page , Kristopher; Parkin , Ivan P; Sullivan , Paul M

    2009-01-01

    Abstract Background / aims: To investigate the effect of hydroxypropylmethylcellulose (HPMC) on the physical interaction (contact angle) between silicone oil and a silicone intraocular lens (IOL). Methods: In vitro experiments were performed, to determine the effect of HPMC (0.5%, 1% or 2%), with or without an additional simple mechanical manoeuvre, on the contact angle of silicone oil at the surface of both silicone and acrylic (control) IOLs. A balanced salt solu...

  2. Ion beam figuring of silicon aspheres

    Science.gov (United States)

    Demmler, Marcel; Zeuner, Michael; Luca, Alfonz; Dunger, Thoralf; Rost, Dirk; Kiontke, Sven; Krüger, Marcus

    2011-03-01

    Silicon lenses are widely used for infrared applications. Especially for portable devices the size and weight of the optical system are very important factors. The use of aspherical silicon lenses instead of spherical silicon lenses results in a significant reduction of weight and size. The manufacture of silicon lenses is more challenging than the manufacture of standard glass lenses. Typically conventional methods like diamond turning, grinding and polishing are used. However, due to the high hardness of silicon, diamond turning is very difficult and requires a lot of experience. To achieve surfaces of a high quality a polishing step is mandatory within the manufacturing process. Nevertheless, the required surface form accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. To overcome these disadvantages a method called Ion Beam Figuring can be used to manufacture silicon lenses with high surface form accuracies. The general advantage of the Ion Beam Figuring technology is a contactless polishing process without any aging effects of the tool. Due to this an excellent stability of the removal rate without any mechanical surface damage is achieved. The related physical process - called sputtering - can be applied to any material and is therefore also applicable to materials of high hardness like Silicon (SiC, WC). The process is realized through the commercially available ion beam figuring system IonScan 3D. During the process, the substrate is moved in front of a focused broad ion beam. The local milling rate is controlled via a modulated velocity profile, which is calculated specifically for each surface topology in order to mill the material at the associated positions to the target geometry. The authors will present aspherical silicon lenses with very high surface form accuracies compared to conventionally manufactured lenses.

  3. Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, Mohamed Ben; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-06-15

    The effects of antireflection (ARC) and surface passivation films on optoelectronic features of multicrystalline silicon (mc-Si) were investigated in order to perform high efficiency solar cells. A double layer consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride (SiN{sub x}) on porous silicon (PS) was achieved on mc-Si surfaces. It was found that this treatment decreases the total surface reflectivity from about 25% to around 6% in the 450-1100 nm wavelength range. As a result, the effective minority carrier diffusion length, estimated from the Laser-beam-induced current (LBIC) method, was found to increase from 312 {mu}m for PS-treated cells to about 798 {mu}m for SiN{sub x}/PS-treated ones. The deposition of SiN{sub x} was found to impressively enhance the minority carrier diffusion length probably due to hydrogen passivation of surface, grain boundaries and bulk defects. Fourier Transform Infrared Spectroscopy (FTIR) shows that the vibration modes of the highly suitable passivating Si-H bonds exhibit frequency shifts toward higher wavenumber, depending on the x ratio of the introduced N atoms neighbors. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Functionalization of silicon nanowire surfaces with metal-organic frameworks

    KAUST Repository

    Liu, Nian

    2011-12-28

    Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  5. Annealing temperature dependence of photoluminescent characteristics of silicon nanocrystals embedded in silicon-rich silicon nitride films grown by PECVD

    International Nuclear Information System (INIS)

    Chao, D.S.; Liang, J.H.

    2013-01-01

    Recently, light emission from silicon nanostructures has gained great interest due to its promising potential of realizing silicon-based optoelectronic applications. In this study, luminescent silicon nanocrystals (Si–NCs) were in situ synthesized in silicon-rich silicon nitride (SRSN) films grown by plasma-enhanced chemical vapor deposition (PECVD). SRSN films with various excess silicon contents were deposited by adjusting SiH 4 flow rate to 100 and 200 sccm and keeping NH 3 one at 40 sccm, and followed by furnace annealing (FA) treatments at 600, 850 and 1100 °C for 1 h. The effects of excess silicon content and post-annealing temperature on optical properties of Si–NCs were investigated by photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The origins of two groups of PL peaks found in this study can be attributed to defect-related interface states and quantum confinement effects (QCE). Defect-related interface states lead to the photon energy levels almost kept constant at about 3.4 eV, while QCE results in visible and tunable PL emission in the spectral range of yellow and blue light which depends on excess silicon content and post-annealing temperature. In addition, PL intensity was also demonstrated to be highly correlative to the excess silicon content and post-annealing temperature due to its corresponding effects on size, density, crystallinity, and surface passivation of Si–NCs. Considering the trade-off between surface passivation and structural properties of Si–NCs, an optimal post-annealing temperature of 600 °C was suggested to maximize the PL intensity of the SRSN films

  6. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  7. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    International Nuclear Information System (INIS)

    Akhter, Perveen; Huang, Mengbing; Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-01-01

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics

  8. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  9. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...... hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics....

  10. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  11. Correlation between porosity and roughness as obtained by porous silicon nano surface scattering spectrum

    Directory of Open Access Journals (Sweden)

    R Dariani

    2015-01-01

    Full Text Available Reflection spectra of four porous silicon samples under etching times of 2, 6, 10, and 14 min with current density of 10 mA/cm2 were measured. Reflection spectra behaviors for all samples were the same, but their intensities were different and decreased by increasing the etching time. The similar behavior of reflection spectra could be attributed to the electrolyte solution concentration which was the same during fabrication and reduction of reflection spectrum due to the reduction of particle size. Also, the region for the lowest intensity at reflection spectra was related to porous silicon energy gap which shows blue shift for porous silicon energy gap. Roughness study of porous silicon samples was done by scattering spectra measurements, Rayleigh criteria, and Davis-Bennet equation. Scattering spectra of the samples were measured at 10, 15, and 20 degrees by using spectrophotometer. Reflected light intensity reduced by increasing the scattering angle except for the normal scattering which agreed with Rayleigh criteria. Also, our results showed that by increasing the etching time, porosity (sizes and numbers of pores increases and therefore light absorption increases and scattering from surface reduces. But since scattering varies with the observation scale (wavelength, the relationship between scattering and porosity differs by varying the observation scale (wavelength

  12. Biofunctionalization on Alkylated Silicon Substrate Surfaces via “Click” Chemistry

    OpenAIRE

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J.; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-01-01

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the non-oxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3...

  13. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, David, E-mail: caballero@unistra.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Martinez, Elena [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Bausells, Joan [Centre Nacional de Microelectronica (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra (Spain); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Universite Claude Bernard - Lyon 1, LSA - UMR 5180, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Samitier, Josep [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. Black-Right-Pointing-Pointer Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. Black-Right-Pointing-Pointer Silicon nitride offers multiple advantages compared to other common materials. Black-Right-Pointing-Pointer The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si{sub 3}N{sub 4}) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si{sub 3}N{sub 4}-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO{sub 2}/Si{sub 3}N{sub 4} structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10{sup -13}-10{sup -7} M were detected, showing a sensitivity of 0.128 {Omega} {mu}M{sup -1} and a limit of detection of 10{sup -14} M. The specificity of the sensor was also addressed by studying the

  14. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    International Nuclear Information System (INIS)

    Caballero, David; Martinez, Elena; Bausells, Joan; Errachid, Abdelhamid; Samitier, Josep

    2012-01-01

    Highlights: ► An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. ► Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. ► Silicon nitride offers multiple advantages compared to other common materials. ► The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3 N 4 ) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3 N 4 -based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2 /Si 3 N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 −13 –10 −7 M were detected, showing a sensitivity of 0.128 Ω μM −1 and a limit of detection of 10 −14 M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins

  15. Mount Zirkel Wilderness and vicinity, Colorado

    International Nuclear Information System (INIS)

    Snyder, G.L.; Patten, L.L.

    1984-01-01

    Several areas of metallic and nonmetallic mineralization have been identified from surface occurrences within the Mount Zirkel Wilderness and vicinity, Colorado. Three areas of probable copper-lead-zinc-silver-gold resource potential, two areas of probable chrome-platinum resource potential, four areas of probable uranium-thorium resource potential, two areas of probable molybdenum resource potential, and one area of probable fluorspar potential were identified by studies in 1965-1973 by the USGS and USBM. No potential for fossil fuel or geothermal resources was identified

  16. Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon

    Science.gov (United States)

    Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey

    2018-04-01

    Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the

  17. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Nathan R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carroll, Gerard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Limpens, Rens [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  18. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands.

    Science.gov (United States)

    Carroll, Gerard M; Limpens, Rens; Neale, Nathan R

    2018-05-09

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  19. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  20. Optoelectronic enhancement of monocrystalline silicon solar cells by porous silicon-assisted mechanical grooving

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, Mohamed; Mohamed, Seifeddine Belhadj; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-03-15

    One of the most important factors influencing silicon solar cells performances is the front side reflectivity. Consequently, new methods for efficient reduction of this reflectivity are searched. This has always been done by creating a rough surface that enables incident light of being absorbed within the solar cell. Combination of texturization-porous silicon surface treatment was found to be an attractive technical solution for lowering the reflectivity of monocrystalline silicon (c-Si). The texturization of the monocrystalline silicon wafer was carried out by means of mechanical grooving. A specific etching procedure was then applied to form a thin porous silicon layer enabling to remove mechanical damages. This simple and low cost method reduces the total reflectivity from 29% to 7% in the 300 - 950 nm wavelength range and enhances the diffusion length of the minority carriers from 100 {mu}m to 790 {mu}m (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Effect of potential steps on porous silicon formation

    International Nuclear Information System (INIS)

    Cheng Xuan; Feng Zude; Luo Guangfeng

    2003-01-01

    Porous silicon microstructures were fabricated by applying potential steps through which both anodic and cathodic potentials were periodically applied to silicon wafers. The electrochemical behaviors of porous silicon layers were examined by performing polarization measurements, followed by analyzing the open-circuit potential (E ocp ) and the reaction rate in terms of corrosion current density (j corr ). The surface morphologies and surface products of porous silicon were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It was found that the values of E ocp and j corr varied more significantly and irregularly during different polarization stages when the potentials were continuously applied to the wafer surface, while virtually unchanged after 2 min of periodic potential application. In addition, slower reaction rates were observed with applying potential steps, as indicated by smaller values of j corr . The enhancement on refreshment of silicon surfaces by periodic potential polarization significantly accelerated the growth of porous silicon. The microstructures became more uniformed and better defined due to the improved passivating nature of wafer surfaces

  2. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.; Ruffo, Riccardo; Hong, Seung Sae; Cui, Yi

    2009-01-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte

  3. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    Science.gov (United States)

    Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang

    2011-05-01

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.

  4. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Ou Weiying; Zhao Lei; Diao Hongwei; Zhang Jun; Wang Wenjing, E-mail: wjwangwj@126.com [Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-05-15

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells. (semiconductor technology)

  5. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    Peltola, Timo Hannu Tapani

    2014-01-01

    A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching to measurements of silicon strip detectors. However, the model does not provide the expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's...

  6. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  7. Some radiation measurements in the vicinity of TV and VDU screens

    International Nuclear Information System (INIS)

    Tuyn, J.W.N.; Roger, P.

    1985-01-01

    The dose rate due to X-rays in the vicinity of TV and VDU screens was determined using a xenon-filled proportional counter. The results confirm that the X-ray dose rate around such devices is extremely low. Of greater impact for the exposure of the population was found to be the influence of the electrostatic field in the vicinity of a TV or VDU screen on the local concentration of radon daughters. Such measurements were performed using air sampling at various distances from the screens on a filter-surface barrier detector unit to identify the radon daughters. The radon concentration in the room was simultaneously measured using TLD in a device based on electrostatic precipitation. It is shown that the presence of an electrostatic field during operation of a TV or VDU screen reduces the radon daughter concentration in its vicinity. (orig./HP)

  8. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    Science.gov (United States)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  9. Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H

    International Nuclear Information System (INIS)

    Focsa, A.; Slaoui, A.; Charifi, H.; Stoquert, J.P.; Roques, S.

    2009-01-01

    Surface passivation of bare silicon or emitter region is of great importance towards high efficiency solar cells. Nowadays, this is usually accomplished by depositing an hydrogenated amorphous silicon nitride (a-SiNx:H) layer on n + p structures that serves also as an excellent antireflection layer. On the other hand, surface passivation of p-type silicon is better assured by an hydrogenated amorphous silicon (a-Si:H) layer but suffers from optical properties. In this paper, we reported the surface passivation of p-type and n-type silicon wafers by using an a-Si:H/SiNx:H double layer formed at low temperature (50-400 deg. C) with ECR-PECVD technique. We first investigated the optical properties (refraction index, reflectance, and absorbance) and structural properties by FTIR (bonds Si-H, N-H) of the deposited films. The hydrogen content in the layers was determined by elastic recoil detection analysis (ERDA). The passivation effect was monitored by measuring the minority carrier effective lifetime vs. different parameters such as deposition temperature and amorphous silicon layer thickness. We have found that a 10-15 nm a-Si film with an 86 nm thick SiN layer provides an optimum of the minority carriers' lifetime. It increases from an initial value of about 50-70 μs for a-Si:H to about 760 and 800 μs for a-Si:H/SiNx:H on Cz-pSi and FZ-nSi, respectively, at an injection level 2 x 10 15 cm -3 . The effective surface recombination velocity, S eff , for passivated double layer on n-type FZ Si reached 11 cm/s and for FZ-pSi-14 cm/s, and for Cz-pSi-16-20 cm/s. Effect of hydrogen in the passivation process is discussed.

  10. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  11. Fabrication and Modification of Nanoporous Silicon Particles

    Science.gov (United States)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion

  12. Comparative study between body and surface coils in magnetic resonance mammography of silicone prosthesis

    International Nuclear Information System (INIS)

    Scaranelo, Anabel Medeiros

    2001-01-01

    Magnetic resonance imaging scans using predefined parameters were performed in patients with silicone breast implants. The same group of patients was submitted to magnetic resonance imaging scans using surface breast coils and body coils, and the results were compared. A total of 43 single-lumen silicone-gel breast implants in 24 patients were examined. The signal-to-noise ratio was greater for the breast coil than for the body coil. Radial folds were identified with equal resolution by both in almost 82% of the cases on the right side and 95% on the left side. In about 5% of the cases the folds were seen exclusively when the breast coil used. The linguine sign was almost equally with both methods. In just one case the linguine sign was observed only by using the breast coil. Identification of building or irregularity of contours were concordant using both techniques. We concluded that although magnetic resonance imaging quality is better using a dedicated coil, silicone breast implants can be assessed with the same diagnostic accuracy using a body coil. (author)

  13. Uniform-sized silicone oil microemulsions: preparation, investigation of stability and deposition on hair surface.

    Science.gov (United States)

    Nazir, Habiba; Lv, Piping; Wang, Lianyan; Lian, Guoping; Zhu, Shiping; Ma, Guanghui

    2011-12-01

    Emulsions are commonly used in foods, pharmaceuticals and home-personal-care products. For emulsion based products, it is highly desirable to control the droplet size distribution to improve storage stability, appearance and in-use property. We report preparation of uniform-sized silicone oil microemulsions with different droplets diameters (1.4-40.0 μm) using SPG membrane emulsification technique. These microemulsions were then added into model shampoos and conditioners to investigate the effects of size, uniformity, and storage stability on silicone oil deposition on hair surface. We observed much improved storage stability of uniform-sized microemulsions when the droplets diameter was ≤22.7 μm. The uniform-sized microemulsion of 40.0 μm was less stable but still more stable than non-uniform sized microemulsions prepared by conventional homogenizer. The results clearly indicated that uniform-sized droplets enhanced the deposition of silicone oil on hair and deposition increased with decreasing droplet size. Hair switches washed with small uniform-sized droplets had lower values of coefficient of friction compared with those washed with larger uniform and non-uniform droplets. Moreover the addition of alginate thickener in the shampoos and conditioners further enhanced the deposition of silicone oil on hair. The good correlation between silicone oil droplets stability, deposition on hair and resultant friction of hair support that droplet size and uniformity are important factors for controlling the stability and deposition property of emulsion based products such as shampoo and conditioner. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.

    2009-04-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte interphase (SEI) formed on silicon due to the reduction of the electrolyte. Given that a good, passivating SEI layer plays such a crucial role in graphite anodes, we have characterized the surface composition and morphology of the SEI formed on the SiNWs using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). We have found that the SEI is composed of reduction products similar to that found on graphite electrodes, with Li2CO3 as an important component. Combined with electrochemical impedance spectroscopy, the results were used to determine the optimal cycling parameters for good cycling. The role of the native SiO2 as well as the effect of the surface area of the SiNWs on reactivity with the electrolyte were also addressed. © 2009 Elsevier B.V. All rights reserved.

  15. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  16. Effect of a cracked surface of porous silicon on the behaviour of the acoustic signature

    Directory of Open Access Journals (Sweden)

    Bouhedja Samia

    2014-06-01

    Full Text Available We study in this work the effect of a crack, located on the porous silicon, Psi, surface on the propagation of Rayleigh waves. We simulate and analyse the acoustic signature V(z according porosity at 142 MHz, to study the microstructure of PSi around the crack.

  17. Influence of redox condition in iron, silicon and hydrogen contents of leached glass surface

    International Nuclear Information System (INIS)

    Manara, A.; Lanza, F.; Della Mea, G.; Rossi, C.; Salvagno, G.

    1984-01-01

    Surface analysis has been conducted on samples leached in a Sochlet apparatus at 100 0 C in the presence and in the absence of air. The XPS technique was applied to analyze the content of iron and silicon while the nuclear reaction method was utilized to analyze the content of hydrogen. Samples leached in argon atmosphere have shown a smaller content of iron and silicon with respect to the samples leached in air atmosphere. The H concentration has shown the same behavior. The results are discussed in terms of possible formation of iron compounds in the different redox condition and of their different stabilities and in terms of their efficiency in reducing exchange between Na + and H + ions. 11 references, 3 figures, 1 table

  18. Bovine serum albumin adsorption on functionalized porous silicon surfaces

    Science.gov (United States)

    Tay, Li-Lin; Rowell, Nelson L.; Lockwood, David J.; Boukherroub, Rabah

    2004-10-01

    The large surface area within porous Si (pSi) and its strong room temperature photoluminescence (PL) make it an ideal host for biological sensors. In particular, the development of pSi-based optical sensors for DNA, enzyme and other biochemical molecules have become of great interest. Here, we demonstrate that the in-situ monitoring of the pSi PL behaviour can be used as a positive identification of bovine serum albumin (BSA) protein adsorption inside the porous matrix. Electrochemically prepared pSi films were first functionalized with undecylenic acid to produce an organic monolayer covalently attached to the porous silicon surfaces. The acid terminal group also provided favourable BSA binding sites on the pSi matrix sidewalls. In-situ PL spectra showed a gradual red shift (up to 12 meV) in the PL peak energy due to the protein incorporation into the porous matrix. The PL then exhibited a continuous blue shift after saturation of the protein molecules in the pores. This blue shift of the PL peak frequency and a steady increase in the PL intensity is evidence of surface oxidation. Comparing the specular reflectance obtained by Fourier transform infrared spectroscopy (FTIR) before and after BSA incubation confirmed the adsorption of protein in the pSi matrix.

  19. High-temperature morphology of stepped gold surfaces

    International Nuclear Information System (INIS)

    Bilalbegovic, G.; Tosatti, E.; Ercolessi, F.

    1992-04-01

    Molecular dynamics simulations with a classical many-body potential are used to study the high-temperature stability of stepped non-melting metal surfaces. We have studied in particular the Au(111) vicinal surfaces in the (M+1, M-1, M) family and the Au(100) vicinals in the (M, 1, 1) family. Some vicinal orientations close to the non-melting Au(111) surface become unstable close to the bulk melting temperature and facet into a mixture of crystalline (111) regions and localized surface-melted regions. On the contrary, we do not find high-temperature faceting for vicinals close to Au(100), also a non-melting surface. These (100) vicinal surfaces gradually disorder with disappearance of individual steps well below the bulk melting temperature. We have also studied the high-temperature stability of ledges formed by pairs of monoatomic steps of opposite sign on the Au(111) surface. It is found that these ledges attract each other, so that several of them merge into one larger ledge, whose edge steps then act as a nucleation site for surface melting. (author). 43 refs, 8 figs

  20. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    Science.gov (United States)

    Schmitt, M; Groß, K; Grub, J; Heib, F

    2015-06-01

    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration

  1. Study of porous silicon morphologies for electron transport

    International Nuclear Information System (INIS)

    Pang, Y.; Demroff, H.P.; Elliott, T.S.; Lee, B.; Lu, J.; Madduri, V.B.; Mazumdar, T.K.; McIntyre, P.M.; Smith, D.D.; Trost, H.J.

    1993-01-01

    Field emitter devices are being developed for the gigatron, a high-efficiency, high frequency and high power microwave source. One approach being investigated is porous silicon, where a dense matrix of nanoscopic pores are galvanically etched into a silicon surface. In the present paper pore morphologies were used to characterize these materials. Using of Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images of both N-type and P-type porous layers, it is found that pores propagate along the crystallographic direction, perpendicular to the surface of (100) silicon. Distinct morphologies were observed systematically near the surface, in the main bulk and near the bottom of N-type (100) silicon lift-off samples. It is seen that the pores are not cylindrical but exhibit more or less approximately square cross sections. X-ray diffraction spectra and electron diffraction patterns verified that bulk porous silicon is still a single crystal. In addition, a Scanning Tunnelling Microscope (STM) and an Atomic Force Microscope (AFM) were successfully applied to image the 40 angstrom gold film structure which was coated upon a cooled porous silicon layer. By associating the morphology study with the measured emitting current density of the Oxidized Porous Silicon Field Emission Triode (OPSFET), techniques for the surface treatment of porous silicon will be optimized

  2. On the growth of native oxides on hydrogen-terminated silicon surfaces in dark and under illumination with light

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Zinine, A.; Bankras, R.G.; Wormeester, Herbert; Poelsema, Bene; Schmitz, Jurriaan

    2006-01-01

    After a cleaning procedure, a silicon surface can be terminated by Si-OH groups which results in a high chemical activity. As it is accepted, after removing the wet-chemically grown oxide layer using an HF solution, the surface becomes terminated with Si-H groups. This results in a chemically stable

  3. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  4. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  5. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  6. Black Silicon formation using dry etching for solar cells applications

    International Nuclear Information System (INIS)

    Murias, D.; Reyes-Betanzo, C.; Moreno, M.; Torres, A.; Itzmoyotl, A.; Ambrosio, R.; Soriano, M.; Lucas, J.; Cabarrocas, P. Roca i

    2012-01-01

    A study on the formation of Black Silicon on crystalline silicon surface using SF 6 /O 2 and SF 6 /O 2 /CH 4 based plasmas in a reactive ion etching (RIE) system is presented. The effect of the RF power, chamber pressure, process time, gas flow rates, and gas mixtures on the texture of silicon surface has been analyzed. Completely Black Silicon surfaces containing pyramid like structures have been obtained, using an optimized mask-free plasma process. Moreover, the Black Silicon surfaces have demonstrated average values of 1% and 4% for specular and diffuse reflectance respectively, feature that is suitable for the fabrication of low cost solar cells.

  7. Silicon Micromachined Microlens Array for THz Antennas

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  8. Phosphorus-doped Amorphous Silicon Nitride Films Applied to Crystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Feinäugle, Matthias

    2008-01-01

    The Photovoltaics Group at the Universitat Politècnica de Catalunya is investigating silicon carbide (SiC) for the electronic passivation of the surface of crystalline silicon solar cells. The doping of SiC passivation layers with phosphorus resulted in a clear improvement of the minority carrier

  9. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  10. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment.

    Science.gov (United States)

    Kaur, Harsimran; Datta, Kusum

    2015-01-01

    To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA) were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P) and rest 80 to heat-cured resilient liner (Molloplast B). Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm) in the space provided by a spacer of 3 mm, thermocycled (5-55°C) for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student's t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B) increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  11. Numerical modelling of surface waves generated by low frequency electromagnetic field for silicon refinement process

    Science.gov (United States)

    Geža, V.; Venčels, J.; Zāģeris, Ģ.; Pavlovs, S.

    2018-05-01

    One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus, therefore, approach under development will address this problem. An approach of creating surface waves on silicon melt’s surface is proposed in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which include coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.

  12. Electrochemical properties of ion implanted silicon

    International Nuclear Information System (INIS)

    Pham minh Tan.

    1979-11-01

    The electrochemical behaviour of ion implanted silicon in contact with hydrofluoric acid solution was investigated. It was shown that the implanted layer on silicon changes profoundly its electrochemical properties (photopotential, interface impedance, rest potential, corrosion, current-potential behaviour, anodic dissolution of silicon, redox reaction). These changes depend strongly on the implantation parameters such as ion dose, ion energy, thermal treatment and ion mass and are weakly dependent on the chemical nature of the implantation ion. The experimental results were evaluated and interpreted in terms of the semiconductor electrochemical concepts taking into account the interaction of energetic ions with the solid surface. The observed effects are thus attributed to the implantation induced damage of silicon lattice and can be used for profiling of the implanted layer and the electrochemical treatment of the silicon surface. (author)

  13. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces

    International Nuclear Information System (INIS)

    Nowak, S.H.; Banaś, D.; Błchucki, W.; Cao, W.; Dousse, J.-Cl.; Hönicke, P.; Hoszowska, J.; Jabłoński, Ł.; Kayser, Y.; Kubala-Kukuś, A.; Pajek, M.; Reinhardt, F.; Savu, A.V.; Szlachetko, J.

    2014-01-01

    Various 3-dimensional nano-scaled periodic structures with different configurations and periods deposited on the surface of silicon and silica substrates were investigated by means of the grazing incidence and grazing emission X-ray fluorescence techniques. Apart from the characteristics which are typical for particle- and layer-like samples, the measured angular intensity profiles show additional periodicity-related features. The latter could be explained by a novel theoretical approach based on simple geometrical optics (GO) considerations. The new GO-based calculations were found to yield results in good agreement with experiment, also in cases where other theoretical approaches are not valid, e.g., periodic particle distributions with an increased surface coverage

  14. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template.

    Science.gov (United States)

    Aizawa, Masato; Buriak, Jillian M

    2006-05-03

    Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.

  15. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Man [Division of Pediatric Surgery, Department of Surgery, Taichung Veterans General Hospital, 160, Sec. 3, Taichung Port Rd., Taichung 40705, Taiwan, ROC (China); Department of Medicine, National Yang-Ming University, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC (China); Shiao, Chiao-Ju [Department of Materials Science and Engineering, Feng Chia University, 100, Wen-Hwa Rd., Taichung 40724, Taiwan, ROC (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, 666 Buzih Rd., Beitun District, Taichung 40601, Taiwan, ROC (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, 100, Wen-Hwa Rd., Taichung 40724, Taiwan, ROC (China)

    2013-12-31

    In this study, a thorough investigation of parylene coatings was conducted, as follows: microstructure (i.e., X-ray diffractometer (XRD) and cold field emission scanning electron microscope (FESEM)), mechanical property (i.e., pencil hardness and cross-cut adhesion test), surface property (i.e., water contact angle measurement, IR, and X-ray photoelectron spectroscopy (XPS)), and biocompatibility tests (i.e., fibroblast cell culture, platelet adhesion, and animal studies). The results revealed that parylene, a crystalline and brittle coating, exhibited satisfactory film adhesion and relative hydrophobicity, thereby contributing to its effective barrier properties. Fibroblast cell culturing on the parylene-deposited specimen demonstrated improved cell proliferation and equivalent to or superior blood compatibility than that of the medical-grade silicone (currently used clinically). In the animal study, parylene coatings exhibited similar subcutaneous inflammatory reactions compared with the medical-grade silicone. Both in vitro and in vivo tests demonstrated the satisfactory biocompatibility of parylene coatings. - Highlights: • A complete investigation to identify the characteristics of parylene coatings on general-purpose silicones. • Microstructures, surface properties and mechanical properties of parylene coatings were examined. • In vitro (Cell culture, platelet adhesion) tests and animal studies revealed satisfactory biocompatibility. • An alternative of medical-grade silicones is expected to be obtained.

  16. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications

    International Nuclear Information System (INIS)

    Chou, Chia-Man; Shiao, Chiao-Ju; Chung, Chi-Jen; He, Ju-Liang

    2013-01-01

    In this study, a thorough investigation of parylene coatings was conducted, as follows: microstructure (i.e., X-ray diffractometer (XRD) and cold field emission scanning electron microscope (FESEM)), mechanical property (i.e., pencil hardness and cross-cut adhesion test), surface property (i.e., water contact angle measurement, IR, and X-ray photoelectron spectroscopy (XPS)), and biocompatibility tests (i.e., fibroblast cell culture, platelet adhesion, and animal studies). The results revealed that parylene, a crystalline and brittle coating, exhibited satisfactory film adhesion and relative hydrophobicity, thereby contributing to its effective barrier properties. Fibroblast cell culturing on the parylene-deposited specimen demonstrated improved cell proliferation and equivalent to or superior blood compatibility than that of the medical-grade silicone (currently used clinically). In the animal study, parylene coatings exhibited similar subcutaneous inflammatory reactions compared with the medical-grade silicone. Both in vitro and in vivo tests demonstrated the satisfactory biocompatibility of parylene coatings. - Highlights: • A complete investigation to identify the characteristics of parylene coatings on general-purpose silicones. • Microstructures, surface properties and mechanical properties of parylene coatings were examined. • In vitro (Cell culture, platelet adhesion) tests and animal studies revealed satisfactory biocompatibility. • An alternative of medical-grade silicones is expected to be obtained

  17. Influence of surface wettability on cathode electroluminescence of porous silicon

    International Nuclear Information System (INIS)

    Goryachev, D.N.; Sreseli, O.M.; Belyakov, L.V.

    1997-01-01

    Influence of porous silicon wettability on efficiency of its cathode electroluminescence in electrolytes was investigated. It was revealed that increase of porous silicon wettability by electrolyte improved contact with a sublayer and provided generation of sufficient quantity of charge carriers. Diffusion - ionic, not electronic mechanism of charge transfer to the centers of micro crystallite electroluminescence is observed in porous silicon - electrolyte systems

  18. Enhanced photoluminescence from porous silicon by hydrogen-plasma etching

    International Nuclear Information System (INIS)

    Wang, Q.; Gu, C.Z.; Li, J.J.; Wang, Z.L.; Shi, C.Y.; Xu, P.; Zhu, K.; Liu, Y.L.

    2005-01-01

    Porous silicon (PS) was etched by hydrogen plasma. On the surface a large number of silicon nanocone arrays and nanocrystallites were formed. It is found that the photoluminescence of the H-etched porous silicon is highly enhanced. Correspondingly, three emission centers including red, green, and blue emissions are shown to contribute to the enhanced photoluminescence of the H-etched PS, which originate from the recombination of trapped electrons with free holes due to Si=O bonding at the surface of the silicon nanocrystallites, the quantum size confinement effect, and oxygen vacancy in the surface SiO 2 layer, respectively. In particular, the increase of SiO x (x<2) formed on the surface of the H-etched porous silicon plays a very important role in enhancing the photoluminescence properties

  19. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system /development of technology to manufacture solar cells/development of technology to manufacture thin film solar cells (development of technology to manufacture materials and substrates (development of technology to manufacture silicon crystal based high-quality materials and substrates)); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchi seizo gijutsu kaihatsu, usumaku taiyo denchi seizo gijutsu kaihatsu, zairyo kiban seizo gijutsu kaihatsu (silicon kesshokei kohinshitsu zairyo kiban no seizo gujutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to develop thin film solar cells capable of mass production with high photo-stability and at low cost. Thus, the objective of the present research is to analyze the growth process of micro crystal silicon based thin films, the crystal being a high quality silicon crystal based material, and develop technology to manufacture high-quality micro crystal silicon thin films based on the findings therefrom. It was found that, when silicon source is available in cathode, pure hydrogen plasma forms micro crystal silicon films by using the plasma as a result of the chemical transportation effect from the silicon source. It was revealed that the crystal formation due to hydrogen plasma exposure is performed substantially by the crystals forming the films due to the chemical transportation effect, rather than crystallization in the vicinity of the surface. The crystal formation under this experiment was concluded that the formation takes place during film growth accompanied by diffusion of film forming precursors on the surface on which the film grows. According to the result obtained so far, the most important issue in the future is particularly the control of crystal growing azimuth by reducing the initially formed amorphous layer by controlling the stress in the initial phase for film formation, and by controlling the film forming precursors. (NEDO)

  20. Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells

    Science.gov (United States)

    Ben Rabha, M.; Hajji, M.; Belhadj Mohamed, S.; Hajjaji, A.; Gaidi, M.; Ezzaouia, H.; Bessais, B.

    2012-02-01

    In this paper, we study the optical, optoelectronic and photoluminescence properties of stain-etched porous silicon nanostructures obtained with different etching times. Special attention is given to the use of the stain-etched PS as an antireflection coating as well as for surface passivating capabilities. The surface morphology has been analyzed by scanning electron microscopy. The evolution of the Si-O and Si-H absorption bands was analyzed by Fourier transform infrared spectrometry before and after PS treatment. Results show that stain etching of the silicon surface drops the total reflectivity to about 7% in the 400-1100 nm wavelength range and the minority carrier lifetime enhances to about 48 μs.

  1. Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface

    International Nuclear Information System (INIS)

    Zafar, Sufi; D'Emic, Christopher; Afzali, Ali; Fletcher, Benjamin; Zhu, Y; Ning, Tak

    2011-01-01

    Silicon nanowire field effect transistor sensors with SiO 2 /HfO 2 as the gate dielectric sensing surface are fabricated using a top down approach. These sensors are optimized for pH sensing with two key characteristics. First, the pH sensitivity is shown to be independent of buffer concentration. Second, the observed pH sensitivity is enhanced and is equal to the Nernst maximum sensitivity limit of 59 mV/pH with a corresponding subthreshold drain current change of ∼ 650%/pH. These two enhanced pH sensing characteristics are attributed to the use of HfO 2 as the sensing surface and an optimized fabrication process compatible with silicon processing technology.

  2. Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface.

    Science.gov (United States)

    Zafar, Sufi; D'Emic, Christopher; Afzali, Ali; Fletcher, Benjamin; Zhu, Y; Ning, Tak

    2011-10-07

    Silicon nanowire field effect transistor sensors with SiO(2)/HfO(2) as the gate dielectric sensing surface are fabricated using a top down approach. These sensors are optimized for pH sensing with two key characteristics. First, the pH sensitivity is shown to be independent of buffer concentration. Second, the observed pH sensitivity is enhanced and is equal to the Nernst maximum sensitivity limit of 59 mV/pH with a corresponding subthreshold drain current change of ∼ 650%/pH. These two enhanced pH sensing characteristics are attributed to the use of HfO(2) as the sensing surface and an optimized fabrication process compatible with silicon processing technology.

  3. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  4. Surface Passivation and Antireflection Behavior of ALD on n-Type Silicon for Solar Cells

    Directory of Open Access Journals (Sweden)

    Ing-Song Yu

    2013-01-01

    Full Text Available Atomic layer deposition, a method of excellent step coverage and conformal deposition, was used to deposit TiO2 thin films for the surface passivation and antireflection coating of silicon solar cells. TiO2 thin films deposited at different temperatures (200°C, 300°C, 400°C, and 500°C on FZ n-type silicon wafers are in the thickness of 66.4 nm ± 1.1 nm and in the form of self-limiting growth. For the properties of surface passivation, Si surface is effectively passivated by the 200°C deposition TiO2 thin film. Its effective minority carrier lifetime, measured by the photoconductance decay method, is improved 133% at the injection level of  cm−3. Depending on different deposition parameters and annealing processes, we can control the crystallinity of TiO2 and find low-temperature TiO2 phase (anatase better passivation performance than the high-temperature one (rutile, which is consistent with the results of work function measured by Kelvin probe. In addition, TiO2 thin films on polished Si wafer serve as good ARC layers with refractive index between 2.13 and 2.44 at 632.8 nm. Weighted average reflectance at AM1.5G reduces more than half after the deposition of TiO2. Finally, surface passivation and antireflection properties of TiO2 are stable after the cofire process of conventional crystalline Si solar cells.

  5. Process of preparing tritiated porous silicon

    Science.gov (United States)

    Tam, Shiu-Wing

    1997-01-01

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  6. Changing of micromorphology of silicon-on-sapphire epitaxial layer surface at irradiation by subthreshold energy X-radiation

    CERN Document Server

    Kiselev, A N; Skupov, V D; Filatov, D O

    2001-01-01

    The morphology of silicon-on-sapphire epitaxial layer surface after pulse irradiation by the X-rays with the energy of <= 140 keV is studied. The study on the irradiated material surface is carried out by the methods of the atomic force microscopy and ellipsometry. The average roughness value after irradiation constitutes 7 nm. The change in the films surface microrelief occurs due to reconstruction of their dislocation structure under the action of elastic waves, originating in the X radiation

  7. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  8. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  9. Droplets on posterior surface of intraocular lens in silicone oil filled eye.

    Directory of Open Access Journals (Sweden)

    Sharma Y

    2003-01-01

    Full Text Available Silicone oil adherence to silicone IOLs after silicone oil removal is a known complication in pseudophakic patients. Droplet removal is difficult and may require IOL exchange. We describe two cases in which silicone oil droplets were observed early in the postoperative period in PMMA pseudophakic eyes and disappeared during silicone oil-fluid exchange--a phenomenon that has not been reported earlier in human PMMA pseudophakic eyes.

  10. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment

    Directory of Open Access Journals (Sweden)

    Harsimran Kaur

    2015-01-01

    Full Text Available Purpose: To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Materials and Methods: Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P and rest 80 to heat-cured resilient liner (Molloplast B. Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm in the space provided by a spacer of 3 mm, thermocycled (5-55°C for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. Results: One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student′s t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Conclusion: Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  11. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Niaz, Shanawer, E-mail: shanawersi@gmail.com [Department of Physics, Bilkent University, Ankara 06800 (Turkey); Molecular Engineering Laboratory, at the Department of Physics, University of Patras, Patras, GR-26500 (Greece); Zdetsis, Aristides D.; Koukaras, Emmanuel N. [Molecular Engineering Laboratory, at the Department of Physics, University of Patras, Patras, GR-26500 (Greece); Gülseren, Oǧuz [Department of Physics, Bilkent University, Ankara 06800 (Turkey); Sadiq, Imran [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2016-11-30

    Highlights: • Understanding surface science of oxygenated silicon nanocrystals by means of their composition, stoichiometry and spatial distribution. • Drastic change observed in binding energy, localization of frontier orbitals and HOMO-LUMO gap up to 1.48 eV. • Might be a safe alternative of size dependent bandgap tunability. - Abstract: In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si{sub 29} nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  12. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    International Nuclear Information System (INIS)

    Niaz, Shanawer; Zdetsis, Aristides D.; Koukaras, Emmanuel N.; Gülseren, Oǧuz; Sadiq, Imran

    2016-01-01

    Highlights: • Understanding surface science of oxygenated silicon nanocrystals by means of their composition, stoichiometry and spatial distribution. • Drastic change observed in binding energy, localization of frontier orbitals and HOMO-LUMO gap up to 1.48 eV. • Might be a safe alternative of size dependent bandgap tunability. - Abstract: In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si 29 nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  13. All-silicon Michelson instrument on chip: Distance and surface profile measurement and prospects for visible light spectrometry

    International Nuclear Information System (INIS)

    Malak, M.; Marty, F.; Bourouina, T.; Nouira, H.; Vailleau, G.

    2013-01-01

    A miniature Michelson interferometer is analyzed theoretically and experimentally. The fabricated micro-interferometer is incorporated at the tip of a monolithic silicon probe to achieve contactless distance measurements and surface profilometry. For infrared operation, two approaches are studied, based on the use of monochromatic light and wavelength sweep, respectively. A theoretical model is devised to depict the system characteristics taking into account Gaussian beam divergence and light spot size. Furthermore, preliminary results using visible light demonstrate operation of the probe as a visible light spectrometer, despite silicon absorbance, thanks to the micrometer thickness involved in the beam splitter.

  14. All-silicon Michelson instrument on chip: Distance and surface profile measurement and prospects for visible light spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Malak, M.; Marty, F.; Bourouina, T. [Universite Paris-Est, Laboratoire ESYCOM, ESIEE Paris, Cite Descartes, 2 Boulevard Blaise Pascal, 93162 Noisy-le-Grand Cedex (France); Nouira, H.; Vailleau, G. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris Cedex 15 (France)

    2013-04-08

    A miniature Michelson interferometer is analyzed theoretically and experimentally. The fabricated micro-interferometer is incorporated at the tip of a monolithic silicon probe to achieve contactless distance measurements and surface profilometry. For infrared operation, two approaches are studied, based on the use of monochromatic light and wavelength sweep, respectively. A theoretical model is devised to depict the system characteristics taking into account Gaussian beam divergence and light spot size. Furthermore, preliminary results using visible light demonstrate operation of the probe as a visible light spectrometer, despite silicon absorbance, thanks to the micrometer thickness involved in the beam splitter.

  15. Formation and Characterization of Stacked Nanoscale Layers of Polymers and Silanes on Silicon Surfaces

    Science.gov (United States)

    Ochoa, Rosie; Davis, Brian; Conley, Hiram; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Complete and consistent formation of nanoscale layers of silanes and polymers is a necessary first step for chemical patterning. We explored methods of silanizing silicon substrates for the purpose of functionalizing the surfaces. The chemical functionalization, stability, flatness, and repeatability of the process was characterized by use of ellipsometry, water contact angle, and Atomic Force Microscopy (AFM). We found that forming the highest quality functionalized surfaces was accomplished through use of chemical vapor deposition (CVD). Specifically, surfaces were plasma cleaned and hydrolyzed before the silane was applied. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer. The chemical functionalization, stability, flatness, and repeatability of the process was also characterized for the polymer layer using ellipsometry, water contact angle, and AFM.

  16. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  17. Polycrystalline Silicon Gettered by Porous Silicon and Heavy Phosphorous Diffusion

    Institute of Scientific and Technical Information of China (English)

    LIU Zuming(刘祖明); Souleymane K Traore; ZHANG Zhongwen(张忠文); LUO Yi(罗毅)

    2004-01-01

    The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utilization is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the cost, is to increase the minority carrier lifetime by controlling the material defects. The main defects in grain boundaries of polycrystalline silicon gettered by porous silicon and heavy phosphorous diffusion have been studied. The porous silicon was formed on the two surfaces of wafers by chemical etching. Phosphorous was then diffused into the wafers at high temperature (900℃). After the porous silicon and diffusion layers were removed, the minority carrier lifetime was measured by photo-conductor decay. The results show that the lifetime's minority carriers are increased greatly after such treatment.

  18. Temperature dependence of coercivity behavior in iron films on silicone oil surfaces

    International Nuclear Information System (INIS)

    Xu Xiaojun; Ye Quanlin; Ye Gaoxiang

    2007-01-01

    A new iron film system, deposited on silicone oil surfaces by vapor phase deposition method, has been fabricated and its microstructure as well as magnetic properties has been studied. It is found that the temperature dependence of the coercive field H c (T) of the films exhibits a peak around a critical temperature T crit =10-15 K: for the temperature T crit ,H c (T) increases with the temperature; if T>T crit , however, it decreases rapidly and then approaches a steady value as T further increases. Our study shows that, for T>T crit , the observed coercivity behavior is mainly dominated by the effect of the non-uniform single-domain particle size distribution, and for T crit , the anomalous coercivity behavior may be resulted from the surface anisotropy, the surface effect and the characteristic internal stress distribution in the films. The influence of the shape and size of the particles on the thermal dependence of the magnetization is also investigated

  19. High-efficient solar cells with porous silicon

    International Nuclear Information System (INIS)

    Migunova, A.A.

    2002-01-01

    It has been shown that the porous silicon is multifunctional high-efficient coating on silicon solar cells, modifies its surface and combines in it self antireflection and passivation properties., The different optoelectronic effects in solar cells with porous silicon were considered. The comparative parameters of uncovered photodetectors also solar cells with porous silicon and other coatings were resulted. (author)

  20. Recent progress in the development and understanding of silicon surface passivation by aluminum oxide for photovoltaics

    NARCIS (Netherlands)

    Dingemans, G.; Kessels, W.M.M.

    2010-01-01

    In the recent years, considerable progress has been made in the understanding of the unique silicon surface passivation properties of aluminum oxide (Al2O3) films including its underlying mechanisms. Containing a high fixed negative charge density located close to the Si interface, Al2O3 provides a

  1. Carbon out-diffusion mechanism for direct graphene growth on a silicon surface

    International Nuclear Information System (INIS)

    Kim, Byung-Sung; Lee, Jong Woon; Jang, Yamujin; Choi, Soon Hyung; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Joo, Won-Jae; Hwang, Sungwoo; Whang, Dongmok

    2015-01-01

    Direct growth of graphene on silicon (Si) through chemical vapor deposition has predominantly focused on surface-mediated processes due to the low carbon (C) solubility in Si. However, a considerable quantity of C atoms was incorporated in Si and formed Si 1−x C x alloy with a reduced lattice dimension even in the initial stage of direct graphene growth. Subsequent high temperature annealing promoted active C out-diffusion, resulting in the formation of a graphitic layer on the Si surface. Furthermore, the significantly low thermal conductivity of the Si 1−x C x alloy shows that the incorporated C atoms affect the properties of a semiconductor adjacent to the graphene. These findings provide a key guideline for controlling desirable properties of graphene and designing hybrid semiconductor/graphene architectures for various applications

  2. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  3. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    International Nuclear Information System (INIS)

    Hayat, Asma; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-01-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm 2 and 4 J/cm 2 resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm 2 under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm 2 , laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly dependent upon the

  4. Durable Superomniphobic Surface on Cotton Fabrics via Coating of Silicone Rubber and Fluoropolymers

    Directory of Open Access Journals (Sweden)

    Arsheen Moiz

    2018-03-01

    Full Text Available Performance textiles that protect human from different threats and dangers from environment are in high demand, and the advancement in functionalization technology together with employing advanced materials have made this an area of research focus. In this work, silicone rubber and environmentally friendly fluoropolymers have been employed to explore superomniphobic surface on cotton fabrics without compromising comfort much. It has been found that a cross-linked network between the rubber membrane and the fluoropolymers has been formed. The surface appearance, morphology, handle, thickness and chemical components of the surface of cotton fabrics have been changed. The coated fabrics showed resistance to water, aqueous liquid, oil, chemicals and soil. The comfort of the coated fabrics is different to uncoated cotton fabrics due to the existence of coated layers on the surface of cotton fabrics. This work would benefit the development and design of the next generation of performance textiles with balanced performance and comfort.

  5. Influence of irradiation dose on laser-induced surface nanostructures on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Varlamova, Olga [Brandenburgische Technische Universität BTU Cottbus, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Cottbus JointLab, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Bounhalli, Mourad [Brandenburgische Technische Universität BTU Cottbus, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Laboratoire Hubert Curien, Université St. Etienne, Bâtiment F 18 Rue du Professeur Benoît Lauras, 42000 Saint-Etienne (France); Reif, Juergen, E-mail: REIF@TU-COTTBUS.DE [Brandenburgische Technische Universität BTU Cottbus, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Cottbus JointLab, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)

    2013-08-01

    We report on the dependence of femtosecond laser-induced periodic surface structures on an increase of incident pulse number. On silicon, the patterns evolve from linear, parallel sub-wavelength ripples, grossly perpendicular to the laser polarization, via coalesced wider features parallel to the polarization, to a crater with periodically structured, pillar-like walls. Closer inspection of the patterns indicates that the different features always continue to exhibit reminiscence to the preceding lower-dose patterns, suggesting that, indeed, all patterns can be created by ONE single GENERAL formation process, as in self-organized structure formation, and the different structures/feature sizes are NOT due to DIFFERENT mechanisms.

  6. Influence of irradiation dose on laser-induced surface nanostructures on silicon

    International Nuclear Information System (INIS)

    Varlamova, Olga; Bounhalli, Mourad; Reif, Juergen

    2013-01-01

    We report on the dependence of femtosecond laser-induced periodic surface structures on an increase of incident pulse number. On silicon, the patterns evolve from linear, parallel sub-wavelength ripples, grossly perpendicular to the laser polarization, via coalesced wider features parallel to the polarization, to a crater with periodically structured, pillar-like walls. Closer inspection of the patterns indicates that the different features always continue to exhibit reminiscence to the preceding lower-dose patterns, suggesting that, indeed, all patterns can be created by ONE single GENERAL formation process, as in self-organized structure formation, and the different structures/feature sizes are NOT due to DIFFERENT mechanisms.

  7. Sunlight-thin nanophotonic monocrystalline silicon solar cells

    Science.gov (United States)

    Depauw, Valérie; Trompoukis, Christos; Massiot, Inès; Chen, Wanghua; Dmitriev, Alexandre; Cabarrocas, Pere Roca i.; Gordon, Ivan; Poortmans, Jef

    2017-09-01

    Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.

  8. Research and development of photovoltaic power system. Research on surface passivation for high-efficiency silicon solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Hyomen passivation no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on surface passivation of high-efficiency silicon solar cells. In research on carrier recombination on SiO2/doped silicon interface, measurements were carried out on minority carrier life with respect to p-type silicon substrates with which phosphorus with high and low concentrations are diffused uniformly on the surface and non-uniformly on the back and then oxidized. The measurements were performed for the purpose of evaluating the carrier recombination at p-n junctions. Effective life time of oxidized test samples increased longer than that of prior to the oxidization as a result of effect of surface passivation contributing remarkably. In research on reduction in carrier recombination on SiO2/Si interface by using H radical annealing, experiments were conducted by using a method that uses more active H-atoms. As a result, it was revealed that the reduction effect is recognized at as low temperature as 200{degree}C, and photo-bias effect is also noticeable. Other research activities included analytic research on minority carrier recombination on micro crystalline silicon/crystalline silicon interface, and experimental research on evaluation of minority carrier life of poly-crystalline silicon wafers. 6 figs.

  9. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  10. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  11. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  12. RBS/channeling analysis of hydrogen-implanted single crystals of FZ silicon and 6H silicon

    International Nuclear Information System (INIS)

    Irwin, R.B.

    1984-01-01

    Single crystals of FZ silicon and 6H silicon carbide were implanted with hydrogen ions (50 and 80 keV, respectively) to fluences from 2 x 10 16 H + /cm 2 to 2 x 10 18 H+/cm 2 . The implantations were carried out at three temperatures: approx.95K, 300 K, and approx.800 K. Swelling of the samples was measured by surface profilometry. RBS/channeling was used to obtain the damage profiles and to determine the amount of hydrogen retained in the lattice. The damage profiles are centered around X/sub m/ for the implants into silicon and around R/sub p/ for silicon carbide. For silicon carbide implanted at 95 K and 300 K and for silicon implanted at 95 K, the peak damage region is amorphous for fluences above 8 x 10 16 H + /cm 2 , 4 x 10 17 H + /cm 2 , and 2 x 10 17 H + /cm 2 , respectively. Silicon implanted at 300 and 800 K and silicon carbide implanted at 800 K remain crystalline up to fluences of 1 x 10 18 H + /cm 2 . The channeling damage results agree with previously reported TEM and electron diffraction data. The predictions of a simple disorder-accumulation model with a linear annealing term explains qualitatively the observed damage profiles in silicon carbide. Quantitatively, however, the model predicts faster development of the damage profiles than is observed at low fluences in both silicon and silicon carbide. For samples implanted at 300 and 800 K, the model also predicts substantially less peak disorder than is observed. The effect of the surface, the retained hydrogen, the shape of S/sub D/(X), and the need for a nonlinear annealing term may be responsible for the discrepancy

  13. Determining the thickness of aliphatic alcohol monolayers covalently attached to silicon oxide surfaces using angle-resolved X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Austin W. H.; Kim, Dongho; Gates, Byron D.

    2018-04-01

    The thickness of alcohol based monolayers on silicon oxide surfaces were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). Advantages of using alcohols as building blocks for the formation of monolayers include their widespread availability, ease of handling, and stability against side reactions. Recent progress in microwave assisted reactions demonstrated the ease of forming uniform monolayers with alcohol based reagents. The studies shown herein provide a detailed investigation of the thickness of monolayers prepared from a series of aliphatic alcohols of different chain lengths. Monolayers of 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were each successfully formed through microwave assisted reactions and characterized by ARXPS techniques. The thickness of these monolayers consistently increased by ∼1.0 Å for every additional methylene (CH2) within the hydrocarbon chain of the reagents. Tilt angles of the molecules covalently attached to silicon oxide surfaces were estimated to be ∼35° for each type of reagent. These results were consistent with the observations reported for thiol based or silane based monolayers on either gold or silicon oxide surfaces, respectively. The results of this study also suggest that the alcohol based monolayers are uniform at a molecular level.

  14. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Jens, E-mail: J.Hirsch@emw.hs-anhalt.de [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany); Gaudig, Maria; Bernhard, Norbert [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Lausch, Dominik [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany)

    2016-06-30

    Highlights: • Fabrication of black silicon through inductively coupled plasma (ICP) processing. • Suppressed formation a self-bias and therefore a reduced ion bombardment of the silicon sample. • Reduction of the average hemispherical reflection between 300 and 1120 nm up to 8% within 5 min ICP process time. • Reflection is almost independent of the angle of incidence up to 60°. • 2.5 ms effective lifetime at 10{sup 15} cm{sup −3} MCD after ALD Al{sub 2}O{sub 3} surface passivation. - Abstract: The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF{sub 6} and O{sub 2} are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 10{sup 15} cm{sup −3} minority carrier density (MCD) after an atomic layer deposition (ALD) with Al{sub 2}O{sub 3}. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique

  15. Some aspects of the behavior of barium, bismuth and strontium on silicon surfaces studied by TXRF

    International Nuclear Information System (INIS)

    Kilian, G.; Kolbesen, B.O.; Pamler, W.; Unger, E.; Hoepfner, A.

    2000-01-01

    Current dielectric film materials (SiO 2 , SiO 2 /Si 3 N 4 ) are one of the limiting factors for the scaling of microelectronic devices in the sub-quartermicron regime, in particular regarding the storage capacitor of dynamic random access memories (DRAMs). Alternative materials comprise films with high ε such as BaSrTiO 3 (BST) or films with ferroelectric behavior such as PbZrTiO 3 (PZT) or SrBi 2 Ta 2 O 9 (SBT). In order to integrate ferroelectric and high ε films into standard CMOS technology it is necessary to investigate possible detrimental effects on performance and reliability. In case of SBT, very little is known about the effect of Ba, Bi and Sr contamination on silicon device technology. Therefore, some aspects of their adsorption, desorption and diffusion behavior at room and higher temperature in inert (N 2 ) and oxidising (O 2 ) ambient have been studied by monitoring the Ba, Bi and Sr concentrations on silicon surfaces by total reflection x-ray fluorescence analysis (TXRF). Ba and Sr are incorporated in the existing or growing oxide during RTA. If O 2 is present the growing oxide on the silicon surface forms a barrier which forces the Bi to diffuse into the bulk. Hence, cross contamination due to gas phase transport may occur in the case of Bi under N 2 atmosphere but is of no concern in the case of Ba and Sr. (author)

  16. Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion

    NARCIS (Netherlands)

    Vermeltfoort, Pit B. J.; Rustema-Abbing, Minie; de Vries, Joop; Bruinsma, Gerda M; Busscher, Henk J.; van der Linden, Matthijs L; Hooymans, Johanna MM; van der Mei, Henny C.

    Purpose: The aim of this study was to determine the effect of continuous wear on physicochemical surface properties of silicone hydrogel (S-H) lenses and their susceptibility to bacterial adhesion. Methods: In this study, volunteers wore 2 pairs of either "lotrafilcon A" or "balafilcon A" S-H

  17. Influence of Day and Night Wear on Surface Properties of Silicone Hydrogel Contact Lenses and Bacterial Adhesion

    NARCIS (Netherlands)

    Vermeltfoort, P; Rustema-Abbing, Minie; de Vries, Joop; Bruinsma, Gerda M.; Busscher, Henk J.; Van der Linden, Matthijs L.; Hooymans, Johanna M. M.; Van der Mei, Henny C.

    Purpose: The aim of this study was to determine the effect of continuous wear on physicochemical surface properties of silicone hydrogel (S-H) lenses and their susceptibility to bacterial adhesion. Methods: In this study, volunteers wore 2 pairs of either "lotrafilcon A" or "balafilcon A" S-H

  18. Formation and properties of porous silicon layers

    International Nuclear Information System (INIS)

    Vitanov, P.; Kamenova, M.; Dimova-Malinovska, D.

    1993-01-01

    Preparation, properties and application of porous silicon films are investigated. Porous silicon structures were formed by an electrochemical etching process resulting in selective dissolution of the silicon substrate. The silicon wafers used with a resistivity of 5-10Ω.cm were doped with B to concentrations 6x10 18 -1x10 19 Ω.cm -3 in the temperature region 950 o C-1050 o C. The density of each porous films was determined from the weight loss during the anodization and it depends on the surface resistivity of the Si wafer. The density decreases with decreasing of the surface resistivity. The surface of the porous silicon layers was studied by X-ray photoelectron spectroscopy which indicates the presence of SiF 4 . The kinetic dependence of the anode potential and the porous layer thickness on the time of anodization in a galvanostatic regime for the electrolytes with various HF concentration were studied. In order to compare the properties of the resulting porous layers and to establish the dependence of the porosity on the electrolyte, three types of electrolytes were used: concentrated HF, diluted HF:H 2 O=1:1 and ethanol-hydrofluoric solutions HF:C 2 H 5 OH:H 2 O=2:1:1. High quality uniform and reproducible layers were formed using aqueous-ethanol-hydrofluoric electrolyte. Both Kikuchi's line and ring patterns were observed by TEM. The porous silicon layer was single crystal with the same orientation as the substrate. The surface shows a polycrystalline structure only. The porous silicon layers exhibit visible photoluminescence (PL) at room temperature under 480 nm Ar + laser line excitation. The peak of PL was observed at about 730 nm with FWHM about 90 nm. Photodiodes was made with a W-porous silicon junction. The current voltage and capacity voltage characteristics were similar to those of an isotype heterojunction diode. (orig.)

  19. Thermal processing of strained silicon-on-insulator for atomically precise silicon device fabrication

    International Nuclear Information System (INIS)

    Lee, W.C.T.; Bishop, N.; Thompson, D.L.; Xue, K.; Scappucci, G.; Cederberg, J.G.; Gray, J.K.; Han, S.M.; Celler, G.K.; Carroll, M.S.; Simmons, M.Y.

    2013-01-01

    Highlights: ► Strained silicon-on-insulator (sSOI) samples were flash-annealed at high temperature under ultra-high vacuum conditions. ► The extend of surface strain relaxation depends on the annealing temperature with no strain relaxation observed below 1020 °C. ► A 2 × 1 reconstructed surface with low defect density can be achieved. ► The annealed sSOI surface shows enhanced step undulations due to the unique energetics caused by surface strain. - Abstract: We investigate the ability to reconstruct strained silicon-on-insulator (sSOI) substrates in ultra-high vacuum for use in atomic scale device fabrication. Characterisation of the starting sSOI substrate using μRaman shows an average tensile strain of 0.8%, with clear strain modulation in a crosshatch pattern across the surface. The surfaces were heated in ultra-high vacuum from temperatures of 900 °C to 1100 °C and subsequently imaged using scanning tunnelling microscopy (STM). The initial strain modulation on the surface is observed to promote silicon migration and the formation of crosshatched surface features whose height and pitch increases with increasing annealing temperature. STM images reveal alternating narrow straight S A steps and triangular wavy S B steps attributed to the spontaneous faceting of S B and preferential adatom attachment on S B under biaxial tensile strain. Raman spectroscopy shows that despite these high temperature anneals no strain relaxation of the substrate is observed up to temperatures of 1020 °C. Above 1100 °C, strain relaxation is evident but is confined to the surface.

  20. Modification of porous silicon rugate filters through thiol-yne photochemistry

    International Nuclear Information System (INIS)

    Soeriyadi, Alexander H.; Zhu, Ying; Gooding, J. Justin; Reece, Peter

    2014-01-01

    Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with optical reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)

  1. Electrical behavior of free-standing porous silicon layers

    International Nuclear Information System (INIS)

    Bazrafkan, I.; Dariani, R.S.

    2009-01-01

    The electrical behavior of porous silicon (PS) layers has been investigated on one side of p-type silicon with various anodization currents and electrolytes. The two contact I-V characteristic is assigned by the metal/porous silicon rectifying interface, whereas, by using the van der Pauw technique, a nonlinear dependence of the current vs voltage was found. By using Dimethylformamide (DMF) in electrolyte, regular structures and columns were formed and porosity increased. Our results showed that by using DMF, surface resistivity of PS samples increased and became double for free-standing porous silicon (FPS). The reason could be due to increasing surface area and adsorbing some more gas molecules. Activation energy of PS samples was also increased from 0.31 to 0.34 eV and became 0.35 eV for FPS. The changes induced by storage are attributed to the oxidation process of the internal surface of free-standing porous silicon layers.

  2. Synthesis and characterization of carboxylic acid functionalized silicon nanoparticles

    Science.gov (United States)

    Shaner, Ted V.

    Silicon nanoparticles are of great interest in a great number of fields. Silicon nanoparticles show great promise particularly in the field of bioimaging. Carboxylic acid functionalized silicon nanoparticles have the ability to covalently bond to biomolecules through the conjugation of the carboxylic acid to an amine functionalized biomolecule. This thesis explores the synthesis of silicon nanoparticles functionalized by both carboxylic acids and alkenes and their carboxylic acid functionality. Also discussed is the characterization of the silicon nanoparticles by the use of x-ray spectroscopy. Finally, the nature of the Si-H bond that is observed on the surface of the silicon nanoparticles will be investigated using photoassisted exciton mediated hydrosilation reactions. The silicon nanoparticles are synthesized from both carboxylic acids and alkenes. However, the lack of solubility of diacids is a significant barrier to carboxylic acid functionalization by a mixture of monoacids and diacids. A synthesis route to overcome this obstacle is to synthesize silicon nanoparticles with terminal vinyl group. This terminal vinyl group is distal to the surface of the silicon nanoparticle. The conversion of the vinyl group to a carboxylic acid is accomplished by oxidative cleavage using ozonolysis. The carboxylic acid functionalized silicon nanoparticles were then successfully conjugated to amine functionalized DNA strand through an n-hydroxy succinimide ester activation step, which promotes the formation of the amide bond. Conjugation was characterized by TEM and polyacrylamide gel electrophoresis (PAGE). The PAGE results show that the silicon nanoparticle conjugates move slower through the polyacrylamide gel, resulting in a significant separation from the nonconjugated DNA. The silicon nanoparticles were then characterized by the use of x-ray absorption near edge spectroscopy (Xanes) and x-ray photoelectron spectroscopy (XPS) to investigate the bonding and chemical

  3. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  4. Surface potential on gold nanodisc arrays fabricated on silicon under light irradiation

    Science.gov (United States)

    Ezaki, Tomotarou; Matsutani, Akihiro; Nishioka, Kunio; Shoji, Dai; Sato, Mina; Okamoto, Takayuki; Isobe, Toshihiro; Nakajima, Akira; Matsushita, Sachiko

    2018-06-01

    This paper proposes Kelvin probe force microscopy (KFM) as a new measurement method of plasmon phenomenon. The surface potential of two arrays, namely, a monomeric array and a tetrameric array, of gold nanodiscs (600 nm diameter) on a silicon substrate fabricated by electron beam lithography was investigated by KFM with the view point of irradiation light wavelength change. In terms of the value of the surface potential, contrasting behaviour, a negative shift in the monomeric disc array and a positive shift in the tetrameric disc array, was observed by light irradiation. This interesting behaviour is thought to be related to a difference in localised plasmons caused by the disc arrangement and was investigated from various viewpoints, including Rayleigh anomalies. Finally, this paper reveals that KFM is powerful not only to investigate the plasmonic behaviour but also to predict the electron transportation.

  5. In-situ determination of electronic surface and volume defect density of amorphous silicon (a-Si:H) and silicon alloys

    International Nuclear Information System (INIS)

    Siebke, F.

    1992-07-01

    The density of localized gap states in the bulk and in the near-surface region of amorphous hydrogenated silicon (a-Si:H) was measured for non oxidized undoped, B-doped and P-doped samples as well as for films with low carbon (C) and germanium (Ge) content. Also the influence of light soaking on the bulk and surface density of states was investigated. The samples were prepared by rf glow discharge in an UHV-system at substrate temperatures between 100degC and 400degC and transferred to the analysis chamber by a vacuum lock. We combined the constant photocurrent method (CPM) and the total-yield photoelectron spectroscopy (TY) to obtain in-situ information about the defect densities. While the first method yields information about the density of states in the bulk, the other method obtains the density of occupied states in the near-surface region. The mean information depth of the TY-measurements is limited by the escape lenght of photoelectrons and can be estimated to 5 nm. In addition to the defect density the position of the Fermi energy was determined for the bulk by dark conductivity measurements and at the surface using a calibrated Kelvin probe. (orig.)

  6. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  7. Ground water geochemistry in the vicinity of the Jabiluka deposits

    International Nuclear Information System (INIS)

    Deutscher, R.L.; Mann, A.W.; Giblin, A.

    1980-01-01

    Seventeen exploration drill holes in the vicinity of the Jabiluka One and Jabiluka Two deposits were logged for Eh-pH and conductivity at 5 metre intervals to depths of up to 195 metres below ground surface. Forty-seven water samples from exploration drill holes, augered holes on the Magela flood plain and from two billabongs in the vicinity of the deposits were collected and analyzed. Analyses for pH and Fe were conducted in the field, and further analyses for major ions Ca 2+ , Mg 2+ , Na + , K + , SO 4 2- , Cl - , HCO 3 - and Si and minorelements Zn, Cd, Pb, Cu and U were conducted in the laboratory. The in situ Eh-pH and conductivity measurements, and analyses for major and minor elements of ground waters suggest that deep-lying chlorite-graphite schists containing the uranium mineralization are well protected from, or do not react rapidly with, ground water under present-day conditions, i.e. the schists of the Cahill Formation are a stable host for uranium mineralization at depth. In the vicinity of the Magela flood plain where the Cahill Formation and the permanent water table are close to the surface, some samples were found to contain high concentrations of sulphate, zinc, lead and iron. These same samples were characterized by low pH's in the pH range 3.0-4.0. The anomalies suggest weathering of sulphides associated with the mineralized Cahill Formation, where the schists are at shallow depths and in an oxidizing environment. The anomalies are not, however, necessarily indicative of zones of uranium enrichment in this formation. (author)

  8. Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2013-01-01

    In this paper, we will report the enhancement of the conversion efficiency of multicrystalline silicon solar cells after coating the front surface with a porous silicon layer treated with vanadium oxide. The incorporation of vanadium oxide into the porous silicon (PS) structure, followed by a thermal treatment under oxygen ambient, leads to an important decrease of the surface reflectivity, a significant enhancement of the effective minority carrier lifetime (τ eff ) and a significant enhancement of the photoluminescence (PL) of the PS structure. We Obtained a noticeable increase of (τ eff ) from 3.11 μs to 134.74 μs and the surface recombination velocity (S eff ) have decreased from 8441 cm s −1 to 195 cm s −1 . The reflectivity spectra of obtained films, performed in the 300–1200 nm wavelength range, show an important decrease of the average reflectivity from 40% to 5%. We notice a significant improvement of the internal quantum efficiency (IQE) in the used multicrystalline silicon substrates. Results are analyzed and compared to those carried out on a reference (untreated) sample. The electrical properties of the treated silicon solar cells were improved noticeably as regard to the reference (untreated) sample.

  9. Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.; Wheeler, Lance M.; Anderson, Nicholas C.

    2017-01-01

    The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1 H– 29 Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1 H– 29 Si HETCOR and dipolar 2D 1 H– 1 H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Instead the 2D NMR spectra illustrate that there is large distribution of 1 H and 29 Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1 H– 29 Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29 Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3 ), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1 H and 29 Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.

  10. Double stabilization of nanocrystalline silicon: a bonus from solvent

    Energy Technology Data Exchange (ETDEWEB)

    Kolyagin, Y. G.; Zakharov, V. N.; Yatsenko, A. V.; Paseshnichenko, K. A.; Savilov, S. V.; Aslanov, L. A., E-mail: aslanov.38@mail.ru [Lomonosov Moscow State University (Russian Federation)

    2016-01-15

    Double stabilization of the silicon nanocrystals was observed for the first time by {sup 29}Si and {sup 13}C MAS NMR spectroscopy. The role of solvent, 1,2-dimethoxyethane (glyme), in formation and stabilization of silicon nanocrystals as well as mechanism of modification of the surface of silicon nanocrystals by nitrogen-heterocyclic carbene (NHC) was studied in this research. It was shown that silicon nanocrystals were stabilized by the products of cleavage of the C–O bonds in ethers and similar compounds. The fact of stabilization of silicon nanoparticles with NHC ligands in glyme was experimentally detected. It was demonstrated that MAS NMR spectroscopy is rather informative for study of the surface of silicon nanoparticles but it needs very pure samples.

  11. Pd-catalyzed coupling reaction on the organic monolayer: Sonogashira reaction on the silicon (1 1 1) surfaces

    International Nuclear Information System (INIS)

    Qu Mengnan; Zhang Yuan; He Jinmei; Cao Xiaoping; Zhang Junyan

    2008-01-01

    Iodophenyl-terminated organic monolayers were prepared by thermally induced hydrosilylation on hydrogen-terminated silicon (1 1 1) surfaces. The films were characterized by ellipsometry, contact-angle goniometry, and X-ray photoelectron spectroscopy (XPS). To modify the surface chemistry and the structure of the monolayers, the Sonogashira coupling reaction was performed on the as-prepared monolayers. The iodophenyl groups on the film surfaces reacted with 1-ethynyl-4-fluorobenzene or the 1-chloro-4-ethynylbenzene under the standard Sonogashira reaction conditions for attaching conjugated molecules via the formation of C-C bonds. It is expected that this surface coupling reaction will present a new method to modify the surface chemistry and the structure of monolayers

  12. One-dimensional model of interacting-step fluctuations on vicinal surfaces: Analytical formulas and kinetic Monte-Carlo simulations

    Science.gov (United States)

    Patrone, Paul; Einstein, T. L.; Margetis, Dionisios

    2011-03-01

    We study a 1+1D, stochastic, Burton-Cabrera-Frank (BCF) model of interacting steps fluctuating on a vicinal crystal. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. Our goal is to formulate and validate a self-consistent mean-field (MF) formalism to approximately solve the system of coupled, nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. We derive formulas for the time-dependent terrace width distribution (TWD) and its steady-state limit. By comparison with kinetic Monte-Carlo simulations, we show that our MF formalism improves upon models in which step interactions are linearized. We also indicate how fitting parameters of our steady state MF TWD may be used to determine the mass transport regime and step interaction energy of certain experimental systems. PP and TLE supported by NSF MRSEC under Grant DMR 05-20471 at U. of Maryland; DM supported by NSF under Grant DMS 08-47587.

  13. Porosity and thickness effect of porous silicon layer on photoluminescence spectra

    Science.gov (United States)

    Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.

  14. Hybrid Integrated Platforms for Silicon Photonics

    Science.gov (United States)

    Liang, Di; Roelkens, Gunther; Baets, Roel; Bowers, John E.

    2010-01-01

    A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  15. The influence of diffusion of fluorine compounds for silicon lateral etching

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick; Goodyear, Alec; Braithwaite, Nicholas St.John

    2004-07-01

    In an earlier study, it was proposed that long-range surface transport of fluorine atoms could precede the eventual binding to a silicon atom. The rate of binding increases if the silicon is bombarded with high energy ions. In this study, the lateral etching of a silicon layer, sandwiched between two silicon dioxide layers, was studied in order to investigate and extend these hypotheses. The under etching of the silicon layer was higher for wafers which suffered ion bombardment, showing that this mechanism is important even for horizontal etching. At the same time, the thickness of the silicon layer was varied. In all cases, the thinner silicon layer etched much faster then the thicker layer, indicating that fluorine surface transport is much more important than re-emission for these processes. The etch rate increase with ion bombardment can be explained by the fact that part of the energy of the incoming ions is transferred to the fluorine compounds which are on the horizontal surfaces and that ion bombardment enhances the fluorine surface transport.

  16. Characteristics of laser textured silicon surface and effect of mud adhesion on hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Ali, H. [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Khaled, M. [CHEM Department, King Fahd University of Petroleum & Minerals, Dhahran (Saudi Arabia); Al-Aqeeli, N.; Abu-Dheir, N. [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Varanasi, K.K. [Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA (United States)

    2015-10-01

    Highlights: • Laser treatment increases surface microhardness and slightly lowers surface fracture toughness. • Residual stress formed is compressive and self-annealing effect of laser tracks lowers residual stress. • Nitride species lowers surface energy and adhesion work required to remove dust. • Mud residues do not have notable effect on fracture toughness and microhardness of treated surface. • Mud residues lower surface hydrophobicity. - Abstract: Laser gas assisted texturing of silicon wafer surface is carried out. Morphological and metallurgical changes in the treated layer are examined using the analytical tools. Microhardness and fracture toughness of the laser treated surface are measured using the indentation technique while residual stress formed is determined from the X-ray diffraction data. The hydrophobicity of the textured surfaces are assessed incorporating the contact angle data and compared with those of as received workpiece surfaces. Environmental dust accumulation and mud formation, due to air humidity, at the laser treated and as received workpiece surfaces are simulated and the effect of the mud residues on the properties of the laser treated surface are studied. The adhesion work due to the presence of the mud on the laser treated surface is also measured. It is found that laser textured surface composes of micro/nano poles and fibers, which in turn improves the surface hydrophobicity significantly. In addition, formation of nitride species contributes to microhardness increase and enhancement of surface hydrophobicity due to their low surface energy. The mud residues do not influence the fracture toughness and microhardness of the laser textured surface; however, they reduced the surface hydrophobicity significantly.

  17. Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations

    CERN Document Server

    Moscatelli, F; Morozzi, A; Mendicino, R; Dalla Betta, G F; Bilei, G M

    2016-01-01

    In this work we propose a new combined TCAD radiation damage modelling scheme, featuring both bulk and surface radiation damage effects, for the analysis of silicon detectors aimed at the High Luminosity LHC. In particular, a surface damage model has been developed by introducing the relevant parameters (NOX, NIT) extracted from experimental measurements carried out on p-type substrate test structures after gamma irradiations at doses in the range 10-500 Mrad(Si). An extended bulk model, by considering impact ionization and deep-level cross-sections variation, was included as well. The model has been validated through the comparison of the simulation findings with experimental measurements carried out at very high fluences (2×1016 1 MeV equivalent n/cm2) thus fostering the application of this TCAD approach for the design and optimization of the new generation of silicon detectors to be used in future HEP experiments.

  18. Silicon nanoparticles: Preparation, properties, and applications

    International Nuclear Information System (INIS)

    Chang Huan; Sun Shu-Qing

    2014-01-01

    Silicon nanoparticles have attracted great attention in the past decades because of their intriguing physical properties, active surface state, distinctive photoluminescence and biocompatibility. In this review, we present some of the recent progress in preparation methodologies and surface functionalization approaches of silicon nanoparticles. Further, their promising applications in the fields of energy and electronic engineering are introduced. (invited review — international conference on nanoscience and technology, china 2013)

  19. Low energy pion detection by a silicon surface barrier telescope

    International Nuclear Information System (INIS)

    Sealock, R.M.; Caplan, H.S.; Leung, M.K.

    1978-01-01

    Four telescopes of three (2-ΔE, 1-E) silicon surface barrier detectors each, mounted in the focal plane of a magnetic spectrometer, have been used to detect positive pions in the energy range from 4.7-17.9 MeV and negative pions from 14.1-17.9 MeV. Positive pions from 4.7-12.7 MeV were stopped in the third detector while positive and negative pions from 14.1-17.9 MeV were detected in transmission. For energies greater than 7.4 MeV aluminum moderators were placed in front of the first detector to degrade the pion energy. Energy spectra show well resolved pion peaks with extremely low background. Double differential cross sections for the 12 C(e,π + ) 12 B,e' reaction have been measured. (Auth.)

  20. Effect of manufacturing and experimental conditions on the mechanical and surface properties of silicone elastomer scaffolds used in endothelial mechanobiological studies.

    Science.gov (United States)

    Campeau, Marc-Antoine; Lortie, Audrey; Tremblay, Pierrick; Béliveau, Marc-Olivier; Dubé, Dominic; Langelier, Ève; Rouleau, Léonie

    2017-07-14

    Mechanobiological studies allow the characterization of cell response to mechanical stresses. Cells need to be supported by a material with properties similar to the physiological environment. Silicone elastomers have been used to produce various in vitro scaffolds of different geometries for endothelial cell studies given its relevant mechanical, optical and surface properties. However, obtaining defined and repeatable properties is a challenge as depending on the different manufacturing and processing steps, mechanical and surface properties may vary significantly between research groups. The impact of different manufacturing and processing methods on the mechanical and surface properties was assessed by measuring the Young's modulus and the contact angle. Silicone samples were produced using different curing temperatures and processed with different sterilization techniques and hydrophilization conditions. Different curing temperatures were used to obtain materials of different stiffness with a chosen silicone elastomer, i.e. Sylgard 184 ® . Sterilization by boiling had a tendency to stiffen samples cured at lower temperatures whereas UV and ethanol did not alter the material properties. Hydrophilization using sulphuric acid allowed to decrease surface hydrophobicity, however this effect was lost over time as hydrophobic recovery occurred. Extended contact with water maintained decreased hydrophobicity up to 7 days. Mechanobiological studies require complete cell coverage of the scaffolds used prior to mechanical stresses exposure. Different concentrations of fibronectin and collagen were used to coat the scaffolds and cell seeding density was varied to optimize cell coverage. This study highlights the potential bias introduced by manufacturing and processing conditions needed in the preparation of scaffolds used in mechanobiological studies involving endothelial cells. As manufacturing, processing and cell culture conditions are known to influence cell

  1. Investigating the effect of silicon surface chemical treatment on Al/Si contact properties in GaP/Si solar cells

    Science.gov (United States)

    Kudryashov, D.; Gudovskikh, A.

    2018-03-01

    In the present work, experimental studies have been carried out to reveal how chemical treatment of a silicon surface affects the properties of the Al/Si contact. It has been shown that for p-type monocrystalline silicon substrates with a resistivity of 10 ohm cm, it is possible to form an ohmic Al/Si contact by magnetron sputtering of an aluminum thin film and its further annealing at temperatures of 400 - 450 °C. In the range of annealing temperatures of 250 - 400 °C, the Si substrate treatment in the HF solution leads to a significant increase in currents on the current-voltage curves of the Al/Si contact, while in the range of 450 - 700 °C, the effect of chemical treatment of the silicon is not detected.

  2. Hydrophilic functionalized silicon nanoparticles produced by high energy ball milling

    Science.gov (United States)

    Hallmann, Steffen

    The mechanochemical synthesis of functionalized silicon nanoparticles using High Energy Ball Milling (HEBM) is described. This method facilitates the fragmentation of mono crystalline silicon into the nanometer regime and the simultaneous surface functionalization of the formed particles. The surface functionalization is induced by the reaction of an organic liquid, such as alkynes and alkenes with reactive silicon sites. This method can be applied to form water soluble silicon nanoparticles by lipid mediated micelle formation and the milling in organic liquids containing molecules with bi-functional groups, such as allyl alcohol. Furthermore, nanometer sized, chloroalkyl functionalized particles can be synthesized by milling the silicon precursor in the presence of an o-chloroalkyne with either alkenes or alkynes as coreactants. This process allows tuning of the concentration of the exposed, alkyl linked chloro groups, simply by varying the relative amounts of the coreactant. The silicon nanoparticles that are formed serve as the starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles. Finally, the use of functionalized silicon particles for the production of superhydrophobic films is described. Here HEBM proves to be an efficient method to produce functionalized silicon particles, which can be deposited to form a stable coating exhibiting superhydrophobic properties. The hydrophobicity of the silicon film can be tuned by the milling time and thus the resulting surface roughness of the films.

  3. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  4. Crystalline and lattice matched Ba0.7Si0.3O layers on plane and vicinal Si(001) surfaces

    International Nuclear Information System (INIS)

    Zachariae, J.

    2006-01-01

    In this work the low temperature growth conditions of epitaxial and lattice-matched Ba 0.7 Sr 0.3 O layers on Si(100) were investigated using the combination of low energy electron diffraction (LEED), x-ray photoemission (XPS) and electron energy loss spectroscopy (EELS). With these methods crystallinity, stoichiometry and electronic structure of both occupied and unoccupied levels were studied as a function of layer thickness. Oxide layers were generated by evaporating the metals in oxygen ambient pressure with the sample at room temperature. Perfect crystallinity and lattice matching was only obtained starting with a preadsorbed monolayer (ML) of Sr or Ba at a concentration close to one monolayer. The XPS analysis shows that Ba 0.7 Sr 0.3 O as a high-K gate dielectric offers an adequate band gap, an appropriate band alignment and a atomically sharp interface to the Si(001) substrate. No silicide and silicate species, or SiO 2 formation at the interface after oxidation were found. To show that Ba 0.7 Sr 0.3 O is really appropriate to replace SiO 2 as a gate dielectric, first C-V and I-V curves of MOS-diodes with SrO, BaO and Ba 0.7 Sr 0.3 O as gateoxide were measured under ambient conditions. Besides other results, it turns out that the measured dielectric constant of Ba 0.7 Sr 0.3 O conforms with the expected value of ε ∼ 25 - 30. Exploring ways for self-organized structuring of insulating films, the possibility to produce replicas of step trains, given by a vicinal Si(001)-4 [110] surface, in layers of crystalline and perfectly lattice matched Ba 0.7 Sr 0.3 O were investigated. For this purpose high-resolution spot profile analyses in low-energy electron diffraction (SPA-LEED) both on flat Si(001) and on vicinal Si(001)-4 [110] were carried out. The G(S) analysis of these mixed oxide layers reveals a strong influence of local compositional fluctuations of Sr and Ba ions and their respective scattering phases, which appears as an unphysically large variation

  5. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Directory of Open Access Journals (Sweden)

    D. Simin

    2016-07-01

    Full Text Available We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-^{28}SiC and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100  nT/sqrt[Hz] within a volume of 3×10^{-7}mm^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3  mm^{3}, the projection noise limit is below 100  fT/sqrt[Hz].

  6. Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces

    KAUST Repository

    Coluccio, M.L.

    2016-03-25

    The study and the comprehension of the mechanism of cell adhesion and cell interaction with a substrate is a key point when biology and medicine meet engineering. This is the case of several biomedical applications, from regenerative medicine and tissue engineering to lab on chip and many others, in which the realization of the appropriate artificial surface allows the control of cell adhesion and proliferation. In this context, we aimed to design and develop a fabrication method of mesoporous (MeP) silicon substrates, doped with gold nanoparticles, in which we combine the capability of porous surfaces to support cell adhesion with the SERS capabilities of gold nanoparticles, to understand the chemical mechanisms of cell/surface interaction. MeP Si surfaces were realized by anodization of a Si wafer, creating the device for cell adhesion and growth. Gold nanoparticles were deposited on porous silicon by an electroless technique. We thus obtained devices with superior SERS capabilities, whereby cell activity may be controlled using Raman spectroscopy. MCF-7 breast cancer cells were cultured on the described substrates and SERS maps revealing the different expression and distribution of adhesion molecules were obtained by Raman spectroscopic analyses.

  7. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  8. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  9. Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes

    KAUST Repository

    McDowell, Matthew T.

    2011-09-14

    With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO2, the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes. © 2011 American Chemical Society.

  10. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada)

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  11. Fatigue damage evaluation method for the longitudinal welded joint of a FBR main vessel in the vicinity of the sodium surface

    International Nuclear Information System (INIS)

    Tanigawa, Masayuki; Shimokoshi, Minoru; Negishi, Hitoshi; Nagata, Takashi

    1990-01-01

    Metallurgical discontinuities are dominant in the fatigue strength reductions at the welded joints of vessels whose surfaces could be finished. In the welded joints of SUS 304 with TYPE 308 weld metal fatigue strength reductions are caused by strain concentrations as the result of the softening of the weld metal. A combination model of two elastic fully plastic materials is applicable to the structures under thermal stresses where displacements are self-controlled. Metallurgical discontinuities are represented by the difference of the yield strength. The longitudinal welded joint of a large FBR main vessel in the vicinity of the sodium surface was analyzed using this model under various conditions related to the design. Strain concentrations at the welded joint could be evaluated using the elastic follow-up model. The maximum value of the elastic follow-up parameter was 3.0 if the yield stress ratio of the weld metal to the base metal was not less than 0.8. (author)

  12. Silicon microfabricated beam expander

    International Nuclear Information System (INIS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-01-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed

  13. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  14. Modification of silicon nitride surfaces with GOPES and APTES for antibody immobilization: computational and experimental studies

    International Nuclear Information System (INIS)

    To, Thien Dien; Nguyen, Anh Tuan; Phan, Khoa Nhat Thanh; Truong, An Thu Thi; Doan, Tin Chanh Duc; Dang, Chien Mau

    2015-01-01

    Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES. (paper)

  15. 3D Silicon Tracker for AFP - From Qualification to Operation

    CERN Document Server

    F\\"orster, Fabian Alexander; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) experiment is a detector located ~210 m away from the ATLAS interaction point on both sides. Its aim is to tag and measure forward protons produced in diffractive events. The detector consists of a 3D silicon pixel tracker, to measure the proton trajectory, as well as a time-of-flight system to suppress pileup-related backgrounds. Each tracker and the ToF system are placed inside a Roman Pot, allowing operation in the vicinity of the LHC beam, up to 2-3 mm. AFP was installed in 2 stages during the LHC technical shutdowns of 2015-2016 and 2016-2017. This presentation will give an overview of the silicon sensor qualification as well as the production, assembly and quality assurance of the tracker modules. The installation, commissioning and operation of the full detector will also be discussed.

  16. Double side multicrystalline silicon passivation by one step stain etching-based porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Seifeddine Belhadj; Ben Rabha, Mohamed; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    In this paper, we investigate the effect of stain etching-based porous silicon on the double side multicrystalline silicon. Special attention is given to the use of the stain etched PS as an antireflection coating as well as for surface passivating capabilities. Stain etching of double side multicrystalline silicon leads to the formation of PS nanostructures, that dramatically decrease the surface reflectivity from 30% to about 7% and increase the effective lifetime from 1 {mu}s to 10 {mu}s at a minority carrier density ({Delta}n) of 10{sup 15} cm{sup -3}. These results let us correlate the rise of the lifetime values to the photoluminescence intensity to the hydrogen and oxide passivation as shown by FTIR analysis. This low-cost PS formation process can be applied in the photovoltaic cell technology as a standard procedure (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Microstructure and mechanical properties of silicon nitride structural ceramics of silicon nitride

    International Nuclear Information System (INIS)

    Strohaecker, T.R.; Nobrega, M.C.S.

    1989-01-01

    The utilization of direct evaluation technic of tenacity for fracturing by hardness impact in silicon nitride ceramics is described. The microstructure were analysied, by Scanning Electron Microscopy, equiped with a microanalysis acessory by X ray energy dispersion. The difference between the values of K IC measure for two silicon nitride ceramics is discussed, in function of the microstructures and the fracture surfaces of the samples studied. (C.G.C.) [pt

  18. Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.

    Science.gov (United States)

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J; Freeman, William R; Cheng, Lingyun

    2015-01-22

    To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Porous silicon-based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  19. Influence of elastic-like relaxation on the size distribution of monatomic Ag chains on the steps of a vicinal Pt surface

    International Nuclear Information System (INIS)

    Tokar, V.I.; Dreysse, H.

    2007-01-01

    We discuss the statistics of the chains of Ag atoms self-assembled on the steps of a vicinal Pt surface as established experimentally and calculated within a lattice gas model by Gambardella et al. [Phys. Rev. B 73 (2006) 245425]. We suggest that the discrepancy between the theory and experiment may be due to additional interatomic interactions inside the clusters unaccounted for in the model. Our consideration is based on an exactly solvable one-dimensional equilibrium model of self-assembly proposed by us recently. We argue that the model provides an adequate approximate description of the Ag/Pt system and show that the chain length distribution in the model can be fitted to the experimental data with high accuracy

  20. Hybrid Integrated Platforms for Silicon Photonics

    Directory of Open Access Journals (Sweden)

    John E. Bowers

    2010-03-01

    Full Text Available A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  1. PCDD/F contamination on surface soil in the vicinity of a hazardous waste incinerator: is it possible a different trend?

    Science.gov (United States)

    Korucu, Mahmut Kemal

    2017-01-01

    This study is the first to investigate the contamination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) on surface soils in the vicinity of the first hazardous waste incinerator of Turkey. In the study, 24 soil samples were taken from a 1625-m-radius circle whose center is the stack of the incinerator. This process was repeated 1 year later. Since the acquired average PCDD/F concentrations of the two sampling campaigns (0.05 and 0.02 ng WHO-toxic equivalent (TEQ)/kg) were meaningfully low compared to the related literatures, a new sampling campaign was carried out to control this inconsistency, but this time in a foreign laboratory (0.56 ng WHO-TEQ/kg). In the same period, eight gas samples were taken from the stack under different operational conditions of the facility. According to the evaluations of the findings, the geographical-meteorological data of the study area and the specific operational conditions of the facility corroborate the concentrations of the first and the second soil samplings rather than the third one. The major underlying reason for the inconsistency of the soil concentrations may be the fact that the data analysis procedures used by the laboratories are different. The author suggests a hypothesis which argues that the soils in the vicinity of a hazardous waste incinerator may have significantly lower concentration levels than in related literatures.

  2. [The influence of a new surface treatment of silicone intracoular lenses with fluoralkylsitan on the adherence of endophthalmitic bacteria in vitro

    Science.gov (United States)

    Kienast, A; Menz, D-H; Dresp, J; Klinger, M; Bunse, A; Ohgke, H; Solbach, W; Laqua, H; Kämmerer, R; Hoerauf, H

    2003-10-01

    Dynasilan is a fluoroalkylsilan which is able to bind to surface active molecules of intraocular lenses (IOLs), thereby offering a new option for surface modification of silicone lenses. The purpose of this in vitro study was to investigate the influence of this new surface treatment on the adherence of two typical endophthalmitis-inducing bacteria ( Staphylococcus epidermidis, Propionibacterium acnes). A total of 14 Dynasilan-treated and 14 untreated silicone lenses were incubated at 37 degrees C for 24 h in brain heart infusion broth (10(8) CFU/ml) either with Staphylococcus epidermidis or with Propionibacterium acnes for 1 h. Subsequently, the adherent bacteria were resuspended using ultrasonification at 35 kHz for 3 x 45 s. After a dilution series and incubation at 37 degrees C for 24 h or 3 days the colonies were counted. On untreated IOLs incubated with Staphylococcus epidermidis the average number of bacteria was 3.6 x 10(7)/ml, and on treated IOLs the number of counted colonies was reduced to 1.09 x 10(7)/ml. Incubated with Propionibacterium acnes the average number of adherent bacteria on untreated IOLs was 4.75 x 10(4)/ml and on modified IOLs the number was reduced to 2.94 x 10(4)/ml. Dynasilan surface treatment may reduce the adherence of Staphylococcus epidermidis and Propionibacterium acnes on silicone intraocular lenses. Further studies regarding the stability of this treatment, its biocompatibility and influence on lens epithelial cell adhesion are in progress.

  3. Damage-free laser patterning of silicon nitride on textured crystalline silicon using an amorphous silicon etch mask for Ni/Cu plated silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, Mark S., E-mail: mbailly@asu.edu; Karas, Joseph; Jain, Harsh; Dauksher, William J.; Bowden, Stuart

    2016-08-01

    We investigate the optimization of laser ablation with a femtosecond laser for direct and indirect removal of SiN{sub x} on alkaline textured c-Si. Our proposed resist-free indirect removal process uses an a-Si:H etch mask and is demonstrated to have a drastically improved surface quality of the laser processed areas when compared to our direct removal process. Scanning electron microscope images of ablated sites show the existence of substantial surface defects for the standard direct removal process, and the reduction of those defects with our proposed process. Opening of SiN{sub x} and SiO{sub x} passivating layers with laser ablation is a promising alternative to the standard screen print and fire process for making contact to Si solar cells. The potential for small contacts from laser openings of dielectrics coupled with the selective deposition of metal from light induced plating allows for high-aspect-ratio metal contacts for front grid metallization. The minimization of defects generated in this process would serve to enhance the performance of the device and provides the motivation for our work. - Highlights: • Direct laser removal of silicon nitride (SiN{sub x}) damages textured silicon. • Direct laser removal of amorphous silicon (a-Si) does not damage textured silicon. • a-Si can be used as a laser patterned etch mask for SiN{sub x}. • Chemically patterned SiN{sub x} sites allow for Ni/Cu plating.

  4. Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

    International Nuclear Information System (INIS)

    Derhacobian, N.; Fine, P.; Walton, J.T.; Wong, Y.K.; Rossington, C.S.; Luke, P.N.

    1993-10-01

    Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, τ B , and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to τ B and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions

  5. Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells

    Czech Academy of Sciences Publication Activity Database

    Stuckelberger, J.; Nogay, G.; Wyss, P.; Jeangros, Q.; Allebe, Ch.; Debrot, F.; Niquille, X.; Ledinský, Martin; Fejfar, Antonín; Despeisse, M.; Haug, F.J.; Löper, P.; Ballif, C.

    2016-01-01

    Roč. 158, Dec (2016), s. 2-10 ISSN 0927-0248 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : surface passivation * passivating contact * nanostructure * silicon oxide * nanocrystalline * microcrystalline * poly-silicon * crystallization * Raman * transmission line measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.784, year: 2016

  6. Friction-induced nanofabrication on monocrystalline silicon

    International Nuclear Information System (INIS)

    Yu Bingjun; Qian Linmao; Yu Jiaxin; Zhou Zhongrong; Dong Hanshan; Chen Yunfei

    2009-01-01

    Fabrication of nanostructures has become a major concern as the scaling of device dimensions continues. In this paper, a friction-induced nanofabrication method is proposed to fabricate protrusive nanostructures on silicon. Without applying any voltage, the nanofabrication is completed by sliding an AFM diamond tip on a sample surface under a given normal load. Nanostructured patterns, such as linear nanostructures, nanodots or nanowords, can be fabricated on the target surface. The height of these nanostructures increases rapidly at first and then levels off with the increasing normal load or number of scratching cycles. TEM analyses suggest that the friction-induced hillock is composed of silicon oxide, amorphous silicon and deformed silicon structures. Compared to the tribochemical reaction, the amorphization and crystal defects induced by the mechanical interaction may have played a dominating role in the formation of the hillocks. Similar to other proximal probe methods, the proposed method enables fabrication at specified locations and facilitates measuring the dimensions of nanostructures with high precision. It is highlighted that the fabrication can also be realized on electrical insulators or oxide surfaces, such as quartz and glass. Therefore, the friction-induced method points out a new route in fabricating nanostructures on demand.

  7. One-step Maskless Fabrication and Optical Characterization of Silicon Surfaces with Antireflective Properties and a White Color Appearance

    DEFF Research Database (Denmark)

    Sun, Ling; Feidenhans'l, Nikolaj Agentoft; Telecka, Agnieszka

    2016-01-01

    We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% withou...... milky white color....

  8. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  9. Surface layers in the 4A group metals with implanted silicon ions

    International Nuclear Information System (INIS)

    Kovneristyj, Yu.K.; Vavilova, V.V.; Krasnopevtsev, V.V.; Galkin, L.N.; Kudyshev, A.N.; Klechkovskaya, V.V.

    1987-01-01

    A study was made on the change of structure and phase composition of fine near the surface layers of 4A group metals (Hf, Zr, Ti) during ion Si implantation and successive thermal annealing at elevated temperatures. Implantation of Si + ions with 30 or 16 keV energy in Ti, Zr and Hf at room temperature results to amorphization of metal surface layer. The surface hafnium and titanium layer with implanted Si atoms due to interaction with residual atmosphere of oxygen turns during annealing at 870 K to amorphous solid solution of HfO 2m or TiO 2 with Si, preventing further metal oxidation; layers of amorphous alloy are characterized by thermal stability up to 1270 K. Oxidation of the surface amorphous layer in residual oxygen atmosphere and its crystallization in ZrO 2 take place in result of Zr annealing with implanted Si ions at temperature not exceeding 870 K. Similar phenomena are observed in the case of hafnium with implanted oxygen ions or small dose of silicon ions. Thermal stability of amorphous layers produced during ion implantation of Si in Ti, Zr and Hf corresponds to scale resistance of monolithic alloys in Ti-Si, Zr-Si and Hf-Si systems

  10. UV lithography-based protein patterning on silicon: Towards the integration of bioactive surfaces and CMOS electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lenci, S., E-mail: silvia.lenci@iet.unipi.it [Dipartimento di Ingegneria dell' Informazione, via G.Caruso 16, Pisa I-56122 (Italy); Tedeschi, L. [Istituto di Fisiologia Clinica - CNR, via G. Moruzzi 1, Pisa I-56124 (Italy); Pieri, F. [Dipartimento di Ingegneria dell' Informazione, via G.Caruso 16, Pisa I-56122 (Italy); Domenici, C. [Istituto di Fisiologia Clinica - CNR, via G. Moruzzi 1, Pisa I-56124 (Italy)

    2011-08-01

    A simple and fast methodology for protein patterning on silicon substrates is presented, providing an insight into possible issues related to the interaction between biological and microelectronic technologies. The method makes use of standard photoresist lithography and is oriented towards the implementation of biosensors containing Complementary Metal-Oxide-Semiconductor (CMOS) conditioning circuitry. Silicon surfaces with photoresist patterns were prepared and hydroxylated by means of resist- and CMOS backend-compatible solutions. Subsequent aminosilane deposition and resist lift-off in organic solvents resulted into well-controlled amino-terminated geometries. The discussion is focused on resist- and CMOS-compatibility problems related to the used chemicals. Some samples underwent gold nanoparticle (Au NP) labeling and Scanning Electron Microscopy (SEM) observation, in order to investigate the quality of the silane layer. Antibodies were immobilized on other samples, which were subsequently exposed to a fluorescently labeled antigen. Fluorescence microscopy observation showed that this method provides spatially selective immobilization of protein layers onto APTES-patterned silicon samples, while preserving protein reactivity inside the desired areas and low non-specific adsorption elsewhere. Strong covalent biomolecule binding was achieved, giving stable protein layers, which allows stringent binding conditions and a good binding specificity, really useful for biosensing.

  11. Transitions from nanoscale to microscale dynamic friction mechanisms on polyethylene and silicon surfaces

    International Nuclear Information System (INIS)

    Niederberger, S.; Gracias, D. H.; Komvopoulos, K.; Somorjai, G. A.

    2000-01-01

    The dynamic friction mechanisms of polyethylene and silicon were investigated for apparent contact pressures and contact areas in the ranges of 8 MPa-18 GPa and 17 nm2-9500 μm2, respectively. Friction force measurements were obtained with a friction force microscope, scanning force microscope, and pin-on-disk tribometer. Silicon and diamond tips with a nominal radius of curvature between 100 nm and 1.2 mm were slid against low- and high-density polyethylene and Si(100) substrates under contact loads in the range of 5 nN-0.27 N. The low friction coefficients obtained with all material systems at low contact pressures indicated that deformation at the sliding interface was primarily elastic. Alternatively, the significantly higher friction coefficients at higher contact pressures suggested that plastic deformation was the principal mode of deformation. The high friction coefficients of polyethylene observed with large apparent contact areas are interpreted in terms of the microstructure evolution involving the rearrangement of crystalline regions (lamellae) nearly parallel to the sliding direction, which reduces the surface resistance to plastic shearing. Such differences in the friction behavior of polyethylene resulting from stress-induced microstructural changes were found to occur over a relatively large range of the apparent contact area. The friction behavior of silicon was strongly affected by the presence of a native oxide film. Results are presented to demonstrate the effect of the scale of deformation at the contact interface on the dynamic friction behavior and the significance of contact parameters on the friction measurements obtained with different instruments. (c) 2000 American Institute of Physics

  12. Enhancement of silicon using micro-patterned surfaces of thin films

    Directory of Open Access Journals (Sweden)

    E Kaivosoja

    2010-04-01

    Full Text Available Micro-textured biomaterials might enhance cytocompatibility of silicon-based micro-electro-mechanical system (bio-MEMS dummies. Photolithography-physical vapour deposition was used to produce diamond-like carbon (DLC or Ti squares and circles on silicon, and also their inverse replicas; then DLC and Ti were compared for their guiding potential, using a SaOS-2 cell model. Scanning electron microscopy at 48 hours indicated cells were well-spread on large-sized patterns (several cells on one pattern and assumed the geometrical architecture of underlying features. Medium-sized patterns (slightly smaller than solitary indicator cells were inhabited by singular cells, which stretched from one island to another, assuming longitudinal or branching morphologies. On small-sized patterns (much smaller than individual cells cells covered large micro-textured areas, but cellular filopodia bypassed the bare silicon. Immunofluorescence and confocal laser scanning microscopy indicated that the actin cytoskeleton and vinculin-containing adhesion junctions were present on the patterned areas, but not on the bare silicon. Cell density/coverage disclosed a 3.4-3.7-fold preference for the biomaterial patterns over silicon substrate (p < 0.001. Differences in the cellular response between materials were lost at 120 hours when cells were confluent. The working hypothesis was proven; enhancement by micro-patterning depends on the pattern size, shape and material and can be used to improve biocompatibility during the initial integration phase of the device.

  13. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    Science.gov (United States)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  14. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  15. Uranium Mill Tailings Remedial Action Program. Partial radiological survey of Shiprock vicinity property SH14 Shiprock, New Mexico, October-November 1982

    International Nuclear Information System (INIS)

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-06-01

    As part of a detailed radiological assessment of the vicinity properties at Shiprock, a comprehensive survey of the vicinity property designated as SH14 was initiated during October and November 1982. At the time of the survey, vicinity property SH14 consisted of about 20 acres of open lands to the northeast of, and directly across the San Juan River from, the upper tailings pile at Shiprock. The lands consisted of a sandy soil, sparsley covered with trees and other vegetation. The partial assessment activities included determination of surface radiation levels on about a 2-meter grid spacing through direct instrument surveys and analysis of a soil sample collected from the area. The partial radiological assessment indicated elevated levels of radioactivity at several general areas within the open lands. Radiochemical analyses of the soil sample collected from one of these areas indicated a radium concentration of 18 +- 2 pCi/g, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface, as specified in the EPA Standard (40 CFR 192). Subsurface soil sampling was not conducted, and thus the vertical extent of the radiological contamination is not known. Further measurements required to completely determine and accurately report the radiological status of this vicinity property, including additional direct instrument surveys, collection and analyses of soil samples, and the establishment of a 200-ft grid system, were planned for the final phase of this assessment. However, that phase of the program was cancelled before these measurements were accomplished. The total extent of the radiological contamination of vicinity property SH14 is presently unknown. Nonetheless, since the surface soil contamination levels exceeded the limits specified in the EPA Standard, remedial action for this vicinity site should be considered

  16. Silicon-micromachined microchannel plates

    International Nuclear Information System (INIS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ∼0.5 to ∼25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented

  17. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  18. Calcinosis Cutis Long after Rhinoplasty with Silicone

    Directory of Open Access Journals (Sweden)

    Yuki Honda

    2014-12-01

    Full Text Available Rhinoplasty is a plastic surgery procedure to reconstruct the nose. Silicone alloplastic materials are most widely used as implants for rhinoplasty, but calcification on the surface occurs with long-term usage. Herein, we report a case of gruel-like calcification approximately 50 years after silicone implant rhinoplasty. In this case, calcification on the silicone surface might have transformed into gruel-like deposits, which presented as a subcutaneous mass at the dorsal area of the nose. The precise mechanism is unclear; a pH change in the tissue might have occurred during the process of inflammation, leading to the dissolution of calcified deposits.

  19. Changes in vicine, con vicine and oligosaccharides contents during germination of broad bean

    International Nuclear Information System (INIS)

    Al-Kaisey, T. M.; Al-Hadithi, R. T.; Sahead, A. B.

    1997-01-01

    Seeds of three cultivars of broad beans were subjected to germination at 25 deg. for 24, 48 and 72 hours. Also, three sets of experiments were germinated for 48 hour se and each one was subjected to different concentrations of gibberellin (100), 200 ppm) as growth regulator. Significant levels of variation were found in the contents of vicine and con vicine during seeds germination. Meanwhile, a complete disappearance of raffinose, scythe's and verbascose (the flatus factors in broad beans) were observed. No significant differences were found in the non-flatulent sugars, protein, ash and oil in the un germinated and germinated seed. (authors). 19 refs., 3 tabs

  20. Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing

    International Nuclear Information System (INIS)

    Sato, Keisuke; Hirakuri, Kenji

    2006-01-01

    We report an annealing effect on electrical and luminescence properties of a red electroluminescent device consisting of nanocrystalline silicon (nc-Si). The red luminescence was generated by flowing the forward current into the device at a low threshold direct current (DC) forward voltage with a rise of annealing temperature up to 500 deg. C. Moreover, the luminescence of the device annealed at 500 deg. C was more intense than that of the device annealed at 200 deg. C or less under the same forward current density, because of the injection of a large quantity of carriers to the radiative recombination centers at the nc-Si surface vicinity. These were attained by a low resistivity of indium tin oxide (ITO) electrode and good contact at the ITO electrode/luminous layer interface region by the annealing treatment. The above results indicated that the annealing treatment of the device is effective for the realization of high luminance due to the improvement in the injection efficiency of carriers to the radiative recombination centers