WorldWideScience

Sample records for vicarious radiometric calibration

  1. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration

    Science.gov (United States)

    Barsi, Julia A.; Shott, John R.; Raqueno, Nina G.; Markham, Brian L.; Radocinski, Robert G.

    2014-01-01

    Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq m·sr·micrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq m·sr·micrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have

  2. Landsat-8 Thermal Infrared Sensor (TIRS Vicarious Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Julia A. Barsi

    2014-11-01

    Full Text Available Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS, a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively. They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI, also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL and the Rochester Institute of Technology (RIT, both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 and 1.67 K at 300 K. Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed

  3. In-flight absolute calibration of radiometric sensors over dark targets using vicarious methods

    Science.gov (United States)

    Parada, Robert John, Jr.

    1997-10-01

    The ability to conduct in-flight, absolute radiometric calibrations of ocean color sensors will determine their usefulness in the decade to come. On-board calibration systems are often integrated into the overall design of such sensors and have claimed uncertainty levels below 5%. Independent means of system calibration are needed to confirm that the sensor is accurately calibrated. Vicarious (i.e. ground-referencing) methods are an attractive way to conduct this verification. This research describes the development of in-flight, absolute radiometric calibration methods which reference dark (i.e. low-reflectance) sites. The high sensitivity of ocean color sensors results in saturation over bright surfaces. Low-reflectance targets, such as water bodies, are therefore required for their vicarious calibration. Sensitivity analyses of the reflectance-based and radiance-based techniques, when applied to a water target, are performed. Uncertainties in atmospheric parameters, surface reflectance measurements, and instrument characterization are evaluated for calibrations of a representative ocean color sensor. For a viewing geometry near the sun glint region, reflectance-based uncertainties range between 1.6% and 2.3% for visible and near-IR wavelengths; radiance-based uncertainties range between 6.8% and 20.5%. These studies indicate that better characterization of aerosol parameters is desired and that radiometer pointing accuracy must be improved to make the radiance-based method useful. The uncertainty estimates are evaluated using data from a field campaign at Lake Tahoe in June, 1995. This lake is located on the California-Nevada border and has optical characteristics similar to oceanic waters. Aircraft-based radiance data and surface measurements of water reflectance are used to calibrate visible and near infrared bands of the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS). The vicariously-derived calibration coefficients are compared to those obtained

  4. Ground-based vicarious radiometric calibration of Landsat 7 ETM+ and Terra MODIS using an automated test site

    Science.gov (United States)

    Czapla-Myers, J.; Leisso, N.

    2010-12-01

    The Remote Sensing Group at the University of Arizona has operated the Radiometric Calibration Test Site (RadCaTS) at Railroad Valley, Nevada, since 2004. It is an approach to ground-based vicarious calibration that does not require on-site personnel to make surface and atmospheric measurements during a satellite overpass. It was originally developed in 2002 in an attempt to increase the amount of data collected throughout the year while maintaining the accuracy of in-situ measurements. RadCaTS currently consists of four ground-viewing radiometers to measure surface reflectance, a Cimel sun photometer to make atmospheric measurements, and a weather station to measure ambient conditions. The data from these instruments are used in MODTRAN 5 to determine the top-of-atmosphere (TOA) spectral radiance for a given overpass time, and the results are compared to the sensor under test. The work presented here describes the RadCaTS instrumentation suite and automated processing scheme used to determine the surface reflectance and TOA spectral radiance. The instruments used to measure surface and atmospheric properties are presented, followed by a discussion of their spatial layout and their radiometric calibration. The RadCaTS ground-based results are compared to those from Aqua and Terra MODIS overpasses in 2008, and Landsat 7 ETM+ overpasses in 2009.

  5. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Alfonso Torres-Rua

    2017-06-01

    Full Text Available In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites, a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called “AggieAir”, developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon” and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm, it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m2/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m2/sr

  6. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature.

    Science.gov (United States)

    Torres-Rua, Alfonso

    2017-06-26

    In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called "AggieAir", developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon") and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m²/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m²/sr/um) for all s

  7. Absolute Radiometric Calibration of KOMPSAT-3A

    OpenAIRE

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-01-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a rad...

  8. MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols. Chapter 2

    Science.gov (United States)

    Clark, Dennis K.; Yarbrough, Mark A.; Feinholz, Mike; Flora, Stephanie; Broenkow, William; Kim, Yong Sung; Johnson, B. Carol; Brown, Steven W.; Yuen, Marilyn; Mueller, James L.

    2003-01-01

    The Marine Optical Buoy (MOBY) is the centerpiece of the primary ocean measurement site for calibration of satellite ocean color sensors based on independent in situ measurements. Since late 1996, the time series of normalized water-leaving radiances L(sub WN)(lambda) determined from the array of radiometric sensors attached to MOBY are the primary basis for the on-orbit calibrations of the USA Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Japanese Ocean Color and Temperature Sensor (OCTS), the French Polarization Detection Environmental Radiometer (POLDER), the German Modular Optoelectronic Scanner on the Indian Research Satellite (IRS1-MOS), and the USA Moderate Resolution Imaging Spectrometer (MODIS). The MOBY vicarious calibration L(sub WN)(lambda) reference is an essential element in the international effort to develop a global, multi-year time series of consistently calibrated ocean color products using data from a wide variety of independent satellite sensors. A longstanding goal of the SeaWiFS and MODIS (Ocean) Science Teams is to determine satellite-derived L(sub WN)(labda) with a relative combined standard uncertainty of 5 %. Other satellite ocean color projects and the Sensor Intercomparison for Marine Biology and Interdisciplinary Oceanic Studies (SIMBIOS) project have also adopted this goal, at least implicitly. Because water-leaving radiance contributes at most 10 % of the total radiance measured by a satellite sensor above the atmosphere, a 5 % uncertainty in L(sub WN)(lambda) implies a 0.5 % uncertainty in the above-atmosphere radiance measurements. This level of uncertainty can only be approached using vicarious-calibration approaches as described below. In practice, this means that the satellite radiance responsivity is adjusted to achieve the best agreement, in a least-squares sense, for the L(sub WN)(lambda) results determined using the satellite and the independent optical sensors (e.g. MOBY). The end result of this approach is to

  9. Campaign for vicarious calibration of SumbandilaSat in Argentina

    CSIR Research Space (South Africa)

    Vhengani, LM

    2011-07-01

    Full Text Available to estimate Top-Of-Atmosphere (TOA) spectral radiance. A vicarious calibration field campaign was executed in Argentina to support monitoring of the radiometric response of the multispectral imager aboard SumbandilaSat. Results obtained using two Radiative...

  10. Vicarious calibration of KOMPSAT-3 AEISS

    Science.gov (United States)

    Ahn, Hoyong; Kim, Jinsoo; Jin, Cheonggil; Choi, Chuluong

    2015-10-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3 (KOMPSAT-3) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2012 and 2014. Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3 sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. KOMPSAT-3 calibration coefficients for all bands estimated in 2012 continued to agree well with calibration coefficients estimated in 2014 (within 1.5%). The average difference in TOA reflectance between KOMPSAT-3 and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3 was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3 sensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. To overcome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor (SBAF).

  11. Bathymetry Estimations Using Vicariously Calibrated HICO Data

    Science.gov (United States)

    2013-07-16

    Process Exemplar (HOPE) algorithm, which along with other absorption and backscattering values, estimates bottom albedo and water depth. Vicarious...algorithm, which along with other absorption and backscattering values, estimates bottom albedo and water depth. Vicarious calibration uses in situ...the 1 km or 250 m spatial resolution of MODIS , this higher spatial resolution allows HICO data to be used to generate more relevant information

  12. Absolute Radiometric Calibration of KOMPSAT-3A

    Science.gov (United States)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  13. Absolute Radiometric Calibration of KOMPSAT-3A

    Directory of Open Access Journals (Sweden)

    H. Y. Ahn

    2016-06-01

    Full Text Available This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A performed by the Korea Aerospace Research Institute (KARI and the Pukyong National University Remote Sensing Group (PKNU RSG in 2015.The primary stages of this study are summarized as follows: (1 A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2 To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4. Correlations between top-of-atmosphere (TOA radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  14. Preflight and Vicarious Calibration of Hyperspectral Imagers

    National Research Council Canada - National Science Library

    Thome, K. J; Biggar, S. F

    2007-01-01

    ... of the optical elements, image quality based on the MTF of the system, stray light, spectral response, polarization sensitivity, detector-to-detector radiometric calibration in both a relative and absolute sense...

  15. Initial examination of radar imagery of optical radiometric calibration sites

    Science.gov (United States)

    Teillet, Philippe M.; Fedosejevs, Gunar; Gauthier, D.; D'Iorio, Marie A.; Rivard, B.; Budkewitsch, P.

    1995-12-01

    In-flight absolute radiometric calibration is critical for multi-temporal and multi-sensor data comparisons. In the case of vicarious calibration of optical sensors based on ground-level measurements, the test site must be well characterized in spatial, radiometric, spectral, and temporal domains. Remotely sensed data acquired at other wavelengths can contribute to a baseline understanding of ground targets and provide insight into the usefulness of such targets for in-flight calibration of optical sensors. With these considerations in mind, multi-temporal ERS-1 SAR data have been obtained for White Sands, New Mexico, and Lunar Lake and Railroad Valley playas in Nevada. This paper reports on an initial examination of these SAR image data sets and the significant pattern changes observed in the scenes. It is concluded that surface roughness, soil moisture and run-off are major factors giving rise to the observed scene characteristics.

  16. Vicarious Calibration of Beijing-1 Multispectral Imagers

    Directory of Open Access Journals (Sweden)

    Zhengchao Chen

    2014-02-01

    Full Text Available For on-orbit calibration of the Beijing-1 multispectral imagers (Beijing-1/MS, a field calibration campaign was performed at the Dunhuang calibration site during September and October of 2008. Based on the in situ data and images from Beijing-1 and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS, three vicarious calibration methods (i.e., reflectance-based, irradiance-based, and cross-calibration were used to calculate the top-of-atmosphere (TOA radiance of Beijing-1. An analysis was then performed to determine or identify systematic and accidental errors, and the overall uncertainty was assessed for each individual method. The findings show that the reflectance-based method has an uncertainty of more than 10% if the aerosol optical depth (AOD exceeds 0.2. The cross-calibration method is able to reach an error level within 7% if the images are selected carefully. The final calibration coefficients were derived from the irradiance-based data for 6 September 2008, with an uncertainty estimated to be less than 5%.

  17. Radiometric cross-calibration of KOMPSAT-3 with Landsat-8

    Science.gov (United States)

    Shin, Dongyoon; Jin, Cheonggil; Ahn, Hoyong; Choi, Chuluong

    2015-10-01

    This paper presents a radiometric cross calibration of KOMPSAT-3 AEISS based on Landsat-8 OLI. Cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event over the Libya 4 pseudo invariant calibration site (PICS) site. The spectral profile of the target comes from the near-simultaneous EO-1 Hyperion data over these sites for apply Spectral Band Adjustment Factor (SBAF). The results indicate that the Top Of Atmosphere (TOA) reflectance measurements for KOMPSAT-3 agree with Landsat-8 to within 5% after the application of SBAF. To validate radiometric coefficient, comparison TOA reflectance executed in north Virginia, USA. The difference in TOA reflectance was calculated to within a maximum ±1.55%. There was a huge improvement when the standard deviation altered from 0.1 to 0.01, when applying the SBAF. The result of radiometric coefficient presented here appear to be a good standard for maintaining the optical quality of the KOMPSAT-3, for which prelaunch, onboard, and vicarious calibration data are lacking.

  18. Results of dark target vicarious calibration using Lake Tahoe

    Science.gov (United States)

    Parada, Robert J., Jr.; Thome, Kurtis J.; Santer, Richard P.

    1997-01-01

    The ability to conduct in-flight absolute radiometric calibrations of ocean color sensors will determine their usefulness in the decade to come. On-board calibration systems are often integrated into the overall system design of such sensors and have claimed uncertainly levels from 2-3 percent, but independent means of system calibration are desirable to confirm that such systems are operating properly. Vicarious methods are an attractive means of this verification. Due to the high sensitivity of ocean color sensors, the use for bright reflectance surfaces often results in sensor saturation. Low reflectance targets, such as water bodies, should therefore be used. This paper presents the results of sensitivity studies of the reflectance- and radiance-based approaches when applied to a water target and method uncertainties for calibrations of the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS). The paper also present the results of a field campaign which took place at Lake Tahoe in June 1995. This lake represents a typical oligotrophic water body and has the advantage of being located at a high elevation where tropospheric aerosol loading is low. Aircraft-based radiance data and surface measurements of reflectance are sued to calibrate SeaWiFS- simulated bands from Advanced VIsible and Infrared Imaging Spectrometer (AVIRIS) data. Atmospheric characterization is obtained using solar extinction measurements, surface-level atmospheric pressure readings, and columnar gaseous absorber amounts at sensor overpass. The measured radiances are transferred to the top of the atmosphere using a radiative transfer code which fully computes the contributions of multiple scattering by the atmosphere. The results are compared to those obtained form a laboratory-based calibration of AVIRIS.

  19. Based on Narcissus of radiometric calibration technology

    Science.gov (United States)

    Jin, Libing; Tang, Shaofan; Liu, Jianfeng; Peng, Honggang

    2015-08-01

    Thermal radiation is an inherent property of all objects. Generally, it is believed that the body, which temperature is above absolute zero, can keep generating infrared radiation. Infrared remote sensing, using of satellite-borne or airborne sensors, collects infrared information to identify the surface feature and inversion of surface parameters, temperature, etc. In order to get more accurately feature information, quantitative measurement is required. Infrared radiometric calibration is one of the key technologies of quantitative infrared remote sensing. Most high-resolution thermal imaging systems are cooling. For the infrared optical system which is having a cooled detector, there are some special phenomenons. Since the temperature of the detector's photosensitive surface is generally low, which is very different from system temperature, it is a very strong cold radiation source. Narcissus refers to the case that the cooled detector can "see" its own reflecting image, which may affect the image quality of infrared system seriously. But for radiometric calibration of satellite-borne infrared camera, it can sometimes take advantage of the narcissus instead of cold cryogenic radiometric calibration. In this paper, the use of narcissus to carry out radiometric calibration is summarized, and simulation results show the feasibility.

  20. A new methodology for in-flight radiometric calibration of the MIVIS imaging sensor

    Directory of Open Access Journals (Sweden)

    G. Lechi

    2006-06-01

    Full Text Available Sensor radiometric calibration is of great importance in computing physical values of radiance of the investigated targets, but often airborne scanners are not equipped with any in-flight radiometric calibration facility. Consequently, the radiometric calibration or airborne systems usually relies only on pre-flight and vicarious calibration or on indirect approaches. This paper introduces an experimental approach that makes use of on-board calibration techniques to perform the radiometric calibration of the CNR’s MIVIS (Multispectral Infrared and Visible Imaging Spectrometer airborne scanner. This approach relies on the use of an experimental optical test bench originally designed at Politecnico di Milano University (Italy, called MIVIS Flying Test Bench (MFTB, to perform the first On-The-Fly (OTF calibration of the MIVIS reflective spectral bands. The main task of this study is to estimate how large are the effects introduced by aircraft motion (e.g., e.m. noise or vibrations and by environment conditions (e.g., environment temperature on the radiance values measured by the MIVIS sensor during the fly. This paper describes the first attempt to perform an On-The-Fly (OTF calibration of the MIVIS reflective spectral bands (ranging from 430 nm to 2.500 nm. Analysis of results seems to point out limitations of traditional radiometric calibration methodology based only on pre-flight approaches, with important implications for data quality assessment.

  1. Radiometric Cross-Calibration of GF-4 in Multispectral Bands

    Directory of Open Access Journals (Sweden)

    Aixia Yang

    2017-03-01

    Full Text Available The GaoFen-4 (GF-4, launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD onboard HuanJing-1 (HJ or the wide field of view sensor (WFV onboard GaoFen-1 (GF-1, GF-4 also has a wide field of view, which provides challenges for cross-calibration with narrow field of view sensors, like the Landsat series. A new technique has been developed and used to calibrate HJ-1/CCD and GF-1/WFV, which is verified viable. The technique has three key steps: (1 calculate the surface using the bi-directional reflectance distribution function (BRDF characterization of a site, taking advantage of its uniform surface material and natural topographic variation using Landsat Enhanced Thematic Mapper Plus (ETM+/Operational Land Imager (OLI imagery and digital elevation model (DEM products; (2 calculate the radiance at the top-of-the atmosphere (TOA with the simulated surface reflectance using the atmosphere radiant transfer model; and (3 fit the calibration coefficients with the TOA radiance and corresponding Digital Number (DN values of the image. This study attempts to demonstrate the technique is also feasible to calibrate GF-4 multispectral bands. After fitting the calibration coefficients using the technique, extensive validation is conducted by cross-validation using the image pairs of GF-4/PMS and Landsat-8/OLI with similar transit times and close view zenith. The validation result indicates a higher accuracy and frequency than that given by the China Centre for Resources Satellite Data and Application (CRESDA using vicarious calibration. The study shows that the new technique is also quite feasible for GF-4 multispectral bands as a routine long-term procedure.

  2. Supervised Vicarious Calibration (SVC of Multi-Source Hyperspectral Remote-Sensing Data

    Directory of Open Access Journals (Sweden)

    Anna Brook

    2015-05-01

    Full Text Available Introduced in 2011, the supervised vicarious calibration (SVC approach is a promising approach to radiometric calibration and atmospheric correction of airborne hyperspectral (HRS data. This paper presents a comprehensive study by which the SVC method has been systematically examined and a complete protocol for its practical execution has been established—along with possible limitations encountered during the campaign. The technique was applied to multi-sourced HRS data in order to: (1 verify the at-sensor radiometric calibration and (2 obtain radiometric and atmospheric correction coefficients. Spanning two select study sites along the southeast coast of France, data were collected simultaneously by three airborne sensors (AisaDUAL, AHS and CASI-1500i aboard two aircrafts (CASA of National Institute for Aerospace Technology INTA ES and DORNIER 228 of NERC-ARSF Centre UK. The SVC ground calibration site was assembled along sand dunes near Montpellier and the thematic data were acquired from other areas in the south of France (Salon-de-Provence, Marseille, Avignon and Montpellier on 28 October 2010 between 12:00 and 16:00 UTC. The results of this study confirm that the SVC method enables reliable inspection and, if necessary, in-situ fine radiometric recalibration of airborne hyperspectral data. Independent of sensor or platform quality, the SVC approach allows users to improve at-sensor data to obtain more accurate physical units and subsequently improved reflectance information. Flight direction was found to be important, whereas the flight altitude posed very low impact. The numerous rules and major outcomes of this experiment enable a new standard of atmospherically corrected data based on better radiometric output. Future research should examine the potential of SVC to be applied to super-and-hyperspectral data obtained from on-orbit sensors.

  3. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  4. A New Approach for Radiometric Cross Calibration of Satellite-borne Radiometers

    National Research Council Canada - National Science Library

    Qu, John J; Hao, Xianjun; Hauss, Bruce; Wang, Chunming; Privette, Jeffrey

    2005-01-01

    Approaches for establishing the absolute calibration of a newly deployed, satellite-borne radiometer have varied from aircraft under flights with previously calibrated sensors to vicarious calibration...

  5. Vicarious calibration of KOMPSAT-3A with ground tarp and meteorological measurements

    Science.gov (United States)

    Yeom, J. M.

    2015-12-01

    The KOrea Multi-Purpose SATellite-3 (KOMPSAT-3A) developed by Korea Aerospace Research Institute (KARI) is the first sub-meter optical satellite of South Korea with IR sensor. This paper describe the first radiometric characteristics of KOMPSAT-3A by carrying out vicarious calibration with reference to well-known surface tarps. The field campaigns are performed to measure spectral of surface tarps with hand-held ASD spectroradiometer. When performing field measurement, KOMPSAT-3A multispectral images are acquired at same time to reduce atmospheric and observation geometric discrepancies. The estimated spectral of surface reflectance from tarps are used as input values of 6S radiative transfer model to predict radiance at sensor level. The present study, 6S radiative transfer model is used by inputting various initial parameters such as spectral response function of KOMPSAT-3A, atmospheric condition, and relative sensor-target-solar geometry. In the case of atmospheric products, multifilter rotating shadowband radiometer (MFRSR) measurements and MODIS atmospheric products such as aerosol optical depth, water vapor and amount of ozone are used for interpreting solar radiation scattering and absorption effects. For first field campaign, the gain coefficients from each of multispectral bands are estimated by comparing predicted radiance at sensor level and digital number (DN) of KOMPSAT-3A based on leaner least square fit. To analysis firstly estimated radiometric calibration, surface reflectance of tarps in second field campaign is used as reference target to validate its radiometric characteristics. And second field campaign measurements are also used to upgrade KOMPSAT-3A DN to radiance coefficients. Reliable radiometric values are suggested by using surface tarps, MFRSR and MODIS products, indicating those information are useful for KOMPSAT-3A user group for continuous variables of quantitative applications.

  6. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    Science.gov (United States)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  7. Accuracy assessment for the radiometric calibration of imaging sensors using preflight techniques relying on the sun as a source

    Science.gov (United States)

    Thome, K.; Czapla-Myers, J.; Kuester, M.; Anderson, N.

    2008-08-01

    The Remote Sensing Group (RSG) at the University of Arizona has performed high-accuracy radiometric calibration in the laboratory for more than 20 years in support of vicarious calibration of space-borne and airborne imaging sensors. Typical laboratory calibration relies on lamp-based sources which, while convenient to operate and control, do not simulate the solar spectrum that is the basic energy source for many of the imaging systems. Using the sun as a source for preflight radiometric calibration reduces uncertainties caused by the spectral mismatch between the preflight and inflight calibration, especially in the case in which a solar diffuser is the inflight calibration method. Difficulties in using the sun include varying atmospheric conditions, changing solar angle during the day and with season, and ensuring traceability to national standards. This paper presents several approaches using the sun as a radiometric calibration source coupled with the expected traceable accuracies for each method. The methods include direct viewing of the solar disk with the sensor of interest, illumination of the sensor's inflight solar diffuser by the sun, and illumination of an external diffuser that is imaged by the sensor. The results of the error analysis show that it is feasible to achieve preflight calibration using the sun as a source at the same level of uncertainty as those of lamp-based approaches. The error analysis is evaluated and compared to solar-radiation-based calibrations of one of RSG's laboratory-grade radiometers.

  8. Radiometric Calibration of Earth-Observing Sensors Using the Radiometric Calibration Test Site (RadCaTS)

    Science.gov (United States)

    Czapla-Myers, J.; Anderson, N. J.; Thome, K. J.; Biggar, S. F.

    2014-12-01

    The Remote Sensing Group (RSG) of the College of Optical Sciences at the University of Arizona uses the reflectance-based approach to perform the absolute radiometric calibration of such sensors as Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, Terra and Aqua MODIS, ASTER, RapidEye, and others. The reflectance-based approach requires that personnel be present at a test site during the sensor overpass, so the Radiometric Calibration Test Site (RadCaTS) was developed in order to capture data during every possible overpass, which assists in the temporal trending of the radiometric calibration of earth-observing sensors. The number of earth-observing sensors is rapidly increasing in recent years, and RadCaTS provides the ability to radiometrically calibrate them without the requirement of frequent field campaigns. The 2013 launch of Landsat 8 provides a unique opportunity for RadCaTS in that it is being used to supplement the in situ measurements by RSG ground personnel, and it will be used throughout the lifetime of the Landsat 8 mission. This allows more data to be collected throughout the year, and it also allows the accuracy and uncertainty of RadCaTS to be analyzed. The current top-of-atmosphere (TOA) spectral radiance uncertainty of the reflectance-based approach is ~2.6% in the mid-visible region of the spectrum, and current work indicates that the uncertainty of RadCaTS in TOA spectral radiance is ~3-4%. This work presents the radiometric calibration results of RadCaTS for a variety of sensors such as Landsat 7 ETM+, Landsat 8 OLI, Terra and Aqua MODIS, MISR, ASTER, and Suomi NPP VIIRS.

  9. Vicarious calibration of the multiviewing channel polarisation imager (3MI) of the EUMETSAT Polar System-Second Generation (EPS-SG)

    Science.gov (United States)

    Marbach, T.; Fougnie, B.; Lacan, A.; Schlüssel, P.

    2016-10-01

    The Multi-Viewing -Channel -Polarization Imager (3MI), planned to fly on the Metop-SG satellite as part of the EPS-SG programme in the timeframe beyond 2020, is a radiometer dedicated to aerosol and cloud characterization for climate monitoring, atmospheric composition, air quality and numerical weather prediction. The purpose of the 3MI is to provide multi-spectral (12 channels between 410 and 2130 nm), multi-polarization (-60°, 0°, and +60°), and multi-angular (10 to 14 views) images of the Earth top of atmosphere outgoing radiance. 3MI does not have an onboard calibration facility and its radiometric and geometric performance will rely on vicarious calibration. The aim of this paper is to present the state of the art of vicarious calibration methods applicable to 3MI. The 3MI measurement principle is based on the French atmospheric mission PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) heritage [1]. This allows adapting the vicarious calibration methods of the PARASOL mission to the needs of 3MI. However, the monitoring of the SWIR (short wave infrared) channels will be a new challenge for the 3MI calibration as this spectral range was not present on PARASOL. The cross-calibration with other instruments flying on the same satellite will support the calibration of 3MI. Indeed the Metop-SG payload includes two other optical instruments covering the same spectral regions. METimage and Sentinel-5 will both be equipped with on-board calibration capabilities and provide valuable measurements for vicarious calibration of 3MI. Further cross-calibration with Earth observation instruments on other satellites, will be studied.

  10. ESTIMATION OF RADIOMETRIC CALIBRATION COEFFICIENTS OF EGYPTSAT-1 SENSOR

    Directory of Open Access Journals (Sweden)

    A. H. Nasr

    2012-07-01

    Full Text Available Sensors usually must be calibrated as part of a measurement system. Calibration may include the procedure of correcting the transfer of the sensor, using the reference measurements, in such a way that a specific input-output relation can be guaranteed with a certain accuracy and under certain conditions. It is necessary to perform a calibration to relate the output signal precisely to the physical input signal (e.g., the output Digital Numbers (DNs to the absolute units of at-sensor spectral radiance. Generic calibration data associated with Egyptsat-1 sensor are not provided by the manufacturer. Therefore, this study was conducted to estimate Egyptsat-1 sensor specific calibration data and tabulates the necessary constants for its different multispectral bands. We focused our attention on the relative calibration between Egyptsat-1 and Spot-4 sensors for their great spectral similarity. The key idea is to use concurrent correlation of signals received at both sensors in the same day (i.e., sensors are observing the same phenomenon. Calibration formula constructed from Spot-4 sensor is used to derive the calibration coefficients for Egyptsat-1. A brief overview of the radiometric calibration coefficients retrieval procedures is presented. A reasonable estimate of the overall calibration coefficient is obtained. They have been used to calibrate reflectances of Egyptsat-1 sensor. Further updates to evaluate and improve the retrieved calibration data are being investigated.

  11. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    Science.gov (United States)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  12. Radiometric absolute noise-temperature measurement system features improved accuracy and calibration ease

    Science.gov (United States)

    Brown, W.; Ewen, H.; Haroules, G.

    1970-01-01

    Radiometric receiver system, which measures noise temperatures in degrees Kelvin, does not require cryogenic noise sources for routine operation. It eliminates radiometer calibration errors associated with RF attenuation measurements. Calibrated noise source is required only for laboratory adjustment and calibration.

  13. Validation of EO-1 Hyperion and Advanced Land Imager Using the Radiometric Calibration Test Site at Railroad Valley, Nevada

    Science.gov (United States)

    Czapla-Myers, Jeffrey; Ong, Lawrence; Thome, Kurtis; McCorkel, Joel

    2015-01-01

    The Earth-Observing One (EO-1) satellite was launched in 2000. Radiometric calibration of Hyperion and the Advanced Land Imager (ALI) has been performed throughout the mission lifetime using various techniques that include ground-based vicarious calibration, pseudo-invariant calibration sites, and also the moon. The EO-1 mission is nearing its useful lifetime, and this work seeks to validate the radiometric calibration of Hyperion and ALI from 2013 until the satellite is decommissioned. Hyperion and ALI have been routinely collecting data at the automated Radiometric Calibration Test Site [RadCaTS/Railroad Valley (RRV)] since launch. In support of this study, the frequency of the acquisitions at RadCaTS has been significantly increased since 2013, which provides an opportunity to analyze the radiometric stability and accuracy during the final stages of the EO-1 mission. The analysis of Hyperion and ALI is performed using a suite of ground instrumentation that measures the atmosphere and surface throughout the day. The final product is an estimate of the top-of-atmosphere (TOA) spectral radiance, which is compared to Hyperion and ALI radiances. The results show that Hyperion agrees with the RadCaTS predictions to within 5% in the visible and near-infrared (VNIR) and to within 10% in the shortwave infrared (SWIR). The 2013-2014 ALI results show agreement to within 6% in the VNIR and 7.5% in the SWIR bands. A cross comparison between ALI and the Operational Land Imager (OLI) using RadCaTS as a transfer source shows agreement of 3%-6% during the period of 2013-2014.

  14. Radiometric calibration of digital cameras using neural networks

    Science.gov (United States)

    Grunwald, Michael; Laube, Pascal; Schall, Martin; Umlauf, Georg; Franz, Matthias O.

    2017-08-01

    Digital cameras are used in a large variety of scientific and industrial applications. For most applications, the acquired data should represent the real light intensity per pixel as accurately as possible. However, digital cameras are subject to physical, electronic and optical effects that lead to errors and noise in the raw image. Temperature- dependent dark current, read noise, optical vignetting or different sensitivities of individual pixels are examples of such effects. The purpose of radiometric calibration is to improve the quality of the resulting images by reducing the influence of the various types of errors on the measured data and thus improving the quality of the overall application. In this context, we present a specialized neural network architecture for radiometric calibration of digital cameras. Neural networks are used to learn a temperature- and exposure-dependent mapping from observed gray-scale values to true light intensities for each pixel. In contrast to classical at-fielding, neural networks have the potential to model nonlinear mappings which allows for accurately capturing the temperature dependence of the dark current and for modeling cameras with nonlinear sensitivities. Both scenarios are highly relevant in industrial applications. The experimental comparison of our network approach to classical at-fielding shows a consistently higher reconstruction quality, also for linear cameras. In addition, the calibration is faster than previous machine learning approaches based on Gaussian processes.

  15. A COMPARISON OF LIDAR REFLECTANCE AND RADIOMETRICALLY CALIBRATED HYPERSPECTRAL IMAGERY

    Directory of Open Access Journals (Sweden)

    A. Roncat

    2016-06-01

    Full Text Available In order to retrieve results comparable under different flight parameters and among different flight campaigns, passive remote sensing data such as hyperspectral imagery need to undergo a radiometric calibration. While this calibration, aiming at the derivation of physically meaningful surface attributes such as a reflectance value, is quite cumbersome for passively sensed data and relies on a number of external parameters, the situation is by far less complicated for active remote sensing techniques such as lidar. This fact motivates the investigation of the suitability of full-waveform lidar as a “single-wavelength reflectometer” to support radiometric calibration of hyperspectral imagery. In this paper, this suitability was investigated by means of an airborne hyperspectral imagery campaign and an airborne lidar campaign recorded over the same area. Criteria are given to assess diffuse reflectance behaviour; the distribution of reflectance derived by the two techniques were found comparable in four test areas where these criteria were met. This is a promising result especially in the context of current developments of multi-spectral lidar systems.

  16. The Ground-Based Absolute Radiometric Calibration of Landsat 8 OLI

    National Research Council Canada - National Science Library

    Czapla-Myers, Jeffrey; McCorkel, Joel; Anderson, Nikolaus; Thome, Kurtis; Biggar, Stuart; Helder, Dennis; Aaron, David; Leigh, Larry; Mishra, Nischal

    2015-01-01

      This paper presents the vicarious calibration results of Landsat 8 OLI that were obtained using the reflectance-based approach at test sites in Nevada, California, Arizona, and South Dakota, USA...

  17. Exploring regional adjustment of coastal VIIRS by repurposing on-orbit vicarious calibration methodology

    Science.gov (United States)

    Bowers, J.; Arnone, R. A.; Fargion, G. S.; Ladner, S. D.; Lawson, A.; Martinolich, P.

    2012-12-01

    NASA ocean color scientists have established a methodology for vicarious calibration of ocean color sensors using the Marine Optical Buoy (MOBY). This system level calibration forces agreement between remotely sensed water leaving radiance (Lt) and the expected in situ response (vLt). Vicarious calibration generally requires a long time series of coincident satellite and in situ data in order to establish robust calibration. Since November 2011, NRL has been using the VIIRS measured Lt and the AERONET-OC derived vLt, to monitor spectral offsets, also known as spectral gain (Lt/vLt), for the VIIRS sensor at each wavelength, guided by previously established techniques. In the absence of a long time series, we have established practicable offsets to explore applying blue water gains established at the MOBY site and coastal water gains from the WaveCis AERONET-OC site in the Gulf of Mexico.

  18. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration.

    Science.gov (United States)

    Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas

    2015-11-06

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  19. On-orbit radiometric validation and field-of-view calibration of spaceborne microwave sounding instruments

    Science.gov (United States)

    Blackwell, William J.; Bickmeier, Laura J.; Jairam, Laura G.; Leslie, R. Vincent

    2008-12-01

    Two calibration/validation efforts planned for current and future spaceborne microwave sounding instruments will be presented. First, the NPOESS Aircraft Sounder Testbed-Microwave (NAST-M) airborne sensor is used to directly validate the microwave radiometers (AMSU and MHS) on several operational satellites. Comparison results for underflights of the Aqua, NOAA, and MetOp-A satellites will be shown. Second, a potential approach will be presented for on-orbit field-of-view (FOV) calibration of the Advanced Technology Microwave Sounder (ATMS). A variety of proposed spacecraft maneuvers that could facilitate the characterization of the radiometric boresight of all 22 ATMS channels will be discussed. Radiance observations from the NAST-M airborne sensor can be used to directly validate the radiometric performance of spaceborne sensors. NAST-M includes a total of four spectrometers, with three operating near the oxygen lines at 50-57, 118.75, and 424.76 GHz, and a fourth spectrometer centered on the water vapor absorption line at 183.31 GHz. All four feedhorns are co-located, have 3-dB (full-width at half-maximum) beamwidths of 7.5° (translating to 2.5-km nominal pixel diameter at nadir incidence), and are directed at a single mirror that scans cross-track beneath the aircraft with a nominal swath width of 100 km. We will present results for two recent validation efforts: 1) the Pacific THORpex (THe Observing-system Research and predictability experiment) Observing System Test (PTOST 2003, Honolulu, HI) and 2) the Joint Airborne IASI Validation Experiment (JAIVEx 2007, Houston, TX). Radiance differences between the NAST-M sensor and the Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sensor (MHS) were found to be less than 1K for most channels. Comparison results for ocean underflights of the Aqua, NOAA, and MetOp-A satellites are shown. We also present an approach for on-orbit FOV calibration of the ATMS satellite instrument using vicarious

  20. The Radiometric Calibration Network (RadCalNet): a Global Calibration and Validation Test Site Network

    Science.gov (United States)

    Czapla-Myers, J.; Bouvet, M.; Wenny, B. N.

    2016-12-01

    The Radiometric Calibration Network (RadCalNet) Working Group (WG) consists of national and academic groups from various countries who are involved in the radiometric calibration and validation of Earth-observing sensors. The current WG is composed of members from France, Italy, the Netherlands, the UK, the USA, and China. RadCalNet has been on the agenda of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) for years, and in 2014 it was formally assembled. The primary goal is to develop an SI-traceable standardized network of sites and processing protocols for the absolute radiometric calibration, Intercalibration, and validation of Earth-observing sensors. Currently, RadCalNet is composed of four instrumented test sites that are located in the USA, France, Namibia, and China. A two-year prototyping phase was used to define the architecture of RadCalNet, demonstrate the operational concept using current satellite sensors, and to provide recommendations to CEOS WGCV for the transition of RadCalNet to an operational status. The final product is planned to be a daily hyperspectral (400-2500 nm) top-of-atmosphere reflectance in 30-minute intervals for a nadir-viewing sensor at each of the four test sites. The current schedule has RadCalNet becoming operational in late 2016 or early 2017.

  1. Long-Term Stability Assessment of Sonoran Desert for Vicarious Calibration of GOES-R

    Science.gov (United States)

    Kim, W.; Liang, S.; Cao, C.

    2012-12-01

    Vicarious calibration refers to calibration techniques that do not depend on onboard calibration devices. Although sensors and onboard calibration devices undergo rigorous validation processes before launch, performance of sensors often degrades after the launch due to exposure to the harsh space environment and the aging of devices. Such in-flight changes of devices can be identified and adjusted through vicarious calibration activities where the sensor degradation is measured in reference to exterior calibration sources such as the Sun, the Moon, and the Earth surface. Sonoran desert is one of the best calibration sites located in the North America that are available for vicarious calibration of GOES-R satellite. To accurately calibrate sensors onboard GOES-R satellite (e.g. advanced baseline imager (ABI)), the temporal stability of Sonoran desert needs to be assessed precisely. However, short-/mid-term variations in top-of-atmosphere (TOA) reflectance caused by meteorological variables such as water vapor amount and aerosol loading are often difficult to retrieve, making the use of TOA reflectance time series for the stability assessment of the site. In this paper, we address this issue of normalization of TOA reflectance time series using a time series analysis algorithm - seasonal trend decomposition procedure based on LOESS (STL) (Cleveland et al, 1990). The algorithm is basically a collection of smoothing filters which leads to decomposition of a time series into three additive components; seasonal, trend, and remainder. Since this non-linear technique is capable of extracting seasonal patterns in the presence of trend changes, the seasonal variation can be effectively identified in the time series of remote sensing data subject to various environmental changes. The experiment results performed with Landsat 5 TM data show that the decomposition results acquired for the Sonoran Desert area produce normalized series that have much less uncertainty than those

  2. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Alireza G. Kashani

    2015-11-01

    Full Text Available In addition to precise 3D coordinates, most light detection and ranging (LIDAR systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  3. Vicarious calibration campaign in Argentina for radiometric calibration of a multispectral imager onboard sumbandila satellite

    CSIR Research Space (South Africa)

    Griffith, DJ

    2011-07-01

    Full Text Available Espaciales (CONAE), Centro de Investigaciones ?pticas (CIOP), from Consejo Nacional deInvestigaciones Cient?ficas y T?cnicas (CONICET) and Comisi?n de Investigaciones Cient?ficas de la Provincia de Buenos Aires (CIC) Facultad de Ciencias Agrarias y... Cient?ficas de la Provincia de Buenos Aires (CIC) Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (FCAyF, UNLP) in Argentina for help in our Argentina field campaign. The authors thank the CSIR, DST and CONAE for funding...

  4. GALILEO SSI/IDA RADIOMETRICALLY CALIBRATED IMAGES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Galileo Orbiter SSI radiometrically calibrated images of the asteroid 243 Ida, created using ISIS software and assuming nadir pointing. This...

  5. Inflight Radiometric Calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC)

    Science.gov (United States)

    Howett, C. J. A.; Parker, A. H.; Olkin, C. B.; Reuter, D. C.; Ennico, K.; Grundy, W. M.; Graps, A. L.; Harrison, K. P.; Throop, H. B.; Buie, M. W.; hide

    2016-01-01

    We discuss two semi-independent calibration techniques used to determine the inflight radiometric calibration for the New Horizons Multi-spectral Visible Imaging Camera (MVIC). The first calibration technique compares the measured number of counts (DN) observed from a number of well calibrated stars to those predicted using the component-level calibration. The ratio of these values provides a multiplicative factor that allows a conversation between the preflight calibration to the more accurate inflight one, for each detector. The second calibration technique is a channel-wise relative radiometric calibration for MVIC's blue, near-infrared and methane color channels using Hubble and New Horizons observations of Charon and scaling from the red channel stellar calibration. Both calibration techniques produce very similar results (better than 7% agreement), providing strong validation for the techniques used. Since the stellar calibration described here can be performed without a color target in the field of view and covers all of MVIC's detectors, this calibration was used to provide the radiometric keyword values delivered by the New Horizons project to the Planetary Data System (PDS). These keyword values allow each observation to be converted from counts to physical units; a description of how these keyword values were generated is included. Finally, mitigation techniques adopted for the gain drift observed in the near-infrared detector and one of the panchromatic framing cameras are also discussed.

  6. Radiometric Calibration of Mars HiRISE High Resolution Imagery Based on Fpga

    Science.gov (United States)

    Hou, Yifan; Geng, Xun; Xing, Shuai; Tang, Yonghe; Xu, Qing

    2016-06-01

    Due to the large data amount of HiRISE imagery, traditional radiometric calibration method is not able to meet the fast processing requirements. To solve this problem, a radiometric calibration system of HiRISE imagery based on field program gate array (FPGA) is designed. The montage gap between two channels caused by gray inconsistency is removed through histogram matching. The calibration system is composed of FPGA and DSP, which makes full use of the parallel processing ability of FPGA and fast computation as well as flexible control characteristic of DSP. Experimental results show that the designed system consumes less hardware resources and the real-time processing ability of radiometric calibration of HiRISE imagery is improved.

  7. South African initiative for pre-flight radiometric calibration of satellite imagers

    CSIR Research Space (South Africa)

    Griffith, D

    2009-07-01

    Full Text Available or the UUT to the collimated beam coming from the monochromator. m) A mounting region for the UUT. Calibration measurements are automated using LabView. Figure 1: Schematic of Spectral Calibration Bench 3.2. Radiometric Modeling The relative spectral...

  8. On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model.

    Science.gov (United States)

    Werdell, P Jeremy; Bailey, Sean W; Franz, Bryan A; Morel, André; McClain, Charles R

    2007-08-10

    Recent advances in global biogeochemical research demonstrate a critical need for long-term ocean color satellite data records of consistent high quality. To achieve that quality, spaceborne instruments require on-orbit vicarious calibration, where the integrated instrument and atmospheric correction system is adjusted using in situ normalized water-leaving radiances, such as those collected by the marine optical buoy (MOBY). Unfortunately, well-characterized time-series of in situ data are scarce for many historical satellite missions, in particular, the NASA coastal zone color scanner (CZCS) and the ocean color and temperature scanner (OCTS). Ocean surface reflectance models (ORMs) accurately reproduce spectra observed in clear marine waters, using only chlorophyll a (C(a)) as input, a measurement for which long-term in situ time series exist. Before recalibrating CZCS and OCTS using modeled radiances, however, we evaluate the approach with the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS). Using annual C(a) climatologies as input into an ORM, we derive SeaWiFS vicarious gains that differ from the operational MOBY gains by less than +/-0.9% spectrally. In the context of generating decadal C(a) climate data records, we quantify the downstream effects of using these modeled gains by generating satellite-to-in situ data product validation statistics for comparison with the operational SeaWiFS results. Finally, we apply these methods to the CZCS and OCTS ocean color time series.

  9. Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters

    Science.gov (United States)

    2012-06-08

    T.; Desa , E.; Mascarenhas, A.; Matondkar, S.G.P.; Naik, P.; Nayak S.R. Cross Calibration of IRS-P4 OCM Satellite Sensor. In Proceedings of SPIE, Goa...II vicarious techniques, Appl. Opt. 2001, 40, 6701–6718. Remote Sens. 2012, 4 1739 23. Suresh, T.; Desa , E.; Mascarenhas, A.; Matondkar

  10. Initial Radiometric Characteristics of KOMPSAT-3A Multispectral Imagery Using the 6S Radiative Transfer Model, Well-Known Radiometric Tarps, and MFRSR Measurements

    OpenAIRE

    Jong-Min Yeom; Jisoo Hwang; Jae-Heon Jung; Kwon-Ho Lee; Chang-Suk Lee

    2017-01-01

    On-orbit radiometric characterization of the multispectral (MS) imagery of the Korea Aerospace Research Institute (KARI)’s Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which was launched on 25 March 2015, was conducted to provide quantitative radiometric information about KOMPSAT-3A. During the in-orbit test (IOT), vicarious radiometric calibration of KOMPSAT-3A was performed using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model. The character...

  11. Earth Radiation Budget Experiment scanner radiometric calibration results

    Science.gov (United States)

    Lee, Robert B., III; Gibson, M. A.; Thomas, Susan; Meekins, Jeffrey L.; Mahan, J. R.

    1990-01-01

    The Earth Radiation Budget Experiment (ERBE) scanning radiometers are producing measurements of the incoming solar, earth/atmosphere-reflected solar, and earth/atmosphere-emitted radiation fields with measurement precisions and absolute accuracies, approaching 1 percent. ERBE uses thermistor bolometers as the detection elements in the narrow-field-of-view scanning radiometers. The scanning radiometers can sense radiation in the shortwave, longwave, and total broadband spectral regions of 0.2 to 5.0, 5.0 to 50.0, and 0.2 to 50.0 micrometers, respectively. Detailed models of the radiometers' response functions were developed in order to design the most suitable calibration techniques. These models guided the design of in-flight calibration procedures as well as the development and characterization of a vacuum-calibration chamber and the blackbody source which provided the absolute basis upon which the total and longwave radiometers were characterized. The flight calibration instrumentation for the narror-field-of-view scanning radiometers is presented and evaluated.

  12. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  13. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    Science.gov (United States)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  14. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.

    2014-11-01

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  15. Hierarchical Bayesian Data Analysis in Radiometric SAR System Calibration: A Case Study on Transponder Calibration with RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Björn J. Döring

    2013-12-01

    Full Text Available A synthetic aperture radar (SAR system requires external absolute calibration so that radiometric measurements can be exploited in numerous scientific and commercial applications. Besides estimating a calibration factor, metrological standards also demand the derivation of a respective calibration uncertainty. This uncertainty is currently not systematically determined. Here for the first time it is proposed to use hierarchical modeling and Bayesian statistics as a consistent method for handling and analyzing the hierarchical data typically acquired during external calibration campaigns. Through the use of Markov chain Monte Carlo simulations, a joint posterior probability can be conveniently derived from measurement data despite the necessary grouping of data samples. The applicability of the method is demonstrated through a case study: The radar reflectivity of DLR’s new C-band Kalibri transponder is derived through a series of RADARSAT-2 acquisitions and a comparison with reference point targets (corner reflectors. The systematic derivation of calibration uncertainties is seen as an important step toward traceable radiometric calibration of synthetic aperture radars.

  16. A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments

    Directory of Open Access Journals (Sweden)

    Jose Manuel Andujar Marquez

    2010-04-01

    Full Text Available This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  17. A new automatic system for angular measurement and calibration in radiometric instruments.

    Science.gov (United States)

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  18. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    Science.gov (United States)

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  19. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    Directory of Open Access Journals (Sweden)

    Zhan Li

    2016-03-01

    Full Text Available Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL, a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp, a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  20. Radiometric Cross-calibration of KOMPSAT-3A with Landsat-8

    Directory of Open Access Journals (Sweden)

    D. Y. Shin

    2016-06-01

    Full Text Available In this study, Cross calibration was conducted at the Libya 4 PICS site on 2015 using Landsat-8 and KOMPSAT-3A. Ideally a cross calibration should be calculated for each individual scene pair because on any given date the TOA spectral profile is influenced by sun and satellite view geometry and the atmospheric conditions. However, using the near-simultaneous images minimizes this effect because the sensors are viewing the same atmosphere. For the cross calibration, the calibration coefficient was calculated by comparing the at sensor spectral radiance for the same location calculated using the Landsat-8 calibration parameters in metadata and the DN of KOMPSAT-3A for the regions of interest (ROI. Cross calibration can be conducted because the satellite sensors used for overpass have a similar bandwidth. However, not all satellites have the same color filter transmittance and sensor reactivity, even though the purpose is to observe the visible bands. Therefore, the differences in the RSR should be corrected. For the cross-calibration, a calibration coefficient was calculated using the TOA radiance and KOMPSAT-3 DN of the Landsat-8 OLI overpassed at the Libya 4 Site, As a result, the accuracy of the calibration coefficient at the site was assumed to be ± 1.0%. In terms of the results, the radiometric calibration coefficients suggested here are thought to be useful for maintaining the optical quality of the KOMPSAT-3A.

  1. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors.

    Science.gov (United States)

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-22

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors' radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors' application, and as such will promote the development of Chinese satellite data.

  2. SENSOR CORRECTION AND RADIOMETRIC CALIBRATION OF A 6-BAND MULTISPECTRAL IMAGING SENSOR FOR UAV REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    J. Kelcey

    2012-07-01

    Full Text Available The increased availability of unmanned aerial vehicles (UAVs has resulted in their frequent adoption for a growing range of remote sensing tasks which include precision agriculture, vegetation surveying and fine-scale topographic mapping. The development and utilisation of UAV platforms requires broad technical skills covering the three major facets of remote sensing: data acquisition, data post-processing, and image analysis. In this study, UAV image data acquired by a miniature 6-band multispectral imaging sensor was corrected and calibrated using practical image-based data post-processing techniques. Data correction techniques included dark offset subtraction to reduce sensor noise, flat-field derived per-pixel look-up-tables to correct vignetting, and implementation of the Brown- Conrady model to correct lens distortion. Radiometric calibration was conducted with an image-based empirical line model using pseudo-invariant features (PIFs. Sensor corrections and radiometric calibration improve the quality of the data, aiding quantitative analysis and generating consistency with other calibrated datasets.

  3. Radiometric cross Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images: A Simple Image-Based Method

    OpenAIRE

    Juan Li; Lian Feng; Xiaoping Pang; Weishu Gong; Xi Zhao

    2016-01-01

    WFV (Wide Field of View) cameras on-board Gaofen-1 satellite (gaofen means high resolution) provide unparalleled global observations with both high spatial and high temporal resolutions. However, the accuracy of the radiometric calibration remains unknown. Using an improved cross calibration method, the WFV cameras were re-calibrated with well-calibrated Landsat-8 OLI (Operational Land Imager) data as reference. An objective method was proposed to guarantee the homogeneity and sufficient dyna...

  4. China radiometric calibration sites ground-based automatic observing systems for CAL/VAL

    Science.gov (United States)

    Zhang, Yong; Li, Xin; Rong, Zhiguo; Zhang, Lijun; Hu, Xiuqing; Ba, Xiutian

    2015-10-01

    A brand-new field observing station has been built up in the China radiometric calibration sites (CRCS) of Dunhuang Gobi for CAL/VAL, include house, observing field, power supply, tower crane, et al. Many automatic observation instruments designed and manufactured by Anhui Institute of Optics and Fine Mechanical Chinese Academy of Sciences were deployed in CRCS Dunhuang Site and introduced deeply in this paper. Followed with the finishing of the basic constructions of the field observing station, it will be an open field test and exchange platform for sharing of test data, research and infrastructure, promote exchanges and cooperation between the relevant disciplines and units.

  5. Ground-based automated radiometric calibration system in Baotou site, China

    Science.gov (United States)

    Wang, Ning; Li, Chuanrong; Ma, Lingling; Liu, Yaokai; Meng, Fanrong; Zhao, Yongguang; Pang, Bo; Qian, Yonggang; Li, Wei; Tang, Lingli; Wang, Dongjin

    2017-10-01

    Post-launch vicarious calibration method, as an important post launch method, not only can be used to evaluate the onboard calibrators but also can be allowed for a traceable knowledge of the absolute accuracy, although it has the drawbacks of low frequency data collections due expensive on personal and cost. To overcome the problems, CEOS Working Group on Calibration and Validation (WGCV) Infrared Visible Optical Sensors (IVOS) subgroup has proposed an Automated Radiative Calibration Network (RadCalNet) project. Baotou site is one of the four demonstration sites of RadCalNet. The superiority characteristics of Baotou site is the combination of various natural scenes and artificial targets. In each artificial target and desert, an automated spectrum measurement instrument is developed to obtain the surface reflected radiance spectra every 2 minutes with a spectrum resolution of 2nm. The aerosol optical thickness and column water vapour content are measured by an automatic sun photometer. To meet the requirement of RadCalNet, a surface reflectance spectrum retrieval method is used to generate the standard input files, with the support of surface and atmospheric measurements. Then the top of atmospheric reflectance spectra are derived from the input files. The results of the demonstration satellites, including Landsat 8, Sentinal-2A, show that there is a good agreement between observed and calculated results.

  6. An Empirical Approach to Ocean Color Data: Reducing Bias and the Need for Post-Launch Radiometric Re-Calibration

    Science.gov (United States)

    Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.

    2009-01-01

    A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.

  7. Multispectral scanner flight model (F-1) radiometric calibration and alignment handbook

    Science.gov (United States)

    1981-01-01

    This handbook on the calibration of the MSS-D flight model (F-1) provides both the relevant data and a summary description of how the data were obtained for the system radiometric calibration, system relative spectral response, and the filter response characteristics for all 24 channels of the four band MSS-D F-1 scanner. The calibration test procedure and resulting test data required to establish the reference light levels of the MSS-D internal calibration system are discussed. The final set of data ("nominal" calibration wedges for all 24 channels) for the internal calibration system is given. The system relative spectral response measurements for all 24 channels of MSS-D F-1 are included. These data are the spectral response of the complete scanner, which are the composite of the spectral responses of the scan mirror primary and secondary telescope mirrors, fiber optics, optical filters, and detectors. Unit level test data on the measurements of the individual channel optical transmission filters are provided. Measured performance is compared to specification values.

  8. Analysing the suitability of radiometrically calibrated full-waveform lidar data for delineating Alpine rock glaciers

    Directory of Open Access Journals (Sweden)

    A. Roncat

    2013-10-01

    Full Text Available With full-waveform (FWF lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria, operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.

  9. Analysing the suitability of radiometrically calibrated full-waveform lidar data for delineating Alpine rock glaciers

    Science.gov (United States)

    Roncat, A.; Wieser, M.; Briese, C.; Bollmann, E.; Sailer, R.; Klug, C.; Pfeifer, N.

    2013-10-01

    With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.

  10. Experimental research for relative radiometric calibration of imaging spectrometer based on Savart plates

    Science.gov (United States)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu

    2017-02-01

    The basic principle of tempo-spatially mixed modulated Fourier transform imaging spectrometer (FTIS) based on savart plates is outlined. A calibration method of pixel response non-uniformity of charge-coupled device (CCD) camera in such type of instrument is presented. The method which uses column-flat-fields can avoid the influence of interference fringes. The use of polychromatic calibration source can solve the problem of the slant of the fringes in large optical path difference areas. The procedure of calibration experiment and the algorithm of data processing are detailed described. Two groups of relative radiometric calibration coefficient are obtained through the method of least-square. The original images are corrected by using the coefficients to validate its calibration effect. The results indicated that the method can obviously improve the uniformity of pixels and the vignetting artifacts and defect of the instrument can be well corrected. This study provides a theoretical guidance for study, design, modulation, experiment and engineering of FTIS.

  11. Assessment of S-NPP VIIRS On-Orbit Radiometric Calibration and Performance

    Directory of Open Access Journals (Sweden)

    Xiaoxiong Xiong

    2016-01-01

    Full Text Available The VIIRS instrument on board the S-NPP spacecraft has successfully operated for more than four years since its launch in October 2011. Many VIIRS environmental data records (EDR have been continuously generated from its sensor data records (SDR with improved quality, enabling a wide range of applications in support of users in both the operational and research communities. This paper provides a brief review of sensor on-orbit calibration methodologies for both the reflective solar bands (RSB and the thermal emissive bands (TEB and an overall assessment of their on-orbit radiometric performance using measurements from instrument on-board calibrators (OBC, as well as regularly scheduled lunar observations. It describes and illustrates changes made and to be made for calibration and data quality improvements. Throughout the mission, all of the OBC have continued to operate and function normally, allowing critical calibration parameters used in the data production systems to be derived and updated. The temperatures of the on-board blackbody (BB and the cold focal plane assemblies are controlled with excellent stability. Despite large optical throughput degradation discovered shortly after launch in several near- and short-wave infrared spectral bands and strong wavelength-dependent solar diffuser degradation, the VIIRS overall performance has continued to meet its design requirements. Also discussed in this paper are challenging issues identified and efforts to be made to further enhance the sensor calibration and characterization, thereby maintaining or improving data quality.

  12. Assessment of S-NPP VIIRS On-Orbit Radiometric Calibration and Performance

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, James; Chiang, Kwofu; Efremova, Boryana; Fullbright, Jon; Lei, Ning; McIntire, Jeff; Oudrari, Hassan; Wang, Zhipeng; Wu, Aisheng

    2016-01-01

    The VIIRS instrument on board the S-NPP spacecraft has successfully operated for more than four years since its launch in October, 2011. Many VIIRS environmental data records (EDR) have been continuously generated from its sensor data records (SDR) with improved quality, enabling a wide range of applications in support of users in both the operational and research communities. This paper provides a brief review of sensor on-orbit calibration methodologies for both the reflective solar bands (RSB) and the thermal emissive bands (TEB) and an overall assessment of their on-orbit radiometric performance using measurements from instrument on-board calibrators (OBC) as well as regularly scheduled lunar observations. It describes and illustrates changes made and to be made for calibration and data quality improvements. Throughout the mission, all of the OBC have continued to operate and function normally, allowing critical calibration parameters used in the data production systems to be derived and updated. The temperatures of the on-board blackbody (BB) and the cold focal plane assemblies are controlled with excellent stability. Despite large optical throughput degradation discovered shortly after launch in several near and short-wave infrared spectral bands and strong wavelength dependent solar diffuser degradation, the VIIRS overall performance has continued to meet its design requirements. Also discussed in this paper are challenging issues identified and efforts to be made to further enhance the sensor calibration and characterization, thereby maintaining or improving data quality.

  13. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)

    OpenAIRE

    Nischal Mishra; Md. Obaidul Haque; Larry Leigh; David Aaron; Dennis Helder; Brian Markham

    2014-01-01

    This study evaluates the radiometric consistency between Landsat-8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) using cross calibration techniques. Two approaches are used, one based on cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event on 29–30 March 2013. The other approach is based on using time series of image statistics acquired by these two sensors over the Libya 4 pseudo invariant calibration ...

  14. Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data

    DEFF Research Database (Denmark)

    Malinowski, Radoslaw; Höfle, Bernhard; König, Kristina

    2016-01-01

    , but the exact strength of the recorded laser pulse depends on the area covered by the targets located within a laser pulse footprint area. To account for this we analysed the physical quantity of radiometrically calibrated ALS data, the backscattering coefficient, in relation to water and vegetation coverage...... of herbaceous vegetation. To address this problem, this study presents the application of full-waveform airborne laser scanning (ALS) data for detection of floodwater extent. In general, water surfaces are characterised by low values of backscattered energy due to water absorption of the infrared laser shots...... within a single laser footprint. The results showed that the backscatter was negatively correlated to water coverage, and that of the three distinguished classes of water coverage (low, medium, and high) only the class with the largest extent of water cover (>70%) had relatively distinct characteristics...

  15. Identification of Worldwide Optimal Pseudo-Invariant Calibration Sites for Post-Launch Radiometric Calibration of Earth Observation Satellite Sensors

    Science.gov (United States)

    Basnet, Bikash

    The primary objective of this project was to identify extremely stable sites on the Earth's surface known as Pseudo-Invariant Calibration Sites (PICS). A recently developed technique for monitoring the long term stability of earth observing satellite sensors was based on using PICS for detecting trends in the radiometric response of these instruments. In a manner analogous to using a known reflectance or radiance source in a laboratory, this method relied on the stability of the Earth's surface over time. To perform this task, the Landsat 5 Thematic Mapper (TM) sensor was used to identify the most invariant locations or PICS on the Earth's surface by monitoring the temporal stability of carefully selected ground sites on Earth. Ground sites were selected to ensure minimal surface and atmosphere change that could affect the observed reflectance, thus enabling a means to monitor the radiometric stability of space instruments. PICS mainly consist of playa (dry lakebeds), salt flats and desert sand sites located in arid regions with low probability of cloud cover, spatial homogeneity, constant surface spectral reflectance and BRDF over short and long periods of time. Potential PICS were evaluated and chosen for the study based upon their size, location, climate characteristics, and scene availability in the USGS data archive. A grid-based approach was used to determine and recommend the areas of each PICS that was considered most invariant. This approach relied on the PICS min-noise algorithm developed recently at SDSU, where the mean radiance of each grid was calculated for each scene and the grid with lowest temporal standard deviation of the mean was considered as most invariant. The Levene Test of equality of variance was used to optimize the size of worldwide PICS, and uncertainties using those optimal locations were calculated for comparison. A catalog of recommended sites was developed: seven in the Sahara Desert and one each in North America, South America

  16. Method for radiometric calibration of an endoscope's camera and light source

    Science.gov (United States)

    Rai, Lav; Higgins, William E.

    2008-03-01

    An endoscope is a commonly used instrument for performing minimally invasive visual examination of the tissues inside the body. A physician uses the endoscopic video images to identify tissue abnormalities. The images, however, are highly dependent on the optical properties of the endoscope and its orientation and location with respect to the tissue structure. The analysis of endoscopic video images is, therefore, purely subjective. Studies suggest that the fusion of endoscopic video images (providing color and texture information) with virtual endoscopic views (providing structural information) can be useful for assessing various pathologies for several applications: (1) surgical simulation, training, and pedagogy; (2) the creation of a database for pathologies; and (3) the building of patient-specific models. Such fusion requires both geometric and radiometric alignment of endoscopic video images in the texture space. Inconsistent estimates of texture/color of the tissue surface result in seams when multiple endoscopic video images are combined together. This paper (1) identifies the endoscope-dependent variables to be calibrated for objective and consistent estimation of surface texture/color and (2) presents an integrated set of methods to measure them. Results show that the calibration method can be successfully used to estimate objective color/texture values for simple planar scenes, whereas uncalibrated endoscopes performed very poorly for the same tests.

  17. Radiometric calibration stability of the EO-1 advanced land imager: 5 years on-orbit

    Science.gov (United States)

    Markham, B.L.; Ong, L.; Barsi, J.A.; Mendenhall, J.A.; Lencioni, D.E.; Helder, D.L.; Hollaren, D.M.; Morfitt, R.

    2006-01-01

    The Advanced Land Imager (ALI) was developed as a prototype sensor for follow on missions to Landsat-7. It was launched in November 2000 on the Earth Observing One (EO-1) satellite as a nominal one-year technology demonstration mission. As of this writing, the sensor has continued to operate in excess of 5 years. Six of the ALl's nine multi-spectral (MS) bands and the panchromatic band have similar spectral coverage as those on the Landsat-7 ETM+. In addition to on-board lamps, which have been significantly more stable than the lamps on ETM+, the ALI has a solar diffuser and has imaged the moon monthly since launch. This combined calibration dataset allows understanding of the radiometric stability of the ALI system, its calibrators and some differentiation of the sources of the changes with time. The solar dataset is limited as the mechanism controlling the aperture to the solar diffuser failed approximately 18 months after launch. Results over 5 years indicate that: the shortest wavelength band (443 nm) has degraded in response about 2%; the 482 nm and 565 nm bands decreased in response about 1%; the 660 nm, 790 nm and 868 nm bands each degraded about 5%; the 1250 nm and 1650 nm bands did not change significantly and the 2215 nm band increased in response about 2%.

  18. On-orbit radiometric calibration over time and between spacecraft using the moon

    Science.gov (United States)

    Kieffer, H.H.; Stone, T.C.; Barnes, R.A.; Bender, S.; Eplee, R.E.; Mendenhall, J.; Ong, L.; ,

    2002-01-01

    The Robotic Lunar Observatory (ROLO) project has developed a spectral irradiance model of the Moon that accounts for variations with lunar phase through the bright half of a month, lunar librations, and the location of an Earth-orbiting spacecraft. The methodology of comparing spacecraft observations of the Moon with this model has been developed to a set of standardized procedures so that comparisons can be readily made. In the cases where observations extend over several years (e.g., SeaWiFS), instrument response degradation has been determined with precision of about 0.1% per year. Because of the strong dependence of lunar irradiance on geometric angles, observations by two spacecraft cannot be directly compared unless acquired at the same time and location. Rather, the lunar irradiance based on each spacecraft instrument calibration can be compared with the lunar irradiance model. Even single observations by an instrument allow inter-comparison of its radiometric scale with other instruments participating in the lunar calibration program. Observations by SeaWiFS, ALI, Hyperion and MTI are compared here.

  19. Radiometric inter-sensor cross-calibration uncertainty using a traceable high accuracy reference hyperspectral imager

    Science.gov (United States)

    Gorroño, Javier; Banks, Andrew C.; Fox, Nigel P.; Underwood, Craig

    2017-08-01

    Optical earth observation (EO) satellite sensors generally suffer from drifts and biases relative to their pre-launch calibration, caused by launch and/or time in the space environment. This places a severe limitation on the fundamental reliability and accuracy that can be assigned to satellite derived information, and is particularly critical for long time base studies for climate change and enabling interoperability and Analysis Ready Data. The proposed TRUTHS (Traceable Radiometry Underpinning Terrestrial and Helio-Studies) mission is explicitly designed to address this issue through re-calibrating itself directly to a primary standard of the international system of units (SI) in-orbit and then through the extension of this SI-traceability to other sensors through in-flight cross-calibration using a selection of Committee on Earth Observation Satellites (CEOS) recommended test sites. Where the characteristics of the sensor under test allows, this will result in a significant improvement in accuracy. This paper describes a set of tools, algorithms and methodologies that have been developed and used in order to estimate the radiometric uncertainty achievable for an indicative target sensor through in-flight cross-calibration using a well-calibrated hyperspectral SI-traceable reference sensor with observational characteristics such as TRUTHS. In this study, Multi-Spectral Imager (MSI) of Sentinel-2 and Landsat-8 Operational Land Imager (OLI) is evaluated as an example, however the analysis is readily translatable to larger-footprint sensors such as Sentinel-3 Ocean and Land Colour Instrument (OLCI) and Visible Infrared Imaging Radiometer Suite (VIIRS). This study considers the criticality of the instrumental and observational characteristics on pixel level reflectance factors, within a defined spatial region of interest (ROI) within the target site. It quantifies the main uncertainty contributors in the spectral, spatial, and temporal domains. The resultant tool

  20. The Cross radiometric calibration test of KOMPSAT-2 multi-spectral images over Desert area

    Science.gov (United States)

    Yeom, J.; Kim, H.

    2012-12-01

    The KOrea MultiPurpose SAtellite-2 (KOMPSAT-2) satellite was launched on July 28, 2006 and has been operated to support multi-purpose monitoring of earth surface with high spatial resolution. The KOMPSAT-2 has 1m panchromatic image and 4-m multi spectral bands such as blue (450-520nm), green (520-600nm), red (630-690nm), NIR (760-900nm). Since the performance of sensor onboard satellites is usually degraded in orbit after launch, it is necessary to calibrate spectral radiance for getting accurate TOP radiance values by performing cross radiometric methods. In this study, Cross Calibration method is adopted for the estimation of TOA (Top of Atmosphere) radiance to KOMPSAT-2 multi spectral images with ancillary data such as LandSat TOA radiance, MODIS products, and atmospheric measurements. For the calibration desert areas are served as reference target objects because its relative high surface reflectance is not very sensitive to the presence of low aerosol load, which is main probleggm of inferring TOA radiance by using Radiative Transfer model. Although desert areas have low aerosol effect when comparing with other reference targets such like deep Ocean, surface bidirectional effects predominant in desert should be considered to estimate TOA radiance. In this study, MODIS 16-day Level 3 BRDF/albedo model parameters product (MCD43A1) is used to correct surface bidirectional effects by inputting 6S parameters. The surface reflectance over target area is simulated from LandSat recalibrated TOA radiance with AERONET measurement, and MODIS BRDF product. After then, KOMPSAT-2 TOA radiance is simulated from LandSat-based surface target reflectance from 6S radiative transfer model. Finally, the estimated TOA radiance from KOMPSAT-2 is compared with the KOMPSAT-2's DN values in order to produce DN to Radiance coefficients.

  1. Impacts of Cross-Platform Vicarious Calibration on the Deep Blue Aerosol Retrievals for Moderate Resolution Imaging Spectroradiometer Aboard Terra

    Science.gov (United States)

    Jeong, Myeong-Jae; Hsu, N. Christina; Kwiatkowska, Ewa J.; Franz, Bryan A.; Meister, Gerhard; Salustro, Clare E.

    2012-01-01

    The retrieval of aerosol properties from spaceborne sensors requires highly accurate and precise radiometric measurements, thus placing stringent requirements on sensor calibration and characterization. For the Terra/Moderate Resolution Imaging Spedroradiometer (MODIS), the characteristics of the detectors of certain bands, particularly band 8 [(B8); 412 nm], have changed significantly over time, leading to increased calibration uncertainty. In this paper, we explore a possibility of utilizing a cross-calibration method developed for characterizing the Terral MODIS detectors in the ocean bands by the National Aeronautics and Space Administration Ocean Biology Processing Group to improve aerosol retrieval over bright land surfaces. We found that the Terra/MODIS B8 reflectance corrected using the cross calibration method resulted in significant improvements for the retrieved aerosol optical thickness when compared with that from the Multi-angle Imaging Spectroradiometer, Aqua/MODIS, and the Aerosol Robotic Network. The method reported in this paper is implemented for the operational processing of the Terra/MODIS Deep Blue aerosol products.

  2. Inter-Comparison of SMOS and Aquarius Sea Surface Salinity: Effects of the Dielectric Constant and Vicarious Calibration

    Science.gov (United States)

    Dinnat, Emmanuel P.; Boutin, Jacqueline; Yin, Xiaobin; Le Vine, David M.

    2014-01-01

    Two spaceborne instruments share the scientific objective of mapping the global Sea Surface Salinity (SSS). ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometry to retrieve SSS. We find that SSS retrieved by SMOS is generally lower than SSS retrieved by Aquarius, except for very cold waters where SMOS SSS is higher overall. The spatial distribution of the differences in SSS is similar to the distribution of sea surface temperature. There are several differences in the retrieval algorithm that could explain the observed SSS differences. We assess the impact of the dielectric constant model and the ancillary sea surface salinity used by both missions for calibrating the radiometers and retrieving SSS. The differences in dielectric constant model produce differences in SSS of the order of 0.3 psu and exhibit a dependence on latitude and temperature. We use comparisons with the Argo in situ data to assess the performances of the model in various regions of the globe. Finally, the differences in the ancillary sea surface salinity products used to perform the vicarious calibration of both instruments are relatively small (0.1 psu), but not negligible considering the requirements for spaceborne remote sensing of SSS.

  3. Radiometric cross calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)

    Science.gov (United States)

    Mishra, Nischal; Haque, Md. Obaidul; Leigh, Larry; Aaron, David; Helder, Dennis; Markham, Brian L

    2014-01-01

    This study evaluates the radiometric consistency between Landsat-8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) using cross calibration techniques. Two approaches are used, one based on cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event on 29–30 March 2013. The other approach is based on using time series of image statistics acquired by these two sensors over the Libya 4 pseudo invariant calibration site (PICS) (+28.55°N, +23.39°E). Analyses from these approaches show that the reflectance calibration of OLI is generally within ±3% of the ETM+ radiance calibration for all the reflective bands from visible to short wave infrared regions when the ChKur solar spectrum is used to convert the ETM+ radiance to reflectance. Similar results are obtained comparing the OLI radiance calibration directly with the ETM+ radiance calibration and the results in these two different physical units (radiance and reflectance) agree to within ±2% for all the analogous bands. These results will also be useful to tie all the Landsat heritage sensors from Landsat 1 MultiSpectral Scanner (MSS) through Landsat-8 OLI to a consistent radiometric scale.

  4. In-flight radiometric calibration of the Advanced Land Imager and Hyperion sensors on the EO-1 platform and comparisons with other earth observing sensors

    Science.gov (United States)

    Biggar, Stuart F.; Thome, Kurtis J.; Wisniewski, Wit T.

    2002-09-01

    The radiometric calibration of the two optical sensors on the Earth Observing One satellite has been studied as a function of time since launch. The calibration has been determined by ground reference calibrations at well-characterized field sites, such as White Sands Missile Range and dry playas, and by reference to other sensors such as the Enhanced Thematic Mapper Plus (ETM+) on Landsat 7. The ground reference calibrations of the Advanced Land Imager (ALI) give results consistent with the on-board solar calibrator and show a significant shift since preflight calibration in the short wavelength bands. Similarly, the ground reference calibrations of Hyperion show a change since preflight calibration, however, for Hyperion the largest changes are in the short wave infrared region of the spectrum. Cross calibration of ALI with ETM+ is consistent with the ground reference calibrations in the visible and near infrared. Results showing the changes in radiometric calibration are presented.

  5. Transmittance measurement of a heliostat facility used in the preflight radiometric calibration of Earth-observing sensors

    Science.gov (United States)

    Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.

    2009-08-01

    Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.

  6. Radiometric cross Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images: A Simple Image-Based Method

    Directory of Open Access Journals (Sweden)

    Juan Li

    2016-05-01

    Full Text Available WFV (Wide Field of View cameras on-board Gaofen-1 satellite (gaofen means high resolution provide unparalleled global observations with both high spatial and high temporal resolutions. However, the accuracy of the radiometric calibration remains unknown. Using an improved cross calibration method, the WFV cameras were re-calibrated with well-calibrated Landsat-8 OLI (Operational Land Imager data as reference. An objective method was proposed to guarantee the homogeneity and sufficient dynamic coverage for calibration sites and reference sensors. The USGS spectral library was used to match the most appropriate hyperspectral data, based on which the spectral band differences between WFV and OLI were adjusted. The TOA (top-of-atmosphere reflectance of the cross-calibrated WFV agreed very well with that of OLI, with the mean differences between the two sensors less than 5% for most of the reflectance ranges of the four spectral bands, after accounting for the spectral band difference between the two sensors. Given the calibration error of 3% for Landsat-8 OLI TOA reflectance, the uncertainty of the newly-calibrated WFV should be within 8%. The newly generated calibration coefficients established confidence when using Gaofen-1 WFV observations for their further quantitative applications, and the proposed simple cross calibration method here could be easily extended to other operational or planned satellite missions.

  7. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels

    Directory of Open Access Journals (Sweden)

    Na Xu

    2014-03-01

    Full Text Available FengYun-3 (FY-3 Visible Infrared Radiometer (VIRR, along with its predecessor, Multispectral Visible Infrared Scanning Radiometer (MVISR, onboard FY-1C&D have had continuous global observation more than 14 years. This data record is valuable for weather prediction, climate monitoring, and environment research. Data quality is vital for satellite data assimilations in Numerical Weather Prediction (NWP and quantitative remote sensing applications. In this paper, the accuracies of radiometric calibration for VIRR onboard FY-3A and FY-3B, in thermal infrared (TIR channels, are evaluated using the Low Earth Orbit (LEO-LEO simultaneous nadir overpass intercalibration method. Hyperspectral and high-quality observations from Infrared Atmosphere Sounding Instrument (IASI onboard METOP-A are used as reference. The biases of VIRR measurements with respect to IASI over one-and-a-half years indicate that the TIR calibration accuracy of FY-3B VIRR is better than that of FY-3A VIRR. The brightness temperature (BT measured by FY-3A/VIRR is cooler than that measured by IASI with monthly mean biases ranging from −2 K to −1 K for channel 4 and −1 K to 0.2 K for channel 5. Measurements from FY-3B/VIRR are more consistent with that from IASI, and the annual mean biases are 0.84 ± 0.16 K and −0.66 ± 0.18 K for channels 4 and 5, respectively. The BT biases of FY-3A/VIRR show scene temperature-dependence and seasonal variation, which are not found from FY-3B/VIRR BT biases. The temperature-dependent biases are shown to be attributed to the nonlinearity of detectors. New nonlinear correction coefficients of FY-3A/VIRR TIR channels are reevaluated using various collocation samples. Verification results indicate that the use of the new nonlinear correction can greatly correct the scene temperature-dependent and systematic biases.

  8. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    Directory of Open Access Journals (Sweden)

    A. Kleinert

    2014-12-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging Fourier transform spectrometer that is capable of operating on various high-altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable area of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  9. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    Science.gov (United States)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  10. Vicarious shame

    NARCIS (Netherlands)

    Welten, S.C.M.; Zeelenberg, M.; Breugelmans, S.M.

    2012-01-01

    We examined an account of vicarious shame that explains how people can experience a self-conscious emotion for the behaviour of another person. Two divergent processes have been put forward to explain how another's behaviour links to the self. The group-based emotion account explains vicarious shame

  11. On the Vicarious Calibration Methodologies in DIMITRI: Application on Sentinel-2 and Landsat-8 Products and Comparison with In-Situ Measurements

    Science.gov (United States)

    Alhammoud, Bahjat; Bouvet, Marc; Jackson, Jan; Arias, Manuel; Thepaut, Olivier; Lafrance, Bruno; Gascon, Ferran; Cadau, Enrico; Berthelot, Beatrice; Francesconi, Benjamin

    2016-08-01

    In the frame of the Sentinel-2 Mission Performance Centre (MPC) activities, in order to assess the S2A/MSI data quality and to monitor its evolution, DIMITRI is used to perform the vicarious validation of the Level-1C products. DIMITRI consists on several vicarious calibration methodologies for EO optical sensors: Rayleigh scattering, Sun-Glint, PICS and sensor-to- sensor inter-calibration.The first results of S2A/MSI from both Rayleigh and PICS methodologies are consistent and show an excellent quality of the L1C products. The cross- mission Intercomparison with LANDSAT-8/OLI over PICS shows good agreement within the ±5% mission requirements. The Intercomparison with concomitant ground-based TOA-reflectance over the Railroad Valley site shows a good agreement with a relative difference of 5%-10%. The uncertainties over the estimated calibration coefficients overall the results are found to be less than 5% for most of the S2A/MSI spectral bands.

  12. Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-01-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  13. Portable, Solid-State Light Sources for Field Radiometric Calibrations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Various Earth Science fields require well-calibrated field radiometers whose calibrations must be tracked and verified in the field. NASA has long recognized...

  14. Portable, Solid-State Light Sources for Field Radiometric Calibrations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Various Earth Science fields require well-calibrated field radiometers whose calibrations must be tracked and verified in the field. NASA has long recognized the...

  15. Radiometric cross-calibration of the Terra MODIS and Landsat 7 ETM+ using an invariant desert site

    Science.gov (United States)

    Choi, Taeyoung; Angal, Amit; Chander, Gyanesh; Xiong, Xiaoxiong

    2008-08-01

    A methodology for long-term radiometric cross-calibration between the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors was developed. The approach involves calibration of near-simultaneous surface observations between 2000 and 2007. Fifty-seven cloudfree image pairs were carefully selected over the Libyan desert for this study. The Libyan desert site (+28.55°, +23.39°), located in northern Africa, is a high reflectance site with high spatial, spectral, and temporal uniformity. Because the test site covers about 12 kmx13 km, accurate geometric preprocessing is required to match the footprint size between the two sensors to avoid uncertainties due to residual image misregistration. MODIS Level 1B radiometrically corrected products were reprojected to the corresponding ETM+ image's Universal Transverse Mercator (UTM) grid projection. The 30 m pixels from the ETM+ images were aggregated to match the MODIS spatial resolution (250 m in Bands 1 and 2, or 500 m in Bands 3 to 7). The image data from both sensors were converted to absolute units of at-sensor radiance and top-of atmosphere (TOA) reflectance for the spectrally matching band pairs. For each band pair, a set of fitted coefficients (slope and offset) is provided to quantify the relationships between the testing sensors. This work focuses on long-term stability and correlation of the Terra MODIS and L7 ETM+ sensors using absolute calibration results over the entire mission of the two sensors. Possible uncertainties are also discussed such as spectral differences in matching band pairs, solar zenith angle change during a collection, and differences in solar irradiance models.

  16. Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands

    Directory of Open Access Journals (Sweden)

    Fangfang Yu

    2016-02-01

    Full Text Available The Advanced Himawari Imager (AHI on-board Himawari-8, which was launched on 7 October 2014, is the first geostationary instrument housed with a solar diffuser to provide accurate onboard calibrated data for the visible and near-infrared (VNIR bands. In this study, the Ray-matching and collocated Deep Convective Cloud (DCC methods, both of which are based on incidently collocated homogeneous pairs between AHI and Suomi NPP (S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS, are used to evaluate the calibration difference between these two instruments. While the Ray-matching method is used to examine the reflectance difference over the all-sky collocations with similar viewing and illumination geometries, the near lambertian collocated DCC pxiels are used to examine the difference for the median or high reflectance scenes. Strong linear relationships between AHI and VIIRS can be found at all the paired AHI and VIIRS bands. Results of both methods indicate that AHI radiometric calibration accuracy agrees well with VIIRS data within 5% for B1-4 and B6 at mid and high reflectance scenes, while AHI B5 is generally brighter than VIIRS by ~6%–8%. No apparent East-West viewing angle dependent calibration difference can be found at all the VNIR bands. Compared to the Ray-matching method, the collocated DCC method provides less uncertainty of inter-calibration results at near-infrared (NIR bands. As AHI has similar optics and calibration designs to the GOES-R Advanced Baseline Imager (ABI, which is currently scheduled to launch in fall 2016, the on-orbit AHI data provides a unique opportunity to develop, test and examine the cal/val tools developed for ABI.

  17. Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-01-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  18. In-Orbit Radiometric Calibration of the FORMOSAT-2 Remote Sensing Instrument

    Directory of Open Access Journals (Sweden)

    Tang-Huang Lin

    2009-01-01

    Full Text Available This principle focus of this study is the absolute radio metric calibrations of FORMOSAT-2 RSI imagery in orbit. There are two principal parts for achieving this calibration. The first is the assessment of the calibration site by examining atmospheric observations from ground stations and field measurements via ground-based radio metric instruments. After careful consideration based on the essential requirements for a suitable calibration site i.e., prevailing clear and clean at mo sphere conditions over a wide, flat and near lambertian surface with high reflectance, the airport on Dongsha Island was considered to be an suitable site. The next phase is to de sign a scheme for the field campaign at the calibration site for radio metric calibration. Thus a synchronous experiment acquiring simultaneous measurements from the FORMOSAT-2 Re mote Sensing Instrument (RSI sensor and ground-based instruments was proposed and implemented for the period 16 to 19 September 2004. As a result, a set of reason able radio metric coefficients for the absolute radiance calibration of the RSI was successfully constructed via the radiative transfer code associated with the synchronous measurements in this study.

  19. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    Science.gov (United States)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  20. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences].

    Science.gov (United States)

    Liu, Li; Fu, Qiao-yan; Shi, Ting-ting; Wang, Ai-chun; Zhang, Xue-wen

    2014-08-01

    Since HJ-1B was launched, 7 sets of blackbody data have been used to calculate onboard calibration coefficients, but the research work on the validation of coefficients is rare. According to the onboard calibration principle, calibration coefficients of HJ-1B thermal infrared channel on Sep 14th, 2009 were calculated with the half-width, moments and look-up table methods. MODIS was selected for the reference sensor, and algorithms of spectral match were improved between the HJ-1B thermal infrared channel and MODIS 31, 32 channels based on the spectral response divergence. The relationship of top of atmosphere (TOA) radiance between the remote sensors was calculated, based on which the surface leaving brightness temperature was calculated by Planck function to validate the brightness temperature calculated through the onboard calibration coefficients. The equivalent brightness temperature calculated by spectral response divergence method is 285.97 K, and the inversion brightness temperature calculated by half-width, moments and look-up table methods is 288.77, 274.52 and 285.97 K respectively. The difference between the inversion brightness temperature and the equivalent brightness temperature is 2.8, -11.46 and 0.02 K, respectively, which demonstrate that onboard calibration coefficients calculated by the look-up table method has better precision and feasibility.

  1. THE EUROSDR PROJECT "RADIOMETRIC ASPECTS OF DIGITAL PHOTOGRAMMETRIC IMAGES" – RESULTS OF THE EMPIRICAL PHASE

    Directory of Open Access Journals (Sweden)

    E. Honkavaara

    2012-09-01

    Full Text Available This article presents the empirical research carried out in the context of the multi-site EuroSDR project "Radiometric aspects of digital photogrammetric images" and provides highlights of the results. The investigations have considered the vicarious radiometric and spatial resolution validation and calibration of the sensor system, radiometric processing of the image blocks either by performing relative radiometric block equalization or into absolutely reflectance calibrated products, and finally aspects of practical applications on NDVI layer generation and tree species classification. The data sets were provided by Leica Geosystems ADS40 and Intergraph DMC and the participants represented stakeholders in National Mapping Authorities, software development and research. The investigations proved the stability and quality of evaluated imaging systems with respect to radiometry and optical system. The first new-generation methods for reflectance calibration and equalization of photogrammetric image block data provided promising accuracy and were also functional from the productivity and usability points of view. The reflectance calibration methods provided up to 5% accuracy without any ground reference. Application oriented results indicated that automatic interpretation methods will benefit from the optimal use of radiometrically accurate multi-view photogrammetric imagery.

  2. Absolute vicarious calibration of Landsat-8 OLI and Resourcesat-2 AWiFS sensors over Rann of Kutch site in Gujarat

    Science.gov (United States)

    Sharma, Shweta; Sridhar, V. N.; Prajapati, R. P.; Rao, K. M.; Mathur, A. K.

    2016-05-01

    In this work, vicarious calibration coefficients for all the four bands (green, red, NIR and SWIR) of Resourcesat-2 AWiFS sensor for four dates during Dec 2013-Nov 2014 and for seven bands (blue, green, red, NIR, SWIR1, SWIR2 and PAN) of OLI sensor onboard Landsat-8 for six dates during Dec 2013-Feb 2015 were estimated using field measured reflectance and measured atmospheric parameters during sensor image acquisition over Rann of Kutch site in Gujarat. The top of atmosphere (TOA) at-satellite radiances for all the bands were simulated using 6S radiative transfer code with field measured reflectance, synchronous atmospheric measurements and respective sensor's spectral response functions as an input. These predicted spectral radiances were compared with the radiances from the respective sensor's image in the respective band over the calibration site. Cross-calibration between the sensors AWiFS and OLI was also attempted using near-simultaneous same day image acquisition. Effect of spectral band adjustment factor was also studied with OLI sensor taken as reference sensor. Results show that the variation in average estimated radiance ratio for the AWiFS sensor was found to be within 10% for all the bands, whereas, for OLI sensor, the variation was found to be within 6% for all the bands except green and SWIR2 for which the variation was 8% and 11% respectively higher than the 5% uncertainty of the OLI sensor specification for TOA spectral radiance. At the 1σ level, red, NIR, SWIR1 and Panchromatic bands of OLI sensor showed close agreement between sensor-measured and vicarious TOA radiance resulting no change in calibration coefficient and hence indicating no sensor degradation. Two sets of near-simultaneous SBAFs were derived from respective ground measured target reflectance profiles and applied to the AWiFS and it was observed that overall, SBAF compensation provides a significant improvement in sensor agreement. The reduction in the difference between AWiFS and

  3. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI and Landsat 7 Enhanced Thematic Mapper Plus (ETM+

    Directory of Open Access Journals (Sweden)

    Nischal Mishra

    2014-12-01

    Full Text Available This study evaluates the radiometric consistency between Landsat-8 Operational Land Imager (OLI and Landsat 7 Enhanced Thematic Mapper Plus (ETM+ using cross calibration techniques. Two approaches are used, one based on cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event on 29–30 March 2013. The other approach is based on using time series of image statistics acquired by these two sensors over the Libya 4 pseudo invariant calibration site (PICS (+28.55°N, +23.39°E. Analyses from these approaches show that the reflectance calibration of OLI is generally within ±3% of the ETM+ radiance calibration for all the reflective bands from visible to short wave infrared regions when the ChKur solar spectrum is used to convert the ETM+ radiance to reflectance. Similar results are obtained comparing the OLI radiance calibration directly with the ETM+ radiance calibration and the results in these two different physical units (radiance and reflectance agree to within ±2% for all the analogous bands. These results will also be useful to tie all the Landsat heritage sensors from Landsat 1 MultiSpectral Scanner (MSS through Landsat-8 OLI to a consistent radiometric scale.

  4. Photovoltaics radiometric issues and needs

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-11-01

    This paper presents a summary of issues discussed at the photovoltaic radiometric measurements workshop. Topics included radiometric measurements guides, the need for well-defined goals, documentation, calibration checks, accreditation of testing laboratories and methods, the need for less expensive radiometric instrumentation, data correlations, and quality assurance.

  5. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors

    Science.gov (United States)

    Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  6. A New Radiometric Calibration Paradigm for the OMPS Nadir Total Column and Profile Instruments

    Science.gov (United States)

    Heath, Donald; Georgiew, Georgi

    2011-01-01

    A fused silica Mie Scattering Diffuser (MSD) has been developed at Ball Aerospace & Technology Corp. that has measured characteristics which could be used to increase the accuracy of the spectral albedo calibration of the Ozone Mapping and Profiler Suite (OMPS) Nadir ozone total column and profile instrument by almost an order of magnitude. Measurements have been made of the optical characteristics on both natural and synthetic forms of fused silica MSDs. Preliminary measurements suggest that MSDs are useable in the solar reflective wavelength region from 250 nm to 3.7 m. To date synthetic and natural MSDs have been irradiated for 60 hours of UV radiation from a solar simulator, and synthetic MSDs have been irradiated with increasing doses of Co-60 gamma rays at 30, 500 krads up to 1.5 Mrads, and 30 krads of 200 MeV protons. The principal effects have been small loses in transmittance at wavelengths < 350 nm. The high energy particle irradiation measurements were provided by Neal Nickles and Dean Spieth.

  7. ABSOLUTE RADIOMETRIC CALIBRATION OF THE GÖKTÜRK-2 SATELLITE SENSOR USING TUZ GÖLÜ (LANDNET SITE FROM NDVI PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    U. Sakarya

    2016-06-01

    Full Text Available TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP Project and AKTAR (Smart Agriculture Feasibility Project. The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for

  8. Tracking radiometric responsivity of optical sensors without on-board calibration systems-case of the Chinese HJ-1A/1B CCD sensors.

    Science.gov (United States)

    Li, Jian; Chen, Xiaoling; Tian, Liqiao; Feng, Lian

    2015-01-26

    The radiometric stability of satellite sensors is crucial for generating highly consistent remote sensing measurements and products. We have presented a radiometric responsivity tracking method designed especially for optical sensors without on-board calibration systems. Using a temporally stable desert site with high reflectance, the sensor responsivity was simulated using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer model (RTM) with information from validated MODIS atmospheric data. Next, radiometric responsivity drifting was identified using a linear regression of the time series bidirectional reflectance distribution function (BRDF) normalized coefficients. The proposed method was applied to Chinese HJ-1A/1B charge-coupled device (CCD) sensors, which have been on-orbit operations for more than 5 years without continuous assessment of their radiometric performance. Results from the Dunhuang desert site between 2008 and 2013 indicated that the CCD sensors degraded at various rates, with the most significant degradation occurring in the blue bands, ranging from 2.8% to 4.2% yr-1. The red bands were more stable, with a degradation rate of 0.7-3.1% yr-1. A cross-sensor comparison revealed the least degradation for the HJ-1A CCD1 (blue: 2.8%; green: 2.8%; red: 0.7%; and NIR: 0.9% yr-1), whereas the degradation of HJ-1B CCD1 was most pronounced (blue: 3.5%; green: 4.1%; red: 2.3%; and NIR: 3.4% yr-1). The uncertainties of the method were evaluated theoretically based on the propagation of uncertainties from all possible sources of the RT simulations. In addition, a cross comparison with matchup ground-based absolute calibration results was conducted. The comparison demonstrated that the method was useful for continuously monitoring the radiometric performance of remote sensors, such as HJ-1A/1B CCD and GaoFen (GF) series (China's latest high-definition Earth observation satellite), and indicated the potential use of the

  9. Advanced phase correction approach to obtain radiometric calibrated spectra of the optically well-balanced balloonborne Fourier transform spectrometer MIPAS-B2

    Science.gov (United States)

    Trieschmann, Olaf; Friedl-Vallon, Felix; Lengel, Anton; Oelhaf, Hermann; Wetzel, Gerald; Fischer, Herbert

    1999-10-01

    The balloon borne IR-Fourier transform spectrometer (FTS) MIPAS-B2 has been designed for a low self-emission from each of the instrument ports leading to low noise signals and a radiometrically balanced interferometer. The radiometric accuracy depends strongly on the quality of the phase correction of interferograms and of the calibration measurements and algorithms. It could be observed that the classically derived phases of the complex spectra are in correlation with line structures in the spectrum and cause disturbed calibrated spectra. These phase functions cannot be explained by the instrumental phase due to the beamsplitter nor by sampling shifts but by the emission of the beamsplitter itself. The determination of the instrumental phase function requires to invent an unconventional technique. According to the low radiance received from the stratosphere noise has also to be taken into account, especially in case of single non- coadded spectra. Therefore an advanced statistical method was investigated to derive the phase of the interferogram by minimizing the correlation of the real and imaginary part of the spectrum as well as the variance of the imaginary part (the beamsplitter spectrum). The complete processing and calibration scheme of the FTS-emission sounder will be presented focusing on a detailed description of phase behavior due to the beamsplitter emission and of the correction process.

  10. Initial Radiometric Characteristics of KOMPSAT-3A Multispectral Imagery Using the 6S Radiative Transfer Model, Well-Known Radiometric Tarps, and MFRSR Measurements

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2017-02-01

    Full Text Available On-orbit radiometric characterization of the multispectral (MS imagery of the Korea Aerospace Research Institute (KARI’s Korea Multi-Purpose Satellite-3A (KOMPSAT-3A, which was launched on 25 March 2015, was conducted to provide quantitative radiometric information about KOMPSAT-3A. During the in-orbit test (IOT, vicarious radiometric calibration of KOMPSAT-3A was performed using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S radiative transfer model. The characteristics of radiometric tarps, the atmospheric optical depth from multi-filter rotating shadowband radiometer (MFRSR measurements, and sun–sensor–geometry were carefully considered, in order to calculate the exact top of atmosphere (TOA radiance received by KOMPSAT-3A MS bands. In addition, the bidirectional reflectance distribution function (BRDF behaviors of the radiometric tarps were measured in the laboratory with a two-dimensional hyperspectral gonioradiometer, to compensate for the geometry discrepancy between the satellite and the ASD FieldSpec® 3 spectroradiometer. The match-up datasets between the TOA radiance and the digital number (DN from KOMPSAT-3A were used to determine DN-to-radiance conversion factors, based on linear least squares fitting for two field campaigns. The final results showed that the R2 values between the observed and simulated radiances for the blue, green, red, and near-infrared (NIR bands, are greater than 0.998. An approximate error budget analysis for the vicarious calibration of KOMPSAT-3A showed an error of less than 6.8%. When applying the laboratory-based BRDF correction to the case of higher viewing zenith angle geometry, the gain ratio was improved, particularly for the blue (1.3% and green (1.2% bands, which exhibit high sensitivity to the BRDF of radiometric tarps during the backward-scattering phase. The calculated gain ratio between the first and second campaigns showed a less than 5% discrepancy, indicating that

  11. MISR Ancillary Radiometric Product V002

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Ancillary Radiometric Product is composed of 4 files covering instrument characterization data, pre-flight calibration data, in-flight calibration data, and...

  12. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration

    Science.gov (United States)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.

  13. Effects of aerosol phase function and other atmospheric parameters in radiometric calibration of hyperspectral visible/NIR satellite instruments above test sites of different altitudes

    Science.gov (United States)

    Postylyakov, Oleg; Borovski, Alexander

    2017-10-01

    To verify data obtained by a satellite instrument a systematic calibration of the instrument is carried out. In addition to an internal calibration using on-board lamp or reflected solar radiation, the external calibration based on a comparison of radiance measurements above special ground test sites and calculated radiances is often employed. Radiances at the top of the atmosphere can be calculated using a radiative transfer model basing on measurement of the atmospheric properties and surface characteristics at the test sites. External calibration of hyperspectral instrument is sensitive to the spectral structure of absorbing and scattering of atmospheric species and, as a consequence, has a specific spectral structure of errors. We compared theoretical errors of a satellite hyperspectral instrument radiometric calibration using two test sites one of which is located in downcountry at 200 m a.s.l. and another one in highlands at 2000 m a.s.l. We suppose that both stations are equipped by the same set of instruments for measurements of the properties of the atmosphere and surface reflectance. The aerosol vertical profile and the aerosol phase function are supposed as not measured characteristics. The analysis is performed for an instrument with the spectral resolution of 1-8 nm which is typical for special regime of payload GSA of Russian satellite Resurs-P. The errors related with the atmospheric composition (including possible scenarios of the aerosol phase function and the aerosol vertical profile) and albedo measurement errors were theoretically examined. The errors strongly depend on aerosol loading. In case of low aerosol loading (corresponding to aerosol optical depth of 0.1 at 0 m a.s.l.) errors are less than 10% at both sites for all the wavelengths between 400 nm and 1000 nm with the exception of the absorption band of water vapor about 950 nm, where errors reach 35% at downcountry and 14% at highlands. For aerosol optical depth of 1 at 0 m a.s.l. the

  14. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    Science.gov (United States)

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  15. A case study of comparing radiometrically calibrated reflectance of an image mosaic from unmanned aerial system with that of a single image from manned aircraft over a same area

    Science.gov (United States)

    Shi, Yeyin; Thomasson, J. Alex; Yang, Chenghai; Cope, Dale; Sima, Chao

    2017-05-01

    Though sharing with many commonalities, one of the major differences between conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing is that the latter one has much smaller ground footprint for each image shot. To cover the same area on the ground, it requires the low-altitude UASbased platform to take many highly-overlapped images to produce a good mosaic, instead of just one or a few image shots by the high-altitude aerial platform. Such an UAS flight usually takes 10 to 30 minutes or even longer to complete; environmental lighting change during this time span cannot be ignored especially when spectral variations of various parts of a field are of interests. In this case study, we compared the visible reflectance of two aerial imagery - one generated from mosaicked UAS images, the other generated from a single image taken by a manned aircraft - over the same agricultural field to quantitatively evaluate their spectral variations caused by the different data acquisition strategies. Specifically, we (1) developed our customized ground calibration points (GCPs) and an associated radiometric calibration method for UAS data processing based on camera's sensitivity characteristics; (2) developed a basic comparison method for radiometrically calibrated data from the two aerial platforms based on regions of interests. We see this study as a starting point for a series of following studies to understand the environmental influence on UAS data and investigate the solutions to minimize such influence to ensure data quality.

  16. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  17. Polarization Impacts on the Water-Leaving Radiance Retrieval from Above-Water Radiometric Measurements

    Science.gov (United States)

    2012-12-10

    significantly improve the quality of the field data utilized for satellite data validation or potential vicarious calibration purposes. © 2012 Optical...properties of these two aerosol models were com- puted through Mie theory calculation assuming spherical particles. The microphysical properties were...APPLIED OPTICS / Vol. 51, No. 35 / 10 December 2012 data utilized for satellite data validation or potential vicarious calibration purposes. This

  18. Vicarious traumatization: concept analysis.

    Science.gov (United States)

    Tabor, Pamela Diane

    2011-12-01

    There is growing knowledge of the effects of stress on professionals, including various negative symptoms that may mirror the biopsychosocial effects exhibited by the victims of trauma. Multiple concepts including burn out, compassion fatigue, post-traumatic stress disorder (PTSD), and secondary traumatic stress, are terms that have been incorrectly interchanged with the term vicarious traumatization (VT). Clarity of vicarious victimization and understanding contributing factors is imperative in order to facilitate future research and implement timely and effective interventions, as well as sculpt evidence based practice. This concept anaylsis, complete with a concept map, discusses VT; related terminology; symptomology; prevention and relevant interventions; and discusses opportunities for personal/professional growth for nurses and especially forensic nurses working with victims of violence. © 2011 International Association of Forensic Nurses.

  19. Unveiling vicariant methodologies in vicariance biogeography : not anything goes

    NARCIS (Netherlands)

    Veller, Marco Gerardus Petrus van

    2000-01-01

    In vicariance biogeography, the present distribution of species over areas is explained with different historical processes. Vicariance is one of these processes and involves speciation by the formation of isolating barriers between areas. By assuming this process, a scenario for the history of

  20. Discussion of vicarious calibration of GOSAT/TANSO-CAI UV-band (380nm) and aerosol retrieval in wildfire region in the OCO-2 and GOSAT observation campaign at Railroad Valley in 2016

    Science.gov (United States)

    Hashimoto, M.; Kuze, A.; Bruegge, C. J.; Shiomi, K.; Kataoka, F.; Kikuchi, N.; Arai, T.; Kasai, K.; Nakajima, T.

    2016-12-01

    The GOSAT (Greenhouse Gases Observing Satellite) / TANSO-CAI (Cloud and Aerosol Imager, CAI) is an imaging sensor to measure cloud and aerosol properties and observes reflected sunlight from the atmosphere and surface of the ground. The sensor has four bands from near ultraviolet (near-UV) to shortwave infrared, 380, 674, 870 and 1600nm. The field of view size is 0.5 km for band-1 through band-3, and 1.5km for band-4. Band-1 (380nm) is one of unique function of the CAI. The near-UV observation offers several advantages for the remote sensing of aerosols over land: Low reflectance of most surfaces; Sensitivity to absorbing aerosols; Absorption of trace gases is weak (Höller et al., 2004). CAI UV-band is useful to distinguish absorbing aerosol (smoke) from cloud. GOSAT-2/TANSO-CAI-2 that will be launched in the future also has UV-bands, 340 and 380nm. We carried out an experiment to calibrate CAI UV-band radiance using data taken in a field campaign of OCO-2 and GOSAT at Railroad Valley in 2016. The campaign period is June 27 to July 3 in 2016. We measured surface reflectance by using USB4000 Spectrometer with 74-UV collimating lens (Ocean Optics) and Spectralon (Labsphere). USB4000 is a UV spectrometer, and its measurement range from 300 to 520nm. We simulated CAI UV-band radiance using a vector type of radiation transfer code, i.e. including polarization calculation, pstar3 (Ota et al., 2010) using measured surface reflectance and atmospheric data, pressure and relative humidity by radiosonde in the same campaign, and aerosol optical depth by AERONET, etc. Then, we evaluated measured UV radiances with the simulated data. We show the result of vicarious calibration of CAI UV-band in the campaign, and discuss about this method for future sensor, CAI-2. Around the campaign period, there was wildfire around Los Angeles, and aerosol optical thickness (AOT) observed by AERONET at Rail Road valley and Caltech sites is also high. We tried to detect and retrieve aerosol

  1. Spectrally Tunable Sources for Advanced Radiometric Applications.

    Science.gov (United States)

    Brown, S W; Rice, J P; Neira, J E; Johnson, B C; Jackson, J D

    2006-01-01

    A common radiometric platform for the development of application-specific metrics to quantify the performance of sensors and systems is described. Using this platform, sensor and system performance may be quantified in terms of the accuracy of measurements of standardized sets of source distributions. The prototype platform consists of spectrally programmable light sources that can generate complex spectral distributions in the ultraviolet, visible and short-wave infrared regions for radiometric, photometric and colorimetric applications. In essence, the programmable spectral source is a radiometric platform for advanced instrument characterization and calibration that can also serve as a basis for algorithm testing and instrument comparison.

  2. Vicarious posttraumatic growth among interpreters.

    Science.gov (United States)

    Splevins, Katie A; Cohen, Keren; Joseph, Stephen; Murray, Craig; Bowley, Jake

    2010-12-01

    An emerging evidence base indicates that posttraumatic growth might be experienced vicariously by those working alongside trauma survivors. In this study we explored the vicarious experiences of eight interpreters working in a therapeutic setting with asylum seekers and refugees. We adopted a qualitative approach, using semistructured interviews and interpretative phenomenological analysis. Four interrelated themes emerged from the findings: feeling what your client feels, beyond belief, finding your own way to deal with it, and a different person. Although all participants experienced distress, they also perceived themselves to have grown in some way. The implications for a theory of vicarious posttraumatic growth are discussed, along with clinical applications.

  3. System Vicarious Calibration of Sentinel-3 OLCI

    OpenAIRE

    Lamquin, Nicolas; Bourg, Ludovic; Lerebourg, Christophe; Martin-Lauzer, Francois-Regis; Kwiatkowska, Ewa; Dransfeld, Steffen

    2017-01-01

    Sentinel-3A (S3A), carrying the Ocean and Land Colour Instrument (OLCI), was successfully launched on February 16th 2016. It was the first of the series planned by the European Commission (EC) in the frame of COPERNICUS Sentinel program. Sentinel-3B is planned for launch in late 2017, bearing identical instruments, thus improving the global Earth coverage. The OLCI series providing global coverage at 300m resolution will therefore represent a major breakthrough in the family of ocean colour s...

  4. Calibration plan for the Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K.; Lunsford, A.; Montanaro, M.; Reuter, D.; Smith, R.; Tesfaye, Z.; Wenny, B.

    2011-06-01

    The Landsat Data Continuity Mission consists of a two-sensor platform with the Operational Land Imager and Thermal Infrared Sensor (TIRS). Much of the success of the Landsat program is the emphasis placed on knowledge of the calibration of the sensors relying on a combination of laboratory, onboard, and vicarious calibration methods. Rigorous attention to NIST-traceability of the radiometric calibration, knowledge of out-of-band spectral response, and characterizing and minimizing stray light should provide sensors that meet the quality of Landsat heritage. Described here are the methods and facilities planned for the calibration of TIRS which is a pushbroom sensor with two spectral bands (10.8 and 12 micrometer) and the spatial resolution 100 m with 185-km swath width. Testing takes place in a vacuum test chamber at NASA GSFC using a recently-developed calibration system based on a 16-aperture black body source to simulate spatial and radiometric sources. A two-axis steering mirror moves the source across the TIRS field while filling the aperture. A flood source fills the full field without requiring movement of beam providing a means to evaluate detector-to-detector response effects. Spectral response of the sensor will be determined using a monochromator source coupled to the calibration system. Knowledge of the source output will be through NIST-traceable thermometers integrated to the blackbody. The description of the calibration system, calibration methodology, and the error budget for the calibration system shows that the required 2% radiometric accuracy for scene temperatures between 260 and 330 K is well within the capabilities of the system.

  5. A compact soft x-ray (0.1-1.2 keV) calibration bench for radiometric measurements using an original versatile Rowland circle grazing incidence monochromator

    Science.gov (United States)

    Hubert, S.

    2017-05-01

    This paper describes an original Rowland circle grazing incidence spectrometer used as a monochromator for a soft x-ray Manson source in order to calibrate both the source and detectors over the 0.1-1.2 keV spectral range. The originality of the instrument lies on a patented vacuum manipulator which allows the simultaneous boarding of two detectors, one (reference) for measuring the monochromatic radiation and the second to be calibrated. In order to achieve this, the vacuum manipulator is able to interchange, in vacuum, one detector with the other in front of the exit slit of the monochromatizing stage. One purpose of this apparatus was to completely eliminate the intrinsic bremsstrahlung emission of the x-ray diode source and isolate each characteristic line for quantitative detector calibrations. Obtained spectral resolution (Δλ/λ98%) fully meet this objective. Initially dimensioned to perform calibration of bulky x-ray cameras unfolded on the Laser MégaJoule Facility, other kinds of detector can be obviously calibrated using this instrument. A brief presentation of the first calibration of an x-ray CCD through its quantum efficiency (QE) measurement is included in this paper as example. Comparison with theoretical model for QE and previous measurements at higher energy are finally presented and discussed.

  6. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    Directory of Open Access Journals (Sweden)

    J. Valenta

    2015-04-01

    Full Text Available Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized by separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.

  7. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  8. Radiometric characterization of Landsat Collection 1 products

    Science.gov (United States)

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-01-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  9. Empathy and the Disunity of Vicarious Experiences

    Directory of Open Access Journals (Sweden)

    Pierre Jacob

    2015-04-01

    Full Text Available What makes one individual’s experience vicarious is that it is both similar to, and caused by, another’s psychological state. Vicarious responses are mediated by the observation of another’s goal-directed or expressive action. While the evidence from cognitive neuroscience suggests the ubiquity of vicarious responses to others’ goals, intentions, sensations and emotions, the question is: is the general function of vicarious responses to understand another’s mind? In this paper, I argue for a dual view of the function of vicarious responses: while empathetic responses are other-directed, contagious responses are self-centered.

  10. [On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration].

    Science.gov (United States)

    Sun, Ling; Guo, Mao-Hua; Xu, Na; Zhang, Li-Jun; Liu, Jing-Jing; Hu, Xiu-Qing; Li, Yuan; Rong, Zhi-Guo; Zhao, Ze-Hui

    2012-07-01

    MERSI is the keystone payload of FengYun-3 and there have been two sensors operating on-orbit since 2008. The on-orbit response changes obviously at reflective solar bands (RSBs) and must be effectively monitored and corrected. However MERSI can not realize the RSBs onboard absolute radiometric calibration. This paper presents a new vicarious calibration (VC) method for RSBs based on in-situ BRDF model, and vector radiometric transfer model 6SV with gaseous absorption correction using MOTRAN. The results of synchronous VC experiments in 4 years show that the calibration uncertainties are within 5% except for band at the center of water vapor absorption, and 3% for most bands. Aqua MODIS was taken as the radiometric reference to evaluate the accuracy of this VC method. By comparison of the simulated radiation at top of atmosphere (TOA) with MODIS measurement, it was revealed that the average relative differences are within 3% for window bands with wavelengths less than 1 microm, and 5% for bands with wavelengths larger than 1 microm (except for band 7 at 2.1 microm). Besides, the synchronous nadir observation cross analysis shows the excellent agreement between re-calibrated MERSI TOA apparent reflectance and MODIS measurements. Based on the multi-year site calibration results, it was found that the calibration coefficients could be fitted with two-order polynomials, thus the daily calibration updates could be realized and the response variation between two calibration experiments could be corrected timely; there are large response changes at bands with wavelengths less than 0.6 microm, the degradation rate of the first year at band 8 (0.41 microm) is about 14%; the on-orbit response degradation is maximum at the beginning, the degradation rates slow down after one year in operation, and after two years the responses even increase at some band with wavelengths larger than 0.6 microm.

  11. Radiometric cross-calibration of EO-1 ALI with L7 ETM+ and Terra MODIS sensors using near-simultaneous desert observations

    Science.gov (United States)

    Chander, Gyanesh; Angal, Amit; Choi, Taeyoung; Xiong, Xiaoxiong

    2013-01-01

    The Earth Observing-1 (EO-1) satellite was launched on November 21, 2000, as part of a one-year technology demonstration mission. The mission was extended because of the value it continued to add to the scientific community. EO-1 has now been operational for more than a decade, providing both multispectral and hyperspectral measurements. As part of the EO-1 mission, the Advanced Land Imager (ALI) sensor demonstrates a potential technological direction for the next generation of Landsat sensors. To evaluate the ALI sensor capabilities as a precursor to the Operational Land Imager (OLI) onboard the Landsat Data Continuity Mission (LDCM, or Landsat 8 after launch), its measured top-of-atmosphere (TOA) reflectances were compared to the well-calibrated Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors in the reflective solar bands (RSB). These three satellites operate in a near-polar, sun-synchronous orbit 705 km above the Earth's surface. EO-1 was designed to fly one minute behind L7 and approximately 30 minutes in front of Terra. In this configuration, all the three sensors can view near-identical ground targets with similar atmospheric, solar, and viewing conditions. However, because of the differences in the relative spectral response (RSR), the measured physical quantities can be significantly different while observing the same target. The cross-calibration of ALI with ETM+ and MODIS was performed using near-simultaneous surface observations based on image statistics from areas observed by these sensors over four desert sites (Libya 4, Mauritania 2, Arabia 1, and Sudan 1). The differences in the measured TOA reflectances due to RSR mismatches were compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of each sensor. For this study, the spectral profile of the target comes from the near-simultaneous EO-1

  12. GOSAT TIR radiometric validation toward simultaneous GHG column and profile observation

    Science.gov (United States)

    Kataoka, F.; Knuteson, R. O.; Kuze, A.; Shiomi, K.; Suto, H.; Saitoh, N.

    2015-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues its operation for more than six years. The thermal and near infrared sensor for carbon observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT measures greenhouse gases (GHG), such as CO2 and CH4, with wide and high resolution spectra from shortwave infrared (SWIR) to thermal infrared (TIR). This instrument has the advantage of being able to measure simultaneously the same field of view in different spectral ranges. The combination of column-GHG form SWIR band and vertical profile-GHG from TIR band provide better understanding and distribution of GHG, especially in troposphere. This work describes the radiometric validation and sensitivity analysis of TANSO-FTS TIR spectra, especially CO2, atmospheric window and CH4 channels with forward calculation. In this evaluation, we used accurate in-situ dataset of the HIPPO (HIAPER Pole-to-Pole Observation) airplane observation data and GOSAT vicarious calibration and validation campaign data in Railroad Valley, NV. The HIPPO aircraft campaign had taken accurate atmospheric vertical profile dataset (T, RH, O3, CO2, CH4, N2O, CO) approximately pole-to-pole from the surface to the tropopause over the ocean. We implemented these dataset for forward calculation and made the spectral correction model with respect to wavenumber and internal calibration blackbody temperature The GOSAT vicarious calibration campaign have conducted every year since 2009 near summer solstice in Railroad Valley, where high-temperature desert site. In this campaign, we have measured temperature and humidity by a radiosonde and CO2, CH4 and O3 profile by the AJAX airplane at the time of the GOSAT overpass. Sometimes, the GHG profiles over the Railroad Valley show the air mass advection in mid-troposphere depending on upper wind. These advections bring the different concentration of GHG in lower and upper troposphere. Using these cases, we made

  13. Vicarious Liability for Group Companies: the Final Frontier of Vicarious Liability?

    OpenAIRE

    Morgan, Phillip David James

    2015-01-01

    This article seeks to explore the pressing unanswered commercial issue: whether or not a parent company can potentially be vicariously liable for its subsidiary's torts. It is currently undecided in English law, however, the theory of vicarious liability as recently expounded by the Supreme Court, as well as the development of new categories of vicarious liability, point towards vicarious liability for legal persons. This article argues that a legal (or natural) person may employ, or be in a ...

  14. Spectral and Radiometric Calibration Using Tunable Lasers

    Science.gov (United States)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  15. Radiometric calibration of the gome-2 instrument

    NARCIS (Netherlands)

    Otter, G.C.J.; Dijkhuizen, N.; Vosteen, L.L.A.; Brinkers, S.; Gür, B.; Kenter, P.

    2017-01-01

    The Global Ozone Monitoring Experiment-2(GOME-2) represents one of the European instruments carried on board the MetOp satellite within the ESA’s “Living Planet Program”. Consisting of three flight models (FM’s) it is intended to provide long-term monitoring of atmospheric ozone and other trace

  16. Broadband Radiometric LED Measurements.

    Science.gov (United States)

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  17. Broadband Radiometric LED Measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2017-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed. PMID:28649167

  18. Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST Product from the Archive

    Directory of Open Access Journals (Sweden)

    Monica Cook

    2014-11-01

    Full Text Available The Landsat program has been producing an archive of thermal imagery that spans the globe and covers 30 years of the thermal history of the planet at human scales (60–120 m. Most of that archive’s absolute radiometric calibration has been fixed through vicarious calibration techniques. These calibration ties to trusted values have often taken a year or more to gather sufficient data and, in some cases, it has been over a decade before calibration certainty has been established. With temperature being such a critical factor for all living systems and the ongoing concern over the impacts of climate change, NASA and the United States Geological Survey (USGS are leading efforts to provide timely and accurate temperature data from the Landsat thermal data archive. This paper discusses two closely related advances that are critical steps toward providing timely and reliable temperature image maps from Landsat. The first advance involves the development and testing of an autonomous procedure for gathering and performing initial screening of large amounts of vicarious calibration data. The second advance discussed in this paper is the per-pixel atmospheric compensation of the data to permit calculation of the emitted surface radiance (using ancillary sources of emissivity data and the corresponding land surface temperature (LST.

  19. RADIOMETRIC BLOCK ADJUSMENT AND DIGITAL RADIOMETRIC MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    A. Pros

    2013-05-01

    Full Text Available In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF. In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.

  20. Vicarious learning: a review of the literature.

    Science.gov (United States)

    Roberts, Debbie

    2010-01-01

    Experiential learning theory stresses the primacy of personal experience and the literature suggests that direct clinical experience is required in order for learning to take place. However, raw or first hand experience may not be the only mechanisms by which students engage in experiential learning. There is a growing body of literature within higher education which suggests that students are able to use another's experience to learn: vicarious learning. This literature review aims to outline vicarious learning within a nursing context. Many of the studies regarding vicarious learning are situated within Higher Education in general, however, within the United States these relate more specifically to nursing students. The literature indicates the increasing global interest in this area. This paper reveals that whilst the literature offers a number of examples illustrating how vicarious learning takes place, opinion on the role of the lecturer is divided and requires further exploration and clarification. The implications for nurse education are discussed.

  1. Vicarious Tactics to Promote Childrens' Conceptual Skills.

    Science.gov (United States)

    Rosenthal, Ted L.

    1979-01-01

    From a review of the literature on modeling processes, observational learning, social learning theory, and vicarious concept learning by young children, the author draws guidelines for the teaching of abstractions to preschoolers. (SJL)

  2. ASD FieldSpec Calibration Setup and Techniques

    Science.gov (United States)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  3. In-Flight Calibration of the Thermal Infrared Sensor (TIRS) on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K.; Reuter, D.; Montanaro, M.; Hook, S.; Markham, B.

    2011-01-01

    Describe in-flight calibration for the Thermal Infrared Sensor (TIRS) (1) Overview of TIRS (2) On-orbit radiometric calibration (2a) Onboard calibrator (2b) Terrestrial sites (3) On-orbit geometric and spatial calibration

  4. A comparison of positive vicarious learning and verbal information for reducing vicariously learned fear.

    Science.gov (United States)

    Reynolds, Gemma; Wasely, David; Dunne, Güler; Askew, Chris

    2017-10-19

    Research with children has demonstrated that both positive vicarious learning (modelling) and positive verbal information can reduce children's acquired fear responses for a particular stimulus. However, this fear reduction appears to be more effective when the intervention pathway matches the initial fear learning pathway. That is, positive verbal information is a more effective intervention than positive modelling when fear is originally acquired via negative verbal information. Research has yet to explore whether fear reduction pathways are also important for fears acquired via vicarious learning. To test this, an experiment compared the effectiveness of positive verbal information and positive vicarious learning interventions for reducing vicariously acquired fears in children (7-9 years). Both vicarious and informational fear reduction interventions were found to be equally effective at reducing vicariously acquired fears, suggesting that acquisition and intervention pathways do not need to match for successful fear reduction. This has significant implications for parents and those working with children because it suggests that providing children with positive information or positive vicarious learning immediately after a negative modelling event may prevent more serious fears developing.

  5. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  6. Music evokes vicarious emotions in listeners

    Science.gov (United States)

    Kawakami, Ai; Furukawa, Kiyoshi; Okanoya, Kazuo

    2014-01-01

    Why do we listen to sad music? We seek to answer this question using a psychological approach. It is possible to distinguish perceived emotions from those that are experienced. Therefore, we hypothesized that, although sad music is perceived as sad, listeners actually feel (experience) pleasant emotions concurrent with sadness. This hypothesis was supported, which led us to question whether sadness in the context of art is truly an unpleasant emotion. While experiencing sadness may be unpleasant, it may also be somewhat pleasant when experienced in the context of art, for example, when listening to sad music. We consider musically evoked emotion vicarious, as we are not threatened when we experience it, in the way that we can be during the course of experiencing emotion in daily life. When we listen to sad music, we experience vicarious sadness. In this review, we propose two sides to sadness by suggesting vicarious emotion. PMID:24910621

  7. Vicarious Reinforcement In Rhesus Macaques (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Steve W. C. Chang

    2011-03-01

    Full Text Available What happens to others profoundly influences our own behavior. Such other-regarding outcomes can drive observational learning, as well as motivate cooperation, charity, empathy, and even spite. Vicarious reinforcement may serve as one of the critical mechanisms mediating the influence of other-regarding outcomes on behavior and decision-making in groups. Here we show that rhesus macaques spontaneously derive vicarious reinforcement from observing rewards given to another monkey, and that this reinforcement can motivate them to subsequently deliver or withhold rewards from the other animal. We exploited Pavlovian and instrumental conditioning to associate rewards to self (M1 and/or rewards to another monkey (M2 with visual cues. M1s made more errors in the instrumental trials when cues predicted reward to M2 compared to when cues predicted reward to M1, but made even more errors when cues predicted reward to no one. In subsequent preference tests between pairs of conditioned cues, M1s preferred cues paired with reward to M2 over cues paired with reward to no one. By contrast, M1s preferred cues paired with reward to self over cues paired with reward to both monkeys simultaneously. Rates of attention to M2 strongly predicted the strength and valence of vicarious reinforcement. These patterns of behavior, which were absent in nonsocial control trials, are consistent with vicarious reinforcement based upon sensitivity to observed, or counterfactual, outcomes with respect to another individual. Vicarious reward may play a critical role in shaping cooperation and competition, as well as motivating observational learning and group coordination in rhesus macaques, much as it does in humans. We propose that vicarious reinforcement signals mediate these behaviors via homologous neural circuits involved in reinforcement learning and decision-making.

  8. Vicarious Group Trauma among British Jews

    OpenAIRE

    Fuhr, Christina

    2016-01-01

    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s11133-016-9337-4 Given that literature on the intra- and inter-generational transmission of traumas is mainly based on secondary literature and focuses on the transmission of trauma memory in terms of the historical knowledge of group trauma, this article develops the theory of vicarious group trauma and tests this theory by exploring vicarious traumatization in the everyday lives of Je...

  9. Laboratory panel and radiometer calibration

    CSIR Research Space (South Africa)

    Deadman, AJ

    2011-07-01

    Full Text Available this is not possible, that a look-up table be created to correct 8?/hemispherical reflectance values. 6. REFERENCES [1] N.P. Fox ?QA4EO-WGCV-IVO-CLP-008: Protocol for the CEOS WGCV pilot Comparison of techniques/instruments used for vicarious calibration...

  10. Vicarious Emotional Responses of Macho College Males.

    Science.gov (United States)

    Gold, Steven R.; And Others

    1992-01-01

    Explored whether vicarious emotional reactions of macho males reflect a lack of empathy and a tendency to respond with anger. Male subjects (n=107) viewed videotapes of a crying, quiescent, and smiling baby, respectively. Macho males reported more anger and less empathy for the crying baby than did less macho males. (RJM)

  11. A compact soft x-ray (0.1–1.2 keV) calibration bench for radiometric measurements using an original versatile Rowland circle grazing incidence monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S., E-mail: sebastien.hubert@cea.fr

    2017-05-21

    This paper describes an original Rowland circle grazing incidence spectrometer used as a monochromator for a soft x-ray Manson source in order to calibrate both the source and detectors over the 0.1–1.2 keV spectral range. The originality of the instrument lies on a patented vacuum manipulator which allows the simultaneous boarding of two detectors, one (reference) for measuring the monochromatic radiation and the second to be calibrated. In order to achieve this, the vacuum manipulator is able to interchange, in vacuum, one detector with the other in front of the exit slit of the monochromatizing stage. One purpose of this apparatus was to completely eliminate the intrinsic bremsstrahlung emission of the x-ray diode source and isolate each characteristic line for quantitative detector calibrations. Obtained spectral resolution (Δλ/λ<10{sup −2}) and spectral purity (>98%) fully meet this objective. Initially dimensioned to perform calibration of bulky x-ray cameras unfolded on the Laser MégaJoule Facility, other kinds of detector can be obviously calibrated using this instrument. A brief presentation of the first calibration of an x-ray CCD through its quantum efficiency (QE) measurement is included in this paper as example. Comparison with theoretical model for QE and previous measurements at higher energy are finally presented and discussed.

  12. Development of absolute radiometric response functions for HyPlant & G-LiHT using SIRCUS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to provide absolute radiometric and cross-calibrated spectral characterizations for G-LiHT and HyPlant.  The objectives are: (i) to...

  13. Evaluation of the Radiometric Integrity of LANDSAT 4 Thematic Mapper Band 6 Data

    Science.gov (United States)

    Schott, J. R.

    1985-01-01

    Probably the most generally accepted method for processing radiometric data from space is to correct the observed radiance or apparent temperature to a surface radiance or temperature value using atmospheric propagation models. As part of NASA's Heat Capacity Mapping Mission (HCMM) experiment the atmospheric propagation models were used in reverse in an attempt to evaluate the post launch radiometric response of the radiometer. Techniques successfully used to radiometrically calibrate the HCMM sensor were extended. The HCMM experiment is described and used as a base for the evaluation of the TM band 6 (infrared) sensor.

  14. Cross-calibration of A.M. constellation sensors for long term monitoring of land surface processes

    Science.gov (United States)

    Meyer, D.; Chander, G.

    2006-01-01

    Data from multiple sensors must be used together to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products derived from different sensors (e.g., vegetation cover, albedo, surface temperature) can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectro-radiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Cross-calibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study extends on a previous study of Terra/MODIS and Landsat/ETM+ cross calibration by including the Terra/ASTER and EO-1/ALI sensors, exploring the impacts of cross-calibrating sensors when conditions described above are met to some degree but not perfectly. Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. Due to problems with direct calibration of ASTER data, linear

  15. Burnout, vicarious traumatization and its prevention.

    Science.gov (United States)

    Pross, Christian

    2006-01-01

    Previous studies on burnout and vicarious traumatization are reviewed and summarized with a list of signs and symptoms. From the author's own observations two histories of caregivers working with torture survivors are described which exemplify the risk,implications and consequences of secondary trauma. Contributing factors in the social and political framework in which caregivers operate are analyzed and possible means of prevention suggested, particularly focussing on the conflict of roles when providing evaluations on trauma victims for health and immigration authorities. Caregivers working with victims of violence carry a high risk of suffering from burnout and vicarious traumatization unless preventive factors are considered such as: self care, solid professional training in psychotherapy, therapeutic self-awareness, regular self-examination by collegial and external supervision, limiting caseload, continuing professional education and learning about new concepts in trauma, occasional research sabbaticals, keeping a balance between empathy and a proper professional distance to clients, protecting oneself against being mislead by clients with fictitious PTSD. An institutional setting should be provided in which the roles of therapists and evaluators are separated. Important factors for burnout and vicarious traumatization are the lack of social recognition for caregivers and the financial and legal outsider status of many centers. Therefore politicians and social insurance carriers should be urged to integrate facilities for traumatized refugees into the general health care system and centers should work on more alliances with the medical mainstream and academic medicine.

  16. Evaluation of the Radiometric Integrity of LANDSAT-4 Thematic Mapper Band 6 Data

    Science.gov (United States)

    Schott, J. R.

    1984-01-01

    An approach for experimentally evaluating the radiometric calibration of the LANDSAT-4 band 6 data is described which draws on a method used to radiometrically calibrate the HCMR data which involved underflying the satellite with an infrared line scanner. By extending this technology to higher altitudes experimental radiance data suitable for radiometric calibration of the TM band 6 sensor can be generated. Repetition of this experiment can permit evaluation of long term drift in the sensor and provide a data base for evaluating atmospheric propagation models for radiation transfer. To date, efforts were concentrated on modifying the infrared line scanner to match the spectral response of the TM band 6 sensor. In addition, the LOWTRAN code corresponding to a satellite overpass of September 1982 was run to yield a plot of transmission and path radiance as a function of altitude.

  17. RADIOMETRIC PROPERTIES OFAGRICULTURAL PERMEABLE COVERINGS

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2010-06-01

    Full Text Available Nets are commonly used for agricultural applications. However, only little is known about the radiometric properties of net types and how to influence them. In order to investigate the influence of net construction parameters on their radiometric properties, a set of radiometric tests were performed on 45 types of agricultural nets. Laboratory tests on large size net samples was performed using a large and a small integrating sphere. Open field radiometric test were carried out by means of an experimental set up (120x120x50 cm and a full scale shade house. Small differences (less than 5% occurred between laboratory and open field tests. Results highlighted that the porosity and the mesh size, combined with the colour and secondarily, with the fabric and the kind of threads of the net influenced the shading performance of the net. The colour influenced the spectral distribution of the radiation passing through the net absorbing its complementary colours. Since nets are three-dimensional structures the transmissivity of direct light under different angles of incident of solar radiation changes when installed in the warp or weft direction. Transmissivity could be considered one of the main parameters involved in the agronomic performances of the netting system.

  18. Vicarious motor activation during action perception: beyond correlational evidence

    National Research Council Canada - National Science Library

    Avenanti, Alessio; Candidi, Matteo; Urgesi, Cosimo

    2013-01-01

    .... While this suggests a simulative mechanism mediating the perception of others' actions, one cannot use such evidence to make inferences about the functional significance of vicarious activations...

  19. Vicarious resilience in sexual assault and domestic violence advocates.

    Science.gov (United States)

    Frey, Lisa L; Beesley, Denise; Abbott, Deah; Kendrick, Elizabeth

    2017-01-01

    There is little research related to sexual assault and domestic violence advocates' experiences, with the bulk of the literature focused on stressors and systemic barriers that negatively impact efforts to assist survivors. However, advocates participating in these studies have also emphasized the positive impact they experience consequent to their work. This study explores the positive impact. Vicarious resilience, personal trauma experiences, peer relational quality, and perceived organizational support in advocates (n = 222) are examined. Also, overlap among the conceptual components of vicarious resilience is explored. The first set of multiple regressions showed that personal trauma experiences and peer relational health predicted compassion satisfaction and vicarious posttraumatic growth, with organizational support predicting only compassion satisfaction. The second set of multiple regressions showed that (a) there was significant shared variance between vicarious posttraumatic growth and compassion satisfaction; (b) after accounting for vicarious posttraumatic growth, organizational support accounted for significant variance in compassion satisfaction; and (c) after accounting for compassion satisfaction, peer relational health accounted for significant variance in vicarious posttraumatic growth. Results suggest that it may be more meaningful to conceptualize advocates' personal growth related to their work through the lens of a multidimensional construct such as vicarious resilience. Organizational strategies promoting vicarious resilience (e.g., shared organizational power, training components) are offered, and the value to trauma-informed care of fostering advocates' vicarious resilience is discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Radiometric survey in mammography: problems and challenges; Levantamento radiometrico em mamografia: problemas e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, M.V.T.; Navarro, V.C.C.; Garcia, I.F.M.; Ferreira, M.J.; Macedo, E.M., E-mail: navarro@ifba.edu.br [Instituto Federal da Bahia (LABPROSAUD/IFBA), Salvador, BA (Brazil). Laboratorio de Produtos para a Saude

    2015-07-01

    In addition to being mandatory, the radiometric survey is a necessity, especially in the Brazilian reality with the construction of smaller and smaller rooms. However, calibration conditions, the instrumentation and its use, can produce underestimated factors. Measures made at Labprosaud/IFBA, with five different instruments and the ISO N 25 radiation quality, show the possibility of the values presented in the radiometric surveys are underestimated by up to 10 times. The results indicate the need for meters to be calibrated in ISO N qualities, in mammography energy range, in integrated dose mode and exposure times shorter or equal to 1 s. (author)

  1. Experimental Research on Passive Millimeter Wave Radiometric Stealth Technology of Metal Objects

    Science.gov (United States)

    Zhang, Guangfeng; Lou, Guowei; Li, Xingguo

    2012-12-01

    Working all day and all weather, a passive millimeter wave radiometer (PMMW) can be widely used in civil and military affairs. It can get some specific information about the material characteristics different from radar and infrared detectors. On basis of the radiometric operating range equation, the radiation cross section and stealth effect of metal objects are presented for the PMMW near-sensing application. The measurement experiments of metal solid models adopts 3 mm band Dicke radiometer with the outdoor calibration system. The sky temperature and other different surface metal objects are also measured as the contrastive experiments. The results show the radiometric temperature contrasts of solid models have remarkable difference in the bare and coated conditions, and the radiometric operating range can decrease to 60.8 %. In addition, the PMMW stealth methods through different surface treatment respectively reduce the radiometric antenna temperature contrast in some degree.

  2. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    Science.gov (United States)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  3. Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps

    Science.gov (United States)

    Knowlton, Kelly

    2004-01-01

    This experiment measured the reflectance of tarps with ground instruments in order to check radiometric calibration, validate atmospheric correction, and predict at-sensor radiance for satellite instruments. The procedure of this experiment is as follows: 1) Assemble laboratory apparatus to duplicate ground reference measurement geometry and satellite measurement geometry; 2) Measure spectral radiance with Optronics OL 750 double monochromator/spectroradiometer; 3) Measure radiance of NIST-calibrated Spectralon panel irradiated by collimated light at incidence angle of calibrated reflectance (20 deg, 30 deg, 40 deg, or 50 deg), viewing normal to panel surface; 4) Measure radiance of Spectralon panel irradiated at incidence angle equal to solar zenith angle at time of overpass; 5) Calculate reflectance of Spectralon panel irradiated at solar zenith angle, viewing normal to panel surface (ground geometry).

  4. Jason Microwave Radiometer On Orbit Calibration, Validation and Performance

    Science.gov (United States)

    Ruf, C. S.; Brown, S. T.; Keihm, S. J.; Kitiyakara, A.

    2002-12-01

    The Jason Microwave Radiometer (JMR) on the Jason-1 altimeter satellite measures radiometric brightness temperature (TB) at 18.7, 23.8, and 34.0 GHz in the nadir direction, from which is estimated the excess path delay (PD) through the atmosphere experienced by the Jason radar altimeter signal due to water vapor and suspended cloud liquid water. JMR is an improved follow-on to the TOPEX Microwave Radiometer (TMR) on the earlier TOPEX/Poseidon altimeter satellite. Early work calibrating JMR and validating its performance during the first six months of the mission will be presented. Placement of Jason-1 into a virtually identical orbit with TOPEX/Poseidon, with approximately 70 s time displacement, has afforded unprecedented accuracy in the intercalibration of two satellite radiometers. The virtual elimination of spatial and temporal decorrelation errors between JMR and TMR TBs and PDs allows intercomparison fine tuning at a much more precise level, and with greatly reduced data averaging requirements, relative to the earlier TMR comparisons with other satellite instruments (SSM/I, ERS-1,2), island radiosondes, GPS, and ground-based water vapor radiometers. Calibration of the JMR TBs has been evaluated at the low end of its on-orbit range by comparing the differences between vicarious cold reference TBs of it and adjacent TMR channels with those predicted by theory. At the high end of the TB range, comparisons are made with TMR TBs over suitable regions of the Sahara desert and Amazon rain forest. Characterization of JMR performance at intermediate TB levels is possible using a variety of statistical intercomparison techniques.

  5. Radiometric flight results from the HyperSpectral Imager for Climate Science (HySICS)

    Science.gov (United States)

    Kopp, Greg; Smith, Paul; Belting, Chris; Castleman, Zach; Drake, Ginger; Espejo, Joey; Heuerman, Karl; Lanzi, James; Stuchlik, David

    2017-04-01

    Long-term monitoring of the Earth-reflected solar spectrum is necessary for discerning and attributing changes in climate. High radiometric accuracy enables such monitoring over decadal timescales with non-overlapping instruments, and high precision enables trend detection on shorter timescales. The HyperSpectral Imager for Climate Science (HySICS) is a visible and near-infrared spatial/spectral imaging spectrometer intended to ultimately achieve ˜ 0.2 % radiometric accuracies of Earth scenes from space, providing an order-of-magnitude improvement over existing space-based imagers. On-orbit calibrations from measurements of spectral solar irradiances acquired by direct views of the Sun enable radiometric calibrations with superior long-term stability than is currently possible with any manmade spaceflight light source or detector. Solar and lunar observations enable in-flight focal-plane array (FPA) flat-fielding and other instrument calibrations. The HySICS has demonstrated this solar cross-calibration technique for future spaceflight instrumentation via two high-altitude balloon flights. The second of these two flights acquired high-radiometric-accuracy measurements of the ground, clouds, the Earth's limb, and the Moon. Those results and the details of the uncertainty analyses of those flight data are described.

  6. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit

    Science.gov (United States)

    Morfitt, Ron; Barsi, Julia A.; Levy, Raviv; Markham, Brian L.; Micijevic, Esad; Ong, Lawrence; Scaramuzza, Pat; Vanderwerff, Kelly

    2015-01-01

    Expectations of the Operational Land Imager (OLI) radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.

  7. Virtual and remote experiments for radiometric and photometric measurements

    Science.gov (United States)

    Thoms, L.-J.; Girwidz, R.

    2017-09-01

    The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net.

  8. The vicarious learning pathway to fear 40 years on.

    Science.gov (United States)

    Askew, Chris; Field, Andy P

    2008-10-01

    Forty years on from the initial idea that fears could be learnt vicariously through observing other people's responses to a situation or stimulus, this review looks at the evidence for this theory as an explanatory model of clinical fear. First, we review early experimental evidence that fears can be learnt vicariously before turning to the evidence from both primate and human research that clinical fears can be acquired in this way. Finally, we review recent evidence from research on non-anxious children. Throughout the review we highlight problems and areas for future research. We conclude by exploring the likely underlying mechanisms in the vicarious learning of fear and the resulting clinical implications.

  9. Computational study of vicarious nucleophilic substitution reactions.

    Science.gov (United States)

    Meneses, Lorena; Morocho, Shirley; Castellanos, Alejandra; Cuesta, Sebastián

    2017-10-02

    Vicarious nucleophilic substitution reactions are a versatile way of introducing substituents into aromatic and heteroaromatic electron-deficient compounds. In this project, a kinetic study of these reactions by applying quantum mechanics concepts, such as reaction force, force constant, and electronic reaction flow was proposed. Furthermore, absolute theoretical scales of electrophilicity by applying density functional theory electronic indices were established to classify a series of five and six-membered nitroheteroarenes, and nitrobenzenes with substituents in ortho, meta and para positions. The theoretical model was validated by comparison with experimental kinetic results. Calculations using B3LYP/6-311G(d,p) level of theory allowed analysis of the reactivity patterns and the mechanisms of these chemical reactions. The theoretical scale properly accounts for the activating/deactivating effects promoted by the substituents and agrees with the ability of these substituents to accept or donate electrons, electron acceptor substituents are those that increase electrophilicity, and electron donors those that reduce it.

  10. Vicarious reinforcement learning signals when instructing others.

    Science.gov (United States)

    Apps, Matthew A J; Lesage, Elise; Ramnani, Narender

    2015-02-18

    Reinforcement learning (RL) theory posits that learning is driven by discrepancies between the predicted and actual outcomes of actions (prediction errors [PEs]). In social environments, learning is often guided by similar RL mechanisms. For example, teachers monitor the actions of students and provide feedback to them. This feedback evokes PEs in students that guide their learning. We report the first study that investigates the neural mechanisms that underpin RL signals in the brain of a teacher. Neurons in the anterior cingulate cortex (ACC) signal PEs when learning from the outcomes of one's own actions but also signal information when outcomes are received by others. Does a teacher's ACC signal PEs when monitoring a student's learning? Using fMRI, we studied brain activity in human subjects (teachers) as they taught a confederate (student) action-outcome associations by providing positive or negative feedback. We examined activity time-locked to the students' responses, when teachers infer student predictions and know actual outcomes. We fitted a RL-based computational model to the behavior of the student to characterize their learning, and examined whether a teacher's ACC signals when a student's predictions are wrong. In line with our hypothesis, activity in the teacher's ACC covaried with the PE values in the model. Additionally, activity in the teacher's insula and ventromedial prefrontal cortex covaried with the predicted value according to the student. Our findings highlight that the ACC signals PEs vicariously for others' erroneous predictions, when monitoring and instructing their learning. These results suggest that RL mechanisms, processed vicariously, may underpin and facilitate teaching behaviors. Copyright © 2015 Apps et al.

  11. On the distinction of empathic and vicarious emotions

    Science.gov (United States)

    Paulus, Frieder M.; Müller-Pinzler, Laura; Westermann, Stefan; Krach, Sören

    2013-01-01

    In the introduction to the special issue “The Neural Underpinnings of Vicarious Experience” the editors state that one “may feel embarrassed when witnessing another making a social faux pas”. In our commentary we address this statement and ask whether this example introduces a vicarious or an empathic form of embarrassment. We elaborate commonalities and differences between these two forms of emotional experiences and discuss their underlying mechanisms. We suggest that both, vicarious and empathic emotions, originate from the simulation processes mirroring and mentalizing that depend on anchoring and adjustment. We claim the term “empathic emotion” to be reserved exclusively for incidents where perceivers and social targets have shared affective experience, whereas “vicarious emotion” offers a wider scope and also includes non-shared affective experiences. Both are supposed to be highly functional in social interactions. PMID:23720621

  12. Types of vicarious learning experienced by pre-dialysis patients

    National Research Council Canada - National Science Library

    McCarthy, Kate; Sturt, Jackie; Adams, Ann

    2015-01-01

    .... Factors affecting patient treatment decisions are currently unknown. The objective of this article is to explore data from a wider study in specific relation to the types of vicarious learning experiences reported by pre-dialysis patients...

  13. Automated geographic registration and radiometric correction for UAV-based mosaics

    Science.gov (United States)

    Thomasson, J. Alex; Shi, Yeyin; Sima, Chao; Yang, Chenghai; Cope, Dale A.

    2017-05-01

    Texas A and M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to science-based utilization of such mosaics are geographic registration and radiometric calibration. In our current research project, image files are taken to the computer laboratory after the flight, and semi-manual pre-processing is implemented on the raw image data, including ortho-mosaicking and radiometric calibration. Ground control points (GCPs) are critical for high-quality geographic registration of images during mosaicking. Applications requiring accurate reflectance data also require radiometric-calibration references so that reflectance values of image objects can be calculated. We have developed a method for automated geographic registration and radiometric correction with targets that are installed semi-permanently at distributed locations around fields. The targets are a combination of black (≍5% reflectance), dark gray (≍20% reflectance), and light gray (≍40% reflectance) sections that provide for a transformation of pixel-value to reflectance in the dynamic range of crop fields. The exact spectral reflectance of each target is known, having been measured with a spectrophotometer. At the time of installation, each target is measured for position with a real-time kinematic GPS receiver to give its precise latitude and longitude. Automated location of the reference targets in the images is required for precise, automated, geographic registration; and automated calculation of the digital-number to reflectance transformation is required for automated radiometric calibration. To validate the system for radiometric calibration, a calibrated UAV-based image mosaic of a field was compared to a calibrated single image from a manned aircraft. Reflectance

  14. Player violence or violent players? Vicarious liability for sports participants

    OpenAIRE

    James, Mark; McArdle, David

    2004-01-01

    This article analyses two recent English cases concerning the law on vicarious liability for acts of violence and considers their significance in respect of on-field acts of violence in contact sports. It provides an overview of how the law of negligence has developed in the specific context of sports injuries (including the application of the defence of volenti) and critiques the application of vicarious liability to sports cases. This is followed by a consideration of the wider law on vicar...

  15. Advanced Calibration Source for Planetary and Earth Observing Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiometric calibration is critical to many NASA activities.  At NASA SSC, imaging cameras have been used in-situ to monitor propulsion test stand...

  16. Making Sense of Organisational Change Through Vicarious Narratives

    DEFF Research Database (Denmark)

    Lønsmann, Dorte

    The paper focuses on the role of vicarious narratives in employees’ sense‐making in relation to organisational change. The paper addresses the following research question: How do employees use vicarious narratives to makes sense of organisational change, and of their own role in the organisation?....... While the analysis of vicarious narratives in the interviews is the primary focus, the analysis is informed by ethnographic analysis of the full data set.......The paper focuses on the role of vicarious narratives in employees’ sense‐making in relation to organisational change. The paper addresses the following research question: How do employees use vicarious narratives to makes sense of organisational change, and of their own role in the organisation...... of the stories becomes a symbol of belonging to a corporate culture while at the same time contributing to creating that culture. The paper therefore also examines the ways in which vicarious narratives are part of the process of creating corporate culture and identity. The data for the paper has been collected...

  17. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    Directory of Open Access Journals (Sweden)

    Sigrid Roessner

    2011-06-01

    Full Text Available The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared and Hawk SWIR (Short Wave Infrared scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data.

  18. Gamma radiometric survey of Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Lalor, G.C.; Robotham, H. (West Indies Univ., Mona (Jamaica)); Miller, J.M.; Simpson, P.R. (British Geological Survey, Keyworth (UK))

    The results of a total gamma radiometric survey of Jamaica, carried out with car-borne instrumentation, are presented and the data compared with the contents of potassium, thorium and uranium in rocks and in surface (soil, stream-sediment, pan concentrate and water) samples obtained at six sites selected to be representative of the principal rock types and surface environments of Jamaica. The work formed part of an orientation study for a regional geochemical survey of the CARICOM countries of the Caribbean. The initial results indicate that enhanced gamma activity is correlated with enrichment in uranium and thorium, but not potassium, in terra rossa soils and/or bauxite deposits in limestone. Elsewhere, gamma levels are increased on the Above Rocks Cretaceous basement Inlier, where they correlate generally with the presence of volcanogenic sediments and a granodiorite intrusion. The lowest radioactivity was recorded in the vicinity of ultrabasic rocks in the Blue Mountains Inlier. (author).

  19. Radiometric studies of mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Edwaldo E. Camargo

    1987-02-01

    Full Text Available An in vitro assay system that included automated radiometric quantification of 14CO2 released as a result of oxidation of 14C- substrates was applied for studying the metabolic activity of M. tuberculosis under various experimental conditions. These experiments included the study of a mtabolic pathways, b detection times for various inoculum sizes, c effect of filtration on reproducibility of results, d influence of stress environment e minimal inhibitory concentrations for isoniazid, streptomycin, ethambutol and rifampin, and f generation times of M. tuberculosis and M. bovis. These organisms were found to metabolize 14C-for-mate, (U-14C acetate, (U-14C glycerol, (1-14C palmitic acid, 1-14C lauric acid, (U-14C L-malic acid, (U-14C D-glucose, and (U-14C D-glucose, but not (1-14C L-glucose, (U-14C glycine, or (U-14C pyruvate to 14CO2. By using either 14C-for-mate, (1-14C palmitic acid, or (1-14C lauric acid, 10(7 organisms/vial could be detected within 24 48 hours and as few as 10 organisms/vial within 16-20 days. Reproducible results could be obtained without filtering the bacterial suspension, provided that the organisms were grown in liquid 7H9 medium with 0.05% polysorbate 80 and homogenized prior to the study. Drugs that block protein synthesis were found to have lower minimal inhibitory concentrations with the radiometric method when compared to the conventional agar dilution method. The mean generation time obtained for M. bovis and different strains of M. tuberculosis with various substrates was 9 ± 1 hours.

  20. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  1. Transferring the calibration of direct solar irradiance to diffuse-sky radiance measurements for CIMEL Sun-sky radiometers.

    Science.gov (United States)

    Li, Zhengqiang; Blarel, Luc; Podvin, Thierry; Goloub, Philippe; Buis, Jean-Pierre; Morel, Jean-Philippe

    2008-04-01

    Two types of sunphotometric measurement are considered in this study: direct-Sun irradiance and diffuse-sky radiance. Based on CIMEL CE318 Sun-sky radiometer characteristics, we introduce a gain-corrected solid angle that allows interconverting calibration coefficients of these two types of measurement, thus realizing a "vicarious" radiance calibration. The accuracy of the gain-corrected solid angle depends on the number of available historical calibration records. The method is easy to use, provided that at least one laboratory calibration has been made previously. Examples coming from three distinct CE318 versions belonging to the AERONET/PHOTONS network are presented to provide details on the vicarious calibration method and protocols. From the error propagation analysis and the comparison with laboratory results, the uncertainty of the vicarious radiance calibration is shown to be comparable with the laboratory one, e.g., 3%-5%.

  2. Automatic Radiometric Normalization of Multitemporal Satellite Imagery

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schmidt, Michael

    2004-01-01

    The linear scale invariance of the multivariate alteration detection (MAD) transformation is used to obtain invariant pixels for automatic relative radiometric normalization of time series of multispectral data. Normalization by means of ordinary least squares regression method is compared...

  3. Your flaws are my pain: linking empathy to vicarious embarrassment.

    Directory of Open Access Journals (Sweden)

    Sören Krach

    Full Text Available People vicariously experience embarrassment when observing others' public pratfalls or etiquette violations. In two consecutive studies we investigated the subjective experience and the neural correlates of vicarious embarrassment for others in a broad range of situations. We demonstrated, first, that vicarious embarrassment was experienced regardless of whether the observed protagonist acted accidentally or intentionally and was aware or unaware that he/she was in an embarrassing situation. Second, using functional magnetic resonance imaging (fMRI, we showed that the anterior cingulate cortex and the left anterior insula, two cortical structures typically involved in vicarious feelings of others' pain, are also strongly implicated in experiencing the 'social pain' for others' flaws and pratfalls. This holds true even for situations that engage protagonists not aware of their current predicament. Importantly, the activity in the anterior cingulate cortex and the left anterior insula positively correlated with individual differences in trait empathy. The present findings establish the empathic process as a fundamental prerequisite for vicarious embarrassment experiences, thus connecting affect and cognition to interpersonal processes."When we are living with people who have a delicate sense of propriety, we are in misery on their account when anything unbecoming is committed. So I always feel for and with Charlotte when a person is tipping his chair. She cannot endure it." [Elective Affinities, J. W. Goethe].

  4. Deep Impact instrument calibration

    Science.gov (United States)

    Klaasen, K.; A'Hearn, M. F.; Baca, M.; Delamere, A.; Desnoyer, M.; Farnham, T.; Groussin, O.; Hampton, D.; Ipatov, S.; Li, J.-Y.; Lisse, C.; Mastrodemos, N.; McLaughlin, S.; Sunshine, J.; Thomas, P.; Wellnitz, D.

    2008-09-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [~1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of ~9 pixels. The charge coupled device (CCD) read noise is ~1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to ~1%. Spectrometer read noise is ~2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to ~10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of ~2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to ~0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  5. Optical Sensors for Planetary Radiant Energy (OSPREy): Calibration and Validation of Current and Next-Generation NASA Missions

    Science.gov (United States)

    Hooker, Stanford B.; Bernhard, Germar; Morrow, John H.; Booth, Charles R.; Comer, Thomas; Lind, Randall N.; Quang, Vi

    2012-01-01

    A principal objective of the Optical Sensors for Planetary Radiance Energy (OSPREy) activity is to establish an above-water radiometer system as a lower-cost alternative to existing in-water systems for the collection of ground-truth observations. The goal is to be able to make high-quality measurements satisfying the accuracy requirements for the vicarious calibration and algorithm validation of next-generation satellites that make ocean color and atmospheric measurements. This means the measurements will have a documented uncertainty satisfying the established performance metrics for producing climate-quality data records. The OSPREy approach is based on enhancing commercial-off-the-shelf fixed-wavelength and hyperspectral sensors to create hybridspectral instruments with an improved accuracy and spectral resolution, as well as a dynamic range permitting sea, Sun, sky, and Moon observations. Greater spectral diversity in the ultraviolet (UV) will be exploited to separate the living and nonliving components of marine ecosystems; UV bands will also be used to flag and improve atmospheric correction algorithms in the presence of absorbing aerosols. The short-wave infrared (SWIR) is expected to improve atmospheric correction, because the ocean is radiometrically blacker at these wavelengths. This report describes the development of the sensors, including unique capabilities like three-axis polarimetry; the documented uncertainty will be presented in a subsequent report.

  6. Experience modulates vicarious freezing in rats: a model for empathy.

    Directory of Open Access Journals (Sweden)

    Piray Atsak

    Full Text Available The study of the neural basis of emotional empathy has received a surge of interest in recent years but mostly employing human neuroimaging. A simpler animal model would pave the way for systematic single cell recordings and invasive manipulations of the brain regions implicated in empathy. Recent evidence has been put forward for the existence of empathy in rodents. In this study, we describe a potential model of empathy in female rats, in which we studied interactions between two rats: a witness observes a demonstrator experiencing a series of footshocks. By comparing the reaction of witnesses with or without previous footshock experience, we examine the role of prior experience as a modulator of empathy. We show that witnesses having previously experienced footshocks, but not naïve ones, display vicarious freezing behavior upon witnessing a cage-mate experiencing footshocks. Strikingly, the demonstrator's behavior was in turn modulated by the behavior of the witness: demonstrators froze more following footshocks if their witness froze more. Previous experiments have shown that rats emit ultrasonic vocalizations (USVs when receiving footshocks. Thus, the role of USV in triggering vicarious freezing in our paradigm is examined. We found that experienced witness-demonstrator pairs emitted more USVs than naïve witness-demonstrator pairs, but the number of USVs was correlated with freezing in demonstrators, not in witnesses. Furthermore, playing back the USVs, recorded from witness-demonstrator pairs during the empathy test, did not induce vicarious freezing behavior in experienced witnesses. Thus, our findings confirm that vicarious freezing can be triggered in rats, and moreover it can be modulated by prior experience. Additionally, our result suggests that vicarious freezing is not triggered by USVs per se and it influences back onto the behavior of the demonstrator that had elicited the vicarious freezing in witnesses, introducing a paradigm

  7. Experience Modulates Vicarious Freezing in Rats: A Model for Empathy

    Science.gov (United States)

    Atsak, Piray; Orre, Marie; Bakker, Petra; Cerliani, Leonardo; Roozendaal, Benno

    2011-01-01

    The study of the neural basis of emotional empathy has received a surge of interest in recent years but mostly employing human neuroimaging. A simpler animal model would pave the way for systematic single cell recordings and invasive manipulations of the brain regions implicated in empathy. Recent evidence has been put forward for the existence of empathy in rodents. In this study, we describe a potential model of empathy in female rats, in which we studied interactions between two rats: a witness observes a demonstrator experiencing a series of footshocks. By comparing the reaction of witnesses with or without previous footshock experience, we examine the role of prior experience as a modulator of empathy. We show that witnesses having previously experienced footshocks, but not naïve ones, display vicarious freezing behavior upon witnessing a cage-mate experiencing footshocks. Strikingly, the demonstrator's behavior was in turn modulated by the behavior of the witness: demonstrators froze more following footshocks if their witness froze more. Previous experiments have shown that rats emit ultrasonic vocalizations (USVs) when receiving footshocks. Thus, the role of USV in triggering vicarious freezing in our paradigm is examined. We found that experienced witness-demonstrator pairs emitted more USVs than naïve witness-demonstrator pairs, but the number of USVs was correlated with freezing in demonstrators, not in witnesses. Furthermore, playing back the USVs, recorded from witness-demonstrator pairs during the empathy test, did not induce vicarious freezing behavior in experienced witnesses. Thus, our findings confirm that vicarious freezing can be triggered in rats, and moreover it can be modulated by prior experience. Additionally, our result suggests that vicarious freezing is not triggered by USVs per se and it influences back onto the behavior of the demonstrator that had elicited the vicarious freezing in witnesses, introducing a paradigm to study empathy

  8. Types of vicarious learning experienced by pre-dialysis patients

    Directory of Open Access Journals (Sweden)

    Kate McCarthy

    2015-04-01

    Full Text Available Objective: Haemodialysis and peritoneal dialysis renal replacement treatment options are in clinical equipoise, although the cost of haemodialysis to the National Health Service is £16,411/patient/year greater than peritoneal dialysis. Treatment decision-making takes place during the pre-dialysis year when estimated glomerular filtration rate drops to between 15 and 30 mL/min/1.73 m2. Renal disease can be familial, and the majority of patients have considerable health service experience when they approach these treatment decisions. Factors affecting patient treatment decisions are currently unknown. The objective of this article is to explore data from a wider study in specific relation to the types of vicarious learning experiences reported by pre-dialysis patients. Methods: A qualitative study utilised unstructured interviews and grounded theory analysis during the participant’s pre-dialysis year. The interview cohort comprised 20 pre-dialysis participants between 24 and 80 years of age. Grounded theory design entailed thematic sampling and analysis, scrutinised by secondary coding and checked with participants. Participants were recruited from routine renal clinics at two local hospitals when their estimated glomerular filtration rate was between 15 and 30 mL/min/1.73 m2. Results: Vicarious learning that contributed to treatment decision-making fell into three main categories: planned vicarious leaning, unplanned vicarious learning and historical vicarious experiences. Conclusion: Exploration and acknowledgement of service users’ prior vicarious learning, by healthcare professionals, is important in understanding its potential influences on individuals’ treatment decision-making. This will enable healthcare professionals to challenge heuristic decisions based on limited information and to encourage analytic thought processes.

  9. Types of vicarious learning experienced by pre-dialysis patients.

    Science.gov (United States)

    McCarthy, Kate; Sturt, Jackie; Adams, Ann

    2015-01-01

    Haemodialysis and peritoneal dialysis renal replacement treatment options are in clinical equipoise, although the cost of haemodialysis to the National Health Service is £16,411/patient/year greater than peritoneal dialysis. Treatment decision-making takes place during the pre-dialysis year when estimated glomerular filtration rate drops to between 15 and 30 mL/min/1.73 m(2). Renal disease can be familial, and the majority of patients have considerable health service experience when they approach these treatment decisions. Factors affecting patient treatment decisions are currently unknown. The objective of this article is to explore data from a wider study in specific relation to the types of vicarious learning experiences reported by pre-dialysis patients. A qualitative study utilised unstructured interviews and grounded theory analysis during the participant's pre-dialysis year. The interview cohort comprised 20 pre-dialysis participants between 24 and 80 years of age. Grounded theory design entailed thematic sampling and analysis, scrutinised by secondary coding and checked with participants. Participants were recruited from routine renal clinics at two local hospitals when their estimated glomerular filtration rate was between 15 and 30 mL/min/1.73 m(2). Vicarious learning that contributed to treatment decision-making fell into three main categories: planned vicarious leaning, unplanned vicarious learning and historical vicarious experiences. Exploration and acknowledgement of service users' prior vicarious learning, by healthcare professionals, is important in understanding its potential influences on individuals' treatment decision-making. This will enable healthcare professionals to challenge heuristic decisions based on limited information and to encourage analytic thought processes.

  10. Radiometric surveys in underground environment

    Science.gov (United States)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  11. Development Of Teal Ruby Experiment Radiometric Test Requirements

    Science.gov (United States)

    Birtley, W. B.; Kowallis, O. K.; Molnar, L. A.; Wright, T. J.

    1981-12-01

    The Teal Ruby Experiment (TRE) sensor presents unique problems to radiometric performance testing and calibration of a mosaic infrared sensor because of the large number of resolution elements; the wide range of spectral, temporal, and flux level operating regions; and the cryogenic operating conditions. This paper contains a summary of the Teal Ruby test facilities and requirements at the infrared charge-coupled device (IRCCD) detector array, zone assembly, focal plane assembly, and sensor levels. Automated test facilities and capabilities are presented to highlight the development requirements and approaches to testing. Key issues concern the complexity of testing, selection of test parameters, commonality of test algorithms and data presentation, data needs for acceptance testing, optimization and integration, and test equipment standards for accuracy, operating range, and contamination control.

  12. Functions of personal and vicarious life stories: Identity and empathy

    DEFF Research Database (Denmark)

    Lind, Majse; Thomsen, Dorthe Kirkegaard

    2017-01-01

    The present study investigates functions of personal and vicarious life stories focusing on identity and empathy. Two-hundred-and-forty Danish high school students completed two life story questionnaires: One for their personal life story and one for a close other’s life story. In both questionna......The present study investigates functions of personal and vicarious life stories focusing on identity and empathy. Two-hundred-and-forty Danish high school students completed two life story questionnaires: One for their personal life story and one for a close other’s life story. In both...... questionnaires, they identified up to 10 chapters and self-rated the chapters on valence and valence of causal connections. In addition, they completed measures of identity disturbance and empathy. More positive personal life stories were related to lower identity disturbance and higher empathy. Vicarious life...... stories showed a similar pattern with respect to identity but surprisingly were unrelated to empathy. In addition, we found positive correlations between personal and vicarious life stories for number of chapters, chapter valence, and valence of causal connections. The study indicates that both personal...

  13. Vicarious revenge and the death of Osama bin Laden

    NARCIS (Netherlands)

    Gollwitzer, M.; Skitka, L.J.; Wisneski, D.; Sjöström, D.; Liberman, P.; Nazir, S.J.; Bushman, B.J.

    2014-01-01

    Three hypotheses were derived from research on vicarious revenge and tested in the context of the assassination of Osama bin Laden in 2011. In line with the notion that revenge aims at delivering a message (the "message hypothesis"), Study 1 shows that Americans' vengeful desires in the aftermath of

  14. The Role of Cingulate Cortex in Vicarious Pain

    Directory of Open Access Journals (Sweden)

    Esther H. Yesudas

    2015-01-01

    Full Text Available Vicarious pain is defined as the observation of individuals in pain. There is growing neuroimaging evidence suggesting that the cingulate cortex plays a significant role in self-experienced pain processing. Yet, very few studies have directly tested the distinct functions of the cingulate cortex for vicarious pain. In this review, one EEG and eighteen neuroimaging studies reporting cingulate cortex activity during pain observation were discussed. The data indicate that there is overlapping neural activity in the cingulate cortex during self- and vicarious pain. Such activity may contribute to shared neural pain representations that permit inference of the affective state of individuals in pain, facilitating empathy. However, the exact location of neuronal populations in which activity overlaps or differs for self- and observed pain processing requires further confirmation. This review also discusses evidence suggesting differential functions of the cingulate cortex in cognitive, affective, and motor processing during empathy induction. While affective processing in the cingulate cortex during pain observation has been explored relatively more often, its attention and motor roles remain underresearched. Shedding light on the neural correlates of vicarious pain and corresponding empathy in healthy populations can provide neurobiological markers and intervention targets for empathic deficits found in various clinical disorders.

  15. Sexual Violence and Vicarious Trauma: A Case Study | Ilesanmi ...

    African Journals Online (AJOL)

    Using a case study approach, this quantitative and descriptive analysis explored the incidence and consequences of sexual violence, particularly rape, occurring among Nigerian university students' acquaintance. It discusses the concept of vicarious trauma as a form of post-traumatic stress response sometimes ...

  16. Vicarious traumatization: the impact on therapists who work with sexual offenders.

    Science.gov (United States)

    Moulden, Heather M; Firestone, Philip

    2007-01-01

    This article reviews the descriptive and empirical literature examining vicarious traumatization in therapists treating sexual offenders. Vicarious traumatization in sexual offender therapists is described, including an examination of the relationships between vicarious traumatization and client, therapist, and setting and therapy characteristics. Special attention is given to those unique factors that contribute to the development of vicarious traumatization in this group, as well as consideration of why therapists treating offenders or victims may differ in their experience and development of vicarious traumatization. Evidence from the research reviewed suggests that sexual offender therapists do experience symptoms of vicarious traumatization. Factors most strongly associated with the development of vicarious traumatization in sexual offender therapists include professional experience, treatment setting, and coping strategies employed by the therapists. Implications and recommendations for professionals and policymakers are discussed.

  17. The role of empathy in experiencing vicarious anxiety.

    Science.gov (United States)

    Shu, Jocelyn; Hassell, Samuel; Weber, Jochen; Ochsner, Kevin N; Mobbs, Dean

    2017-08-01

    With depictions of others facing threats common in the media, the experience of vicarious anxiety may be prevalent in the general population. However, the phenomenon of vicarious anxiety-the experience of anxiety in response to observing others expressing anxiety-and the interpersonal mechanisms underlying it have not been fully investigated in prior research. In 4 studies, we investigate the role of empathy in experiencing vicarious anxiety, using film clips depicting target victims facing threats. In Studies 1 and 2, trait emotional empathy was associated with greater self-reported anxiety when observing target victims, and with perceiving greater anxiety to be experienced by the targets. Study 3 extended these findings by demonstrating that trait empathic concern-the tendency to feel concern and compassion for others-was associated with experiencing vicarious anxiety, whereas trait personal distress-the tendency to experience distress in stressful situations-was not. Study 4 manipulated state empathy to establish a causal relationship between empathy and experience of vicarious anxiety. Participants who took an empathic perspective when observing target victims, as compared to those who took an objective perspective using reappraisal-based strategies, reported experiencing greater anxiety, risk-aversion, and sleep disruption the following night. These results highlight the impact of one's social environment on experiencing anxiety, particularly for those who are highly empathic. In addition, these findings have implications for extending basic models of anxiety to incorporate interpersonal processes, understanding the role of empathy in social learning, and potential applications for therapeutic contexts. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. RADIOMETRIC TECHNIQUES IN HEAVY MINERAL EXPLORATION AND EXPLOITATION

    NARCIS (Netherlands)

    DEMEIJER, RJ; TANCZOS, IC; STAPEL, C

    1994-01-01

    In recent years the Environmental Research Group of the KVI has been developing a number of radiometric techniques that may be employed in mineral sand exploration. These techniques involve: radiometric fingerprinting for assessing sand provenances and mineralogical composition; thermoluminescence

  19. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution.

    Science.gov (United States)

    Lo, Eugenia Y Y; Duke, Norman C; Sun, Mei

    2014-04-17

    Mangroves are key components of coastal ecosystems in tropical and subtropical regions worldwide. However, the patterns and mechanisms of modern distribution of mangroves are still not well understood. Historical vicariance and dispersal are two hypothetic biogeographic processes in shaping the patterns of present-day species distributions. Here we investigate evolutionary biogeography of mangroves in the Indo-West Pacific (IWP) and western Atlantic-East Pacific (AEP) regions using a large sample of populations of Rhizophora (the most representative mangrove genus) and a combination of chloroplast and nuclear DNA sequences and genome-wide ISSR markers. Our comparative analyses of biogeographic patterns amongst Rhizophora taxa worldwide support the hypothesis that ancient dispersals along the Tethys Seaway and subsequent vicariant events that divided the IWP and AEP lineages resulted in the major disjunctions. We dated the deep split between the Old and New World lineages to early Eocene based on fossil calibration and geological and tectonic changes. Our data also provide evidence for other vicariant processes within the Indo-West Pacific region in separating conspecific lineages of SE Asia and Australia-Pacific at the Oligocene-Miocene boundary. Close genetic affinities exist between extant Fijian and American lineages; East African and Australian lineages; and Australian and Pacific lineages; indicating relatively more recent oceanic long-distance dispersal events. Our study demonstrates that neither vicariance nor dispersal alone could explain the observed global occurrences of Rhizophora, but a combination of vicariant events and oceanic long-distance dispersals can account for historical diversification and present-day biogeographic patterns of mangroves.

  20. Does vicarious traumatisation affect oncology nurses? A literature review.

    Science.gov (United States)

    Sinclair, Helen A H; Hamill, Conal

    2007-09-01

    It is widely documented that nurses experience work-related stress [Quine, L., 1998. Effects of stress in an NHS trust: a study. Nursing Standard 13 (3), 36-41; Charnley, E., 1999. Occupational stress in the newly qualified staff nurse. Nursing Standard 13 (29), 32-37; McGrath, A., Reid, N., Boore, J., 2003. Occupational stress in nursing. International Journal of Nursing Studies 40, 555-565; McVicar, A., 2003. Workplace stress in nursing: a literature review. Journal of Advanced Nursing 44 (6), 633-642; Bruneau, B., Ellison, G., 2004. Palliative care stress in a UK community hospital: evaluation of a stress-reduction programme. International Journal of Palliative Nursing 10 (6), 296-304; Jenkins, R., Elliott, P., 2004. Stressors, burnout and social support: nurses in acute mental health settings. Journal of Advanced Nursing 48 (6), 622-631], with cancer nursing being identified as a particularly stressful occupation [Hinds, P.S., Sanders, C.B., Srivastava, D.K., Hickey, S., Jayawardene, D., Milligan, M., Olsen, M.S., Puckett, P., Quargnenti, A., Randall, E.A., Tyc, V., 1998. Testing the stress-response sequence model in paediatric oncology nursing. Journal of Advanced Nursing 28 (5), 1146-1157; Barnard, D., Street, A., Love, A.W., 2006. Relationships between stressors, work supports and burnout among cancer nurses. Cancer Nursing 29 (4), 338-345]. Terminologies used to capture this stress are burnout [Pines, A.M., and Aronson, E., 1988. Career Burnout: Causes and Cures. Free Press, New York], compassion stress [Figley, C.R., 1995. Compassion Fatigue. Brunner/Mazel, New York], emotional contagion [Miller, K.I., Stiff, J.B., Ellis, B.H., 1988. Communication and empathy as precursors to burnout among human service workers. Communication Monographs 55 (9), 336-341] or simply the cost of caring (Figley, 1995). However, in the mental health field such as psychology and counselling, there is terminology used to captivate this impact, vicarious traumatisation. Vicarious

  1. KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2016-06-01

    Full Text Available The multivariate alteration detection (MAD algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA. The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1 data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.

  2. Radiometric considerations for ocean color remote sensors

    Science.gov (United States)

    Gordon, Howard R.

    1990-01-01

    A methodology for determination of the effects of radiometric noise on the performance of ocean color sensors is developed and applied to the Coastal Zone Color Scanner on Nimbus 7 and the Moderate Resolution Imaging Spectrometer planned for the Earth Observing System.

  3. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; Mcintire, Jeffrey; Xiong, Xiaoxiong; Butler, James; Ji, Qiang; Schwarting, Tom; Zeng, Jinan

    2015-01-01

    The first Joint Polar Satellite System (JPSS-1 or J1) mission is scheduled to launch in January 2017, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the J1 spacecraft completed its sensor level performance testing in December 2014. VIIRS instrument is expected to provide valuable information about the Earth environment and properties on a daily basis, using a wide-swath (3,040 km) cross-track scanning radiometer. The design covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands, from 0.412 m to 12.01 m, and has spatial resolutions of 370 m and 740 m at nadir for imaging and moderate bands, respectively. This paper will provide an overview of pre-launch J1 VIIRS performance testing and methodologies, describing the at-launch baseline radiometric performance as well as the metrics needed to calibrate the instrument once on orbit. Key sensor performance metrics include the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field response, and stray light rejection. A set of performance metrics generated during the pre-launch testing program will be compared to the sensor requirements and to SNPP VIIRS pre-launch performance.

  4. Game of Objects: vicarious causation and multi-modal media

    Directory of Open Access Journals (Sweden)

    Aaron Pedinotti

    2013-09-01

    Full Text Available This paper applies philosopher Graham Harman's object-oriented theory of "vicarious causation" to an analysis of the multi-modal media phenomenon known as "Game of Thrones." Examining the manner in which George R.R. Martin's best-selling series of fantasy novels has been adapted into a board game, a video game, and a hit HBO television series, it uses the changes entailed by these processes to trace the contours of vicariously generative relations. In the course of the resulting analysis, it provides new suggestions concerning the eidetic dimensions of Harman's causal model, particularly with regard to causation in linear networks and in differing types of game systems.

  5. FACTORS INFLUENCING VICARIOUS LEARNING MECHANISM EFFECTIVENESS WITHIN ORGANIZATIONS

    OpenAIRE

    JOHN R. VOIT; COLIN G. DRURY

    2013-01-01

    As organizations become larger it becomes increasingly difficult to share lessons-learned across their disconnected units allowing individuals to learn vicariously from each other's experiences. This lesson-learned information is often unsolicited by the recipient group or individual and required an individual or group to react to the information to yield benefits for the organization. Data was collected using 39 interviews and 582 survey responses that proved the effects of information usefu...

  6. Vicarious extinction learning during reconsolidation neutralizes fear memory.

    Science.gov (United States)

    Golkar, Armita; Tjaden, Cathelijn; Kindt, Merel

    2017-05-01

    Previous studies have suggested that fear memories can be updated when recalled, a process referred to as reconsolidation. Given the beneficial effects of model-based safety learning (i.e. vicarious extinction) in preventing the recovery of short-term fear memory, we examined whether consolidated long-term fear memories could be updated with safety learning accomplished through vicarious extinction learning initiated within the reconsolidation time-window. We assessed this in a final sample of 19 participants that underwent a three-day within-subject fear-conditioning design, using fear-potentiated startle as our primary index of fear learning. On day 1, two fear-relevant stimuli (reinforced CSs) were paired with shock (US) and a third stimulus served as a control (CS). On day 2, one of the two previously reinforced stimuli (the reminded CS) was presented once in order to reactivate the fear memory 10 min before vicarious extinction training was initiated for all CSs. The recovery of the fear memory was tested 24 h later. Vicarious extinction training conducted within the reconsolidation time window specifically prevented the recovery of the reactivated fear memory (p = 0.03), while leaving fear-potentiated startle responses to the non-reactivated cue intact (p = 0.62). These findings are relevant to both basic and clinical research, suggesting that a safe, non-invasive model-based exposure technique has the potential to enhance the efficiency and durability of anxiolytic therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cross calibration of INSAT 3A CCD channel radiances with IRS P6 ...

    Indian Academy of Sciences (India)

    radiometric calibration was carried out with well calibrated advanced wide field of view sensor (AWiFS) of. Indian Remote Sensing Satellite (IRS P6). Three concurrent scenes of December, January and February were used in this study. Calibration was carried out under different land cover classes such as snow, vegetation ...

  8. Cross calibration of INSAT 3A CCD channel radiances with IRS P6 ...

    Indian Academy of Sciences (India)

    A cross radiometric calibration was carried out with well calibrated advanced wide field of view sensor (AWiFS) of Indian Remote Sensing Satellite (IRS P6). Three concurrent scenes of ... Calibration was carried out under different land cover classes such as snow, vegetation, forest, water and cloud. Regression analysis ...

  9. Adjustment of ocean color sensor calibration through multi-band statistics.

    Science.gov (United States)

    Stumpf, Richard P; Werdell, P Jeremy

    2010-01-18

    The band-by-band vicarious calibration of on-orbit satellite ocean color instruments, such as SeaWiFS and MODIS, using ground-based measurements has significant residual uncertainties. This paper applies spectral shape and population statistics to tune the calibration of the blue bands against each other to allow examination of the interband calibration and potentially provide an analysis of calibration trends. This adjustment does not require simultaneous matches of ground and satellite observations. The method demonstrates the spectral stability of the SeaWiFS calibration and identifies a drift in the MODIS instrument onboard Aqua that falls within its current calibration uncertainties.

  10. Who Helps the Helper? Differentiation of Self as an Indicator for Resisting Vicarious Traumatization.

    Science.gov (United States)

    Halevi, Eytan; Idisis, Yael

    2017-10-09

    This study comprises a first attempt to explain and predict vicarious traumatization among therapists by means of Bowen's Family Systems Theory (Bowen, 1978), especially with reference to the phenomenon "differentiation of self," a central feature of his theory. A sample of 134 individual and group therapists who work in public and private clinics completed a series of questionnaires that provided data regarding demographic information, differentiation of self, and a belief scale that measures the existence of vicarious trauma. The findings indicate a strong negative correlation between vicarious traumatization and differentiation of self. In addition, participant age and "being in therapy" were both found to correlate with differentiation of self and vicarious traumatization. These findings point to the importance of differentiation of self as a resilience factor protecting against vicarious trauma, and have the potential to contribute to the development of tools for efficiently and accurately assessing predisposition toward vicarious traumatization among therapists. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Vicarious learning revisited: a contemporary behavior analytic interpretation.

    Science.gov (United States)

    Masia, C L; Chase, P N

    1997-03-01

    Beginning in the 1960s, social learning theorists argued that behavioral learning principles could not account for behavior acquired through observation. Such a viewpoint is still widely held today. This rejection of behavioral principles in explaining vicarious learning was based on three phenomena: (1) imitation that occurred without direct reinforcement of the observer's behavior; (2) imitation that occurred after a long delay following modeling; and (3) a greater probability of imitation of the model's reinforced behavior than of the model's nonreinforced or punished behavior. These observations convinced social learning theorists that cognitive variables were required to explain behavior. Such a viewpoint has progressed aggressively, as evidenced by the change in name from social learning theory to social cognitive theory, and has been accompanied by the inclusion of information-processing theory. Many criticisms of operant theory, however, have ignored the full range of behavioral concepts and principles that have been derived to account for complex behavior. This paper will discuss some problems with the social learning theory explanation of vicarious learning and provide an interpretation of vicarious learning from a contemporary behavior analytic viewpoint.

  12. Somatic and vicarious pain are represented by dissociable multivariate brain patterns

    National Research Council Canada - National Science Library

    Krishnan, Anjali; Woo, Choong-Wan; Chang, Luke J; Ruzic, Luka; Gu, Xiaosi; López-Solà, Marina; Jackson, Philip L; Pujol, Jesús; Fan, Jin; Wager, Tor D

    2016-01-01

    .... 'Shared experience' theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others' suffering...

  13. Spectrally Tunable Sources for Advanced Radiometric Applications

    OpenAIRE

    Brown, S W; Rice, J. P.; Neira, J. E.; Johnson, B. C.; Jackson, J. D.

    2006-01-01

    A common radiometric platform for the development of application-specific metrics to quantify the performance of sensors and systems is described. Using this platform, sensor and system performance may be quantified in terms of the accuracy of measurements of standardized sets of source distributions. The prototype platform consists of spectrally programmable light sources that can generate complex spectral distributions in the ultraviolet, visible and short-wave infrared regions for radiomet...

  14. GEOMETRIC AND RADIOMETRIC EVALUATION OF RASAT IMAGES

    Directory of Open Access Journals (Sweden)

    A. Cam

    2016-06-01

    Full Text Available RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space Technologies Research Institute (Ankara. RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD and RGB (15 m GSD bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  15. Monitoring the On-Orbit Calibration of Terra MODIS Reflective Solar Bands Using Simultaneous Terra MISR Observations

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng

    2016-01-01

    -mirror differences for the MODIS bands using simultaneous measurements from earth-scene targets, e.g., North Atlantic Ocean and North African desert. Simultaneous measurements provide the benefit of minimizing the impact of earth-scene features while comparing the radiometric performance using vicarious techniques. Long-term observations of both instruments using select ground targets also provide an evaluation of the long-term calibration stability. The goal of this paper is to demonstrate the use of MISR to monitor and enhance the on-orbit calibration of the MODIS RSB. The radiometric calibration requirements for the MODIS RSB are +/- 2% in reflectance and +/- 5% in radiance at typical radiance levels within +/- 45 deg. of nadir. The results show that the long-term changes in the MODIS reflectance at nadir frames are generally within 1. The MODIS level 1B calibrated products, generated after correcting for the on-orbit changes in the gain and RVS, do not have any correction for changes in the instruments polarization sensitivity. The mirror-side-dependent polarization sensitivity exhibits an on-orbit change, primarily in the blue bands, that manifests in noticeable mirror side differences in the MODIS calibrated products. The mirror side differences for other RSB are observed to be less than 1%, therefore demonstrating an excellent on-orbit performance. The detector differences in the blue bands of MODIS exhibit divergence in recent years beyond 1%, and a calibration algorithm improvement has been identified to mitigate this effect. Short-term variations in the recent year caused by the forward updates were identified in bands 1 and 2 and are planned to be corrected in the next reprocess.

  16. Calibration plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  17. Calibration of passive remote observing optical and microwave instrumentation; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    Science.gov (United States)

    Guenther, Bruce W. (Editor)

    1991-01-01

    Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability.

  18. Vicarious Posttraumatic Growth in Labor and Delivery Nurses.

    Science.gov (United States)

    Beck, Cheryl Tatano; Eaton, Carrie Morgan; Gable, Robert K

    To investigate vicarious posttraumatic growth in labor and delivery nurses who cared for women during traumatic births. A convergent parallel mixed-methods design was used. The sample consisted of 467 labor and delivery nurses who completed the quantitative portion and 295 (63%) who completed the qualitative portion of this mixed-methods study via the Internet. The Association of Women's Health, Obstetric and Neonatal Nurses sent out e-mails to members who were labor and delivery nurses with a link to the electronic survey. Labor and delivery nurses completed the Posttraumatic Growth Inventory and the Core Beliefs Inventory in the quantitative portion. For the qualitative portion, the nurses were asked to describe their experiences of any positive changes in their beliefs or life as a result of their care for women during traumatic births. Labor and delivery nurses who cared for women during traumatic births reported a moderate amount of vicarious posttraumatic growth as indicated by their Posttraumatic Growth Inventory scores. Appreciation of Life was the dimension of the Posttraumatic Growth Inventory that reflected the highest growth, followed by Relating to Others, Personal Strength, Spiritual Change, and New Possibilities. In the qualitative findings, Relating to Others was also the dimension of posttraumatic growth most frequently described. We compared our results with those of previous studies in which researchers assessed vicarious posttraumatic growth in clinicians, and we found that labor and delivery nurses who cared for women during traumatic births experienced growth levels that were scored between the lowest and highest reported levels of therapists and social workers. Nurses need to be aware of the potential to experience this growth despite the significant stress and unpredictability of the labor and delivery environment, which could decrease burnout and improve retention rates. Copyright © 2016 AWHONN, the Association of Women’s Health

  19. Teaching parents about responsive feeding through a vicarious learning video: A pilot randomized controlled trial

    Science.gov (United States)

    The American Academy of Pediatrics and World Health Organization recommend responsive feeding (RF) to promote healthy eating behaviors in early childhood. This project developed and tested a vicarious learning video to teach parents RF practices. A RF vicarious learning video was developed using com...

  20. Beyond Vicary's fantasies: The impact of subliminal priming and brand choice

    NARCIS (Netherlands)

    Karremans, J.C.T.M.; Stroebe, W.; Claus, J.

    2006-01-01

    With his claim to have increased sales of Coca Cola and popcorn in a movie theatre through subliminal messages flashed on the screen, James Vicary raised the possibility of subliminal advertising. Nobody has ever replicated Vicary's findings and his study was a hoax. This article reports two

  1. Assessing Radiometric Stability of the 17-Plus-Year TRMM Microwave Imager 1B11 Version-8 (GPM05 Brightness Temperature Product

    Directory of Open Access Journals (Sweden)

    Ruiyao Chen

    2017-12-01

    Full Text Available The NASA Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI has produced a 17-plus-year time-series of calibrated microwave radiances that have remarkable value for investigating the effects of the Earth’s climate change over the tropics. Recently, the Global Precipitation Measurement (GPM Inter-Satellite Radiometric Calibration (XCAL Working Group have performed various calibration and corrections that yielded the legacy TMI 1B11 Version 8 (also called GPM05 brightness temperature product, which will be released in late 2017 by the NASA Precipitation Processing System. Since TMI served as the radiometric transfer standard for the TRMM constellation microwave radiometer sensors, it is important to document its accuracy. In this paper, the various improvements applied to TMI 1B11 V8 are summarized, and the radiometric calibration stability is evaluated by comparisons with a radiative transfer model and by XCAL evaluations with the Global Precipitation Measuring Microwave Imager during their 13-month overlap period. Evaluation methods will be described and results will be presented, which demonstrate that TMI has achieved a radiometric stability level of a few deciKelvin over almost two decades.

  2. The Global Earth Observation System of Systems (GEOSS) and metrological support for measuring radiometric properties of objects of observations

    Science.gov (United States)

    Krutikov, V. N.; Sapritsky, V. I.; Khlevnoy, B. B.; Lisiansky, B. E.; Morozova, S. P.; Ogarev, S. A.; Panfilov, A. S.; Sakharov, M. K.; Samoylov, M. L.; Bingham, G.; Humpherys, T.; Thurgood, A.; Privalsky, V. E.

    2006-04-01

    The international Global Earth Observation System of Systems is at its initial stage. We present some general information about the program and formulate the task of ensuring the uniformity of radiometric measurements to be conducted by all the participating national systems. Methods of solving the task are suggested on the basis of the wide application of standard sources that use phase transition of eutectic alloys and pure metals as well as with the help of improved ground calibration facilities.

  3. Optical Imaging and Radiometric Modeling and Simulation

    Science.gov (United States)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  4. Vicarious substitution in the literary work of Shusaku Endō : On fools, animals, objects and doubles

    NARCIS (Netherlands)

    Coenradie, S.|info:eu-repo/dai/nl/328202711

    2016-01-01

    This research systematically examines the theme of vicarious substitution in Shūsaku Endō’s literary work. It aims at enriching the traditional concepts of vicarious substitution. This study results in the following typology of vicarious substituion in Endo's literature: Christ-figures, including

  5. The design, construction, and calibration of a spectral diffuse/global irradiance meter

    Science.gov (United States)

    Crowther, Blake Glenn

    1997-10-01

    Vicarious calibration methods have been developed to calibrate radiometric sensors in-flight. One such method, the irradiance-based method, requires the measurement of the diffuse-to-global (diffuse-to-total) irradiance ratio. Diffuse/global irradiance measurements may also be used to deduce atmospheric descriptors and provide a comparison with atmospheric modeling predictions. I describe the design, construction, calibration, and application of a spectral diffuse/global irradiance meter that can accomplish these objectives in this dissertation. I develop general integrating sphere theory, modeling methods, and describe the resultant computer model. The model results agreed with theory to better than 1% for a simple unbaffled integrating sphere. I applied the model to design an interior baffled integrating sphere-based cosine collector. I developed a method of tolerating the thermal expansion of Spectralonoler and the collector was constructed. Measurements of the collector angular response agreed with the model predictions to better than 4% for input zenith angles from 0o to 70o. The resulting instrument is automated and collects diffuse and global irradiance from 300 nm to 1100 nm. It has a nominal 12 nm full-width at half-maximum bandpass and has a minimum sampling interval of 1 nm. I estimate the uncertainty of the measurements to be 3.2%. The largest contributor to the total uncertainty is the measurement uncertainty of the diffuse irradiance at 2.5%. The instrument was used in a field experiment. Optical depths derived from the diffuse/global irradiance measurements agreed with those derived from a solar radiometer to within 0.008. Diffuse-to-global irradiance measurements made by the instrument were compared with an independent method and found to generally agree within 6%. The measurements were consistently lower than radiative transfer modeling estimates. Top of the atmosphere relative radiances computed from the two independent diffuse

  6. Information about the model's unconditioned stimulus and response in vicarious classical conditioning.

    Science.gov (United States)

    Hygge, S

    1976-06-01

    Four groups with 16 observers each participated in a differential, vicarious conditioning experiment with skin conductance responses as the dependent variable. The information available to the observer about the model's unconditioned stimulus and response was varied in a 2 X 2 factorial design. Results clearly showed that information about the model's unconditioned stimulus (a high or low dB level) was not necessary for vicarious instigation, but that information about the unconditioned response (a high or low emotional aversiveness) was necessary. Data for conditioning of responses showed almost identical patterns to those for vicarious instigation. To explain the results, a distinction between factors necessary for the development and elicitation of vicariously instigated responses was introduced, and the effectiveness of information about the model's response on the elicitation of vicariously instigated responses was considered in terms of an expansion of Bandura's social learning theory.

  7. COMBINED GEOMETRIC/RADIOMETRIC POINT CLOUD MATCHING FOR SHEAR ANALYSIS

    Directory of Open Access Journals (Sweden)

    S. Gehrke

    2012-07-01

    Full Text Available In the recent past, dense image matching methods such as Semi-Global Matching (SGM became popular for many applications. The SGM approach has been adapted to and implemented for Leica ADS line-scanner data by North West Geomatics (North West in co-operation with Leica Geosystems; it is used in North West’s production workflow. One of the advantages of ADS imagery is the calibrated color information (RGB and near infrared, extending SGM-derived point clouds to dense “image point clouds” or, more general, information clouds (info clouds. With the goal of automating the quality control of ADS data, info clouds are utilized for Shear Analysis: Three-dimensional offsets of adjacent ADS image strips are determined from a pattern of info cloud pairs in strip overlaps by point cloud matching. The presented approach integrates geometry (height and radiometry (intensity information; matching is based on local point-to-plane distances for all points in a given cloud. The offset is derived in a least squares adjustment by applying it to each individual distance computation equation. Using intensities in addition to heights greatly benefits the offset computation, because intensity gradients tend to occur more frequently than height gradients. They can provide or complement the required information for the derivation of planimetric offset components. The paper details the combined geometric/radiometric point cloud matching approach and verifies the results against manual measurements.

  8. Risk of vicarious trauma in nursing research: a focused mapping review and synthesis.

    Science.gov (United States)

    Taylor, Julie; Bradbury-Jones, Caroline; Breckenridge, Jenna P; Jones, Christine; Herber, Oliver Rudolf

    2016-10-01

    To provide a snapshot of how vicarious trauma is considered within the published nursing research literature. Vicarious trauma (secondary traumatic stress) has been the focus of attention in nursing practice for many years. The most pertinent areas to invoke vicarious trauma in research have been suggested as abuse/violence and death/dying. What is not known is how researchers account for the risks of vicarious trauma in research. Focused mapping review and synthesis. Empirical studies meeting criteria for abuse/violence or death/dying in relevant Scopus ranked top nursing journals (n = 6) January 2009 to December 2014. Relevant papers were scrutinised for the extent to which researchers discussed the risk of vicarious trauma. Aspects of the studies were mapped systematically to a pre-defined template, allowing patterns and gaps in authors' reporting to be determined. These were synthesised into a coherent profile of current reporting practices and from this, a new conceptualisation seeking to anticipate and address the risk of vicarious trauma was developed. Two thousand five hundred and three papers were published during the review period, of which 104 met the inclusion criteria. Studies were distributed evenly by method (52 qualitative; 51 quantitative; one mixed methods) and by focus (54 abuse/violence; 50 death/dying). The majority of studies (98) were carried out in adult populations. Only two papers reported on vicarious trauma. The conceptualisation of vicarious trauma takes account of both sensitivity of the substantive data collected, and closeness of those involved with the research. This might assist researchers in designing ethical and protective research and foreground the importance of managing risks of vicarious trauma. Vicarious trauma is not well considered in research into clinically important topics. Our proposed framework allows for consideration of these so that precautionary measures can be put in place to minimise harm to staff. © 2016

  9. A grounded theory exploration of undergraduate experiences of vicarious unemployment.

    Science.gov (United States)

    Thompson, Mindi N; Nitzarim, Rachel S; Her, Pa; Dahling, Jason J

    2013-07-01

    The experiences of vicarious unemployment (VU) among 17 undergraduate student participants who had a primary caregiver who was involuntarily unemployed were explored using grounded theory (Charmaz, 2006; Glaser & Strauss, 1967). Data from semistructured interviews with 15 women and 2 men revealed the nuanced nature of experiences with unemployment among those who experience it vicariously. Struggles related to increased family stress and experiences with stigma were common across participants. As participants reflected upon these challenges, they both lamented the costs associated with the struggles and expressed appreciation for the lessons that they have learned. They emerged from their VU experiences with increased financial and job market awareness, which informed their hope for a life that is free from the struggles endured in their families. Participants expressed confidence in their ability to cultivate financial security for their own families, stable employment, and opportunities to pursue work that will allow them to give back to others. Implications for counseling and directions for future research are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. The utility of CAD in recovering Gondwanan vicariance events and the evolutionary history of Aciliini (Coleoptera: Dytiscidae).

    Science.gov (United States)

    Bukontaite, Rasa; Miller, Kelly B; Bergsten, Johannes

    2014-01-14

    Aciliini presently includes 69 species of medium-sized water beetles distributed on all continents except Antarctica. The pattern of distribution with several genera confined to different continents of the Southern Hemisphere raises the yet untested hypothesis of a Gondwana vicariance origin. The monophyly of Aciliini has been questioned with regard to Eretini, and there are competing hypotheses about the intergeneric relationship in the tribe. This study is the first comprehensive phylogenetic analysis focused on the tribe Aciliini and it is based on eight gene fragments. The aims of the present study are: 1) to test the monophyly of Aciliini and clarify the position of the tribe Eretini and to resolve the relationship among genera within Aciliini, 2) to calibrate the divergence times within Aciliini and test different biogeographical scenarios, and 3) to evaluate the utility of the gene CAD for phylogenetic analysis in Dytiscidae. Our analyses confirm monophyly of Aciliini with Eretini as its sister group. Each of six genera which have multiple species are also supported as monophyletic. The origin of the tribe is firmly based in the Southern Hemisphere with the arrangement of Neotropical and Afrotropical taxa as the most basal clades suggesting a Gondwana vicariance origin. However, the uncertainty as to whether a fossil can be used as a stem-or crowngroup calibration point for Acilius influenced the result: as crowngroup calibration, the 95% HPD interval for the basal nodes included the geological age estimate for the Gondwana break-up, but as a stem group calibration the basal nodes were too young. Our study suggests CAD to be the most informative marker between 15 and 50 Ma. Notably, the 2000 bp CAD fragment analyzed alone fully resolved the tree with high support. 1) Molecular data confirmed Aciliini as a monophyletic group. 2) Bayesian optimizations of the biogeographical history are consistent with an influence of Gondwana break-up history, but were

  11. The Influence of Colour on Radiometric Performances of Agricultural Nets

    NARCIS (Netherlands)

    Castellano, S.; Hemming, S.; Russo, G.

    2008-01-01

    The whole construction parameters of the net, combined with the shape of the structure, the position of the sun and the sky conditions affect the radiometric performance of the permeable covering system. The radiometric properties of the permeable membrane influence the quality of the agricultural

  12. Assessment of Aero-radiometric Data of Southern Anambra Basin ...

    African Journals Online (AJOL)

    ... value up to 5.43 μWm-3. The highest value of the radiogenic heat production in this basin has a value of 5.43 μWm-3 around Aimeke and Ogobia. The airborne total radiometric count of radio-elements and radiogenic heat maps were produced. Key Words: Aero-radiometric; Radiogenic Heat; Anambra Basin; Geothermal ...

  13. On-Orbit Radiometric Performance of the Landsat 8 ThermalInfrared Sensor

    Directory of Open Access Journals (Sweden)

    Matthew Montanaro

    2014-11-01

    Full Text Available The Thermal Infrared Sensor (TIRS requirements for noise, stability, and uniformity were designed to ensure the radiometric integrity of the data products. Since the launch of Landsat 8 in February 2013, many of these evaluations have been based on routine measurements of the onboard calibration sources, which include a variable-temperature blackbody and a deep space view port. The noise equivalent change in temperature (NEdT of TIRS data is approximately 0.05 K @ 300 K in both bands, exceeding requirements by about a factor of 8 and Landsat 7 ETM+ performance by a factor of 3. Coherent noise is not readily apparent in TIRS data. No apparent change in the detector linearization has been observed. The radiometric stability of the TIRS instrument over the period between radiometric calibrations (about 40 min is less than one count of dark current and the variation in terms of radiance is less than 0.015 \\(W/m^2/sr/\\mu m\\ (or 0.13 K at 300 K, easily meeting the short term stability requirements. Long term stability analysis has indicated a degradation of about 0.2% or less per year. The operational calibration is only updated using the biases taken every orbit, due to the fundamental stability of the instrument. By combining the data from two active detector rows per band, 100% detector operability is maintained for the instrument. No trends in the noise, operability, or short term radiometric stability are apparent over the mission life. The uniformity performance is more difficult to evaluate as scene-varying banding artifacts have been observed in Earth imagery. Analyses have shown that stray light is affecting the recorded signal from the Earth and inducing the banding depending on the content of the surrounding Earth surface. As the stray light effects are stronger in the longer wavelength TIRS band11 (12.0 \\(\\mu m\\, the uniformity is better in the shorter wavelength band10 (10.9 \\(\\mu m\\. Both bands have exceptional noise and

  14. Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders.

    Science.gov (United States)

    Wood, Hannah Marie; Matzke, Nicholas J; Gillespie, Rosemary G; Griswold, Charles E

    2013-03-01

    Incorporation of fossils into biogeographic studies can have a profound effect on the conclusions that result, particularly when fossil ranges are nonoverlapping with extant ranges. This is the case in archaeid spiders, where there are known fossils from the Northern Hemisphere, yet all living members are restricted to the Southern Hemisphere. To better understand the biogeographic patterns of archaeid spiders and their palpimanoid relatives, we estimate a dated phylogeny using a relaxed clock on a combined molecular and morphological data set. Dating information is compared with treating the archaeid fossil taxa as both node calibrations and as noncontemporaneous terminal tips, both with and without additional calibration points. Estimation of ancestral biogeographic ranges is then performed, using likelihood and Bayesian methods to take into account uncertainty in phylogeny and in dating. We find that treating the fossils as terminal tips within a Bayesian framework, as opposed to dating the phylogeny based only on molecular data with the dates coming from node calibrations, removes the subjectivity involved in assigning priors, which has not been possible with previous methods. Our analyses suggest that the diversification of the northern and southern archaeid lineages was congruent with the breakup of Pangaea into Laurasia and Gondwanaland. This analysis provides a rare example, and perhaps the most strongly supported, where a dated phylogeny confirms a biogeographical hypothesis based on vicariance due to the breakup of the ancient continental plates.

  15. Analysis of Sentinel-1 Radiometric Stability and Quality for Land Surface Applications

    Directory of Open Access Journals (Sweden)

    Mohammad El Hajj

    2016-05-01

    Full Text Available Land monitoring using temporal series of Synthetic Aperture Radar (SAR images requires radiometrically well calibrated sensors. In this paper, the radiometric stability of the new SAR Sentinel-1A “S-1A” sensor was first assessed by analyzing temporal variations of the backscattering coefficient (σ° returned from invariant targets. Second, the radiometric level of invariant targets was compared from S-1A and Radarsat-2 “RS-2” data. The results show three stable sub-time series of S-1A data. The first (between 1 October 2014 and 19 March 2015 and third (between 25 November 2015 and 1 February 2016 sub-time series have almost the same mean σ°-values (a difference lower than 0.3 dB. The mean σ°-value of the second sub-time series (between 19 March 2015 and 25 November 2015 is higher than that of the first and the third sub-time series by roughly 0.9 dB. Moreover, our results show that the stability of each sub-time series is better than 0.48 dB. In addition, the results show that S-1A images of the first and third sub-time series appear to be well calibrated in comparison to RS-2 data, with a difference between S-1A and RS-2 lower than 0.3 dB. However, the S-1A images of the second sub-time series have σ°-values that are higher than those from RS-2 by roughly 1 dB.

  16. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  17. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  18. Landsat radiometric continuity using airborne imaging spectrometry

    Science.gov (United States)

    McCorkel, J.; Angal, A.; Thome, K.; Cook, B.

    2015-12-01

    NASA Goddard's Lidar, Hyperspectral and Thermal Imager (G-LiHT) includes a scanning lidar, an imaging spectrometer and a thermal camera. The Visible Near-Infrared (VNIR) Imaging Spectrometer acquires high resolution spectral measurements (1.5 nm resolution) from 0.4 to 1.0 µm. The SIRCUS-based calibration facility at NASA's Goddard Space Flight Center was used to measure the absolute spectral response (ASR) of the G-LiHT's imaging spectrometer. Continuously tunable lasers coupled to an integrating sphere facilitated a radiance-based calibration for the detectors in the reflective solar bands. The transfer of the SIRCUS-based laboratory calibration of G-LiHT's Imaging Spectrometer to the Landsat sensors (Landsat 7 ETM+ and Landsat 8 OLI) is demonstrated using simultaneous overpasses over the Red Lake Playa and McClaw's Playa sites during the commissioning phase of Landsat 8 in March 2013. Solar Lunar Absolute Imaging Spectrometer (SOLARIS) is the calibration demonstration system for the reflected solar instrument of CLARREO. A portable version of SOLARIS, known as Suitcase SOLARIS, also calibrated using a SIRCUS-based setup, was deployed for ground measurements as a part of both the field campaigns. Simultaneous measurements of SOLARIS allow cross-comparison with G-LiHT and Landsat sensors. The transfer of the lab-based calibration of G-LiHT to Landsat sensors show that the sensors agree within 5% with a 1-3% calibration uncertainty of G-LiHT's Imaging Spectrometer.

  19. Into the looking glass: Broadening models to explain the spectrum of sensory and affective vicarious experiences.

    Science.gov (United States)

    Giummarra, Melita J; Fitzgibbon, Bernadette M

    2015-01-01

    Ward and Bannisy's proposed conceptual framework-Threshold Theory and Self-Other Theory-for mirror touch synesthesia are welcomed as an explanation of mechanisms giving rise to innocuous vicarious phenomena. Herein we propose that these vicarious, or synesthetic, experiences should be considered along a spectrum of experiences, from innocuous through to noxious or threatening sensations. In particular, we would like to see these theories considered within a broader framework to explain the multitude of vicarious experiences that seem to share fundamental neurophysiological and trait characteristics.

  20. Precision radiometric surface temperature (PRST) sensor

    Science.gov (United States)

    Daly, James T.; Roberts, Carson; Bodkin, Andrew; Sundberg, Robert; Beaven, Scott; Weinheimer, Jeffrey

    2013-05-01

    There is a need for a Precision Radiometric Surface Temperature (PRST) measurement capability that can achieve noncontact profiling of a sample's surface temperature when heated dynamically during laser processing, aerothermal heating or metal cutting/machining. Target surface temperature maps within and near the heated spot provide critical quantitative diagnostic data for laser-target coupling effectiveness and laser damage assessment. In the case of metal cutting, this type of measurement provides information on plastic deformation in the primary shear zone where the cutting tool is in contact with the workpiece. The challenge in these cases is to measure the temperature of a target while its surface's temperature and emissivity are changing rapidly and with incomplete knowledge of how the emissivity and surface texture (scattering) changes with temperature. Bodkin Design and Engineering, LLC (BDandE), with partners Spectral Sciences, Inc. (SSI) and Space Computer Corporation (SCC), has developed a PRST Sensor that is based on a hyperspectral MWIR imager spanning the wavelength range 2-5 μm and providing a hyperspectral datacube of 20-24 wavelengths at 60 Hz frame rate or faster. This imager is integrated with software and algorithms to extract surface temperature from radiometric measurements over the range from ambient to 2000K with a precision of 20K, even without a priori knowledge of the target's emissivity and even as the target emissivity may be changing with time and temperature. In this paper, we will present a description of the PRST system as well as laser heating test results which show the PRST system mapping target surface temperatures in the range 600-2600K on a variety of materials.

  1. Secondary traumatic stress and vicarious trauma: a validational study.

    Science.gov (United States)

    Jenkins, Sharon Rae; Baird, Stephanie

    2002-10-01

    Vicarious trauma (VT) and secondary traumatic stress (STS) or compassion fatigue both describe effects of working with traumatized persons on therapists. Despite conceptual similarities, their emphases differ: cognitive schemas vs. posttraumatic symptoms and burnout, respectively. The TSI Belief Scale (TSI-BSL) measures VT; the Compassion Fatigue Self-Test (CFST) for Psychotherapists measures STS. Neither has substantial psychometric evidence yet, nor has their association been studied. Results for 99 sexual assault and domestic violence counselors show concurrent validity between TSI-BSL and CFST, moderate convergence with burnout but useful discrimination, and strong convergence with general distress, but adequate independent shared variance. Counselors with interpersonal trauma histories scored higher on CFST, but not TSI-BSL or burnout, consistent with the CFST's emphasis on trauma symptomatology.

  2. Hippocampus, delay discounting, and vicarious trial-and-error.

    Science.gov (United States)

    Bett, David; Murdoch, Lauren H; Wood, Emma R; Dudchenko, Paul A

    2015-05-01

    In decision-making, an immediate reward is usually preferred to a delayed reward, even if the latter is larger. We tested whether the hippocampus is necessary for this form of temporal discounting, and for vicarious trial-and-error at the decision point. Rats were trained on a recently developed, adjustable delay-discounting task (Papale et al. (2012) Cogn Affect Behav Neurosci 12:513-526), which featured a choice between a small, nearly immediate reward, and a larger, delayed reward. Rats then received either hippocampus or sham lesions. Animals with hippocampus lesions adjusted the delay for the larger reward to a level similar to that of sham-lesioned animals, suggesting a similar valuation capacity. However, the hippocampus lesion group spent significantly longer investigating the small and large rewards in the first part of the sessions, and were less sensitive to changes in the amount of reward in the large reward maze arm. Both sham- and hippocampus-lesioned rats showed a greater amount of vicarious trial-and-error on trials in which the delay was adjusted. In a nonadjusting version of the delay discounting task, animals with hippocampus lesions showed more variability in their preference for a larger reward that was delayed by 10 s compared with sham-lesioned animals. To verify the lesion behaviorally, rat were subsequently trained on a water maze task, and rats with hippocampus lesions were significantly impaired compared with sham-lesioned animals. The findings on the delay discounting tasks suggest that damage to the hippocampus may impair the detection of reward magnitude. © 2014 Wiley Periodicals, Inc.

  3. Geometry of the hemispherical radiometric footprint over plant canopies

    Science.gov (United States)

    Marcolla, B.; Cescatti, A.

    2017-11-01

    Radiometric measurements of hemispherical surface reflectance and long-wave irradiance are required to quantify the broadband albedo and the outgoing thermal radiation. These observations are typically integrated with eddy covariance measurements of sensible and latent heat fluxes to characterize the surface energy budget. While the aerodynamic footprint has been widely investigated, the geometry of the hemispherical radiometric footprint over plant canopies has been rarely tackled. In the present work, the size and shape of the hemispherical radiometric footprint are formalized for a bare surface and in presence of a vegetation cover. For this purpose, four idealized canopies are analyzed and the dependency of the radiometric footprint on leaf area index and canopy height is explored. Besides, the radiometric footprint is compared with the aerodynamic footprint in conditions of neutral stability. It was observed that almost 100% of the hemispherical radiometric signal originates within a distance of a few radiometer heights, while only about 50-80% of the cumulative aerodynamic signal is generated within a distance of about 20 sensor heights. In order to achieve comparable extensions of the footprint areas, hemispherical radiometric measurements should therefore be taken about 6-15 times higher than turbulent flux ones, depending on the vegetation type. The analysis also highlights that the size of the radiative footprint decreases at increasing leaf area index, whereas the aerodynamic footprint shows an opposite behavior. For the abovementioned reasons, this work may support the interpretation of energy flux measurements and the optimal design of eddy covariance stations located in heterogeneous sites.

  4. Radiometric Quality Evaluation of INSAT-3D Imager Data

    Science.gov (United States)

    Prakash, S.; Jindal, D.; Badal, N.; Kartikeyan, B.; Gopala Krishna, B.

    2014-11-01

    INSAT-3D is an advanced meteorological satellite of ISRO which acquires imagery in optical and infra-red (IR) channels for study of weather dynamics in Indian sub-continent region. In this paper, methodology of radiometric quality evaluation for Level-1 products of Imager, one of the payloads onboard INSAT-3D, is described. Firstly, overall visual quality of scene in terms of dynamic range, edge sharpness or modulation transfer function (MTF), presence of striping and other image artefacts is computed. Uniform targets in Desert and Sea region are identified for which detailed radiometric performance evaluation for IR channels is carried out. Mean brightness temperature (BT) of targets is computed and validated with independently generated radiometric references. Further, diurnal/seasonal trends in target BT values and radiometric uncertainty or sensor noise are studied. Results of radiometric quality evaluation over duration of eight months (January to August 2014) and comparison of radiometric consistency pre/post yaw flip of satellite are presented. Radiometric Analysis indicates that INSAT-3D images have high contrast (MTF > 0.2) and low striping effects. A bias of specifications.

  5. Other people as means to a safe end: vicarious extinction blocks the return of learned fear.

    Science.gov (United States)

    Golkar, Armita; Selbing, Ida; Flygare, Oskar; Ohman, Arne; Olsson, Andreas

    2013-11-01

    Information about what is dangerous and safe in the environment is often transferred from other individuals through social forms of learning, such as observation. Past research has focused on the observational, or vicarious, acquisition of fears, but little is known about how social information can promote safety learning. To address this issue, we studied the effects of vicarious-extinction learning on the recovery of conditioned fear. Compared with a standard extinction procedure, vicarious extinction promoted better extinction and effectively blocked the return of previously learned fear. We confirmed that these effects could not be attributed to the presence of a learning model per se but were specifically driven by the model's experience of safety. Our results confirm that vicarious and direct emotional learning share important characteristics but that social-safety information promotes superior down-regulation of learned fear. These findings have implications for emotional learning, social-affective processes, and clinical practice.

  6. Effects of Direct Experience and Vicarious Experience on Group Therapeutic Attraction

    Science.gov (United States)

    Silver, Robert J.; Conyne, Robert K.

    1977-01-01

    Tests the hypothesis that if direct small group experience was shown to be relatively more effective than vicarious experience in heightening attraction, then a significant assumption of T-group theory would receive support. Results support the hypothesis. (Author)

  7. Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae)

    Czech Academy of Sciences Publication Activity Database

    Bartish, Igor; Antonelli, A.; Richardson, J. E.; Swenson, U.

    2011-01-01

    Roč. 38, č. 1 (2011), s. 177-190 ISSN 0305-0270 Institutional research plan: CEZ:AV0Z60050516 Keywords : molecular dating * Neotropics * vicariance Subject RIV: EF - Botanics Impact factor: 4.544, year: 2011

  8. Harm to Those Who Serve: Effects of Direct and Vicarious Customer-Initiated Workplace Aggression.

    Science.gov (United States)

    Dupré, Kathryne E; Dawe, Kimberly-Anne; Barling, Julian

    2014-09-01

    While there is a large body of research on the effects of being a direct target of workplace aggression, there is far less research on the vicarious experience of aggression at work, despite the fact that more people experience workplace aggression vicariously (i.e., observe it or hear about it) than they do directly. In this study, we develop and test a model of the effects of direct and vicarious exposure to aggression that is directed at employees by customers. Structural equation modeling provided support for the proposed model, in which direct and vicarious workplace aggression influences the perceived risk of future workplace aggression, which in turn affects organizational attachment (affective commitment and turnover intentions) and individual well-being (psychological and physical). Conceptual research and policy implications are discussed. © The Author(s) 2014.

  9. Vicarious intergroup contact effects: Applying social-cognitive theory to intergroup contact research

    OpenAIRE

    Mazziotta, Agostino; Mummendey, Amélie; Stephen C Wright

    2011-01-01

    Abstract This contribution examines the role of vicarious contact (observing in-group members having successful cross-group contact) as a tool to improve intergroup relations. Expanding previous research on indirect intergroup contact, vicarious contact (1) integrates and applies concepts of social-cognitive theory (Bandura, 1986) to the field of intergroup contact research; (2) broadens the study of indirect contact effects to the observation of successful cross-group interactions...

  10. Stardust-NExT NAVCAM calibration and performance

    Science.gov (United States)

    Klaasen, Kenneth P.; Brown, David; Carcich, Brian; Farnham, Tony; Owen, William; Thomas, Peter

    2013-02-01

    NASA's Stardust-NExT mission used the Stardust spacecraft to deliver a scientific payload, including a panchromatic visible camera designated NAVCAM, to a close flyby of Comet 9P/Tempel 1 in February 2011. Proper interpretation of the NAVCAM images depends on accurate calibration of the camera performance. While the NAVCAM had been calibrated during the primary Stardust mission to Comet 81P/Wild 2 in 2004, that calibration was incomplete and somewhat lacking in fidelity. Substantial improvements in the NAVCAM calibration were achieved during Stardust-NExT in the areas of geometric correction, spatial resolution, and radiometric calibration (in particular, zero-exposure signal levels, shutter time offsets, absolute radiometric response, noise, and scattered light characterization). These improvements will allow upgrades to the calibration of images returned from the Stardust primary mission as well as high-quality calibration of the Stardust-NExT images. The upgraded calibration results have been incorporated into the Stardust-NExT image processing pipeline via new routines and updated constants and files in preparation for archiving calibrated images in the NASA Planetary Data System.

  11. Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis.

    Science.gov (United States)

    Morelli, Sylvia A; Sacchet, Matthew D; Zaki, Jamil

    2015-05-15

    Individuals experience reward not only when directly receiving positive outcomes (e.g., food or money), but also when observing others receive such outcomes. This latter phenomenon, known as vicarious reward, is a perennial topic of interest among psychologists and economists. More recently, neuroscientists have begun exploring the neuroanatomy underlying vicarious reward. Here we present a quantitative whole-brain meta-analysis of this emerging literature. We identified 25 functional neuroimaging studies that included contrasts between vicarious reward and a neutral control, and subjected these contrasts to an activation likelihood estimate (ALE) meta-analysis. This analysis revealed a consistent pattern of activation across studies, spanning structures typically associated with the computation of value (especially ventromedial prefrontal cortex) and mentalizing (including dorsomedial prefrontal cortex and superior temporal sulcus). We further quantitatively compared this activation pattern to activation foci from a previous meta-analysis of personal reward. Conjunction analyses yielded overlapping VMPFC activity in response to personal and vicarious reward. Contrast analyses identified preferential engagement of the nucleus accumbens in response to personal as compared to vicarious reward, and in mentalizing-related structures in response to vicarious as compared to personal reward. These data shed light on the common and unique components of the reward that individuals experience directly and through their social connections. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The anatomy of empathy: Vicarious experience and disorders of social cognition.

    Science.gov (United States)

    Lockwood, Patricia L

    2016-09-15

    Empathy, the ability to vicariously experience and to understand the affect of other people, is fundamental for successful social-cognitive ability and behaviour. Empathy is thought to be a critical facilitator of prosocial behaviour and is disrupted in a number of psychiatric and neurological disorders. Research has begun to uncover the neural basis of such 'vicarious experience', which has been studied as a proxy measure of empathy. Together, these studies have identified portions of the insula and anterior cingulate cortex as critically involved. A key debate is whether overlapping or non-overlapping brain areas respond to personal and vicarious experience. This review will highlight emerging evidence for both types of brain response. Importantly, animal models have suggested that there are central divisions between the anterior cingulate gyrus and anterior cingulate sulcus that may be crucial for understanding social behaviour. Attention to this specific anatomy of vicarious processing could therefore help shed light on the functional profile of empathy. Studies in individuals with psychopathy and autism spectrum disorders have found that vicarious experience is atypical. However, the precise nature of these atypicalities is mixed. Understanding the mechanisms of vicarious experience can enhance our knowledge of the neural basis of empathy and, ultimately, help those with disorders of social cognition and behaviour. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  13. Vicarious pain responders and emotion: Evidence for distress rather than mimicry.

    Science.gov (United States)

    Young, Kurtis A; Gandevia, Simon C; Giummarra, Melita J

    2017-07-01

    Up to a third of the population experiences pain when seeing another in pain. The mechanisms underlying such vicarious sensory experiences are thought to reflect hyperactive mirror systems (threshold theory) or dysfunctional processing and representation of oneself versus others (self/other theory). This study investigated whether the tendency to experience vicarious pain corresponds to disinhibited physiological reactivity toward other's emotions, and/or greater empathic mimicry of other's physiological state (respiratory behavior) during fear, pain, and positive emotion. Fifty healthy individuals aged 18-55 years (23 vicarious pain responders) completed empathy- and anxiety-related questionnaires, and a film task. Respiration was measured noninvasively with piezoelectric respiration belts while participants viewed emotional film clips depicting three emotions (fear/pain/positive) interspersed with neutral clips. The emotional stimuli depicted scenes in which the characters showed increases or decreases in respiration. The results suggest that vicarious pain responders do not mimic emotional respiratory behavior. Rather, vicarious pain responders had a significantly slower respiration rate for all emotional stimuli (MDiff  = 1.40 respiratory cycles, SE = .68), compared to nonresponders. However, this was associated with heightened trait anxiety. The findings suggest vicarious pain is associated with acute distress, rather than empathic mimicry of the emotional states of another. © 2017 Society for Psychophysiological Research.

  14. Calibration of circular aperture area using vision probe at inmetro

    Directory of Open Access Journals (Sweden)

    Costa Pedro Bastos

    2016-01-01

    Full Text Available Circular aperture areas are standards of high importance for the realization of photometric and radiometric measurements, where the accuracy of these measures is related to the accuracy of the circular aperture area calibrations. In order to attend the requirement for traceability was developed in Brazilian metrology institute, a methodology for circular aperture area measurement as requirements from the radiometric and photometric measurements. In the developed methodology apertures are measured by non-contact measurement through images of the aperture edges captured by a camera. These images are processed using computer vision techniques and then the values of the circular aperture area are determined.

  15. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    CERN Document Server

    Beard, L P

    2000-01-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  16. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter has...

  17. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Beard, Les P.; Mogaard, John Olav

    2000-07-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  18. Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors

    Science.gov (United States)

    Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit

    2009-01-01

    The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM

  19. A Radiometric Uncertainty Tool for the Sentinel 2 Mission

    OpenAIRE

    Gorrono, Javier; Fomferra, N; Peters, M; Gascon, F; Underwood, Craig; Fox, NP; Kirches, G; Brockmann, C

    2017-01-01

    In the framework of the European Copernicus programme, the European Space Agency (ESA) has launched the Sentinel-2 (S2) Earth Observation (EO) mission which provides optical high spatial resolution imagery over land and coastal areas. As part of this mission, a tool (named S2-RUT, from Sentinel-2 Radiometric Uncertainty Tool) has been developed. The tool estimates the radiometric uncertainty associated with each pixel in the top-of-atmosphere (TOA) reflectance factor images provided by ESA. T...

  20. Detection of mycobacteria by radiometric and standard plate procedures.

    OpenAIRE

    Damato, J J; Collins, M T; Rothlauf, M V; McClatchy, J K

    1983-01-01

    A group of 89 smear-positive sputum specimens were evaluated by radiometric and standard plate procedures to determine the methodology which would provide the earliest detection of mycobacteria and maximum test sensitivity. Digested non-decontaminated specimens were concentrated and inoculated into modified selective BACTEC radiometric 7H12 broth and Mitchison selective 7H10 agar. Sodium hydroxide (1.5% final concentration) was then used to decontaminate these specimens. They were then concen...

  1. Blast investigation by fast multispectral radiometric analysis

    Science.gov (United States)

    Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

    2011-06-01

    Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

  2. Radiometric packaging of uncooled bolometric infrared focal plane arrays

    Science.gov (United States)

    García-Blanco, Sonia; Pope, Timothy; Côté, Patrice; Leclerc, Mélanie; Ngo Phong, Linh; Châteauneuf, François

    2017-11-01

    INO has a wide experience in the design and fabrication of different kinds of microbolometer focal plane arrays (FPAs). In particular, a 512x3 pixel microbolometer FPA has been selected as the sensor for the New Infrared Sensor Technology (NIRST) instrument, one of the payloads of the SACD/Aquarius mission. In order to make the absolute temperature measurements necessary for many infrared Earth observation applications, the microbolometer FPA must be integrated into a package offering a very stable thermal environment. The radiometric packaging technology developed at INO presents an innovative approach since it was conceived to be modular and adaptable for the packaging of different microbolometer FPAs and for different sets of assembly requirements without need for requalification of the assembly process. The development of the radiometric packaging technology has broadened the position of INO as a supplier of radiometric detector modules integrating FPAs of microbolometers inside a radiometric package capable of achieving the requirements of different space missions. This paper gives an overview of the design of INO's radiometric package. Key performance parameters are also discussed and the test campaign conducted with the radiometric package is presented.

  3. Prior treadmill exercise promotes resilience to vicarious trauma in rats.

    Science.gov (United States)

    Kochi, Camila; Liu, Hesong; Zaidi, Safiyya; Atrooz, Fatin; Dantoin, Phoebe; Salim, Samina

    2017-07-03

    Post-traumatic stress disorder (PTSD) is a serious psychological condition, which can develop both from physically experiencing and also from witnessing traumatic events. There is evidence that physical exercise can have a positive impact on the symptoms of PTSD. Relevant to this, in our previous pre-clinical work, beneficial effects of treadmill exercise were reported on PTSD-like behaviors in a social defeat paradigm, a rat model of direct physical trauma. However, the role of exercise on vicariously acquired PTSD-like phenotype was not examined. In this study, we utilized a rodent PTSD model, which mimics both the physical as well as the witness experience of trauma, and examined the impact of moderate treadmill exercise in mitigating vicariously acquired PTSD-like behaviors in rats. Our PTSD model is a modified social defeat paradigm, which involves aggressive encounters between a large Long-Evans male rat (resident) and a smaller Sprague-Dawley male rat (intruder), resulting in intruder social defeat. The cage mate of the intruder is positioned to witness intruder defeat. Rats were grouped as control (CON), social defeat (SD), exercise (EX), trauma witness (TW), and exercise prior to trauma witness (EX-TW). After acclimatization for 7days, the exercised groups were subjected to a daily 30-min treadmill exercise regimen for 14days. On day 21, the SD group was exposed for 7days of social defeat, while the TW groups witnessed social defeat. On days 28-34, behavioral and cognitive tests including short-term (STM) and long-term (LTM) memory function, anxiety- and depression-like behaviors were conducted. TW and SD rats demonstrated the highest levels of anxiety- and depression-like behaviors, while EX-TW rats did not exhibit anxiety- and depression-like behaviors. TW and SD rats showed no impairments in STM. However, TW and SD rats showed impairments in LTM, and exercise rescued LTM impairments in EX-TW rats. This study demonstrates that rats subjected to direct

  4. Radiometric and geometric assessment of data from the RapidEye constellation of satellites

    Science.gov (United States)

    Chander, Gyanesh; Haque, Md. Obaidul; Sampath, Aparajithan; Brunn, A.; Trosset, G.; Hoffmann, D.; Roloff, S.; Thiele, M.; Anderson, C.

    2013-01-01

    To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface using imagery acquired from multiple spaceborne imaging sensors. The RapidEye (RE) satellite constellation acquires high-resolution satellite images covering the entire globe within a very short period of time by sensors identical in construction and cross-calibrated to each other. To evaluate the RE high-resolution Multi-spectral Imager (MSI) sensor capabilities, a cross-comparison between the RE constellation of sensors was performed first using image statistics based on large common areas observed over pseudo-invariant calibration sites (PICS) by the sensors and, second, by comparing the on-orbit radiometric calibration temporal trending over a large number of calibration sites. For any spectral band, the individual responses measured by the five satellites of the RE constellation were found to differ B2B) alignment of the image data sets. The position accuracy was assessed by comparing the RE imagery against high-resolution aerial imagery, while the B2B characterization was performed by registering each band against every other band to ensure that the proper band alignment is provided for an image product. The B2B results indicate that the internal alignments of these five RE bands are in agreement, with bands typically registered to within 0.25 pixels of each other or better.

  5. Radiometric Measurement Comparison Using the Ocean Color Temperature Scanner (OCTS) Visible and Near Infrared Integrating Sphere.

    Science.gov (United States)

    Johnson, B Carol; Sakuma, F; Butler, J J; Biggar, S F; Cooper, J W; Ishida, J; Suzuki, K

    1997-01-01

    As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yokohama, Japan. Researchers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the University of Arizona Optical Sciences Center (UA), and the National Research Laboratory of Metrology (NRLM) in Tsukuba, Japan used their portable radiometers to measure the spectral radiance of the OCTS visible and near-infrared integrating sphere at four radiance levels. These four levels corresponded to the configuration of the OCTS integrating sphere when the calibration coefficients for five of the eight spectral channels, or bands, of the OCTS instrument were determined. The measurements of the four radiometers differed by -2.7 % to 3.9 % when compared to the NEC calibration of the sphere and the overall agreement was within the combined measurement uncertainties. A comparison of the measurements from the participating radiometers also resulted in agreement within the combined measurement uncertainties. These results are encouraging and demonstrate the utility of comparisons using laboratory calibration integrating sphere sources. Other comparisons will focus on instruments that are scheduled for spacecraft in the NASA study of climate change, the Earth Observing System (EOS).

  6. Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Nancy F. Glenn

    2012-09-01

    Full Text Available In the summer of 2010, an Unmanned Aerial Vehicle (UAV hyperspectral calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the US Department of Energy’s Idaho National Laboratory (INL UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS and inertial navigation sensors (INS under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 m (based on RMSE with a flying height of 344 m above ground level (AGL.

  7. Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors

    Science.gov (United States)

    Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit

    2009-01-01

    The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM

  8. Site Calibration

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...

  9. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...... uncertainty was verified from independent measurements of the same sample by demonstrating statistical control of analytical results and the absence of bias. The proposed method takes into account uncertainties of the measurement, as well as of the amount of calibrant. It is applicable to all types...

  10. The Calibration Home Base for Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Simon Brachmann

    2016-08-01

    Full Text Available The Calibration Home Base (CHB is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1. Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.

  11. A systematic review of the measurement of compassion fatigue, vicarious trauma, and secondary traumatic stress in physicians

    National Research Council Canada - National Science Library

    Nimmo, Arohaina; Huggard, Peter

    2013-01-01

    Compassion fatigue, vicarious traumatisation and secondary traumatic stress, are all terms used to describe the potential emotional impact on health professionals of working with traumatised patients and clients...

  12. Glacial-driven vicariance in the amphipod Gammarus duebeni.

    Science.gov (United States)

    Krebes, L; Blank, M; Jürss, K; Zettler, M L; Bastrop, R

    2010-02-01

    We have examined the genetic diversity using mitochondrial COI and ND2 sequence data from 306 specimens of the amphi-Atlantic-distributed amphipod Gammarus duebeni. Marine populations from the Atlantic Ocean, the Baltic and North Sea, as well as freshwater populations from Ireland, Cornwall and Brittany were analysed. G. duebeni is a complex of five allopatric lineages. Freshwater populations result from multiple invasions of marine ancestors, represented by distinct lineages. We interpret the recent distribution of lineages as the outcome of a series of spatio-temporal vicariant events caused by Pleistocene glaciations and sea level changes. The freshwater lineages are therefore regarded as 'glacial relicts'. Furthermore, inter-specific competition with, for example, Gammarus pulex (which is absent in Ireland and western Brittany) may be another important determinant in the distribution of freshwater G. duebeni. In Ireland and Brittany, three freshwater refugia are suggested. The significantly limited gene flow detected among marine populations is more likely due to inter-specific competition than to salinity. The G. duebeni-complex represents a model system for the study of allopatric speciation accompanied by major habitat shifts. The pattern of spatio-temporal origins of the freshwater entities we describe here provides an excellent system for investigating evolutionary adaptations to the freshwater environment. Our data did not confirm the presently used subspecies classification but are only preliminary in the absence of nuclear genetic analyses. Copyright (c) 2009. Published by Elsevier Inc.

  13. The spyglass self: a model of vicarious self-perception.

    Science.gov (United States)

    Goldstein, Noah J; Cialdini, Robert B

    2007-03-01

    Self-perception theory posits that people sometimes infer their own attributes by observing their freely chosen actions. The authors hypothesized that in addition, people sometimes infer their own attributes by observing the freely chosen actions of others with whom they feel a sense of merged identity--almost as if they had observed themselves performing the acts. Before observing an actor's behavior, participants were led to feel a sense of merged identity with the actor through perspective-taking instructions (Study 1) or through feedback indicating that their brainwave patterns overlapped substantially with those of the actor (Studies 2-4). As predicted, participants incorporated attributes relevant to an actor's behavior into their own self-concepts, but only when they were led to feel a sense of merged identity with the actor and only when the actor's behavior seemed freely chosen. These changes in relevant self-perceptions led participants to change their own behaviors accordingly. Implications of these vicarious self-perception processes for conformity, perspective-taking, and the long-term development of the self-concept are discussed. 2007 APA, all rights reserved

  14. An appraisal theory of empathy and other vicarious emotional experiences.

    Science.gov (United States)

    Wondra, Joshua D; Ellsworth, Phoebe C

    2015-07-01

    Empathy, feeling what others feel, is regarded as a special phenomenon that is separate from other emotional experiences. Emotion theories say little about feeling emotions for others and empathy theories say little about how feeling emotions for others relates to normal firsthand emotional experience. Current empathy theories focus on how we feel emotions for others who feel the same thing, but not how we feel emotions for others that they do not feel, such as feeling angry for someone who is sad or feeling embarrassed for someone who is self-assured. We propose an appraisal theory of vicarious emotional experiences, including empathy, based on appraisal theories of emotion. According to this theory, emotions for others are based on how we evaluate their situations, just as firsthand emotions are based on how we evaluate our own situations. We discuss how this framework can predict empathic emotion matching and also the experience of emotions for others that do not match what they feel. The theory treats empathy as a normal part of emotional experience. (c) 2015 APA, all rights reserved).

  15. Preventing vicarious traumatization of mental health therapists: Identifying protective practices.

    Science.gov (United States)

    Harrison, Richard L; Westwood, Marvin J

    2009-06-01

    This qualitative study identified protective practices that mitigate risks of vicarious traumatization (VT) among mental health therapists. The sample included six peer-nominated master therapists, who responded to the question, "How do you manage to sustain your personal and professional well-being, given the challenges of your work with seriously traumatized clients?" Data analysis was based upon Lieblich, Tuval-Mashiach, and Zilber's (1998) typology of narrative analysis. Findings included nine major themes salient across clinicians' narratives of protective practices: countering isolation (in professional, personal and spiritual realms); developing mindful self-awareness; consciously expanding perspective to embrace complexity; active optimism; holistic self-care; maintaining clear boundaries; exquisite empathy; professional satisfaction; and creating meaning. Findings confirm and extend previous recommendations for ameliorating VT and underscore the ethical responsibility shared by employers, educators, professional bodies, and individual practitioners to address this serious problem. The novel finding that empathic engagement with traumatized clients appeared to be protective challenges previous conceptualizations of VT and points to exciting new directions for research, theory, training, and practice. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  16. Suomi NPP VIIRS Reflective Solar Bands Operational Calibration Reprocessing

    Directory of Open Access Journals (Sweden)

    Slawomir Blonski

    2015-12-01

    Full Text Available Radiometric calibration coefficients for the VIIRS (Visible Infrared Imaging Radiometer Suite reflective solar bands have been reprocessed from the beginning of the Suomi NPP (National Polar-orbiting Partnership mission until present. An automated calibration procedure, implemented in the NOAA (National Oceanic and Atmospheric Administration JPSS (Joint Polar Satellite System operational data production system, was applied to reprocess onboard solar calibration data and solar diffuser degradation measurements. The latest processing parameters from the operational system were used to include corrected solar vectors, optimized directional dependence of attenuation screens transmittance and solar diffuser reflectance, updated prelaunch calibration coefficients without an offset term, and optimized Robust Holt-Winters filter parameters. The parameters were consistently used to generate a complete set of the radiometric calibration coefficients for the entire duration of the Suomi NPP mission. The reprocessing has demonstrated that the automated calibration procedure can be successfully applied to all solar measurements acquired from the beginning of the mission until the full deployment of the automated procedure in the operational processing system. The reprocessed calibration coefficients can be further used to reprocess VIIRS SDR (Sensor Data Record and other data products. The reprocessing has also demonstrated how the automated calibration procedure can be used during activation of the VIIRS instruments on the future JPSS satellites.

  17. Inhibition of vicariously learned fear in children using positive modeling and prior exposure.

    Science.gov (United States)

    Askew, Chris; Reynolds, Gemma; Fielding-Smith, Sarah; Field, Andy P

    2016-02-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions-psychoeducation, factual information, or no information (control)-prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions-positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)-before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. (c) 2016 APA, all rights reserved).

  18. Effects of vicarious pain on self-pain perception: investigating the role of awareness.

    Science.gov (United States)

    Terrighena, Esslin L; Lu, Ge; Yuen, Wai Ping; Lee, Tatia Mc; Keuper, Kati

    2017-01-01

    The observation of pain in others may enhance or reduce self-pain, yet the boundary conditions and factors that determine the direction of such effects are poorly understood. The current study set out to show that visual stimulus awareness plays a crucial role in determining whether vicarious pain primarily activates behavioral defense systems that enhance pain sensitivity and stimulate withdrawal or appetitive systems that attenuate pain sensitivity and stimulate approach. We employed a mixed factorial design with the between-subject factors exposure time (subliminal vs optimal) and vicarious pain (pain vs no pain images), and the within-subject factor session (baseline vs trial) to investigate how visual awareness of vicarious pain images affects subsequent self-pain in the cold-pressor test. Self-pain tolerance, intensity and unpleasantness were evaluated in a sample of 77 healthy participants. Results revealed significant interactions of exposure time and vicarious pain in all three dependent measures. In the presence of visual awareness (optimal condition), vicarious pain compared to no-pain elicited overall enhanced self-pain sensitivity, indexed by reduced pain tolerance and enhanced ratings of pain intensity and unpleasantness. Conversely, in the absence of visual awareness (subliminal condition), vicarious pain evoked decreased self-pain intensity and unpleasantness while pain tolerance remained unaffected. These findings suggest that the activation of defense mechanisms by vicarious pain depends on relatively elaborate cognitive processes, while - strikingly - the appetitive system is activated in highly automatic manner independent from stimulus awareness. Such mechanisms may have evolved to facilitate empathic, protective approach responses toward suffering individuals, ensuring survival of the protective social group.

  19. Sympathetic pain? A role of poor parasympathetic nervous system engagement in vicarious pain states.

    Science.gov (United States)

    Nazarewicz, Julia; Verdejo-Garcia, Antonio; Giummarra, Melita J

    2015-11-01

    This study investigated the psychophysiological correlates of the subjective experience of vicarious pain; that is, a spontaneous experience of pain when seeing another in pain. Forty-nine healthy, otherwise pain-free individuals aged 18-55 years completed empathy and anxiety questionnaires and were classified into three groups: vicarious responders with high anxiety (n = 11), vicarious responders with low anxiety (n = 22), and nonresponders (n = 16). Electrophysiological recordings of heart rate variability (HRV) during paced breathing and cognitive stress (serial sevens task) were completed before participants viewed short videos of athletes in states of pain or happiness, taken from Australian League Football matches. Change in beats per minute, relative to neutral scenes, were analyzed for the first 4 s after onset of the painful or happy event. Anxious responders had lower HF-HRV than both other groups, implicating poor parasympathetic regulation specific to states of stress. Both vicarious responder groups had elevated HR at the event onset, regardless of valence. After viewing painful injuries, nonanxious vicarious responders showed sustained HR over time, anxious responders showed HR acceleration with a peak at 3 s after the injury onset, and nonresponders showed a pattern of marked HR deceleration. These findings suggest that vicarious pain in anxious responders is associated with poorly regulated sympathetic arousal via insufficient inhibitory parasympathetic activity, whereas nonanxious persons show sustained arousal. Clearly, multiple mechanisms in the central and peripheral nervous system must play a role in vicarious pain states, and the different manifestations are likely to lead to very different behavioral consequences. © 2015 Society for Psychophysiological Research.

  20. Effects of vicarious pain on self-pain perception: investigating the role of awareness

    Science.gov (United States)

    Terrighena, Esslin L; Lu, Ge; Yuen, Wai Ping; Lee, Tatia MC; Keuper, Kati

    2017-01-01

    The observation of pain in others may enhance or reduce self-pain, yet the boundary conditions and factors that determine the direction of such effects are poorly understood. The current study set out to show that visual stimulus awareness plays a crucial role in determining whether vicarious pain primarily activates behavioral defense systems that enhance pain sensitivity and stimulate withdrawal or appetitive systems that attenuate pain sensitivity and stimulate approach. We employed a mixed factorial design with the between-subject factors exposure time (subliminal vs optimal) and vicarious pain (pain vs no pain images), and the within-subject factor session (baseline vs trial) to investigate how visual awareness of vicarious pain images affects subsequent self-pain in the cold-pressor test. Self-pain tolerance, intensity and unpleasantness were evaluated in a sample of 77 healthy participants. Results revealed significant interactions of exposure time and vicarious pain in all three dependent measures. In the presence of visual awareness (optimal condition), vicarious pain compared to no-pain elicited overall enhanced self-pain sensitivity, indexed by reduced pain tolerance and enhanced ratings of pain intensity and unpleasantness. Conversely, in the absence of visual awareness (subliminal condition), vicarious pain evoked decreased self-pain intensity and unpleasantness while pain tolerance remained unaffected. These findings suggest that the activation of defense mechanisms by vicarious pain depends on relatively elaborate cognitive processes, while – strikingly – the appetitive system is activated in highly automatic manner independent from stimulus awareness. Such mechanisms may have evolved to facilitate empathic, protective approach responses toward suffering individuals, ensuring survival of the protective social group. PMID:28831270

  1. GPI Calibrations

    Science.gov (United States)

    Rantakyrö, Fredrik T.

    2017-09-01

    "The Gemini Planet Imager requires a large set of Calibrations. These can be split into two major sets, one set associated with each observation and one set related to biweekly calibrations. The observation set is to optimize the correction of miscroshifts in the IFU spectra and the latter set is for correction of detector and instrument cosmetics."

  2. A Method to Estimate Uncertainty in Radiometric Measurement Using the Guide to the Expression of Uncertainty in Measurement (GUM) Method; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.

    2015-03-01

    Radiometric data with known and traceable uncertainty is essential for climate change studies to better understand cloud radiation interactions and the earth radiation budget. Further, adopting a known and traceable method of estimating uncertainty with respect to SI ensures that the uncertainty quoted for radiometric measurements can be compared based on documented methods of derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM). derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM).

  3. Calibration and Change Detection of [Alaska Satellite Facility] ASF/ERS-1 SAR Image Data

    Science.gov (United States)

    Fatland, Rob; Freeman, Anthony

    1992-01-01

    The results of a calibration analysis performed on ERS-1 synthetic aperture radar (SAR) images produced by the Alaska SAR facility (ASF) are presented, together with some preliminary results on change detection on the Alaskan north slope derived from the same images. Image quality, geometric and radiometric fidelity, and repeat pass radiometric stability have all been determined to be satisfactory. A calibration workstation has been designed and implemented for use in operational data quality analysis of ASF data products. Higher-level data analysis programs have been developed for interferometry, texture analysis, and change detection.

  4. Calibration approach and plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.; Coppo, Peter

    2014-01-01

    The sea and land surface temperature radiometer (SLSTR) to be flown on the European Space Agency's (ESA) Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21 year dataset of the along-track scanning radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of planning for the on-orbit monitoring and calibration activities to ensure that the calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions and the deployment of ship-borne radiometers.

  5. Learning to fear a second-order stimulus following vicarious learning.

    Science.gov (United States)

    Reynolds, Gemma; Field, Andy P; Askew, Chris

    2017-04-01

    Vicarious fear learning refers to the acquisition of fear via observation of the fearful responses of others. The present study aims to extend current knowledge by exploring whether second-order vicarious fear learning can be demonstrated in children. That is, whether vicariously learnt fear responses for one stimulus can be elicited in a second stimulus associated with that initial stimulus. Results demonstrated that children's (5-11 years) fear responses for marsupials and caterpillars increased when they were seen with fearful faces compared to no faces. Additionally, the results indicated a second-order effect in which fear-related learning occurred for other animals seen together with the fear-paired animal, even though the animals were never observed with fearful faces themselves. Overall, the findings indicate that for children in this age group vicariously learnt fear-related responses for one stimulus can subsequently be observed for a second stimulus without it being experienced in a fear-related vicarious learning event. These findings may help to explain why some individuals do not recall involvement of a traumatic learning episode in the development of their fear of a specific stimulus.

  6. Specific Vicariance of Two Primeval Lowland Forest Lichen Indicators.

    Science.gov (United States)

    Kubiak, Dariusz; Osyczka, Piotr

    2017-06-01

    To date, the lichens Chrysothrix candelaris and Varicellaria hemisphaerica have been classified as accurate primeval lowland forest indicators. Both inhabit particularly valuable remnants of oak-hornbeam forests in Europe, but tend toward a specific kind of vicariance on a local scale. The present study was undertaken to determine habitat factors responsible for this phenomenon and verify the indicative and conservation value of these lichens. The main spatial and climatic parameters that, along with forest structure, potentially affect their distribution patterns and abundance were analysed in four complexes with typical oak-hornbeam stands in NE Poland. Fifty plots of 400 m 2 each were chosen for detailed examination of stand structure and epiphytic lichens directly associated with the indicators. The study showed that the localities of the two species barely overlap within the same forest community in a relatively small geographical area. The occurrence of Chrysothrix candelaris depends basically only on microhabitat space provided by old oaks and its role as an indicator of the ecological continuity of habitat is limited. Varicellaria hemisphaerica is not tree specific but a sufficiently high moisture of habitat is essential for the species and it requires forests with high proportion of deciduous trees in a wide landscape scale. Local landscape-level habitat continuity is more important for this species than the current age of forest stand. Regardless of the indicative value, localities of both lichens within oak-hornbeam forests deserve the special protection status since they form unique assemblages of exclusive epiphytes, including those with high conservation value.

  7. Reality TV and vicarious embarrassment: an fMRI study.

    Science.gov (United States)

    Melchers, Martin; Markett, Sebastian; Montag, Christian; Trautner, Peter; Weber, Bernd; Lachmann, Bernd; Buss, Pauline; Heinen, Rebekka; Reuter, Martin

    2015-04-01

    Vicarious embarrassment (VE) is an emotion triggered by the observation of others' pratfalls or social norm violations. Several explanatory approaches have been suggested to explain the source of this phenomenon, including perspective taking abilities or ingroup identification. Knowledge about its biological bases, however, is scarce. To gain a better understanding, the present study investigated neural activation patterns in response to video clips from reality TV shows. Reality TV is well known for presenting social norm violations, flaws and pratfalls of its protagonists in real life situations thereby qualifying as an ecological valid trigger for VE. N = 60 healthy participants viewed stand stills from previously watched video clips taken from German reality TV-shows while undergoing functional magnetic resonance imaging. The clips were preselected for high versus low VE content in a pilot study. Besides the investigation of differences in brain activation elicited by VE versus control stand stills (blocked design contrast), we performed additional exploratory functional connectivity analyses (psychophysiological interaction; PPI) to detect VE related brain networks. Compared to the low VE condition, participants in the high VE condition showed a higher activation in the middle temporal gyrus, the supramarginal gyrus, the right inferior frontal gyrus and the gyrus rectus. Functional connectivity analyses confirmed increased connectivity of these regions with the anterior cingulate in the VE condition. Moreover, self-ratings of VE and brain activity were correlated positively. Reality TV formats with high VE content activate brain regions associated with Theory of Mind, but also with empathic concern and social identity. Therefore, our results support the idea that the ability to put oneself in other person's shoes is a major prerequisite for VE. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Specific Vicariance of Two Primeval Lowland Forest Lichen Indicators

    Science.gov (United States)

    Kubiak, Dariusz; Osyczka, Piotr

    2017-06-01

    To date, the lichens Chrysothrix candelaris and Varicellaria hemisphaerica have been classified as accurate primeval lowland forest indicators. Both inhabit particularly valuable remnants of oak-hornbeam forests in Europe, but tend toward a specific kind of vicariance on a local scale. The present study was undertaken to determine habitat factors responsible for this phenomenon and verify the indicative and conservation value of these lichens. The main spatial and climatic parameters that, along with forest structure, potentially affect their distribution patterns and abundance were analysed in four complexes with typical oak-hornbeam stands in NE Poland. Fifty plots of 400 m2 each were chosen for detailed examination of stand structure and epiphytic lichens directly associated with the indicators. The study showed that the localities of the two species barely overlap within the same forest community in a relatively small geographical area. The occurrence of Chrysothrix candelaris depends basically only on microhabitat space provided by old oaks and its role as an indicator of the ecological continuity of habitat is limited. Varicellaria hemisphaerica is not tree specific but a sufficiently high moisture of habitat is essential for the species and it requires forests with high proportion of deciduous trees in a wide landscape scale. Local landscape-level habitat continuity is more important for this species than the current age of forest stand. Regardless of the indicative value, localities of both lichens within oak-hornbeam forests deserve the special protection status since they form unique assemblages of exclusive epiphytes, including those with high conservation value.

  9. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors

    Science.gov (United States)

    Saunier, S.; Goryl, P.; Chander, G.; Santer, R.; Bouvet, M.; Collet, B.; Mambimba, A.; Kocaman, Aksakal S.

    2010-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote-sensing sensors: 1) the Advanced Visible and Near-Infrared Radiometer type 2 (AVNIR-2); 2) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM); and 3) the Phased-Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node, as part of the European Space Agency (ESA), the European Space Research Institute worked alongside JAXA to provide contributions to the ALOS commissioning phase plan. This paper summarizes the strategy that was adopted by ESA to define and implement a data verification plan for missions operated by external agencies; these missions are classified by the ESA as third-party missions. The ESA was supported in the design and execution of this plan by GAEL Consultant. The verification of ALOS optical data from PRISM and AVNIR-2 sensors was initiated 4 months after satellite launch, and a team of principal investigators assembled to provide technical expertise. This paper includes a description of the verification plan and summarizes the methodologies that were used for radiometric, geometric, and image quality assessment. The successful completion of the commissioning phase has led to the sensors being declared fit for operations. The consolidated measurements indicate that the radiometric calibration of the AVNIR-2 sensor is stable and agrees with the Landsat-7 Enhanced Thematic Mapper Plus and the Envisat MEdium-Resolution Imaging Spectrometer calibration. The geometrical accuracy of PRISM and AVNIR-2 products improved significantly and remains under control. The PRISM modulation transfer function is monitored for improved characterization.

  10. Spectral, spatial and radiometric factors in cover type discrimination

    Science.gov (United States)

    Alexander, D.; Buis, J.; Acevedo, W.; Wrigley, R.

    1983-01-01

    The influence of spatial, spectral, and radiometric resolutions on the utilization of Thematic Mapper (TM) and Multispectral Scanner (MSS) data is assessed quantitatively using a 2 x 2 x 2 factorial design experiment. Eight possible factor combinations were examined for agricultural, urban, forestry, range, and water types of land covers for three levels of information. Spectral bandwidths were configured to simulate all four Landsat MSS channels and Landsat TM channels 1, 2, 3, 4, and 7. By means of bar charts and tables it is shown that the 8-bit radiometric and 75-meter spatial resolutions provide a higher overall accuracy than the 6-bit radiometric and 25-meter spatial resolutions. Spectrally, the difference between the four MSS channels and five TM channel configurations is noted to be insignificant.

  11. Vicarious traumatization, secondary traumatic stress, and burnout in sexual assault and domestic violence agency staff.

    Science.gov (United States)

    Baird, Stephanie; Jenkins, Sharon Rae

    2003-02-01

    This study investigated three occupational hazards of therapy with trauma victims: vicarious trauma and secondary traumatic stress (or "compassion fatigue"), which describe therapists' adverse reactions to clients' traumatic material, and burnout, a stress response experienced in many emotionally demanding "people work" jobs. Among 101 trauma counselors, client exposure workload and being paid as a staff member (vs. volunteer) were related to burnout sub-scales, but not as expected to overall burnout or vicarious trauma, secondary traumatic stress, or general distress. More educated counselors and those seeing more clients reported less vicarious trauma. Younger counselors and those with more trauma counseling experience reported more emotional exhaustion. Findings have implications for training, treatment, and agency support systems.

  12. Effects of Vicarious Experiences of Nature, Environmental Attitudes, and Outdoor Recreation Benefits on Support for Increased Funding Allocations

    Science.gov (United States)

    Kil, Namyun

    2016-01-01

    This study examined the effects of vicarious experiences of nature, environmental attitudes, and recreation benefits sought by participants on their support for funding of natural resources and alternative energy options. Using a national scenic trail user survey, results demonstrated that vicarious experiences of nature influenced environmental…

  13. Preliminary Assessment of Suomi-NPP VIIRS On-orbit Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; DeLuccia, Frank; McIntire, Jeff; Moyer, David; Chiang, Vincent; Xiong, Xiao-xiong; Butler, James

    2012-01-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft that was launched on October 28th 2011. VIIRS was designed to provide moderate and imaging resolution of most of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370.and 740 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.412 11m and 12.01 11m, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (ON B). VIIRS observations are used to generate 22 environmental data products (EORs). This paper will briefly describe NPP VIIRS calibration strategies performed by the independent government team, for the initial on-orbit Intensive Calibration and Validation (ICV) activities. In addition, this paper will provide an early assessment of the sensor on-orbit radiometric performance, such as the sensor signal to noise ratios (SNRs), dual gain transition verification, dynamic range and linearity, reflective bands calibration based on the solar diffuser (SO) and solar diffuser stability monitor (SOSM), and emissive bands calibration based on the on-board blackbody calibration (OBC). A comprehensive set of performance metrics generated during the pre-launch testing program will be compared to VIIRS on-orbit early performance, and a plan for future cal/val activities and performance enhancements will be presented.

  14. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  15. Transmitting Trauma: A systematic review of vicarious racism and child health.

    Science.gov (United States)

    Heard-Garris, N J; Cale, M; Camaj, L; Hamati, M C; Dominguez, T P

    2017-04-26

    Racism is a pervasive stressor. Although most research focuses on direct targets, racism can also have unintended victims. Because children's lives are inevitably linked to the experiences of other individuals, and they are in critical phases of development, they are especially vulnerable to such stressors. Despite the growing body of literature on children's direct exposure to racism, little is known about the relationship between vicarious racism (i.e. secondhand exposure to racism) and child health. To examine the state of this literature, we performed a systematic review and screened 1371 articles drawn from 7 databases, with 30 studies meeting inclusion criteria. For these 30, we reviewed research methodology, including conceptualization and measurement of vicarious exposure, sample characteristics, significant associations with child health outcomes, and mediators and/or moderators of those associations. Most studies were published after 2011 in urban areas in the U.S., employed longitudinal designs, and focused on African American populations. Socioemotional and mental health outcomes were most commonly reported with statistically significant associations with vicarious racism. While all studies examined racism indirectly experienced by children, there was no standard definition of vicarious racism used. We organize the findings in a schematic diagram illustrating indirectly-experienced racism and child health outcomes to identify current gaps in the literature and ways in which to bridge those gaps. To further the field, vicarious racism should be uniformly defined and directly measured using psychometrically validated tools. Future studies should consider using children as the informants and follow children into early adulthood to better understand causal mechanisms. Given the recent national exposure to racially-charged events, a deeper understanding of the association between vicarious racism and child health is crucial in fueling research

  16. Fear of property crime: examining the effects of victimization, vicarious victimization, and perceived risk.

    Science.gov (United States)

    Cook, Carrie L; Fox, Kathleen A

    2011-01-01

    Fear of crime research has primarily focused on fear of crime in general or on fear of specific types of violent crimes. This study builds from this line of research by focusing exclusively on the night fear of six types of property crimes, including fear of burglary while away from home, vehicle theft, bicycle theft, property theft, vandalism, and vehicle burglary. This study examines the effects of victimization, vicarious victimization, and perceived risk on fear of property crime. Survey data from college students reveal that victimization and vicarious victimization were not significant predictors of fear of property crime, whereas perceived risk was a consistent and significant predictor of fear of all property crimes.

  17. Toward a multimodal communication theory of psychotherapy: the vicarious coprocessing of experience.

    Science.gov (United States)

    Adler, H M

    1997-01-01

    "Talking" therapy is examined as an interpersonal transaction. The personal-experience narrative is used as a vehicle through which the patient and therapist coprocess a mutual experience. Within the narrative transaction, the patient is able to vicariously re-experience and reconfigure the narrated events as he/she believes the therapist is experiencing them. Nonverbal symbolic modes of communication such as music, movement, and art also provide media through which patients and therapists can coprocess a mutual experience. The vicarious coprocessing of experience is a therapeutic factor common to talking therapy, music therapy, art therapy, movement therapy, conventional social interaction, and some healing practices in other cultures.

  18. Non-normal distribution of the Top-Of-Atmosphere satellite optical measurements over calibration sites

    OpenAIRE

    Gorroño, J; Bialek, A; Green, PD; Harris, P; Scanlon, T; Fox, NP; Underwood, CI

    2016-01-01

    This paper studies the distribution associated with the measurement of the satellite derived Top-Of-Atmosphere (TOA) reflectance on a pixel-to-pixel level, within a defined spatial region of interest (ROI) within a vicarious calibration target site. The study analyses the effects of the atmosphere and surface reflectance distribution spatial shape. The analysis shows that some of the contributing effects are inherently non-linear, so produce non-normal distributions. For these non-normal dist...

  19. Observing the restriction of another person: Vicarious reactance and the role of self-construal and culture

    Directory of Open Access Journals (Sweden)

    Sandra eSittenthaler

    2015-08-01

    Full Text Available Psychological reactance occurs in response to threats posed to perceived behavioral freedoms. Research has shown that people can also experience vicarious reactance. They feel restricted in their own freedom even though they are not personally involved in the restriction but only witness the situation. The phenomenon of vicarious reactance is especially interesting when considered in a cross-cultural context because the cultural specific self-construal plays a crucial role in understanding people’s response to self- and vicariously experienced restrictions. Previous studies and our pilot study (N = 197 could show that people with a collectivistic cultural background show higher vicarious reactance compared to people with an individualistic cultural background. But does it matter whether people experience the vicarious restriction for an in-group or an out-group member? Differentiating vicarious-in-group and vicarious-out-group restrictions, Study 1 (N = 159 suggests that people with a more interdependent self-construal show stronger vicarious reactance only with regard to in-group restrictions but not with regard to out-group restrictions. In contrast, participants with a more independent self-construal experience stronger reactance when being self-restricted compared to vicariously-restricted. Study 2 (N = 180 replicates this pattern conceptually with regard to individualistic and collectivistic cultural background groups. Additionally, participants’ behavioral intentions show the same pattern of results. Moreover a mediation analysis demonstrates that cultural differences in behavioral intentions could be explained through people´s self-construal differences. Thus, the present studies provide new insights and show consistent evidence for vicarious reactance depending on participants’ culturally determined self-construal.

  20. Radiometer calibration methods and resulting irradiance differences: Radiometer calibration methods and resulting irradiance differences

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron [National Renewable Energy Laboratory, Golden CO 80401 USA; Sengupta, Manajit [National Renewable Energy Laboratory, Golden CO 80401 USA; Andreas, Afshin [National Renewable Energy Laboratory, Golden CO 80401 USA; Reda, Ibrahim [National Renewable Energy Laboratory, Golden CO 80401 USA; Robinson, Justin [GroundWork Renewables Inc., Logan UT 84321 USA

    2016-10-07

    Accurate solar radiation measured by radiometers depends on instrument performance specifications, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methodologies and resulting differences provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these methods calibrate radiometers indoors and some outdoors. To establish or understand the differences in calibration methodologies, we processed and analyzed field-measured data from radiometers deployed for 10 months at NREL's Solar Radiation Research Laboratory. These different methods of calibration resulted in a difference of +/-1% to +/-2% in solar irradiance measurements. Analyzing these differences will ultimately assist in determining the uncertainties of the field radiometer data and will help develop a consensus on a standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainties will help the accurate prediction of the output of planned solar conversion projects and improve the bankability of financing solar projects.

  1. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiat...... radiation. The paper describes how such measurements are carried out as well as a suitable experimental set-up. The main reflector of the European Space Agency's MIMR system is used to demonstrate the principle...

  2. Site calibration

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Georgieva Yankova, Ginka

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...... between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment is detailed described in [2]. The possible measurement sector for power performance...... according to [1] is also described in [2] and no results from the site calibration have shown any necessary exclusion from this sector. All parts of the sensors and the measurement system have been installed by DTU....

  3. Preliminary geological and radiometric studies of granitoids of Zing ...

    African Journals Online (AJOL)

    ... igneous texture that the enclaves are syngenetic probably representing remnants of pre-existing rocks from which the granitoids were derived. The enhanced radiometric counts in fine-grained granite and pegmatite may be related to uranium occurrences of magmatic/hydrothermal nature around Mika, Jada and Nyaza.

  4. Assessment of Aero-radiometric Data of Southern Anambra Basin ...

    African Journals Online (AJOL)

    ADOWIE PERE

    JASEM https://dx.doi.org/10.4314/jasem.v21i4.15. Key Words: Aero-radiometric; Radiogenic Heat; Anambra Basin; Geothermal. Anambra basin has not really been subjected to detailed radiogenic heat production despite the geological features that suggest that the area has prospect for geothermal energy production. This.

  5. Design and calibration of field deployable ground-viewing radiometers.

    Science.gov (United States)

    Anderson, Nikolaus; Czapla-Myers, Jeffrey; Leisso, Nathan; Biggar, Stuart; Burkhart, Charles; Kingston, Rob; Thome, Kurtis

    2013-01-10

    Three improved ground-viewing radiometers were built to support the Radiometric Calibration Test Site (RadCaTS) developed by the Remote Sensing Group (RSG) at the University of Arizona. Improved over previous light-emitting diode based versions, these filter-based radiometers employ seven silicon detectors and one InGaAs detector covering a wavelength range of 400-1550 nm. They are temperature controlled and designed for greater stability and lower noise. The radiometer systems show signal-to-noise ratios of greater than 1000 for all eight channels at typical field calibration signal levels. Predeployment laboratory radiance calibrations using a 1 m spherical integrating source compare well with in situ field calibrations using the solar radiation based calibration method; all bands are within ±2.7% for the case tested.

  6. Comparison of the Calibration Algorithms and SI Traceability of MODIS, VIIRS, GOES, and GOES-R ABI Sensors

    OpenAIRE

    Raju Datla; Xi Shao; Changyong Cao; Xiangqian Wu

    2016-01-01

    The radiometric calibration equations for the thermal emissive bands (TEB) and the reflective solar bands (RSB) measurements of the earth scenes by the polar satellite sensors, (Terra and Aqua) MODIS and Suomi NPP (VIIRS), and geostationary sensors, GOES Imager and the GOES-R Advanced Baseline Imager (ABI) are analyzed towards calibration algorithm harmonization on the basis of SI traceability which is one of the goals of the NOAA National Calibration Center (NCC). One of the overarching goal...

  7. Calibration procedure of Hukseflux SR25 to Establish the Diffuse Reference for the Outdoor Broadband Radiometer Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Andreas, Afshin M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    Accurate pyranometer calibrations, traceable to internationally recognized standards, are critical for solar irradiance measurements. One calibration method is the component summation method, where the pyranometers are calibrated outdoors under clear sky conditions, and the reference global solar irradiance is calculated as the sum of two reference components, the diffuse horizontal and subtended beam solar irradiances. The beam component is measured with pyrheliometers traceable to the World Radiometric Reference, while there is no internationally recognized reference for the diffuse component. In the absence of such a reference, we present a method to consistently calibrate pyranometers for measuring the diffuse component. The method is based on using a modified shade/unshade method and a pyranometer with less than 0.5 W/m2 thermal offset. The calibration result shows that the responsivity of Hukseflux SR25 pyranometer equals 10.98 uV/(W/m2) with +/-0.86 percent uncertainty.

  8. F v Minister of Safety and Security: Vicarious liability and state ...

    African Journals Online (AJOL)

    The Constitutional Court judgement in F v Minister of Safety and Security 1 is a ground-breaking judgement in two important respects: firstly, it finally does away with the fiction that an employee acts within the course and scope of her employment in the so-called deviation cases in the law of vicarious liability, and secondly it ...

  9. Vicarious Futurity, Hope, and Well-Being in Parents of Children with Autism Spectrum Disorder

    Science.gov (United States)

    Faso, Daniel J.; Neal-Beevers, A. Rebecca; Carlson, Caryn L.

    2013-01-01

    Hope is shown to provide resiliency for parents of children with autism spectrum disorders (ASDs) against the negative effects related to extreme parenting stressors. The broad positivity of hope may overlook opposing parental feelings about their child that may be important for well-being. Vicarious futurity (VF) is the hope and despair a parent…

  10. Differentiation of Self as a Predictor of Vicarious Trauma in Mental Health Professionals

    Science.gov (United States)

    Purvis, Denise

    2017-01-01

    Mental health professionals in all settings work with clients who are affected by trauma. Traumatic events expose mental health professionals to the negative psychological and emotional impact of witnessing and listening to client stories. Vicarious trauma is the emotional consequence of this empathic engagement with clients. The purpose of this…

  11. Attitude change as a function of the observation of vicarious reinforcement and friendliness

    OpenAIRE

    Stocker-Kreichgauer, Gisela

    1982-01-01

    Attitude change as a function of the observation of vicarious reinforcement and friendliness : hostility in a debate / Lutz von Rosenstiel ; Gisela Stocker- Kreichgauer. - In: Group decision making / ed. by Gisela Stocker-Kreichgauer ... - London u.a. : Acad. Press, 1982. - S. 241-255. - (European monographs in social psychology ; 25)

  12. Vicarious Effort-Based Decision-Making in Autism Spectrum Disorders

    Science.gov (United States)

    Mosner, Maya G.; Kinard, Jessica L.; McWeeny, Sean; Shah, Jasmine S.; Markiewitz, Nathan D.; Damiano-Goodwin, Cara R.; Burchinal, Margaret R.; Rutherford, Helena J. V.; Greene, Rachel K.; Treadway, Michael T.; Dichter, Gabriel S.

    2017-01-01

    This study investigated vicarious effort-based decision-making in 50 adolescents with autism spectrum disorders (ASD) compared to 32 controls using the Effort Expenditure for Rewards Task. Participants made choices to win money for themselves or for another person. When choosing for themselves, the ASD group exhibited relatively similar patterns…

  13. Vicarious Learning and Reduction of Fear in Children via Adult and Child Models.

    Science.gov (United States)

    Dunne, Güler; Askew, Chris

    2017-06-01

    Children can learn to fear stimuli vicariously, by observing adults' or peers' responses to them. Given that much of school-age children's time is typically spent with their peers, it is important to establish whether fear learning from peers is as effective or robust as learning from adults, and also whether peers can be successful positive models for reducing fear. During a vicarious fear learning procedure, children (6 to 10 years; N = 60) were shown images of novel animals together with images of adult or peer faces expressing fear. Later they saw their fear-paired animal again together with positive emotional adult or peer faces. Children's fear beliefs and avoidance for the animals increased following vicarious fear learning and decreased following positive vicarious counterconditioning. There was little evidence of differences in learning from adults and peers, demonstrating that for this age group peer models are effective models for both fear acquisition and reduction. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Vicarious Group-Based Rejection : Creating a Potentially Dangerous Mix of Humiliation, Powerlessness, and Anger

    NARCIS (Netherlands)

    Veldhuis, Tinka M.; Gordijn, Ernestine H.; Veenstra, Rene; Lindenberg, Siegwart

    2014-01-01

    Rejection can convey that one is seen as inferior and not worth bothering with. Is it possible for people to feel vicariously rejected in this sense and have reactions that are similar to those following personal rejection, such as feeling humiliated, powerless, and angry? A study on personal

  15. Does Vicarious Instigation Provide Support for Observational Learning Theories? A Critical Review.

    Science.gov (United States)

    Green, Gina; Osborne, J. Grayson

    1985-01-01

    Examines the theories of Aronfreed, Bandura, Berger, and Hygge. Also reviews experimental evidence published since 1962 which supports theories of observational learning of emotional behavior. While the theories posit that different conditions are necessary to vicarious instigation, most research does not test the theories in any direct way.…

  16. Somatic and vicarious pain are represented by dissociable multivariate brain patterns

    Science.gov (United States)

    Krishnan, Anjali; Woo, Choong-Wan; Chang, Luke J; Ruzic, Luka; Gu, Xiaosi; López-Solà, Marina; Jackson, Philip L; Pujol, Jesús; Fan, Jin; Wager, Tor D

    2016-01-01

    Understanding how humans represent others’ pain is critical for understanding pro-social behavior. ‘Shared experience’ theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others’ suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others’ pain, and present new, more specific, brain targets for studying pain empathy. DOI: http://dx.doi.org/10.7554/eLife.15166.001 PMID:27296895

  17. Vicarious Trauma: A Comparison of Clinicians Who Treat Survivors of Sexual Abuse and Sexual Offenders

    Science.gov (United States)

    Way, Ineke; VanDeusen, Karen M.; Martin, Gail; Applegate, Brooks; Jandle, Deborah

    2004-01-01

    This study compared vicarious trauma in a random sample of male and female clinicians who treat survivors (n=95) and those who treat offenders (n=252). A national survey was conducted with members of the Association for the Treatment of Sexual Abusers (ATSA) and the American Professional Society on the Abuse of Children (APSAC). These data were…

  18. Vicarious Trauma: The Effects on Female Counselors of Working with Sexual Violence Survivors.

    Science.gov (United States)

    Schauben, Laura J.; Frazier, Patricia A.

    1995-01-01

    The effects on counselors of working with sexual violence survivors were studied with 118 psychologists and 30 sexual violence counselors. Counselors with a higher percentage of survivors in their case loads reported more disrupted beliefs, more symptoms of post-traumatic stress disorder, and more self-reported vicarious trauma. (SLD)

  19. Vicarious Trauma among Therapists Working with Sexual Violence, Cancer and General Practice

    Science.gov (United States)

    Kadambi, Michaela A.; Truscott, Derek

    2004-01-01

    Vicarious trauma, traumatic stress and burnout were investigated among three separate groups of mental health professionals working primarily with three different client populations (sexual violence, cancer, general practice). Participants (N=221) completed the Traumatic Stress Institute Belief Scale Revision M (TSI), the Maslach Burnout Inventory…

  20. Vicarious Racism: A Qualitative Analysis of Experiences with Secondhand Racism in Graduate Education

    Science.gov (United States)

    Truong, Kimberly A.; Museus, Samuel D.; McGuire, Keon M.

    2016-01-01

    In this article, the authors examine the role of vicarious racism in the experiences of doctoral students of color. The researchers conducted semi-structured individual interviews with 26 doctoral students who self-reported experiencing racism and racial trauma during their doctoral studies. The analysis generated four themes that detail the…

  1. Coping with Vicarious Trauma in the Aftermath of a Natural Disaster

    Science.gov (United States)

    Smith, Lauren E.; Bernal, Darren R.; Schwartz, Billie S.; Whitt, Courtney L.; Christman, Seth T.; Donnelly, Stephanie; Wheatley, Anna; Guillaume, Casta; Nicolas, Guerda; Kish, Jonathan; Kobetz, Erin

    2014-01-01

    This study documents the vicarious psychological impact of the 2010 earthquake in Haiti on Haitians living in the United States. The role of coping resources--family, religious, and community support--was explored. The results highlight the importance of family and community as coping strategies to manage such trauma.

  2. Effects of vicarious pain on self-pain perception: investigating the role of awareness

    Directory of Open Access Journals (Sweden)

    Terrighena EL

    2017-07-01

    Full Text Available Esslin L Terrighena,1,2 Ge Lu,1 Wai Ping Yuen,1 Tatia M C Lee,1–4 Kati Keuper1,2,5 1Department of Psychology, Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; 2Laboratory of Social Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong; 3The State Key Laboratory of Brain and Cognitive Sciences, Hong Kong; 4Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong; 5Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany Abstract: The observation of pain in others may enhance or reduce self-pain, yet the boundary conditions and factors that determine the direction of such effects are poorly understood. The current study set out to show that visual stimulus awareness plays a crucial role in ­determining whether vicarious pain primarily activates behavioral defense systems that enhance pain sensitivity and stimulate withdrawal or appetitive systems that attenuate pain sensitivity and stimulate approach. We employed a mixed factorial design with the between-subject factors exposure time (subliminal vs optimal and vicarious pain (pain vs no pain images, and the within-subject factor session (baseline vs trial to investigate how visual awareness of vicarious pain images affects subsequent self-pain in the cold-pressor test. Self-pain tolerance, intensity and unpleasantness were evaluated in a sample of 77 healthy participants. Results revealed ­significant interactions of exposure time and vicarious pain in all three dependent measures. In the presence of visual awareness (optimal condition, vicarious pain compared to no-pain elicited overall enhanced self-pain sensitivity, indexed by reduced pain tolerance and enhanced ratings of pain intensity and unpleasantness. Conversely, in the absence of visual awareness (subliminal condition, vicarious pain evoked decreased self-pain intensity and unpleasantness while pain tolerance remained unaffected. These

  3. Cross-Calibration of GF-1/WFV over a Desert Site Using Landsat-8/OLI Imagery and ZY-3/TLC Data

    OpenAIRE

    Aixia Yang; Bo Zhong; Wenbo Lv; Shanlong Wu; Qinhuo Liu

    2015-01-01

    The wide field of view (WFV) is an optical imaging sensor on-board the Gao Fen 1 (GF-1). The WFV lacks an on-board calibrator, so on-orbit radiometric calibration is required. Zhong et al. proposed a method for cross-calibrating the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) that can be applied to the GF-1/WFV. However, the accuracy is limited because of the wider radiometric dynamic range and the higher spatial resolution of the GF-1/WFV. Therefore, Landsat-8 Operation...

  4. The use of voxelised phantoms to improve calibrations in anthropo-radiometry; Utilisation des fantomes voxelises pour l'amelioration des etalonnages en anthroporadiametrie

    Energy Technology Data Exchange (ETDEWEB)

    Pierrat, N.; Franck, D.; Carlan, L. de; Borissov, N. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DPHD/SDOS/LEMDI), 92 - Fontenay-aux-Roses (France)

    2003-07-01

    The aim of this communication is to show the potential of Monte Carlo calculation techniques (M.C.N.P.) associated to voxelised phantoms for the realistic simulation of the anthropo-radiometric measurement of actinides in lungs with the help of a graphic interface. After description of the OEDIPE interface, the tool validation is presented by using a calibration phantom that is frequently used (Livermore phantom). Then, an approach of inhomogeneous contamination has been realised in order to study the variations of calibration factors in function of radioelements distribution in lungs. The different results show the potential of this technique for the realistic calibration of anthropo-radiometric installations. (N.C.)

  5. Vicarious experiences and detection accuracy while observing pain and touch: The effect of perspective taking.

    Science.gov (United States)

    Vandenbroucke, S; Crombez, G; Loeys, T; Goubert, L

    2015-07-01

    In this study, we investigated the effects of observing pain and touch in others on vicarious somatosensory experiences and the detection of subtle somatosensory stimuli. Furthermore, the effect of taking a first- versus a third-person perspective was investigated. Undergraduates (N = 57) viewed videos depicting hands being pricked (pain), hands being touched by a cotton swab (touch), and control scenes (same approaching movement of a hand as in the other video categories, but without the painful/touching object) while experiencing vibrotactile stimuli themselves on the left, on the right, or on both hands. Participants reported the location at which they felt a somatosensory stimulus. The vibrotactile stimuli and visual scenes were applied in a spatially congruent or incongruent way, and other trials were presented without vibrotactile stimuli. The videos were depicted in first-person perspective and third-person perspective (i.e., the videos were shown upside down). We calculated the proportions of correct responses and false alarms (i.e., numbers of trials on which a vicarious somatosensory experience was reported congruent or incongruent to the site of the visual information). Pain-related scenes facilitated the detection of tactile stimuli and augmented the number of vicarious somatosensory experiences, as compared with observing the touch or control videos. Detection accuracy was higher for videos depicted in first-person perspective than for those in third-person perspective. Perspective had no effect on the number of vicarious somatosensory experiences. This study indicates that somatosensory detection is particularly enhanced during the observation of pain-related scenes, as compared to the observation of touch or control videos. These research findings further demonstrate that perspective taking impacts somatosensory detection, but not the report of vicarious experiences.

  6. Vicarious substitution in the literary work of Shusaku Endō : On fools, animals, objects and doubles

    OpenAIRE

    Coenradie, S.

    2016-01-01

    This research systematically examines the theme of vicarious substitution in Shūsaku Endō’s literary work. It aims at enriching the traditional concepts of vicarious substitution. This study results in the following typology of vicarious substituion in Endo's literature: Christ-figures, including holy fools, animals that seem to die instead of persons, objects, such as a cross or a fumie and doppelgangers. It is argued that the autobiographical, confessional way of writing as found in Endō’s ...

  7. SIR-C/X-SAR data calibration and ground truth campaign over the NASA-CB1 test-site

    Energy Technology Data Exchange (ETDEWEB)

    Notarnicola, C.; Posa, F.; Refice, A.; Sergi, R.; Smacchia, P. [Istituto Nazionale di Fisica della Materia and Dipartimento Interateneo di Fisica, Bari (Italy); Casarano, D. [ENEA, Centro Ricerche Trisaia, Rotondella, MT (Italy); De Carolis, G.; Mattia, F. [Istituto di Tecnologia Informatica Spaziale-Consiglio Nazionale delle Ricerche, Centro di Geodesia Spaziale G. Colombo, Terlecchia, MT (Italy); Schena, V.D. [Alenia Spazio, Rome (Italy)

    2001-02-01

    During the Space Shuttle Endeavour mission in October 1994, a remote-sensing campaign was carried out with the objectives of both radiometric and polarimetric calibration and ground truth data acquisition of bare soils. This paper presents the results obtained in the experiment. Polarimetric cross-talk and channel imbalance values, as well as radiometric calibration parameters, have been found to be within the science requirements for SAR images. Regarding ground truth measurements, a wide spread in the height rms values and correlation lengths has been observed, which was motivated a critical revisiting of surface parameters descriptors.

  8. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  9. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.

  10. Radiometric calibration of wide-field camera system with an application in astronomy

    Science.gov (United States)

    Vítek, Stanislav; Nasyrova, Maria; Stehlíková, Veronika

    2017-09-01

    Camera response function (CRF) is widely used for the description of the relationship between scene radiance and image brightness. Most common application of CRF is High Dynamic Range (HDR) reconstruction of the radiance maps of imaged scenes from a set of frames with different exposures. The main goal of this work is to provide an overview of CRF estimation algorithms and compare their outputs with results obtained under laboratory conditions. These algorithms, typically designed for multimedia content, are unfortunately quite useless with astronomical image data, mostly due to their nature (blur, noise, and long exposures). Therefore, we propose an optimization of selected methods to use in an astronomical imaging application. Results are experimentally verified on the wide-field camera system using Digital Single Lens Reflex (DSLR) camera.

  11. Spectral Detection of Human Skin in VIS-SWIR Hyperspectral Imagery without Radiometric Calibration

    Science.gov (United States)

    2012-03-01

    Marciniak Member Date //signed// March 2012 Dr. Richard K. Martin Member Date AFIT/GE/ENG/12-03 Abstract Many spectral detection algorithms require precise...10 b ELM Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 M ELM Slope Correction...scene, the values of m and b are determined for the ith channel by solving the linear equation: rw(λi) rg(λi)  = xw,i 1 xg,i 1  mi bi

  12. Iterative Calibration: A Novel Approach for Calibrating the Molecular Clock Using Complex Geological Events.

    Science.gov (United States)

    Loeza-Quintana, Tzitziki; Adamowicz, Sarah J

    2018-02-01

    During the past 50 years, the molecular clock has become one of the main tools for providing a time scale for the history of life. In the era of robust molecular evolutionary analysis, clock calibration is still one of the most basic steps needing attention. When fossil records are limited, well-dated geological events are the main resource for calibration. However, biogeographic calibrations have often been used in a simplistic manner, for example assuming simultaneous vicariant divergence of multiple sister lineages. Here, we propose a novel iterative calibration approach to define the most appropriate calibration date by seeking congruence between the dates assigned to multiple allopatric divergences and the geological history. Exploring patterns of molecular divergence in 16 trans-Bering sister clades of echinoderms, we demonstrate that the iterative calibration is predominantly advantageous when using complex geological or climatological events-such as the opening/reclosure of the Bering Strait-providing a powerful tool for clock dating that can be applied to other biogeographic calibration systems and further taxa. Using Bayesian analysis, we observed that evolutionary rate variability in the COI-5P gene is generally distributed in a clock-like fashion for Northern echinoderms. The results reveal a large range of genetic divergences, consistent with multiple pulses of trans-Bering migrations. A resulting rate of 2.8% pairwise Kimura-2-parameter sequence divergence per million years is suggested for the COI-5P gene in Northern echinoderms. Given that molecular rates may vary across latitudes and taxa, this study provides a new context for dating the evolutionary history of Arctic marine life.

  13. Radiometric microbiologic assay for the biologically active forms of niacin

    Energy Technology Data Exchange (ETDEWEB)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-05-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced /sup 14/CO/sub 2/ from L-(U-/sup 14/C) malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 ..mu..g niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays.

  14. One-Pot Synthesis of Esters of Cyclopropane Carboxylic Acids via Tandem Vicarious Nucleophilic Substitution-Michael Addition Process.

    Science.gov (United States)

    Mąkosza, Mieczysław; Bester, Karol; Cmoch, Piotr

    2015-06-05

    α-Chlorocarbanions generated via base-induced vicarious nucleophilic substitution reaction of alkyl dichloroacetates with nitroarenes react with Michael acceptors to give esters of cyclopropane carboxylic acids substituted with p-nitroaromatic rings.

  15. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  16. A Radiometric Uncertainty Tool for the Sentinel 2 Mission

    Directory of Open Access Journals (Sweden)

    Javier Gorroño

    2017-02-01

    Full Text Available In the framework of the European Copernicus programme, the European Space Agency (ESA has launched the Sentinel-2 (S2 Earth Observation (EO mission which provides optical high spatial resolution imagery over land and coastal areas. As part of this mission, a tool (named S2-RUT, from Sentinel-2 Radiometric Uncertainty Tool has been developed. The tool estimates the radiometric uncertainty associated with each pixel in the top-of-atmosphere (TOA reflectance factor images provided by ESA. This paper describes the design and development process of the initial version of the S2-RUT tool. The initial design step describes the S2 radiometric model where a set of uncertainty contributors are identified. Each of the uncertainty contributors is specified by reviewing the pre- and post-launch characterisation. The identified uncertainty contributors are combined following the guidelines in the ‘Guide to Expression of Uncertainty in Measurement’ (GUM model and this combination model is further validated by comparing the results to a multivariate Monte Carlo Method (MCM. In addition, the correlation between the different uncertainty contributions and the impact of simplifications in the combination model have been studied. The software design of the tool prioritises an efficient strategy to read the TOA reflectance factor images, extract the auxiliary information from the metadata in the satellite products and the codification of the resulting uncertainty image. This initial version of the tool has been implemented and integrated as part of the Sentinels Application Platform (SNAP.

  17. Conception and state of the radiometric analysis breadboard (RAB) for the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS)

    Science.gov (United States)

    Saeuberlich, T.; Lorenz, E.; Skrbek, W.

    2006-08-01

    As a part of the ESA deep space mission to mercury - BepiColombo - investigations of mercury's surface layer using a push-broom thermal infrared imaging spectrometer (MERTIS) with a high spectral resolution is planned. One of the scientific goals is the measurement of Christiansen Features which are emissivity maxima resulting from rapid changes in the real part of the mineral's refractive index. Their positions within the spectral range of 7-14μm deliver information about mineralogical compositions. For these measurement MERTIS needs to have a high spectral resolution of 90nm. The planet will be mapped with a resolution of 500m and a S/N ratio of at least 100. For the measurement of the surface radiation a micro-bolometer detector array will be used. A detectivity of 1.0E9 is required. High sensitive TIR systems commonly use cooled detectors with a large mass budget and high electrical power consumption. One of the challenges of MERTIS is the use of an uncooled micro-bolometer detector. The development of MERTIS is currently in an early phase but a breadboard concept will be presented. Special attention is payed to the first of two phases of the breadboard concept: The Radiometric Breadboard (RAB) has been configured for the development of the opto-electronical components and for the investigation of radiometric calibration methods and algorithms. The design of the RAB is already a spectrometer configuration but it cannot reach the performance the technical and scientific requirements demand. The Spectro-Radiometric Breadboard (SRB) will be implemented for investigations of the performances of the optics and detector of MERTIS. Relevant components have to be developed and validated particularly in the spectral domain. The SRB will be the prototype of MERTIS.

  18. Vicarious resilience: a new concept in work with those who survive trauma.

    Science.gov (United States)

    Hernández, Pilar; Gangsei, David; Engstrom, David

    2007-06-01

    This study explores the formulation of a new concept: vicarious resilience. It addresses the question of how psychotherapists who work with survivors of political violence or kidnapping are affected by their clients'stories of resilience. It focuses on the psychotherapists' interpretations of their clients' stories, and how they make sense of the impact that these stories have had on their lives. In semistructured interviews, 12 psychotherapists who work with victims of political violence and kidnapping were interviewed about their perceptions of their clients' overcoming of adversity. A phenomenological analysis of the transcripts was used to describe the themes that speak about the effects of witnessing how clients cope constructively with adversity. These themes are discussed to advance the concept of vicarious resilience and how it can contribute to sustaining and empowering trauma therapists.

  19. Inhibition of vicariously learned fear in children using positive modeling and prior exposure

    OpenAIRE

    Askew, Chris; Reynolds, Gemma; Fielding-Smith, Sarah; Field, Andy P

    2015-01-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisit...

  20. Is vicarious trauma the culprit? A study of child welfare professionals.

    Science.gov (United States)

    Jankoski, Jo Ann

    2010-01-01

    This article reports on a qualitative, multicase study of child welfare professionals who discussed the changes they experienced because of the work they do. It was concluded that vicarious trauma was the cause. This study was grounded in the constructive self-development theory, a developmental and interpersonal theory with a trauma focus that explains the impact of trauma on an individual's psychological development, identity, and adaptation.

  1. Vicarious learning and socio-economic transformation in Indian Trans-Himalaya

    OpenAIRE

    K Chandrasekhar; Bhaduri, Saradindu

    2005-01-01

    Recently, it has been suggested that the process of economic development should ideally be viewed as a socioeconomic transformation. Such a view requires a comprehensive understanding of how agents learn and change their behaviour. However, these aspects have only been inadequately addressed in development theory. This paper argues that social-cognitive vicarious learning theories can become a useful methodological tool by incorporating a triadic interaction between personal factors (beliefs,...

  2. SCIAMACHY Level 1 data: calibration concept and in-flight calibration

    Directory of Open Access Journals (Sweden)

    G. Lichtenberg

    2006-01-01

    Full Text Available The calibration of SCIAMACHY was thoroughly checked since the instrument was launched on-board ENVISAT in February 2002. While SCIAMACHY's functional performance is excellent since launch, a number of technical difficulties have appeared, that required adjustments to the calibration. The problems can be separated into three types: (1 Those caused by the instrument and/or platform environment. Among these are the high water content in the satellite structure and/or MLI layer. This results in the deposition of ice on the detectors in channels 7 and 8 which seriously affects the retrievals in the IR, mostly because of the continuous change of the slit function caused by scattering of the light through the ice layer. Additionally a light leak in channel 7 severely hampers any retrieval from this channel. (2 Problems due to errors in the on-ground calibration and/or data processing affecting for example the radiometric calibration. A new approach based on a mixture of on-ground and in-flight data is shortly described here. (3 Problems caused by principal limitations of the calibration concept, e.g. the possible appearance of spectral structures after the polarisation correction due to unavoidable errors in the determination of atmospheric polarisation. In this paper we give a complete overview of the calibration and problems that still have to be solved. We will also give an indication of the effect of calibration problems on retrievals where possible. Since the operational processing chain is currently being updated and no newly processed data are available at this point in time, for some calibration issues only a rough estimate of the effect on Level 2 products can be given. However, it is the intention of this paper to serve as a future reference for detailed studies into specific calibration issues.

  3. Out of Arabia: a complex biogeographic history of multiple vicariance and dispersal events in the gecko genus Hemidactylus (Reptilia: Gekkonidae).

    Science.gov (United States)

    Smíd, Jiří; Carranza, Salvador; Kratochvíl, Lukáš; Gvoždík, Václav; Nasher, Abdul Karim; Moravec, Jiří

    2013-01-01

    The geological history of the Arabian Peninsula has played a crucial role in shaping current diversity and distribution patterns of many Arabian and African faunal elements. The gecko genus Hemidactylus is not an exception. In this study, we provide an insight into the phylogeny and systematics of 45 recognized species of the so-called Arid clade of the genus Hemidactylus from Arabia, the Horn of Africa, the Levant and Iran. The material comprises 358 specimens sequenced for up to two mitochondrial (12S rRNA, cytochrome b) and four nuclear (mc1r, cmos, rag1, rag2) genes with 4766 bp of the concatenated alignment length. A robust calibrated phylogeny and reconstruction of historical biogeography are inferred. We link the history of this genus with major geological events that occurred in the region within the last 30 million years. Two basal divergences correspond with the break-ups of the Arabian and African landmasses and subsequent separation of Socotra from the Arabian mainland, respectively, segregating the genus by means of vicariance. Formation of the Red Sea led to isolation and subsequent radiation in the Arabian Peninsula, which was followed by multiple independent expansions: 13.1 Ma to Iran; 9.8 Ma to NE Africa; 8.2 to Socotra Archipelago; 7-7.3 Ma two colonizations to the Near East; 5.9 Ma to NE Africa; and 4.1 to Socotra. Moreover, using multiple genetic markers we detected cryptic diversity within the genus, particularly in south-western Arabia and the Ethiopian highlands, and confirmed the existence of at least seven new species in the area. These findings highlight the role of Arabia and the Horn of Africa as an important Hemidactylus diversity hotspot.

  4. Out of Arabia: A Complex Biogeographic History of Multiple Vicariance and Dispersal Events in the Gecko Genus Hemidactylus (Reptilia: Gekkonidae)

    Science.gov (United States)

    Šmíd, Jiří; Carranza, Salvador; Kratochvíl, Lukáš; Gvoždík, Václav; Nasher, Abdul Karim; Moravec, Jiří

    2013-01-01

    The geological history of the Arabian Peninsula has played a crucial role in shaping current diversity and distribution patterns of many Arabian and African faunal elements. The gecko genus Hemidactylus is not an exception. In this study, we provide an insight into the phylogeny and systematics of 45 recognized species of the so-called Arid clade of the genus Hemidactylus from Arabia, the Horn of Africa, the Levant and Iran. The material comprises 358 specimens sequenced for up to two mitochondrial (12S rRNA, cytochrome b) and four nuclear (mc1r, cmos, rag1, rag2) genes with 4766 bp of the concatenated alignment length. A robust calibrated phylogeny and reconstruction of historical biogeography are inferred. We link the history of this genus with major geological events that occurred in the region within the last 30 million years. Two basal divergences correspond with the break-ups of the Arabian and African landmasses and subsequent separation of Socotra from the Arabian mainland, respectively, segregating the genus by means of vicariance. Formation of the Red Sea led to isolation and subsequent radiation in the Arabian Peninsula, which was followed by multiple independent expansions: 13.1 Ma to Iran; 9.8 Ma to NE Africa; 8.2 to Socotra Archipelago; 7–7.3 Ma two colonizations to the Near East; 5.9 Ma to NE Africa; and 4.1 to Socotra. Moreover, using multiple genetic markers we detected cryptic diversity within the genus, particularly in south-western Arabia and the Ethiopian highlands, and confirmed the existence of at least seven new species in the area. These findings highlight the role of Arabia and the Horn of Africa as an important Hemidactylus diversity hotspot. PMID:23724016

  5. Out of Arabia: a complex biogeographic history of multiple vicariance and dispersal events in the gecko genus Hemidactylus (Reptilia: Gekkonidae.

    Directory of Open Access Journals (Sweden)

    Jiří Smíd

    Full Text Available The geological history of the Arabian Peninsula has played a crucial role in shaping current diversity and distribution patterns of many Arabian and African faunal elements. The gecko genus Hemidactylus is not an exception. In this study, we provide an insight into the phylogeny and systematics of 45 recognized species of the so-called Arid clade of the genus Hemidactylus from Arabia, the Horn of Africa, the Levant and Iran. The material comprises 358 specimens sequenced for up to two mitochondrial (12S rRNA, cytochrome b and four nuclear (mc1r, cmos, rag1, rag2 genes with 4766 bp of the concatenated alignment length. A robust calibrated phylogeny and reconstruction of historical biogeography are inferred. We link the history of this genus with major geological events that occurred in the region within the last 30 million years. Two basal divergences correspond with the break-ups of the Arabian and African landmasses and subsequent separation of Socotra from the Arabian mainland, respectively, segregating the genus by means of vicariance. Formation of the Red Sea led to isolation and subsequent radiation in the Arabian Peninsula, which was followed by multiple independent expansions: 13.1 Ma to Iran; 9.8 Ma to NE Africa; 8.2 to Socotra Archipelago; 7-7.3 Ma two colonizations to the Near East; 5.9 Ma to NE Africa; and 4.1 to Socotra. Moreover, using multiple genetic markers we detected cryptic diversity within the genus, particularly in south-western Arabia and the Ethiopian highlands, and confirmed the existence of at least seven new species in the area. These findings highlight the role of Arabia and the Horn of Africa as an important Hemidactylus diversity hotspot.

  6. Both Direct and Vicarious Experiences of Nature Affect Children’s Willingness to Conserve Biodiversity

    Directory of Open Access Journals (Sweden)

    Masashi Soga

    2016-05-01

    Full Text Available Children are becoming less likely to have direct contact with nature. This ongoing loss of human interactions with nature, the extinction of experience, is viewed as one of the most fundamental obstacles to addressing global environmental challenges. However, the consequences for biodiversity conservation have been examined very little. Here, we conducted a questionnaire survey of elementary schoolchildren and investigated effects of the frequency of direct (participating in nature-based activities and vicarious experiences of nature (reading books or watching TV programs about nature and talking about nature with parents or friends on their affective attitudes (individuals’ emotional feelings toward and willingness to conserve biodiversity. A total of 397 children participated in the surveys in Tokyo. Children’s affective attitudes and willingness to conserve biodiversity were positively associated with the frequency of both direct and vicarious experiences of nature. Path analysis showed that effects of direct and vicarious experiences on children’s willingness to conserve biodiversity were mediated by their affective attitudes. This study demonstrates that children who frequently experience nature are likely to develop greater emotional affinity to and support for protecting biodiversity. We suggest that children should be encouraged to experience nature and be provided with various types of these experiences.

  7. Coordinated activation of premotor and ventromedial prefrontal cortices during vicarious reward.

    Science.gov (United States)

    Shimada, Sotaro; Matsumoto, Madoka; Takahashi, Hidefumi; Yomogida, Yukihito; Matsumoto, Kenji

    2016-03-01

    The vicarious reward we receive from watching likable others obtaining a positive outcome is a pervasive phenomenon, yet its neural correlates are poorly understood. Here, we conducted a series of functional magnetic resonance imaging experiments to test the hypothesis that the brain areas responsible for action observation and reward processing work in a coordinated fashion during vicarious reward. In the first experiment (manipulation phase), the participant was instructed to cheer for a particular player in a two-player competitive game (Rock-Paper-Scissors). This manipulation made participants feel more unity with that player and resulted in unity-related activation in the premotor area during action observation. In the following main experiment, the participant witnessed the previously cheered-for or non-cheered-for player succeed in a new solitary game (a stopwatch game). The ventromedial prefrontal cortex (vmPFC) was activated when the cheered-for player succeeded in the game but not when the other player did. Interestingly, this vmPFC activation was functionally connected with premotor activation only during the cheered-for player's success. These results suggest that vicarious reward is processed in the vmPFC-premotor network, which is activated specifically by the success of the other person with whom the individual feels unity and closeness. © The Author (2015). Published by Oxford University Press.

  8. Vicarious learning and unlearning of fear in childhood via mother and stranger models.

    Science.gov (United States)

    Dunne, Güler; Askew, Chris

    2013-10-01

    Evidence shows that anxiety runs in families. One reason may be that children are particularly susceptible to learning fear from their parents. The current study compared children's fear beliefs and avoidance preferences for animals following positive or fearful modeling by mothers and strangers in vicarious learning and unlearning procedures. Children aged 6 to 10 years (N = 60) were exposed to pictures of novel animals either alone (control) or together with pictures of their mother or a stranger expressing fear or happiness. During unlearning (counterconditioning), children saw each animal again with their mother or a stranger expressing the opposite facial expression. Following vicarious learning, children's fear beliefs increased for animals seen with scared faces and this effect was the same whether fear was modeled by mothers or strangers. Fear beliefs and avoidance preferences decreased following positive counterconditioning and increased following fear counterconditioning. Again, learning was the same whether the model was the child's mother or a stranger. These findings indicate that children in this age group can vicariously learn and unlearn fear-related cognitions from both strangers and mothers. This has implications for our understanding of fear acquisition and the development of early interventions to prevent and reverse childhood fears and phobias.

  9. Teaching Parents About Responsive Feeding Through a Vicarious Learning Video: A Pilot Randomized Controlled Trial.

    Science.gov (United States)

    Ledoux, Tracey; Robinson, Jessica; Baranowski, Tom; O'Connor, Daniel P

    2017-06-01

    The American Academy of Pediatrics and World Health Organization recommend responsive feeding (RF) to promote healthy eating behaviors in early childhood. This project developed and tested a vicarious learning video to teach parents RF practices. A RF vicarious learning video was developed using community-based participatory research methods. Fifty parents of preschoolers were randomly assigned to watch Happier Meals or a control video about education. Knowledge and beliefs about RF practices were measured 1 week before and immediately after intervention. Experimental group participants also completed measures of narrative engagement and video acceptability. Seventy-four percent of the sample was White, 90% had at least a college degree, 96% were married, and 88% made >$50,000/year. RF knowledge increased ( p = .03) and positive beliefs about some unresponsive feeding practices decreased ( ps < .05) more among experimental than control parents. Knowledge and belief changes were associated with video engagement ( ps < .05). Parents perceived Happier Meals as highly relevant, applicable, and informative. Community-based participatory research methods were instrumental in developing this vicarious learning video, with preliminary evidence of effectiveness in teaching parents about RF. Happier Meals is freely available for parents or community health workers to use when working with families to promote healthy eating behaviors in early childhood.

  10. Identifying, Preventing, and Addressing Job Burnout and Vicarious Burnout for Social Work Professionals.

    Science.gov (United States)

    Wilson, Felicia

    2016-01-01

    Genuineness, concern for others, and empathy are characteristics used to describe the professional social worker. To this end, the social worker tirelessly works on behalf of and in collaboration with the client to move them from stagnant life situations into positive life situations. While the fundamental principles of social work are wonderful, the result for some workers is job burnout and/or vicarious trauma. The concepts of job burnout, its antecedents, and manifestations are thoroughly discussed in this article to provide a holistic overview of this phenomenon. The six antecedents: workload, control, values, fairness, reward, and community are discussed and linked to the manifestations of job burnout. When working with individuals who have been exposed to the depravity of life, the professional can take on the client's vulnerabilities, victimizations, and stress. The common term for this phenomenon is vicarious trauma. Professionals who work with trauma victims can often have issues in their personal and professional life as evidenced by reduced professional efficacy, increased emotional concerns, and physical concerns. The purpose of the author in this article is to provide an overview of job burnout, vicarious trauma, and a discussion about self-care responsibilities.

  11. Both Direct and Vicarious Experiences of Nature Affect Children's Willingness to Conserve Biodiversity.

    Science.gov (United States)

    Soga, Masashi; Gaston, Kevin J; Yamaura, Yuichi; Kurisu, Kiyo; Hanaki, Keisuke

    2016-05-25

    Children are becoming less likely to have direct contact with nature. This ongoing loss of human interactions with nature, the extinction of experience, is viewed as one of the most fundamental obstacles to addressing global environmental challenges. However, the consequences for biodiversity conservation have been examined very little. Here, we conducted a questionnaire survey of elementary schoolchildren and investigated effects of the frequency of direct (participating in nature-based activities) and vicarious experiences of nature (reading books or watching TV programs about nature and talking about nature with parents or friends) on their affective attitudes (individuals' emotional feelings) toward and willingness to conserve biodiversity. A total of 397 children participated in the surveys in Tokyo. Children's affective attitudes and willingness to conserve biodiversity were positively associated with the frequency of both direct and vicarious experiences of nature. Path analysis showed that effects of direct and vicarious experiences on children's willingness to conserve biodiversity were mediated by their affective attitudes. This study demonstrates that children who frequently experience nature are likely to develop greater emotional affinity to and support for protecting biodiversity. We suggest that children should be encouraged to experience nature and be provided with various types of these experiences.

  12. Onset of glaciation drove simultaneous vicariant isolation of Alpine insects in New Zealand.

    Science.gov (United States)

    McCulloch, Graham A; Wallis, Graham P; Waters, Jonathan M

    2010-07-01

    The origin of the New Zealand "beech gap," a low-diversity zone in the central South Island corresponding with a disjunction in the distribution of many taxa, has been the focus of biogeographical debate for many decades. Here, we use comparative phylogeographic analysis (COI; H3) of six alpine stonefly genera (116 individuals, 102 localities) to test a vicariant evolutionary hypothesis for the origin of this "biotic gap." We find strikingly similar phylogeographic patterns in all six genera, with the deepest genetic divergences always found between samples north and south of the beech gap. The magnitude of north-south genetic differentiation for COI is similar across all six genera (ranging from 0.074 to 0.091), with a test for simultaneous vicariance confirming that divergence is consistent with a single evolutionary event. The concordant cladogenesis detected across multiple taxa is consistent with vicariant isolation caused by the onset of glaciation in the late Pliocene. This study thus indicates an important cladogenetic role for glaciation, an abiotic evolutionary process that is more typically associated with loss of biodiversity.

  13. Employers' Statutory Vicarious Liability in Terms of the Protection of Personal Information Act

    Directory of Open Access Journals (Sweden)

    Daleen Millard

    2016-07-01

    Full Text Available A person whose privacy has been infringed upon through the unlawful, culpable processing of his or her personal information can sue the infringer's employer based on vicarious liability or institute action based on the Protection of Personal Information Act 4 of 2013 (POPI. Section 99(1 of POPI provides a person (a "data subject" whose privacy has been infringed upon with the right to institute a civil action against the responsible party. POPI defines the responsible party as the person who determines the purpose of and means for the processing of the personal information of data subjects. Although POPI does not equate a responsible party to an employer, the term "responsible party" is undoubtedly a synonym for "employer" in this context. By holding an employer accountable for its employees' unlawful processing of a data subject's personal information, POPI creates a form of statutory vicarious liability. Since the defences available to an employer at common law and developed by case law differ from the statutory defences available to an employer in terms of POPI, it is necessary to compare the impact this new statute has on employers. From a risk perspective, employers must be aware of the serious implications of POPI. The question that arises is whether the Act perhaps takes matters too far. This article takes a critical look at the statutory defences available to an employer in vindication of a vicarious liability action brought by a data subject in terms of section 99(1 of POPI. It compares the defences found in section 99(2 of POPI and the common-law defences available to an employer fending off a delictual claim founded on the doctrine of vicarious liability. To support the argument that the statutory vicarious liability created by POPI is too harsh, the defences contained in section 99(2 of POPI are further analogised with those available to an employer in terms of section 60(4 of the Employment Equity Act 55 of 1998 (EEA and other

  14. Calibration Plans for the Multi-angle Imaging SpectroRadiometer (MISR)

    Science.gov (United States)

    Bruegge, C. J.; Duval, V. G.; Chrien, N. L.; Diner, D. J.

    1993-01-01

    The EOS Multi-angle Imaging SpectroRadiometer (MISR) will study the ecology and climate of the Earth through acquisition of global multi-angle imagery. The MISR employs nine discrete cameras, each a push-broom imager. Of these, four point forward, four point aft and one views the nadir. Absolute radiometric calibration will be obtained pre-flight using high quantum efficiency (HQE) detectors and an integrating sphere source. After launch, instrument calibration will be provided using HQE detectors in conjunction with deployable diffuse calibration panels. The panels will be deployed at time intervals of one month and used to direct sunlight into the cameras, filling their fields-of-view and providing through-the-optics calibration. Additional techniques will be utilized to reduce systematic errors, and provide continuity as the methodology changes with time. For example, radiation-resistant photodiodes will also be used to monitor panel radiant exitance. These data will be acquired throughout the five-year mission, to maintain calibration in the latter years when it is expected that the HQE diodes will have degraded. During the mission, it is planned that the MISR will conduct semi-annual ground calibration campaigns, utilizing field measurements and higher resolution sensors (aboard aircraft or in-orbit platforms) to provide a check of the on-board hardware. These ground calibration campaigns are limited in number, but are believed to be the key to the long-term maintenance of MISR radiometric calibration.

  15. Calibration and testing of wide-field UV instruments

    Science.gov (United States)

    Frey, H. U.; Mende, S. B.; Loicq, J.; Habraken, S.

    2017-06-01

    As with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. In theory a ray tracing and characterization of each individual component of the optical system (mirrors, windows, and grating) should provide the transmission efficiency of the combined system. However, potentially unknown effects (contamination, misalignment, and measurement errors) can make the final error too large and unacceptable for most applications. Therefore, it is desirable to test and measure the optical properties of the whole system in vacuum and compare the overall response to the response of a calibrated photon detector. A proper comparison then allows the quantification of individual sources of uncertainty and ensures that the whole instrument performance is within acceptable tolerances or pinpoints which parts fail to meet requirements. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera, and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and passband calibration, spot size, imaging distortions, flatfield, and field of view determination.Plain Language SummaryAs with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera (WIC), and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and pass-band calibration

  16. A new radiometric unit of measure to characterize SWIR illumination

    Science.gov (United States)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  17. Radiometric method for the rapid detection of Leptospira organisms

    Energy Technology Data Exchange (ETDEWEB)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  18. Report of airborne radiometric and magnetic test survey

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.H.; Park, Y.S.; Woo, S.M. (Korean Inst. of Energy and Resources, Seoul (Republic of Korea))

    1982-12-01

    By the end of Oct. 1981, a complete set of GeoMetrics' air-borne radiometric and magnetic survey system was purchased by KIER using the ADB loan, and it took one week from Nov. 11 1981 to install the system on a Bell 206 B helicopter (HL 9102) owned by Asia Aeroservice Company. The test survey was flown over an area including Hongseong, Daecheon, Seosan and Manripo Sheets, from Nov. 19 to Dec. 14 1981. A Hongseong air-strip was used as the base.

  19. Stellar spectral flux calibration of auroral H-beta photometer signal and background channels

    Science.gov (United States)

    Jackel, Brian J.; Unick, Craig

    2017-01-01

    Observations of optical aurora typically require the operation of sensitive instruments at remote field sites. Absolute radiometric calibration of these devices is essential for quantitative comparison over time and with other measurements. In this study we present absolute calibration of a proton auroral photometer using star transits observed during regular data collection. This requires absolute flux spectra with sufficient resolution to account for structure in stellar Hβ absorption line profiles. Several flux spectral catalogs are combined and corrected for systematic differences. The resulting estimates of instrumental sensitivity are consistent with darkroom calibration to roughly 15%.

  20. Thermal-infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments

    Science.gov (United States)

    Sicard, Michael; Spyak, Paul R.; Brogniez, Gerard; Legrand, Michel; Abuhassan, Nader K.; Pietras, Christophe; Buis, Jean P.

    1999-02-01

    A four-band (8.2 to 9.2, 10.5 to 11.5, 11.5 to 12.5, and 8 to 14 micrometers ), prototype, thermal-IR radiometer, model CE 312 [CE 312 is the company model number. In previous papers, the CE 312 was called the CLIMAT (conveyable low-noise IR radiometer for measurements of atmosphere and ground-surface targets)], with a built-in radiance reference is been fabricated by CIMEL Electronique (Paris, France) for use as a field instrument. The instrument is briefly described, laboratory characterization is detailed, and its field measurements are compared with those from three other radiometers. The CE 312's main characteristics are linearity of better than 0.8%, field of view of 9.5 deg; noise- equivalent temperature difference of 0.06 to 0.2 K (depending on the band) for brightness temperatures of 0 to 75 degree(s)C; SNR greater than 1100 for the broadband and greater than 400 for the other bands for brightness temperatures between 10 and 80 degree(s)C; and repeatability of the measured radiance smaller than 0.35% after four field campaigns, corresponding to 0.2 K in terms of brightness temperature. Field measurements were conducted over different periods during 1996 at Jornada Experimental Range, New Mexico, Lunar Lake and Railroad Valley, Nevada, and Lake Tahoe, California. The CE 312 compares quite favorably with the other instruments; the brightness temperature at two different sites compared to within 0.3 K with two instruments. These measurements show that the CE 312 thermal-IR radiometer is very stable for ambient temperatures varying between 15 and 60 degree(s)C and that the availability of several filters in the thermal-IR region can help tremendously to improve the accuracy of the radiance determination.

  1. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, J.

    2014-12-01

    The Soil Moisture Active Passive (SMAP) mission is planned to launch on Jan 8, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there will be a 3 month instrument checkout period, followed by 6 months of level 1 (L1) calibration and validation. In this presentation, we will discuss the plans and preparations for the calibration and validation of L1 radar data from SMAP. At the start of the L1 cal/val period, we will validate the operation of the instrument and of the ground processing using tools that look at readily identifiable surface features such as coast lines and corner reflectors. Geometric biases will be fit and removed. Radiometric cross-calibration with PALSAR and Aquarius will also be performed using target regions in the Amazon rain forest selected for their stability and uniformity. As the L1 cal/val period progresses, the performance of the automated short and long term calibration modules in ground processing will be tracked and verified using data from stable reference targets such as the wind corrected ocean and selected areas of rain forest that have shown good temporal stability. The performance of the radio frequency interference (RFI) removal algorithm will be validated by processing data with the algorithm turned on and off, and using different parameter settings. Additional information on the extent of RFI will be obtained from a special RFI survey conducted early in the L1 cal/val period. Radar transmissions are turned off during the RFI survey, and receive only data are collected over a variety of operating frequencies. The model based Faraday rotation corrections will also be checked during the L1 cal/val by comparing the model Faraday rotation with the measured Faraday rotation obtained by the SMAP Radiometer. This work is supported by the SMAP project at the Jet

  2. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi......Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC......). It combines TR data with standard energy balance closure models for deriving a hybrid scheme that does not require parameterization of the surface (or stomatal) and aerodynamic conductances (gS and gB). STIC is formed by the simultaneous solution of four state equations and it uses TR as an additional data...... source for retrieving the “near surface” moisture availability (M) and the Priestley-Taylor coefficient (α). The performance of STIC is tested using high-temporal resolution TR observations collected from different international surface energy flux experiments in conjunction with corresponding net...

  3. Parallel relative radiometric normalisation for remote sensing image mosaics

    Science.gov (United States)

    Chen, Chong; Chen, Zhenjie; Li, Manchun; Liu, Yongxue; Cheng, Liang; Ren, Yibin

    2014-12-01

    Relative radiometric normalisation (RRN) is a vital step to achieve radiometric consistency among remote sensing images. Geo-analysis over large areas often involves mosaicking massive remote sensing images. Hence RRN becomes a data-intensive and computing-intensive task. This study implements a parallel RNN method based on the iteratively re-weighted multivariate alteration detection (IR-MAD) transformation and orthogonal regression. To parallelise the method of IR-MAD and orthogonal regression, there are two key problems: the normalisation path determination and the task dependence on normalisation coefficients calculation. In this paper, the reference image and normalisation paths are determined based on the shortest distance algorithm to reduce normalisation error. Formulas of orthogonal regression are acquired considering the effect of the normalisation path to reduce the task dependence on the calculation of coefficients. A master-slave parallel mode is proposed to implement the parallel method, and a task queue and a process queue are used for task scheduling. Experiments show that the parallel RRN method provides good normalisation results and favourable parallel speed-up, efficiency and scalability, which indicate that the parallel method can handle large volumes of remote sensing images efficiently.

  4. MTG infrared sounder detection chain: first radiometric test results

    Science.gov (United States)

    Dumestier, D.; Pistone, F.; Dartois, T.; Blazquez, E.

    2017-11-01

    Europe's next fleet of geostationary meteorological satellites, MeteoSat Third Generation, will introduce new functions in addition to continuity of high-resolution meteorological data. The atmosphere Infrared Sounder (IRS), as high -end instrument, is part of this challenging program. IRS principle is a Fourier Transform Interferometer, which allows recomposing atmospheric spectrum after infrared photons detection. Transmission spectrums will be used to support numerical weather prediction. IRS instrument is able to offer full disk coverage in one hour, an on-ground resolution of 4 by 4 km, in two spectral bands (MWIR: 1600 to 2175cm-1 and LWIR: 700 to 1210cm-1) with a spectral resolution of 0.6cm-1. Among critical technologies and processes, IRS detection chain shall offer outstanding characteristics in terms of radiometric performance like Signal to Noise Ratio (SNR), dynamic range and linearity. Selected detectors are HgCdTe two-dimensions arrays, cooled at 55 Kelvins, hybridized on snapshot silicon read-out circuit at 160x160 format. Video electronics present 16 bits resolution, and the whole detection chain (Detectors and electronics) permits to reach SNR between 2 000 and 10 000 as requested by the application. Radiometric onground test results performed on design representative detection chains are presented and are confirming the challenging phase A design choices.

  5. Radiometric measurement of differential metabolism of fatty acid by mycobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, E.E.; Kertcher, J.A.; Larson, S.M.; Tepper, B.S.; Wagner, H.N. Jr.

    1982-06-01

    An assay system has been developed based on automated radiometric quantification of /sup 14/CO2 produced through oxidation of (1-/sup 14/C) fatty acids by mycobacteria. Two stains of M. tuberculosis (H37Rv and Erdman) and one of M. bovis (BCG) in 7H9 medium (ADC) with 1.0 microCi of one of the fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic and linolenic) were studied. Results previously published on M. lepraemurium (Hawaiian) were also included for comparison. Both strains of M. tuberculosis had maximum /sup 14/CO2 production from hexanoic acid. Oxidation of butyric and avid oxidation of lauric acids were also found with the H37Rv strain but not with Erdman. In contrast, /sup 14/CO2 production by M. bovis was greatest from lauric and somewhat less from decanoic acid. M. lepraemurium showed increasing oxidation rates from myristic, decanoic and lauric acids. Assimilation studies of M. tuberculosis H37Rv confirmed that most of the oxidized substrates were converted into by-products with no change in those from which no oxidation was found. These data suggest that the radiometric measurement of differential fatty acid metabolism may provide a basis of strain identification of the genus Mycobacterium.

  6. Making SAR Data Accessible - ASF's ALOS PALSAR Radiometric Terrain Correction Project

    Science.gov (United States)

    Meyer, F. J.; Arko, S. A.; Gens, R.

    2015-12-01

    While SAR data have proven valuable for a wide range of geophysical research questions, so far, largely only the SAR-educated science communities have been able to fully exploit the information content of internationally available SAR archives. The main issues that have been preventing a more widespread utilization of SAR are related to (1) the diversity and complexity of SAR data formats, (2) the complexity of the processing flows needed to extract geophysical information from SAR, (3) the lack of standardization and automation of these processing flows, and (4) the often ignored geocoding procedures, leaving the data in image coordinate space. In order to improve upon this situation, ASF's radiometric terrain-correction (RTC) project is generating uniformly formatted and easily accessible value-added products from the ASF Distributed Active Archive Center's (DAAC) five-year archive of JAXA's ALOS PALSAR sensor. Specifically, the project applies geometric and radiometric corrections to SAR data to allow for an easy and direct combination of obliquely acquired SAR data with remote sensing imagery acquired in nadir observation geometries. Finally, the value-added data is provided to the user in the broadly accepted Geotiff format, in order to support the easy integration of SAR data into GIS environments. The goal of ASF's RTC project is to make SAR data more accessible and more attractive to the broader SAR applications community, especially to those users that currently have limited SAR expertise. Production of RTC products commenced October 2014 and will conclude late in 2015. As of July 2015, processing of 71% of ASF's ALOS PALSAR archive was completed. Adding to the utility of this dataset are recent changes to the data access policy that allow the full-resolution RTC products to be provided to the public, without restriction. In this paper we will introduce the processing flow that was developed for the RTC project and summarize the calibration and validation

  7. General-purpose configuration of radiometric instruments for measuring concentration profiles

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, P.; Wozniakova, B. (Ceskoslovenska Akademie Ved, Ostrava. Ustav Teorie Hutnickych Procesu); Drapala, J. (Vysoka Skola Banska, Ostrava (Czechoslovakia). Katedra Nezeleznych Kovu a Jaderne Metalurgie)

    1981-01-01

    The configuration of radiometric apparatuses for the automatic measuring of the concentration profile of active admixtures along the specimen applying the slot method and its three variants is described. A practical example is given of the adjustment of radiometric apparatuses. An equipment for automatic graphical recording of nuclear radiation spectra measured by a single-channel spectrometer is described.

  8. Universal calibration facility for VIS-TIR wide-angle videospectrometric airborne sensors

    Science.gov (United States)

    Oertel, Dieter; Morozova, Svetlana P.

    1994-06-01

    The European Union and DLR are funding a new 79-channel airborne imaging spectrometer: DAIS-7915, which is built by GER Corporation. Based on the requirements for ground calibration of the DAIS-7915, a Universal Calibration Facility (UCF) for VIS-TIR wide-angel videospectrometric airborne sensors has been developed at the DLR-Institute of Optoelectronic. The spectral coverage of the UCF is 0.4 - 14.5 micrometers . The UCF consists of the spectrometric-geometric calibration part (SCP), the relative diffuse radiometric source (RDRS), the thermal absolute calibration part (TACP) and the absolute radiometric calibration part (ARCP). The SCP, RDRS, and TACP can be used for laboratory calibration as well as for hangar calibration of the sensor installed in the aircraft. The ARCP consists of an integrating sphere with 165 cm diameter and an opening of 40 X 55 cm2. The sphere is intercalibrated by means of an absolute diffuse source (ADS) and a spectro- radiometer. The ADS has been recognized and admitted for application as a reference instrument for measuring the spectral radiance in the wavelength region of 0.4 - 2.5 micrometers .

  9. Calibrating ground-based microwave radiometers: Uncertainty and drifts

    Science.gov (United States)

    Küchler, N.; Turner, D. D.; Löhnert, U.; Crewell, S.

    2016-04-01

    The quality of microwave radiometer (MWR) calibrations, including both the absolute radiometric accuracy and the spectral consistency, determines the accuracy of geophysical retrievals. The Microwave Radiometer Calibration Experiment (MiRaCalE) was conducted to evaluate the performance of MWR calibration techniques, especially of the so-called Tipping Curve Calibrations (TCC) and Liquid Nitrogen Calibrations (LN2cal), by repeatedly calibrating a fourth-generation Humidity and Temperature Profiler (HATPRO-G4) that measures downwelling radiance between 20 GHz and 60 GHz. MiRaCalE revealed two major points to improve MWR calibrations: (i) the necessary repetition frequency for MWR calibration techniques to correct drifts, which ensures stable long-term measurements; and (ii) the spectral consistency of control measurements of a well known reference is useful to estimate calibration accuracy. Besides, we determined the accuracy of the HATPRO's liquid nitrogen-cooled blackbody's temperature. TCCs and LN2cals were found to agree within 0.5 K when observing the liquid nitrogen-cooled blackbody with a physical temperature of 77 K. This agreement of two different calibration techniques suggests that the brightness temperature of the LN2 cooled blackbody is accurate within at least 0.5 K, which is a significant reduction of the uncertainties that have been assumed to vary between 0.6 K and 1.5 K when calibrating the HATPRO-G4. The error propagation of both techniques was found to behave almost linearly, leading to maximum uncertainties of 0.7 K when observing a scene that is associated with a brightness temperature of 15 K.

  10. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    Science.gov (United States)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover

  11. Global biogeography of scaly tree ferns (Cyatheaceae): evidence for Gondwanan vicariance and limited transoceanic dispersal.

    Science.gov (United States)

    Korall, Petra; Pryer, Kathleen M

    2014-02-01

    Scaly tree ferns, Cyatheaceae, are a well-supported group of mostly tree-forming ferns found throughout the tropics, the subtropics and the south-temperate zone. Fossil evidence shows that the lineage originated in the Late Jurassic period. We reconstructed large-scale historical biogeographical patterns of Cyatheaceae and tested the hypothesis that some of the observed distribution patterns are in fact compatible, in time and space, with a vicariance scenario related to the break-up of Gondwana. Tropics, subtropics and south-temperate areas of the world. The historical biogeography of Cyatheaceae was analysed in a maximum likelihood framework using Lagrange. The 78 ingroup taxa are representative of the geographical distribution of the entire family. The phylogenies that served as a basis for the analyses were obtained by Bayesian inference analyses of mainly previously published DNA sequence data using MrBayes. Lineage divergence dates were estimated in a Bayesian Markov chain Monte Carlo framework using beast. Cyatheaceae originated in the Late Jurassic in either South America or Australasia. Following a range expansion, the ancestral distribution of the marginate-scaled clade included both these areas, whereas Sphaeropteris is reconstructed as having its origin only in Australasia. Within the marginate-scaled clade, reconstructions of early divergences are hampered by the unresolved relationships among the Alsophila , Cyathea and Gymnosphaera lineages. Nevertheless, it is clear that the occurrence of the Cyathea and Sphaeropteris lineages in South America may be related to vicariance, whereas transoceanic dispersal needs to be inferred for the range shifts seen in Alsophila and Gymnosphaera . The evolutionary history of Cyatheaceae involves both Gondwanan vicariance scenarios as well as long-distance dispersal events. The number of transoceanic dispersals reconstructed for the family is rather few when compared with other fern lineages. We suggest that a causal

  12. MODIS and SeaWIFS on-orbit lunar calibration

    Science.gov (United States)

    Sun, Jielun; Eplee, R.E.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.

    2008-01-01

    The Moon plays an important role in the radiometric stability monitoring of the NASA Earth Observing System's (EOS) remote sensors. The MODIS and SeaWIFS are two of the key instruments for NASA's EOS missions. The MODIS Protoflight Model (PFM) on-board the Terra spacecraft and the MODIS Flight Model 1 (FM1) on-board the Aqua spacecraft were launched on December 18, 1999 and May 4, 2002, respectively. They view the Moon through the Space View (SV) port approximately once a month to monitor the long-term radiometric stability of their Reflective Solar Bands (RSB). SeaWIFS was launched on-board the OrbView-2 spacecraft on August 1, 1997. The SeaWiFS lunar calibrations are obtained once a month at a nominal phase angle of 7??. The lunar irradiance observed by these instruments depends on the viewing geometry. The USGS photometric model of the Moon (the ROLO model) has been developed to provide the geometric corrections for the lunar observations. For MODIS, the lunar view responses with corrections for the viewing geometry are used to track the gain change for its reflective solar bands (RSB). They trend the system response degradation at the Angle Of Incidence (AOI) of sensor's SV port. With both the lunar observation and the on-board Solar Diffuser (SD) calibration, it is shown that the MODIS system response degradation is wavelength, mirror side, and AOI dependent. Time-dependent Response Versus Scan angle (RVS) Look-Up Tables (LUT) are applied in MODIS RSB calibration and lunar observations play a key role in RVS derivation. The corrections provided by the RVS in the Terra and Aqua MODIS data from the 412 nm band are as large as 16% and 13%, respectively. For SeaWIFS lunar calibrations, the spacecraft is pitched across the Moon so that the instrument views the Moon near nadir through the same optical path as it views the Earth. The SeaWiFS system gain changes for its eight bands are calibrated using the geometrically-corrected lunar observations. The radiometric

  13. Direct and vicarious violent victimization and juvenile delinquency: an application of general strain theory.

    Science.gov (United States)

    Lin, Wen-Hsu; Cochran, John K; Mieczkowski, Thomas

    2011-01-01

    Using a national probability sample of adolescents (12–17), this study applies general strain theory to how violent victimization, vicarious violent victimization, and dual violent victimization affect juvenile violent/property crime and drug use. In addition, the mediating effect and moderating effect of depression, low social control, and delinquent peer association on the victimization–delinquency relationship is also examined. Based on SEM analyses and contingency tables, the results indicate that all three types of violent victimization have significant and positive direct effects on violent/property crime and drug use. In addition, the expected mediating effects and moderating effects are also found. Limitations and future directions are discussed.

  14. Himawari-8/AHI latest performance of navigation and calibration

    Science.gov (United States)

    Tabata, Tasuku; Andou, Akiyoshi; Bessho, Kotaro; Date, Kenji; Dojo, Ryo; Hosaka, Keita; Mori, Nobutaka; Murata, Hidehiko; Nakayama, Ryuichiro; Okuyama, Arata; Takahashi, Masaya

    2016-05-01

    The new-generation Himawari-8 geostationary meteorological satellite of the Japan Meteorological Agency (JMA) started operation in July 2015 after the completion of in-orbit testing and checking of the overall system. Himawari-8 features the new Advanced Himawari Imager (AHI), which has 16 bands and double the spatial resolution of its MTSAT-series predecessor satellites [1]. Full-disk imagery is obtained every 10 minutes, and regional observation at 2.5-minute intervals is also conducted. These significant improvements are expected to bring unprecedented levels of performance in nowcasting services and short-range weather forecasting systems. To leverage the full potential of the advanced imager, high precision in navigation and radiometric calibration is essential. This is estimated in off-line processes such as pattern matching for navigation and the Global Space-based Inter-Calibration System (GSICS) for radiometric calibration. On 9 March 2016, JMA updated its ground processing system, including the image navigation and registration (INR) module, for further quality improvement. This update covered improvement of the band-to-band co-registration process for infrared bands, improvement of the resampling process, and implementation of a coherent noise reduction process. Results from the off-line processes showed that the update had improved Himawari Standard Data (HSD), which is Himawari-8/AHI L1B-equivalent data.

  15. On-board radiometric preprocessing for multispectral linear arrays /MLA/

    Science.gov (United States)

    Thompson, L. L.; Tracy, R. A.; Frankel, D. G.

    1979-01-01

    A program that was undertaken to design, fabricate, and test a real-time hardwired data preprocessor is described, which applies a calibration normalization to each detector in a 576-element linear photodiode array. Various calibration problems were uncovered, such as those (1) due to system noise in recording the calibration tables, or (2) due to thermal drift and (3) due to the original quantization process. It was determined that in this experiment, noise and thermal drift led to fixed errors in the normalization of responses on the order of + or - 10 counts, out of 255 counts for many of the detectors.

  16. The Characterization of Deep Convective Cloud Albedo as a Calibration Target Using MODIS Reflectances

    Science.gov (United States)

    Doelling, David R.; Hong, Gang; Morstad, Daniel; Bhatt, Rajendra; Gopalan, Arun; Xiong, Jack

    2010-01-01

    There are over 25 years of historical satellite data available to climate analysis. The historical satellite data needs to be well calibrated, especially in the visible, where there is no onboard calibration on operational satellites. The key to the vicarious calibration of historical satellites relies on invariant targets, such as the moon, Dome C, and deserts. Deep convective clouds (DCC) also show promise of being a stable invariant or predictable target viewable by all satellites, since they behave as solar diffusers. However DCC have not been well characterized for calibration. Ten years of well-calibrated MODIS is now available. DCC can easily be identified using IR thresholds, where the IR calibration can be traced to the onboard black-bodies. The natural variability of DCC albedo will be analyzed geographically and seasonally, especially difference of convection initiated over land or ocean. Functionality between particle size and ozone absorption with DCC albedo will be examined. Although DCC clouds are nearly Lambertion, the angular distribution of reflectances will be sampled and compared with theoretical models. Both Aqua and Terra MODIS DCC angular models will be compared for consistency. Normalizing angular geostationary DCC reflectances, which were calibrated against MODIS, with SCIAMACHY spectral reflectances and comparing them to MODIS DCC reflectances will inspect the usage of DCC albedos as an absolute calibration target.

  17. Social identity shapes social valuation: evidence from prosocial behavior and vicarious reward.

    Science.gov (United States)

    Hackel, Leor M; Zaki, Jamil; Van Bavel, Jay J

    2017-08-01

    People frequently engage in more prosocial behavior toward members of their own groups, as compared to other groups. Such group-based prosociality may reflect either strategic considerations concerning one's own future outcomes or intrinsic value placed on the outcomes of in-group members. In a functional magnetic resonance imaging experiment, we examined vicarious reward responses to witnessing the monetary gains of in-group and out-group members, as well as prosocial behavior towards both types of individuals. We found that individuals' investment in their group-a motivational component of social identification-tracked the intensity of their responses in ventral striatum to in-group (vs out-group) members' rewards, as well as their tendency towards group-based prosociality. Individuals with strong motivational investment in their group preferred rewards for an in-group member, whereas individuals with low investment preferred rewards for an out-group member. These findings suggest that the motivational importance of social identity-beyond mere similarity to group members-influences vicarious reward and prosocial behavior. More broadly, these findings support a theoretical framework in which salient social identities can influence neural representations of subjective value, and suggest that social preferences can best be understood by examining the identity contexts in which they unfold. © The Author (2017). Published by Oxford University Press.

  18. No experience required: Violent crime and anticipated, vicarious, and experienced racial discrimination.

    Science.gov (United States)

    Herda, Daniel; McCarthy, Bill

    2018-02-01

    There is a growing body of evidence linking racial discrimination and juvenile crime, and a number of theories explain this relationship. In this study, we draw on one popular approach, Agnew's general strain theory, and extend prior research by moving from a focus on experienced discrimination to consider two other forms, anticipated and vicarious discrimination. Using data on black, white, and Hispanic youth, from the Project on Human Development in Chicago Neighborhoods (PHDCN), we find that experienced, anticipated, and to a lesser extent, vicarious discrimination, significantly predict violent crime independent of a set of neighborhood, parental, and individual level controls, including prior violent offending. Additional analyses on the specific contexts of discrimination reveal that violence is associated with the anticipation of police discrimination. The effects tend to be larger for African American than Hispanic youth, but the differences are not statistically significant. These findings support the thesis that, like other strains, discrimination may not have to be experienced directly to influence offending. Copyright © 2017. Published by Elsevier Inc.

  19. Cross-Calibration of GF-1/WFV over a Desert Site Using Landsat-8/OLI Imagery and ZY-3/TLC Data

    Directory of Open Access Journals (Sweden)

    Aixia Yang

    2015-08-01

    Full Text Available The wide field of view (WFV is an optical imaging sensor on-board the Gao Fen 1 (GF-1. The WFV lacks an on-board calibrator, so on-orbit radiometric calibration is required. Zhong et al. proposed a method for cross-calibrating the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD that can be applied to the GF-1/WFV. However, the accuracy is limited because of the wider radiometric dynamic range and the higher spatial resolution of the GF-1/WFV. Therefore, Landsat-8 Operational Land Imager (OLI imagery with a radiometric resolution similar to that of the GF-1/WFV and DEM extracted from ZY-3 three-line array panchromatic camera (TLC with a higher spatial resolution were used. A calibration site with uniform surface material and a natural topographic variation was selected, and a model of this site’s bidirectional reflectance distribution function (BRDF was developed. The model has excellent agreement with the real situation, as shown by the comparison of the simulations to the actual OLI surface reflectance. Then, the model was used to calibrate the WFV. Compared with the TOA reflectance from synchronized Landsat-8/OLI images, all errors calculated with the calibration coefficients retrieved in this paper are less than 5%, much less than the errors calculated with the calibration coefficients given by the China Centre for Resource Satellite Data and Application (CRESDA.

  20. Atmospheric and Radiometric Correction Algorithms for the Multitemporal Assessment of Grasslands Productivity

    Directory of Open Access Journals (Sweden)

    Jesús A. Prieto-Amparan

    2018-02-01

    Full Text Available A key step in the processing of satellite imagery is the radiometric correction of images to account for reflectance that water vapor, atmospheric dust, and other atmospheric elements add to the images, causing imprecisions in variables of interest estimated at the earth’s surface level. That issue is important when performing spatiotemporal analyses to determine ecosystems’ productivity. In this study, three correction methods were applied to satellite images for the period 2010–2014. These methods were Atmospheric Correction for Flat Terrain 2 (ATCOR2, Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH, and Dark Object Substract 1 (DOS1. The images included 12 sub-scenes from the Landsat Thematic Mapper (TM and the Operational Land Imager (OLI sensors. The images corresponded to three Permanent Monitoring Sites (PMS of grasslands, ‘Teseachi’, ‘Eden’, and ‘El Sitio’, located in the state of Chihuahua, Mexico. After the corrections were applied to the images, they were evaluated in terms of their precision for biomass estimation. For that, biomass production was measured during the study period at the three PMS to calibrate production models developed with simple and multiple linear regression (SLR and MLR techniques. When the estimations were made with MLR, DOS1 obtained an R2 of 0.97 (p < 0.05 for 2012 and values greater than 0.70 (p < 0.05 during 2013–2014. The rest of the algorithms did not show significant results and DOS1, which is the simplest algorithm, resulted in the best biomass estimator. Thus, in the multitemporal analysis of grassland based on spectral information, it is not necessary to apply complex correction procedures. The maps of biomass production, elaborated from images corrected with DOS1, can be used as a reference point for the assessment of the grassland condition, as well as to determine the grazing capacity and thus the potential animal production in such ecosystems.

  1. Multispectral Radiometric Analysis of Façades to Detect Pathologies from Active and Passive Remote Sensing

    Directory of Open Access Journals (Sweden)

    Susana Del Pozo

    2016-01-01

    Full Text Available This paper presents a radiometric study to recognize pathologies in façades of historical buildings by using two different remote sensing technologies covering part of the visible and very near infrared spectrum (530–905 nm. Building materials deteriorate over the years due to different extrinsic and intrinsic agents, so assessing these affections in a non-invasive way is crucial to help preserve them since in many cases they are valuable and some have been declared monuments of cultural interest. For the investigation, passive and active remote acquisition systems were applied operating at different wavelengths. A 6-band Mini-MCA multispectral camera (530–801 nm and a FARO Focus3D terrestrial laser scanner (905 nm were used with the dual purpose of detecting different materials and damages on building façades as well as determining which acquisition system and spectral range is more suitable for this kind of studies. The laser scan points were used as base to create orthoimages, the input of the two different classification processes performed. The set of all orthoimages from both sensors was classified under supervision. Furthermore, orthoimages from each individual sensor were automatically classified to compare results from each sensor with the reference supervised classification. Higher overall accuracy with the FARO Focus3D, 74.39%, was obtained with respect to the Mini MCA6, 66.04%. Finally, after applying the radiometric calibration, a minimum improvement of 24% in the image classification results was obtained in terms of overall accuracy.

  2. Hybrid E-Learning Tool TransLearning: Video Storytelling to Foster Vicarious Learning within Multi-Stakeholder Collaboration Networks

    Science.gov (United States)

    van der Meij, Marjoleine G.; Kupper, Frank; Beers, Pieter J.; Broerse, Jacqueline E. W.

    2016-01-01

    E-learning and storytelling approaches can support informal vicarious learning within geographically widely distributed multi-stakeholder collaboration networks. This case study evaluates hybrid e-learning and video-storytelling approach "TransLearning" by investigation into how its storytelling e-tool supported informal vicarious…

  3. Learning from the Pros: Influence of Web-Based Expert Commentary on Vicarious Learning about Financial Markets

    Science.gov (United States)

    Ford, Matthew W.; Kent, Daniel W.; Devoto, Steven

    2007-01-01

    Web-based financial commentary, in which experts routinely express market-related thought processes, is proposed as a means for college students to learn vicariously about financial markets. Undergraduate business school students from a regional university were exposed to expert market commentary from a single financial Web site for a 6-week…

  4. Vicarious Trauma: An Exploratory Study of the Impact of Providing Sexual Abuse Treatment on Clinicians' Trust and Intimacy

    Science.gov (United States)

    VanDeusen, Karen M.; Way, Ineke

    2006-01-01

    This study examined vicarious trauma effects in male and female clinicians who treat sexual abuse survivors (n = 111) and sexual offenders (n = 272). The national survey was conducted using a random sample of clinical members of two professional organizations. Analyses tested the relationships between demographic variables, maltreatment history,…

  5. The Moderating Effects of Peer and Parental Support on the Relationship Between Vicarious Victimization and Substance Use.

    Science.gov (United States)

    Miller, Riane N; Fagan, Abigail A; Wright, Emily M

    2014-10-01

    General strain theory (GST) hypothesizes that youth are more likely to engage in delinquency when they experience vicarious victimization, defined as knowing about or witnessing violence perpetrated against others, but that this relationship may be attenuated for those who receive social support from significant others. Based on prospective data from youth aged 8 to 17 participating in the Project on Human Development in Chicago Neighborhoods (PHDCN), this article found mixed support for these hypotheses. Controlling for prior involvement in delinquency, as well as other risk and protective factors, adolescents who reported more vicarious victimization had an increased likelihood of alcohol use in the short term, but not the long term, and victimization was not related to tobacco or marijuana use. Peer support did not moderate the relationship between vicarious victimization and substance use, but family support did. In contrast to strain theory's predictions, the relationship between vicarious victimization and substance use was stronger for those who had higher compared with lower levels of family support. Implications of these findings for strain theory and future research are discussed.

  6. Susceptibility testing of filamentous fungi to amphotericin B by a rapid radiometric method

    Energy Technology Data Exchange (ETDEWEB)

    Merz, W.G.; Fay, D.; Thumar, B.; Dixon, D.

    1984-01-01

    A rapid, radiometric method was developed to determine the susceptibility of filamentous fungi to amphotericin B. The rapid, radiometric method depended on measurement of the inhibition of /sup 24/CO/sub 2/ production in the presence of amphotericin B. Thirty isolates of filamentous fungi were tested by the rapid, radiometric method and a reference agar dilution method. There was 93% agreement between the two methods when an 80% or greater decrease in CO/sub 2/ production was used to calculate the minimal inhibitory concentration with the rapid, radiometric method. Minimal inhibitory concentrations, based on 80% decrease of CO/sub 2/ production, were achieved within 24 h of incubation with all of the fungi tested.

  7. Primary calibrations of radionuclide solutions and sources for the EML quality assessment program

    Energy Technology Data Exchange (ETDEWEB)

    Fisenne, I.M. [Dept. of Energy, New York, NY (United States)

    1993-12-31

    The quality assurance procedures established for the operation of the U.S. Department of Energy`s Environmental Measurements Laboratory (DOE-EML`s) Quality Assessment Program (QAP) are essentially the same as those that are in effect for any EML program involving radiometric measurements. All these programs have at their core the use of radionuclide standards for their instrument calibration. This paper focuses on EML`s approach to the acquisition, calibration and application of a wide range of radionuclide sources that are required to meet its programmatic needs.

  8. Radiometric Dating for Novice Learners: Visualizing, Modeling, and Simulating via Animated Spreadsheets

    Directory of Open Access Journals (Sweden)

    Scott A Sinex

    2010-10-01

    Full Text Available Radiometric dating is introduced to beginning students in a real-world fashion through animated spreadsheets. Students discover the behavior of the parent-daughter relationship in radioactive decay, how the parent-daughter ratio yields the age, and a number of assumptions involved in radiometric dating. After exploring the concepts, and with some elementary mathematical modeling skills, students analyze data from the literature.

  9. Vicarious trauma, secondary traumatic stress or simply burnout? Effect of trauma therapy on mental health professionals.

    Science.gov (United States)

    Devilly, Grant J; Wright, Renee; Varker, Tracey

    2009-04-01

    The aim of the present study was to perform an assessment for secondary traumatic stress (STS), vicarious trauma (VT) and workplace burnout for Australian mental health professionals involved in clinical practice. Recruited directly by mail, randomly selected participants were invited to submit a questionnaire by post or online. Of the 480 participants contacted, 152 mental health professionals completed the questionnaire, which contained measures of STS, VT and burnout. Exposure to patients' traumatic material did not affect STS, VT or burnout, contradicting the theory of the originators of STS and VT. Rather, it was found that work-related stressors best predicted therapist distress. These findings have significant implications for the direction of research and theory development in traumatic stress studies, calling into question the existence of secondary trauma-related phenomena and enterprises aimed at treating the consultants.

  10. Interplay between hippocampal sharp wave ripple events and vicarious trial and error behaviors in decision making

    Science.gov (United States)

    Papale, Andrew E.; Zielinski, Mark C.; Frank, Loren; Jadhav, Shantanu P.; Redish, A. David

    2016-01-01

    Summary Current theories posit that memories encoded during experiences are subsequently consolidated into longer-term storage. Hippocampal sharp-wave ripple (SWR) events have been linked to this consolidation process during sleep, but SWRs also occur during awake immobility, where their role remains unclear. We report that awake SWR rates at the reward site are inversely related to the prevalence of vicarious trial and error (VTE) behaviors, thought to be involved in deliberation processes. SWR rates were diminished immediately after VTE behaviors and an increase in the rate of SWR events at the reward site predicted a decrease in subsequent VTE behaviors at the choice point. Furthermore, SWR disruptions increased VTE behaviors. These results suggest an inverse relationship between SWRs and VTE behaviors, and suggest that awake SWRs and associated planning and memory consolidation mechanisms are engaged specifically in the context of higher levels of behavioral certainty. PMID:27866796

  11. Using modeling and vicarious reinforcement to produce more positive attitudes toward mental health treatment.

    Science.gov (United States)

    Buckley, Gary I; Malouff, John M

    2005-05-01

    In this study, the authors evaluated the effectiveness of a video, developed for this study and using principles of cognitive learning theory, to produce positive attitudinal change toward mental health treatment. The participants were 35 men and 45 women who were randomly assigned to watch either an experimental video, which included 3 positive 1st-person accounts of psychotherapy or a control video that focused on the psychological construct of self. Pre-intervention, post-intervention, and 2-week follow-up levels of attitude toward mental health treatment were measured using the Attitude Toward Seeking Professional Help Scale (E. H. Fischer & J. L. Turner, 1970). The experimental video group showed a significantly greater increase in positive attitude than did the control group. These results support the effectiveness of using the vicarious reinforcement elements of cognitive learning theory as a basis for changing attitudes toward mental health treatment.

  12. Stimulus fear-relevance and the vicarious learning pathway to childhood fears.

    Science.gov (United States)

    Askew, Chris; Dunne, Güler; Özdil, Zehra; Reynolds, Gemma; Field, Andy P

    2013-10-01

    Enhanced fear learning for fear-relevant stimuli has been demonstrated in procedures with adults in the laboratory. Three experiments investigated the effect of stimulus fear-relevance on vicarious fear learning in children (aged 6-11 years). Pictures of stimuli with different levels of fear-relevance (flowers, caterpillars, snakes, worms, and Australian marsupials) were presented alone or together with scared faces. In line with previous studies, children's fear beliefs and avoidance preferences increased for stimuli they had seen with scared faces. However, in contrast to evidence with adults, learning was mostly similar for all stimulus types irrespective of fear-relevance. The results support a proposal that stimulus preparedness is bypassed when children observationally learn threat-related information from adults.

  13. Synthesis Polarimetry Calibration

    Science.gov (United States)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  14. Investigation of Aerodynamic and Aerodynamic and Radiometric Land Surface Temperatures

    Science.gov (United States)

    Crago, Richard D.; Friedl, Mark; Kustas, William; Wang, Ye-Qiao

    2003-01-01

    The overall goal of the project was to reconcile the difference between T(sub s,r) and T(sub aero), while maintaining consistency within models and with theory and data. The project involved collaboration between researchers at Bucknell University, Boston University, University of mode Island, and the USDNARS Hydrology Laboratory. This report focuses on the work done at Bucknell, which used an analytical continuous-source flux model developed by Crago (1998), based on work by Brutsaert and Sugita (1996) to generate fluxes at all levels of the canopy. Named ALARM [Analytical Land- Atmosphere-Radiometer Model] by Suleiman and Crago (2002), the model assumes the foliage has an exponential vertical temperature profile. The same profile is felt by the within-canopy turbulence and 'seen" by a radiometer viewing the surface from any zenith view angle. ALARM converts radiometric surface temperatures taken from any view angle into a clearly-defined version of Taero called the equivalent isothermal surface temperature T(sub s,j), and then calculates the sensible heat flux H using Monin-Obukhov similarity theory. This allows remotely sensed Ts,r measurements to be used to produce high quality sensible and latent heat flux estimates, or to validate or update the surface temperature produced by SVATs in climate or mesoscale models.

  15. Laser photothermal radiometric instrument for industrial steel hardness inspection

    Science.gov (United States)

    Guo, X.; Sivagurunathan, K.; Pawlak, M.; Garcia, J.; Mandelis, A.; Giunta, S.; Milletari, S.; Bawa, S.

    2010-03-01

    To meet the industrial demand for on-line steel hardness inspection and quality control, a non-contact, non-destructive laser photothermal radiometric instrument (HD-PTR) was developed. The instrument is equipped with a non-liquid-nitrogen-cooled HgCdZnTe (MCZT) detector, a National Instruments data acquisition card with a Dynamic System Analysis (DSA) module, and control software. A series of industrial steel samples which included automotive screws and aircraft gears (flat or curvilinear) were examined. The effective hardness case depths of these samples ranged from 0.21 mm to 1.78 mm. The results demonstrated that three measurement parameters (metrics) can be extracted when using a fast swept-sine photothermal method. These parameters include the phase minimum (or peak) frequency, fmin, the half width, W, and the area, S. It was found that they are complementary for evaluating widely different ranges of hardness case depths. fminis most suitable for large case depths, and W and S for shallower case depths.

  16. Laser photothermal radiometric instrument for industrial steel hardness inspection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X; Sivagurunathan, K; Pawlak, M; Garcia, J; Mandelis, A [Center for Advanced Diffusion-Wave Technologies, Department of MIE, University Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Giunta, S; Milletari, S [Industrial Technologies Deparment of Avio S.p.A., Via I Maggio 99, 10040 Rivalta di Torino (Italy); Bawa, S, E-mail: guox@mie.utoronto.c [Metex Heat Treatment Ltd., 225 Wilkinson Road, Brampton, ON L6T 4M2 (Canada)

    2010-03-01

    To meet the industrial demand for on-line steel hardness inspection and quality control, a non-contact, non-destructive laser photothermal radiometric instrument (HD-PTR) was developed. The instrument is equipped with a non-liquid-nitrogen-cooled HgCdZnTe (MCZT) detector, a National Instruments data acquisition card with a Dynamic System Analysis (DSA) module, and control software. A series of industrial steel samples which included automotive screws and aircraft gears (flat or curvilinear) were examined. The effective hardness case depths of these samples ranged from 0.21 mm to 1.78 mm. The results demonstrated that three measurement parameters (metrics) can be extracted when using a fast swept-sine photothermal method. These parameters include the phase minimum (or peak) frequency, f{sub min}, the half width, W, and the area, S. It was found that they are complementary for evaluating widely different ranges of hardness case depths. f{sub min}is most suitable for large case depths, and W and S for shallower case depths.

  17. Radiometric prescreen for antitumor activity with Saccharomyces cerevisiae mutant strain.

    Science.gov (United States)

    Speedie, M K; Fique, D V; Blomster, R N

    1980-07-01

    After modification, a technique for radiometrically measuring bacterial growth has been applied to a mutant strain of Saccharomyces cerevisiae. The assay is based on inhibition of 14CO2 release from [14C]glucose, which provides an extremely sensitive measure of cellular respiratory activity and growth. The criterion for antitumor activity is the differential inhibition of wild-type and mutant (distorted cell membrane) strains of the yeast. The system was optimized for medium, time of incubation, temperature, and size of inoculum. Known antitumor agents, including bleomycin, actinomycin D, adriamycin, and ellipticine were tested in the system, and differential inhibition was observed. Vincristine showed no inhibitory effects at the concentrations tried. The sensitivity for 20% inhibition ranged from 0.8 micrograms of adriamycin per ml to 0.14 mg of ellipticine per ml. Antifungal agents such as amphotericin B exhibited no differential inhibition. Antibacterial agents were inactive. This method may provide a rapid, sensitive, in vitro quantitative assay for antitumor agents which could be applied to a variety of assay needs and which can be run with facilities and equipment available in most laboratories.

  18. Not My Problem: Vicarious Conflict Adaptation with Human and Virtual Co-Actors

    Directory of Open Access Journals (Sweden)

    Michiel M. Spapé

    2016-04-01

    Full Text Available The Simon effect refers to an incompatibility between stimulus and response locations resulting in a conflict situation and, consequently, slower responses. Like other conflict effects, it is commonly reduced after repetitions, suggesting an executive control ability, which flexibly rewires cognitive processing and adapts to conflict. Interestingly, conflict is not necessarily individually defined: the Social Simon effect refers to a scenario where two people who share a task show a conflict effect where a single person does not. Recent studies showed these observations might converge into what could be called vicarious conflict adaptation, with evidence indicating that observing someone else’s conflict may subsequently reduce one’s own. While plausible, there is reason for doubt: both the social aspect of the Simon Effect, and the degree to which executive control accounts for the conflict adaptation effect, have become foci of debate in recent studies. Here, we present two experiments that were designed to test the social dimension of the effect by varying the social relationship between the actor and the co-actor. In Experiment 1, participants performed a conflict task with a virtual co-actor, while the actor-observer relationship was manipulated as a function of the similarity between response modalities. In Experiment 2, the same task was performed both with a virtual and with a human co-actor, while heart-rate measurements were taken to measure the impact of observed conflict on autonomous activity. While both experiments replicated the interpersonal conflict adaptation effects, neither showed evidence of the critical social dimension. We consider the findings as demonstrating that vicarious conflict adaptation does not rely on the social relationship between the actor and co-actor.

  19. Shortwave Radiometer Calibration Methods Comparison and Resulting Solar Irradiance Measurement Differences: A User Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-11-21

    Banks financing solar energy projects require assurance that these systems will produce the energy predicted. Furthermore, utility planners and grid system operators need to understand the impact of the variable solar resource on solar energy conversion system performance. Accurate solar radiation data sets reduce the expense associated with mitigating performance risk and assist in understanding the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methods provided by radiometric calibration service providers, such as NREL and manufacturers of radiometers, on the resulting calibration responsivity. Some of these radiometers are calibrated indoors and some outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides the outdoor calibration responsivity of pyranometers and pyrheliometers at 45 degree solar zenith angle, and as a function of solar zenith angle determined by clear-sky comparisons with reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison between the test radiometer under calibration and a reference radiometer of the same type. In both methods, the reference radiometer calibrations are traceable to the World Radiometric Reference (WRR). These

  20. The Preflight Calibration of the Thermal Infrared Sensor (TIRS) on the Landsat Data Continuity Mission

    Science.gov (United States)

    Smith, Ramsey; Reuter, Dennis; Irons, James; Lunsford, Allen; Montanero, Matthew; Tesfaye, Zelalem; Wenny, Brian; Thome, Kurtis

    2011-01-01

    The preflight calibration testing of TIRS evaluates the performance of the instrument at the component, subsystem and system level, The overall objective is to provide an instrument that is well calibrated and well characterized with specification compliant data that will ensure the data continuity of Landsat from the previous missions to the LDCM, The TIRS flight build unit and the flight instrument were assessed through a series of calibration tests at NASA Goddard Space Flight Center. Instrument-level requirements played a strong role in defining the test equipment and procedures used for the calibration in the thermal/vacuum chamber. The calibration ground support equipment (CGSE), manufactured by MEI and ATK Corporation, was used to measure the optical, radiometric and geometric characteristics of TIRS, The CGSE operates in three test configurations: GeoRad (geometric, radiometric and spatial), flood source and spectral, TIRS was evaluated though the following tests: bright target recovery, radiometry, spectral response, spatial shape, scatter, stray light, focus, and uniformity, Data were obtained for the instrument and various subsystems under conditions simulating those on orbit In the spectral configuration, a monochromator system with a blackbody source is used for in-band and out-of-band relative spectral response characterization, In the flood source configuration the entire focal plane array is illuminated simultaneously to investigate pixel-to-pixel uniformity and dead or inoperable pixels, The remaining tests were executed in the GeoRad configuration and use a NIST calibrated cavity blackbody source, The NIST calibration is transferred to the TIRS sensor and to the blackbody source on-board TIRS, The onboard calibrator will be the primary calibration source for the TIRS sensor on orbit.

  1. Development of a high-performance spectral radiometer for EO calibration applications

    Science.gov (United States)

    Matis, Gregory; Bryant, Paul; James, Jay B.; McHugh, Steve

    2004-08-01

    Santa Barbara Infrared, Inc (SBIR) has developed a dual-band infrared spectroradiometer for highly accurate radiometric calibration of electro-optical (EO) test stations, light sources, and optical surfaces. The "RAD-9000" design covers the 3-5 mm and 8-12 mm spectral bands, provides thermal sensitivity of better than 40 mK, supports object temperatures from 278-373 K, and delivers better than 2% spectral resolution (Dl/l). The RAD-9000 features computer-controlled operation, an intuitive graphical user interface (GUI), motorized focus adjustment, VIS-CCD sighting/alignment capability, less than 2 mrad detector IFOV, and an internal ambient reference for background subtraction and enhanced stability. In addition to high-performance relative radiometry, the RAD-9000 offers a high degree of absolute radiometric accuracy by utilizing a dedicated radiometric reference module. The reference module incorporates two 8-inch, variable temperature, high-emissivity extended sources to provide a stable, accurate absolute radiometric reference external to the main optics.

  2. Comparison of the Cross-calibration Methods between Image-based and RTM-BRDF for GF-1 Images

    Directory of Open Access Journals (Sweden)

    LI Juan

    2017-07-01

    Full Text Available Four wide-field-of-view (WFV instruments are on board the Gaofen-1 (or GF-1 satellite, providing a combined swath of ~800 km. Before appling to quantitative remote sensing, precision radiometric calibration is needed. Currently, there are two cross-calibration methods. One is the traditional cross-calibration method (image-based, the other is based on radiative transfer model and bidirectional reflectance distribution function(RTM-BRDF. In this study, the two methods were used to cross-calibrate the WFVs of GF-1, and the comparisons were made at the same time. The verification based on satellite data and in situ measurements have shown that, for the two approximately nadir imaging camera WFV2 and WFV3, Image-based method could get higher precision radiometric calibration coefficients, while for two non-nadir imaging cameras WFV1 and WFV4, high precision calibration coefficients would be obtained by the RTM-BRDF method. Finally, the calibration coefficients of GF-1 was derived by the combination of the two methods.

  3. Phylogeography of the common vampire bat (Desmodus rotundus): marked population structure, Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers

    National Research Council Canada - National Science Library

    Martins, Felipe M; Templeton, Alan R; Pavan, Ana C O; Kohlbach, Beatriz C; Morgante, João S

    2009-01-01

    The common vampire bat Desmodus rotundus is an excellent model organism for studying ecological vicariance in the Neotropics due to its broad geographic range and its preference for forested areas as roosting sites...

  4. Effects over time of self-reported direct and vicarious racial discrimination on depressive symptoms and loneliness among Australian school students

    National Research Council Canada - National Science Library

    Priest, Naomi; Perry, Ryan; Ferdinand, Angeline; Kelaher, Margaret; Paradies, Yin

    2017-01-01

    ... health and development over time. This study examines associations between self-reported direct and vicarious racial discrimination experiences and loneliness and depressive symptoms over time among Australian school students...

  5. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  6. Vicarious Traumatisation in Practitioners Who Work with Adult Survivors of Sexual Violence in Child Sexual Abuse: Literature Review and Directions for Future Research

    OpenAIRE

    Choularia, Zoe; Hutchison, Craig; Karatzias, Thanos

    2009-01-01

    Primary objective: The authors sought to summarise and evaluate evidence regarding vicarious traumatisation (VT) in practitioners working with adult survivors of sexual violence and/or child sexual abuse (CSA). Methods and selection criteria: Relevant publications were identified from systematic literature searches of PubMed and PsycINFO. Studies were selected for inclusion if they examined vicarious traumatisation resulting from sexual violence and/or CSA work and were published in English b...

  7. Experimental methods of indoor millimeter-wave radiometric imaging for personnel concealed contraband detection

    Science.gov (United States)

    Hu, Taiyang; Xiao, Zelong; Li, Hao; Lv, Rongchuan; Lu, Xuan

    2014-11-01

    The increasingly emerging terrorism attacks and violence crimes around the world have posed severe threats to public security, so carrying out relevant research on advanced experimental methods of personnel concealed contraband detection is crucial and meaningful. All of the advantages of imaging covertly, avoidance of interference with other systems, intrinsic property of being safe to persons under screening , and the superior ability of imaging through natural or manmade obscurants, have significantly combined to enable millimeter-wave (MMW) radiometric imaging to offer great potential in personnel concealed contraband detection. Based upon the current research status of MMW radiometric imaging and urgent demands of personnel security screening, this paper mainly focuses on the experimental methods of indoor MMW radiometric imaging. The reverse radiation noise resulting from super-heterodyne receivers seriously affects the image experiments carried out at short range, so both the generation mechanism and reducing methods of this noise are investigated. Then, the benefit of sky illumination no longer exists for the indoor radiometric imaging, and this leads to the decrease in radiometric temperature contrast between target and background. In order to enhance the radiometric temperature contrast for improving indoor imaging performance, the noise illumination technique is adopted in the indoor imaging scenario. In addition, the speed and accuracy of concealed contraband detection from acquired MMW radiometric images are usually restricted to the deficiencies in traditional artificial interpretation by security inspectors, thus an automatic recognition and location algorithm by integrating improved Fuzzy C-means clustering with moment invariants is put forward. A series of original results are also presented to demonstrate the significance and validity of these methods.

  8. From fan to fat? Vicarious losing increases unhealthy eating, but self-affirmation is an effective remedy.

    Science.gov (United States)

    Cornil, Yann; Chandon, Pierre

    2013-10-01

    Using archival and experimental data, we showed that vicarious defeats experienced by fans when their favorite football team loses lead them to consume less healthy food. On the Mondays following a Sunday National Football League (NFL) game, saturated-fat and food-calorie intake increase significantly in cities with losing teams, decrease in cities with winning teams, and remain at their usual levels in comparable cities without an NFL team or with an NFL team that did not play. These effects are greater in cities with the most committed fans, when the opponents are more evenly matched, and when the defeats are narrow. We found similar results when measuring the actual or intended food consumption of French soccer fans who had previously been asked to write about or watch highlights from victories or defeats of soccer teams. However, these unhealthy consequences of vicarious defeats disappear when supporters spontaneously self-affirm or are given the opportunity to do so.

  9. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  10. The Moderating Effects of Peer and Parental Support on the Relationship Between Vicarious Victimization and Substance Use

    OpenAIRE

    Miller, Riane N.; Fagan, Abigail A.; Emily M. Wright

    2014-01-01

    General strain theory (GST) hypothesizes that youth are more likely to engage in delinquency when they experience vicarious victimization, defined as knowing about or witnessing violence perpetrated against others, but that this relationship may be attenuated for those who receive social support from significant others. Based on prospective data from youth aged 8 to 17 participating in the Project on Human Development in Chicago Neighborhoods (PHDCN), this article found mixed support for thes...

  11. Efficacy of written modeling and vicarious reinforcement in increasing use of problem-solving methods by distressed individuals.

    Science.gov (United States)

    Coates, Celia; Malouff, John M; Rooke, Sally E

    2008-07-01

    The authors evaluated an application of social cognitive theory principles intended to increase adherence to a problem-solving intervention. The study included 132 adult volunteers who wanted to reduce their distress levels. All participants received group training in problem-solving methods. Before attempting to solve at least 1 distressing problem in their lives over the next 3 weeks, participants were randomly assigned to either (a) a modeling with vicarious reinforcement condition in which they received 3 personal anecdotes written by individuals who had successfully applied problem-solving methods to a real problem or (b) a control condition in which they received a fact sheet about problem solving. Word counts of problem-solving writing, self-reports of adherence, and observer ratings of adherence showed that participants in the vicarious reinforcement condition demonstrated significantly higher adherence than did those in the control condition. These results provide support for the effectiveness of symbolic modeling and vicarious reinforcement in increasing adherence to problem-solving methods by individuals who want to decrease their distress.

  12. The impacts of vicarious illness experience on response to gain- versus loss-framed breast cancer screening (BCS) messages.

    Science.gov (United States)

    Kim, Hyo Jung

    2014-01-01

    Although vicarious experience with certain illnesses has been found to be influential on people's illness perceptions and related behaviors, the concept of vicarious experience has been understudied in health communication research. This study aims to ground possible effects of vicarious illness experience (VIE) into theory, specifically concerning the developments in gain versus loss framing literature. An experiment using 154 African American participants (mean age = 46 years) found that participants who had close women affected by breast cancer and those who had no close women affected by breast cancer responded to gain- versus loss-framed breast cancer screening (BCS) messages differently. Compared to the loss frame, the gain frame was more effective for participants with VIE in increasing their favorable attitudes toward BCS, BCS recommendation intentions, and memory of the BCS message. In contrast, when compared to the gain frame, the loss frame was more effective for those without VIE in increasing their cognitive elaboration of the BCS message. The findings suggest the strategic potential of VIE in developing health interventions, and they also provide practical implications for health communication practitioners into how to strategically use gain versus loss framing in accordance with their target publics.

  13. Using the Sonoran Desert test site to monitor the long-term radiometric stability of the Landsat TM/ETM+ and Terra MODIS sensors

    Science.gov (United States)

    Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.

    2009-08-01

    Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented.

  14. Using the Sonoran Desert test site to monitor the long-term radiometric stability of the Landsat TM/ETM+ and Terra MODIS sensors

    Science.gov (United States)

    Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.

    2009-01-01

    Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.

  15. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.

    Science.gov (United States)

    Albéri, Matteo; Baldoncini, Marica; Bottardi, Carlo; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia; Mantovani, Fabio

    2017-08-16

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35-2194) m altitude range. At low altitudes (H barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%.

  16. Comparison of the Calibration Algorithms and SI Traceability of MODIS, VIIRS, GOES, and GOES-R ABI Sensors

    Directory of Open Access Journals (Sweden)

    Raju Datla

    2016-02-01

    Full Text Available The radiometric calibration equations for the thermal emissive bands (TEB and the reflective solar bands (RSB measurements of the earth scenes by the polar satellite sensors, (Terra and Aqua MODIS and Suomi NPP (VIIRS, and geostationary sensors, GOES Imager and the GOES-R Advanced Baseline Imager (ABI are analyzed towards calibration algorithm harmonization on the basis of SI traceability which is one of the goals of the NOAA National Calibration Center (NCC. One of the overarching goals of NCC is to provide knowledge base on the NOAA operational satellite sensors and recommend best practices for achieving SI traceability for the radiance measurements on-orbit. As such, the calibration methodologies of these satellite optical sensors are reviewed in light of the recommended practice for radiometric calibration at the National Institute of Standards and Technology (NIST. The equivalence of some of the spectral bands in these sensors for their end products is presented. The operational and calibration features of the sensors for on-orbit observation of radiance are also compared in tabular form. This review is also to serve as a quick cross reference to researchers and analysts on how the observed signals from these sensors in space are converted to radiances.

  17. Site Calibration, FGW

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...

  18. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration

    Science.gov (United States)

    Stone, T.C.; Kieffer, H.H.; Barnes, W.L.; Butler, J.J.

    2004-01-01

    A system to provide radiometric calibration of remote sensing imaging instruments on-orbit using the Moon has been developed by the US Geological Survey RObotic Lunar Observatory (ROLO) project. ROLO has developed a model for lunar irradiance which treats the primary geometric variables of phase and libration explicitly. The model fits hundreds of data points in each of 23 VNIR and 9 SWIR bands; input data are derived from lunar radiance images acquired by the project's on-site telescopes, calibrated to exoatmospheric radiance and converted to disk-equivalent reflectance. Experimental uncertainties are tracked through all stages of the data processing and modeling. Model fit residuals are ???1% in each band over the full range of observed phase and libration angles. Application of ROLO lunar calibration to SeaWiFS has demonstrated the capability for long-term instrument response trending with precision approaching 0.1% per year. Current work involves assessing the error in absolute responsivity and relative spectral response of the ROLO imaging systems, and propagation of error through the data reduction and modeling software systems with the goal of reducing the uncertainty in the absolute scale, now estimated at 5-10%. This level is similar to the scatter seen in ROLO lunar irradiance comparisons of multiple spacecraft instruments that have viewed the Moon. A field calibration campaign involving NASA and NIST has been initiated that ties the ROLO lunar measurements to the NIST (SI) radiometric scale.

  19. AERONET-OC: Strengths and Weaknesses of a Network for the Validation of Satellite Coastal Radiometric Products

    Science.gov (United States)

    Zibordi, Giuseppe; Holben, Brent; Slutsker, Ilya; Giles, David; D'Alimonte, Davide; Melin, Frederic; Berthon, Jean-Francois; Vandemark, Doug; Feng, Hui; Schuster, Gregory; hide

    2008-01-01

    The Ocean Color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer systems deployed on offshore fixed platforms. The ultimate purpose of AERONET-OC is the production of standardized measurements performed at different sites with identical measuring systems and protocols, calibrated using a single reference source and method, and processed with the same code. The AERONET-OC primary data product is the normalized water leaving radiance determined at center-wavelengths of interest for satellite ocean color applications, with an uncertainty lower than 5% in the blue-green spectral regions and higher than 8% in the red. Measurements collected at 6 sites counting the northern Adriatic Sea, the Baltic Proper, the Gulf of Finland, the Persian Gulf, and, the northern and southern margins of the Middle Atlantic Bay, have shown the capability of producing quality assured data over a wide range of bio-optical conditions including Case-2 yellow substance- and sedimentdominated waters. This work briefly introduces network elements like: deployment sites, measurement method, instrument calibration, processing scheme, quality-assurance, uncertainties, data archive and products accessibility. Emphases is given to those elements which underline the network strengths (i.e., mostly standardization of any network element) and its weaknesses (i.e., the use of consolidated, but old-fashioned technology). The work also addresses the application of AERONET-OC data to the validation of primary satellite radiometric products over a variety of complex coastal waters and finally provides elements for the identification of new deployment sites most suitable to support satellite ocean color missions.

  20. Radiometric Comparison between Sentinel 2A (S2A) Multispectral Imager (MSI) and Landsat 8 (L8) Operational Land Imager (OLI)

    Science.gov (United States)

    Micijevic, E.; Haque, M. O.

    2016-12-01

    With its forty-four year continuous data record, the Landsat image archive provides an invaluable source of information for essential climate variables, global land change studies and a variety of other applications. The latest in the series, Landsat 8, carries the Operational Land Imager (OLI), the sensor with an improved design compared to its predecessors, but with similar radiometric, spatial and spectral characteristics, to provide image data continuity. Sentinel 2A (S2A), launched in June 2015, carries the Multispectral Imager (MSI) that has a number of bands with spectral and radiometric characteristics similar to L8 OLI. As such, it offers an opportunity to augment the Landsat data record through increased frequency of acquisitions, when combined with OLI. In this study, we compared Top-of-Atmosphere (TOA) reflectance of matching spectral bands in MSI and OLI products. Comparison between S2A MSI and L8 OLI sensors was performed using image data acquired near simultaneously primarily over Pseudo Invariant Calibration Site (PICS) Libya 4, but also over other calibration test sites. Spectral differences between the two sensors were accounted for using their spectral filter profiles and a spectral signature of the site derived from EO1 Hyperion hyperspectral imagery. Temporal stability was also assessed through temporal trending of Top-of-Atmosphere (TOA) reflectance measured by the two sensors over PICS. The performed analysis suggests good agreement between the two sensors, within 5% for the costal aerosol band and better than 3% for other matching bands. It is important to note that whenever data from different sensors are used together in a study, the special attention need to be paid to the spectral band differences between the sensors because the necessary spectral difference adjustment is target dependent and may vary a lot from target to target.

  1. Detecting payload performance based on relative radiometric characteristic: case of the optical sensors

    Science.gov (United States)

    Han, Jie; Li, Shengyang; Zhang, Tao; Qin, Bangyong

    2016-10-01

    In this paper, we propose a novel algorithm for accurately estimating the degree of radiometric non-uniformity in remote sensing images. The algorithm was tested on high-quality images and heavily striping images, and quantitative analyses were conducted to evaluate the performance for each band by measuring the radiometric non-uniformity of the images. The results demonstrated that the proposed algorithm exhibits high accuracy and stability compared with traditional algorithms. The radiometric performance of TianGong-1 short-wave infrared images was calculated using this new method, and it was highly correlated with the solar angle, pitch angle and refrigerator thermal according to the Apriori algorithm. Based on these results, we have proposed a strategy for restricting increases in striping.

  2. Sixteen Years of Terra MODIS On-Orbit Operation, Calibration, and Performance

    Science.gov (United States)

    Xiong, X.; Angal, A.; Wu, A.; Link, D.; Geng, X.; Barnes, W.; Solomonson, V.

    2016-01-01

    Terra MODIS has successfully operated for more than 16 years since its launch in December 1999. From its observations, many science data products have been generated in support of a broad range of research activities and remote sensing applications. Terra MODIS has operated in a number of configurations and experienced a few anomalies, including spacecraft and instrument related events. MODIS collects data in 36 spectral bands that are calibrated regularly by a set of on-board calibrators for their radiometric, spectral, and spatial performance. Periodic lunar observations and long-term radiometric trending over well-characterized ground targets are also used to support sensor on-orbit calibration. Dedicated efforts made by the MODIS Characterization Support Team (MCST) and continuing support from the MODIS Science Team have contributed to the mission success, enabling well-calibrated data products to be continuously generated and routinely delivered to users worldwide. This paper presents an overview of Terra MODIS mission operations, calibration activities, and instrument performance of the past 16 years. It illustrates and describes the results of key sensor performance parameters derived from on-orbit calibration and characterization, such as signal-to-noise ratio (SNR), noise equivalent temperature difference (NEdT), solar diffuser (SD) degradation, changes in sensor responses, center wavelengths, and band-to-band registration (BBR). Also discussed in this paper are the calibration approaches and strategies developed and implemented in support of MODIS Level 1B data production and re-processing, major challenging issues, and lessons learned. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  3. Conflict between place and response navigation strategies: effects on vicarious trial and error (VTE) behaviors.

    Science.gov (United States)

    Schmidt, Brandy; Papale, Andrew; Redish, A David; Markus, Etan J

    2013-02-15

    Navigation can be accomplished through multiple decision-making strategies, using different information-processing computations. A well-studied dichotomy in these decision-making strategies compares hippocampal-dependent "place" and dorsal-lateral striatal-dependent "response" strategies. A place strategy depends on the ability to flexibly respond to environmental cues, while a response strategy depends on the ability to quickly recognize and react to situations with well-learned action-outcome relationships. When rats reach decision points, they sometimes pause and orient toward the potential routes of travel, a process termed vicarious trial and error (VTE). VTE co-occurs with neurophysiological information processing, including sweeps of representation ahead of the animal in the hippocampus and transient representations of reward in the ventral striatum and orbitofrontal cortex. To examine the relationship between VTE and the place/response strategy dichotomy, we analyzed data in which rats were cued to switch between place and response strategies on a plus maze. The configuration of the maze allowed for place and response strategies to work competitively or cooperatively. Animals showed increased VTE on trials entailing competition between navigational systems, linking VTE with deliberative decision-making. Even in a well-learned task, VTE was preferentially exhibited when a spatial selection was required, further linking VTE behavior with decision-making associated with hippocampal processing.

  4. Vicarious learning of children's social-anxiety-related fear beliefs and emotional Stroop bias.

    Science.gov (United States)

    Askew, Chris; Hagel, Anna; Morgan, Julie

    2015-08-01

    Models of social anxiety suggest that negative social experiences contribute to the development of social anxiety, and this is supported by self-report research. However, there is relatively little experimental evidence for the effects of learning experiences on social cognitions. The current study examined the effect of observing a social performance situation with a negative outcome on children's (8 to 11 years old) fear-related beliefs and cognitive processing. Two groups of children were each shown 1 of 2 animated films of a person trying to score in basketball while being observed by others; in 1 film, the outcome was negative, and in the other, it was neutral. Children's fear-related beliefs about performing in front of others were measured before and after the film and children were asked to complete an emotional Stroop task. Results showed that social fear beliefs increased for children who saw the negative social performance film. In addition, these children showed an emotional Stroop bias for social-anxiety-related words compared to children who saw the neutral film. The findings have implications for our understanding of social anxiety disorder and suggest that vicarious learning experiences in childhood may contribute to the development of social anxiety. (c) 2015 APA, all rights reserved).

  5. Site Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the site calibration carried out at Østerild, during a given period. The site calibration was performed with two Windcube WLS7 (v1) lidars at ten measurements heights. The lidar is not a sensor approved by the current version of the IEC 61400-12-1 [1] and therefore the site...

  6. TWSTFT Link Calibration Report

    Science.gov (United States)

    2015-09-01

    Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302...and Bauch A (2014) THE EUROPEAN TW CALIBRATION CAMPAIGN 2014 IN THE SCOPE OF GALILEO (TGVF- FOC), An opportunity to update, TW link calibrations in

  7. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and correspondi...

  8. Radiometric-microbiologic assay of niacin using Kloeckera brevis: analysis of human blood and food

    Energy Technology Data Exchange (ETDEWEB)

    Guilarte, T.R.; Pravlik, K.

    1983-12-01

    Kloeckera brevis, a yeast, was used as the test organism for the development of a radiometric-microbiologic (RMA) assay for niacin. The assay was determined to be sensitive to the 2 ng niacin per vial level and specific for the biologically active forms of this vitamin. The method was shown to be simple, accurate, and precise in the analysis of niacin in human blood and food. The application of the radiometric technique eliminates some of the problems encountered with conventional turbidimetric-microbiologic assay.

  9. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  10. Mars Exploration Rover Navigation Camera in-flight calibration

    Science.gov (United States)

    Soderblom, J.M.; Bell, J.F.; Johnson, J. R.; Joseph, J.; Wolff, M.J.

    2008-01-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.

  11. jasonSWIR Calibration of Spectralon Reflectance Factor

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Cahterine; Ding, Leibo; Thome, Kurtis J.

    2011-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near infraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475nm to 1625nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 2 inch diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6deg directional/hemispherical spectral reflectance factors from 900nm to 2500nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475nm to 1625nm at an incident angle of 0deg and at viewing angles of 40deg, 45deg, and 50deg. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions. Keywords: BRF, BRDF, Calibration, Spectralon, Reflectance, Remote Sensing.

  12. FY07 Final Report for Calibration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D.; Ho, Nicolas

    2007-12-01

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A

  13. SMAP RADAR Processing and Calibration

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference

  14. Historical biogeography resolves the origins of endemic Arabian toad lineages (Anura: Bufonidae): Evidence for ancient vicariance and dispersal events with the Horn of Africa and South Asia.

    Science.gov (United States)

    Portik, Daniel M; Papenfuss, Theodore J

    2015-08-06

    The Arabian Peninsula is home to a unique fauna that has assembled and evolved throughout the course of major geophysical events, including the separation of the Arabian Plate from Africa and subsequent collision with Eurasia. Opportunities for faunal exchanges with particular continents occurred in temporally distinct periods, and the presence of African, Western Eurasian, and South Asian derived taxa on the Arabian Peninsula signifies the complexity of these historical biogeographic events. The six true toad species (family Bufonidae) endemic to Arabian Peninsula present a considerable taxonomic and biogeographic challenge because they are part of a global bufonid radiation, including several genera surrounding the Arabian Peninsula, and difficult to discriminate morphologically. As they could be derived from African, Western Eurasian, or South Asian toad groups, elucidating their evolutionary relationships has important implications for historical biogeography. Here, we analyze a global molecular data set of 243 bufonid lineages, with an emphasis on new sampling from the Horn of Africa, Western Eurasia, South Asia, and the Arabian Peninsula, to reconstruct the evolutionary relationships of the Arabian species. We produce a robust time-calibrated phylogeny to infer the biogeographic history of this group on and around the Arabian Peninsula. Our phylogenetic analyses indicate two of the endemic Arabian toad species, "Bufo" tihamicus and "Bufo" arabicus, evolved independently within the African genus Amietophrynus. We confirm the Arabian species Duttaphrynus dhufarensis is of South Asian origin, but do not find evidence for the Asian genus Duttaphrynus being present in the Horn of Africa, discrediting a previously proposed Asian bufonid dispersal event to Africa. We also do not find evidence of the African genus Amietophrynus occurring in South Asia, suggesting that unlike many other vertebrate taxa, toads have not used the Arabian Peninsula as a stepping-stone for

  15. Errors from Rayleigh-Jeans approximation in satellite microwave radiometer calibration systems.

    Science.gov (United States)

    Weng, Fuzhong; Zou, Xiaolei

    2013-01-20

    The advanced technology microwave sounder (ATMS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a total power radiometer and scans across the track within a range of ±52.77° from nadir. It has 22 channels and measures the microwave radiation at either quasi-vertical or quasi-horizontal polarization from the Earth's atmosphere. The ATMS sensor data record algorithm employed a commonly used two-point calibration equation that derives the earth-view brightness temperature directly from the counts and temperatures of warm target and cold space, and the earth-scene count. This equation is only valid under Rayleigh-Jeans (RJ) approximation. Impacts of RJ approximation on ATMS calibration biases are evaluated in this study. It is shown that the RJ approximation used in ATMS radiometric calibration results in errors on the order of 1-2 K. The error is also scene count dependent and increases with frequency.

  16. Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands

    Science.gov (United States)

    Schott, John R.; Gerace, Aaron; Raqueno, Nina; Ientilucci, Emmett; Raqueno, Rolando; Lunsford, Allen W.

    2014-10-01

    The Thermal Infrared Sensor (TIRS) on board Landsat 8 has exhibited a number of anomalous characteristics that have made it difficult to calibrate. These anomalies include differences in the radiometric appearance across the blackbody pre- and post-launch, variations in the cross calibration ratios between detectors that overlap on adjacent arrays (resulting in banding) and bias errors in the absolute calibration that can change spatially/temporally. Several updates to the TIRS calibration procedures were made in the months after launch to attempt to mitigate the impact of these anomalies on flat fielding (cosmetic removal of banding and striping) and mean level bias correction. As a result, banding and striping variations have been reduced but not eliminated and residual bias errors in band 10 should be less than 2 degrees for most targets but can be significantly more in some cases and are often larger in band 11. These corrections have all been essentially ad hoc without understanding or properly accounting for the source of the anomalies, which were, at the time unknown. This paper addresses the procedures that have been undertaken to; better characterize the nature of these anomalies, attempt to identify the source(s) of the anomalies, quantify the phenomenon responsible for them, and develop correction procedures to more effectively remove the impacts on the radiometric products. Our current understanding points to all of the anomalies being the result of internal reflections of energy from outside the target detector's field-of-view, and often outside the telescope field-of-view, onto the target detector. This paper discusses how various members of the Landsat calibration team discovered the clues that led to how; these "ghosts" were identified, they are now being characterized, and their impact can hopefully eventually be corrected. This includes use of lunar scans to generate initial maps of influence regions, use of long path overlap ratios to explore

  17. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  18. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    Science.gov (United States)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  19. Radiometric Correction of Terrestrial LiDAR Data for Mapping of Harvest Residues Density

    Directory of Open Access Journals (Sweden)

    K. Koenig

    2013-10-01

    Full Text Available In precision agriculture detailed geoinformation on plant and soil properties plays an important role. Laser scanning already has been used to describe in-field variations of plant growth in 3D and over time and can serve as valuable complementary topographic data set for remote sensing, such as deriving soil properties from hyperspectral sensors. In this study full-waveform laser scanning data acquired with a Riegl VZ-400 instrument is used to classify 3D point clouds into post-harvest straw residues and bare soil. A workflow for point cloud based classification is presented using radiometric and geometric point features. A radiometric correction is performed by using a range-correction function f(r, which is derived from lab experiments with a reference target of known reflectance. Thereafter, the corrected signal amplitude and local height features are explored with respect to the target classes. The following procedure includes feature calculation, decision tree analysis, point cloud classification and finally result validation using detailed classified reference RGB images. The classification tree separates the classes of harvest residues and bare soil with an accuracy of 96% by using geometric and radiometric features. The LiDAR-derived harvest residue coverage value of 75% lies in accordance with the image-based reference (coverage of 68%. The results indicate the high potential of radiometric features for natural surface classification, particularly in combination with geometric features.

  20. Radiometric trace analysis of cobalt with diethyldithiocarbamate-35S, or 203Hg

    NARCIS (Netherlands)

    Erkelens, P.C. van

    1962-01-01

    Two radiometric methods for the determination of submugram amounts of cobalt are described. (A) Cobalt is extracted from an ammoniacal solution with a zinc-diethyldithiocarbamate-35S solution in chloroform. Excess reagent and interfering metals are removed with mercury(II) and cyanide. The 35S in

  1. Effects of agrochemicals, ultra violet stabilisers and solar radiation on the radiometric properties of greenhouse films

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2013-10-01

    Full Text Available Agrochemicals, based on iron, sulphur and chlorine, generate by products that lead to a degradation of greenhouse films together with a decrease in their mechanical and physical properties. The degradation due to agrochemicals depends on their active principles, method and frequency of application, and greenhouse ventilation. The aim of the research was to evaluate how agrochemical contamination and solar radiation influence the radiometric properties of ethylene-vinyl acetate copolymer greenhouse films by means of laboratory and field tests. The films, manufactured on purpose with the addition of different light stabiliser systems, were exposed to natural outdoor weathering at the experimental farm of the University of Bari (Italy; 41° 05’ N in the period from 2006 to 2008. Each film was tested for two low tunnels: one low tunnel was sprayed from inside with the agrochemicals containing iron, chlorine and sulphur while the other one was not sprayed and served as control. Radiometric laboratory tests were carried out on the new films and on samples taken at the end of the trials. The experimental tests showed that both the natural weathering together with the agrochemicals did not modify significantly the radiometric properties of the films in the solar and in the photosynthetically active radiation wavelength range. Within six months of experimental field tests the variations in these radiometric characteristics were at most 10%. Significant variations, up to 70% of the initial value, were recorded for the stabilised films in the long-wave infrared radiation wavelength range.

  2. New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador)

    NARCIS (Netherlands)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Fornari, Michel; Mothes, Patricia; van der Plicht, Johannes; Stix, J.

    2010-01-01

    Fieldwork, radiometric ((40)Ar/(39)Ar and (14)C) ages and whole-rock geochemistry allow a reconstruction of eruptive stages at the active, mainly dacitic, Pichincha Volcanic Complex (PVC), whose eruptions have repeatedly threatened Quito, most recently from 1999 to 2001. After the emplacement of

  3. Application of radioisotopes Au -198 to radiometrical field investigation of spraying machine

    Energy Technology Data Exchange (ETDEWEB)

    Goraczko, W.; Kocorowska, E. [Technical Univeristy, Poznan (Poland). Radio and Photo-Chemistry Department

    1997-10-01

    The poster shows application of radioisotope {sup 198}Au to radiometrical field testing of spraying machine. In the research was tested the Polish suspensioned tractor OZS400 type spraying machine. The machine worked in two different variants: without and with the beam stabilisation (oscillatory stabilisation)

  4. Seeing other women breastfeed: how vicarious experience relates to breastfeeding intention and behaviour.

    Science.gov (United States)

    Hoddinott, Pat; Kroll, Thilo; Raja, Amalraj; Lee, Amanda Jane

    2010-04-01

    Vicarious experience gained through seeing women breastfeed may influence infant feeding decisions and self-efficacy. Our aim was to measure the attributes of seeing breastfeeding and to investigate how these relate to feeding intention (primary outcome) and behaviour (secondary outcome). First, we developed a Seeing Breastfeeding Scale (SBS), which consisted of five attitudes (Cronbach's alpha of 0.86) to most recently observed breastfeeding: 'I felt embarrassed'; 'I felt uncomfortable'; 'I did not know where to look'; and 'It was lovely' and 'It didn't bother me'. Test-retest reliability showed agreement (with one exception, kappas ranged from 0.36 to 0.71). Second, we conducted a longitudinal survey of 418 consecutive pregnant women in rural Scotland. We selected the 259 women who had never breastfed before for further analysis. Following multiple adjustments, women who agreed that 'It was lovely to see her breastfeed' were more than six times more likely to intend to breastfeed compared with women who disagreed with the statement [odds ratio (OR) 6.72, 95% confidence interval (CI) 2.85-15.82]. Women who completed their full-time education aged 17 (OR 3.09, 95% CI 1.41-6.77) or aged 19 (OR 7.41 95% CI 2.51-21.94) were more likely to initiate breastfeeding. Women who reported seeing breastfeeding within the preceding 12 months were significantly more likely to agree with the statement 'It was lovely to see her breastfeed' (P = 0.02). Positive attitudes to recently seen breastfeeding are more important determinants of feeding intention than age of first seeing breastfeeding, the relationship to the person seen and seeing breastfeeding in the media.

  5. The origin of the serpentine endemic Minuartia laricifolia subsp. ophiolitica by vicariance and competitive exclusion.

    Science.gov (United States)

    Moore, Abigail J; Merges, Dominik; Kadereit, Joachim W

    2013-04-01

    Serpentine soils harbour a unique flora that is rich in endemics. We examined the evolution of serpentine endemism in Minuartia laricifolia, which has two ecologically distinct subspecies with disjunct distributions: subsp. laricifolia on siliceous rocks in the western Alps and eastern Pyrenees and subsp. ophiolitica on serpentine in the northern Apennines. We analysed AFLPs and chloroplast sequences from 30 populations to examine their relationships and how their current distributions and ecologies were influenced by Quaternary climatic changes. Minuartia laricifolia was divided into four groups with a BAPS cluster analysis of the AFLP data, one group consisted only of subsp. ophiolitica, while three groups were found within subsp. laricifolia: Maritime Alps, north-western Alps and central Alps. The same groups were recovered in a neighbour-joining tree, although subsp. ophiolitica was nested within the Maritime Alps group of subsp. laricifolia. Subspecies ophiolitica contained three different chloroplast haplotypes, which were also found in the Maritime Alps group of subsp. laricifolia. Given its high genetic diversity, subsp. ophiolitica appears to have arisen from subsp. laricifolia by vicariance instead of by long-distance dispersal. Genetic and geographic evidence point to the Maritime Alps populations of subsp. laricifolia as the closest relatives of subsp. ophiolitica. We hypothesize that M. laricifolia was also able to grow on nonserpentine rocks in the northern Apennines during glacial periods when the vegetation was more open, but that only the serpentine-adapted populations were able to persist until the present due to their competitive exclusion from more favourable habitats. © 2013 Blackwell Publishing Ltd.

  6. Vicarious moral licensing: the influence of others' past moral actions on moral behavior.

    Science.gov (United States)

    Kouchaki, Maryam

    2011-10-01

    This article investigates the effect of others' prior nonprejudiced behavior on an individual's subsequent behavior. Five studies supported the hypothesis that people are more willing to express prejudiced attitudes when their group members' past behavior has established nonprejudiced credentials. Study 1a showed that participants who were told that their group was more moral than similar other groups were more willing to describe a job as better suited for Whites than for African Americans. In Study 1b, when given information on group members' prior nondiscriminatory behavior (selecting a Hispanic applicant in a prior task), participants subsequently gave more discriminatory ratings to the Hispanic applicant for a position stereotypically suited for majority members (Whites). In Study 2, moral self-concept mediated the effect of others' prior nonprejudiced actions on a participant's subsequent prejudiced behavior such that others' past nonprejudiced actions enhanced the participant's moral self-concept, and this inflated moral self-concept subsequently drove the participant's prejudiced ratings of a Hispanic applicant. In Study 3, the moderating role of identification with the credentialing group was tested. Results showed that participants expressed more prejudiced attitudes toward a Hispanic applicant when they highly identified with the group members behaving in nonprejudiced manner. In Study 4, the credentialing task was dissociated from the participants' own judgmental task, and, in addition, identification with the credentialing group was manipulated rather than measured. Consistent with prior studies, the results showed that participants who first had the opportunity to view an in-group member's nonprejudiced hiring decision were more likely to reject an African American man for a job stereotypically suited for majority members. These studies suggest a vicarious moral licensing effect. 2011 APA, all rights reserved

  7. Low-Temperature Blackbodies for IR Calibrations in a Medium-Background Environment

    Science.gov (United States)

    Ogarev, S. A.; Samoylov, M. L.; Parfentyev, N. A.; Sapritsky, V. I.

    2009-02-01

    Utilization of Earth remote-sensing data to solve scientific and engineering problems within such fields as meteorology and climatology requires precise radiometric calibration of space-borne instruments. High-accuracy calibration equipment in the thermal-IR wavelength range ought to be combined during calibration procedures with the simulation of environmental conditions for space orbit (high vacuum, medium background). For more than 35 years, VNIIOFI has developed and manufactured standard radiation sources in the form of precision blackbodies (BB) functioning within wide ranges of wavelengths and working temperatures. These BBs are the spectral radiance and irradiance calibration devices in the world’s leading space research institutions, such as SDL (USA), DLR (Germany), Keldysh Space Center (Russia), RNIIKP/RISDE (Russia), NEC Toshiba Space Systems (Japan), etc. The paper contains a detailed description of low-temperature precision BBs developed at VNIIOFI. The characteristics of variable-temperature (100 K to 400 K) research-grade extended-area (up to 350 mm) BB models BB100-V1 and BB-80/350 are described (they are intended for radiometric calibrations by comparison with a primary standard source), as well as those that can be used as sources for high-accuracy IR calibration of space-borne and other systems not requiring a vacuum environment. The temperature nonuniformity and stability of these BBs are (0.05 to 0.1) K (cavity-type BB100-V1), and 0.1 % for the (1.5 to 15) μm wavelength region under cryo-vacuum conditions of a medium-background environment.

  8. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  9. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  10. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  11. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  12. Ames Balance Calibration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Operations at the lab include calibrating balances for the Ames Wind Tunnels as well as for approved outside projects. Ames has a large inventory of TASK multi-piece...

  13. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  14. Analysis of the Radiometric Response of Orange Tree Crown in Hyperspectral Uav Images

    Science.gov (United States)

    Imai, N. N.; Moriya, E. A. S.; Honkavaara, E.; Miyoshi, G. T.; de Moraes, M. V. A.; Tommaselli, A. M. G.; Näsi, R.

    2017-10-01

    High spatial resolution remote sensing images acquired by drones are highly relevant data source in many applications. However, strong variations of radiometric values are difficult to correct in hyperspectral images. Honkavaara et al. (2013) presented a radiometric block adjustment method in which hyperspectral images taken from remotely piloted aerial systems - RPAS were processed both geometrically and radiometrically to produce a georeferenced mosaic in which the standard Reflectance Factor for the nadir is represented. The plants crowns in permanent cultivation show complex variations since the density of shadows and the irradiance of the surface vary due to the geometry of illumination and the geometry of the arrangement of branches and leaves. An evaluation of the radiometric quality of the mosaic of an orange plantation produced using images captured by a hyperspectral imager based on a tunable Fabry-Pérot interferometer and applying the radiometric block adjustment method, was performed. A high-resolution UAV based hyperspectral survey was carried out in an orange-producing farm located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil. A set of 25 narrow spectral bands with 2.5 cm of GSD images were acquired. Trend analysis was applied to the values of a sample of transects extracted from plants appearing in the mosaic. The results of these trend analysis on the pixels distributed along transects on orange tree crown showed the reflectance factor presented a slightly trend, but the coefficients of the polynomials are very small, so the quality of mosaic is good enough for many applications.

  15. ANALYZING SPECTRAL CHARACTERISTICS OF SHADOW AREA FROM ADS-40 HIGH RADIOMETRIC RESOLUTION AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Y.-T. Hsieh

    2016-06-01

    Full Text Available The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i The DN values in shadow area are much lower than in nonshadow area; (ii DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv The shadow area NIR of vegetation category also shows a strong reflection; (v Generally, vegetation indexes (NDVI still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40 is potential for the extract land cover information of shadow areas.

  16. ANALYSIS OF THE RADIOMETRIC RESPONSE OF ORANGE TREE CROWN IN HYPERSPECTRAL UAV IMAGES

    Directory of Open Access Journals (Sweden)

    N. N. Imai

    2017-10-01

    Full Text Available High spatial resolution remote sensing images acquired by drones are highly relevant data source in many applications. However, strong variations of radiometric values are difficult to correct in hyperspectral images. Honkavaara et al. (2013 presented a radiometric block adjustment method in which hyperspectral images taken from remotely piloted aerial systems – RPAS were processed both geometrically and radiometrically to produce a georeferenced mosaic in which the standard Reflectance Factor for the nadir is represented. The plants crowns in permanent cultivation show complex variations since the density of shadows and the irradiance of the surface vary due to the geometry of illumination and the geometry of the arrangement of branches and leaves. An evaluation of the radiometric quality of the mosaic of an orange plantation produced using images captured by a hyperspectral imager based on a tunable Fabry-Pérot interferometer and applying the radiometric block adjustment method, was performed. A high-resolution UAV based hyperspectral survey was carried out in an orange-producing farm located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil. A set of 25 narrow spectral bands with 2.5 cm of GSD images were acquired. Trend analysis was applied to the values of a sample of transects extracted from plants appearing in the mosaic. The results of these trend analysis on the pixels distributed along transects on orange tree crown showed the reflectance factor presented a slightly trend, but the coefficients of the polynomials are very small, so the quality of mosaic is good enough for many applications.

  17. Enhanced radiometric detection of Mycobacterium paratuberculosis by using filter-concentrated bovine fecal specimens

    Energy Technology Data Exchange (ETDEWEB)

    Collins, M.T.; Kenefick, K.B.; Sockett, D.C.; Lambrecht, R.S.; McDonald, J.; Jorgensen, J.B. (Univ. of Wisconsin, Madison (USA))

    1990-11-01

    A commercial radiometric medium, BACTEC 12B, was modified by addition of mycobactin, egg yolk suspension, and antibiotics (vancomycin, amphotericin B, and nalidixic acid). Decontaminated bovine fecal specimens were filter concentrated by using 3-microns-pore-size, 13-mm-diameter polycarbonate filters, and the entire filter was placed into the radiometric broth. Comparison of the radiometric technique with conventional methods on 603 cattle from 9 Mycobacterium paratuberculosis-infected herds found that of 75 positive specimens, the radiometric technique detected 92% while conventional methods detected 60% (P less than 0.0005). Only 3.9% of radiometric cultures were contaminated. To measure the effect of filter concentration of specimens on the detection rate, 5 cattle with minimal and 5 with moderate ileum histopathology were sampled weekly for 3 weeks. M. paratuberculosis was detected in 33.3% of nonfiltered specimens and 76.7% of filtered specimens (P less than 0.005). Detection rates were directly correlated with the severity of disease, and the advantage of specimen concentration was greatest on fecal specimens from cattle with low-grade infections. Detection times were also correlated with infection severity: 13.4 +/- 5.9 days with smear-positive specimens, 27.9 +/- 8.7 days with feces from cows with typical subclinical infections, and 38.7 +/- 3.8 days with fecal specimens from cows with low-grade infections. Use of a cocktail of vancomycin, amphotericin B, and nalidixic acid for selective suppression of nonmycobacterial contaminants was better than the commercial product PANTA (Becton Dickinson Microbiologic Systems, Towson, Md.) only when specimens contained very low numbers of M. paratuberculosis.

  18. Rapid radiometric methods to detect and differentiate Mycobacterium tuberculosis/M. bovis from other mycobacterial species

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, S.H.; Hwangbo, C.C.; Silcox, V.; Good, R.C.; Snider, D.E. Jr.; Middlebrook, G.

    1984-10-01

    Rapid methods for the differentiation of Mycobacterium tuberculosis/M. bovis (TB complex) from other mycobacteria (MOTT bacilli) were developed and evaluated in a three-phase study. In the first phase, techniques for identification of Mycobacterium species were developed by using radiometric technology and BACTEC Middlebrook 7H12 liquid medium. Based on /sup 14/CO/sub 2/ evolution, characteristic growth patterns were established for 13 commonly encountered mycobacterial species. Mycobacteria belonging to the TB complex were differentiated from other mycobacteria by cellular morphology and rate of /sup 14/CO/sub 2/ evolution. For further differentiation, radiometric tests for niacin production and inhibition by Q-nitro-alpha-acetyl amino-beta-hydroxy-propiophenone (NAP) were developed. In the second phase, 100 coded specimens on Lowenstein-Jensen medium were identified as members of the TB complex, MOTT bacilli, bacteria other than mycobacteria, or ''no viable organisms'' within 3 to 12 (average 6.4) days of receipt from the Centers for Disease Control. Isolation and identification of mycobacteria from 20 simulated sputum specimens were carried out in phase III. Out of 20 sputum specimens, 16 contained culturable mycobacteria, and all of the positives were detected by the BACTEC method in an average of 7.3 days. The positive mycobacterial cultures were isolated and identified as TB complex or MOTT bacilli in an average of 12.8 days. The radiometric NAP test was found to be highly sensitive and specific for a rapid identification of TB complex, whereas the radiometric niacin test was found to have some inherent problems. Radiometric BACTEC and conventional methodologies were in complete agreement in Phase II as well as in Phase III.

  19. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  20. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    Science.gov (United States)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  1. Preliminary validation of Himawari-8/AHI navigation and calibration

    Science.gov (United States)

    Okuyama, Arata; Andou, Akiyoshi; Date, Kenji; Hoasaka, Keita; Mori, Nobutaka; Murata, Hidehiko; Tabata, Tasuku; Takahashi, Masaya; Yoshino, Ryoko; Bessho, Kotaro

    2015-09-01

    The next-generation geostationary meteorological satellite of the Japan Meteorological Agency (JMA), Himawari-8, entered operation on 7 July 2015. Himawari-8 features the new 16-band Advanced Himawari Imager (AHI), whose spatial resolution and observation frequency are improved over those of its predecessor MTSAT-series satellites. These improvements will bring unprecedented levels of performance in nowcasting services and short-range weather forecasting systems. In view of the essential nature of navigation and radiometric calibration in fully leveraging the imager's potential, this study reports on the current status of navigation and calibration for the AHI. Image navigation is accurate to within 1 km, and band-to-band co-registration has also been validated. Infrared-band calibration is accurate to within 0.2 K with no significant diurnal variation, and is being validated using an approach developed under the GSICS project. Validation approaches are currently being tested for the visible and near-infrared bands. In this study, two of such approaches were compared and found to produce largely consistent results.

  2. Jet Calibration at ATLAS

    CERN Document Server

    Camacho, R; The ATLAS collaboration

    2011-01-01

    The accurate measurement of jets at high transverse momentum produced in proton proton collision at a centre of mass energy at \\sqrt(s)=7 TeV is important in many physics analysis at LHC. Due to the non-compensating nature of the ATLAS calorimeter, signal losses due to noise thresholds and in dead material the jet energy needs to be calibrated. Presently, the ATLAS experiment derives the jet calibration from Monte Carlo simulation using a simple correction that relates the true and the reconstructed jet energy. The jet energy scale and its uncertainty are derived from in-situ measurements and variation in the Monte Carlo simulation. Other calibration schemes have been also developed, they use hadronic cell calibrations or the topology of the jet constituents to reduce hadronic fluctuations in the jet response, improving in that way the jet resolution. The performances of the various calibration schemes using data and simulation, the evaluation of the modelling of the properties used to derive each calibration...

  3. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  4. Issues and controversies in the understanding and diagnosis of compassion fatigue, vicarious traumatization, and secondary traumatic stress disorder.

    Science.gov (United States)

    Thomas, Rhiannon B; Wilson, John P

    2004-01-01

    Understanding the effects of prolonged contact, in a professional role, with trauma victims has led to conceptualizations of helper stress. Various terms such as compassion fatigue, vicarious traumatization, secondary traumatic stress reactions, empathic strains, burn out, and Type land Type II countertransference have been proposed These terms required conceptual classification to make a proper diagnosis and classification of their impact on the helping process. It is proposed that Traumatoid States is a more inclusive and accurate term to define sub-types of occupationally-related stress response syndromes (OSRS).

  5. Vicariously touching products through observing others' hand actions increases purchasing intention, and the effect of visual perspective in this process: An fMRI study.

    Science.gov (United States)

    Liu, Yi; Zang, Xuelian; Chen, Lihan; Assumpção, Leonardo; Li, Hong

    2018-01-01

    The growth of online shopping increases consumers' dependence on vicarious sensory experiences, such as observing others touching products in commercials. However, empirical evidence on whether observing others' sensory experiences increases purchasing intention is still scarce. In the present study, participants observed others interacting with products in the first- or third-person perspective in video clips, and their neural responses were measured with functional magnetic resonance imaging (fMRI). We investigated (1) whether and how vicariously touching certain products affected purchasing intention, and the neural correlates of this process; and (2) how visual perspective interacts with vicarious tactility. Vicarious tactile experiences were manipulated by hand actions touching or not touching the products, while the visual perspective was manipulated by showing the hand actions either in first- or third-person perspective. During the fMRI scanning, participants watched the video clips and rated their purchasing intention for each product. The results showed that, observing others touching (vs. not touching) the products increased purchasing intention, with vicarious neural responses found in mirror neuron systems (MNS) and lateral occipital complex (LOC). Moreover, the stronger neural activities in MNS was associated with higher purchasing intention. The effects of visual perspectives were found in left superior parietal lobule (SPL), while the interaction of tactility and visual perspective was shown in precuneus and precuneus-LOC connectivity. The present study provides the first evidence that vicariously touching a given product increased purchasing intention and the neural activities in bilateral MNS, LOC, left SPL and precuneus are involved in this process. Hum Brain Mapp 39:332-343, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Xenopus in Space and Time: Fossils, Node Calibrations, Tip-Dating, and Paleobiogeography.

    Science.gov (United States)

    Cannatella, David

    2015-01-01

    Published data from DNA sequences, morphology of 11 extant and 15 extinct frog taxa, and stratigraphic ranges of fossils were integrated to open a window into the deep-time evolution of Xenopus. The ages and morphological characters of fossils were used as independent datasets to calibrate a chronogram. We found that DNA sequences, either alone or in combination with morphological data and fossils, tended to support a close relationship between Xenopus and Hymenochirus, although in some analyses this topology was not significantly better than the Pipa + Hymenochirus topology. Analyses that excluded DNA data found strong support for the Pipa + Hymenochirus tree. The criterion for selecting the maximum age of the calibration prior influenced the age estimates, and our age estimates of early divergences in the tree of frogs are substantially younger than those of published studies. Node-dating and tip-dating calibrations, either alone or in combination, yielded older dates for nodes than did a root calibration alone. Our estimates of divergence times indicate that overwater dispersal, rather than vicariance due to the splitting of Africa and South America, may explain the presence of Xenopus in Africa and its closest fossil relatives in South America.

  7. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  8. An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events.

    Science.gov (United States)

    Upchurch, Paul; Hunn, Craig A; Norman, David B

    2002-03-22

    As the supercontinent Pangaea fragmented during the Mesozoic era, dinosaur faunas were divided into isolated populations living on separate continents. It has been predicted, therefore, that dinosaur distributions should display a branching ('vicariance') pattern that corresponds with the sequence and timing of continental break-up. Several recent studies, however, minimize the importance of plate tectonics and instead suggest that dispersal and regional extinction were the main controls on dinosaur biogeography. Here, in order to test the vicariance hypothesis, we apply a cladistic biogeographical method to a large dataset on dinosaur relationships and distributions. We also introduce a methodological refinement termed 'time-slicing', which is shown to be a key step in the detection of ancient biogeographical patterns. These analyses reveal biogeographical patterns that closely correlate with palaeogeography. The results provide the first statistically robust evidence that, from Middle Jurassic to mid-Cretaceous times, tectonic events had a major role in determining where and when particular dinosaur groups flourished. The fact that evolutionary trees for extinct organisms preserve such distribution patterns opens up a new and fruitful direction for palaeobiogeographical research.

  9. Walking in sacred spaces in the therapeutic bond: therapists' experiences of compassion satisfaction coupled with the potential for vicarious traumatization.

    Science.gov (United States)

    Hunter, Sally V

    2012-06-01

    The therapeutic bond is at the heart of effective therapy, yet few studies have examined therapists' experience of this bond. Using a qualitative study design, this exploratory study examines the experiences of couple and family therapists in relation to their perceptions of the satisfactions and risks involved in the therapeutic bond. The research was conducted using grounded theory methodology and eight in-depth interviews were conducted with therapists working in five counseling agencies in Sydney, Australia. Therapists described the importance of the 3 component parts of the therapeutic bond: the empathic connection between therapist and client; the role investment of the client; and the mutual affirmation experienced by both therapist and client in the therapeutic process. Walking in sacred spaces with the client was seen as both enriching and challenging for the therapist. The therapeutic bond gave therapists intense satisfaction and posed risks for them, especially when working with traumatic client experiences. However, the findings suggest that the experience of compassion satisfaction and the development of vicarious resilience counter-balanced the intense difficulty of bearing witness to clients' traumatic experiences and the potential for vicarious traumatization. The implications for sustaining couple and family therapists in their work are discussed. © FPI, Inc.

  10. WFIRST WFI Calibration Requirements

    Science.gov (United States)

    Scolnic, Daniel; Casertano, Stephano; WFIRST Calibration Group

    2018-01-01

    The Wide Field InfraRed Survey Telescope (WFIRST), with a planned launch in the mid-2020’s, will enable multiple generation-defining measurements in astrophysics and cosmology. One of the key goals of the mission is to limit calibration uncertainties in order to enable a wide range of experiments. Here we present the work of the WFIRST WFI Calibration Working Group, which has compiled a comprehensive set of calibration needs derived from the Mission science requirements, and has outlined a plan toachieve them. In many areas, the accuracy required has yet to be reached in any comparable mission or project. We present here the various plans of on-ground characterization, pre-launch data; internal measurements and observations in orbit; and external observations.

  11. Site Calibration report

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Vesth, Allan

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...... between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment is detailed described in [2]. The possible measurement sector for power performance...... according to [1] is also described in [2] and no results from the site calibration have shown any necessary exclusion from this sector. All parts of the sensors and the measurement system have been installed by DTU....

  12. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  13. Calibrating the Athena telescope

    Science.gov (United States)

    de Bruijne, J.; Guainazzi, M.; den Herder, J.; Bavdaz, M.; Burwitz, V.; Ferrando, P.; Lumb, D.; Natalucci, L.; Pajot, F.; Pareschi, G.

    2017-10-01

    Athena is ESA's upcoming X-ray mission, currently set for launch in 2028. With two nationally-funded, state-of-the-art instruments (a high-resolution spectrograph named X-IFU and a wide-field imager named WFI), and a telescope collecting area of 1.4-2 m^2 at 1 keV, the calibration of the spacecraft is a challenge in itself. This poster presents the current (spring 2017) plan of how to calibrate the Athena telescope. It is based on a hybrid approach, using bulk manufacturing and integration data as well as dedicated calibration measurements combined with a refined software model to simulate the full response of the optics.

  14. A new method for the absolute radiance calibration for UV-vis measurements of scattered sunlight

    Science.gov (United States)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-10-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds, and the shortwave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV-vis instruments that measure the spectrally resolved sky radiance, for example zenith sky differential optical absorption spectroscopy (DOAS) instruments or multi-axis (MAX)-DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method, clear-sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about ozone column density during the measurements be constant and known.

  15. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  16. Calibrated entanglement entropy

    Science.gov (United States)

    Bakhmatov, I.; Deger, N. S.; Gutowski, J.; Colgáin, E. Ó.; Yavartanoo, H.

    2017-07-01

    The Ryu-Takayanagi prescription reduces the problem of calculating entanglement entropy in CFTs to the determination of minimal surfaces in a dual anti-de Sitter geometry. For 3D gravity theories and BTZ black holes, we identify the minimal surfaces as special Lagrangian cycles calibrated by the real part of the holomorphic one-form of a spacelike hypersurface. We show that (generalised) calibrations provide a unified way to determine holographic entanglement entropy from minimal surfaces, which is applicable to warped AdS3 geometries. We briefly discuss generalisations to higher dimensions.

  17. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  18. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    is suggested to cope with the singular design matrix most often seen in chemometric calibration. Furthermore, the proposed algorithm may be generalized to all convex norms like Sigma/beta (j)/(gamma) where gamma greater than or equal to 1, i.e. a method that continuously varies from ridge regression...... to the lasso. The lasso is applied both directly as a calibration method and as a method to select important variables/wave lengths. It is demonstrated that the lasso algorithm, in general, leads to parameter estimates of which some are zero while others are quite large (compared to e.g. the traditional PLS...

  19. Determining the Tropospheric Delay of a Radio Signal by the Radiometric Method

    Science.gov (United States)

    Ilyin, G. N.; Troitsky, A. V.

    2017-10-01

    We present a method and algorithm for real-time determination of the tropospheric delay of a radio signal and the radiometric complex developed on their basis. The method is based on the measurement of the atmospheric thermal microwave radiation intensity at the frequencies ν 1 = 20.7 GHz, ν 2 = 32 GHz, and ν 3 = 56.7 GHz and solution of the corresponding inverse problem with respect to the atmospheric parameters (temperature, pressure, humidity, and water content) which completely determine the tropospheric delay of a radio signal. The method was experimentally tested by comparing the radio-signal delay series obtained by the radiometric method and the GLONASS/GPS data. The error of determining the wet component of the radio-signal delay was about 3 mm.

  20. An information theory characterization of radar images and a new definition for radiometric resolution

    Science.gov (United States)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.

    1982-01-01

    The noise properties of the radar image formation process are used in the present modeling of a communication channel in which the desired target properties are the information transmitted, and the final image represents the received signal. The average information rate over this communication channel is calculated together with appropriate bounds and approximations, and is found to be small on a per-sample basis. As a result, many samples must be averaged to allow for the discrimination, or classification, of several levels of target reflectivity. These information rate properties are consistent with known results concerning target detection and image quality in speckle, and the rate is applicable to the definition of radar image radiometric resolution. Radiometric resolution is functionally related to the degree of noncoherent averaging performed by the sensor.

  1. Direct antimicrobial drug susceptibility testing of Mycobacterium tuberculosis by the radiometric method

    Energy Technology Data Exchange (ETDEWEB)

    Libonati, J.P.; Stager, C.E.; Davis, J.R.; Siddiqi, S.H.

    1988-05-01

    Direct-drug-susceptibility tests were performed on clinical specimens positive for acid-fast bacilli by either Ziehl-Neelsen or fluorochrome staining. The results of conventional agar dilution and a modified radiometric (BACTEC) method were compared. A total of 580 smear-positive specimens were tested by the BACTEC method at three separate sites. Three hundred and seventy-seven of these were culture positive for M. tuberculosis, and 343 (91%) yielded acceptable direct-susceptibility-test results. We used the conventional method to determine that 343 of 519 smear-positive specimens were culture positive for M. tuberculosis, and 212 (62%) produced acceptable results within 3 wks. Conventional results were reported in 3-4 wks, while the time required to obtain results with the BACTEC method ranged from 5 to 21 days (average 11.5 days). Results indicate that the radiometric method provides reportable results more frequently with time savings as compared to the conventional method.

  2. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  3. Cross-calibration of MODIS with ETM+ and ALI sensors for long-term monitoring of land surface processes

    Science.gov (United States)

    Meyer, David; Chander, Gyanesh

    2006-08-01

    Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Cross-calibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat- 7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These

  4. Cross-calibration of A.M. constellation for long-term monitoring of land surface processes

    Science.gov (United States)

    Meyer, David; Chander, Gyanesh

    2006-12-01

    Data from multiple sensors must be used together to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products derived from different sensors (e.g., vegetation cover, albedo, surface temperature) can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study extends on a previous study of Terra/MODIS and Landsat/ETM+ cross calibration by including the Terra/ASTER and EO-1/ALI sensors, exploring the impacts of cross-calibrating sensors when conditions described above are met to some degree but not perfectly. Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALIto- MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. Due to problems with direct calibration of ASTER data, linear fits

  5. REDUCTION OF STRIPING NOISE IN OVERLAPPING LIDAR INTENSITY DATA BY RADIOMETRIC NORMALIZATION

    Directory of Open Access Journals (Sweden)

    W. Y. Yan

    2016-06-01

    Full Text Available To serve seamless mapping, airborne LiDAR data are usually collected with multiple parallel strips with one or two cross strip(s. Nevertheless, the overlapping regions of LiDAR data strips are usually found with unbalanced intensity values, resulting in the appearance of stripping noise. Despite that physical intensity correction methods are recently proposed, some of the system and environmental parameters are assumed as constant or not disclosed, leading to such an intensity discrepancy. This paper presents a new normalization technique to adjust the radiometric misalignment found in the overlapping LiDAR data strips. The normalization technique is built upon a second-order polynomial function fitted on the joint histogram plot, which is generated with a set of pairwise closest data points identified within the overlapping region. The method was tested on Teledyne Optech’s Gemini dataset (at 1064 nm wavelength, where the LiDAR intensity data were first radiometrically corrected based on the radar (range equation. Five land cover features were selected to evaluate the coefficient of variation (cv of the intensity values before and after implementing the proposed method. Reduction of cv was found by 19% to 59% in the Gemini dataset, where the striping noise was significantly reduced in the radiometrically corrected and normalized intensity data. The Gemini dataset was also used to conduct land cover classification, and the overall accuracy yielded a notable improvement of 9% to 18%. As a result, LiDAR intensity data should be pre-processed with radiometric correction and normalization prior to any data manipulation.

  6. Prototyping Radiometrically Terrain Corrected Sentinel-1A Large-Scale Processing

    Science.gov (United States)

    Hogenson, K.; Nicoll, J. B.; Logan, T. A.; Gens, R.; Garron, J.

    2016-12-01

    The Alaska Satellite Facility Distributed Active Archive Data Center (ASF DAAC) is undertaking prototyping and analysis of radiometrically terrain corrected (RTC) data products derived from Sentinel-1A SAR data, processed using different software packages. RTC products from both the GAMMA software and the Sentinel 1 toolbox were created for a variety of terrain types. Images were analyzed for residual terrain effects, number of looks, and noise floor. Radiometric terrain correction addresses two aspects of the effects of side-looking geometry of SAR imagery. First, the geometric distortions are corrected using the best digital elevation model available for a given region. Second, the radiometry is adjusted in the affected foreshortening and layover regions using the pixel-area integration approach for radiometric normalization. The RTC process provides improved backscatter estimates that can be used as input for applications such as the monitoring of deforestation, land-cover classification, and delineation of wet snow covered areas. The result of this prototyping effort, if approved, will be used to create an extensive archive of RTC products that can be easily combined with other geographically-projected datasets.

  7. Radiometric Correction of Multitemporal Hyperspectral Uas Image Mosaics of Seedling Stands

    Science.gov (United States)

    Markelin, L.; Honkavaara, E.; Näsi, R.; Viljanen, N.; Rosnell, T.; Hakala, T.; Vastaranta, M.; Koivisto, T.; Holopainen, M.

    2017-10-01

    Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.

  8. RADIOMETRIC CORRECTION OF MULTITEMPORAL HYPERSPECTRAL UAS IMAGE MOSAICS OF SEEDLING STANDS

    Directory of Open Access Journals (Sweden)

    L. Markelin

    2017-10-01

    Full Text Available Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.

  9. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.

    Science.gov (United States)

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-05-13

    We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.

  10. Improved detection of Mycobacterium avium complex with the Bactec radiometric system

    Energy Technology Data Exchange (ETDEWEB)

    Hoffner, S.E.

    1988-05-01

    A reconsideration of the laboratory methods used for primary isolation of mycobacteria other than Mycobacterium tuberculosis is needed due to the increasingly recognized importance of such mycobacterial infections in immunocompromised patients. One example of this is the severe opportunistic infections caused by Mycobacterium avium complex among AIDS patients. In this study, the Bactec radiometric system was compared to conventional culture on solid medium for the detection of M. avium complex in 3,612 selected clinical specimens, mainly of extrapulmonary origin. Of a total number of 63 M. avium complex isolates, the Bactec system detected 58 (92%), compared to 37 (59%) for conventional culture. A much more rapid detection was attained with radiometric technique than with conventional culture. The mean detection time for the cultures positive with both methods was 7.1 and 28.3 days, respectively. The Bactec radiometric system achieves a rapid and significantly more sensitive detection and seems to be an excellent complement to conventional culture in the laboratory diagnosis of infections with the M. avium complex.

  11. Radiometric 81Kr dating identifies 120,000 year old ice at Taylor Glacier, Antarctica

    CERN Document Server

    Buizert, Christo; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Mueller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-01-01

    We present the first successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ~350 kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 +/- 2.5 ka. Our experimental methods and sampling strategy are validated by 1) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination, and 2) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (MIS 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samp...

  12. Relative Radiometric Normalization and Atmospheric Correction of a SPOT 5 Time Series

    Directory of Open Access Journals (Sweden)

    Matthieu Rumeau

    2008-04-01

    Full Text Available Multi-temporal images acquired at high spatial and temporal resolution are an important tool for detecting change and analyzing trends, especially in agricultural applications. However, to insure a reliable use of this kind of data, a rigorous radiometric normalization step is required. Normalization can be addressed by performing an atmospheric correction of each image in the time series. The main problem is the difficulty of obtaining an atmospheric characterization at a given acquisition date. In this paper, we investigate whether relative radiometric normalization can substitute for atmospheric correction. We develop an automatic method for relative radiometric normalization based on calculating linear regressions between unnormalized and reference images. Regressions are obtained using the reflectances of automatically selected invariant targets. We compare this method with an atmospheric correction method that uses the 6S model. The performances of both methods are compared using 18 images from of a SPOT 5 time series acquired over Reunion Island. Results obtained for a set of manually selected invariant targets show excellent agreement between the two methods in all spectral bands: values of the coefficient of determination (r² exceed 0.960, and bias magnitude values are less than 2.65. There is also a strong correlation between normalized NDVI values of sugarcane fields (r² = 0.959. Despite a relative error of 12.66% between values, very comparable NDVI patterns are observed.

  13. CRYPTIC NEOGENE VICARIANCE AND QUATERNARY DISPERSAL OF THE RED-SPOTTED TOAD (BUFO PUNCTATUS) INSIGHTS ON THE EVOLUTION OF NORTH AMERICAN WARM DESERT BIOTAS

    Science.gov (United States)

    We define the geographic distributions of embedded evolutionary mitochondrial DNA (mtDNA) lineages (clades) within a broadly distributed, arid- dwelling toad, Bufo punctatus, and evaluate these patterns as they relate to hypothesized vicariant events leading to the formation of b...

  14. Evidence from pupillometry and fMRI indicates reduced neural response during vicarious social pain but not physical pain in autism.

    Science.gov (United States)

    Krach, Sören; Kamp-Becker, Inge; Einhäuser, Wolfgang; Sommer, Jens; Frässle, Stefan; Jansen, Andreas; Rademacher, Lena; Müller-Pinzler, Laura; Gazzola, Valeria; Paulus, Frieder M

    2015-11-01

    Autism spectrum disorder (ASD) is characterized by substantial social deficits. The notion that dysfunctions in neural circuits involved in sharing another's affect explain these deficits is appealing, but has received only modest experimental support. Here we evaluated a complex paradigm on the vicarious social pain of embarrassment to probe social deficits in ASD as to whether it is more potent than paradigms currently in use. To do so we acquired pupillometry and fMRI in young adults with ASD and matched healthy controls. During a simple vicarious physical pain task no differences emerged between groups in behavior, pupillometry, and neural activation of the anterior insula (AIC) and anterior cingulate cortex (ACC). In contrast, processing complex vicarious social pain yielded reduced responses in ASD on all physiological measures of sharing another's affect. The reduced activity within the AIC was thereby explained by the severity of autistic symptoms in the social and affective domain. Additionally, behavioral responses lacked correspondence with the anterior cingulate and anterior insula cortex activity found in controls. Instead, behavioral responses in ASD were associated with hippocampal activity. The observed dissociation echoes the clinical observations that deficits in ASD are most pronounced in complex social situations and simple tasks may not probe the dysfunctions in neural pathways involved in sharing affect. Our results are highly relevant because individuals with ASD may have preserved abilities to share another's physical pain but still have problems with the vicarious representation of more complex emotions that matter in life. © 2015 Wiley Periodicals, Inc.

  15. CLUSTERED RADIO INTERFEROMETRIC CALIBRATION

    NARCIS (Netherlands)

    Kazemi, S.; Yatawatta, S.; Zaroubi, S.

    2011-01-01

    This paper introduces an amendment to radio interferometric calibration of sources below the noise level. The main idea is to employ the information of the stronger sources' measured signals as a plug-in criterion to solve for the weaker ones. For this purpose, we construct a number of source

  16. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  17. Calibrating Communication Competencies

    Science.gov (United States)

    Surges Tatum, Donna

    2016-11-01

    The Many-faceted Rasch measurement model is used in the creation of a diagnostic instrument by which communication competencies can be calibrated, the severity of observers/raters can be determined, the ability of speakers measured, and comparisons made between various groups.

  18. ECAL Energy Flow Calibration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.

  19. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  20. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A part of the sensors has been installed by others, the rest of the sensors have been installed by DTU. The results of the measurements, described in this report, are only val...