WorldWideScience

Sample records for vibronic coupling effects

  1. Vibronic coupling density and related concepts

    International Nuclear Information System (INIS)

    Sato, Tohru; Uejima, Motoyuki; Iwahara, Naoya; Haruta, Naoki; Shizu, Katsuyuki; Tanaka, Kazuyoshi

    2013-01-01

    Vibronic coupling density is derived from a general point of view as a one-electron property density. Related concepts as well as their applications are presented. Linear and nonlinear vibronic coupling density and related concepts, orbital vibronic coupling density, reduced vibronic coupling density, atomic vibronic coupling constant, and effective vibronic coupling density, illustrate the origin of vibronic couplings and enable us to design novel functional molecules or to elucidate chemical reactions. Transition dipole moment density is defined as an example of the one-electron property density. Vibronic coupling density and transition dipole moment density open a way to design light-emitting molecules with high efficiency.

  2. Vibronic coupling effect on the electron transport through molecules

    Science.gov (United States)

    Tsukada, Masaru; Mitsutake, Kunihiro

    2007-03-01

    Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.

  3. Jahn-Teller effect in Rydberg series: A multi-state vibronic coupling problem

    International Nuclear Information System (INIS)

    Staib, A.; Domcke, W.; Sobolewski, A.L.

    1990-01-01

    Two simple limiting cases of Jahn-Teller (JT) coupling in Rydberg states of polyatomic molecules are considered, namely (i) JT coupling in Rydberg orbitals as well as in the ionization continuum (nondegenerate ion core, degenerate Rydberg series) and (ii) JT coupling in the ion core (degenerate ion core, nondegenerate Rydberg series). For both models simple and efficient algorithms for the computation of spectra (dynamical JT effect) are developed. The orbital JT effect is shown to represent a novel type of multi-state vibronic coupling, giving rise to interesting spectroscopic phenomena, among them resonant inter-Rydberg perturbations and JT induced autoionization. Particular attention is paid to the demonstration of the characteristic spectroscopic signatures of the two types of JT coupling in Rydberg states. (orig.)

  4. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    Science.gov (United States)

    McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzurí, Enrique; van der Zant, Herre S. J.; Park, Kyungwha

    2015-03-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and electron-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a neutral state with a total spin S =5 and a singly charged state with S =9 /2 , which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In sequential electron tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore, when multiple vibrational modes with considerable electron-vibron coupling have energies close to one another, a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case for a single mode with a similar electron-vibron coupling. In the former case, the conductance peaks reveal a stronger B -field dependence than in the latter case. The new features appear because the magnetic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with significant electron-vibron coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and electron-vibron coupling in electron transport via the Fe4. Similar behavior can be observed in transport via other anisotropic magnetic molecules.

  5. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    NARCIS (Netherlands)

    McCaskey, A.; Yamamoto, Y.; Warnock, M.; Burzuri, E.; Van der Zant, H.S.J.; Park, K.

    2015-01-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters,

  6. Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-06-07

    Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.

  7. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  8. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  9. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences

    NARCIS (Netherlands)

    Halpin, Alexei; Johnson, Philip J. M.; Tempelaar, Roel; Murphy, R. Scott; Knoester, Jasper; Jansen, Thomas L. C.; Miller, R. J. Dwayne

    The observation of persistent oscillatory signals in multidimensional spectra of protein-pigment complexes has spurred a debate on the role of coherence-assisted electronic energy transfer as a key operating principle in photosynthesis. Vibronic coupling has recently been proposed as an explanation

  10. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    International Nuclear Information System (INIS)

    Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.

    2013-01-01

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model

  11. The coherence lifetime-borrowing effect in vibronically coupled molecular aggregates under non-perturbative system-environment interactions.

    Science.gov (United States)

    Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre

    Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.

  12. Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study

    Science.gov (United States)

    Li, Jiaru; Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2017-08-01

    We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.

  13. Vibronic coupling in ionized organic molecules: structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, Ffrancon

    2003-01-01

    Ionized organic molecules (radical cations) in radiation chemistry are liable to undergo vibronic coupling whenever there is a relatively small energy gap (∼0.5-1.5 eV) between their ground and excited states. As a result of this mixing, the force constant for the symmetry-allowed vibrational mode that couples these states is lowered in the ground state of the radical cation so that deformation can take place more easily along this specific mode. This pseudo-Jahn-Teller effect can then result in a permanent structural distortion of the radical cation relative to the symmetry of the parent neutral molecule. It can also bring about an energetically favored pathway for a facile chemical rearrangement along a reaction coordinate defined by the coupling mode. Examples taken from matrix-isolation studies are used to illustrate these dramatic consequences of vibronic coupling in radical cations. Thus, the bicyclo[2.2.2]oct-2-ene and tetramethylurea radical cations are found to have twisted structures departing from the C 2v symmetry of their parent molecules, while the oxirane and bicyclo[1.1.1]pentane radical cations undergo ring-opening rearrangements along reaction coordinates that correspond to the deformational modes predicted by the pseudo-Jahn-Teller effect

  14. Vibronic coupling in asymmetric bichromophores: Experimental investigation of diphenylmethane-d5

    International Nuclear Information System (INIS)

    Pillsbury, Nathan R.; Kidwell, Nathanael M.; Nebgen, Benjamin; Slipchenko, Lyudmila V.; Zwier, Timothy S.; Douglass, Kevin O.; Plusquellic, David F.; Cable, John R.

    2014-01-01

    Vibrationally and rotationally resolved electronic spectra of diphenylmethane-d 5 (DPM-d 5 ) are reported in the isolated-molecule environment of a supersonic expansion. While small, the asymmetry induced by deuteration of one of the aromatic rings is sufficient to cause several important effects that change the principle mechanism of vibronic coupling between the close-lying S 1 and S 2 states, and spectroscopic signatures such coupling produces. The splitting between S 1 and S 2 origins is 186 cm −1 , about 50% greater than its value in DPM-d 0 (123 cm −1 ), and an amount sufficient to bring the S 2 zero-point level into near-resonance with the v = 1 level in the S 1 state of a low-frequency phenyl flapping mode, ν R = 191 cm −1 . Dispersed fluorescence spectra bear clear evidence that Δv(R) = 1 Herzberg-Teller coupling dominates the near-resonant internal mixing between the S 1 and S 2 manifolds. The fluorescence into each pair of Franck-Condon active ring modes shows an asymmetry that suggests incorrectly that the S 1 and S 2 states may be electronically localized. From rotationally resolved studies, the S 0 and S 1 states have been well-fit to asymmetric rotor Hamiltonians while the S 2 state is perturbed and not fit. The transition dipole moment (TDM) orientation of the S 1 state is nearly perpendicular to the C 2 symmetry axes with 66(2)%:3(1)%:34(2)% a:b:c hybrid-type character while that of the S 2 origin contains 50(10)% a:c-type (S 1 ) and 50(10)% b-type (S 2 ) character. A model is put forward that explains qualitatively the TDM compositions and dispersed emission patterns without the need to invoke electronic localization. The experimental data discussed here serve as a foundation for a multi-mode vibronic coupling model capable of being applied to asymmetric bichromophores, as presented in the work of B. Nebgen and L. V. Slipchenko [“Vibronic coupling in asymmetric bichromophores: Theory and application to diphenylmethane-d 5 ,” J. Chem

  15. Vibronic coupling in asymmetric bichromophores: Experimental investigation of diphenylmethane-d{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Pillsbury, Nathan R.; Kidwell, Nathanael M.; Nebgen, Benjamin; Slipchenko, Lyudmila V.; Zwier, Timothy S., E-mail: david.plusquellic@nist.gov, E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084 (United States); Douglass, Kevin O.; Plusquellic, David F., E-mail: david.plusquellic@nist.gov, E-mail: zwier@purdue.edu [Quantum Electronics and Photonics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States); Cable, John R. [Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403-0213 (United States)

    2014-08-14

    Vibrationally and rotationally resolved electronic spectra of diphenylmethane-d{sub 5} (DPM-d{sub 5}) are reported in the isolated-molecule environment of a supersonic expansion. While small, the asymmetry induced by deuteration of one of the aromatic rings is sufficient to cause several important effects that change the principle mechanism of vibronic coupling between the close-lying S{sub 1} and S{sub 2} states, and spectroscopic signatures such coupling produces. The splitting between S{sub 1} and S{sub 2} origins is 186 cm{sup −1}, about 50% greater than its value in DPM-d{sub 0} (123 cm{sup −1}), and an amount sufficient to bring the S{sub 2} zero-point level into near-resonance with the v = 1 level in the S{sub 1} state of a low-frequency phenyl flapping mode, ν{sub R} = 191 cm{sup −1}. Dispersed fluorescence spectra bear clear evidence that Δv(R) = 1 Herzberg-Teller coupling dominates the near-resonant internal mixing between the S{sub 1} and S{sub 2} manifolds. The fluorescence into each pair of Franck-Condon active ring modes shows an asymmetry that suggests incorrectly that the S{sub 1} and S{sub 2} states may be electronically localized. From rotationally resolved studies, the S{sub 0} and S{sub 1} states have been well-fit to asymmetric rotor Hamiltonians while the S{sub 2} state is perturbed and not fit. The transition dipole moment (TDM) orientation of the S{sub 1} state is nearly perpendicular to the C{sub 2} symmetry axes with 66(2)%:3(1)%:34(2)% a:b:c hybrid-type character while that of the S{sub 2} origin contains 50(10)% a:c-type (S{sub 1}) and 50(10)% b-type (S{sub 2}) character. A model is put forward that explains qualitatively the TDM compositions and dispersed emission patterns without the need to invoke electronic localization. The experimental data discussed here serve as a foundation for a multi-mode vibronic coupling model capable of being applied to asymmetric bichromophores, as presented in the work of B. Nebgen and L. V

  16. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Dahlberg, P. D. [Graduate Program in the Biophysical Sciences, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Gardiner, A. T.; Cogdell, R. J. [Department of Botany, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  17. The exact wavefunction factorization of a vibronic coupling system

    International Nuclear Information System (INIS)

    Chiang, Ying-Chih; Klaiman, Shachar; Otto, Frank; Cederbaum, Lorenz S.

    2014-01-01

    We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation

  18. Tunnel magnetoresistance of magnetic molecules with spin-vibron coupling

    Directory of Open Access Journals (Sweden)

    Ahmed Kenawy

    2017-05-01

    Full Text Available The effect of molecular vibrations on the tunnel magnetoresistance (TMR of a magnetic tunnel junction with a single spin-anisotropic molecule interconnecting its electrodes is investigated theoretically. We demonstrate that if these vibrations couple at the same time to the charge of tunneling electrons and to the spin of the molecule, the spin anisotropy of such a molecule becomes enhanced. This has, in turn, a profound impact on the TMR of such a device showing that molecular vibrations lead to a significant change of spin-polarized transport, differing for the parallel and antiparallel magnetic configuration of the junction.

  19. A study of vibronic coupling in the tilde C state of CO2+

    International Nuclear Information System (INIS)

    Roy, P.; Ferrett, T.A.; Schmidt, V.; Parr, A.C.; Southworth, S.H.; Hardis, J.E.; Bartlett, R.; Trela, W.; Dehmer, J.L.

    1987-01-01

    We have studied vibronic coupling in vibrationally resolved photoionization to the fourth electronic state of CO 2 + , C( 2 Σ/sub g/ + ), in the photon-energy range h nu = 20 to 28.5 eV. The measurements utilize high-resolution hemispherical electron analyzers, equipped with area detectors, and the SURF-II synchrotron radiation source at the National Bureau of Standards. The angular distribution asymmetry-parameters (β) for the allowed C(0,0,0) and forbidden C(1,0,1) (19.747 eV binding energy) peaks are found to be quite different. However, similarities between the C(1,0,1) β curve and that for the B state suggest that vibronic coupling to the B( 2 Σ/sub u/ + ) state of CO 2 + is the explanation for the intensity of the C state forbidden band in the first 8 eV above threshold

  20. Vibronic coupling in ionized organic molecules. Structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, F.

    2002-01-01

    Complete text of publication follows. Ionized organic molecules (radical cations, RC) are prone to undergo vibronic coupling whenever there is a relatively small energy gap ( 2v point group of the neutral parent molecule by twisting at the olefinic π bond to the lower C 2 symmetry in the RC (Chem. Eur. J. 2002, 8, 1074). These experiments clearly revealed a double minimum in the potential energy surface along the a 2 torsional mode. This is in accord with the coupling of the 2 B 1 and 2 B 2 Born-Oppenheimer states in C 2v symmetry, this mixing of the 2 B 1 π-ionized ground state and the 2 B 2 δ-ionized excited state being facilitated by the low (∼ 1.0 eV) gap between these states, as estimated from photoelectron spectroscopy. Turning to the second class of RC where unimolecular rearrangement reactions are promoted by vibronic interaction, several cases have emerged where the rearrangement would not be expected if it were based only on the ground-state properties of the RC. It was found (Chem. Phy. Lett. 1988, 143, 521) that the ethylene oxide RC undergoes C-C ring opening to the oxallyl species despite the fact that the ground state corresponds to ionization from the nonbonding oxygen π lone-pair orbital. The reaction develops excited-state character as a result of the vibronic mixing so that the activation barrier to ring opening is lowered. We will discuss the unusual rearrangements of the bicyclo[1.1.1.]pentane and [1.1.1]propellane RC from a similar perspective, emphasis being placed on the decisive role of symmetry in predicting the course of these rearrangements. We illustrate how this approach can reconcile conflicting considerations on some of the 'unexpected' reaction pathways followed by highly strained organic RC

  1. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J. [Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049 Madrid (Spain); Beljonne, D. [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons (Belgium)

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  2. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum.

    Science.gov (United States)

    Thyrhaug, Erling; Lincoln, Craig N; Branchi, Federico; Cerullo, Giulio; Perlík, Václav; Šanda, František; Lokstein, Heiko; Hauer, Jürgen

    2018-03-01

    The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Q x band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.

  3. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16 (Czech Republic); Cranston, Laura J.; Cogdell, Richard J. [Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Lincoln, Craig N.; Hauer, Jürgen, E-mail: juergen.hauer@tuwien.ac.at [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna (Austria); Savolainen, Janne [Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum (Germany)

    2015-06-07

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  4. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    International Nuclear Information System (INIS)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Hauer, Jürgen; Savolainen, Janne

    2015-01-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

  5. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    Science.gov (United States)

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  6. Raman dispersion spectroscopy on the highly saddled nickel(II)-octaethyltetraphenylporphyrin reveals the symmetry of nonplanar distortions and the vibronic coupling strength of normal modes

    International Nuclear Information System (INIS)

    Schweitzer-Stenner, R.; Stichternath, A.; Dreybrodt, W.; Jentzen, W.; Song, X.; Shelnutt, J.A.; Nielsen, O.F.; Medforth, C.J.; Smith, K.M.

    1997-01-01

    We have measured the polarized Raman cross sections and depolarization ratios of 16 fundamental modes of nickel octaethyltetraphenylporphyrin in a CS 2 solution for 16 fundamental modes, i.e., the A 1g -type vibrations ν 1 , ν 2 , ν 3 , ν 4 , ν 5 , and φ 8 , the B 1g vibrations ν 11 and ν 14 , the B 2g vibrations ν 28 , ν 29 , and ν 30 and the antisymmetric A 2g modes ν 19 , ν 20 , ν 22 , and ν 23 as function of the excitation wavelength. The data cover the entire resonant regions of the Q- and B-bands. They were analyzed by use of a theory which describes intra- and intermolecular coupling in terms of a time-independent nonadiabatic perturbation theory [E. Unger, U. Bobinger, W. Dreybrodt, and R. Schweitzer-Stenner, J. Phys. Chem. 97, 9956 (1993)]. This approach explicitly accounts in a self-consistent way for multimode mixing with all Raman modes investigated. The vibronic coupling parameters obtained from this procedure were then used to successfully fit the vibronic side bands of the absorption spectrum and to calculate the resonance excitation profiles in absolute units. Our results show that the porphyrin macrocycle is subject to B 2u -(saddling) and B 1u -(ruffling) distortions which lower its symmetry to S 4 . Thus, evidence is provided that the porphyrin molecule maintains the nonplanar structure of its crystal phase in an organic solvent. The vibronic coupling parameters indicate a breakdown of the four-orbital model. This notion is corroborated by (ZINDO/S) calculations which reveal that significant configurational interaction occurs between the electronic transitions into |Q right-angle- and |1B right-angle-states and various porphyrin→porphyrin, metal→porphyrin, and porphyrin→metal transitions. (Abstract Truncated)

  7. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  8. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.; Pieridou, Galatia; Vezie, Michelle; Few, Sheridan; Bronstein, Hugo; Meager, Iain; McCulloch, Iain; Nelson, Jenny

    2016-01-01

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  9. Effect of isotopic substitution on the collisional quenching of vibronically excited CO+

    International Nuclear Information System (INIS)

    Katayama, D.H.; Welsh, J.A.

    1983-01-01

    Rovibronic levels of the A 2 Pi/sub i/ state for 12 C 16 O + and 13 C 16 O + have been selectively excited by a pulsed, tunable dye laser and their time resolved fluorescence obtained as a function of helium pressure. These ions are formed by reaction of neutral carbon monoxide with helium metastable atoms created in a dc discharge. Since 13 CO + has essentially the same potential energy curves as 12 CO + , but differs primarily in its vibrational energy spacings, this experiment accentuates the role, in the collisional deactivation process, of the high lying ground state vibrational levels which are adjacent to the laser populated vibronic levels of the A 2 Pi/sub i/ state. Quenching rates are determined for the v' = 0, 1, and 2 levels which have relatively insignificant isotope shifts of a few wave numbers for the two isotopes. The difference in rates for the two isotopic ions demonstrates the importance of the positions for the high lying v'' = 10 and 11 ground state levels which have large isotope shifts of hundreds of wave numbers. A discussion of the deactivation process is given in terms of perturbations, Franck--Condon factors, energy gaps, and other considerations

  10. Engineering an all-optical route to ultracold molecules in their vibronic ground state

    OpenAIRE

    Koch, Christiane P.; Moszynski, Robert

    2008-01-01

    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state pote...

  11. The shape of the electronic circular dichroism spectrum of (2,6-dimethylphenyl)(phenyl)methanol: interplay between conformational equilibria and vibronic effects.

    Science.gov (United States)

    Padula, Daniele; Cerezo, Javier; Pescitelli, Gennaro; Santoro, Fabrizio

    2017-12-13

    Comparison between chiroptical spectra and theoretical predictions is the method of choice for the assignment of the absolute configuration of chiral compounds in solution. Here we report the case of an apparently simple biarylcarbinol, whose electronic circular dichroism (ECD) in the 1 L b region exhibits a peculiar alternation of negative and positive bands. Adopting Density Functional Theory, and describing solvent effects with implicit methods, we found three stable conformers in ethanol, each of them with two close lying states corresponding to similar local 1 L b excitations on the two phenyls. We computed the corresponding vibronic ECD spectra in harmonic approximation, including Duschinsky mixings as well as both Franck Condon (FC) and Herzberg Teller (HT) effects. Exploiting a recently developed mixed quantum/classical method, we further investigated the contribution of the vibronic spectra of out-of-equilibrium structures along the interconversion path connecting the different conformers. In this way, we achieved a reasonable agreement with experiment and attributed the alternating signs of the bands to the existence of different conformers. The remaining discrepancies with experiment indicate that specific solute-solvent interactions modulate the relative conformers' stabilities, calling for new methods able to combine Molecular Dynamics explorations and vibronic calculations. Moreover, the poor performance of HT approaches and the existence of two closely-lying states suggest the necessity of an improved fully-nonadiabatic vibronic approach. These findings demonstrate that even for such a simple system as the biarylcarbinol investigated here, a full reproduction of the fine details of the ECD spectrum requires the development of new improved methods.

  12. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    Science.gov (United States)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  13. Theory of Excitonic Delocalization for Robust Vibronic Dynamics in LH2.

    Science.gov (United States)

    Caycedo-Soler, Felipe; Lim, James; Oviedo-Casado, Santiago; van Hulst, Niek F; Huelga, Susana F; Plenio, Martin B

    2018-06-11

    Nonlinear spectroscopy has revealed long-lasting oscillations in the optical response of a variety of photosynthetic complexes. Different theoretical models that involve the coherent coupling of electronic (excitonic) or electronic-vibrational (vibronic) degrees of freedom have been put forward to explain these observations. The ensuing debate concerning the relevance of either mechanism may have obscured their complementarity. To illustrate this balance, we quantify how the excitonic delocalization in the LH2 unit of Rhodopseudomonas acidophila purple bacterium leads to correlations of excitonic energy fluctuations, relevant coherent vibronic coupling, and importantly, a decrease in the excitonic dephasing rates. Combining these effects, we identify a feasible origin for the long-lasting oscillations observed in fluorescent traces from time-delayed two-pulse single-molecule experiments performed on this photosynthetic complex and use this approach to discuss the role of this complementarity in other photosynthetic systems.

  14. Reassigning the CaH+ 11Σ → 21Σ vibronic transition with CaD+

    Science.gov (United States)

    Condoluci, J.; Janardan, S.; Calvin, A. T.; Rugango, R.; Shu, G.; Sherrill, C. D.; Brown, K. R.

    2017-12-01

    We observe vibronic transitions in CaD+ between the 11Σ and 21Σ electronic states by resonance enhanced multiphoton photodissociation spectroscopy in a Coulomb crystal. The vibronic transitions are compared with previous measurements on CaH+. The result is a revised assignment of the CaH+ vibronic levels and a disagreement with multi-state-complete-active-space second-order perturbation theory theoretical calculations by approximately 700 cm-1. Updated high-level coupled-cluster calculations that include core-valence correlations reduce the disagreement between theory and experiment to 300 cm-1.

  15. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response.

    Science.gov (United States)

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between

  16. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  17. A multifrequency virtual spectrometer for complex bio-organic systems: vibronic and environmental effects on the UV/Vis spectrum of chlorophyll a.

    Science.gov (United States)

    Barone, Vincenzo; Biczysko, Malgorzata; Borkowska-Panek, Monika; Bloino, Julien

    2014-10-20

    The subtle interplay of several different effects means that the interpretation and analysis of experimental spectra in terms of structural and dynamic characteristics is a challenging task. In this context, theoretical studies can be helpful, and as such, computational spectroscopy is rapidly evolving from a highly specialized research field toward a versatile and widespread tool. However, in the case of electronic spectra (e.g. UV/Vis, circular dichroism, photoelectron, and X-ray spectra), the most commonly used methods still rely on the computation of vertical excitation energies, which are further convoluted to simulate line shapes. Such treatment completely neglects the influence of nuclear motions, despite the well-recognized notion that a proper account of vibronic effects is often mandatory to correctly interpret experimental findings. Development and validation of improved models rooted into density functional theory (DFT) and its time-dependent extension (TD-DFT) is of course instrumental for the optimal balance between reliability and favorable scaling with the number of electrons. However, the implementation of easy-to-use and effective procedures to simulate vibrationally resolved electronic spectra, and their availability to a wide community of users, is at least equally important for reliable simulations of spectral line shapes for compounds of biological and technological interest. Here, such an approach has been applied to the study of the UV/Vis spectra of chlorophyll a. The results show that properly tailored approaches are feasible for state-of-the-art computational spectroscopy studies, and allow, with affordable computational resources, vibrational and environmental effects on the spectral line shapes to be taken into account for large systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach

    Energy Technology Data Exchange (ETDEWEB)

    Bloemsma, E.A.; Silvis, M.H.; Stradomska, A.; Knoester, J., E-mail: j.knoester@rug.nl

    2016-12-20

    Using a symmetry adapted polaron transformation of the Holstein Hamiltonian, we study the interplay of electronic excitation-vibration couplings, resonance excitation transfer interactions, and temperature in the linear absorption spectra of molecular J-aggregates. Semi-analytical expressions for the spectra are derived and compared with results obtained from direct numerical diagonalization of the Hamiltonian in the two-particle basis set representation. At zero temperature, we show that our polaron transformation reproduces both the collective (exciton) and single-molecule (vibrational) optical response associated with the appropriate standard perturbation limits. Specifically, for the molecular dimer excellent agreement with the spectra from the two-particle approach for the entire range of model parameters is obtained. This is in marked contrast to commonly used polaron transformations. Upon increasing the temperature, the spectra show a transition from the collective to the individual molecular features, which results from the thermal destruction of the exciton coherence.

  19. Vibronic oscillator strengths in cubic systems. I.- The adsorption spectrum of Tm+3

    International Nuclear Information System (INIS)

    Acevedo, R.; Hurtado, O.F.; Meruane, T.

    2000-01-01

    A symmetry adapted vibronic crystal field-ligand polarisation scheme is utilised with reference to the elpasolite type system, to gain understanding about the role played by both the electronic and the vibrational factors in the absorption intensity mechanisms of various selected excitation in this crystal. The calculation is performed assuming: The coupling among the internal and the external vibrations is negligible and therefore a seven atom system may be employed (though, we recognise that the vibrational frequencies values depend en several factors; among others the nature of both the host and the temperature. Additionally, no attempt has been made to include corrections due to spectral line shapes and to the shapes of the potential energy hypersurfaces associated with the terminal electronic terminal states). We have included some sophistication as for both the electronic and the vibrational wavefunctions are concerned. Three different set of electronic wavefunctions are reported and the sensitivity of the estimated overall vibronic intensities on both electronic and vibrational factors is tested against the experimental data , with reference to the 10K absorption spectrum. At this stage, we have excluded , the effects of both concentration and pressure upon the observed vibronic intensities, though new experiments and model calculations are needed. In this article, we report calculations for the whole set of transitions associated with the (a) , (b) and (c) .Our model calculation is based upon a minimum set of parameters to be fitted from experiment, mainly because. our main target is to advance the knowledge on mechanistic factors and the most likely paths for both emission and absorption for these type systems

  20. Rabi-vibronic resonance with large number of vibrational quanta

    OpenAIRE

    Glenn, R.; Raikh, M. E.

    2011-01-01

    We study theoretically the Rabi oscillations of a resonantly driven two-level system linearly coupled to a harmonic oscillator (vibrational mode) with frequency, \\omega_0. We show that for weak coupling, \\omega_p \\ll \\omega_0, where \\omega_p is the polaronic shift, Rabi oscillations are strongly modified in the vicinity of the Rabi-vibronic resonance \\Omega_R = \\omega_0, where \\Omega_R is the Rabi frequency. The width of the resonance is (\\Omega_R-\\omega_0) \\sim \\omega_p^{2/3} \\omega_0^{1/3} ...

  1. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    Science.gov (United States)

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  2. Toward a general mixed quantum/classical method for the calculation of the vibronic ECD of a flexible dye molecule with different stable conformers: Revisiting the case of 2,2,2-trifluoro-anthrylethanol.

    Science.gov (United States)

    Cerezo, Javier; Aranda, Daniel; Avila Ferrer, Francisco J; Prampolini, Giacomo; Mazzeo, Giuseppe; Longhi, Giovanna; Abbate, Sergio; Santoro, Fabrizio

    2018-06-01

    We extend a recently proposed mixed quantum/classical method for computing the vibronic electronic circular dichroism (ECD) spectrum of molecules with different conformers, to cases where more than one hindered rotation is present. The method generalizes the standard procedure, based on the simple Boltzmann average of the vibronic spectra of the stable conformers, and includes the contribution of structures that sample all the accessible conformational space. It is applied to the simulation of the ECD spectrum of (S)-2,2,2-trifluoroanthrylethanol, a molecule with easily interconvertible conformers, whose spectrum exhibits a pattern of alternating positive and negative vibronic peaks. Results are in very good agreement with experiment and show that spectra averaged over all the sampled conformational space can deviate significantly from the simple average of the contributions of the stable conformers. The present mixed quantum/classical method is able to capture the effect of the nonlinear dependence of the rotatory strength on the molecular structure and of the anharmonic couplings among the modes responsible for molecular flexibility. Despite its computational cost, the procedure is still affordable and promises to be useful in all cases where the ECD shape arises from a subtle balance between vibronic effects and conformational variety. © 2018 Wiley Periodicals, Inc.

  3. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  4. Vibrational and vibronic coherences in the dynamics of the FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaomeng; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de

    2016-12-20

    The coupled exciton–vibrational dynamics of a seven site Frenkel exciton model of the Fenna–Matthews–Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton–vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.

  5. Understanding the electron-phonon interaction in polar crystals: Perspective presented by the vibronic theory

    Science.gov (United States)

    Pishtshev, A.; Kristoffel, N.

    2017-05-01

    We outline our novel results relating to the physics of the electron-TO-phonon (el-TO-ph) interaction in a polar crystal. We explained why the el-TO-ph interaction becomes effectively strong in a ferroelectric, and showed how the electron density redistribution establishes favorable conditions for soft-behavior of the long-wavelength branch of the active TO vibration. In the context of the vibronic theory it has been demonstrated that at the macroscopic level the interaction of electrons with the polar zone-centre TO phonons can be associated with the internal long-range dipole forces. Also we elucidated a methodological issue of how local field effects are incorporated within the vibronic theory. These result provided not only substantial support for the vibronic mechanism of ferroelectricity but also presented direct evidence of equivalence between vibronic and the other lattice dynamics models. The corresponding comparison allowed us to introduce the original parametrization for constants of the vibronic interaction in terms of key material constants. The applicability of the suggested formula has been tested for a wide class of polar materials.

  6. The characterization of the high-frequency vibronic contributions to the 77 K emission spectra of ruthenium-am(m)ine-bipyridyl complexes, their attenuation with decreasing energy gaps, and the implications of strong electronic coupling for inverted-region electron transfer.

    Science.gov (United States)

    Xie, Puhui; Chen, Yuan-Jang; Uddin, Md Jamal; Endicott, John F

    2005-06-02

    The 77 K emission spectra of a series of [Ru(Am)6-2n(bpy)n]2+ complexes (n = 1-3) have been determined in order to evaluate the effects of appreciable excited state (e)/ground state (g) configurational mixing on the properties of simple electron-transfer systems. The principal focus is on the vibronic contributions, and the correlated distortions of the bipyridine ligand in the emitting MLCT excited state. To address the issues that are involved, the emission band shape at 77 K is interpreted as the sum of a fundamental component, corresponding to the {e,0'} --> {g,0} transition, and progressions in the ground-state vibrational modes that correlate with the excited-state distortion. Literature values of the vibrational parameters determined from the resonance-Raman (rR) for [Ru(NH3)4bpy]2+ and [Ru(bpy)3]2+ are used to model the emission spectra and to evaluate the spectral analysis. The Gaussian fundamental component with an energy Ef and bandwidth Deltanu1/2 is deconvoluted from the observed emission spectrum. The first-, second-, and third-order terms in the progressions of the vibrational modes that contribute to the band shape are evaluated as the sums of Gaussian-shaped contributions of width Deltanu1/2. The fundamental and the rR parameters give an excellent fit of the observed emission spectrum of [Ru(NH3)4bpy]2+, but not as good for the [Ru(bpy)3]2+ emission spectrum probably because the Franck-Condon excited state probed by the rR is different in symmetry from the emitting MLCT excited state. Variations in vibronic contributions for the series of complexes are evaluated in terms of reorganizational energy profiles (emreps, Lambdax) derived from the observed spectra, and modeled using the rR parameters. This modeling demonstrates that most of the intensity of the vibronic envelopes obtained from the frozen solution emission spectra arises from the overlapping of first-order vibronic contributions of significant bandwidth with additional convoluted

  7. Two-vibron bound states in the β–Fermi–Pasta–Ulam model

    International Nuclear Information System (INIS)

    Hu Xinguang; Tang Yi

    2008-01-01

    This paper studies the two-vibron bound states in the β–Fermi–Pasta–Ulam model by means of the number conserving approximation combined with the number state method. The results indicate that on-site, adjacent-site and mixed two-vibron bound states may exist in the model. Specially, wave number has a significant effect on such bound states, which may be considered as the quantum effects of the localized states in quantum systems. (condensed matter: structure, thermal and mechanical properties)

  8. Quasi-classical approaches to vibronic spectra revisited

    Science.gov (United States)

    Karsten, Sven; Ivanov, Sergei D.; Bokarev, Sergey I.; Kühn, Oliver

    2018-03-01

    The framework to approach quasi-classical dynamics in the electronic ground state is well established and is based on the Kubo-transformed time correlation function (TCF), being the most classical-like quantum TCF. Here we discuss whether the choice of the Kubo-transformed TCF as a starting point for simulating vibronic spectra is as unambiguous as it is for vibrational ones. Employing imaginary-time path integral techniques in combination with the interaction representation allowed us to formulate a method for simulating vibronic spectra in the adiabatic regime that takes nuclear quantum effects and dynamics on multiple potential energy surfaces into account. Further, a generalized quantum TCF is proposed that contains many well-established TCFs, including the Kubo one, as particular cases. Importantly, it also provides a framework to construct new quantum TCFs. Applying the developed methodology to the generalized TCF leads to a plethora of simulation protocols, which are based on the well-known TCFs as well as on new ones. Their performance is investigated on 1D anharmonic model systems at finite temperatures. It is shown that the protocols based on the new TCFs may lead to superior results with respect to those based on the common ones. The strategies to find the optimal approach are discussed.

  9. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Dennis; König, Carolin; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany)

    2014-10-28

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  10. VIBRONIC PROGRESSIONS IN SEVERAL DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Duley, W. W.; Kuzmin, Stanislav

    2010-01-01

    A number of vibronic progressions based on low-energy vibrational modes of a large molecule have been found in the diffuse interstellar band (DIB) spectrum of HD 183143. Four active vibrational modes have been identified with energies at 5.18 cm -1 , 21.41 cm -1 , 31.55 cm -1 , and 34.02 cm -1 . The mode at 34.02 cm -1 was previously recognized by Herbig. Four bands are associated with this molecule, with origins at 6862.61 A, 6843.64 A, 6203.14 A, and 5545.11 A (14589.1 cm -1 , 14608.08 cm -1 , 16116.41 cm -1 , and 18028.9 cm -1 , respectively). The progressions are harmonic and combination bands are observed involving all modes. The appearance of harmonic, rather than anharmonic, terms in these vibronic progressions is consistent with torsional motion of pendant rings, suggesting that the carrier is a 'floppy' molecule. Some constraints on the type and size of the molecule producing these bands are discussed.

  11. Vibronic Spectroscopy of the Phenylcyanomethyl Radical

    Science.gov (United States)

    Mehta, Deepali N.; Kidwell, Nathanael M.; Zwier, Timothy S.

    2011-06-01

    Resonance stabilized radicals (RSRs) are thought to be key intermediates in the formation of larger molecules in planetary atmospheres. Given the nitrogen-rich atmosphere of Titan, and the prevalence of nitriles there, it is likely that nitrile and isonitrile RSRs could be especially important in pathways leading to the formation of more complex nitrogen-containing compounds and the aerosols ("tholins") that are ultimately produced. In this talk, the results of a gas phase, jet-cooled vibronic spectroscopy study of the phenylcyanomethyl radical (C_6H_5.{C}HCN), the nitrogen-containing analog of the 1-phenylpropargyl radical, will be presented. A resonant two color photon ionization spectrum over the range 21,350-22,200 Cm-1 (450.0-468.0 nm) has been recorded, and the D_0-D_1 origin band has been tentatively identified at 21,400 Cm-1. Studies identifying the ionization threshold, and characterizing the vibronic structure will also be presented. An analogous study of the phenylisocyanomethyl radical, C_6H_5.{C}HNC, is currently being pursued for comparison with that of phenylcyanomethyl radical.

  12. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    Science.gov (United States)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  13. Acoustic wave coupled magnetoelectric effect

    International Nuclear Information System (INIS)

    Gao, J.S.; Zhang, N.

    2016-01-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm −1 Oe −1 ) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially. - Highlights: • Magnetoelectric (ME) coupling by acoustic waveguide was developed. • The frequency and size dependence of the ME effects were investigated. • A resonant condition about the geometrical size of the waveguide was obtained. • A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.

  14. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Physik, WA THEP, Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-06-13

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These “exact effective couplings” encode the finite, relative renormalization between the N=2 and the N=4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  15. Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions

    Science.gov (United States)

    Wu, B. H.; Cao, J. C.; Timm, C.

    2012-07-01

    We study the interplay of polaronic effect and superconductivity in transport through molecular Josephson junctions. The tunneling rates of electrons are dominated by vibronic replicas of the superconducting gap, which show up as prominent features in the differential conductance for the dc and ac current. For relatively large molecule-lead coupling, a features that appears when the Josephson frequency matches the vibron frequency can be identified with an over-the-gap structure observed by Marchenkov [Nat. Nanotech. 1748-338710.1038/nnano.2007.2182, 481 (2007)]. However, we are more concerned with the weak-coupling limit, where resonant tunneling through the molecular level dominates. We find that certain features involving both Andreev reflection and vibron emission show an unusual shift of the bias voltage V at their maximum with the gate voltage Vg as V˜(2/3)Vg. Moreover, due to the polaronic effect, the ac Josephson current shows a phase shift of π when the bias eV is increased by one vibronic energy quantum ℏωv. This distinctive even-odd effect is explained in terms of the different sign of the coupling to vibrons of electrons and of Andreev-reflected holes.

  16. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  17. Ab initio ro-vibronic spectroscopy of SiCCl (X{sup ~2}Π)

    Energy Technology Data Exchange (ETDEWEB)

    Brites, Vincent [Université d’Evry Val d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, LAMBE CNRS UMR 8587, Boulevard F. Mitterrand, 91025 Evry Cedex (France); Mitrushchenkov, Alexander O.; Léonard, Céline, E-mail: celine.leonard@u-pem.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States)

    2014-07-21

    The full dimensional potential energy surfaces of the {sup 2}A{sup ′} and {sup 2}A{sup ′′} electronic components of X{sup ~2}Π SiCCl have been computed using the explicitly correlated coupled cluster method, UCCSD(T)-F12b, combined with a composite approach taking into account basis set incompleteness, core-valence correlation, scalar relativity, and higher order excitations. The spin-orbit and dipole moment surfaces have also been computed ab initio. The ro-vibronic energy levels and absorption spectrum at 5 K have been determined from variational calculations. The influence of each correction on the fundamental frequencies is discussed. An assignment is proposed for bands observed in the LIF experiment of Smith et al. [J. Chem. Phys. 117, 6446 (2002)]. The overall agreement between the experimental and calculated ro-vibronic levels is better than 7 cm{sup −1} which is comparable with the 10–20 cm{sup −1} resolution of the emission spectrum.

  18. Effect of Group Cognitive Behavioral Couples Therapy on Couple Burnout and Divorce Tendency in Couples

    Directory of Open Access Journals (Sweden)

    M Mohammadi

    2017-02-01

    Full Text Available Background & aim: Couple burnout is one of the phenomena which involve many couples, it is among the main causes of emotional divorce, and without proper management and treatment, and it can lay the ground for formal divorce among couples. Cognitive behavioral couple therapy is one of the existing approaches in the couple therapy field, the efficiency of which has been established for resolving many marital problems. The present study was designed by the aim of investigating the effect of group cognitive behavioral couple therapy on couple burnout and divorce tendency in couples.   Methods: The present research was of applied research type. The research method was semi-empirical with a pretest-posttest with control group design. The research population included all the couples with marital conflict and problems who, after a recall announcement of the researcher, visited the counseling and psychological services center located in Gorgan city in 2014. By using the available sampling method, 20 couples were selected among the volunteer and qualified couples for the research, and they were assigned into experiment and control groups (10 couples per group by random assignment. In the present research, the Pines burnout questionnaire (1996 and divorce tendency scale of Rouswelt, Johnson, and Mouro (1986 were used for gathering the data. After taking the pretest, the group cognitive behavioral couple therapy based on the couple therapy model of Baucom  and colleagues (2008 was held in 10 2-hour weekly sessions for the experiment group couples, while the control group couples received no intervention. The data were analyzed through descriptive statistics method and multivariate covariance analysis (MANCOVA in SPSS v.20. Results: The multivariate covariance analysis results for couple burnout (F= 28.80 and divorce tendency (F= 51.25 suggested that there was a significant difference between the couples of experiment and control groups (P< 0

  19. Meson and baryon families as vibronic states in sl(2) quantum universal enveloping algebra

    International Nuclear Information System (INIS)

    Iwao, Syurei; Ono, Yasuji

    1990-01-01

    A mass formula of the q-deformed modified harmonic oscillator type in the sl(2) quantum universal enveloping algebra is proposed for the meson and baryon families, by taking into account the known theories as a guide. Specifying the vibronic quantum number, the deformation parameter and associated ones of the theory are determined from available data for the scalar, pseudoscalar, vector meson and baryon families. The parameters determined from totally ten families not only predict many unobserved states, but also give restrictions on the observable number of states. The method may admit taking into account non-perturbative effects. (author)

  20. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, Lucas A.; Mulder, Fokko M. [Reactor Institute Delft, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Zbiri, Mohamed, E-mail: zbiri@ill.fr; Johnson, Mark R. [Institut Laue Langevin, 38042 Grenoble Cedex 9 (France); Carter, Elizabeth [Vibrational Spectroscopy Facility, School of Chemistry, The University of Sydney, NSW 2008 (Australia); Kotlewski, Arek; Picken, S. [ChemE-NSM, Faculty of Chemistry, Delft University of Technology, 2628BL/136 Delft (Netherlands); Kearley, Gordon J. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234 (Australia)

    2014-01-07

    Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10{sup −2} electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

  1. Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2010-01-01

    In this paper, molecular quantum computation is numerically studied with the quantum search algorithm (Grover's algorithm) by means of optimal control simulation. Qubits are implemented in the vibronic states of I 2 , while gate operations are realized by optimally designed laser pulses. The methodological aspects of the simulation are discussed in detail. We show that the algorithm for solving a gate pulse-design problem has the same mathematical form as a state-to-state control problem in the density matrix formalism, which provides monotonically convergent algorithms as an alternative to the Krotov method. The sequential irradiation of separately designed gate pulses leads to the population distribution predicted by Grover's algorithm. The computational accuracy is reduced by the imperfect quality of the pulse design and by the electronic decoherence processes that are modeled by the non-Markovian master equation. However, as long as we focus on the population distribution of the vibronic qubits, we can search a target state with high probability without introducing error-correction processes during the computation. A generalized gate pulse-design scheme to explicitly include decoherence effects is outlined, in which we propose a new objective functional together with its solution algorithm that guarantees monotonic convergence.

  2. Chimera states: Effects of different coupling topologies

    Science.gov (United States)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar; Perc, Matjaž

    2017-04-01

    Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.

  3. Effect of couplings in the resonance continuum

    International Nuclear Information System (INIS)

    Royal, J; Larson, A; Orel, A E

    2004-01-01

    Electronic coupling of two or more resonances via the electron scattering continuum is investigated. The effect of this coupling as a function of the resonance curves and autoionization widths is investigated, and the conditions for the maximum effect are determined. The theory is applied to two physical problems, the product state distribution produced by the dissociative recombination of electrons with HeH + and a one-dimensional model for ion-pair production resulting from electron collisions with H + 3 . It is found that the coupling does not affect the product state distribution in HeH + but produces a significant effect in the H + 3 model

  4. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  5. Non vertical vibronic transitions in atom molecule collisions

    International Nuclear Information System (INIS)

    Klomp, U.C.

    1982-01-01

    This thesis is mainly devoted to an experimental and theoretical study on vibronic transitions which occur in collisions between an alkali atom and several diatomic molecules. An experimental study on electron and ion production in repulsive Cs-CO and Cs-N 2 collisions, and in Cs-NO and Cs-O 2 non-repulsive collisions is presented. The experimental data are discussed in terms of some existing models. It is clear that a new consistent theory on vibronic transitions is needed to explain the experimental data. Such a theory is presented, and it is shown that some existing models are limiting cases of this theory. An experimental study on the relative probabilities for ion and electron production in collisions between a Na, K or Cs atom and an O 2 or NO molecule is also described. These experiments suggest that the incident velocity of the alkali atoms has a predominant influence on the relative probabilities for ion and electron production in these collisions. (Auth.)

  6. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2011-01-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s)and the SU(2) L coupling α 2 (s). I will report on my recent package alphaQED, which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the R had package by Harlander and Steinhauser, the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy.

  7. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Humboldt-Universitaet, Berlin

    2011-07-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s) and the SU(2) L coupling α 2 (s). I report on my recent package alphaQED [1], which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the Rhad package by Harlander and Steinhauser [2], the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy. (orig.)

  8. Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.

    Science.gov (United States)

    Clemente-Juan, Juan Modesto; Palii, Andrew; Coronado, Eugenio; Tsukerblat, Boris

    2016-08-09

    In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes of the electron transfer optical absorption bands and quantitative analysis of the main parameters of tetrameric quantum cells. Here, we go beyond the Born-Oppenheimer paradigm and present a solution of the quantum-mechanical pseudo Jahn-Teller (JT) vibronic problem in bielectronic MV species (exemplified by the tetra-ruthenium complexes) based on the recently developed symmetry-assisted approach.3,4 The mathematical approach to the vibronic eigenproblem takes into consideration the point symmetry basis, and therefore, the total matrix of the JT Hamiltonian is blocked to the maximum extent. The submatrices correspond to the irreducible representations (irreps) of the point group. With this tool, we also extend the theory of the mQCA cell beyond the limit of prevailing Coulomb repulsion in the electronic pair (adopted in ref 2), and therefore, the general pseudo-JT problems for spin-singlet ((1)B1g, 2(1)A1g, (1)B2g, (1)Eu) ⊗ (b1g + eu) and spin-triplet states ((3)A2g, (3)B1g, 2(3)Eu) ⊗ (b1g + eu) in a square-planar bielectronic system are solved. The obtained symmetry-adapted electron-vibrational functions are employed for the calculation of the profiles (shape functions) of the charge transfer absorption bands in the tetrameric MV complexes and for the discussion of the

  9. Vibronic dephasing model for coherent-to-incoherent crossover in DNA

    Science.gov (United States)

    Karasch, Patrick; Ryndyk, Dmitry A.; Frauenheim, Thomas

    2018-05-01

    In this paper, we investigate the interplay between coherent and incoherent charge transport in cytosine-guanine (GC-) rich DNA molecules. Our objective is to introduce a physically grounded approach to dephasing in large molecules and to understand the length-dependent charge transport characteristics, and especially the crossover from the coherent tunneling to incoherent hopping regime at different temperatures. Therefore, we apply the vibronic dephasing model and compare the results to the Büttiker probe model which is commonly used to describe decoherence effects in charge transport. Using the full ladder model and simplified one-dimensional model of DNA, we consider molecular junctions with alternating and stacked GC sequences and compare our results to recent experimental measurements.

  10. Coupling effect on the Berry phase

    Directory of Open Access Journals (Sweden)

    Lijing Tian

    2016-11-01

    Full Text Available The Berry phase has universal applications in various fields. Here, we explore the coupling effect on the Berry phase of a two-level system adiabatically driven by a rotating classical field and interacting with a single quantized mode. Our simulations clearly reveal that the Berry phase change is quadratic proportional to the coupling constant if it is less than the level spacing between neighboring instantaneous eigenstates. Remarkably, if the nearest neighbouring level spacing is comparable with the coupling constant, this simple quadratic dependence is lost. Around this resonance, the Berry phase can be significantly tuned by slightly adjusting the parameters, such as the coupling constant, the frequency of the quantized mode, and the transition frequency. These numerical results, agreeing well with the perturbation theory calculations, provide an alternative approach to tune the Berry phase near the resonance, which is useful in quantum information science, i.e. designing quantum logic gates.

  11. Vibronic spectra of Gd3+ in metaphosphate glasses: Comparison with Raman and infrared spectra

    International Nuclear Information System (INIS)

    Hall, D.W.; Brawer, S.A.; Weber, M.J.

    1982-01-01

    Vibronic sidebands associated with the 6 P/sub 7/2/→ 8 S/sub 7/2/ transition of Gd 3+ -doped metaphosphate glasses are observed using line-narrowed fluorescence techniques. Glasses having metal cations of different mass and charge (La,Al,Mg,Ba) are examined. Vibronic spectra, which probe vibrations about the rare-earth element site, are compared with polarized Raman scattering data and the infrared dielectric constant obtained from near-normal reflectance measurements. Results indicate that in metaphosphate glasses vibronic selection rules are similar to HV (vertical height) Raman selection rules. The wavelengths and relative intensities of peaks in the high-frequency portion of the vibronic spectra change with respect to corresponding peaks in the Raman spectra when the mass and/or charge of Gd 3+ differs significantly from that of the metal cation

  12. Effective gravitational coupling in modified teleparallel theories

    Science.gov (United States)

    Abedi, Habib; Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-04-01

    In the present study, we consider an extended form of teleparallel Lagrangian f (T ,ϕ ,X ) , as function of a scalar field ϕ , its kinetic term X and the torsion scalar T . We use linear perturbations to obtain the equation of matter density perturbations on sub-Hubble scales. The gravitational coupling is modified in scalar modes with respect to the one of general relativity, albeit vector modes decay and do not show any significant effects. We thus extend these results by involving multiple scalar field models. Further, we study conformal transformations in teleparallel gravity and we obtain the coupling as the scalar field is nonminimally coupled to both torsion and boundary terms. Finally, we propose the specific model f (T ,ϕ ,X )=T +∂μϕ ∂μϕ +ξ T ϕ2 . To check its goodness, we employ the observational Hubble data, constraining the coupling constant, ξ , through a Monte Carlo technique based on the Metropolis-Hastings algorithm. Hence, fixing ξ to its best-fit value got from our numerical analysis, we calculate the growth rate of matter perturbations and we compare our outcomes with the latest measurements and the predictions of the Λ CDM model.

  13. Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion

    Directory of Open Access Journals (Sweden)

    Stojanović Ljiljana

    2013-01-01

    Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  14. E x circle epsilon Jahn-Teller anharmonic coupling for an octahedral system

    CERN Document Server

    Avram, N M; Kibler, M R

    2001-01-01

    The coupling between doubly degenerate electronic states and doubly degenerate vibrations is analyzed for an octahedral system on the basis of the introduction of an anharmonic Morse potential for the vibronic part. The vibrations are described by anharmonic coherent states and their linear coupling with the electronic states is considered. The matrix elements of the vibronic interaction are built and the energy levels corresponding to the interaction Hamiltonian are derived.

  15. Optical model representation of coupled channel effects

    International Nuclear Information System (INIS)

    Wall, N.S.; Cowley, A.A.; Johnson, R.C.; Kobas, A.M.

    1977-01-01

    A modification to the usual 6-parameter Woods-Saxon parameterization of the optical model for the scattering of composite particles is proposed. This additional real term reflects the effect of coupling other channels to the elastic scattering. The analyses favor a repulsive interaction for this term, especially for alpha particles. It is found that the repulsive term when combined with a Woods-Saxon term yields potentials with central values and volume integrals similar to those found by uncoupled elastic scattering calculations. These values are V(r = 0) approximately equal to 125 MeV and J/4A approximately equal to 300 MeV-fm 3

  16. Observation of vibronic emission spectrum of jet-cooled 3,5-difluorobenzyl radical.

    Science.gov (United States)

    Lee, Seung Woon; Yoon, Young Wook; Lee, Sang Kuk

    2010-09-02

    We applied the technique of corona-excited supersonic expansion using a pinhole-type glass nozzle to observe the vibronic emission spectrum of jet-cooled benzyl-type radicals from the corona discharge of precursor 3,5-difluorotoluene seeded in a large amount of inert helium carrier gas. The vibronically well-resolved emission spectrum was recorded with a long-path monochromator in the visible region. After subtracting the vibronic bands originating from isomeric difluorobenzyl radicals from the observed spectrum, we identified for the first time the bands belonging to the 3,5-difluorobenzyl radical, from which the electronic energy and vibrational mode frequencies of the 3,5-difluorobenzyl radical were accurately determined in the ground electronic state by comparison with those of the precursor and with those from an ab initio calculation.

  17. Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide

    Science.gov (United States)

    Takeno, S.

    1986-01-01

    Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.

  18. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  19. Quantum phase transition in the U(4) vibron model and the E(3) symmetry

    International Nuclear Information System (INIS)

    Zhang Yu; Hou Zhanfeng; Chen Huan; Wei Haiqing; Liu Yuxin

    2008-01-01

    We study the details of the U(3)-O(4) quantum phase transition in the U(4) vibron model. Both asymptotic analysis in the classical limit and rigorous calculations for finite boson number systems indicate that a second-order phase transition is still there even for the systems with boson number N ranging from tens to hundreds. Two kinds of effective order parameters, including E1 transition ratios B(E1:2 1 →1 1 )/B(E1:1 1 →0 1 ) and B(E1:0 2 →1 1 )/B(E1:1 1 →0 1 ), and the energy ratios E 2 1 /E 0 2 and E 3 1 /E 0 2 are proposed to identify the second-order phase transition in experiments. We also found that the critical point of phase transition can be approximately described by the E(3) symmetry, which persists even for moderate N∼10 protected by the scaling behaviors of quantities at the critical point. In addition, a possible empirical example exhibiting roughly the E(3) symmetry is discussed

  20. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    Science.gov (United States)

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  1. Ultrafast vibronic dynamics of dye molecules studied by the induced grating method

    International Nuclear Information System (INIS)

    Liu, C.H.; Troeger, P.; Laubereau, A.

    1985-08-01

    Previous work on transient polarization spectroscopy applying the induced grating technique concentrated on the time scale > 10 -11 s. Only one earlier study on a shorter time scale showed the occurrence of the so-called coherence peak without a detailed explanation for this phenomena. We report new theoretical and experimental data on a polarization effect that occurs in the nonlinear Rayleigh scattering of delayed probing pulses from induced population gratings. The periodic population changes are generated by two synchronized pumping pulses of the same frequency. Model calculations are presented, which carefully evaluate the orientational distribution and give quantitative information on the scattering signal for various polarization conditions. The scattering mechanism for the coherence peak is explained as a two step process with one photon absorption and emission process; it depends on the vibronic relaxation of the terminating level in the excited electronic state. Experimental results are reported for the vibrational and orientational relaxation times. For example values of tausub(v)=0.2+-0.2 ps and tausub(v)=0.8+-0.3 ps are measured respectively for Rhodamine 6G in ethanol and phenoxazone 9 in dioxane. Our three-beam transient grating technique under general polarization conditions can be used for the study of a variety of dynamic processes of molecules in the excited electronic or ground state. An important advantage compared to nonlinear absorption or induced dichroism techniques is that the scattering method avoids undesirable background signals. (author)

  2. Analysis of vibronic interactions in the molecules of cross-conjugated ketones

    Directory of Open Access Journals (Sweden)

    Kompaneez V.V.

    2017-01-01

    Full Text Available We have done quantitative analysis of vibronic parameters of two cross-conjugated δ-dimethylaminoketones. The research shows the influence of С-N and C=O bonds in the rings, and the radicals with nitro compounds on the vibronic parameters of characteristic bands, which describe the state (vibrations, types of deformation under excitation of the phenyl ring and the polyene bridge. Results described impact of the substituent’s nature on the parameters of intra- and intermolecular interactions presents for the studied compounds.

  3. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  4. Radiation effects in charge coupled devices

    International Nuclear Information System (INIS)

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  5. Vibronic relaxation in molecular mixed crystals : Pentacene in naphthalene and p-terphenyl

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1981-01-01

    Picosecond photon echo techniques are used to measure directly vibronic relaxation times in the first excited singlet state of pentacene in naphthalene and p-terphenyl. In regions of low (< 300 cm–1) and high (> 1000 cm–1) vibrational energy, relaxation is fast (τ <2 ps) due to direct phonon

  6. Intense Vibronic Modulation of the Chiral Photoelectron Angular Distribution Generated by Photoionization of Limonene Enantiomers with Circularly Polarized Synchrotron Radiation.

    Science.gov (United States)

    Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan

    2018-04-17

    Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vibronic interactions proceeding from combined analytical and numerical considerations: Covalent functionalization of graphene by benzene, distortions, electronic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V. [Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu (Estonia)

    2016-04-07

    Chemically bound states of benzene molecules with graphene are studied both analytically and numerically. The states are formed by switching off intrabonds of π-electrons in C{sub 6} rings to interbonds. A number of different undistorted and distorted structures are established both with aligned and with transversal mutual orientation of benzene and graphene. The vibronic interactions causing distortions of bound states are found, by using a combination of analytical and numerical considerations. This allows one to determine all electronic transitions of π-electrons without explicit numerical calculations of excited states, to find the conical intersections of potentials, and to show that the mechanism of distortions is the pseudo-Jahn-Teller effect. It is found that the aligned distorted benzene molecule placed between two graphene sheets makes a chemical bond with both of them, which may be used for fastening of graphene sheets together.

  8. Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning

    International Nuclear Information System (INIS)

    Lizuain, I.; Muga, J. G.

    2007-01-01

    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard-wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well-isolated Rabi resonances, where the detuning-adapted Rabi frequency coincides with the transition frequency between vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined

  9. Effect of Couple Therapy Based on the Choice Theory on Social Commitment of Couples

    Directory of Open Access Journals (Sweden)

    Hossein Abbasi

    2017-09-01

    Full Text Available Background and Objective: Commitment to spouse, marriage, and family is one of the most important factors ensuring the continuity of marriage and strength of family bonds that has attracted considerable attention in the contemporary family and marriage studies. In this study, we sought to determine the effect of couple therapy based on the choice theory on the social commitment of couples. Materials and Methods: This was a quasi-experimental study with pretest-posttest design and a control group that was performed among volunteer couples visiting Isfahan Counseling and Psychology Centers in Isfahan, Iran, during 2015. The subjects consisted of 32 incompatible couples who were selected through convenience sampling and were randomly assigned into experimental (16 couples and control (16 couples groups. Then, the experimental group received nine sessions of group couple therapy during three months on family life skills based on choice theory. It is worth mentioning that the dependent variable was the social commitment of couples evaluated by the dimensions of commitment inventory of Adams and Jones (1997. The collected data were analyzed by multivariate analysis of covariance in SPSS, version 20. Results: At the post-test stage, couple therapy based on choice theory significantly enhanced social commitment in the experimental group compared to the control group (P<0.001. Conclusion: According to the findings of this study, couple therapy based on the choice theory is an effective strategy in promoting commitment and loyalty to spouse, marriage, and family and can decrease and prevent family-related problems and threats such as divorce and marital infidelity.

  10. Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer

    International Nuclear Information System (INIS)

    Auer, Benjamin; Fernandez, Laura; Hammes-Schiffer, Sharon

    2011-01-01

    The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites in a proton-coupled electron transfer (PCET) system was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wavefunctions and incorporation of multiple proton donor-acceptor motions. The calculated KIEs and relative standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wavefunctions for this system, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in proton relay systems. The theory suggests that the PCET rate constant may be increased by decreasing the equilibrium proton donor-acceptor distances or modifying the thermal motions of the molecule to facilitate the concurrent decrease of these distances. The submission of this journal article in ERIA is a requirement of the EFRC subcontract with Pennsylvania State University collaborators to get publications to OSTI.

  11. Phase sensitive control of vibronic guest-host interaction: Br2 in Ar matrix.

    Science.gov (United States)

    Ibrahim, Heide; Héjjas, Mónika; Fushitani, Mizuho; Schwentner, Nikolaus

    2009-07-02

    Vibronic progressions are programmed into a pulse shaper which converts them via the inherent Fourier transformation into a train of femtosecond pulses in time domain for chromophore excitation. Double pulse results agree with phase-sensitive wave packet superposition from a Michelson interferometer which delivers coherence times with high reliability. Spectral resolution of 1 nm and a spacing of around 4 nm within the 20 nm envelope centered at 590 nm delivers a train of seven phase-controlled 40 fs subpulses separated by 250 fs. Combs adjusted to the zero phonon lines (ZPL) and phonon sidebands (PSB) of the B state vibronic progression are reproduced in the chromophore for a coherent subpulse accumulation. B state ZPL wave packet dynamics dominates in pump-probe spectra due to its coherence despite an overwhelming but incoherent A state contribution in absorption. PSB comb accumulation is also phase sensitive and demonstrates coherence within several 100 matrix degrees of freedom in the vicinity.

  12. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  13. Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle.

    Science.gov (United States)

    Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng

    2018-03-12

    The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    International Nuclear Information System (INIS)

    Kai, Ding; Yi-Ping, Zeng

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Disentangling running coupling and conformal effects in QCD

    CERN Document Server

    Brodsky, S J; Grunberg, G; Rathsman, J

    2001-01-01

    We investigate the relation between a postulated skeleton expansion and the conformal limit of QCD. We begin by developing some consequences of an Abelian-like skeleton expansion, which allows one to disentangle running-coupling effects from the remaining skeleton coefficients. The latter are by construction renormalon free, and hence hopefully better behaved. We consider a simple ansatz for the expansion, where an observable is written as a sum of integrals over the running coupling. We show that in this framework one can set a unique Brodsky-Lepage-Mackenzie (BLM) scale-setting procedure as an approximation to the running-coupling integrals, where the BLM coefficients coincide with the skeleton ones. Alternatively, the running-coupling integrals can be approximated using the effective charge method. We discuss the limitations in disentangling running coupling effects in the absence of a diagrammatic construction of the skeleton expansion. Independently of the assumed skeleton structure we show that BLM coef...

  16. The Raman and vibronic activity of intermolecular vibrations in aromatic-containing complexes and clusters

    International Nuclear Information System (INIS)

    Maxton, P.M.; Schaeffer, M.W.; Ohline, S.M.; Kim, W.; Venturo, V.A.; Felker, P.M.

    1994-01-01

    Theoretical and experimental results pertaining to the excitation of intermolecular vibrations in the Raman and vibronic spectra of aromatic-containing, weakly bound complexes and clusters are reported. The theoretical analysis of intermolecular Raman activity is based on the assumption that the polarizability tensor of a weakly bound species is given by the sum of the polarizability tensors of its constituent monomers. The analysis shows that the van der Waals bending fundamentals in aromatic--rare gas complexes may be expected to be strongly Raman active. More generally, it predicts strong Raman activity for intermolecular vibrations that involve the libration or internal rotation of monomer moieties having appreciable permanent polarizability anisotropies. The vibronic activity of intermolecular vibrations in aromatic-rare gas complexes is analyzed under the assumption that every vibronic band gains its strength from an aromatic-localized transition. It is found that intermolecular vibrational excitations can accompany aromatic-localized vibronic excitations by the usual Franck--Condon mechanism or by a mechanism dependent on the librational amplitude of the aromatic moiety during the course of the pertinent intermolecular vibration. The latter mechanism can impart appreciable intensity to bands that are forbidden by rigid-molecule symmetry selection rules. The applicability of such rules is therefore called into question. Finally, experimental spectra of intermolecular transitions, obtained by mass-selective, ionization-detected stimulated Raman spectroscopies, are reported for benzene--X (X=Ar, --Ar 2 , N 2 , HCl, CO 2 , and --fluorene), fluorobenzene--Ar and --Kr, aniline--Ar, and fluorene--Ar and --Ar 2 . The results support the conclusions of the theoretical analyses and provide further evidence for the value of Raman methods in characterizing intermolecular vibrational level structures

  17. Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules

    Science.gov (United States)

    Garner, Scott M.; Miller, Terry A.

    2017-06-01

    The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.

  18. Energy spectra of vibron and cluster models in molecular and nuclear systems

    Science.gov (United States)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  19. Vibronic intensities for Er3+ in Cs2 NaErCl6

    International Nuclear Information System (INIS)

    Acevedo, R.; Navarro, G.; Meruane, T.

    2001-01-01

    In this current study, we have undertaken vibronic intensity calculations for the absorptions (( 4 I 15/2 ) Γ k ) → (( 4 I 13/2 ) Γ l ) of the Er 3+ in the Cs 2 NaErCl 6 elpasolite type system. This system is extremely complicated to handle from both a theoretical and an experimental viewpoints. This theoretical work shows that over an energy range of about 400 cm -1 , a substantial amount of transitions are likely to take place (about 100 transitions; twenty five of them are magnetic dipole allowed and seventy five are vibronically allowed). It is then a formidable task to identify and assign all of these transitions in a non-ambiguous way. Also the experimental evidence available for these absorptions is related to a total of about twenty lines in the luminescence spectrum of this system. The spectrum itself is very challenging and the superposition of spectral features is most likely to occur. A careful analysis of the calculated vibronic intensities and overall oscillator strengths for the various transitions indicates that the current model used is both flexible and appropriate to deal with this kind of systems. In a forthcoming paper, we will examine the rather unusual high intensity associated with the (( 4 I 15/2 ) Γ k ) → (( 4 S 3/2 ) Γ l ) excitations. (Author)

  20. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  1. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  2. Nonlinear charge reduction effect in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Sarmah, D; Tessarotto, M; Salimullah, M

    2006-01-01

    The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas

  3. Coupled quantum treatment of vibrationally inelastic and vibronic charge transfer in proton-O2 collisions

    International Nuclear Information System (INIS)

    Gianturco, F.A.; Palma, A.; Semprini, E.; Stefani, F.; Baer, M.

    1990-01-01

    A three-dimensional quantum-mechanical study of vibrational, state-resolved differential cross sections (DCS) for the direct inelastic and for the charge-transfer scattering channels has been carried out for the H + +O 2 system. The collision energy considered was E c.m. =23.0 eV, which is the same as that examined by Noll and Toennies in their experiments [J. Chem. Phys. 85, 3313 (1986)]. The scattering treatment employed was the charge-transfer infinite-order sudden approximation (CT IOSA) with the vibrational states correctly expanded over the relevant adiabatic basis for each of the two electronic channels. The state-to-state DCS are found to follow closely the behavior of the experimental quantities, both in the inelastic and the charge-transfer channels. Moreover, a careful comparison between the measured relative probabilities and computed values allows us to test in minute detail the efficiency of the scattering model and the reliability of the potential-energy surfaces employed. It is found that vibrational energy transfer is overestimated in the vibrational inelastic channels while in the charge-transfer inelastic channels the same energy transfer is slightly underestimated by the calculations. The total flux distribution, however, is found to be in very good accord with experiments. Angular distributions are also well reproduced both by the DCS and by the average energy-transfer values. The study of some of the CT IOSA quantities also allows us to establish clearly the importance of nonadiabatic transitions in enhancing vibrational inelasticity in the present system

  4. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  5. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  6. Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2010-01-01

    Full Text Available Diversity antennas play an important role in wireless communications. However, mutual coupling between multiple ports of a diversity antenna has significant effects on wireless radio links and channel capacity. In this paper, dual-port pattern diversity antennas for femtocell applications are proposed to cover GSM1800, UMTS, and WLAN frequency bands. The channel capacities of the proposed antennas and two ideal dipoles with different mutual coupling levels are investigated in an indoor environment. The relation between mutual coupling and channel capacity is observed through investigations of these antennas.

  7. Autaptic effects on synchrony of neurons coupled by electrical synapses

    Science.gov (United States)

    Kim, Youngtae

    2017-07-01

    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  8. Heavy components coupling effect on building response spectra generation

    International Nuclear Information System (INIS)

    Liu, T.H.; Johnson, E.R.

    1985-01-01

    This study investigates the dynamic coupling effect on the floor response spectra between the heavy components and the Reactor Interior (R/I) building in a PWR. The following cases were studied: (I) simplified models of one and two lump mass models representing building and heavy components, and (II) actual plant building and heavy component models. Response spectra are developed at building nodes for all models, using time-history analysis methods. Comparisons of response spectra from various models are made to observe the coupling effects. In some cases, this study found that the coupling would reduce the response spectra values in certain frequency regions even if the coupling is not required according to the above criteria. (orig./HP)

  9. Z' effects and anomalous gauge couplings at LC with polarization

    International Nuclear Information System (INIS)

    Pankov, A.A.; Paver, N.; Verzegnassi, C.

    1996-12-01

    We show that the availability of longitudinally polarized electron beams at a 500 GeV Linear Collider would allow, from an analysis of the reaction e + e - → W + W - , to set stringent bounds on the couplings of a Z' of the most general type. In addition, to some extent it would be possible to disentangle observable effects of the Z' from analogous ones due to competitor models with anomalous tri-linear gauge couplings. (author). 21 refs, 6 figs

  10. Enhanced vibronic interaction caused by local lattice symmetry lowering in the (Fe, Mg)As2 ternary system

    Science.gov (United States)

    Pishtshev, A.; Rubin, P.

    2018-04-01

    By means of periodic density functional theory (DFT) electronic structure calculations, we investigate iron-site doping effects in a structural model of bulk FeAs2. Simulations performed within the projector augmented-wave method-Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional scheme reveal that the impacts of the two stoichiometric substitutions Fe → Mg and Fe → Ni are radically different with respect to the structural and electronic behavior of the dopants. In particular, unlike the Ni dopant, the Mg dopant incorporated in FeAs2 occupies a noncentral equilibrium position characterized by an off-center displacement from the reference higher-symmetry position. Analysis of the respective electron and vibrational factors allows us to explain this result in terms of the local pseudo Jahn-Teller effect (pJTE). On the basis of DFT calculations, we deduce which electron orbitals and lattice vibrational modes are appropriate for promoting the local instability at the origin of the pJTE. Quantitative evaluations of the pJTE parameters performed within the polyatomic formalism of an effective tight-binding model show that it is just the enhanced vibronic interaction in the Mg-[FeAs6] cluster that is responsible for the local lattice symmetry breaking.

  11. Effective interactions and coupling schemes in nuclei

    International Nuclear Information System (INIS)

    Talmi, I.

    1994-01-01

    Eigenstates of the shell model are obtained by diagonalization of the Hamiltonian submatrix defined by a given shell model subspace. Matrix elements of the effective nuclear interaction can be determined from experiment in a consistent way. This approach was introduced in 1956 with the 38 Cl- 40 K spectra, has been applied in many cases and its latest success is in the s, d shell. This way, general features of the effective interaction have been determined. The T=1 interaction is diagonal in the seniority scheme as clearly demonstrated in proton 1g 9/2 n and 1h 11/2 n configurations and in the description of semimagic nuclei by generalized seniority. Apart from a strong and attractive pairing term, T=1 interactions are repulsive on the average. The T=0 interaction is attractive and is the origin of the central potential well in which nucleons are bound. It breaks seniority in a major way leading to deformed nuclei and rotational spectra. Such an interaction may be approximated by a quadrupole-quadrupole interaction which is the basis of the interacting boson model. Identical nucleons with pairing and quadrupole interactions cannot be models of actual nuclei. Symmetry properties of states with maximum T are very different from those of ground states of actual nuclei. The T=1 interaction between identical nucleons cannot be approximated by pairing and quadrupole interactions. The rich variety of nuclear spectra is due to the competition between seniority conserving T=1 interactions and the T=0 quadrupole interaction between protons and neutrons. (orig.)

  12. Direct coupled amplifiers using field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-03-15

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with

  13. Effects of couple stresses on MHD Couette flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1978-01-01

    An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)

  14. Cryochemistry: freezing effect on peptide coupling in different organic solutions.

    Science.gov (United States)

    Vajda, T; Szókán, G; Hollósi, M

    1998-06-01

    The freezing effect on peptide coupling in organic solutions of different polarity has been investigated and compared with the results obtained in liquid phase. The model reaction of DCC-activated coupling of Boc-Ala-Phe-OH with H-Ala-OBu(t) has been carried out in dioxane, dimethylsulfoxide and formamide, as well as in mixtures (90%/10%, v/v) of dioxane with acetonitrile, dimethylformamide, dimethylsulfoxide and formamide. The reactions have been traced and evaluated by RP-HPLC analysis. Freezing the reaction mixture resulted in all cases in a significant suppression of the N-dipeptidylurea side-product formation together with a slight decrease of tripeptide epimerization. The coupling yields and the side effects depended on the solvent, with the dioxane and dioxane/acetonitrile mixture produced the best results. The role of freezing and solvent in the improved results is discussed.

  15. Flavour Geometry and Effective Yukawa Couplings in the MSSM

    CERN Document Server

    Ellis, John; Lee, Jae Sik; Pilaftsis, Apostolos

    2010-01-01

    We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive the necessary and sufficient conditions for a linearly-independent basis of matrices related to the completeness of the internal [SU(3) x U(1)]^5 flavour space. In a second step, we calculate the effective Yukawa couplings that are enhanced at large values of tan(beta) for general soft supersymmetry-breaking mass parameters. We highlight the contributions due to non-universal terms in the flavour decompositions of the sfermion mass matrices. We present numerical examples illustrating how such terms are induced by renormalization-group evolution starting from universal input boundary conditions, and demonstrate their importance for the flavour-violating effective Yukawa couplings of quarks.

  16. Effective field theory: A modern approach to anomalous couplings

    International Nuclear Information System (INIS)

    Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen

    2013-01-01

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics

  17. The Casual Effects of Emotion on Couples' Cognition and Behavior

    Science.gov (United States)

    Tashiro, Ty; Frazier, Patricia

    2007-01-01

    The authors conducted 2 translational studies that assessed the causal effects of emotion on maladaptive cognitions and behaviors in couples. Specifically, the authors examined whether negative emotions increased and positive emotions decreased partner attributions and demand-withdraw behaviors. Study 1 (N=164) used video clips to assess the…

  18. Synchronization of coupled stochastic oscillators: The effect of ...

    Indian Academy of Sciences (India)

    as an approximate means of accounting for a separation of time-scales between ... phase relationships between coupled oscillator systems as well as to effect a variety ... ations are often termed as internal noise since their origin is in the very ..... design and control of synthetic biological networks where synchronous ...

  19. Effects of couple stresses in MHD channel flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1977-01-01

    An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)

  20. Renormalization of g-boson effects under weak coupling condition

    International Nuclear Information System (INIS)

    Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping

    1998-01-01

    An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed

  1. Effect of proton transfer on the electronic coupling in DNA

    International Nuclear Information System (INIS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-01-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, V da , in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate V da for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the V da matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the V da matrix elements are also analyzed

  2. Inverse Edelstein effect induced by magnon-phonon coupling

    Science.gov (United States)

    Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika

    2018-05-01

    We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.

  3. Acquired Immune Deficiency Syndrome: A Preliminary Examination of the Effects on Gay Couples and Coupling.

    Science.gov (United States)

    Carl, Douglas

    1986-01-01

    The Acquired Immune Deficiency Syndrome (AIDS) epidemic significantly influences attitudes about life and lifestyles. Homosexuals have to give increased consideration to coupling, the nature of coupled relationships, sex and intimacy, and death long before the normal time. Discusses impact of AIDS on the early stages of gay coupling and on the…

  4. Strong-coupling polaron effect in quantum dots

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-11-01

    Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs

  5. Effect of reactive feedback on the transverse mode coupling instability

    International Nuclear Information System (INIS)

    Myers, S.

    1984-08-01

    An important and realistic test to examine the effect of reactive feedback on the transverse mode coupling instability could be performed at PEP using the existing feedback system with some minor modifications. This test would of necessity take place at low energy and low synchrotron tune. Such an experiment is of great importance for the design of the LEP reactive feedback system and for the ultimate evaluation of LEP performance

  6. Coupling effect on the electronic transport through dimolecular junctions

    International Nuclear Information System (INIS)

    Long, Meng-Qiu; Wang, Lingling; Chen, Ke-Qiu; Li, Xiao-Fei; Zou, B.S.; Shuai, Z.

    2007-01-01

    Using nonequilibrium Green's function and first-principle calculations, we investigate the transport behaviors of a dimolecule device with two 1,4-Dithiolbenzenes (DTB) sandwiched between two gold electrodes. The results show that the intermolecular coupling effect plays an important role in the conducting behavior of the system. By changing the dihedral angles between the two DTB molecules, namely changing the magnitude of the intermolecular interaction, a different transport behavior can be observed in the system

  7. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  8. Two Schemes for Generation of Entanglement for Vibronic Collective States of Multiple Trapped Ions

    International Nuclear Information System (INIS)

    Yang Wenxing; Li Jiahua; Zheng Anshou

    2007-01-01

    We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximally Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglement of multiple coherent and squeezing states with desired amplitudes in a reasonable time.

  9. All-Silicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling.

    Science.gov (United States)

    Liu, Hang; Sun, Jia-Tao; Fu, Hui-Xia; Sun, Pei-Jie; Feng, Y P; Meng, Sheng

    2017-07-19

    The magnetoelectric (ME) effect originating from the effective coupling between electric field and magnetism is an exciting frontier in nanoscale science such as magnetic tunneling junction (MTJ), ferroelectric/piezoelectric heterojunctions etc. The realization of switchable ME effect under external electric field in d0 semiconducting materials of single composition is needed especially for all-silicon spintronics applications because of its natural compatibility with current industry. We employ density functional theory (DFT) to reveal that the pristine Si(111)-3×3 R30° (Si3 hereafter) reconstructed surfaces of thin films with a thickness smaller than eleven bilayers support a sizeable linear ME effect with switchable direction of magnetic moment under external electric field. This is achieved through the interlayer exchange coupling effect in the antiferromagnetic regime, where the spin-up and spin-down magnetized density is located on opposite surfaces of Si3 thin films. The obtained coefficient for the linear ME effect can be four times larger than that of ferromagnetic Fe films, which fail to have the reversal switching capabilities. The larger ME effect originates from the spin-dependent screening of the spin-polarized Dirac fermion. The prediction will promote the realization of well-controlled and switchable data storage in all-silicon electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    Blondel, Frederic

    2014-01-01

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  11. Correlation effects in side-coupled quantum dots

    International Nuclear Information System (INIS)

    Zitko, R; Bonca, J

    2007-01-01

    Using Wilson's numerical renormalization group (NRG) technique, we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system, a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures

  12. Tunneling effect in cavity-resonator-coupled arrays

    International Nuclear Information System (INIS)

    Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong

    2013-01-01

    The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits

    International Nuclear Information System (INIS)

    Liu Jianxin; Yan Zhanyuan; Song Yonghua

    2006-01-01

    Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finite-difference Schroedinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schroedinger equation can be divided into two Mathieu equations in p-circumflex representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.

  14. Transverse-Longitudinal Coupling Effect in Laser Bunch Slicing

    International Nuclear Information System (INIS)

    Shimada, M.; Katoh, M.; Adachi, M.; Kimura, S.; Tanikawa, T.; Hosaka, M.; Yamamoto, N.; Takashima, Y.; Takahashi, T.

    2009-01-01

    We report turn-by-turn observation of coherent synchrotron radiation (CSR) produced by the laser bunch slicing technique at an electron storage ring operated with a small momentum compaction factor. CSR emission was intermittent, and its interval depended strongly on the betatron tune. This peculiar behavior of the CSR could be interpreted as a result of coupling between the transverse and longitudinal motion of the electrons. This is the first observation of such an effect, which would be important not only for controlling the CSR emission but also for generating and transporting ultrashort electron bunches or electron bunches with microdensity structures in advanced accelerators.

  15. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  16. Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems

    International Nuclear Information System (INIS)

    Wu, C.W.

    2003-01-01

    In a recent paper, wavelet analysis is used to perturb the coupling matrix in an array of identical chaotic systems in order to improve its synchronization. When the coupling matrix is symmetric, the synchronization criterion is determined by the second smallest eigenvalue λ 2 of the coupling matrix and the problem is reduced to studying how λ 2 of the coupling matrix changes with perturbation. In the aforementioned paper, a small percentage of the wavelet coefficients are modified. However, this results in a perturbed matrix where every element is modified and nonzero. The purpose of this Letter is to present some results on the change of λ 2 due to perturbation. In particular, we show that as the number of systems n→∞, perturbations which only add local coupling will not change λ 2 . On the other hand, we show that there exists perturbations which modify an arbitrarily small percentage of matrix elements, each of which is changed by an arbitrarily small amount and yet can make λ 2 arbitrarily large. These results give conditions on what the perturbation should be in order to improve the synchronizability in an array of coupled chaotic systems. This analysis allows us to justify and explain some of the synchronization phenomena observed in a recently studied network where random coupling is added to a locally connected array. We propose to classify various classes of coupling matrices such as small world networks and scale free networks according to their synchronizability in the limit. Finally, we briefly discuss the case of time-varying coupling

  17. Analysing home-ownership of couples: the effect of selecting couples at the time of the survey.

    Science.gov (United States)

    Mulder, C H

    1996-09-01

    "The analysis of events encountered by couple and family households may suffer from sample selection bias when data are restricted to couples existing at the moment of interview. The paper discusses the effect of sample selection bias on event history analyses of buying a home [in the Netherlands] by comparing analyses performed on a sample of existing couples with analyses of a more complete sample including past as well as current partner relationships. The results show that, although home-buying in relationships that have ended differs clearly from behaviour in existing relationships, sample selection bias is not alarmingly large." (SUMMARY IN FRE) excerpt

  18. The Effectiveness of Collaborative Couple Therapy on Communication Patterns and Intimacy of Couples Referring to Counseling Centers of Behbahan, Iran

    Directory of Open Access Journals (Sweden)

    M Sodani

    2017-07-01

    Full Text Available Abstract Background and Aim: Intimacy is a key characteristic of marital relationships and is one of the most prominent characteristics of a successful marriage. Communication patterns can also determine marital satisfaction. The aim of this study was to determine the effectiveness of coupled collaborative therapy on communication patterns and intimacy of couples referring to Behbahan counseling centers. Methods: In this research, a single-trial experimental design, which was also called a single-trial trial, was used as a clinical trial. This design has different types. In the present study, several asynchronous base lines were used. Contrary to large-scale group comparison schemes, this design focuses on individual levels, not on average differences in pre-test and post-test. Another point of this plan is that fewer subjects are needed and couples completed the intimate questionnaire and communication patterns on the baseline, treatment and follow-up. Purposeful sampling was voluntary. The population of the study consisted of all disturbed couples referring to Behbahan psychological clinics. From these couples, 3 couples were selected based on entry and exit criteria. For analyzing the data, visual analysis (chart drawing, clinical significance (the changeover index and normative comparison, as well as the percentage of recovery, have been used. Results: The results indicated that couples experience improvement in intimacy (30.95% and interactive constructive communication model (47.05%, and in the communication model, the expected return (29.55% and communication pattern Interactive avoidance (33.64% showed a decrease. Likewise, data analysis using normative comparison showed that the couples after the treatment did not differ from the couples to the norm. Conclusion: Participatory couples’s therapy may increase the intimacy and constructive communication patterns and decrease the communication patterns of waiting and withdrawal

  19. A Study On the Effectiveness of Emotionally Focused Couple Therapy and Integrated Systemic Couple Therapy on reducing Intimacy Anxiety

    Directory of Open Access Journals (Sweden)

    هاجر فلاح زاده

    2015-04-01

    Full Text Available This study examined the effectiveness of emotionally focused couple therapy (EFT and integrated systemic couple therapy (IST on resolving intimacy anxiety. For this purpose, 30 couples were randomly selected and based on their pretests were assigned into two experimental and one control groups. Research instruments were Fear of Intimacy Scale (FIS (Descutner & Thelen, and the Dyadic Adjustment Scale (DAS (Spanier, 1976. A Nine-session of EFT was conducted for one experiment group and eight sessions of IST for the other. The control group did not receive any treatment. These three groups completed post test at the end of the experiment, and follow-up test 3 months later. Results indicated that EFT and IST significantly decreased intimacy anxiety in couples, and the treatment effect was consistent after 3 months follow-up.

  20. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    Science.gov (United States)

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (Pmagnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (Pmagnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright

  1. Vibronic intensities for Er{sup 3+} in Cs{sub 2} NaErCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, R.; Navarro, G. [Departamento de Quimica Basica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Beauchef 850, Casilla 2777, Santiago (Chile); Meruane, T. [Universidad Metropolitana de Ciencias y Educacion, Av. Jose Pedro Alessandri 774, Casilla 147-C Santiago (Chile)

    2001-07-01

    In this current study, we have undertaken vibronic intensity calculations for the absorptions (({sup 4}I{sub 15/2}) {gamma}{sub k}) {yields} (({sup 4}I{sub 13/2}) {gamma}{sub l}) of the Er{sup 3+} in the Cs{sub 2}NaErCl{sub 6} elpasolite type system. This system is extremely complicated to handle from both a theoretical and an experimental viewpoints. This theoretical work shows that over an energy range of about 400 cm{sup -1}, a substantial amount of transitions are likely to take place (about 100 transitions; twenty five of them are magnetic dipole allowed and seventy five are vibronically allowed). It is then a formidable task to identify and assign all of these transitions in a non-ambiguous way. Also the experimental evidence available for these absorptions is related to a total of about twenty lines in the luminescence spectrum of this system. The spectrum itself is very challenging and the superposition of spectral features is most likely to occur. A careful analysis of the calculated vibronic intensities and overall oscillator strengths for the various transitions indicates that the current model used is both flexible and appropriate to deal with this kind of systems. In a forthcoming paper, we will examine the rather unusual high intensity associated with the (({sup 4}I{sub 15/2}) {gamma}{sub k}) {yields} (({sup 4}S{sub 3/2}) {gamma}{sub l}) excitations. (Author)

  2. Mechanisms and effects of lightning current coupling to structures

    International Nuclear Information System (INIS)

    Foboda, Marek

    1999-01-01

    To evaluate the effects of a lightning discharge on a structure, it is necessary to know the modes of interaction of lightning electromagnetic field pulses to structures. The effects to these interactions are considered by means to the concept to equivalent collection areas. The equations to calculate the distance and equivalent collection areas due to lightning discharges are given in this article. Additionally, the possible modes of a direct lightning strike to the incoming line and the equations to calculate the resultant over voltages are also given. This article ends with the calculation of voltage drops due to direct and nearby lightning strike and induced voltages due to magnetic coupling. Several examples of calculations of the different mentioned cases are given

  3. On plasma coupling and turbulence effects in low velocity stopping

    Energy Technology Data Exchange (ETDEWEB)

    Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)

    2006-04-28

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.

  4. On plasma coupling and turbulence effects in low velocity stopping

    International Nuclear Information System (INIS)

    Kurilenkov, Yu K; Maynard, G; Barriga-Carrasco, M D; Valuev, A A

    2006-01-01

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly

  5. Strong-coupling effects in superfluid 3He in aerogel

    International Nuclear Information System (INIS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2007-01-01

    Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid 3 He are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid 3 He in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally

  6. Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.

    Science.gov (United States)

    Han, Wei

    1995-11-01

    This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of

  7. Matrix effects in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Chen, Xiaoshan.

    1995-01-01

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids

  8. Zooming in on vibronic structure by lowest-value projection reconstructed 4D coherent spectroscopy

    Science.gov (United States)

    Harel, Elad

    2018-05-01

    A fundamental goal of chemical physics is an understanding of microscopic interactions in liquids at and away from equilibrium. In principle, this microscopic information is accessible by high-order and high-dimensionality nonlinear optical measurements. Unfortunately, the time required to execute such experiments increases exponentially with the dimensionality, while the signal decreases exponentially with the order of the nonlinearity. Recently, we demonstrated a non-uniform acquisition method based on radial sampling of the time-domain signal [W. O. Hutson et al., J. Phys. Chem. Lett. 9, 1034 (2018)]. The four-dimensional spectrum was then reconstructed by filtered back-projection using an inverse Radon transform. Here, we demonstrate an alternative reconstruction method based on the statistical analysis of different back-projected spectra which results in a dramatic increase in sensitivity and at least a 100-fold increase in dynamic range compared to conventional uniform sampling and Fourier reconstruction. These results demonstrate that alternative sampling and reconstruction methods enable applications of increasingly high-order and high-dimensionality methods toward deeper insights into the vibronic structure of liquids.

  9. Simulation of the single-vibronic-level emission spectrum of HPS.

    Science.gov (United States)

    Mok, Daniel K W; Lee, Edmond P F; Chau, Foo-tim; Dyke, John M

    2014-05-21

    We have computed the potential energy surfaces of the X¹A' and ùA" states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

  10. Simulation of the single-vibronic-level emission spectrum of HPS

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Daniel K. W., E-mail: bcdaniel@polyu.edu.hk, E-mail: epl@soton.ac.uk; Chau, Foo-tim [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong); Lee, Edmond P. F., E-mail: bcdaniel@polyu.edu.hk, E-mail: epl@soton.ac.uk [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong); School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Dyke, John M. [School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2014-05-21

    We have computed the potential energy surfaces of the X{sup ~1}A{sup ′} and A{sup ~1}A{sup ′′} states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck–Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

  11. Simulation of the single-vibronic-level emission spectrum of HPS

    International Nuclear Information System (INIS)

    Mok, Daniel K. W.; Chau, Foo-tim; Lee, Edmond P. F.; Dyke, John M.

    2014-01-01

    We have computed the potential energy surfaces of the X ~1 A ′ and A ~1 A ′′ states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck–Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS

  12. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  13. Cost-effective treatment for the couple with infertility.

    Science.gov (United States)

    Van Voorhis, B J; Syrop, C H

    2000-12-01

    Although the evaluation of cost-effective approaches to infertility treatment remains in its infancy, several important principles have emerged from the initial studies in this field. Currently, in treating couples with infertility without tubal disease or severe male-factor infertility, the most cost-effective approach is to start with IUI or superovulation-IUI treatments before resorting to IVF procedures. The woman's age and number of sperm present for insemination are significant factors influencing cost-effectiveness. The influence of certain diagnoses on the cost-effectiveness of infertility treatments requires further study. Even when accounting for the costs associated with multiple gestations and premature deliveries, the cost of IVF decreases within the range of other cost-effective medical procedures and decreases to less than the willingness to pay for these procedures. Indeed, for patients with severe tubal disease, IVF has been found to be more cost-effective than surgical repair. The cost-effectiveness of IVF will likely improve as success rates show continued improvements over the course of time. In addition, usefulness of embryo selection and practices to reduce the likelihood of high-order multiple pregnancies, without reductions in pregnancy rates, will significantly impact cost-effectiveness. The exclusion of infertility treatments from insurance plans is unfortunate and accentuates the importance of physicians understanding the economics of infertility treatment with costs that are often passed directly to the patient. The erroneous economic policies and judgments that have led to inequities in access to infertility health care should not be tolerated.

  14. Experimental identification of smart material coupling effects in composite structures

    International Nuclear Information System (INIS)

    Chesne, S; Jean-Mistral, C; Gaudiller, L

    2013-01-01

    Smart composite structures have an enormous potential for industrial applications, in terms of mass reduction, high material resistance and flexibility. The correct characterization of these complex structures is essential for active vibration control or structural health monitoring applications. The identification process generally calls for the determination of a generalized electromechanical coupling coefficient. As this process can in practice be difficult to implement, an original approach, presented in this paper, has been developed for the identification of the coupling effects of a smart material used in a composite curved beam. The accuracy of the proposed identification technique is tested by applying active modal control to the beam, using a reduced model based on this identification. The studied structure was as close to reality as possible, and made use of integrated transducers, low-cost sensors, clamped boundary conditions and substantial, complex excitation sources. PVDF (polyvinylidene fluoride) and MFC (macrofiber composite) transducers were integrated into the composite structure, to ensure their protection from environmental damage. The experimental identification described here was based on a curve fitting approach combined with the reduced model. It allowed a reliable, powerful modal control system to be built, controlling two modes of the structure. A linear quadratic Gaussian algorithm was used to determine the modal controller–observer gains. The selected modes were found to have an attenuation as strong as −13 dB in experiments, revealing the effectiveness of this method. In this study a generalized approach is proposed, which can be extended to most complex or composite industrial structures when they are subjected to vibration. (paper)

  15. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  16. Effective interactions in strongly-coupled quantum systems

    International Nuclear Information System (INIS)

    Chen, J.M.C.

    1986-01-01

    In this thesis, they study the role of effective interactions in strongly-coupled Fermi systems where the short-range correlations introduce difficulties requiring special treatment. The correlated basis function method provides the means to incorporate the short-range correlations and generate the matrix elements of the Hamiltonian and identity operators in a nonorthogonal basis of states which are so important to their studies. In the first half of the thesis, the particle-hole channel is examined to elucidate the effects of collective excitations. Proceeding from a least-action principle, a generalization of the random-phase approximation is developed capable of describing such strongly-interacting Fermi systems as nuclei, nuclear matter, neutron-star matter, and liquid 3 He. A linear response of dynamically correlated system to a weak external perturbation is also derived based on the same framework. In the second half of the thesis, the particle-particle channel is examined to elucidate the effects of pairing in nuclear and neutron-star matter

  17. Effects of electron inertia in capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Xiang Nong

    2004-01-01

    The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant

  18. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam

    2017-05-11

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  19. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam; McNellis, Erik R.; Nielsen, Christian B.; Chen, Hung-Yang; Watanabe, Shun; Tanaka, Hisaaki; McCulloch, Iain; Takimiya, Kazuo; Sinova, Jairo; Sirringhaus, Henning

    2017-01-01

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  20. Effects Of Emotional Intelligence On Marital Adjustment Of Couples ...

    African Journals Online (AJOL)

    Couples should be helped to develop emotion management skills. Couples should be taught emotional sensitivity skills. Our educational systems should not only develop learners' Intelligence (IQ) but their Emotional intelligence (EQI) competencies too. Emotional intelligence should form part of the criteria for marital choice ...

  1. The effect of anxiety and depression scores of couples who ...

    African Journals Online (AJOL)

    The study data was collected by using a semi-structured questionnaire and the Turkish version of the State-Trait Anxiety Inventory (STAI), and Beck Depression Inventory (BDI). The questionnaire, STAI and BDI were applied to couples who initiated ART treatment. Couples' state anxiety scores were re-evaluated after ...

  2. Multi-disciplinary coupling effects for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  3. The effect of anxiety and depression scores of couples who ...

    African Journals Online (AJOL)

    Keywords: Infertility assisted reproductive techniques, anxiety, depression, pregnancy outcome. ... couples under stress women may have problems with ovulation induction, missed cycles, ..... sity Students Depression Inventory. Journal of ...

  4. Ponderomotive force effects on slow-wave coupling

    International Nuclear Information System (INIS)

    Wilson, J.R.; Wong, K.L.

    1982-01-01

    Localized plasma density depressions are observed to form near a multi-ring slow-wave structure when the value of the nonlinearity parameter, s = ω 2 /sub p/eVertical BarE/sub z/Vertical Bar 2 /8πω 2 nkappaT, is of order unity. Consequent changes in the wave propagation and coupling efficiency are reported. For large enough values of s, the coupling efficiency may be reduced by 50% from the linear value

  5. Predicting Keto-Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines.

    Science.gov (United States)

    Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît

    2018-06-21

    Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.

  6. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani

    2017-05-01

    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.

  7. The effect of a coupling field on the entanglement dynamics of a three-level atom

    International Nuclear Information System (INIS)

    Mortezapour, Ali; Mahmoudi, Mohammad; Abedi, Majid; Khajehpour, M R H

    2011-01-01

    The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.

  8. The effect of a coupling field on the entanglement dynamics of a three-level atom

    Energy Technology Data Exchange (ETDEWEB)

    Mortezapour, Ali; Mahmoudi, Mohammad [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Abedi, Majid; Khajehpour, M R H, E-mail: mahmoudi@iasbs.ac.ir, E-mail: pour@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, PO Box 45195-159, Zanjan (Iran, Islamic Republic of)

    2011-04-28

    The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.

  9. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  10. Nuclear-Coupled Flow Instabilities and Their Effects on Dryout

    Energy Technology Data Exchange (ETDEWEB)

    M. Ishii; X. Sunn; S. Kuran

    2004-09-27

    Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.

  11. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  12. Stress effects in prism coupling measurements of thin polymer films

    NARCIS (Netherlands)

    Agan, S.; Ay, F.; Kocabas, A.; Aydinli, A.

    Due to the increasingly important role of some polymers in optical waveguide technologies, precise measurement of their optical properties has become important. Typically, prism coupling to slab waveguides made of materials of interest is used to measure the relevant optical parameters. However,

  13. Inter-dot coupling effects on transport through correlated parallel

    Indian Academy of Sciences (India)

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  14. Coupling Effect between Mechanical Loading and Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Maršík, František

    2009-01-01

    Roč. 113, č. 44 (2009), s. 14689-14697 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA106/08/0557 Institutional research plan: CEZ:AV0Z20760514 Keywords : coupling * dynamic loading * reaction kinetics Subject RIV: FI - Traumatology, Orthopedics Impact factor: 3.471, year: 2009

  15. Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED

    International Nuclear Information System (INIS)

    Sturm, Christian

    2013-01-01

    The running of the effective electromagnetic coupling is for many electroweak observables the dominant correction. It plays an important role for deriving constraints on the Standard Model in the context of electroweak precision measurements. We compute the four-loop QED corrections to the running of the effective electromagnetic coupling and perform a numerical evaluation of the different gauge invariant subsets

  16. Comparison of the cable coupling effects under two kinds of HEMP environment

    CERN Document Server

    Sun Bei Yun; Xie Yan Zhao

    2002-01-01

    There are various kinds of HEMP environment definitions. The coupling effects of electronic system are more different under different HEMP environment. The responds of cable of different length are investigated under 1976 HEMP and 1996 HEMP environment. The results indicate that the cable coupling effects under 1976 HEMP environment are more serious than those under 1996 HEMP environment

  17. The exact effective couplings of 4D N=2 gauge theories

    International Nuclear Information System (INIS)

    Mitev, Vladimir; Humboldt-Universitaet, Berlin; Pomoni, Elli; National Technical Univ. Athens

    2014-07-01

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  18. The exact effective couplings of 4D N=2 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); National Technical Univ. Athens (Greece). Physics Division

    2014-07-15

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  19. Stabilization effect of fission source in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)

    2017-08-15

    A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  20. The effect of different anesthetics on neurovascular coupling

    Science.gov (United States)

    Franceschini, Maria Angela; Radhakrishnan, Harsha; Thakur, Kiran; Wu, Weicheng; Ruvinskaya, Svetlana; Carp, Stefan; Boas, David A.

    2010-01-01

    To date, the majority of neurovascular coupling studies focused on the thalamic afferents' activity in layer IV and the corresponding large spiking activity as responsible for functional hyperemia. This paper highlights the role of the secondary and late cortico-cortical transmission in neurovascular coupling. Simultaneous scalp electroencephalography (EEG) and diffuse optical imaging (DOI) measurements were obtained during multiple conditions of event-related electrical forepaw stimulation in 33 male Sprague-Dawley rats divided into 6 groups depending on the maintaining anesthetic - alpha-chloralose, pentobarbital, ketamine-xylazine, fentanyl-droperidol, isoflurane, or propofol. The somatosensory evoked potentials (SEP) were decomposed into four components and the question of which best predicts the hemodynamic responses was investigated. Results of the linear regression analysis show that the hemodynamic response is best correlated with the secondary and late cortico-cortical transmissions and not with the initial thalamic input activity in layer IV. Baseline cerebral blood flow (CBF) interacts with neural activity and influences the evoked hemodynamic responses. Finally, neurovascular coupling appears to be the same across all anesthetics used. PMID:20350606

  1. Couplings in multiphasic geo-materials: temperature and chemistry effects

    International Nuclear Information System (INIS)

    Ghasemzadeh, H.

    2006-05-01

    Transport of chemical components in soil through water is the major cause of pollution of the soil. This transport takes place around landfills and nuclear waste storage areas, tailings and mine wastes, and so on. A great number of these sites are unsaturated of water and in some cases heat can change the fate of chemical species, that lead us to a coupled problem. In this dissertation, numerical simulation with an existent thermo-hydro-mechanical model and theoretical modeling and numerical simulation of transport and interactions of one chemical species in multiphase media are presented. Integrated THM model in the Code-Aster is presented. Excavation, engineering barrier and thermal load of waste nuclear storage well are modeled. Verification of model is presented with these simulations. A thermo-hydro-mechanical behaviour coupled with chemical phenomena is presented with a fully coupled method that water, gas, chemical species and soil skeleton were considered as constituents and corresponding unknowns are temperature, water pressure, gas pressure, chemical concentration and displacements. For each constituent, mass balance equation and linear momentum equation are written and solved simultaneously to find related unknowns. The results of this model have been compared with the theoretical and experimental results existing in the literature. Furthermore, results of some applications of this model are included. Some areas where further work is required are identified. In particular, there is a need to perform experiments to obtain necessary soil parameters to permit accurate modelling of the heat and contaminant transport in unsaturated soils. (author)

  2. Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.

    Science.gov (United States)

    He, Jiaqing; Shen, Qingchen; Yang, Shuai; He, Gufeng; Tao, Peng; Song, Chengyi; Wu, Jianbo; Deng, Tao; Shang, Wen

    2018-01-03

    This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.

  3. Influence of End-Effects on Static Torque Performance of Misaligned Cylindrical Permanent Magnet Couplings

    DEFF Research Database (Denmark)

    Högberg, Stig; Hansen, Hilary; Jensen, Bogi Bech

    2014-01-01

    Permanent magnet couplings are widely used in applications requiring torque to be transmitted through an air- gap. The aim of this study is to observe and explain the effect of radial and axial misalignment in a 12-pole, cylindrical permanent magnet coupling. Pull-out torque was measured for two...

  4. Effects of Coupling Distance on Synchronization and Coherence in Chaotic Neural Networks

    International Nuclear Information System (INIS)

    Wang Maosheng

    2009-01-01

    Effects of coupling distance on synchronization and coherence of chaotic neurons in complex networks are numerically investigated. We find that it is not beneficial to neurons synchronization if confining the coupling distance of random edges to a limit d max , but help to improve their coherence. Moreover, there is an optimal value of d max at which the coherence is maximum.

  5. Effects of Coping-Oriented Couples Therapy on Depression: A Randomized Clinical Trial

    Science.gov (United States)

    Bodenmann, Guy; Plancherel, Bernard; Beach, Steven R. H.; Widmer, Kathrin; Gabriel, Barbara; Meuwly, Nathalie; Charvoz, Linda; Hautzinger, Martin; Schramm, Elisabeth

    2008-01-01

    The aim of this study was to evaluate the effectiveness of treating depression with coping-oriented couples therapy (COCT) as compared with cognitive-behavioral therapy (CBT; A. T. Beck, C. Ward, & M. Mendelson, 1961) and interpersonal psychotherapy (IPT; M. M. Weissman, J. C. Markowitz, & G. L. Klerman, 2000). Sixty couples, including 1…

  6. Effects of quantum coupling on the performance of metal-oxide

    Indian Academy of Sciences (India)

    Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled ...

  7. Communication: Strong excitonic and vibronic effects determine the optical properties of Li₂O₂

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Bass, J. D.; Thygesen, Kristian Sommer

    2011-01-01

    The band structure and optical absorption spectrum of lithium peroxide (Li2O2) is calculated from first-principles using the G0W0 approximation and the Bethe-Salpeter equation, respectively. A strongly localized (Frenkel type) exciton corresponding to the π*→σ* transition on the O2 −2 peroxide ion...

  8. Stabilization effect of fission source in coupled Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Börge Olsen

    2017-08-01

    Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  9. Control rod calibration including the rod coupling effect

    International Nuclear Information System (INIS)

    Szilard, R.; Nelson, G.W.

    1984-01-01

    In a reactor containing more than one control rod, which includes all reactors licensed in the United States, there will be a 'coupling' or 'shadowing' of control rod flux at the location of a control rod as a result of the flux depression caused by another control rod. It was decided to investigate this phenomenon further, and eventually to put calibration table data or formulae in a small computer in the control room, so once could insert the positions of the three control rods and receive the excess reactivity without referring to separate tables. For this to be accomplished, a 'three control- rod reactivity function' would be used which would include the flux coupling between the rods. The function is design and measured data was fitted into it to determine the calibration constants. The input data for fitting the trial functions consisted of 254 data points, each consisting of the position of the reg, shim, and transient rods, and the total excess reactivity. (About 200 of these points were 'critical balance points', that is the rod positions for which reactor was critical, and the remainder were determined by positive period measurements.) Although this may be unrealistic from a physical viewpoint, the function derived gave a very accurate recalculation of the input data, and thus would faithfully give the excess reactivity for any possible combination of the locations of the three control rods. The next step, incorporation of the three-rod function into the minicomputer, will be pursued in the summer and fall of 1984

  10. Effects of Intermolecular Coupling on Excimer Formation and Singlet Fission

    Science.gov (United States)

    Mauck, Catherine McKay

    The development of organic photovoltaic devices benefits from understanding the fundamental processes underlying charge generation in thin films of organic semiconductors. This dissertation exploits model systems of pi-stacked chromophores such as perylene-3,4:9,10-bis(dicarboximide) (PDI) and 3,6-bis(aryl)diketopyrrolopyrrole (DPP) to study these processes using ultrafast electronic and vibrational spectroscopy. In particular, the characterization of covalent molecular dimers, thin films, and solution aggregates can reveal how supramolecular order affects photophysical properties. PDI and DPP are organic semiconductors that have been widely studied in organic photovoltaics, due to their strong visible absorption and excellent chemical stability. As solution-phase monomers, they are highly fluorescent, but in the thin film environment of photovoltaic devices these planar aromatic molecules couple to one another, stacking largely through pi-pi interactions. In self-assembled stacks of PDI, strong interchromophore coupling may disrupt charge separation through the formation of excimer states, preventing the generation of free carriers. By studying molecular dimers of PDI with different pi-stacked geometry, femtosecond visible pump mid-infrared probe spectroscopy allows direct observation of the structural dynamics associated with excimer state relaxation, showing that this low-energy state is primarily coupled to the core modes that shift as planarization and rotation lead to the most stable excimer geometry. PDI is also able to undergo singlet fission in thin films and aggregates. Singlet fission is the process in which a singlet excited state is downconverted into two triplet excitons, when the energy of its first singlet excited state is at least twice the energy of the lowest triplet state in an appropriately coupled molecular system. This spin-allowed, ultrafast process enables a theoretical yield of two charge carriers per incident photon, making it a

  11. Effect of isovector coupling channel on the macroscopic part of the nuclear binding energy

    International Nuclear Information System (INIS)

    Haddad, S.

    2011-04-01

    The effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy is determined utilizing the relativistic density dependent Thomas-Fermi approach for the calculation of the macroscopic part of the nuclear binding energy, and the dependency of this effect on the numbers of neutrons and protons is studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect sharpens with growing excess of the number of neutrons on the number of protons. (author)

  12. On the Magnitude of the Nonadiabatic Error for Highly Coupled Radicals

    Science.gov (United States)

    Stanton, J. F.

    2009-06-01

    A review is given of recent advances in the construction of (quasi)diabatic model Hamiltonians and their application to analyzing the spectroscopy of molecules with strong vibronic coupling. A numerical application to the vibronic levels of the BNB radical below 0.6 eV is presented, together with corresponding adiabatic (quantum chemistry) calculations. The agreement with the experimental levels is nearly quantitative with the model Hamiltonian, attesting to the power of the approach. On the contrary, it is also revealed that the magnitude of the nonadiabatic contributions to the zero-point energy and the lowest fundamental frequency of the coupling mode are considerably larger than expected, at least by your narrator.

  13. The quantum Zeno and anti-Zeno effects with strong system-environment coupling.

    Science.gov (United States)

    Chaudhry, Adam Zaman

    2017-05-11

    To date, studies of the quantum Zeno and anti-Zeno effects focus on quantum systems that are weakly interacting with their environment. In this paper, we investigate what happens to a quantum system under the action of repeated measurements if the quantum system is strongly interacting with its environment. We consider as the quantum system a single two-level system coupled strongly to a collection of harmonic oscillators. A so-called polaron transformation is then used to make the problem in the strong system-environment coupling regime tractable. We find that the strong coupling case exhibits quantitative and qualitative differences as compared with the weak coupling case. In particular, the effective decay rate does not depend linearly on the spectral density of the environment. This then means that, in the strong coupling regime that we investigate, increasing the system-environment coupling strength can actually decrease the effective decay rate. We also consider a collection of two-level atoms coupled strongly with a common environment. In this case, we find that there are further differences between the weak and strong coupling cases since the two-level atoms can now indirectly interact with one another due to the common environment.

  14. Pseudo Jahn–Teller effect in distortion and restoration of planar configurations of tetra-heterocyclic 1,2-diazetes C{sub 2}N{sub 2}E{sub 4}, E = H, F, Cl, Br

    Energy Technology Data Exchange (ETDEWEB)

    Ilkhani, Ali R. [Institute for Theoretical Chemistry, University of Texas at Austin, Austin, TX 78712 (United States); Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of); Gorinchoy, Natalia N. [Institute of Chemistry, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Bersuker, Isaac B., E-mail: bersuker@cm.utexas.edu [Institute for Theoretical Chemistry, University of Texas at Austin, Austin, TX 78712 (United States); Institute of Chemistry, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2015-10-16

    Highlights: • The pseudo Jahn–Teller mechanism of puckering of tetracyclic 1,2-diazetes is revealed. • Vibronic constants are extracted from ab initio calculations versus PJTE equations. • Methods of restoring the planar configuration by external perturbations are suggested. - Abstract: The pseudo Jahn–Teller effect (PJTE) is employed to explain the origin of the puckered structures of tetra-heterocyclic 1,2-diazetes, C{sub 2}N{sub 2}E{sub 4}, E = H, F, Cl, Br, and to reveal the conditions of restoration of their planar configuration. The high-symmetry C{sub 2v} planar configuration of all these compounds is unstable with respect to puckering, a{sub 2}-type distortions produced by the PJT coupling between their ground {sup 1}A{sub 1} and excited {sup 1}A{sub 2} electronic states. The PJTE coupling constants are estimated by fitting ab initio calculated energy profiles to the formulas of the vibronic coupling problem (A{sub 1} + A{sub 2}) ⊗ a{sub 2}. The conditions for the restoration of the planar configurations of the C{sub 2}N{sub 2}E{sub 4} cycles were revealed: the PJTE can be quenched by removing the outer two electrons, e.g. by producing a “triple-decker sandwich” structure with two electron acceptors on both sides of the neutral cycle.

  15. Analyticity of effective coupling and propagators in massless models of quantum field theory

    International Nuclear Information System (INIS)

    Oehme, R.

    1982-01-01

    For massless models of quantum field theory, some general theorems are proved concerning the analytic continuation of the renormalization group functions as well as the effective coupling and the propagators. Starting points are analytic properties of the effective coupling and the propagators in the momentum variable k 2 , which can be converted into analyticity of β- and γ-functions in the coupling parameter lambda. It is shown that the β-function can have branch point singularities related to stationary points of the effective coupling as a function of k 2 . The type of these singularities of β(lambda) can be determined explicitly. Examples of possible physical interest are extremal values of the effective coupling at space-like points in the momentum variable, as well as complex conjugate stationary points close to the real k 2 -axis. The latter may be related to the sudden transition between weak and strong coupling regimes of the system. Finally, for the effective coupling and for the propagators, the analytic continuation in both variables k 2 and lambda is discussed. (orig.)

  16. Gamma radiation effect on sisal / polyurethane composites without coupling agents

    Directory of Open Access Journals (Sweden)

    Marina Cardoso Vasco

    Full Text Available Abstract Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms.

  17. Gamma radiation effect on sisal / polyurethane composites without coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Marina Cardoso; Claro Neto, Salvador; Nascimento, Eduardo Mauro; Azevedo, Elaine, E-mail: marina.mcv@gmail.com [University of Patras (Greece); Universidade de Sao Paulo (USP) Sao Carlos, SP (Brazil); Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2017-04-15

    Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms. (author)

  18. Effect of interchain coupling on the excited polaron in conjugated polymers

    International Nuclear Information System (INIS)

    Li, Xiao-xue; Chen, Gang

    2017-01-01

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  19. Effect of interchain coupling on the excited polaron in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-xue, E-mail: sps_lixx@ujn.edu.cn; Chen, Gang, E-mail: ss_cheng@ujn.edu.cn

    2017-02-05

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  20. Coupling effects of depletion interactions in a three-sphere colloidal system

    International Nuclear Information System (INIS)

    Chen Ze-Shun; Dai Gang; Gao Hai-Xia; Xiao Chang-Ming

    2013-01-01

    In a three-sphere system, the middle sphere is acted upon by two opposite depletion forces from the other two spheres. It is found that, in this system, the two depletion forces are coupled with each other and result in a strengthened depletion force. So the difference of the depletion forces of the three-sphere system and its corresponding two two-sphere systems is introduced to describe the coupling effect of the depletion interactions. The numerical results obtained by Monte-Carlo simulations show that this coupling effect is affected by both the concentration of small spheres and the geometrical confinement. Meanwhile, it is also found that the mechanisms of the coupling effect and the effect on the depletion force from the geometry factor are the same. (interdisciplinary physics and related areas of science and technology)

  1. Effects of quantum coupling on the performance of metal-oxide ...

    Indian Academy of Sciences (India)

    LING-FENG MAO. School of Electronics & Information Engineering, Soochow University, ... Quantum coupling; metal-oxide-semiconductor field transistors. ... effects of the barrier height reduction caused by the channel electron velocity due to.

  2. Experimental Effects of Student Evaluations Coupled with Collaborative Consultation on College Professors' Instructional Skills

    NARCIS (Netherlands)

    Knol, M.H.; in 't Veld, R.; Vorst, H.C.M.; van Driel, J.H.; Mellenbergh, G.J.

    2013-01-01

    This experimental study concerned the effects of repeated students’ evaluations of teaching coupled with collaborative consultation on professors’ instructional skills. Twenty-five psychology professors from a Dutch university were randomly assigned to either a control group or an experimental

  3. Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Santa Barbara, KITP

    2014-01-08

    I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.

  4. Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites

    Science.gov (United States)

    Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang

    2013-07-01

    An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.

  5. Effects of coupling and asymmetries on load resilience of IC ITER-like structures

    International Nuclear Information System (INIS)

    Bosia, G.; Bremond, S.; Colas, L.

    2005-01-01

    ITER-like structures feature an intrinsic resilience to load variations, which is related to the symmetry of the currents in the two branches of the structure. It has been suggested that the effects of coupling between the array elements would significantly impair the load resilience of the structure. In this paper the effect of inter strap coupling and of however induced electrical array asymmetries on the structure load resilience are quantitatively examined

  6. A Coupled Plastic Damage Model for Concrete considering the Effect of Damage on Plastic Flow

    OpenAIRE

    Zhou, Feng; Cheng, Guangxu

    2015-01-01

    A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is ado...

  7. Effects of Interfacial Translation-rotation Coupling for Confined Ferrofluids

    Science.gov (United States)

    Fang, Angbo

    2011-03-01

    Ferrofluids have wide applications ranging from semiconductor fabrications to biomedical processes. The hydrodynamic spin diffusion theory for ferrofluids has been successful in explaining many experimental data, but it suffers from some fatal flaws. For example, it fails to predict the incorrect flow direction for a ferrofluid confined in a concentric cylinder channel in the presence of a rotating magnetic field. In this work we develop a method to establish the general hydrodynamic boundary conditions (BCs) for micro-polar fluids such as ferrofluids. Through a dynamic generalization of the mesoscopic diffuse interface model, we are able to obtain the surface dissipation functional, in which the interfacial translation-rotation coupling plays a significant role. The generalized hydrodynamic BCs can be obtained straightforwardly by using Onsager's variational approach. The resulted velocity profile and other quantities compares well with the experimental data, strikingly different from traditional theories. The methodology can be applied to study the hydrodynamic behavior of other structured fluids in confined channels or multi-phase flows. The work is supported by a research award made by the King Abdullah University of Science and Technology.

  8. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Science.gov (United States)

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  9. Effect of galvanic coupling between overpack materials for high-level nuclear waste containers

    International Nuclear Information System (INIS)

    Dunn, D.S.; Cragnolino, G.A.; Sridhar, N.

    1998-01-01

    The effect of environmental parameters and area ratio on the galvanic protection of Alloy 825 by A516 steel was studied. A simplified model was used to calculate the potential and corrosion current density of the bimetallic couple as a function of the galvanic coupling efficiency. Galvanic corrosion tests were performed to gain confidence in the calculated values. Both the calculations and laboratory testing indicate that, with highly efficient coupling, the potential of the galvanic couple is maintained below the repassivation potential for Alloy 825 in chloride-containing solutions. As a result, the initiation of localized corrosion on Alloy 825 is prevented. The formation of oxides, scales, and corrosion product layers between the barriers is shown to reduce the efficiency of the galvanic couple, which may result in conditions under which the localized corrosion of the inner corrosion resistant barrier can occur

  10. The Effects of Partnered Exercise on Physical Intimacy in Couples Coping with Prostate Cancer

    Science.gov (United States)

    Lyons, Karen S.; Winters-Stone, Kerri M.; Bennett, Jill A.; Beer, Tomasz M.

    2015-01-01

    Objective The study examined whether couples coping with prostate cancer participating in a partnered exercise program - Exercising Together (ET) - experienced higher levels of physical intimacy (i.e., affectionate & sexual behavior) than couples in a usual care (UC) control group. Method Men and their wives (n=64 couples) were randomly assigned to either the ET or UC group. Couples in the ET group engaged in partnered strength-training twice weekly for six months. Multilevel modeling was used to explore the effects of ET on husband and wife engagement in both affectionate and sexual behaviors over time. Results Controlling for relationship quality, wives in ET showed significant increases in engagement in affectionate behaviors compared to wives in UC. No intervention effects were found for husbands. Conclusion Couple-based approaches to physical intimacy, after a cancer diagnosis, that facilitate collaborative engagement in non-sexual physical activities for the couple have potential to be effective for wives. More research is needed in this area to determine couples most amenable to such exercise strategies, optimal timing in the cancer trajectory, and the benefits of combining partnered exercise with more traditional relationship-focused strategies. PMID:26462060

  11. The Effects of a Couples-Based Health Behavior Intervention During Pregnancy on Latino Couples' Dyadic Satisfaction Postpartum.

    Science.gov (United States)

    Coop Gordon, Kristina; Roberson, Patricia N E; Hughes, Jessica A; Khaddouma, Alexander M; Swamy, Geeta K; Noonan, Devon; Gonzalez, Alicia M; Fish, Laura; Pollak, Kathryn I

    2018-03-30

    Many couples tend to report steadily decreasing relationship quality following the birth of a child. However, little is known about the postpartum period for Latino couples, a rapidly growing ethnic group who are notably underserved by mental and physical health caregivers in the United States. Thus, this study investigated whether a brief couples' intervention focused on helping couples support each other while increasing healthy behaviors might improve dyadic functioning postpartum. This study presents secondary analyses of data regarding couple functioning from a larger randomized controlled trial with 348 Latino couples to promote smoking cessation. Portions of the intervention taught the couple communication and problem-solving skills to increase healthy behavior. Couples participated in four face-to-face assessments across 1 year starting at the end of the first trimester. Latent growth curve analyses revealed that the treatment group reported an increase in relationship satisfaction and constructive communication after the intervention, which diminished by 1-year follow-up, returning couples to their baseline levels of satisfaction. Results suggest that incorporating a brief couple intervention as part of a larger health intervention for Latinos may prevent postpartum decreases in relationship satisfaction. © 2018 Family Process Institute.

  12. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators

    Science.gov (United States)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander

    2018-03-01

    We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices. The model system under study represents two oscillators based on thermally coupled VO2 switches. Numerical simulation shows that the effective action radius RTC of coupling depends both on the total energy released during switching and on the average power. It is experimentally and numerically proved that the temperature change ΔT commences almost synchronously with the released power peak and T-coupling reveals itself up to a frequency of about 10 kHz. For the studied switching structure configuration, the RTC value varies over a wide range from 4 to 45 μm, depending on the external circuit capacitance C and resistance Ri, but the variation of Ri is more promising from the practical viewpoint. In the case of a "weak" coupling, synchronization is accompanied by attraction effect and decrease of the main spectra harmonics width. In the case of a "strong" coupling, the number of effects increases, synchronization can occur on subharmonics resulting in multilevel stable synchronization of two oscillators. An advanced algorithm for synchronization efficiency and subharmonic ratio calculation is proposed. It is shown that of the two oscillators the leading one is that with a higher main frequency, and, in addition, the frequency stabilization effect is observed. Also, in the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by ∼10%. The obtained results have a universal character and open up a new kind of coupling in ONNs, namely, T-coupling, which allows for easy transition from 2D to 3D integration. The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.

  13. Global Effects of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales

    Science.gov (United States)

    Qin, Hongchen; Pritchard, Michael S.; Kooperman, Gabriel J.; Parishani, Hossein

    2018-02-01

    Many conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong land-atmosphere (L-A) coupling. We investigate the effects of cloud Superparameterization (SP) on L-A coupling on timescales beyond diurnal where it has been recently shown to have a favorable muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its Superparameterized counterpart SPCAM3.5, we conducted soil moisture interference experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L-A coupling. This is detectable globally, and happens through the evapotranspiration-precipitation segment. But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two robust regional effects of SP on thermal L-A coupling have also been explored. Over the Arabian Peninsula, SP reduces thermal L-A coupling through a straightforward control by mean rainfall reduction. More counterintuitively, over the Southwestern US and Northern Mexico, SP enhances the thermal L-A coupling in a way that is independent of rainfall and soil moisture. This signal is associated with a systematic and previously unrecognized effect of SP that produces an amplified Bowen ratio, and is detectable in multiple SP model versions and experiment designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate change predictions at the L-A interface.

  14. Baryon non-invariant couplings in Higgs effective field theory

    International Nuclear Information System (INIS)

    Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario

    2017-01-01

    The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)

  15. On the coupling effects of piezoelectricity and flexoelectricity in piezoelectric nanostructures

    Directory of Open Access Journals (Sweden)

    Liwen He

    2017-10-01

    Full Text Available Flexoelectricity is a novel kind of electromechanical coupling phenomenon that is prevalent in all solid dielectrics and usually of vital importance in nanostructures and soft materials. Although the fundamental theory of flexoelectric solids and related beam or plate theories were extensively studied in recent years, the coupling effect of flexoelectricity and piezoelectricity in piezoelectric nanostructures has not been completely clarified yet. In the present work, a geometrically nonlinear piezoelectric plate model is established with a focus on the coupling effect. The constitutive equations for piezoelectric plates are derived under both the electrically short-circuit and open-circuit conditions. It is found that due to the coupling between flexoelectricity and piezoelectricity, stretching-bending coupling stiffness arises in the homogeneous plate and its specific value relies on the applied electrical boundary conditions. The effects of the flexoelectric-piezoelectric coupling on the effective mechanical behavior and the electromechanical behavior of nanobeams and nanoplates are also discussed. The developed model and presented results are expected to benefit the design and analysis of piezoelectric and flexoelectric devices and systems.

  16. The effect of coupling a flat-plat collector on the solar still productivity

    International Nuclear Information System (INIS)

    Badran, O. O.; Al-Tahaineh, H. A.

    2006-01-01

    Experimental investigation to study the effect of coupling a flat plate solar collector on the productivity of solar stills was carried out. Other different parameters (i.e. water depth, direction of still, solar radiation) to enhance the productivity were also studied. Single slope solar still with mirrors fixed to its interior sides was coupled with a flat plate collector. It has been found that coupling of a solar collector with a still has increased the productivity by 56%. Also the increase of water depth has decreased the productivity, while the still productivity is found to be proportional to the solar radiation intensity.(Author)

  17. Effect of surface modes on coupling to fast waves in the LHRF

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Colestock, P.L.

    1990-01-01

    The effect of surface modes of propagation on coupling to fast waves in the LHRF is studied theoretically and experimentally. The previously reported 'up-down' poloidal phasing asymmetry for coupling to a uniform plasma is shown to be due to the properties of a mode which carries energy along the plasma-conducting wall interface. Comparison of the theory with coupling experiments performed on the PLT tokamak with a phased array of twelve dielectric-loaded waveguides at 800 MHz shows that the observed dependence of the net reflection coefficient on toroidal phase angle can be explained only if the surface wave is taken into account. 43 refs., 10 figs

  18. Dynamics of coupled electron-nuclei-systems in laser fields

    International Nuclear Information System (INIS)

    Falge, Mirjam

    2012-01-01

    influence of non-adiabatic effects in this asymmetry were investigated. In the last part of this work, the dynamics and optical control in spin-coupled vibronic states were analysed.

  19. Effects of (un)employment on young couples' health and life satisfaction.

    Science.gov (United States)

    Haid, Marja-Lena; Seiffge-Krenke, Inge

    2013-01-01

    This study investigated effects of employed and unemployed job status on health outcomes with questionnaires in 50 young couples. Analysis of variance revealed higher pessimism, higher stress levels, and lower life satisfaction in couples in which one partner was unemployed. These couples also exhibited more health risk behaviours compared to couples in which both partners were working. The dyadic analysis of data, using an actor-partner interdependence model, demonstrated strong actor and partner effects for male partner's job status. Being unemployed was significantly associated not only with male partner's life satisfaction but also with the life satisfaction of his female partner. In addition, male partner's pessimism was identified as a significant variable which mediates between male partner's job status and female partner's life satisfaction. The study highlights the relevance of the accomplishment of tasks in the domains of work and partnership during young adulthood and it emphasises the gender specific importance.

  20. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)

    2015-10-23

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.

  1. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    Li, Chun-Hsien; Yang, Suh-Yuh

    2015-01-01

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability

  2. Solvent isotope effects upon the thermodynamics of some transition-metal redox couples in aqueous media

    International Nuclear Information System (INIS)

    Weaver, M.J.; Nettles, S.M.

    1980-01-01

    The effects of substituting D 2 O for H 2 O as solvent upon the formal potentials of a number of transition-metal redox couples containing aquo, ammine, and simple chelating ligands have been investigated with the intention of evaluating the importance of specific solvation factors in the thermodynamics of such couples. The solvent liquid junction formed between H 2 O and D 2 O was shown to have a negligible effect on the measured formal potentials. Substantial solvent isotope effects were observed for a number of these systems, particularly for couples containing aquo ligands. The effects of separately deuterating the ligands and the surrounding solvent were investigated for some ammine couples. Possible origins of the solvent isotope effects are discussed in terms of changes in metal-ligand and ligand-solvent interactions. It is tentatively concluded that the latter influence provides the predominant contribution to the observed effects for aquo couples arising from increases in the extent of hydrogen bonding between the aquo ligands and surrounding solvent when D 2 O replaces H 2 O. The implications of these results in unraveling the solvent isotope effects upon the kinetics of simple redox reactions are also considered

  3. Effect of hall currents on thermal instability of dusty couple stress fluid

    Directory of Open Access Journals (Sweden)

    Aggarwal Amrish Kumar

    2016-09-01

    Full Text Available In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field, oscillatory modes are produced which were non-existent in their absence.

  4. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  5. Couples and work and family conflict : the effects of role salience crossover

    OpenAIRE

    Abeysekera, Lakmal Hasanga Dias Jayasuriya

    2017-01-01

    An examination of work and family conflict literature over the past quarter-century suggests employed individuals in married or de facto relationships tend to experience conflict at the couple-level rather than the widely researched individual-level. Yet, there are few available studies investigating work and family conflict at the couple-level. With the aim of addressing this gap within work-family literature, this thesis examines the ‘crossover’ effects between partners in addition to the w...

  6. Study of the coupling between real gas effects and rarefied effects on hypersonic aerodynamics

    Science.gov (United States)

    Chen, Song; Hu, Yuan; Sun, Quanhua

    2012-11-01

    Hypersonic vehicles travel across the atmosphere at very high speed, and the surrounding gas experiences complicated physical and chemical processes. These processes produce real gas effects at high temperature and rarefied gas effects at high altitude where the two effects are coupled through molecular collisions. In this study, we aim to identify the individual real gas and rarefied gas effects by simulating hypersonic flow over a 2D cylinder, a sphere and a blunted cone using a continuum-based CFD approach and the direct simulation Monte Carlo method. It is found that physical processes such as vibrational excitation and chemical reaction will reduce significantly the shock stand-off distance and flow temperature for flows having small Knudsen number. The calculated skin friction and surface heat flux will decrease when the real gas effects are considered in simulations. The trend, however, gets weakened as the Knudsen number increases. It is concluded that the rarefied gas effects weaken the real gas effects on hypersonic flows.

  7. Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices

    International Nuclear Information System (INIS)

    Chiolerio, Alessandro; Allia, Paolo; Graziano, Mariagrazia

    2012-01-01

    Physical limitations foreshadow the eventual end to traditional Complementary Metal Oxide Semiconductor (CMOS) scaling. Therefore, interest has turned to various materials and technologies aimed to succeed to traditional CMOS. Magnetic Quantum dot Cellular Automata (MQCA) are one of these technologies. Working MQCA arrays require very complex techniques and an excellent control on the geometry of the nanomagnets and on the quality of the magnetic thin film, thus limiting the possibility for MQCA of representing a definite solution to cost-effective, high density and low power consumption device demand. Counter-intuitively, moving towards bigger sizes and lighter technologies it is still possible to develop multi-state logic devices, as we demonstrated, whose main advantage is cost-effectiveness. Applications may be seen in low cost logic devices where integration and computational power are not the main issue, eventually using flexible substrates and taking advantage of the intrinsic mechanical toughness of systems where long range interactions do not need wirings. We realized cobalt micrometric MQCA arrays by means of Electron Beam Lithography, exploiting cost-effective processes such as lift-off and RF sputtering that usually are avoided due to their low control on array geometry and film roughness. Information relative to the magnetic configuration of MQCA elements including their eventual magnetic interactions was obtained from Magnetic Force Microscope (MFM) images, enhanced by means of a numerical procedure and presented in differential maps. We report the existence of bi-stable magnetic patterns, as detected by MFM while sampling the z-component of magnetic induction field, arising from dipolar inter-element magnetostatic coupling, able to store and propagate binary information. This is achieved despite the array quality and element magnetic state, which are low and multi-domain, respectively. We discuss in detail shape, inter-element spacing and dot profile

  8. Survey the Effect of Pre-marriage Counseling on Knowledge and Attitudes Couple in Yazd

    Directory of Open Access Journals (Sweden)

    ss Mazloomi mahmodabad

    2016-07-01

    Full Text Available Abstract Introduction : Holding true premarital counseling courses helps to couples to acquire the necessary knowledge in the field of reproductive health issues. The aim of this study was determination of effect of pre-marriage counseling on knowledge and attitudes couple in Yazd. Methods: This was an semi experimental and pre and post study In which 200 couples participating in premarital counseling courses were selected randomly. Finally, the data were analysed by SPSS18 software and t-test and ANOVA statistical tests. Results: The data showen that  couples before attending in counseling courses have acquired respectively 37.6%  and 48.1%  and after training respectively 65.1% and 57.6% from knowledge and attitude scores. Also mean score of knowledge and attitude according to sex, education level and occupation were statistically significant (P≤0.05. Conclusion: Considering to small change of attitude couples, it is suggested after counseling classes are given the opportunity into couple that express your questions privately. Also to achieve a relatively stable behavior in young couples and promoting their health levels, must besides holding training courses before marriage, pay more attention to the quality of these courses. 

  9. Thermodynamics of strong coupling superconductors including the effect of anisotropy

    Science.gov (United States)

    Daams, J. M.; Carbotte, J. P.

    1981-05-01

    The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.

  10. Induced magnetic-field effects in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Rognlien, T.D.

    1995-01-01

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest

  11. The effect of instruction on knowledge and attitude of couples attending pre-marriage counseling classes.

    Science.gov (United States)

    Moodi, Mitra; Miri, Mohammad-Reza; Reza Sharifirad, Gholam

    2013-01-01

    Marriages and establishing a family is one of the most important events in the life of each person. It has significant effects on personal and social health, if it occurs with sufficient knowledge in the proper conditions. The aim of this study is to determine the effect of pre-marriage instruction on the knowledge and health attitudes of the couples attending the pre-marriage counseling classes. This pre and post quasi-experimental study was conducted on 250 couples attending the pre-marriage counseling classes. The required information was collected using an autonomous questionnaire designed based on the research objectives. The questionnaire included three parts: Demographic information, knowledge (27 questions) and attitude (18 questions. The questionnaire was filled out before and after the pre-marriage counseling program, which was presented as lectures. The effect of the instructional program was analyzed using a statistical test. The results showed that 83.2% of the couples had poor knowledge, 16% average, and 0.8% had good knowledge before the intervention. After the intervention, 60.4% of couples had poor knowledge, 31.6% average and 8% had good knowledge. The results also revealed that that the difference in mean scores of knowledge and attitudes regarding reproductive health, family planning, genetic diseases and disabilities was statistically significant (P < 0.001). Despite the mean scores of knowledge and attitude of the couples had increased after the instructional intervention, the increase in knowledge level was not very high. So the knowledge score of the couples increased just 4.3%, and only 8% of the couples had good knowledge after the instructional intervention. Therefore, to achieve a relatively stable behavior change in individuals and improving the health level of the young couples, it is recommended that more attention pay to the quality of the instructional classes.

  12. Low energy constituent quark and pion effective couplings in a weak external magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-03-01

    An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

  13. Effect of electromagnetic coupling on MHD flow in the manifold of fusion liquid metal blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Meng, Zi; Feng, Jingchao; He, Qingyun

    2014-10-15

    In fusion liquid metal (LM) blanket, magnetohydrodynamics (MHD) effects will dominate the flow patterns and the heat transfer characteristics of the liquid metal flow. Manifold is a key component in LM blanket in charge of distributing or collecting the liquid metal coolant. In this region, the complex three dimensional MHD phenomena will be occurred, and the velocity, pressure and flow rate distributions may be dramatically influenced. One important aspect is the electromagnetic coupling effect resulting from an exchange of electric currents between two neighboring fluid domains that can lead to modifications of flow distribution and pressure drop compared to that in electrical separated channels. Understanding the electromagnetic coupling effect in manifold is necessary to optimize the liquid metal blanket design. In this work, a numerical study was carried out to investigate the effect of electromagnetic coupling on MHD flow in a manifold region. The typical manifold geometry in LM blanket was considered, a rectangular supply duct entering a rectangular expansion area, finally feeding into 3 rectangular parallel channels. This paper investigated the effect of electromagnetic coupling on MHD flow in a manifold region. Different electromagnetic coupling modes with different combinations of electrical conductivity of walls were studied numerically. The flow distribution and pressure drop of these modes have been evaluated.

  14. The Numerical Simulation of Coupling Behavior of Soil with Chemical Pollutant Effects

    Science.gov (United States)

    Liu, Z. J.; Li, X. K.; Tang, L. Q.

    2010-05-01

    The coupling behavior of clay plays a role in the integrity of clay barriers used in landfills. The clay barriers are subjected to mechanical and thermal effects coupled with hydraulic behavior, also, if the leachates become in contact with the clay liner, chemical effects may lead to some drastic changes in the properties of the clay. A numerical method to simulate the coupling behavior of soil with chemical pollutant effects is presented. Within the framework of Gens-Alonso model describing the constitutive behavior of unsaturated clay presented in reference[1], basing on the work of Wu[2] and Hueckel[3], a constitutive model describing the chemo-thermo-hydro-mechanical(CTHM) coupling behavior of clays in contact with a single organic contaminant is presented. The thermical softening and chemical softening is considered in the presented model. The strain arising in the material due to chemical and thermical effects can be decomposed into two parts: elastic expansion and plastic compaction. The chemical effects are described in terms of the mass concentration of the contaminant. The increases in temperature and contaminant concentration cause decreases of the pre-consolidation pressure and the cohesion. The mechanisms are called thermical softening and chemical softening. The presented coupled CTHM constitutive model has been integrated into the coupled thermo-hydro-mechanical mathematical model including contaminant transport in porous media. To solve the equilibrium equations, the grogram of finite element methods is developed with a stagger algorithm. The mechanisms taking place due to the coupling behaviour of the clay with a single contaminant solute are analysed with the presented numerical method.

  15. Contrasts between the vibronic contributions in the tris-(2,2'-bipyridyl)osmium(II) emission spectrum and the implications of resonance-Raman parameters.

    Science.gov (United States)

    Ondongo, Onduru S; Endicott, John F

    2009-04-06

    The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.

  16. The behaviour of effective coupling constants in 'finite' grand unification theories in curved spacetime

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I.M.

    1989-01-01

    The question of the behaviour of effective coupling constants in one-loop 'finite' grand unification theories in curved spacetime is investigated. It is shown that in strong gravitational fields the effective coupling constant, corresponding to the parameter of non-minimal interaction of scalar and gravitational fields, tends to the conformal value or increases in an exponential fashion. The one-loop effective potential is obtained with accuracy to linear curvature terms. It is shown that, in external supergravity, supersymmetric finite theories admit asymptotic conformal invariance. (Author)

  17. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    Science.gov (United States)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  18. Visualization of viscous coupling effects in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Arango, J.D. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Kantzas, A. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Some heavy oil reservoirs in Venezuela and Canada have shown higher than expected production rates attributed to the effects of foamy oil or enhanced solution gas drive. However, foamy oil 2-phase flow does not fully explain oil rate enhancement in heavy oil reservoirs. In this study, flow visualization experiments were conducted in a 2-D etched network micromodel in order to determine the effect of the viscosity ratio on oil mobility at the pore scale. The micromodel's pattern was characterized by macroscopic heterogeneities with a random network of larger pore bodies interconnected with a random network of smaller pore throats. Displacement tests were conducted with green-dyed distilled water as a wetting phase. N-octane, bromododecane and mineral oil were used as non-wetting phases. An unsteady-state method was used to obtain displacement data, and the Alternate method was used to calculate relative permeabilities. Results of the study showed that relative permeabilities depended on the viscosity ratio of the fluids flowing through the porous medium. Channel and annular flows co-existed, and water lubrication was stronger at higher water saturations. The results of the study explained the abnormally high production rates in heavier oil fields. 19 refs., 3 tabs., 14 figs.

  19. Effect of couple-stress on the pure bending of a prismatic bar

    International Nuclear Information System (INIS)

    Tzung, F.; Kao, B.; Ho, F.; Tang, P.

    1981-02-01

    An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite

  20. Effect of coupling behavior on groundwater flow for geological disposal of radioactive high level waste

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kobayashi, Akira; Ohnishi, Yuzo; Chijimatsu, Masakazu

    2003-01-01

    In order to estimate the effects of coupled thermal-hydraulic-mechanical phenomena in near-field for geological disposal of high-level radioactive waste on a vast groundwater flow system, a far-field analysis was simulated based on the results of the simulation of coupled phenomena in near-field using averaged tensor and heat flux. From the results of the coupled analyses of near-field and far-field it was clarified that groundwater flow system was influenced by coupled phenomena in near-field. Moreover, it can be said that groundwater flux into a disposal tunnel is regarded as a complement to safety assessment of a disposal because it strongly correlates with traveling time of groundwater. (author)

  1. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  2. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  3. Universality for the parameter-mismatching effect on weak synchronization in coupled chaotic systems

    International Nuclear Information System (INIS)

    Lim, Woochang; Kim, Sang-Yoon

    2004-01-01

    To examine the universality for the parameter-mismatching effect on weak chaotic synchronization, we study coupled multidimensional invertible systems such as the coupled Henon maps and coupled pendula. By generalizing the method proposed in coupled one-dimensional (1D) noninvertible maps, we introduce the parameter sensitivity exponent δ to measure the degree of the parameter sensitivity of a weakly stable synchronous chaotic attractor. In terms of the parameter sensitivity exponents, we characterize the effect of the parameter mismatch on the intermittent bursting and the basin riddling occurring in the regime of weak synchronization. It is thus found that the scaling exponent μ for the average characteristic time (i.e., the average interburst time and the average chaotic transient lifetime) for both the bubbling and riddling cases is given by the reciprocal of the parameter sensitivity exponent, as in the simple system of coupled 1D maps. Hence, the reciprocal relation (i.e., μ = 1/δ) seems to be 'universal', in the sense that it holds in typical coupled chaotic systems of different nature

  4. The Effect of Provision of Information Regarding Infertility Treatment Strategies on Anxiety Level of Infertile Couples

    Directory of Open Access Journals (Sweden)

    Mustafa Hamdieh

    2009-01-01

    Full Text Available Background: Infertility may have many emotional and psychological implications on infertilecouples. So far, different methods for reducing anxiety in infertile couples have been evaluated. Thegoal of this study is to evaluate the effect of provision of information regarding infertility treatmentto infertile couples on their anxiety levels.Materials and Methods: This study was conducted as a before and after clinical trial. Forty-twoindividuals were considered as cases and 40 as controls. In order to evaluate anxiety and depressionin participants, the Hamilton Anxiety and Depression Scale (HADS questionnaire was used. Theintervention group received information about infertility treatment through a two hour face-to-facemeeting and was provided with a brochure. Anxiety level was assessed at the time of admission,immediately after the session and two weeks later. Assessment was performed twice for the controlgroup; once at the time of admission and secondly, two weeks later.Results: Our results show that receiving information about infertility treatment significantlydecreases anxiety among infertile couples two weeks post-training. This decline does not have asignificant correlation with age, sex, education level of the couple, and neither with the durationnor the cause of infertility. Providing information does not have any significant effect on the rate ofdepression among couples.Conclusion: It is recommended that provision of information regarding infertility treatmentmethods should be considered as a means of decreasing anxiety among infertile couples who referto infertility treatment centers.

  5. Effects of dynamic coupling between freestanding steel containment and attached piping

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Kincaid, R.H.; Short, S.A.

    1981-01-01

    This paper presents an accurate, practical method of converting uncoupled response time history results obtained from an uncoupled structure model into coupled response time histories using a post-processor routine. The method is rigorous and only requires the modal properties of the uncoupled structure model, the modal properties of the uncoupled attached equipment model, and the uncoupled time histories of the attachment points on the structure. Coupled response spectra or time histories for use as input to an uncoupled equipment model are obtained. Comparisons of coupled versus uncoupled analysis results are presented for representative piping systems attached to a typical BWR Mark III steel containment subjected to vibration from safety relief valve discharge with a fundamental frequency of 12 Hz. It is shown that the coupled response spectra at piping attachment points are reduced by a factor between 2 and 5 from the amplified uncoupled spectra at each significant piping modal frequency above 20 Hz for representative major piping systems attached to the unstiffened portion of the steel shell. Responses at lower frequencies are not generally reduced and may increase by coupling effects for the input loading and shell model studied. Peak accerations are generally significantly reduced while peak displacements may be decreased or increased. Rules are presented for estimating the coupling effects between freestanding steel shells and attached equipment. (orig./HP)

  6. Effects of toroidal coupling on the stability of tearing modes

    International Nuclear Information System (INIS)

    Carreras, B.; Hicks, H.R.; Lee, D.K.

    1980-06-01

    The time evolution of tearing modes in toroidal geometry is studied in the low-β and large aspect ratio limit. An initial value three-dimensional computer code, which numerically advances the reduced set of resistive magnetohydrodynamic equations is employed. Toroidicity has, in general, a destabilizing effect on tearing modes in this limit. A generalization of the Δ' formalism can be used to study the linear regime. The results obtained in this way are in very good agreement with the results from the initial value code. The nonlinear phase of the evolution is also followed numerically. In the case of strong interaction of different helicities, a larger region of stochastic magnetic field lines results than in the cylindrical geometry case

  7. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe

    KAUST Repository

    Huang, Bin-Juine; Chong, Tze-Ling; Wu, Po-Hsien; Dai, Han-Yi; Kao, Yeong-Chuan

    2015-01-01

    © 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest

  8. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling; Huang, Bin-Juine; Wu, Po-Hsien; Kao, Yeong-Chuan

    2014-01-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector

  9. Effects of a partnership support program for couples undergoing fertility treatment.

    Science.gov (United States)

    Asazawa, Kyoko

    2015-10-01

    The study's purpose was to examine the effects of providing a partnership support program. It was designed to improve Japanese couples' partnership, maintain quality of life, decrease psychological distress, and improve marital relationship satisfaction while they underwent infertility treatment that included the possibility of using assisted reproductive technology. This quasi-experimental study with a two-group pretest-post-test design used purposive sampling and non-random assignment of 318 consenting Japanese patients from previous phases of assisted reproductive technology fertility treatment who were patients from a fertility clinic in Tokyo, Japan. The intervention group of 152 patients (76 couples) participated in the partnership support program. The comparison group of 166 patients (83 couples) received usual care. Recruitment was age matched. The program provided information and used a participatory-interactive approach to enhance understanding and cooperation in couples undergoing fertility treatment. The main outcome measures were: "partnership", FertiQoL, Quality Marriage Index, and "psychological distress". There were 311 participants (intervention group n = 148; comparison group, n = 163). The intervention group showed significant improvement in the couples' partnerships and a significant decrease in women's psychological distress using subgroup analysis. The partnership support program provided effective improvement in partnership for the couples, and reduced psychological distress for the women; however, it had less impact for the men. The program was not effective in improving couples' overall quality of life (QOL); however, it was effective in improving the "mind-body" aspects of the QOL subscale. © 2015 The Author. Japan Journal of Nursing Science © 2015 Japan Academy of Nursing Science.

  10. Effect of practical application of intimate relationship skills program in marital commitment of couples

    Directory of Open Access Journals (Sweden)

    Bahareh Chitsazzadeh Alaf

    2017-06-01

    Full Text Available Nowadays, due to the increasing rate of divorce and betrayals, the marital commitment has been concerned in marriage and family studies. The research aimed to evaluate the effect of Practical Application of Intimate Relationship Skills (PAIRS program in marital commitment of couples. The method was quasi-experimental and the design was pretest-posttest with a control group. The convenience sampling method was employed to choose 16 couples whose marital commitment score was below the mean in Isfahan, Iran. These couples were randomly assigned to the experimental and control groups (N=8 in each group. Data gathering was carried out using Adams and Jones dimensions of commitment inventory (DCI that was filled out by the members of both groups in the pretest stage. Then, the experimental group received the PAIRS training program in thirteen 90-minute sessions. 35 percent of the total variance belongs to the group membership due to the effectiveness of this educational program. This educational program attempts to make couples aware of themselves and their spouses, enhance, intimacy and empathy and develop effective relationship skills and problem-solving skills. The results demonstrated that the PAIRS program showed a positive effect on marital commitment. Hence, the PAIRS program can be employed to prevent divorce by increasing marital commitment in couples.

  11. Effects of Working Couple's Retirement Sequence on Satisfaction in Patriarchal Culture Country: Probing on Gender Difference.

    Science.gov (United States)

    Lee, Ayoung; Cho, Joonmo

    2017-01-01

    We examined the effects of the differences in the retirement sequence (i.e., who retires first between spouses) on satisfaction in Korea of patriarchal culture. Our empirical study demonstrates that households where men retired first had a much lower satisfaction than households where women retired first. In addition, men were found to show lower satisfaction than wives in both households where women retire first and the households where men retire first. Retirement sequence affecting their satisfaction at the point when only one of the spouses is retired continues to affect their satisfaction after both of them are retired. This means that the difference in the couple's retirement sequence has an ongoing effect on their later happiness. The analysis of the effect of a couple's retirement sequence on the satisfaction in their old life may be useful for improving an individual and couples' quality of life in countries with similar cultures.

  12. Improvements in closeness, communication, and psychological distress mediate effects of couple therapy for veterans.

    Science.gov (United States)

    Doss, Brian D; Mitchell, Alexandra; Georgia, Emily J; Biesen, Judith N; Rowe, Lorelei Simpson

    2015-04-01

    Empirically based couple therapy results in significant improvements in relationship satisfaction for the average couple; however, further research is needed to identify mediators that lead to change and to ensure that improvements in mediators predict subsequent-not just concurrent-relationship satisfaction. In addition, given that much of the current literature on couple therapy examines outcomes in a research environment, it is important to examine mediators in a treatment-as-usual setting. To address these questions, 161 heterosexual couples (322 individuals) received treatment-as-usual couple therapy at one of two Veteran Administration Medical Centers (M = 5.0 and 13.0 sessions at the two sites) and were assessed before every session. The majority of couples were married (85%) and had been together for a median of 7.8 years (SD = 13). Participants were primarily White, non-Hispanic (69%), African American (21%), and White, Hispanic/Latino (8%). Individuals' own self-reported improvements in communication, emotional closeness, and psychological distress (but not frequency of behaviors targeted in treatment) mediated the effect of treatment on their subsequent relationship satisfaction. When all significant mediators were examined simultaneously, improvements in men's and women's emotional closeness and men's psychological distress independently mediated subsequent relationship satisfaction. In contrast, improvements in earlier relationship satisfaction mediated the effect of treatment only on subsequent psychological distress. This study identifies unique mediators of treatment effects and shows that gains in mechanisms predict subsequent relationship satisfaction. Future investigations should focus on the role of emotional closeness and psychological distress-constructs that have often been neglected-in couple therapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  13. Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism

    Science.gov (United States)

    Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu

    2018-02-01

    Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.

  14. Coupling of reciprocal vectors and corresponding degeneracy effect in a dual-periodic optical superlattice

    International Nuclear Information System (INIS)

    Qin Yiqiang

    2006-01-01

    A dual-periodic structure for quasi-phase matching cascaded optical parametric interactions is proposed. Due to the coupling of reciprocal vectors between the original and imposed periodic sequence, the reciprocal vectors and the corresponding effective nonlinear coefficients is no longer the simple combination of two periodic structures. The new analytical expression of the effective nonlinear coefficients is deduced and given. The degeneracy phenomena and the novel extinction rule resulting from the coupling of reciprocal vectors are found and investigated. The corresponding physical nature is also discussed

  15. Triple-effect absorption refrigeration system with double-condenser coupling

    Science.gov (United States)

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  16. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  17. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2007-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  18. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Science.gov (United States)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2007-09-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  19. Computations of the chirality-sensitive effect induced by an antisymmetric indirect spin–spin coupling

    Science.gov (United States)

    Garbacz, Piotr

    2018-05-01

    Results of quantum mechanical computations of the antisymmetric part of the indirect spin-spin coupling tensor, ?, performed using the coupled-cluster method, the second-order polarisation propagator approximation, and the density functional theory for 25 molecules and nearly 100 spin-spin couplings are reported. These results are used for an estimation of the magnitude of the recently proposed liquid-state nuclear magnetic resonance chirality-sensitive effect, which allows to determine the molecular chirality directly, i.e. without the need for the application of any chiral agent. The following were found: (i) the antisymmetry J⋆ is usually larger for the coupling between spins separated by two chemical bonds in comparison with the coupling through one bond, (ii) promising samples are those which contain fluorine, and (iii) the antisymmetry of the spin-spin coupling tensor is of the order of a few hertz for commercially available chemical compounds. Therefore, the relevant property of the experiment, the pseudoscalar Jc, for them is of the order of 1 nHz m/V.

  20. A dyadic analysis of relationships and health: does couple-level context condition partner effects?

    Science.gov (United States)

    Barr, Ashley B; Simons, Ronald L

    2014-08-01

    Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g., dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g., partner strain and support), predicted young adults' physical and mental health. Using dyadic data from a sample of 249 young, primarily Black couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence, more so than marital status, may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types.

  1. The effects of marriage education for army couples with a history of infidelity.

    Science.gov (United States)

    Allen, Elizabeth S; Rhoades, Galena K; Stanley, Scott M; Loew, Benjamin; Markman, Howard J

    2012-02-01

    While existing literature has begun to explore risk factors which may predict differential response to marriage education, a history of couple infidelity has not been examined to determine whether infidelity moderates the impacts of marriage education. The current study evaluated self-report marital satisfaction and communication skills in a sample of 662 married Army couples randomly assigned to marriage education (i.e., PREP) or a no-treatment control group and assessed prior to intervention, post intervention, and at 1 year after intervention. Of these, 23.4% couples reported a history of infidelity in their marriage. Multilevel modeling analyses indicated that having a history of infidelity significantly moderated the impact of PREP for marital satisfaction, with a trend for a similar effect on communication skills. However, couples with a history of infidelity assigned to PREP did not reach the same levels of marital satisfaction after intervention seen in the group of couples without infidelity assigned to PREP, although they did show comparable scores on communication skills after intervention. Implications of these findings for relationship education with couples with a history of infidelity are discussed.

  2. A Dyadic Analysis of Relationships and Health: Does Couple-Level Context Condition Partner Effects?

    Science.gov (United States)

    Barr, Ashley B.; Simons, Ronald L.

    2014-01-01

    Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g. dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g. partner strain and support) predicted young adults’ physical and mental health. Using dyadic data from a sample of 249 young, primarily African American couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence more so than marital status may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types. PMID:25090254

  3. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    International Nuclear Information System (INIS)

    Lal, Shankar; Pant, K. K.

    2016-01-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  4. The effects of the tensor coupling term in the Zimanyi-Moszkowski model for unpolarized nuclear matter

    International Nuclear Information System (INIS)

    Ru-Keng Su; Li Li; Hong-Qiu Song

    1998-01-01

    The effects of the tensor coupling term on nuclear matter in the Zimanyi-Moszkowki (ZM) model are investigated. It is shown that the tensor coupling term in the ZM model leaves the thermodynamical properties of nuclear matter almost unchanged. The corrections of tensor coupling to the critical point of the liquid-gas phase transition are given. (author)

  5. Effects of a Randomized Couple-Based Intervention on Quality of Life of Breast Cancer Patients and Their Partners

    Science.gov (United States)

    Kayser, Karen; Feldman, Barry N.; Borstelmann, Nancy A.; Daniels, Ann A.

    2010-01-01

    The purpose of this study was to determine the effectiveness of a couple-based intervention on the quality of life (QOL) of early-stage breast cancer patients and their partners. A randomized controlled design was used to assign couples to either the hospital standard social work services (SSWS) or a couple-based intervention, the Partners in…

  6. Short and long-term effectiveness of couple counselling: a study protocol

    Directory of Open Access Journals (Sweden)

    Schofield Margot J

    2012-09-01

    Full Text Available Abstract Background Healthy couple relationships are fundamental to a healthy society, whereas relationship breakdown and discord are linked to a wide range of negative health and wellbeing outcomes. Two types of relationship services (couple counselling and relationship education have demonstrated efficacy in many controlled studies but evidence of the effectiveness of community-based relationship services has lagged behind. This study protocol describes an effectiveness evaluation of the two types of community-based relationship services. The aims of the Evaluation of Couple Counselling study are to: map the profiles of clients seeking agency-based couple counselling and relationship enhancement programs in terms of socio-demographic, relationship, health, and health service use indicators; to determine 3 and 12-month outcomes for relationship satisfaction, commitment, and depression; and determine relative contributions of client and therapy factors to outcomes. Methods/Design A quasi-experimental pre-post-post evaluation design is used to assess outcomes for couples presenting for the two types of community-based relationship services. The longitudinal design involves a pre-treatment survey and two follow-up surveys at 3- and 12-months post-intervention. The study is set in eight Relationships Australia Victoria centres, across metropolitan, outer suburbs, and regional/rural sites. Relationships Australia, a non-government organisation, is the largest provider of couple counselling and relationship services in Australia. The key outcomes are couple satisfaction, relationship commitment, and depression measured by the CESD-10. Multi-level modelling will be used to account for the dyadic nature of couple data. Discussion The study protocol describes the first large scale investigation of the effectiveness of two types of relationship services to be conducted in Australia. Its significance lies in providing more detailed profiles of couples who

  7. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2017-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  8. Effects of the electron-phonon coupling activation in collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, Eva, E-mail: zarkadoulae@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Samolyuk, German [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Weber, William J. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-07-15

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally, we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage. - Highlights: •The electron-phonon interactions in irradiation affect the energy dissipation. •The resulting damage depends on the electron-phonon interaction activation time. •The electronic stopping acts on the ions before the electron-phonon interactions.

  9. Practical method of dynamic analysis considering coupling effects between equipment and piping systems

    International Nuclear Information System (INIS)

    Koyanagi, Ryoichi

    1984-01-01

    Many piping systems are supported by flexible structures or attached to thin shell walls so it is very important to consider the dynamic coupling effects between these systems in dynamic analysis. This paper presents a practical method of dynamic analysis of an individual system considering the dynamic coupling effects of coupled equipment-piping systems. In this method, dynamic responses are calculated by using the modal information which is obtained from the other analysis for associative structure. Analytical results for the complete model and of this method for an individual system are presented in the piping-supporting structure system and a piping-shell system. From the comparison of these results, it shows that this method is accurate, useful and economically applicable to the dynamic analysis of large model. (author)

  10. Impact of the coupling effect and the configuration on a compact rectenna array

    Science.gov (United States)

    Rivière, J.; Douyere, A.; Luk, J. D. Lan Sun

    2014-10-01

    This paper proposes an experimental study of the coupling effect of a rectenna array. The rectifying antenna consists of a compact and efficient rectifying circuit in a series topology, coupled with a small metamaterial-inspired antenna. The measurements are investigated in the X plane on the rectenna array's behavior, with series and parallel DC- combining configuration of two and three spaced rectennas from 3 cm to 10 cm. This study shows that the maximum efficiency is reached for the series configuration, with a resistive load of 10 kQ. The optimal distance is not significant for series or parallel configuration. Then, a comparison between a rectenna array with non-optimal mutual coupling and a more traditional patch rectenna is performed. Finally, a practical application is tested to demonstrate the effectiveness of such small rectenna array.

  11. Spin Hall effect in a 2DEG in the presence of magnetic couplings

    International Nuclear Information System (INIS)

    Gorini, C; Schwab, P; Dzierzawa, M; Raimondi, R; Milletari, M

    2009-01-01

    It is now well established that the peculiar linear-in-momentum dependence of the Rashba (and of the Dresselhaus) spin-orbit coupling leads to the vanishing of the spin Hall conductivity in the bulk of a two-dimensional electron gas (2DEG). In this paper we discuss how generic magnetic couplings change this behaviour providing then a potential handle on the spin Hall effect. In particular we examine the influence of magnetic impurities and an in-plane magnetic field. We find that in both cases there is a finite spin Hall effect and we provide explicit expressions for the spin Hall conductivity. The results can be obtained by means of the quasiclassical Green function approach, that we have recently extended to spin-orbit coupled electron systems.

  12. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Jahn-Teller effect versus Hund's rule coupling in C60N-

    Science.gov (United States)

    Wehrli, S.; Sigrist, M.

    2007-09-01

    We propose variational states for the ground state and the low-energy collective rotator excitations in negatively charged C60N- ions (N=1,…,5) . The approach includes the linear electron-phonon coupling and the Coulomb interaction on the same level. The electron-phonon coupling is treated within the effective mode approximation which yields the linear t1u⊗Hg Jahn-Teller problem whereas the Coulomb interaction gives rise to Hund’s rule coupling for N=2,3,4 . The Hamiltonian has accidental SO(3) symmetry which allows an elegant formulation in terms of angular momenta. Trial states are constructed from coherent states and using projection operators onto angular momentum subspaces which results in good variational states for the complete parameter range. The evaluation of the corresponding energies is to a large extent analytical. We use the approach for a detailed analysis of the competition between Jahn-Teller effect and Hund’s rule coupling, which determines the spin state for N=2,3,4 . We calculate the low-spin-high-spin gap for N=2,3,4 as a function of the Hund’s rule coupling constant J . We find that the experimentally measured gaps suggest a coupling constant in the range J=60-80meV . Using a finite value for J , we recalculate the ground state energies of the C60N- ions and find that the Jahn-Teller energy gain is partly counterbalanced by the Hund’s rule coupling. In particular, the ground state energies for N=2,3,4 are almost equal.

  14. Mass transport in low permeability rocks under the influence of coupled thermomechanical and hydrochemical effects - an overview

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1984-10-01

    The present paper gives a general overview of mass transport in low permeability rocks under the coupled thermomechanical and hydrochemical effects associated with a nuclear waste repository. A classification of coupled processes is given. Then an ess is presented. example of a coupled process is presented. Discussions of coupled processes based on a recent LBL Panel meeting are summarized. 5 references, 3 figures, 4 tables

  15. Electromagnetic and structural coupled analysis with the effect of large deflection

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Niho, Tomoya

    1997-01-01

    In the designs of future fusion reactors and magnetic levitated vehicles, thin shell conducting structures are located in a high electromagnetic field. The transient magnetic field induces the eddy current on the conductive structure. While the Lorentz force by the eddy current and the magnetic field is loaded to the thin shell structure, the electromotive force by the deflection velocity and magnetic field reduces the eddy current. Therefore, the electromagnetic and structural coupled analysis is required for the design of these components. This paper describes a coupled finite element analysis for the eddy current and the structure. A formulation is presented considering the effect of the large deflection of shell structures by the total Lagrangian formulation. Both matrix equations for the eddy current and the structure are solved simultaneously using coupling sub-matrices. A coupled problem of a cantilever bending plate is analyzed. Based on the analysis results, the influence of the large deflection on the coupling effect is discussed. The condition that the large deflection analysis is required is examined through some parametric analyses

  16. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  17. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    Science.gov (United States)

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  18. Effect of the isovector coupling channel on the macroscopic part of ...

    Indian Academy of Sciences (India)

    Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria. E-mail: pscientific@aec.org.sy. MS received 10 June 2012; revised 18 October 2012; accepted 12 December 2012. Abstract. The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied ...

  19. Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field

    International Nuclear Information System (INIS)

    Jasinschi, R.S.; Smith, A.W.

    1984-01-01

    The only-loop effective potential for N=1, d=4 supergravity theory coupled to the Volkov-Akulov field is calculated. Then it is shown that after an ajustment of some parameters the local supersymmetry is dynamically broken and as a consequence the gravitino acquires mass. (Author) [pt

  20. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab

    2012-01-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non

  1. Effect of Topology Structures on Synchronization Transition in Coupled Neuron Cells System

    International Nuclear Information System (INIS)

    Liang Li-Si; Zhang Ji-Qian; Xu Gui-Xia; Liu Le-Zhu; Huang Shou-Fang

    2013-01-01

    In this paper, by the help of evolutionary algorithm and using Hindmarsh—Rose (HR) neuron model, we investigate the effect of topology structures on synchronization transition between different states in coupled neuron cells system. First, we build different coupling structure with N cells, and found the effect of synchronized transition contact not only closely with the topology of the system, but also with whether there exist the ring structures in the system. In particular, both the size and the number of rings have greater effects on such transition behavior. Secondly, we introduce synchronization error to qualitative analyze the effect of the topology structure. Furthermore, by fitting the simulation results, we find that with the increment of the neurons number, there always exist the optimization structures which have the minimum number of connecting edges in the coupling systems. Above results show that the topology structures have a very crucial role on synchronization transition in coupled neuron system. Biological system may gradually acquire such efficient topology structures through the long-term evolution, thus the systems' information process may be optimized by this scheme. (interdisciplinary physics and related areas of science and technology)

  2. Relationship Enhancement with Premarital Couples: An Assessment of Effects on Relationship Quality.

    Science.gov (United States)

    Ridley, Carl A.; And Others

    1982-01-01

    Assessed the effects of a relationship enhancement program on the relationship adjustment; trust and intimacy; empathy, warmth and genuineness; and communication of premarital couples (N=25). Results showed that following training the experimental group, relative to the control group, made significant increases on all dependent variables. (Author)

  3. The effective baryon-lepton coupling constant and the parity of leptons

    International Nuclear Information System (INIS)

    Lucha, W.; Stremnitzer, H.

    1981-01-01

    Using a phenomenological ansatz for the Lagrangian of baryon- and lepton-number violating interactions the effective baryon-lepton coupling constant is calculated within the framework of a relativistic quark model. Apart from a calculation of B-number violating cross-sections and decays this ansatz allows for a definition of the parity of leptons relative to baryons. (Auth.)

  4. The Effect of Daily Challenges in Children with Autism on Parents’ Couple Problem-Solving Interactions

    Science.gov (United States)

    Hartley, Sigan L.; Papp, Lauren M.; Blumenstock, Shari; Floyd, Frank; Goetz, Greta L.

    2016-01-01

    The vulnerability-stress-adaptation model guided this examination of the impact of daily fluctuations in the symptoms and co-occurring behavior problems of children with autism spectrum disorder (ASD) on parents’ couple problem-solving interactions in natural settings and as these interactions spontaneously occur. A 14-day daily diary was completed by mothers and fathers in 176 families who had a child with ASD. On each day of the diary, parents separately reported on the child with ASD's daily level of symptoms and co-occurring behavior problems and the topic and level of negative affect in their most meaningful or important daily couple problem-solving interaction. Multilevel modeling was used to account for the within-person, within-couple nested structure of the data. Results indicated that many parents are resilient to experiencing a day with a high level of child ASD symptoms and co-occurring behavior problems and do not report more negative couple problem-solving interactions. However, household income, level of parental broader autism phenotype, and presence of multiple children with special care needs served as vulnerability factors in that they were related to a higher overall rating of negative affect in couple interactions and moderated the impact of reporting a day with a high level of child ASD symptoms and co-occurring behavior problems on next-day ratings of negative couple problem-solving interactions. The magnitude of these effects was small. Understanding mechanisms that support adaptive couple interactions in parents of children with ASD is critical for promoting best outcomes. PMID:27336179

  5. arXiv Hybrid Fluid Models from Mutual Effective Metric Couplings

    CERN Document Server

    Kurkela, Aleksi; Preis, Florian; Rebhan, Anton; Soloviev, Alexander

    Motivated by a semi-holographic approach to the dynamics of quark-gluon plasma which combines holographic and perturbative descriptions of a strongly coupled infrared and a more weakly coupled ultraviolet sector, we construct a hybrid two-fluid model where interactions between its two sectors are encoded by their effective metric backgrounds, which are determined mutually by their energy-momentum tensors. We derive the most general consistent ultralocal interactions such that the full system has a total conserved energy-momentum tensor in flat Minkowski space and study its consequences in and near thermal equilibrium by working out its phase structure and its hydrodynamic modes.

  6. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    Science.gov (United States)

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  7. Synchronization effects in two coupled one-dimensional lattices of phase oscillators

    International Nuclear Information System (INIS)

    Pando L, Carlos L.

    2001-03-01

    We study synchronization effects in a model consisting of two identical unidirectionally coupled 1-D arrays of phase oscillators. The master array is in the spatio-temporal chaos regime and the coupling across the two arrays is not strong enough in order to reach complete synchronization. The time series of the distance between the arrays is the main object of our study and this shows on-off intermittency. We can approximate the dynamics of the aforementioned time series with that of a first-order Markov process with two symbols. This model can be implemented in arrays of phase-locked loops (PPL) and Josephson junctions. (author)

  8. Mutual Coupling Effects for Radar Cross Section (RCS of a Series-Fed Dipole Antenna Array

    Directory of Open Access Journals (Sweden)

    H. L. Sneha

    2012-01-01

    Full Text Available The estimation of RCS of a phased array depends on various parameters, namely, array geometry, operational frequency, feed network, mutual coupling between the antenna elements and so fourth. This paper presents the estimation of RCS of linear dipole array with series-feed network by tracing the signal path from the antenna aperture into the feed network. The effect of mutual coupling exhibited by the dipole antenna is considered for three configurations namely, side by side, collinear, and parallel in echelon. It is shown that the mutual coupling affects the antenna pattern (and hence RCS significantly for larger scan angles. Further it is inferred that the RCS of phased array can be optimized by (i reducing the length of the dipole, (ii termination of the isolation port of the coupler with a suitable load, and (iii using suitable amplitude distribution.

  9. Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes

    International Nuclear Information System (INIS)

    Rui-Qiang, Wang; Kai-Ming, Jiang

    2009-01-01

    The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron–phonon coupling strength. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Effect of Turbulence on Power for Bend-Twist Coupled Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    that it might be related to the dynamic response of bend-twist coupled blades in turbulent flow. This paper contains estimations of the power curve from nonlinear time simulations, a linear frequency domain based method and a normal distribution weighted average method. It is shown that the frequency domain...... that changes in power due to turbulence are similar for coupled and uncoupled blades. Power gains at low wind speeds are related to the curvature of the steady state power curve. Losses around rated wind speed are caused by the effects of controller switching between partial and full power operation.......Bend-twist coupling of wind turbine blades reduces the structural loads of the turbine but it also results in a decrease of the annual energy production. The main part of the power loss can be mitigated by pretwisting the blade, but some power loss remains and previous studies indicate...

  11. Impact of coupled heat and moisture transfer effects on buildings energy consuption

    Directory of Open Access Journals (Sweden)

    Ferroukhi Mohammed Yacine

    2017-01-01

    Full Text Available Coupled heat, air, and moisture transfers through building envelope have an important effect on prediction of building energy requirements. Several works were conducted in order to integrate hygrothermal transfers in dynamic buildings simulations codes. However, the incorporation of multidirectional hygrothermal transfer analysis in the envelope into building simulation tools is rarely considered. In this work, coupled heat, air, and moisture (HAM transfer model in multilayer walls was established. Thereafter, the HAM model is coupled dynamically to a building behavior code (BES.The coupling concerns a co-simulation between COMSOL Multiphysics and TRNSYS software. Afterward, the HAM-BES co-simulation accuracy was verified. Then, HAM-BES co-simulation platform was applied to a case study with various types of climates (temperate, hot and humid, cold and humid. Three simulations cases were carried out. The first simulation case consists of the TRNSYS model without HAM transfer model. The second simulation case, 1-D HAM model for the envelope was integrated in TRNSYS code. For the third one, 1-D HAM model for the wall and 2-D HAM model for thermal bridges were coupled to the thermal building model of TRNSYS. Analysis of the results confirms the significant impact of 2-D envelope hygrothermal transfers on the indoor thermal and moisture behavior of building as well as on the energy building assessment. These conclusions are shown for different studied climates.

  12. The magnetoelectric coupling effect in multiferroic composites based on PZT–ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowska, J.A., E-mail: joanna.bartkowska@us.edu.pl

    2015-01-15

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the values of magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the ferroelectric–ferromagnetic composite PZT–ferrite type, namely PSZTC–NiZn and PBZTN–NiZn. The main component of the ferroelectric–ferromagnetic composite was PZT type powder (with ferroelectric properties), which was synthesized using sintering of a mixture of simple oxides in solid phase. The second element of the ferroelectric–ferromagnetic composite was the ferrite powder (with ferromagnetic properties). Ferrite powder was synthesized using calcination. Next, the mixed components were synthesized using sintering of the mixture of simple oxides in a solid phase (compaction by a free sintering method). The temperature dependences of the dielectric permittivity (ε) for the different frequencies and for both multiferroic composites were investigated. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified. - Highlights: • The magnetoelectric effect at two different ferroelectric–ferromagnetic composites based on a PZT and nickel–zinc ferrite. • Multiferroics composite incorporate both ferroelectric and magnetic phases. • The mechanism of the magnetoelectric coupling between ferroelectric and magnetic properties, in multiferroic composites, is caused by the strain. • The determination of the magnetoelectric coupling coefficient based on a theoretical model and the measurements of dielectric permittivity.

  13. The magnetoelectric coupling effect in multiferroic composites based on PZT–ferrite

    International Nuclear Information System (INIS)

    Bartkowska, J.A.

    2015-01-01

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the values of magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the ferroelectric–ferromagnetic composite PZT–ferrite type, namely PSZTC–NiZn and PBZTN–NiZn. The main component of the ferroelectric–ferromagnetic composite was PZT type powder (with ferroelectric properties), which was synthesized using sintering of a mixture of simple oxides in solid phase. The second element of the ferroelectric–ferromagnetic composite was the ferrite powder (with ferromagnetic properties). Ferrite powder was synthesized using calcination. Next, the mixed components were synthesized using sintering of the mixture of simple oxides in a solid phase (compaction by a free sintering method). The temperature dependences of the dielectric permittivity (ε) for the different frequencies and for both multiferroic composites were investigated. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified. - Highlights: • The magnetoelectric effect at two different ferroelectric–ferromagnetic composites based on a PZT and nickel–zinc ferrite. • Multiferroics composite incorporate both ferroelectric and magnetic phases. • The mechanism of the magnetoelectric coupling between ferroelectric and magnetic properties, in multiferroic composites, is caused by the strain. • The determination of the magnetoelectric coupling coefficient based on a theoretical model and the measurements of dielectric permittivity

  14. Effects of Mechanical Coupling Between Cardiomyocytes and Cardiac Fibroblasts on Myocardium

    Science.gov (United States)

    Zorlutuna, Pinar; Nguyen, Trung Dung; Nagarajan, Neerajha

    Cardiomyocytes show excitatory responses to stimulation solely by mechanical forces through their stretch-activated ion channels, and can fire action potentials upon mechanical stimulation through a pathway known as mechano-electric feedback. Furthermore, cardiomyocyte (CM) - cardiac fibroblasts (CF) can couple mechanically through cell-cell junctions. Here we investigated the effects of CM and CF mechanical coupling on myocardial physiology and pathology using a bio-nanoindentered coupled with fast calcium imaging and microelectrode arrays. In order to study mechanical signal transmission, we measured the contractile forces generated by CMs, as well as by CFs that were coupled to the CMs. We observed that CFs were beating with the same frequency but at smaller magnitude compared to CMs, and their contractility was dependent on the substrate stiffness. Our results showed that beating CMs actively stretched neighbouring CFs through the deformation of the substrate the cells were seeded on, which promoted the myocardial contractility through mechanical coupling. The results also revealed that CM contractility was propagated greater on soft substrates than stiff ones. Results of this study could help identify the role of the infarcted tissue stiffness and size on heart failure. This study is supported by NSF Grant No: 1530884.

  15. Structural-acoustic coupling effects on the non-vacuum packaging vibratory cylinder gyroscope.

    Science.gov (United States)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-12-13

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  16. Structural-Acoustic Coupling Effects on the Non-Vacuum Packaging Vibratory Cylinder Gyroscope

    Directory of Open Access Journals (Sweden)

    Xiang Xi

    2013-12-01

    Full Text Available The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  17. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... with the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  18. Resonant exciton-phonon coupling in ZnO nanorods at room temperature

    Directory of Open Access Journals (Sweden)

    Soumee Chakraborty

    2011-09-01

    Full Text Available Vibronic and optoelectronic properties, along with detailed studies of exciton-phonon coupling at room temperature (RT for random and aligned ZnO nanorods are reported. Excitation energy dependent Raman studies are performed for detailed analysis of multi-phonon processes in the nanorods. We report here the origin of coupling between free exciton and its associated phonon replicas, including its higher order modes, in the photoluminescence spectra at RT. Resonance of excitonic electron and resonating first order zone center LO phonon, invoked strongly by Frolich interaction, are made responsible for the observed phenomenon.

  19. Effects of non-linearity of material properties on the coupled mechanical-hydraulic-thermal behavior in rock mass

    International Nuclear Information System (INIS)

    Kobayashi, Akira; Ohnishi, Yuzo

    1986-01-01

    The nonlinearity of material properties used in the coupled mechanical-hydraulic-thermal analysis is investigated from the past literatures. Some nonlinearity that is respectively effective for the system is introduced into our computer code for analysis such a coupling problem by using finite element method. And the effects of nonlinearity of each material property on the coupled behavior in rock mass are examined for simple model and Stripa project model with the computer code. (author)

  20. Ab initio calculations on the X (2)B1 and A (2)A1 states of AsH2, and Franck-Condon simulation, including anharmonicity, of the A(0,0,0)-X single vibronic level emission spectrum of AsH2.

    Science.gov (United States)

    Lee, Edmond P F; Mok, Daniel K W; Chau, Foo-Tim; Dyke, John M

    2010-06-21

    Restricted-spin coupled-cluster single-double plus perturbative triple excitation {RCCSD(T)} calculations were carried out on the X (2)B(1) and A (2)A(1) states of AsH(2) employing the fully relativistic small-core effective core potential (ECP10MDF) for As and basis sets of up to the augmented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z) quality. Minimum-energy geometrical parameters and relative electronic energies were evaluated, including contributions from extrapolation to the complete basis set limit and from outer core correlation of the As 3d(10) electrons employing additional tight 4d3f2g2h functions designed for As. In addition, simplified, explicitly correlated CCSD(T)-F12 calculations were also performed employing different atomic orbital basis sets of up to aug-cc-pVQZ quality, and associated complementary auxiliary and density-fitting basis sets. The best theoretical estimate of the relative electronic energy of the A (2)A(1) state of AsH(2) relative to the X (2)B(1) state including zero-point energy correction (T(0)) is 19,954(32) cm(-1), which agrees very well with available experimental T(0) values of 19,909.4531(18) and 19,909.4910(17) cm(-1) obtained from recent laser induced fluorescence and cavity ringdown absorption spectroscopic studies. In addition, potential energy functions (PEFs) of the X (2)B(1) and A (2)A(1) states of AsH(2) were computed at different RCCSD(T) and CCSD(T)-F12 levels. These PEFs were used in variational calculations of anharmonic vibrational wave functions, which were then utilized to calculate Franck-Condon factors (FCFs) between these two states, using a method which includes allowance for anharmonicity and Duschinsky rotation. The A(0,0,0)-X single vibronic level (SVL) emission spectrum of AsH(2) was simulated using these computed FCFs. Comparison between simulated and available experimental vibrationally resolved spectra of the A(0,0,0)-X SVL emission of AsH(2), which consist essentially of

  1. Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing.

    Science.gov (United States)

    Maitra, Rahul; Nakajima, Takahito

    2017-11-28

    We present an accurate single reference coupled cluster theory in which the conventional Fock operator matrix is suitably dressed to simulate the effect of triple and higher excitations within a singles and doubles framework. The dressing thus invoked originates from a second-order perturbative approximation of a similarity transformed Hamiltonian and induces higher rank excitations through local renormalization of individual occupied and unoccupied orbital lines. Such a dressing is able to recover a significant amount of correlation effects beyond singles and doubles approximation, but only with an economic n 5 additional cost. Due to the inclusion of higher rank excitations via the Fock matrix dressing, this method is a natural improvement over conventional coupled cluster theory with singles and doubles approximation, and this method would be demonstrated via applications on some challenging systems. This highly promising scheme has a conceptually simple structure which is also easily generalizable to a multi-reference coupled cluster scheme for treating strong degeneracy. We shall demonstrate that this method is a natural lowest order perturbative approximation to the recently developed iterative n-body excitation inclusive coupled cluster singles and doubles scheme [R. Maitra et al., J. Chem. Phys. 147, 074103 (2017)].

  2. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai

    2015-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  3. Effects of breakup couplings on 8B + 58 Ni elastic scattering

    International Nuclear Information System (INIS)

    Lubian, J.; Correa, T.; Gomes, P.R.S.; Canto, L.F.; Aguilera, E.F.; Gomez-Camacho, A.; Quiroz, E.M.

    2009-01-01

    Full text: Nuclear reactions involving weakly bound nuclei have been extensively investigated over the last years. Because of the low breakup threshold, collisions of weakly bound systems have large breakup cross sections. Nuclear reactions induced by 8 B projectiles have attracted particular interest, because the Coulomb dissociation of this nucleus leads to important information for understanding solar neutrino emission. Because the breakup process involves unbound states of the projectile's fragments is necessary to approximate the continuum by a finite number of channels. This is achieved by continuum discretized coupled channel (CDCC) method. Recently, new data have become available for the 8 B + 58 Ni system. Aguilera et al measured elastic angular distributions at several collisions energies, in the barrier region. In the present work, we perform a theoretical study of the effect of the breakup channel on the elastic angular distributions for the 8 B + 58 Ni system, using the CDCC method. The result of our calculations were in excellent agreement with the experimental results. We have also investigated the effects of inelastic excitations and of continuum-continuum couplings on the angular distributions. We found that inelastic excitations do not have an appreciable influence while continuum- continuum couplings are of utmost importance. We have shown that the multipole expansion of the coupling interaction is dominated by monopole, dipole, and quadrupole terms. Higher multipoles can be neglected. (author)

  4. Flexoelectric Effect on Vibration of Piezoelectric Microbeams Based on a Modified Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    Xingjia Li

    2017-01-01

    Full Text Available A novel electric Gibbs function was proposed for the piezoelectric microbeams (PMBs by employing a modified couple stress theory. Based on the new Gibbs function and the Euler-Bernoulli beam theory, the governing equations which incorporate the effects of couple stress, flexoelectricity, and piezoelectricity were derived for the mechanics of PMBs. The analysis of the effective bending rigidity shows the effects of size and flexoelectricity can greaten the stiffness of PMBs so that the natural frequency increases significantly compared with the Euler-Bernoulli beam, and then the mechanical and electrical properties of PMBs are enhanced compared to the classical beam. This study can guide the design of microscale piezoelectric/flexoelectric structures which may find potential applications in the microelectromechanical systems (MEMS.

  5. Couple disagreement about short-term fertility desires in Austria: Effects on intentions and contraceptive behaviour

    Directory of Open Access Journals (Sweden)

    Maria Rita Testa

    2012-02-01

    Full Text Available BACKGROUND Because of the dyadic nature of reproduction, the couple is the most suitable context forstudying reproductive decision-making. OBJECTIVE I investigate the effects of couple disagreement about short-term childbearing desires on the formulation and implementation of fertility intentions. Do men and women incorporate the perception of a disagreement with the partner about wanting a(nother child now in their reports on short-term fertility intentions and contraceptive behaviour? Are there relevant differences by type of disagreement, parity, gender and gender equality within the couple? METHODS Using individual-level data from the Austrian Generation and Gender Survey conductedin 2008, I regress respondent's short-term fertility intentions (ordinal regression modelsand non-use of contraception (logistic regression model on couple's short-term childbearing desires and a set of background variables. RESULTS The findings show that disagreement is shifted toward a pregnancy intentionpregnancy-seeking behaviour at parity zero and toward avoiding pregnancy and maintainingcontraceptive use at higher parities. Childless women are less responsive to the perceptionof their partner's desires than childless men when they express their short-termchildbearing intentions. Neither women nor men are likely to stop contraception if they perceive a disagreement with their partner about wanting a(nother child. Moreover, if theman is actively involved in childcare duties the chance to resolve the couple conflict in favour of childbearing increases. CONCLUSIONS This paper calls for the collection of data from both members of each couple so that theanalysis of the partner's actual desires can complement the analysis of the partner's perceived desires.

  6. Coupling and corona effects research plan for transmission lines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, J E; Formanek, V C

    1976-06-01

    Concern has arisen over the possible effects of electric and magnetic fields produced by EHV-UHV transmission lines. Past and ongoing research concerning the electric and magnetic field effects from EHV-UHV transmission lines was reviewed as it pertains to the following areas: (1) electromagnetic interference, (2) acoustic noise, (3) generation of gaseous effluents, and (4) safety considerations of induced voltages and currents. The intent of this review was to identify the short and long range research projects required to address these areas. The research plan identifies and gives priority to twenty programs in corona and coupling effects. In the case of the corona effects, a number of programs were recommended for acoustic noise and electromagnetic interference to delineate improved power line design criteria in terms of social, meteorological, geographical and cost constraints. Only one project is recommended in the case of ozone generation, because the results of comprehensive analyses, laboratory studies and field measurements have demonstrated that power lines do not contribute significant quantities of ozone. In the case of the coupling effects, a number of programs are recommended for HVAC transmission lines to improve the theoretically developed design guidelines by considering practical constraints. For HVDC transmission lines, programs are suggested to engender a better theoretical understanding and practical measurements capability for the coupling mechanisms of the dc electric and magnetic field with nearby objects. The interrelationship of the programs and their role in a long-term research plan is also discussed.

  7. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  8. Actor and partner effects of coping on adjustment in couples undergoing assisted reproduction treatment

    Directory of Open Access Journals (Sweden)

    Aleksandra Kroemeke

    2017-06-01

    Full Text Available Background Infertility is a shared experience as it affects both partners. However, mutual dependencies between coping and adjustment at the couple level remain to be fully elucidated. The study attempted to address this issue using the Actor-Partner Interdependence Model (APIM to examine the actor effect (the extent to which an individual’s score on coping predicted their own level of depressive symptoms and life purpose and the partner effect (the extent to which an individual’s score on coping predicted the level of adjustment in the partner in couples undergoing assisted reproduction treatment (ART. Participants and procedure Coping strategies, depressive symptoms, and life purpose were assessed among 31 married couples (aged 27-38 years undergoing ART. The Brief COPE, CES-D, and PIL questionnaires were used. Data were analyzed by multilevel modeling (MLM. Results The results of MLM indicated that focus on positive and active coping had an actor effect with depressive symptoms and life purpose, respectively. The actor effect of evasive coping on depression was moderated by gender and significant only in women. The partner effect was demonstrated for evasive coping, social support seeking, and substance use – the first two were gender moderated and significant in men. Conclusions Coping efforts in the couple during infertility treatment are not only associated with the individual but also the partner’s adjustment to that situation. Although the focus on positive and active coping was associated with individual benefits, other coping strategies which have the function of a protective buffer may also result in the occurrence of side effects, especially in females.

  9. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  10. Coupling a system code with computational fluid dynamics for the simulation of complex coolant reactivity effects

    International Nuclear Information System (INIS)

    Bertolotto, D.

    2011-11-01

    The current doctoral research is focused on the development and validation of a coupled computational tool, to combine the advantages of computational fluid dynamics (CFD) in analyzing complex flow fields and of state-of-the-art system codes employed for nuclear power plant (NPP) simulations. Such a tool can considerably enhance the analysis of NPP transient behavior, e.g. in the case of pressurized water reactor (PWR) accident scenarios such as Main Steam Line Break (MSLB) and boron dilution, in which strong coolant flow asymmetries and multi-dimensional mixing effects strongly influence the reactivity of the reactor core, as described in Chap. 1. To start with, a literature review on code coupling is presented in Chap. 2, together with the corresponding ongoing projects in the international community. Special reference is made to the framework in which this research has been carried out, i.e. the Paul Scherrer Institute's (PSI) project STARS (Steady-state and Transient Analysis Research for the Swiss reactors). In particular, the codes chosen for the coupling, i.e. the CFD code ANSYS CFX V11.0 and the system code US-NRC TRACE V5.0, are part of the STARS codes system. Their main features are also described in Chap. 2. The development of the coupled tool, named CFX/TRACE from the names of the two constitutive codes, has proven to be a complex and broad-based task, and therefore constraints had to be put on the target requirements, while keeping in mind a certain modularity to allow future extensions to be made with minimal efforts. After careful consideration, the coupling was defined to be on-line, parallel and with non-overlapping domains connected by an interface, which was developed through the Parallel Virtual Machines (PVM) software, as described in Chap. 3. Moreover, two numerical coupling schemes were implemented and tested: a sequential explicit scheme and a sequential semi-implicit scheme. Finally, it was decided that the coupling would be single

  11. Refractive index modulation based on excitonic effects in GaInAs-InP coupled asymmetric quantum wells

    DEFF Research Database (Denmark)

    Thirstrup, Carsten

    1995-01-01

    The effect of excitons in GaInAs-InP coupled asymmetric quantum wells on the refractive index modulation, is analyzed numerically using a model based on the effective mass approximation. It is shown that two coupled quantum wells brought in resonance by an applied electric field will, due...

  12. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  13. Coupling of the electrocaloric and electromechanical effects for solid-state refrigeration

    Science.gov (United States)

    Bradeško, A.; Juričić, Äń.; Santo Zarnik, M.; Malič, B.; Kutnjak, Z.; Rojac, T.

    2016-10-01

    Electrocaloric (EC) materials have shown the potential to replace some of the technologies in current commercial refrigeration systems. The key problem when fabricating an efficient EC refrigerator is the small adiabatic temperature change that current bulk materials can achieve. Therefore, such a solid-state EC refrigerator should be engineered to enhance the EC temperature change by rectifying the induced EC heat flow. Here, we present a numerical study of a device that couples the EC and electromechanical (EM) effects in a single active material. The device consists of several elements made from a functional material with coupled EC and EM properties, allowing the elements to bend and change their temperature with the application of an electric field. The periodic excitation of these elements results in a temperature span across the device. By assuming heat exchange with the environment and a low thermal contact resistivity between the elements, we show that a device with 15 elements and an EC effect of 1.2 K achieves a temperature span between the hot and cold sides of the device equal to 12.6 K. Since the temperature span can be controlled by the number of elements in the device, the results suggest that in combination with the so-called "giant" EC effect (ΔTEC ≥ 10 K), a very large temperature span would be possible. The results of this work should motivate the development of efficient EC refrigeration systems based on a coupling of the EC and EM effects.

  14. Rashba spin–orbit coupling effects on a current-induced domain wall motion

    International Nuclear Information System (INIS)

    Ryu, Jisu; Seo, Soo-Man; Lee, Kyung-Jin; Lee, Hyun-Woo

    2012-01-01

    A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin–orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β. - Highlights: ► Effects of Rashba spin–orbit coupling on a domain wall motion is calculated. ► The effects depend highly on the anisotropy of a magnetic system. ► It modifies the wall velocity for the system with a perpendicular magnetic anisotropy. ► The modified velocity can be along the current direction in certain situations. ► Rashba spin–orbit coupling also hinders the onset of the Walker breakdown.

  15. Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2015-01-01

    Borehole EIT measurements in a broad frequency range (mHz to kHz) are used to study subsurface geophysical properties. However, accurate measurements have long been difficult because the required long electric cables introduce undesired inductive and capacitive coupling effects. Recently, it has been shown that such effects can successfully be corrected in the case of single-borehole measurements. The aim of this paper is to extend the previously developed correction procedure for inductive coupling during EIT measurements in a single borehole to cross-borehole EIT measurements with multiple borehole electrode chains. In order to accelerate and simplify the previously developed correction procedure for inductive coupling, a pole–pole matrix of mutual inductances is defined. This consists of the inductances of each individual chain obtained from calibration measurements and the inductances between two chains calculated from the known cable positions using numerical modelling. The new correction procedure is successfully verified with measurements in a water-filled pool under controlled conditions where the errors introduced by capacitive coupling were well-defined and could be estimated by FEM forward modelling. In addition, EIT field measurements demonstrate that the correction methods increase the phase accuracy considerably. Overall, the phase accuracy of cross-hole EIT measurements after correction of inductive and capacitive coupling is improved to better than 1 mrad up to a frequency of 1 kHz, which substantially improves our ability to characterize the frequency-dependent complex electrical resistivity of weakly polarizable soils and sediments in situ. (paper)

  16. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    Science.gov (United States)

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  17. Flavor changing effects in theories with a heavy Z' boson with family nonuniversal couplings

    International Nuclear Information System (INIS)

    Langacker, Paul; Pluemacher, Michael

    2000-01-01

    There are theoretical and phenomenological motivations that there may exist additional heavy Z ' bosons with family nonuniversal couplings. Flavor mixing in the quark and lepton sectors will then lead to flavor changing couplings of the heavy Z ' , and also of the ordinary Z when Z-Z ' mixing is included. The general formalism of such effects is described, and applications are made to a variety of flavor changing and CP-violating tree and loop processes. Results are described for three specific cases motivated by a specific heterotic string model and by phenomenological considerations, including cases in which all three families have different couplings, and those in which the first two families, but not the third, have the same couplings. Even within a specific theory the results are model dependent because of unknown quark and lepton mixing matrices. However, assuming that typical mixings are comparable to the Cabibbo-Kobayashi-Maskawa matrix, processes such as coherent μ-e conversion in a muonic atom, K 0 -K(bar sign) 0 and B-B(bar sign) mixing, ε, and ε ' /ε lead to significant constraints on Z ' bosons in the theoretically and phenomenologically motivated range M Z ' ∼1 TeV. (c) 2000 The American Physical Society

  18. Fano–Kondo Effect in a Triple Quantum Dots Coupled to Ferromagnetic Leads

    International Nuclear Information System (INIS)

    Ai-Hua, Bi; Shao-Quan, Wu; Tao, Hou; Wei-Li, Sun

    2008-01-01

    Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we have qualitatively studied the spin-dependent transport of a triple-QD system in the Kondo regime. It is shown that the Kondo resonance and Fano interference coexist, and in this system the Fano–Kondo effect shows dip behaviours richer than that in the T-shaped QDs. The interdot coupling, the energy level of the side coupled QDs and the spin polarization strength greatly influence the DOS of the central quantum dot QD 0 . Either the increase of the coupling strength between the two QDs or that of the energy levels of the side coupled QDs enhances the Kondo resonance. Especially, the Kondo resonance is strengthened greatly when the side dot energy is fixed at the Fermi energy. Meanwhile, the Kondo resonance splits for the spin-up and spin-down configurations due to the polarization: the down-spin resonance is enhanced, and the up-spin resonance is suppressed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.

    Science.gov (United States)

    Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit

    2017-01-01

    In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

  20. Effect of Education on the Awareness of Primigravida Couples toward Infant Care

    Directory of Open Access Journals (Sweden)

    Maryam Bagheri

    2016-12-01

    Full Text Available Background: Infancy is one of the most critical stages of life, which requires parents to have adequate knowledge in order to provide careful nursing, attention and care for newborns. Given the importance of infant health, it is essential to teach proper child care techniques and principles to primigravida parents. This study aimed to evaluate the effect of education on the awareness of primigravida couples toward infant care. Methods: This clinical trial was conducted on 50 couples in the healthcare centers affiliated to Mashhad University of Medical Sciences, Mashhad, Iran. Study tools were researcher-made questionnaires, and data analysis was performed in SPSS version 16 using analysis of variance (ANOVA. Results: In this study, poor awareness of infant care was observed in the couples before training, which improved to moderate awareness after the educational sessions. Moreover, mean score of parental awareness significantly increased in mothers (P=0.005 and fathers (P=0.05 after the training. Conclusion: According to the results of this study, educational intervention could promote parental awareness in primigravida couples. Therefore, application of this method could help parents to provide nursing care for their newborns.

  1. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  2. Hey Mr. Sandman: dyadic effects of anxiety, depressive symptoms and sleep among married couples.

    Science.gov (United States)

    Revenson, Tracey A; Marín-Chollom, Amanda M; Rundle, Andrew G; Wisnivesky, Juan; Neugut, Alfred I

    2016-04-01

    This study examined associations among anxiety, depressive symptoms, and sleep duration in a sample of middle-aged couples using the actor-partner interaction model with dyadic data. Self-report measures were completed independently by both partners as part of the health histories obtained during their annual preventive medical examinations in 2011 and 2012. Results showed that husbands' anxiety and depressive symptoms had a stronger effect on their wives' anxiety and depression than the other way around, but this was not moderated by one's own sleep duration. For both wives and husbands, higher levels of depressive symptoms and anxiety predicted shorter sleep duration for their partner 1 year later, although the effect of husbands' mental health on their wives' was again stronger. The findings suggest that sleep problems might better be treated as a couple-level phenomenon than an individual one, particularly for women.

  3. Effects of Tightening Torque on Dynamic Characteristics of Low Pressure Rotors Connected by a Spline Coupling

    Institute of Scientific and Technical Information of China (English)

    Chen Xi; Liao M ingfu; Li Quankun

    2017-01-01

    A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic character-istics of low pressure rotors connected by a spline coupling .The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement .Through simulating calculation and experiments ,the effects of tightening torque on the dynamic characteristics of the rotor system con-nected by a spline coupling including critical speeds ,vibration modes and unbalance responses are analyzed .The results show that when increasing the tightening torque ,the first two critical speeds and the amplitudes of unbal-ance response gradually increase in varying degrees while the vibration modes are essentially unchanged .In addi-tion ,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change .

  4. Modeling of capacitor charging dynamics in an energy harvesting system considering accurate electromechanical coupling effects

    Science.gov (United States)

    Bagheri, Shahriar; Wu, Nan; Filizadeh, Shaahin

    2018-06-01

    This paper presents an iterative numerical method that accurately models an energy harvesting system charging a capacitor with piezoelectric patches. The constitutive relations of piezoelectric materials connected with an external charging circuit with a diode bridge and capacitors lead to the electromechanical coupling effect and the difficulty of deriving accurate transient mechanical response, as well as the charging progress. The proposed model is built upon the Euler-Bernoulli beam theory and takes into account the electromechanical coupling effects as well as the dynamic process of charging an external storage capacitor. The model is validated through experimental tests on a cantilever beam coated with piezoelectric patches. Several parametric studies are performed and the functionality of the model is verified. The efficiency of power harvesting system can be predicted and tuned considering variations in different design parameters. Such a model can be utilized to design robust and optimal energy harvesting system.

  5. Effects of randomness on chaos and order of coupled logistic maps

    International Nuclear Information System (INIS)

    Savi, Marcelo A.

    2007-01-01

    Natural systems are essentially nonlinear being neither completely ordered nor completely random. These nonlinearities are responsible for a great variety of possibilities that includes chaos. On this basis, the effect of randomness on chaos and order of nonlinear dynamical systems is an important feature to be understood. This Letter considers randomness as fluctuations and uncertainties due to noise and investigates its influence in the nonlinear dynamical behavior of coupled logistic maps. The noise effect is included by adding random variations either to parameters or to state variables. Besides, the coupling uncertainty is investigated by assuming tinny values for the connection parameters, representing the idea that all Nature is, in some sense, weakly connected. Results from numerical simulations show situations where noise alters the system nonlinear dynamics

  6. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

    International Nuclear Information System (INIS)

    Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong

    2011-01-01

    A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)

  7. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  8. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  9. Strong coupling gauge theories and effective field theories. Proceedings of the 2002 international workshop

    International Nuclear Information System (INIS)

    Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi

    2003-01-01

    This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)

  10. The effect of diffusion couple tin content on the superconductivity of filamentary niobium tin composites

    International Nuclear Information System (INIS)

    McDougall, I.L.

    1978-01-01

    The precision with which composites can be designed to meet magnet specifications is improved by considering the effect of non-equilibrium growth in the bronze niobium diffusion couples. Evidence is presented for the suggestion that high growth rates induce lattice microfaulting which reduced Tsub(c) and Hsub(c2) and gives a large gradient in grain size which reduces Jsub(c). (author)

  11. Coupling effects on turning points of infectious diseases epidemics in scale-free networks.

    Science.gov (United States)

    Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung

    2017-05-31

    Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.

  12. Coupling effects of chemical stresses and external mechanical stresses on diffusion

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2009-01-01

    Interaction between diffusion and stress fields has been investigated extensively in the past. However, most of the previous investigations were focused on the effect of chemical stress on diffusion due to the unbalanced mass transport. In this work, the coupling effects of external mechanical stress and chemical stress on diffusion are studied. A self-consistent diffusion equation including the chemical stress and external mechanical stress gradient is developed under the framework of the thermodynamic theory and Fick's law. For a thin plate subjected to unidirectional tensile stress fields, the external stress coupled diffusion equation is solved numerically with the help of the finite difference method for one-side and both-side charging processes. Results show that, for such two types of charging processes, the external stress gradient will accelerate the diffusion process and thus increase the value of concentration while reducing the magnitude of chemical stress when the direction of diffusion is identical to that of the stress gradient. In contrast, when the direction of diffusion is opposite to that of the stress gradient, the external stress gradient will obstruct the process of solute penetration by decreasing the value of concentration and increasing the magnitude of chemical stress. For both-side charging process, compared with that without the coupling effect of external stress, an asymmetric distribution of concentration is produced due to the asymmetric mechanical stress field feedback to diffusion.

  13. Effects of spin-orbit activated interchannel coupling on dipole photoelectron angular distribution asymmetry parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Tashkent 70125 (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2004-02-28

    The effects of spin-orbit induced interchannel coupling on the dipole photoelectron angular asymmetry parameter {beta}{sub 3d} for Xe, Cs and Ba are explored using a modified version of the spin-polarized random phase approximation with exchange (SPRPAE) methodology. For Xe, {beta}{sub 3d{sub 5/2}} is modified somewhat by the interchannel coupling in the vicinity of the 3d{sub 3/2} {yields} {epsilon}f shape resonance, and this effect is significantly more pronounced in Cs where the resonance is larger. In Ba, however, where f-wave orbital collapse has occurred, the shape resonance has moved below threshold and the effect of interchannel coupling on {beta}{sub 3d{sub 5/2}} above the 3d{sub 3/2} threshold is negligible. But below the 3d{sub 3/2} threshold, {beta}{sub 3d{sub 5/2}} is dominated by the huge broad 3d{sub 3/2} {yields} 4f resonance.

  14. Effect of hydroelastic coupling on the response of a nuclear reactor to ground acceleration

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Skinner, D.A.

    1977-01-01

    The dynamical characteristics of a nuclear reactor vessel and its internal components is affected by the coolant inside the vessel. Recent studies in flow-induced vibration of reactor internal components show that the effect of the entrapped coolant can be properly accounted for by adding a 'hydrodynamic mass' matrix to the physical mass of the fluid structure system. In the past few years, analytical expressions for this hydrodynamic mass matrix have been derived, usually under greatly simplifying assumptions on the geometry of the structure. Typical examples are slender-cylinder and simply-supported-cylinder assumptions. While expressions derived based on these assumptions can still bring out the general characteristics of hydroelastic coupling of structure, their application to seismic analysis of reactor components is limited because these structutres, even though generally cylindrical, are usually neither slender nor simply supported. This paper presents an anlytical and experimental study of the effects of hydroelastic coupling on the seismic response of a reactor vessel and its internal components. The hydrodynamic mass matrix for cylindrical shell structures with arbitrary D/l ratios. Two specific examples are included to illustrate the effect of hydroelastic coupling on the response of a PWR to ground acceleration. (Auth.)

  15. Effects of Thermal Lattice Vibration on the Effective Potential of Weak-Coupling Bipolaron in a Quantum Dot

    International Nuclear Information System (INIS)

    Eerdunchaolu; Xiao Xin; Han Chao; Xin Wei; Wuyunqimuge

    2012-01-01

    Based on the Huybrechts' linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron: the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Effectiveness of psychiatric and counseling interventions On fertility rate in infertile couples

    Directory of Open Access Journals (Sweden)

    Ramezanzadeh F.

    2007-10-01

    Full Text Available Background: Considering the psycho-social model of diseases, the aim of this study was to evaluate the effect of psychiatric intervention on the pregnancy rate of infertile couples.Methods: In a randomized clinical trial, 638 infertile patients referred to a university infertility clinic were evaluated. Among them, 140 couples with different levels of depression in at least one of the spouses were included in this substudy. These couples were divided randomly into two groups. The patients in the case group received 6-8 sessions of psychotherapy before starting infertility treatment and were given fluoxetine 20-60 mg per day during the same period. The control group did not receive any intervention. Three questionnaires including the Beck Depression Inventory (BDI, Holmes-Rahe stress scale and a socio-demographic questionnaire were applied for all patients. The clinical pregnancy rates of the two groups, based on sonographic detection of the gestational sac six weeks after LMP, were compared. The data were analyzed by paired-T test, T-test, χ2 and the logistic regression method. Results: The pregnancy rate was 47.1% in the case group and 7.1% in the control group. The pregnancy rate was significantly related to the duration and cause of infertility and the level of stress in both groups (p< 0.001. The pregnancy rate was shown to be higher in couples in which the male has a secondary level of education (p< 0.001.Conclusions: Psychiatric interventions greatly improve pregnancy rates, and it is therefore crucial to mandate psychiatric counseling in all fertility centers in order to diagnose and treat infertile patients with psychiatric disorders and help couples deal with stress.

  17. Simulation studies on the effect of positioning tolerances on optical coupling efficiency

    Science.gov (United States)

    Pamidighantam, Ramana V.; Yeo, Yongkee; Sudharsanam, Krishnamachari; Lee, Sik Pong; Iyer, Mahadevan K.

    2002-08-01

    The development of Optoelectronic components for communications is converging towards access networks where device cost makes a significant impact on the market acceptance. Thus, the device design engineer needs to input assembly, fabrication and process constraints into the design at an early stage. The present study is part of a Project on Packaging of Optical Components that IME, Singapore has initiated as part of an ongoing Electronics Packaging Research Consortium with industry partnership. In the present study, the coupling of optical radiation from a laser diode to optical fiber is simulated for a fiber optic transmitter component development project. Different optical configurations based on direct coupling, spherical ball lenses, integral lensed fibers and thermally expanded fibers are created within the commercially available transmitter package space. The effect of optical element variables on the placement tolerance is analyzed and will be reported. The effect of alignment tolerances on the optical coupling is analyzed. Simulation results are presented recommending realizable alignment and placement tolerances to develop a low cost short range link distance transmitter.

  18. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  19. An effective strong-coupling theory of composite particles in UV-domain

    Science.gov (United States)

    Xue, She-Sheng

    2017-05-01

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  20. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1992-11-01

    This paper describes a possible skew quadrupole correction system for linear coupling for the RHIC92 lattice. A simulation study has been done for the correction system. Results are given for the performance of the correction system, and the required strength of the skew quadruple correctors. An important effect of linear coupling in RHIC is to shift the tune ν x ν y , sometimes called tune splitting. Most of this tune splitting can be corrected with a two family skew quadrupole correction system. For RHIC92, the same 2 family correction system will work for all likely choices of β*. This was not the case for the RHIC91 lattice where different families of correctors were needed for different β*. The tune splitting described above which is corrected with a 2 family correction system is driven primarily by the ν x - ν y harmonic of the skew quadrupole field given by the field multipole αl. There are several other effects of linear coupling present which are driven primarily by the ν x + ν y harmonics of the skew quadrupole field, αl. These include the following: (1) A higher order residual tune shift that remains after correction with the 2 family correction system. This tune shift is roughly quadratic in αl; (2) Possible large changes in the beta functions; (3) Possible increase in the beam size at injection due to the beta function distortion and the emittance distortion at injection

  1. An effective strong-coupling theory of composite particles in UV-domain

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazzale della Repubblica 10, 10-65122, Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2017-05-29

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ{sup 0}, W{sup +}W{sup −}, Z{sup 0}Z{sup 0} and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into WW, WZ and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  2. Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity

    Directory of Open Access Journals (Sweden)

    Gaia Tavoni

    2017-10-01

    Full Text Available Functional coupling networks are widely used to characterize collective patterns of activity in neural populations. Here, we ask whether functional couplings reflect the subtle changes, such as in physiological interactions, believed to take place during learning. We infer functional network models reproducing the spiking activity of simultaneously recorded neurons in prefrontal cortex (PFC of rats, during the performance of a cross-modal rule shift task (task epoch, and during preceding and following sleep epochs. A large-scale study of the 96 recorded sessions allows us to detect, in about 20% of sessions, effective plasticity between the sleep epochs. These coupling modifications are correlated with the coupling values in the task epoch, and are supported by a small subset of the recorded neurons, which we identify by means of an automatized procedure. These potentiated groups increase their coativation frequency in the spiking data between the two sleep epochs, and, hence, participate to putative experience-related cell assemblies. Study of the reactivation dynamics of the potentiated groups suggests a possible connection with behavioral learning. Reactivation is largely driven by hippocampal ripple events when the rule is not yet learned, and may be much more autonomous, and presumably sustained by the potentiated PFC network, when learning is consolidated. Cell assemblies coding for memories are widely believed to emerge through synaptic modification resulting from learning, yet their identification from activity is very arduous. We propose a functional-connectivity-based approach to identify experience-related cell assemblies from multielectrode recordings in vivo, and apply it to the prefrontal cortex activity of rats recorded during a task epoch and the preceding and following sleep epochs. We infer functional couplings between the recorded cells in each epoch. Comparisons of the functional coupling networks across the epochs allow us

  3. Coupled Dyson-Schwinger equations and effects of self-consistency

    International Nuclear Information System (INIS)

    Wu, S.S.; Zhang, H.X.; Yao, Y.J.

    2001-01-01

    Using the σ-ω model as an effective tool, the effects of self-consistency are studied in some detail. A coupled set of Dyson-Schwinger equations for the renormalized baryon and meson propagators in the σ-ω model is solved self-consistently according to the dressed Hartree-Fock scheme, where the hadron propagators in both the baryon and meson self-energies are required to also satisfy this coupled set of equations. It is found that the self-consistency affects the baryon spectral function noticeably, if only the interaction with σ mesons is considered. However, there is a cancellation between the effects due to the σ and ω mesons and the additional contribution of ω mesons makes the above effect insignificant. In both the σ and σ-ω cases the effects of self-consistency on meson spectral function are perceptible, but they can nevertheless be taken account of without a self-consistent calculation. Our study indicates that to include the meson propagators in the self-consistency requirement is unnecessary and one can stop at an early step of an iteration procedure to obtain a good approximation to the fully self-consistent results of all the hadron propagators in the model, if an appropriate initial input is chosen. Vertex corrections and their effects on ghost poles are also studied

  4. Strong coupling effects between a meta-atom and MIM nanocavity

    Directory of Open Access Journals (Sweden)

    San Chen

    2012-09-01

    Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.

  5. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  6. Testing crossover effects in an actor-partner interdependence model among Chinese dual-earner couples.

    Science.gov (United States)

    Liu, Huimin; Cheung, Fanny M

    2015-03-01

    The purpose of the present study is to examine the crossover effects from one partner's work-family interface (work-family conflict [WFC] and work-family enrichment [WFE]) to the other partner's four outcomes (psychological strain, life satisfaction, marital satisfaction and job satisfaction) in a sample of Chinese dual-earner couples. Married couples (N = 361) completed a battery of questionnaires, including the work-family interface scale, the psychological strain scale, the life, marital, as well as job satisfaction scale. Results from the actor-partner interdependence model (APIM) analyses showed that wives' WFE was negatively associated with husbands' psychological strain, and positively associated with husbands' life, marital and job satisfaction. Furthermore, husbands' WFC was negatively related to wives' marital satisfaction, whereas husbands' WFE was positively related to wives' marital satisfaction. Theoretical and practical implications were discussed, and future research directions were provided. © 2014 International Union of Psychological Science.

  7. Spin-orbit coupling effects, interactions and superconducting transport in nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Andreas

    2010-05-15

    In the present thesis we study the electronic properties of several low dimensional nanoscale systems. In the first part, we focus on the combined effect of spin-orbit coupling (SOI) and Coulomb interaction in carbon nanotubes (CNTs) as well as quantum wires. We derive low energy theories for both systems, using the bosonization technique and obtain analytic expressions for the correlation functions that allow us to compute basically all observables of interest. We first focus on CNTs and show that a four channel Luttinger liquid theory can still be applied when SOI effects are taken into account. Compared to previous formulations, the low-energy Hamiltonian is characterized by different Luttinger parameters and plasmon velocities. Notably, the charge and spin modes are coupled. Our theory allows us to compute an asymptotically exact expression for the spectral function of a metallic carbon nanotube. We find modifications to the previously predicted structure of the spectral function that can in principle be tested by photoemission spectroscopy experiments. We develop a very similar low energy description for an interacting quantum wire subject to Rashba spin-orbit coupling (RSOC). We derive a two component Luttinger liquid Hamiltonian in the presence of RSOC, taking into account all e-e interaction processes allowed by the conservation of total momentum. The effective low energy Hamiltonian includes an additional perturbation due to intraband backscattering processes with band flip. Within a one-loop RG scheme, this perturbation is marginally irrelevant. The fixed point model is then still a two channel Luttinger liquid, albeit with a non standard form due to SOI. Again, the charge and spin mode are coupled. Using our low energy theory, we address the problem of the RKKY interaction in an interacting Rashba wire. The coupling of spin and charge modes due to SO effects implies several modifications, e.g. the explicit dependence of the power-law decay exponent of

  8. Effect of antenna capacitance on the plasma characteristics of an internal linear inductively coupled plasma system

    International Nuclear Information System (INIS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young

    2008-01-01

    This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power

  9. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  10. Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station

    Directory of Open Access Journals (Sweden)

    Pierozynski Boguslaw

    2017-12-01

    Full Text Available This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.

  11. Ab initio determination of effective electron-phonon coupling factor in copper

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  12. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  13. Spin-orbit coupling effects, interactions and superconducting transport in nanostructures

    International Nuclear Information System (INIS)

    Schulz, Andreas

    2010-05-01

    In the present thesis we study the electronic properties of several low dimensional nanoscale systems. In the first part, we focus on the combined effect of spin-orbit coupling (SOI) and Coulomb interaction in carbon nanotubes (CNTs) as well as quantum wires. We derive low energy theories for both systems, using the bosonization technique and obtain analytic expressions for the correlation functions that allow us to compute basically all observables of interest. We first focus on CNTs and show that a four channel Luttinger liquid theory can still be applied when SOI effects are taken into account. Compared to previous formulations, the low-energy Hamiltonian is characterized by different Luttinger parameters and plasmon velocities. Notably, the charge and spin modes are coupled. Our theory allows us to compute an asymptotically exact expression for the spectral function of a metallic carbon nanotube. We find modifications to the previously predicted structure of the spectral function that can in principle be tested by photoemission spectroscopy experiments. We develop a very similar low energy description for an interacting quantum wire subject to Rashba spin-orbit coupling (RSOC). We derive a two component Luttinger liquid Hamiltonian in the presence of RSOC, taking into account all e-e interaction processes allowed by the conservation of total momentum. The effective low energy Hamiltonian includes an additional perturbation due to intraband backscattering processes with band flip. Within a one-loop RG scheme, this perturbation is marginally irrelevant. The fixed point model is then still a two channel Luttinger liquid, albeit with a non standard form due to SOI. Again, the charge and spin mode are coupled. Using our low energy theory, we address the problem of the RKKY interaction in an interacting Rashba wire. The coupling of spin and charge modes due to SO effects implies several modifications, e.g. the explicit dependence of the power-law decay exponent of

  14. Vilkovisky-DeWitt effective potential for Einstein gravity coupled to scalars

    International Nuclear Information System (INIS)

    Cho, H.T.; Department of Physics, Ohio State University, Columbus, Ohio 43210)

    1989-01-01

    The Vilkovisky-DeWitt one-loop effective potential is constructed for Einstein gravity coupled nonminimally to scalars, and is proved explicitly to be independent of gauge choice, for a class of covariant gauges. Explicit forms of the effective potential in three cases are given. The first two cases are used to show that the Vilkovisky-DeWitt formalism is not just a gauge-fixed version of the conventional one in general. The last case concerns the possibility of inducing Einstein gravity dynamically in a Brans-Dicke-type model

  15. The role of internal coupling activities in explaining the effectiveness of open innovation

    DEFF Research Database (Denmark)

    Burcharth, Ana Luiza de Araújo; Knudsen, Mette Præst; Søndergaard, Helle Alsted

    2013-01-01

    This paper investigates the role of internal contingencies in explaining performance implications of open innovation by addressing the questions: does openness drive innovation performance? And if so, what organizational activities impact the effectiveness of both the inbound and the outbound...... finds that the effect of openness is mediated by the use of internal coupling activities that give employees latitude, information and skills to work autonomously. A key result is that the benefits of open innovation are fully captured only when firms adopt a number of activities that provide employees...... with autonomy and empowerment to conduct their work. The paper concludes with implications to theory and practice....

  16. The effect of a couples intervention to increase breast cancer screening among korean americans.

    Science.gov (United States)

    Lee, Eunice; Menon, Usha; Nandy, Karabi; Szalacha, Laura; Kviz, Frederick; Cho, Young; Miller, Arlene; Park, Hanjong

    2014-05-01

    To assess the efficacy of Korean Immigrants and Mammography-Culture-Specific Health Intervention (KIM-CHI), an educational program for Korean American (KA) couples designed to improve mammography uptake among KA women. A two-group cluster randomized, longitudinal, controlled design. 50 KA religious organizations in the Chicago area. 428 married KA women 40 years of age or older who had not had a mammogram in the past year. The women and their husbands were recruited from 50 KA religious organizations. Couples were randomly assigned to intervention or attention control groups. Those in the KIM-CHI program (n = 211 couples) were compared to an attention control group (n = 217 couples) at baseline, as well as at 6 and 15 months postintervention on mammogram uptake. Sociodemographic variables and mammography uptake were measured. Level of acculturation was measured using the Suinn-Lew Asian Self-Identity Acculturation Scale. Researchers asked questions about healthcare resources and use, health insurance status, usual source of care, physical examinations in the past two years, family history of breast cancer, and history of mammography. The KIM-CHI group showed statistically significant increases in mammography uptake compared to the attention control group at 6 months and 15 months postintervention. The culturally targeted KIM-CHI program was effective in increasing mammogram uptake among nonadherent KA women. Nurses and healthcare providers should consider specific health beliefs as well as inclusion of husbands or significant others. They also should target education to be culturally relevant for KA women to effectively improve frequency of breast cancer screening.

  17. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  18. Quantum screening effects on the ion-ion collisions in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2010-01-01

    The quantum screening effects on the ion-ion collisions are investigated in strongly coupled semiclassical hydrogen plasmas. The method of stationary phase and effective interaction potential containing the quantum mechanical effect are employed to obtain the scattering phase shift and scattering cross section as functions of the impact parameter, collision energy, de Broglie wavelength, and Debye length. The result shows that the scattering phase and cross section decrease with increasing de Broglie wavelength. It is also shown that the scattering cross section increases with an increase of the Debye length. Hence, it is found that the quantum effect suppresses the scattering cross section. In addition, the quantum effect on the scattering cross section is found to be more important in small Debye length domains.

  19. Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.

    2016-09-15

    In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.

  20. Recent progress in diode-pumped mid-infrared vibronic solid-state lasers

    International Nuclear Information System (INIS)

    Sorokina, I.T.; Sorokin, E.; Mirov, S.; Schaffers, K.

    2002-01-01

    Full text: The last few years were marked by the increased interest of researchers towards the new class of transition-metal doped zinc chalcogenides. In particular Cr:ZnSe attracts a lot of attention as broadly tunable continuous-wave (cw), mode-locked and diode-pumped lasers operating around 2.5 mm. This interest is explained by the absence of other comparable tunable room-temperature laser sources in this spectral region. However, another member of the II-VI compounds family Cr:ZnS, has yet remained barely studied as a laser medium. Recently we demonstrated the first continuous-wave room-temperature tunable over more than 280 nm around 2.3 μm Cr 2+ :ZnS laser, pumped with a Co:MgF2 laser and yielding over 100 mW of output power. The most recent result is the development of a compact tunable over 700 nm continuous-wave room-temperature Cr 2+ :ZnS laser, pumped by the diode-pumped Er-fiber laser at 1.6 μm and generating 0.7 W of the linearly polarized radiation. We also demonstrated direct diode-pumping at 1.6 μm of the Cr 2+ :ZnS. Although the Cr:ZnS exhibited lower (relatively to the Cr:ZnSe) efficiency and output power due to the higher passive losses of the available Cr:ZnS samples, the analysis of the spectroscopic and laser data indicates the high potential of Cr:ZnS for compact broadly tunable mid-infrared systems, as well as for high power applications. The physics of the novel diode-pumped laser systems is highly interesting. It comprises the features of the ion-doped dielectric crystalline lasers and semiconductors. For example, we observe in these media, for the first time to our knowledge, a new nonlinear phenomenon, which is analogous to the opto-optical switching process, where the laser output of the diode-pumped continuous-wave Cr:ZnSe and Cr:ZnS lasers around 2.5 μm is modulated by only a few milliwatt of the visible (470-500 nm) and near-infrared radiation (740-770 nm). We present a physical explanation of the observed effect. Refs. 4 (author)

  1. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    Science.gov (United States)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J

  2. Effect of fluid–solid coupling on shale mechanics and seepage laws

    Directory of Open Access Journals (Sweden)

    Fuquan Song

    2018-02-01

    Full Text Available In this paper, the cores of outcropped black shale of Lower Silurian Longmaxi Fm in the Yibin area, Sichuan Basin, were taken as samples to investigate the effects of extraneous water on shale mechanics and seepage laws during the production of shale gas reservoirs. Firstly, the development of fractures in water saturated cores was observed by using a VHX-5000 optical superdepth microscope. Secondly, water, formation water and slick water, as well as the damage form and compression strength of water saturated/unsaturated cores were investigated by means of a uniaxial compression testing machine and a strain testing & analysis system. Finally, the effects of fluid–solid coupling on shale gas flowing performance in different water saturations were analyzed by using a DYQ-1 multi-function displacement device. Analysis on core components shows that the Longmaxi shale is a highly crushable reservoir with a high content of fragile minerals, so fracturing stimulation is suitable for it. Shale compression strength test reveals that the effects of deionized water, formation water and slick water on shale are different, so the compression strength of shale before being saturated is quite different from that after being saturated. Due to the existence of water, the compression strength of shale drops, so the shale can be fractured easily, more fractures are generated and thus its seepage capacity is improved. Experiments on shale gas seepage under different water saturations show that under the condition of fluid–solid coupling, the higher the water saturation is, the better the propagation and seepage capacity of micro-fractures in shale under the effect of pressure. To sum up, the existence of water is beneficial to fracturing stimulation of shale gas reservoirs and helps to achieve the goal of production improvement. Keywords: Shale gas, Core, Fluid–solid coupling, Water, Compression strength, Permeability, Seepage characteristic, Sichuan Basin

  3. Coupling effect of piezoelectric wafer transducers in distortions of primary Lamb wave modes

    International Nuclear Information System (INIS)

    Bijudas, C R; Mitra, M; Mujumdar, P M

    2013-01-01

    Piezoelectric wafer transducers (PWT) are widely used for Lamb wave based damage detection schemes. The size of the damage that can be detected is dependent on the wavelength of the Lamb wave employed. Thus it is essential to explore the higher frequency range within the (fundamental) bandwidth of S 0 and A 0 modes, however below the cut-off frequencies of A 1 and S 1 . It is observed that the Lamb wave modes S 0 and A 0 generated using PWT undergo distortion within this fundamental bandwidth. This behavior is experimentally observed for different PWT sizes and types. The nature of this observed distortion is very different from the distortion of wave modes due to dispersion. In addition, the distortion, in many cases, tends towards the appearance of new wave modes close to the S 0 and A 0 modes. To understand this experimental observation, a theoretical study is performed. First, finite element (FE) simulations of Lamb waves considering pin-force, thermal analogy, and couple field models of surface mounted PWT are carried out. These simulation studies reveal that the wavepacket distortion can be attributed mostly to electro-mechanical coupling effect of the PWT. Next, the dispersion plot of piezoelectric layer considering electro-mechanical coupling is obtained using spectral finite element (SFE) method. These dispersion characteristics of the PWT are found to be significantly different from the conventional Lamb wave dispersion characteristics and may explain the experimental observation. (paper)

  4. Coupling effects in heterostructures of pentacene and perfluorinated pentacene studied by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Broch, Katharina; Heinemeyer, Ute; Hinderhofer, Alexander; Gerlach, Alexander; Schreiber, Frank [Institut fuer Angewandte Physik, Tuebingen (Germany); Anger, Falk [Institut fuer Angewandte Physik, Tuebingen (Germany); MATGAS 2000 AIE, Campus de la UAB, Bellaterra (Spain); Osso, Oriol [MATGAS 2000 AIE, Campus de la UAB, Bellaterra (Spain); Scholz, Reinhard [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    Heterostructures of organic semiconductors gain increasing interest in the last years because of their potential applications in organic electronics. To optimize those devices the understanding of the intermolecular coupling is crucial. Therefore, we investigate the optical absorption spectra of heterostructures and possible differences to the spectra of their single components. The combination of pentacene (PEN) with perfluorinated pentacene (PFP) is promising due to their similar geometric structure which can give rise to coevaporated films with a significant level of intermixing and accordingly an efficient intermolecular coupling. Indeed, performing in-situ-measurements with differential reflectance spectroscopy and spectroscopic ellipsometry we find features in the absorption spectra of mixed films that cannot be explained by a linear combination of the single film spectra. In the energy range between 1.4 eV and 2.4 eV spectra of PFP and PEN single and coevaporated films with different mixing ratios are compared and possible theoretical scenarios for coupling effects are discussed.

  5. CO-CO coupling on Cu facets: Coverage, strain and field effects

    International Nuclear Information System (INIS)

    Sandberg, Robert B.; Montoya, Joseph H.; Chan, Karen; Nørskov, Jens K.

    2016-01-01

    We present a DFT study on the effect of coverage, strain, and electric field on CO-CO coupling energetics on Cu (100), (111), and (211). Our calculations indicate that CO-CO coupling is facile on all three facets in the presence of a cation-induced electric field in the Helmholtz plane, with the lowest barrier on Cu(100). The CO dimerization pathway is therefore expected to play a role in C_2 formation at potentials negative of the Cu potential of zero charge, corresponding to CO_2/CO reduction conditions at high pH. Both increased *CO coverage and tensile strain further improve C-C coupling energetics on Cu (111) and (211). Since CO dimerization is facile on all 3 Cu facets, subsequent surface hydrogenation steps may also play an important role in determining the overall activity towards C_2 products. Adsorption of *CO, *H, and *OH on the 3 facets were investigated with a Pourbaix analysis. Here, the (211) facet has the largest propensity to co-adsorb *CO and *H, which would favor surface hydrogenation following CO dimerization.

  6. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  7. On the use of effective stress in three-dimensional hydro-mechanical coupled model

    International Nuclear Information System (INIS)

    Arairo, W.; Prunier, F.; Djeran-Maigre, I.; Millard, A.

    2014-01-01

    In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress-strain behaviour and the effects of deformation on the soil-water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress-strain behaviour is considered. However, until now, few models predict the stress-strain and soil-water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour. (authors)

  8. Effective action for superfluid Fermi systems in the strong-coupling limit

    International Nuclear Information System (INIS)

    Dupuis, N.

    2005-01-01

    We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρ r and its conjugate variable, the phase θ r of the pairing order parameter Δ r . We recover the standard action of a Bose superfluid of density ρ r /2, where the bosons have a mass m B =2m and interact via a repulsive contact potential with amplitude g B =4πa B /m B ,a B =2a (a the s-wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude t B =J/2 and an on-site repulsive interaction U B =2Jz, where J=4t 2 /U (t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites)

  9. Effective action for superfluid Fermi systems in the strong-coupling limit

    Science.gov (United States)

    Dupuis, N.

    2005-07-01

    We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρr and its conjugate variable, the phase θr of the pairing order parameter Δr . We recover the standard action of a Bose superfluid of density ρr/2 , where the bosons have a mass mB=2m and interact via a repulsive contact potential with amplitude gB=4πaB/mB,aB=2a ( a the s -wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude tB=J/2 and an on-site repulsive interaction UB=2Jz , where J=4t2/U ( t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites).

  10. Observables in muon capture on 23Na and the effective weak couplings ga and gp

    International Nuclear Information System (INIS)

    Johnson, B.L.; Gorringe, T.P.; Armstrong, D.S.; Bauer, J.; Hasinoff, M.D.; Kovash, M.A.; Measday, D.F.; Moftah, B.A.; Porter, R.; Wright, D.H.

    1996-01-01

    We report measurements of capture rates and hyperfine dependences in muon capture on 23 Na to various states in Ne and F isotopes. We also report comparisons of the capture rates and hyperfine dependences for six 23 Na → 23 Ne transitions with the 1s-0d shell model with the empirical effective interaction of Brown and Wildenthal and the realistic effective interaction of Kuo and Brown. Fits to the data with the Brown and Wildenthal interaction yield an effective coupling g a = -1.01 ± 0.07 and an effective coupling ratio g p /g a = 6.5 ± 2.4. The value of g a is consistent with values of g a extracted from β + /β - decay and (p,n)/(n,p) charge exchange data, and the value of g p /g a is consistent with the predictions of PCAC and pion-pole dominance. We evaluate the nuclear model dependence of these values of g a and g p /g a and examine the role of the Gamow-Teller and other matrix elements in the 23 Na → 23 Ne transitions. copyright 1996 The American Physical Society

  11. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict

    Science.gov (United States)

    Nater, Urs M.; Schaer, Marcel; La Marca, Roberto; Bodenmann, Guy; Ehlert, Ulrike; Heinrichs, Markus

    2013-01-01

    Unhappy couple relationships are associated with impaired individual health, an effect thought to be mediated through ongoing couple conflicts. Little is known, however, about the underlying mechanisms regulating psychobiological stress, and particularly autonomic nervous system (ANS) reactivity, during negative couple interaction. In this study, we tested the effects of the neuropeptide oxytocin on ANS reactivity during couple conflict in a standardized laboratory paradigm. In a double-blind, placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally prior to instructed couple conflict. Participants’ behavior was videotaped and salivary alpha-amylase (sAA), a measure of sympathetic activity, and emotional arousal were repeatedly measured during the experiment. Oxytocin significantly reduced sAA during couple conflict in women, whereas men showed increases in sAA levels (sex × group interaction: B = −49.36, t = −2.68, P = 0.009). In men, these increases were related to augmented emotional arousal (r = 0.286, P = 0.028) and more positive behavior (r = 0.291, P = 0.026), whereas there was no such association in women. Our results imply sex-specific effects of oxytocin on sympathetic activity, to negative couple interaction, with the neuropeptide reducing sAA responses and emotional arousal in women while increasing them in men. PMID:22842905

  12. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  13. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1993-01-01

    This paper describes a possible skew quadrupole correction system for linear coupling effects for the RHIC92 lattice. A simulation study has been done for this correction system. Results are given for the performance of the correction system and the required strength of the skew quadrupole corrections. The location of the correctors is discussed. For RHIC92, it appears possible to use the same 2 family correction system for all the likely choices of β*. The simulation study gives results for the residual tune splitting that remains after correction with a 2 family correction system. It also gives results for the beta functions before and after correction

  14. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    International Nuclear Information System (INIS)

    Chin, O.H.; Jayapalan, K.K.; Wong, C.S.

    2014-01-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile. (author)

  15. Ab initio phonon dispersions of face centered cubic Pb: effects of spin-orbit coupling

    International Nuclear Information System (INIS)

    Dal Corso, Andrea

    2008-01-01

    I present the ab initio phonon dispersions of face centered cubic Pb calculated within the framework of density functional perturbation theory, with plane waves and a fully relativistic ultrasoft pseudopotential which includes spin-orbit coupling effects. I find that, within the local density approximation, the theory gives phonon frequencies close to the experimental inelastic neutron scattering data. Many of the anomalies present in these dispersions are well reproduced by the fully relativistic pseudopotential theory and can be shown to appear only for small values of the smearing parameter that controls the sharpness of the Fermi surface.

  16. Effect of Floquet engineering on the p-wave superconductor with second-neighbor couplings

    Science.gov (United States)

    Li, X. P.; Li, C. F.; Wang, L. C.; Zhou, L.

    2018-06-01

    The influence of the Floquet engineering on a particular one-dimensional p-wave superconductor, Kitaev model, with second-neighbor couplings is investigated in this paper. The effective Hamiltonians in the rotated reference frames have been obtained, and the convergent regions of the approximated Hamiltonian as well as the topological phase diagrams have been analyzed and discussed. We show that by modulating the external driving field amplitude, frequency as well as the second-neighbor hopping amplitude, the rich phase diagrams and transitions between different topological phases can be obtained.

  17. Study of coupled-bunch collective effects in the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Byrd, J.

    1993-05-01

    We present an overview of the calculated longitudinal and transverse coupled-bunch (CB) growth using the measured RF cavity higher order mode impedance and estimated resistive wall (RW) impedance for the proposed PEP-II B-Factory, a dual-ring electron-positron collider. We also describe a visual method of representing the effective beam impedance and corresponding growth rates which is especially useful for understanding the dependence of growth rate on higher order mode frequency and Q, spread of HOM frequencies between cells, and for determining the requirements of the CB feedback systems

  18. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  19. Effect of silane coupling agent on interfacial adhesion of copper/glass fabric/epoxy composites

    International Nuclear Information System (INIS)

    Langroudi, A. E.; Yousefi, A. A.; Kabiri, Kourosh

    2003-01-01

    The effect of silane coupling agent on the peel strength of copper/prep reg/copper composites was investigated. The composite consisted of one or two sheets of prepress covered by two copper plates. The prep reg was prepared by hand dry-lay-up technique using an epoxy resin and an electrical resistant glass fabric (e-glass style 2165). 4,4'-methylene dianiline. An aromatic amine, was used as curing agent. curing times for prep reg and composite at 120 d ig C and 170 d ig C were 15 min and 1 h, respectively. γ-aminopropyl trimethoxy silane was used as coupling agent. The effect of aminopropyl trimethoxy silane on the adhesion of epoxy/glass and epoxy/copper interfaces was investigated by two methods. In the first method, the surface of the glass fabric and/or the copper plates were treated by aminopropyl trimethoxy silane. In the second method, aminopropyl trimethoxy silane was directly added to epoxy resin. In addition, the effect of additional resin on the adhesion strength was also studied by the latter method

  20. Infrared behavior of the effective coupling in quantum chromodynamics: A non-perturbative approach

    International Nuclear Information System (INIS)

    Bar-Gadda, U.

    1980-01-01

    In this paper we examine a different viewpoint, based on a self-consistent approach. This means that rather than attempting to identify any particular physical mechanism as dominating the QCD vacuum state we use the non-perturbative Schwinger-Dyson equations and Slavnov-Taylor identities of QCD as well as the renormalization group equation to obtain the self-consistent behavior of the effective coupling in the infrared region. We show that the infrared effective coupling behavior anti g(q 2 /μ 2 , gsub(R)(μ)) = (μ 2 /q 2 )sup(lambda/2)gsub(R)(μ) in the infrared limit q 2 /μ 2 → 0, where μ 2 is the euclidean subtraction point; lambda = 1/2(d - 2), where d is the space-time dimension, is the preferred solution if a sufficient self-consistency condition is satisfied. Finally we briefly discuss the nature of the dynamical mass Λ and the 1/N expansion as well as an effective bound state equation. (orig.)

  1. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    Science.gov (United States)

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  2. Coupled hydrological-mechanical effects due to excavation of underground openings in unsaturated fractured rocks

    International Nuclear Information System (INIS)

    Montazer, P.

    1985-01-01

    One of the effects of excavating an underground opening in fractured rocks is a modification of the state of the stress in the rock mass in the vicinity of the opening. This effect causes changes in the geometry of the cross sections of the fracture planes, which in turn results in modification of the hydrologic properties of the fractures of the rock mass. The significance of the orientation of the fractures and their stiffness on the extent of the modification of the hydrologic properties as a result of excavation of underground openings is demonstrated. A conceptual model is presented to illustrate the complexity of the coupled hydrological-mechanical phenomena in the unsaturated zone. This conceptual model is used to develop an investigative program to assess the extent of the effect at a proposed repository site for storing high-level nuclear wastes

  3. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.

    Science.gov (United States)

    Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V

    2018-05-30

    Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.

  4. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva

    Science.gov (United States)

    Mellado-Valero, Ana; Igual Muñoz, Anna; Guiñón Pina, Virginia

    2018-01-01

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys. PMID:29361767

  5. Determination of coupling coefficients at various zenith angles of the basis of the cosmic ray azimuth effect

    Science.gov (United States)

    Belskiy, S. A.; Dmitriev, B. A.; Romanov, A. M.

    1975-01-01

    The value of EW asymmetry and coupling coefficients at different zenith angles were measured by means of a double coincidence crossed telescope which gives an opportunity to measure simultaneously the intensity of the cosmic ray hard component at zenith angles from 0 to 84 deg in opposite azimuths. The advantages of determining the coupling coefficients by the cosmic ray azimuth effect as compared to their measurement by the latitudinal effect are discussed.

  6. Complicated Fermi-type vibronic resonance: Untangling of the single-site quasi-line fluorescence excitation spectra of a methylated dibenzoporphin

    International Nuclear Information System (INIS)

    Arabei, S.M.; Kuzmitsky, V.A.; Solovyov, K.N.

    2008-01-01

    The quasi-line low-temperature (4.2 K) fluorescence excitation spectra of 2,3,12,13-tetramethyldibenzo[g,q]porphin introduced into an n-octane matrix have been measured in the range of the S 2 0 electronic transition at selective fluorescence monitoring for the two main types of impurity centers (sites). A characteristic feature of these spectra is that a conglomerate of quasi-lines - a structured complex band - is observed instead of one 0-0 quasi-line of the S 2 0 transition. In this band, the intensity distributions for the two main sites considerably differ from each other. The occurrence of such conglomerates is interpreted as a result of nonadiabatic vibrational-electronic interaction between the vibronic S 2 and S 1 states (the complex vibronic analogue of the Fermi resonance). The frequencies and intensities of individual transitions determined from the deconvolution of complex conglomerates are used as the initial data for solving the inverse spectroscopic problem: the determination of the unperturbed electronic and vibrational levels of states involved in the resonance and the vibronic-interaction matrix elements between them. This problem is solved with a method developed previously. The experimental results and their analysis are compared to the analogous data obtained earlier for meso-tetraazaporphin and meso-tetrapropylporphin. The energy intervals between the S 2 and S 1 electronic levels (ΔE S 2 S 1 ) of the two main types of impurity centers formed by molecules of a given porphyrin in the crystal matrix are found to significantly differ from each other, the values of this difference (δΔE S 2 S 1 ) being considerably greater for tetramethyldibenzoporphin, δΔE S 2 S 1 =228cm -1 , than for the two other porphyrins. At the same time, the energies of the unperturbed vibrational states of the S 1 electronic level participating in the resonance are very close to each other for these two sites

  7. Shielding Effectiveness Analysis and Modification of the Coupling Effect Transmission Line Method on Cavities with Multi-Sided Apertures

    Directory of Open Access Journals (Sweden)

    Tao Hu

    2018-04-01

    Full Text Available Because the traditional transmission line method treats electromagnetic waves as excitation sources and the cavity as a rectangular waveguide whose terminal is shorted, the transmission line method can only calculate shielding effectiveness in the center line of the cavity with apertures on one side. In this paper, the aperture coupling effect of different sides was analyzed based on vector analysis. According to the field intensity distribution of different transport modes in the rectangular waveguide, the calculation model of cavity shielding effectiveness in any position is proposed, which can solve the question of the calculation model of shielding effectiveness in any position in the traditional method of equivalent transmission methods. Further expansion of the equivalent transmission lines model is adopted to study the shielding effectiveness of different aperture cavities, and the coupling effect rule of the incident angle, the number of apertures, and the size of the cavity is obtained, which can provide the technical support for the design of electromagnetic shielding cavities for electronic equipment.

  8. Effective potential in the strong-coupling lattice QCD with next-to-next-to-learning order effects

    International Nuclear Information System (INIS)

    Nakano, Takashi Z.; Miura, Kohtaroh; Ohnishi, Akira

    2010-01-01

    We derive an analytic expression of the effective potential at finite temperature (T) and chemical potential (μ) in the strong-coupling lattice QCD for color SU(3) including next-to-next-to-leading order (NNLO) effects in the strong coupling expansion. NNLO effective action terms are systematically evaluated in the leading order of the large dimensional (1/d) expansion, and are found to come from some types of connected two-plaquette configurations. We apply the extended Hubbard-Stratonovich transformation and a gluonic-dressed fermion technique to the effective action, and obtain the effective potential as a function of T, μ, and two order parameters: chiral condensate and vector potential field. The next-to-leading order (NLO) and NNLO effects result in modifications of the wave function renormalization factor, quark mass, and chemical potential. We find that T c,μ =0 and μ c,T =0 are similar to the NLO results, whereas the position of the critical point is sensitive to NNLO corrections. (author)

  9. Effect of δ meson and ρ-ω cross couplings in effective field theory motivated Lagrangian approach

    International Nuclear Information System (INIS)

    Jagota, R.K.; Dhiman, S.K.; Sharma, B.K.; Arumugam, P.; Patra, S.K.

    2005-01-01

    It is shown that the self and cross couplings of ω meson plays an important role to make the nuclear equation of state (EOS) softer. The parameter set G2, obtained from the effective field theory motivated Lagrangian (E-RMF) approach, is very successful to reproduce the nuclear matter properties including the structure of neutron star as well as of finite nuclei. The motivation of the present report is to see the effects of these terms in the E-RMF Lagrangian on infinite nuclear matter as well as finite nuclei

  10. Extremely Large Magnetoresistance at Low Magnetic Field by Coupling the Nonlinear Transport Effect and the Anomalous Hall Effect.

    Science.gov (United States)

    Luo, Zhaochu; Xiong, Chengyue; Zhang, Xu; Guo, Zhen-Gang; Cai, Jianwang; Zhang, Xiaozhong

    2016-04-13

    The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    Science.gov (United States)

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  12. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Mardaani, Mohammad, E-mail: mohammad-m@sci.sku.ac.ir; Rabani, Hassan, E-mail: rabani-h@sci.sku.ac.ir [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of); Nanotechnology Research Center, Shahrekord University, 8818634141 Shahrekord (Iran, Islamic Republic of); Esmaili, Esmat; Shariati, Ashrafalsadat [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2015-08-07

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  13. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    International Nuclear Information System (INIS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-01-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance

  14. Effects of translation-rotation coupling on the displacement probability distribution functions of boomerang colloidal particles

    Science.gov (United States)

    Chakrabarty, Ayan; Wang, Feng; Sun, Kai; Wei, Qi-Huo

    Prior studies have shown that low symmetry particles such as micro-boomerangs exhibit behaviour of Brownian motion rather different from that of high symmetry particles because convenient tracking points (TPs) are usually inconsistent with the center of hydrodynamic stress (CoH) where the translational and rotational motions are decoupled. In this paper we study the effects of the translation-rotation coupling on the displacement probability distribution functions (PDFs) of the boomerang colloid particles with symmetric arms. By tracking the motions of different points on the particle symmetry axis, we show that as the distance between the TP and the CoH is increased, the effects of translation-rotation coupling becomes pronounced, making the short-time 2D PDF for fixed initial orientation to change from elliptical to crescent shape and the angle averaged PDFs from ellipsoidal-particle-like PDF to a shape with a Gaussian top and long displacement tails. We also observed that at long times the PDFs revert to Gaussian. This crescent shape of 2D PDF provides a clear physical picture of the non-zero mean displacements observed in boomerangs particles.

  15. In Vitro Evaluation of Genotoxic Effects under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-04-01

    Full Text Available Wireless power transfer (WPT technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  16. Effect of transients on the beam in the Superconducting Supercollider Coupled-Cavity Linac

    International Nuclear Information System (INIS)

    Young, L.M.; Nath, S.

    1992-01-01

    Each module of the Superconducting Super Collider (SSC) Coupled-Cavity Linac (CCL) consists of eight tanks (10 accelerating cells each) coupled with bridge couplers. The radio frequency (rf) power drive is in the center of the module at the bridge coupler between the fourth and fifth tanks. In this simulation of the beam dynamics, the rf power is turned on 10 μs before the beam is turned on. This time lapse allows the fields to build up and stabilize before they are required by the beam. When the beam is turned on, the beam loading causes the fields to change. This transient state of the fields together with their effect on the beam is presented. A model has been developed to calculate field distribution throughout the module as a function of time. Beam dynamics simulations were run with the results of this model at several times during the beam pulse. An estimate of the effect of the transients is given by the results of these simulations

  17. Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Gupta, M.R.

    2005-01-01

    Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly

  18. Incredible negative values of effective electromechanical coupling coefficient for surface acoustic waves in piezoelectrics.

    Science.gov (United States)

    Mozhaev, V G; Weihnacht, M

    2000-07-01

    The extraordinary case of increase in velocity of surface acoustic waves (SAW) caused by electrical shorting of the surface of the superstrong piezoelectric crystal potassium niobate, KNbO3, is numerically found. The explanation of this effect is based on considering SAWs as coupled Rayleigh and Bleustein-Gulyaev modes. A general procedure of approximate decoupling of the modes is suggested for piezoelectric crystals of arbitrary anisotropy. The effect under study takes place when the phase velocity of uncoupled sagittally polarized Rayleigh waves is intermediate between the phase velocities of uncoupled shear-horizontal Bleustein Gulyaev waves at the free and metallized surfaces. In this case, the metallization of the surface by an infinitely thin layer may cause a crossover of the velocity curves of the uncoupled waves. The presence of the mode coupling results in splitting of the curves with transition from one uncoupled branch to the other. This transition is responsible for the increase in SAW velocity, which appears to be greater than its common decrease produced by electrical shorting of the substrate surface.

  19. Effects of assistant anode on planar inductively coupled magnetized argon plasma in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, Deli; Chu, Paul K.

    2003-01-01

    The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm

  20. A discussion of coupling and resonance effects for integrated systems consisting of subsystems

    International Nuclear Information System (INIS)

    Lin, C.W.; Liu, T.H.

    1975-01-01

    Three representative cases are studied to evaluate the interaction effect and to establish the need to include both stiffness and mass of the interacting systems in the system model. The first case is a supported system supported by a two-degrees-of-freedom supporting system. The second case represents two single degree of freedom systems, each supported by itself, but interconnected by a spring. The third case is a single degree of freedom system supported by another single degree of freedom supporting system. In each of the three case studied, the interaction effect is first measured by the difference in their natural frequencies for both the coupled system and the uncoupled systems. Although natural frequencies are important to the dynamic analysis of a system, the ultimate decision of whether the mathematical model is realistic depends on the result of the system response it predicts. With this in mind, case three is then studied with a white noise input. It is found that the root mean square response of both the supporting systems are substantially lower when coupled than when the systems are analyzed separately. Based on the results of this study, guidelines are provided for the subdivision into subsystems. (orig./HP) [de

  1. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling

    2014-08-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector to produce a high temperature gradient for high productivity. A heat pipe is used to transfer the solar heat to the MDU. A prototype MEDS-1L was built and tested outdoors. Four performance indexes are proposed for the performance evaluation of MEDS, including daily pure water production per unit area of glass cover, solar absorber, and evaporating surface (Mcov, Msol, Mevp, respectively), and solar distillation efficiency Rcov. The outdoor test results of MEDS-1L show that the solar collector supply temperature Th reaches 100°C at solar radiation 800Wm-2. The highest Mcov is 23.9kgm-2d-1 which is about 29% higher than the basin-type MEDS [11]. The highest value is 25.9kgm-2d-1 for Msol and 2.79kgm-2d-1 for Mevp. The measured Rcov is 1.5-2.44, higher than the basin-type MEDS (1.45-1.88). The Mcov, Msol, Mevp and Rcov of MEDS-1L are all higher than the theoretical calculation of a MEDS with a flat-plate solar collector coupled with a heat pipe (MEDS-FHP) [17].© 2014 Elsevier B.V.

  2. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.

  3. The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch

    Directory of Open Access Journals (Sweden)

    Q. J. Guo

    2018-02-01

    Full Text Available Boron carbide (B4C coatings are prepared by an RF inductively coupled plasma (ICP torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM. The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.

  4. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    International Nuclear Information System (INIS)

    Salavati-fard, T; Vazifehshenas, T

    2014-01-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field. (paper)

  5. Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings

    Science.gov (United States)

    Pennacchi, Paolo; Vania, Andrea; Chatterton, Steven

    2012-07-01

    Misalignment is one of the most common sources of trouble of rotating machinery when rigid couplings connect the shafts. Ideal alignment of the shafts is difficult to be obtained and rotors may present angular and/or parallel misalignment (defined also as radial misalignment or offset). During a complete shaft revolution, a periodical change of the bearings load occurs in hyperstatic shaft-lines, if coupling misalignment between the shafts is excessive. If the rotating machine is equipped with fluid-film journal bearings, the change of the loads on the bearing causes also the variation of their instantaneous dynamic characteristics, i.e. damping and stiffness, and the complete system cannot be considered any longer as linear. Despite misalignment is often observed in the practice, there are relatively few studies about this phenomenon in literature and their results are sometimes conflicting. The authors aim at modeling accurately this phenomenon, for the first time in this paper, and giving pertinent diagnostic information. The proposed method is suitable for every type of shaft-line supported by journal bearings. A finite element model is used for the hyperstatic shaft-line, while bearing characteristics are calculated by integrating Reynolds equation as a function of the instantaneous load acting on the bearings, caused also by the coupling misalignment. The results obtained by applying the proposed method are shown by means of the simulation, in the time domain, of the dynamical response of a hyperstatic shaft-line. Nonlinear effects are highlighted and the spectral components of the system response are analyzed, in order to give diagnostic information about the signature of this type of fault.

  6. Effect of temporal organization of the visuo-locomotor coupling on the predictive steering

    Directory of Open Access Journals (Sweden)

    Yves Philippe Rybarczyk

    2012-07-01

    Full Text Available Studies on the direction of a driver’s gaze while taking a bend show that the individual looks towards the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street makes a turn at the corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behaviour, executes an internal model of the trajectory that anticipates the path completion, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to easily and precisely manipulate the temporal organization of the visuo-locomotor coupling. Results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables i a significant smoothness of the trajectory and ii a velocity-curvature relationship that follows the 2/3 Power Law. These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the path formation seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding.

  7. Split resonance modes of a AuBRC plasmonic nanosystem caused by the coupling effect

    International Nuclear Information System (INIS)

    Ni, Yuan; Kan, Caixia; Xu, Haiying; Wang, Changshun

    2016-01-01

    A plasmonic nanosystem can give rise to particular optical responses due to a coupling effect. In this work, we investigate the optical properties and field distributions of a novel ‘matrioska’ nanocavity structure composed of a Au nanorod (AuNR) within a nanobox (AuNB) via finite-difference time-domain (FDTD) simulation. This nanocavity can be fabricated by a two-step wet-chemical method. The multiple SPR modes of optical spectrum for nanocavity are caused by the strong interaction between the AuNR-core and AuNB-shell when the incident light is perpendicular or parallel to the long axis of the Au box/rod nanocavity (AuBRC). The SPR modes are known as the dipole–dipole bonding resonance mode in the lower-energy region and the antibonding resonance mode in the higher-energy region. It is proposed that AuBRC can escape the orientation confinement of AuNR because the multiple modes occur and provide a potential application for the enhancement of the photoluminescence signal. Additionally, the SPR modes red-shift with increasing the offset of the AuNR-core, whereas the SPR mode dramatically blue-shifts when the conductive coupling is formed. The intense ‘hot-spot’ could be induced within a small interaction region in the conductive coupled system. The SPR line-shape of high quality would also be promoted. The SPR is highly sensitive to the medium, which is promising in the sensing and detecting devices. (paper)

  8. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E.; Calvin, Katherine V.; Jones, Andrew D.; Di Vittorio, Alan; Bond-Lamberty, Benjamin; Chini, Louise M.; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, James A.; Thomson, Allison M.; Truesdale, John E.; Craig, Anthony P.; Branstetter, M.; Hurtt, George C.

    2017-06-12

    Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptions about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.

  9. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hestand, Nicholas J.; Spano, Frank C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  10. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    International Nuclear Information System (INIS)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-01-01

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t e ) and hole (t h ) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t e t h and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems

  11. The effect of finite response–time in coupled dynamical systems

    Indian Academy of Sciences (India)

    The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the influence of drive on response is cumulative: coupling signals are integrated over a time interval . A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs at higher ...

  12. The effect of finite response–time in coupled dynamical systems

    Indian Academy of Sciences (India)

    Abstract. The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the influence of drive on response is cumulative: coupling signals are integrated over a time interval τ. A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs ...

  13. LO-TO splittings, effective charges and interactions in electro-optic meta-nitroaniline crystal as studied by polarized IR reflection and transmission spectra

    Science.gov (United States)

    Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.

    1994-10-01

    The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.

  14. Effect of coupling currents on the dynamic inductance during fast transient in superconducting magnets

    Directory of Open Access Journals (Sweden)

    V. Marinozzi

    2015-03-01

    Full Text Available We present electromagnetic models aiming to calculate the variation of the inductance in a magnet due to dynamic effects such as the variation of magnetization or the coupling with eddy currents. The models are studied with special regard to the calculation of the inductance in superconducting magnets which are affected by interfilament coupling currents. The developed models have been compared with experimental data coming from tests of prototype Nb_{3}Sn magnets designed for the new generation of accelerators. This work is relevant for the quench protection study of superconducting magnets: quench is an unwanted event, when part of the magnet becomes resistive; in these cases, the current should be discharged as fast as possible, in order to maintain the resistive zone temperature under a safe limit. The magnet inductance is therefore a relevant term for the description of the current discharge, especially for the high-field new generation superconducting magnets for accelerators, and this work shows how to calculate the correct value during rapid current changes, providing a mean for simulations of the reached temperature.

  15. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  16. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Science.gov (United States)

    Cho, Daeheum; Ko, Kyoung Chul; Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi; Nakai, Hiromi; Lee, Jin Yong

    2015-01-01

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  17. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    International Nuclear Information System (INIS)

    Singh, S.V.; Storch, H.V.

    1994-01-01

    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth's climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model

  18. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daeheum; Ko, Kyoung Chul; Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-01-14

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH and HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  19. Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xue, Haizhou [Univ. of Tennessee, Knoxville, TN (United States); Zarkadoula, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Army Research Office, Triangle Park, NC (United States); Ostrouchov, Christopher [Univ. of Tennessee, Knoxville, TN (United States); Liu, Peng [Univ. of Tennessee, Knoxville, TN (United States); Shandong Univ., Jinan (China); Wang, Xue -lin [Shandong Univ., Jinan (China); Zhang, Shuo [Lanzhou Univ., Gansu Province (China); Wang, Tie Shan [Lanzhou Univ., Gansu Province (China); Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-16

    Understanding energy dissipation processes in electronic/atomic subsystems and subsequent non-equilibrium defect evolution is a long-standing challenge in materials science. In the intermediate energy regime, energetic particles simultaneously deposit a significant amount of energy to both electronic and atomic subsystems of silicon carbide (SiC). Here we show that defect evolution in SiC closely depends on the electronic-to-nuclear energy loss ratio (Se/Sn), nuclear stopping powers (dE/dxnucl), electronic stopping powers (dE/dxele), and the temporal and spatial coupling of electronic and atomic subsystem for energy dissipation. The integrated experiments and simulations reveal that: (1) increasing Se/Sn slows damage accumulation; (2) the transient temperatures during the ionization-induced thermal spike increase with dE/dxele, which causes efficient damage annealing along the ion trajectory; and (3) for more condensed displacement damage within the thermal spike, damage production is suppressed due to the coupled electronic and atomic dynamics. Ionization effects are expected to be more significant in materials with covalent/ionic bonding involving predominantly well-localized electrons. Here, insights into the complex electronic and atomic correlations may pave the way to better control and predict SiC response to extreme energy deposition

  20. Effects of ocean initial perturbation on developing phase of ENSO in a coupled seasonal prediction model

    Science.gov (United States)

    Lee, Hyun-Chul; Kumar, Arun; Wang, Wanqiu

    2018-03-01

    Coupled prediction systems for seasonal and inter-annual variability in the tropical Pacific are initialized from ocean analyses. In ocean initial states, small scale perturbations are inevitably smoothed or distorted by the observational limits and data assimilation procedures, which tends to induce potential ocean initial errors for the El Nino-Southern Oscillation (ENSO) prediction. Here, the evolution and effects of ocean initial errors from the small scale perturbation on the developing phase of ENSO are investigated by an ensemble of coupled model predictions. Results show that the ocean initial errors at the thermocline in the western tropical Pacific grow rapidly to project on the first mode of equatorial Kelvin wave and propagate to the east along the thermocline. In boreal spring when the surface buoyancy flux weakens in the eastern tropical Pacific, the subsurface errors influence sea surface temperature variability and would account for the seasonal dependence of prediction skill in the NINO3 region. It is concluded that the ENSO prediction in the eastern tropical Pacific after boreal spring can be improved by increasing the observational accuracy of subsurface ocean initial states in the western tropical Pacific.

  1. Ecotoxicity and fungal deterioration of recycled polypropylene/wood composites: effect of wood content and coupling.

    Science.gov (United States)

    Sudár, András; López, María J; Keledi, Gergely; Vargas-García, M Carmen; Suárez-Estrella, Francisca; Moreno, Joaquín; Burgstaller, Christoph; Pukánszky, Béla

    2013-09-01

    Recycled polypropylene (rPP) was recovered from an industrial shredder and composites were prepared with a relatively wide range of wood content and with two coupling agents, a maleated PP (MAPP) and a maleated ethylene-propylene-diene elastomer (MAEPDM). The mechanical properties of the composites showed that the coupling agents change structure only slightly, but interfacial adhesion quite drastically. The durability of the materials was determined by exposing them to a range of fungi and, ecotoxicity was studied on the aquatic organism Vibrio fischeri. The composites generally exhibit low acute toxicity, with values below the levels considered to have direct ecotoxic effect on aquatic ecosystems (deterioration proved that wood facilitates fungal colonization. Fungi caused slight mass loss (below 3%) but it was not correlated with substantial deterioration in material properties. MAPP seems to be beneficial in the retention of mechanical properties during fungal attack. rPP/wood composites can be considered non-ecotoxic and quite durable, but the influence of wood content on resistance to fungal attack must be taken into account for materials intended for applications requiring long-term outdoor exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The effect of marriage counseling on the knowledge of the married couples

    Directory of Open Access Journals (Sweden)

    Ghahraman Mahmoodi

    2016-07-01

    Full Text Available Knowledge on the reproductive system, significance of benefiting from the contraceptive methods and selection of the suitable contraceptive method during the first years of the marital life are of the main health issues. This study was conducted in order to determine the effect of the counseling on the reproduction and sexual health of the married couples. This pre and post partial experimental study was done on 40 couple participating at the pre marriage counseling classes selected by the improbable simple method. The data collection tool was questionnaire designed by the family planning office of the Ministry of Health and Medical Education of Iran and its validity and durability were confirmed. It comprised two individual and questions of knowledge assay sections filled before and after counseling by showing film and giving lecture. The collected data were analyzed by SPSS-11.5 software using the descriptive statistics and index of distribution and paired t-test. The study subjects, mean score of awareness at pre and post counseling increased to 2.4, which was statistically significant (P<0.0001. The obtained data of the present study showed that counseling and instruction improve the level of awareness among the participants. Therefore, it is concluded that, it is possible to increase the level of knowledge and awareness on the married life among the marriage candidates, which is very helpful in their long lasting married life by applying the correct method of instruction and proper counseling.

  3. Effects of the network structure and coupling strength on the noise-induced response delay of a neuronal network

    International Nuclear Information System (INIS)

    Ozer, Mahmut; Uzuntarla, Muhammet

    2008-01-01

    The Hodgkin-Huxley (H-H) neuron model driven by stimuli just above threshold shows a noise-induced response delay with respect to time to the first spike for a certain range of noise strengths, an effect called 'noise delayed decay' (NDD). We study the response time of a network of coupled H-H neurons, and investigate how the NDD can be affected by the connection topology of the network and the coupling strength. We show that the NDD effect exists for weak and intermediate coupling strengths, whereas it disappears for strong coupling strength regardless of the connection topology. We also show that although the network structure has very little effect on the NDD for a weak coupling strength, the network structure plays a key role for an intermediate coupling strength by decreasing the NDD effect with the increasing number of random shortcuts, and thus provides an additional operating regime, that is absent in the regular network, in which the neurons may also exploit a spike time code

  4. Honey, I got fired! A longitudinal dyadic analysis of the effect of unemployment on life satisfaction in couples.

    Science.gov (United States)

    Luhmann, Maike; Weiss, Pola; Hosoya, Georg; Eid, Michael

    2014-07-01

    Previous research on unemployment and life satisfaction has focused on the effects of unemployment on individuals but neglected the effects on their partners. In the present study, we used dyadic multilevel models to analyze longitudinal data from 2,973 couples selected from a German representative panel study to examine the effects of unemployment on life satisfaction in couples over several years. We found that unemployment decreases life satisfaction in both members of the couple, but the effect is more pronounced for those who become unemployed (actors) than for the other couple members (partners). In both couple members, the reaction is attenuated if they share the same labor status after the job loss: Actors experienced a greater drop in life satisfaction if their partners were employed than if they were unemployed at the time of the job loss, and partners reacted negatively to the job loss only if they were employed or inactive in the workforce, but not if they were unemployed themselves. With respect to couple-level moderator variables, we found that both actors and partners reacted more negatively to unemployment if they had children. The reaction was also more negative in male actors than in female actors, but there was no difference between male and female partners. In sum, these findings indicate that changes in life satisfaction can be caused by major life events experienced by significant others.

  5. Threshold and flavor effects in the renormalization group equations of the MSSM. II. Dimensionful couplings

    International Nuclear Information System (INIS)

    Box, Andrew D.; Tata, Xerxes

    2009-01-01

    We reexamine the one-loop renormalization group equations (RGEs) for the dimensionful parameters of the minimal supersymmetric standard model (MSSM) with broken supersymmetry, allowing for arbitrary flavor structure of the soft SUSY-breaking parameters. We include threshold effects by evaluating the β-functions in a sequence of (nonsupersymmetric) effective theories with heavy particles decoupled at the scale of their mass. We present the most general form for high-scale, soft SUSY-breaking parameters that obtains if we assume that the supersymmetry-breaking mechanism does not introduce new intergenerational couplings. This form, possibly amended to allow additional sources of flavor-violation, serves as a boundary condition for solving the RGEs for the dimensionful MSSM parameters. We then present illustrative examples of numerical solutions to the RGEs. We find that in a SUSY grand unified theory with the scale of SUSY scalars split from that of gauginos and higgsinos, the gaugino mass unification condition may be violated by O(10%). As another illustration, we show that in mSUGRA, the rate for the flavor-violating t-tilde 1 →cZ-tilde 1 decay obtained using the complete RGE solution is smaller than that obtained using the commonly used 'single-step' integration of the RGEs by a factor 10-25, and so may qualitatively change expectations for topologies from top-squark pair production at colliders. Together with the RGEs for dimensionless couplings presented in a companion paper, the RGEs in Appendix 2 of this paper form a complete set of one-loop MSSM RGEs that include threshold and flavor-effects necessary for two-loop accuracy.

  6. Successful N2 leptogenesis with flavour coupling effects in realistic unified models

    International Nuclear Information System (INIS)

    Bari, Pasquale Di; King, Stephen F.

    2015-01-01

    In realistic unified models involving so-called SO(10)-inspired patterns of Dirac and heavy right-handed (RH) neutrino masses, the lightest right-handed neutrino N 1 is too light to yield successful thermal leptogenesis, barring highly fine tuned solutions, while the second heaviest right-handed neutrino N 2 is typically in the correct mass range. We show that flavour coupling effects in the Boltzmann equations may be crucial to the success of such N 2 dominated leptogenesis, by helping to ensure that the flavour asymmetries produced at the N 2 scale survive N 1 washout. To illustrate these effects we focus on N 2 dominated leptogenesis in an existing model, the A to Z of flavour with Pati-Salam, where the neutrino Dirac mass matrix may be equal to an up-type quark mass matrix and has a particular constrained structure. The numerical results, supported by analytical insight, show that in order to achieve successful N 2 leptogenesis, consistent with neutrino phenomenology, requires a ''flavour swap scenario'' together with a less hierarchical pattern of RH neutrino masses than naively expected, at the expense of some mild fine-tuning. In the considered A to Z model neutrino masses are predicted to be normal ordered, with an atmospheric neutrino mixing angle well into the second octant and the Dirac phase δ≅ 20 o , a set of predictions that will be tested in the next years in neutrino oscillation experiments. Flavour coupling effects may be relevant for other SO(10)-inspired unified models where N 2 leptogenesis is necessary

  7. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)

    2016-09-07

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.

  8. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    International Nuclear Information System (INIS)

    Wei, Hong-Xing; Li, Yong-Dong; Xiong, Tao; Guan, Yong

    2016-01-01

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.

  9. Fluid-structure coupling effects on periodically transient flow of a single-blade sewage centrifugal pump

    International Nuclear Information System (INIS)

    Pei, Ji; Yuan, Shouqi; Yuan, Jianping

    2013-01-01

    A partitioned fluid-structure interaction (FSI) solving strategy that depends on problem characteristics is applied to quantitatively obtain the coupling effects of a fluid-structure system in a single-blade centrifugal pump on the unsteady flow. A two-way coupling method is employed to realize strong FSI effects in the calculation procedure. The successful impeller oscillation measurement using two proximity sensors validated the FSI simulation accuracy in a complicated and practical fluid-structure system having a rotating component. The results show that the hydrodynamic force deviation can be observed in the results for the coupled versus uncoupled cases. Additionally, the coupled unsteady pressure is larger than the uncoupled value for every monitoring point at every impeller rotation position. Comparison results for different monitoring points under an overload condition and partial-load condition display the same regularities. To some extent, this interaction mechanism would affect the accuracy and reliability of the unsteady flow and rotor deflection analysis.

  10. Damage indication in smart structures using modal effective electromechanical coupling coefficients

    International Nuclear Information System (INIS)

    Al-Ajmi, M A; Benjeddou, A

    2008-01-01

    This work explores the use, in structural health monitoring, of the so-called modal effective electromechanical coupling coefficient (EMCC) as a damage indicator for structures with failures such as cracks. For this purpose, a discrete layered finite element (FE) model for smart beams is proposed and applied to short-circuit (SC) and open-circuit (OC) modal analyses of healthy and damaged (cracked) cantilever beams with symmetrically surface-bonded piezoelectric patches. Focus is made here on enhancing the electrical behavior modeling by introducing a quadratic bubble function in the electric potential through-the-thickness approximation. Therefore, the corresponding higher-order potential (HOP) degree of freedom is condensed at the ply level, leading to a passive stiffening effect (SE) similar to the so-called higher-order induced potential (HIP); then the physical equipotential (EP) electrode effect, often neglected in the piezoelectric FE literature, is here implemented after the electrodes' FE assembly. After its validation against available analytical and experimental results, the proposed piezoelectric FE is used for parametric analyses of SC-based and OC-based EMCC change factors (ECFs) and frequency change factors (FCFs) in terms of the crack depth and position ratios. It was found that the EP effect was more influential on the ECF than the SE. However, for the FCFs, the EP effect was influential only when it is defined from the OC frequencies. Finally, the ECFs were found to be higher than the FCFs, in particular for higher modes

  11. Chemistry-transport coupling and retroactive effects on material properties within the context of a deep geological repository

    International Nuclear Information System (INIS)

    Bildstein, O.

    2010-06-01

    The author gives an overview of his research and teaching activities. His researches first dealt with the development of a simulation of the chemistry/transport coupling and of the retroactive effects on transport parameters, then with the chemistry/transport modelling and its coupling with mechanics, and finally with the multi-scale investigation of porous materials. Perspectives are discussed and publications are indicated

  12. Channel coupling and distortion effects in the excitation of the 02+ state in 12C by alpha scattering

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1983-01-01

    The excitation of the 0 2 + (7.65 MeV) state in 12 C by inelastic alpha scattering is investigated using microscopic resonating-group wave-functions in a coupled channel folding model. The importance of coupling to other states and the influence of varying the optical potential in the excited states is studied. Both effects must be taken into account for a quantitative description

  13. Electrical method for the measurements of volume averaged electron density and effective coupled power to the plasma bulk

    Science.gov (United States)

    Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.

    2016-02-01

    Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.

  14. Quantifying the effects of higher order coupling terms on fits using a second order Jahn-Teller Hamiltonian

    Science.gov (United States)

    Tran, Henry K.; Stanton, John F.; Miller, Terry A.

    2018-01-01

    The limitations associated with the common practice of fitting a quadratic Hamiltonian to vibronic levels of a Jahn-Teller system have been explored quantitatively. Satisfactory results for the prototypical X∼2E‧ state of Li3 are obtained from fits to both experimental spectral data and to an "artificial" spectrum calculated by a quartic Hamiltonian which accurately reproduces the adiabatic potential obtained from state-of-the-art quantum chemistry calculations. However the values of the Jahn-Teller parameters, stabilization energy, and pseudo-rotation barrier obtained from the quadratic fit differ markedly from those associated with the ab initio potential. Nonetheless the RMS deviations of the fits are not strikingly different. Guidelines are suggested for comparing parameters obtained from fits to experiment to those obtained by direct calculation, but a principal conclusion of this work is that such comparisons must be done with a high degree of caution.

  15. Effect of Skimmer Cone Material on the Spectra of Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Amr, M.A.; Zahran, N.F.; Helal, A.I.

    2002-01-01

    The inductively coupled plasma ion source for mass spectrometry is very sensitive for multielement analysis with detection limits down to sub part per trillion (ppt). Polyatomic ions which could be formed in the mass spectra may interfere in the analysis of some element. Experimental conditions have great influences on the formation of polyatomic ions. The present work demonstrates that the skimmer materials (Au, Ag, Ni, and Cu) are participating in the formation of polyatomic ions, meanwhile the sampler materials have no real effect. The mechanism of formation of polyatomic ions is explained. Heats of formation of polyatomic species formed from the skimmer materials such as: Au X, Ag X, Ni X and Cu X; where X= Ar, O, N, C and H are calculated by Gaussian program (G 94 W)

  16. Using internal coupling activities to enhance the effectiveness of open innovation

    DEFF Research Database (Denmark)

    Burcharth, Ana Luiza de Araújo; Knudsen, Mette Præst; Søndergaard, Helle Alsted

    This paper investigates the role of specific intra-organizational mechanisms in analyzing performance implications of openness by addressing two questions: does openness to innovation influence innovation performance? And if so, what organizational activities facilitate increased effectiveness...... of both inbound and outbound open innovation practices? The paper identifies a set of internal management mechanisms that allows the firm to couple the outside-in and inside-out knowledge flows in support of integrating external knowledge and internal competencies. The empirical basis of the study...... is a survey carried out in 321 Danish SMEs in manufacturing industries. The paper cannot substantiate the thus far, seemingly positive evidence of openness on innovation performance. Rather, the paper finds that inbound open innovation is related to the introduction of new products, whereas the adoption...

  17. Effects of Δ baryon in hyperon stars in a modified quark meson coupling model

    International Nuclear Information System (INIS)

    Sahoo, H.S.; Mishra, R.N.; Panda, P.K.; Barik, N.

    2016-01-01

    Recent studies on the appearance of the Δ (1232) isobars in neutron stars has ignited much debate on the possibility of its existence in neutron stars satisfying the observational limit of 2 M_⊙. Given the fact that the presence of the Δ tends to soften the equation of state (EoS) and reduce the maximum mass, theoretical and observational contradictions have given rise to the so called Δ puzzle, similar to the hyperon puzzle. In the present work we develop the EoS for dense matter with the inclusion of the nucleons, hyperons and the Delta isobars and study the effects of such inclusion on stellar properties using a Modified Quark-Meson coupling model (MQMC)

  18. Hydromagnetic effect on inclined peristaltic flow of a couple stress fluid

    Directory of Open Access Journals (Sweden)

    G.C. Shit

    2014-12-01

    Full Text Available In this paper, we have investigated the effect of channel inclination on the peristaltic transport of a couple stress fluid in the presence of externally applied magnetic field. The slip velocity at the channel wall has been taken into account. Under the long wave length and low-Reynolds number assumptions, the analytical solutions for axial velocity, stream function, pressure gradient and pressure rise are obtained. The computed results are presented graphically by taking valid numerical data for non-dimensional physical parameters available in the existing scientific literatures. The results revealed that the trapping fluid can be eliminated and the central line axial velocity can be reduced with a considerable extent by the application of magnetic field. The flow phenomena for the pumping characteristics, trapping and reflux are furthermore investigated. The study shows that the slip parameter and Froude number play an important role in controlling axial pressure gradient.

  19. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Bradley Smith

    2016-10-01

    Full Text Available Metabolic reprogramming is critical to oncogenesis, but the emergence and function of this profound reorganization remain poorly understood. Here we find that cooperating oncogenic mutations drive large-scale metabolic reprogramming, which is both intrinsic to cancer cells and obligatory for the transition to malignancy. This involves synergistic regulation of several genes encoding metabolic enzymes, including the lactate dehydrogenases LDHA and LDHB and mitochondrial glutamic pyruvate transaminase 2 (GPT2. Notably, GPT2 engages activated glycolysis to drive the utilization of glutamine as a carbon source for TCA cycle anaplerosis in colon cancer cells. Our data indicate that the Warburg effect supports oncogenesis via GPT2-mediated coupling of pyruvate production to glutamine catabolism. Although critical to the cancer phenotype, GPT2 activity is dispensable in cells that are not fully transformed, thus pinpointing a metabolic vulnerability specifically associated with cancer cell progression to malignancy.

  20. Numerical Simulation of CO2 Flooding of Coalbed Methane Considering the Fluid-Solid Coupling Effect.

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    Full Text Available CO2 flooding of coalbed methane (CO2-ECBM not only stores CO2 underground and reduces greenhouse gas emissions but also enhances the gas production ratio. This coupled process involves multi-phase fluid flow and coal-rock deformation, as well as processes such as competitive gas adsorption and diffusion from the coal matrix into fractures. A dual-porosity medium that consists of a matrix and fractures was built to simulate the flooding process, and a mathematical model was used to consider the competitive adsorption, diffusion and seepage processes and the interaction between flow and deformation. Due to the effects of the initial pressure and the differences in pressure variation during the production process, permeability changes caused by matrix shrinkage were spatially variable in the reservoir. The maximum value of permeability appeared near the production well, and the degree of rebound decreased with increasing distance from the production well.

  1. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  2. Coupling of magnetospheric electrical effects into the global atmospheric electrical circuit

    International Nuclear Information System (INIS)

    Hays, P.B.; Roble, R.G.

    1979-01-01

    A quasi-static model of global atmospheric electricity has been constructed (Hays and Roble, 1978) to study the electrical processes in the lower atmosphere and the coupling between solar- and upper- atmosphere-induced variations superimposed upon the global electrical circuit. The paper reviews the essential features of this model and discusses the results obtained thus far on the effects of magnetospheric convection and substorms on the global atmospheric electrical circuit. A schematic diagram of the global quasi-static model is given. It is assumed that thunderstorms act as dipole generators, each with a positive center at the top of the cloud and a negative center a few kilometers lower than the positive center

  3. Effect of low-frequency power on dual-frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q

    2008-01-01

    In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.

  4. Disentangling effects of breakup coupling and incomplete fusion in 6Li + 232Th reaction

    International Nuclear Information System (INIS)

    Jha, V.; Parkar, V.V.; Mohanty, A.K.; Kailas, S.

    2014-01-01

    A component of fusion that is very important but quite difficult to evaluate is the incomplete fusion (ICF), in which only a part of the nucleus fuses with the target. ICF occurs together with the usual complete fusion (CF), in which the whole projectile fuses or all the projectile fragments after breakup fuse with the target nucleus. The ICF leads to the flux removal from the fusion channel and its calculation is essential for a comprehensive description of the fusion process. In the present work, a recently developed method of calculating the ICF cross-section (σ ICF ) is used in a novel way to disentangle the ICF effect on the fusion process from those due to breakup couplings. The total fusion cross-section σ TF and σ ICF for the 6 Li + 232 Th system are calculated at energies above and below the Coulomb barrier, where the measured fusion-fission data is available

  5. Quantum effects in amplitude death of coupled anharmonic self-oscillators

    Science.gov (United States)

    Amitai, Ehud; Koppenhöfer, Martin; Lörch, Niels; Bruder, Christoph

    2018-05-01

    Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys. Rev. E 96, 052210 (2017), 10.1103/PhysRevE.96.052210]. Quantitative differences between the classical and quantum descriptions were found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum, multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.

  6. Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects

    Directory of Open Access Journals (Sweden)

    Chi-Wei Lo

    2011-12-01

    Full Text Available Harvesting and storing solar energy has become more and more important. Current solid-state photovoltaic cells and conventional photoelectrochemical cells are not capable of directly storing the converted energy, which has to be facilitated by connecting to external storing devices. We demonstrate a device architecture that can convert and store solar energy in the electrical form within an intrinsically single structure. Mobile charge is internally stored, based on the coupling between photoelectrochemical and ferroelectric effects. The tested device architecture can be photo-charged under 1000 W/m2 of white light to an open-circuit voltage of 0.47V with a capacity of 37.62 mC/cm2. After removal of the light source, the mobile charge stored lasts more than 8 hours, and the open-circuit output voltage lasts more than 24 hours.

  7. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  8. Coupling of CORINAIR Data to Cost-effective Emission Reduction Strategies Based on Critical Thresholds

    International Nuclear Information System (INIS)

    Johansson, M.; Guardans, R.; Lindstrom, M.

    1999-12-01

    This report summarizes the results of a workshop held by the participants in the EU/LIFE project: Coupling of CORINAIR data to cost-effective emission reduction strategies based on critical thresholds. The project participants include FEI, Filand, NERI, Denmark, CIEMAT, Spain, Lund Univ. Sweden. EMEP/MSC-W, UN/ECE/WGE/CCE and IIASA. The main objective of the project is to support national activities in assessing the spatial and temporal details of emissions of sulphur, nitrogen oxides, ammonium and volatile organic compounds and the impacts of acidification, eutrophication and ground level ozone. The reproject workshop enabled participants to report preliminary results of the two main tasks, emissions and impacts and to agree on common solutions for the final results. (Author) 11 refs

  9. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  10. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress

    International Nuclear Information System (INIS)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi; Wang, Xiaodong; Xing, Feng; Han, Ningxu; He, Yijian

    2016-01-01

    Highlights: • Carbonation affects the chloride profile in concrete under chloride aerosol attack. • The chloride binding capacity can be reduced by the presence of carbonation. • Carbonation increases the rate of chloride diffusion for chloride aerosol ingress. • Chloride aerosol ingress reduces the carbonation depth and increases the pH value. • The use of fly ash in concrete enhances the resistance of chloride aerosol ingress. - Abstract: This paper presents an experimental investigation regarding the coupled effect of carbonation and chloride aerosol ingress on the durability performance of fly ash concrete. Test results demonstrate that carbonation significantly affects the chloride ingress profile, reduces the chloride binding capacity, and accelerates the rate of chloride ion diffusion. On the other hand, the carbonation rate of fly ash concrete is reduced by the presence of chlorides aerosol. The interaction nature between concrete carbonation and chloride aerosol ingress is also demonstrated by the microscopic analysis results obtained from scanning electron microscope and mercury intrusion porosimetry.

  11. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  12. Effects of surface roughness, MHD and couple stress on squeeze film characteristics between curved circular plates

    Science.gov (United States)

    Hanumagowda, B. N.; Salma, A.; Nagarajappa, C. S.

    2018-04-01

    The theoretical discussion is carried out for understanding the combined study of MHD, rough surface and couple-stress in the presence of applied magnetic field between two curved circular plates is present analysis. Modified Reynolds Equations accounting for rough surface using stochastic model of Christensen are mathematically formulated. The close form derivations for pressure, load-supporting capacity and response-film time are obtained. Our results shows that, there is an significant increase (decrease) for pressure, load-supporting capacity and squeeze film time due to the effect of azimuthal (radial) roughness parameter when compared to the Hanumagowda.et.al [14] and numerical data of load supporting capacity and response time are given in Table for engineering applications.

  13. Unexpected nonlinear effects and critical coupling in NbN superconducting microwave resonators

    International Nuclear Information System (INIS)

    Abdo, B.; Buks, E.

    2004-01-01

    Full Text:In this work, we have designed and fabricated several NbN superconducting stripline microwave resonators sputtered on sapphire substrates. The low temperature response exhibits strong and unexpected nonlinear effects, including sharp jumps as the frequency or poser are varied, frequency hysteresis loops changing direction as the input power is varied, and others. Contrary to some other superconducting resonators, a simple model of a one-dimensional Duffing resonator cannot account for the experimental results. Whereas the physical origin of the unusual nonlinear response of our samples remains an open question, our intensive experimental study of these effects under varying conditions provides some important insight. We consider a hypothesis according to which Josephson junctions forming weak links between the grains of the NbN are responsible for the observed behavior. We show that most of the experimental results are qualitatively consistent with such hypothesis. While revealing the underlying physics remains an outstanding challenge for future research, the utilization of the unusual nonlinear response for some novel applications is already demonstrated in the present work. In particular an operate the resonator as an inter modulation amplifier and find that the gain can be as high as 15 dB. To the best of our knowledge, inter modulation gain greater than unity has not been reported before in the scientific literature. In another application we demonstrate for the first time that the coupling between the resonator and its feed line can be made amplitude dependent. This novel mechanism allows us to tune the resonator into critical coupling conditions

  14. Anisotropy and multi-band effects in weak-coupling superconductors

    International Nuclear Information System (INIS)

    Berger, T.L.

    1977-01-01

    The techniques of second quantization and thermodynamic Green functions are used to investigate energy gap anisotropy and multi-band effects in pure, single-crystal, weak-coupling superconductors. A generalized version of the standard Gorkov factorization is used to linearize the Green functions equations of motion. The effects of lattice periodicity and band structure are taken into account by means of Bloch wave expansions and Bloch transforms. A pairing selection rule is derived which indicates the possibility of pairing between single particle states belonging to different bands, as well as the usual Cooper pairing. It is shown that the interband gap parameter, which is coupled to the usual gap parameter by the Green functions equations of motion, can only contribute indirectly to the tunneling electric current and the thermodynamic potential. In the absence of interband pairing, the equations of motion lead to the usual BCS gap equation. Also, in the absence of interband pairing, the gap parameter is found to be equal to the diagonal matrix element of the superconductor pair potential between electronic Bloch states. An essentially temperature independent anisotropy function which contains all angular dependence of the gap is shown to evolve naturally from this formalism. The overall temperature dependence of the gap is investigated and it is found that with a change of temperature, the magnitude of the gap in different directions changes in the same ration. The ordinary Markowitz-Kadanoff model is shown to be inappropriate for the case of a multi-band superconductor and a generalized version of this model is introduced and discussed. A special case of this model is considered which leads to gap discontinuities at Brillouin zone boundaries

  15. Coupled-core fluxgate magnetometer: Novel configuration scheme and the effects of a noise-contaminated external signal

    International Nuclear Information System (INIS)

    Palacios, Antonio; Aven, John; In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Bulsara, Adi

    2007-01-01

    Recent theoretical and experimental work has shown that unidirectional coupling can induce oscillations in overdamped and undriven nonlinear dynamical systems that are non-oscillatory when uncoupled; in turn, this has been shown to lead to new mechanisms for weak (compared to the energy barrier height) signal detection and amplification. The potential applications include fluxgate magnetometers, electric field sensors, and arrays of Superconducting Quantum Interference Device (SQUID) rings. In the particular case of the fluxgate magnetometer, we have developed a ''coupled-core fluxgate magnetometer'' (CCFM); this device has been realized in the laboratory and its dynamics used to quantify many properties that are generic to this class of systems and coupling. The CCFM operation is underpinned by the emergent oscillatory behavior in a unidirectionally coupled ring of wound ferromagnetic cores, each of which can be treated as an overdamped bistable dynamic system when uncoupled. In particular, one can determine the regimes of existence and stability of the (coupling-induced) oscillations, and the scaling behavior of the oscillation frequency. More recently, we studied the effects of a (Gaussian) magnetic noise floor on a CCFM system realized with N=3 coupled ferromagnetic cores. In this Letter, we first introduce a variation on the basic CCFM configuration that affords a path to enhanced device sensitivity, particularly for N>=3 coupled elements. We then analyze the response of the basic CCFM configuration as well as the new setup to a dc target signal that has a small noisy component (or ''contamination'')

  16. Many-body localization proximity effects in platforms of coupled spins and bosons

    Science.gov (United States)

    Marino, J.; Nandkishore, R. M.

    2018-02-01

    We discuss the onset of many-body localization in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups, depending whether spatial disorder is initially imprinted on spins or on bosons; in both cases, we explore the conditions for the disordered portion of the system to localize by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom, and derive an effective Hamiltonian for the system's remainder using projection operator techniques. Performing a locator expansion on the strength of the many-body interaction term or on the hopping amplitude of the effective Hamiltonian thus derived, we present results on the stability of the many-body localized phases induced by proximity effect. We also briefly comment on the feasibility of the proposed model through modern quantum optics architectures, with the long-term perspective to realize experimentally, in composite open systems, Anderson or many-body localization proximity effects.

  17. Enhanced Luminescence Performance of Quantum Wells by Coupling Piezo-Phototronic with Plasmonic Effects.

    Science.gov (United States)

    Huang, Xin; Jiang, Chunyan; Du, Chunhua; Jing, Liang; Liu, Mengmeng; Hu, Weiguo; Wang, Zhong Lin

    2016-12-27

    With a promising prospect of light-emitting diodes as an attractive alternative to conventional light sources, remaining challenges still cannot be addressed owing to their limited efficiency. Among the continued scientific efforts, significant improvement on the emission efficiency has been achieved via either piezo-phototronic effect-based strain modulation or resonant excitation of plasmons in metallic nanostructures. Here, we present the investigation on the coupling process between piezo-phototronic effect and localized surface plasmonic resonance for enhancing the photoluminescence of InGaN/GaN quantum wells coated with Ag nanoparticles. The underlying physical mechanism of experimental results originates from tuning plasmonic resonance controlled by the shift of emission wavelength via piezo-phototronic effect, and it is further confirmed with the support of theoretical calculations. As a result, our research provides an approach to the integration of plasmonics with piezo-phototronic effect and brings widespread applications to high-efficiency artificial lighting, on-chip integrated plasmonic circuits, subwavelength optical communication, and micro-optoelectronic mechanical systems.

  18. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect

    Science.gov (United States)

    Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2018-05-01

    In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.

  19. Coupling of In Vitro Bioassays with Planar Chromatography in Effect-Directed Analysis.

    Science.gov (United States)

    Weiss, Stefan C; Egetenmeyer, Nicole; Schulz, Wolfgang

    Modern analytical test methods increasingly detect anthropogenic organic substances and their transformation products in water samples and in the environment. The presence of these compounds might pose a risk to the aquatic environment. To determine a possible (eco)toxicological risk, aquatic samples are tested using various bioassays, including sub-organismic assays such as the luminescent bacteria inhibition test, the acetylcholinesterase inhibition test, and the umu-test. The effect-directed analysis (EDA) combines physicochemical separation methods with biological (in vitro) tests. High-performance thin-layer chromatography (HPTLC) has proved to be particularly well suited for the separation of organic compounds and the subsequent analysis of effects by the application of the biotests directly on the surface of the HPTLC plate. The advantage of using HPTLC in comparison to high-performance liquid chromatography (HPLC) for EDA is that the solvent which is used as a mobile phase during chromatography is completely evaporated after the separation and therefore can no longer influence the applied bioassays.A prioritization during the complex identification process can be achieved when observed effects are associated with the separated zones in HPTLC. This increases the probability of identifying the substance responsible for an adverse effect from the multitude of organic trace substances in environmental samples. Furthermore, by comparing the pattern of biological effects of a separated sample, it is possible to track and assess changes in biological activity over time, over space, or in the course of a process, even without identifying the substance. HPTLC has already been coupled with various bioassays.Because HPTLC is a very flexible system, various detection techniques can be used and combined. In addition to the UV/Vis absorption and fluorescence measurements, TLC can also be coupled with a mass spectrometer (MS) for compound identification. In addition

  20. Dynamics of coupled electron-nuclei-systems in laser fields; Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Falge, Mirjam

    2012-07-01

    -resolved photoelectron spectra and the influence of non-adiabatic effects in this asymmetry were investigated. In the last part of this work, the dynamics and optical control in spin-coupled vibronic states were analysed.

  1. The effects of virtual reality game training on trunk to pelvis coupling in a child with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Barton Gabor J

    2013-02-01

    Full Text Available Abstract Background Good control of trunk and pelvic movements is necessary for well controlled leg movements required to perform activities of daily living. The nature of movement coupling between the trunk and pelvis varies and depends on the type of activity. Children with cerebral palsy often have reduced ability to modulate coupling between the trunk and pelvis but movement patterns of the pelvis can be improved by training. The aim of this study was to examine how pelvis to trunk coupling changed while playing a computer game driven by pelvic rotations. Methods One boy with cerebral palsy diplegia played the Goblin Post Office game on the CAREN virtual rehabilitation system for six weeks. He navigated a flying dragon in a virtual cave towards randomly appearing targets by rotating the pelvis around a vertical axis. Motion of the pelvis and trunk was captured in real-time by a Vicon 612 optoelectronic system tracking two clusters of three markers attached to the sacrum and thoracic spine. Results Convex hull areas calculated from angle-angle plots of pelvic and trunk rotations showed that coupling increased over game training (F1,11 = 7.482, p = 0.019. Reaching to targets far from the midline required tighter coupling than reaching near targets (F1,12 = 10.619, p = 0.007. Conclusions Increasing coupling appears to be an initial compensation mechanism using the better controlled trunk to drive rotation of the pelvis. Co-contractions causing increased coupling are expected to reduce over longer exposure to training. The control scheme of the training game can be set to facilitate de-coupling of pelvic movements from the trunk. Using large ranges of pelvic rotation required more coupling suggesting that training of selective pelvic movements is likely to be more effective close to a neutral pelvic posture.

  2. The effects of virtual reality game training on trunk to pelvis coupling in a child with cerebral palsy.

    Science.gov (United States)

    Barton, Gabor J; Hawken, Malcolm B; Foster, Richard J; Holmes, Gill; Butler, Penny B

    2013-02-07

    Good control of trunk and pelvic movements is necessary for well controlled leg movements required to perform activities of daily living. The nature of movement coupling between the trunk and pelvis varies and depends on the type of activity. Children with cerebral palsy often have reduced ability to modulate coupling between the trunk and pelvis but movement patterns of the pelvis can be improved by training. The aim of this study was to examine how pelvis to trunk coupling changed while playing a computer game driven by pelvic rotations. One boy with cerebral palsy diplegia played the Goblin Post Office game on the CAREN virtual rehabilitation system for six weeks. He navigated a flying dragon in a virtual cave towards randomly appearing targets by rotating the pelvis around a vertical axis. Motion of the pelvis and trunk was captured in real-time by a Vicon 612 optoelectronic system tracking two clusters of three markers attached to the sacrum and thoracic spine. Convex hull areas calculated from angle-angle plots of pelvic and trunk rotations showed that coupling increased over game training (F1,11 = 7.482, p = 0.019). Reaching to targets far from the midline required tighter coupling than reaching near targets (F1,12 = 10.619, p = 0.007). Increasing coupling appears to be an initial compensation mechanism using the better controlled trunk to drive rotation of the pelvis. Co-contractions causing increased coupling are expected to reduce over longer exposure to training. The control scheme of the training game can be set to facilitate de-coupling of pelvic movements from the trunk. Using large ranges of pelvic rotation required more coupling suggesting that training of selective pelvic movements is likely to be more effective close to a neutral pelvic posture.

  3. The Role of Surface Infiltration in Hydromechanical Coupling Effects in an Unsaturated Porous Medium of Semi-Infinite Extent

    Directory of Open Access Journals (Sweden)

    L. Z. Wu

    2017-01-01

    Full Text Available Rainfall infiltration into an unsaturated region of the earth’s surface is a pervasive natural phenomenon. During the rainfall-induced seepage process, the soil skeleton can deform and the permeability can change with the water content in the unsaturated porous medium. A coupled water infiltration and deformation formulation is used to examine a problem related to the mechanics of a two-dimensional region of semi-infinite extent. The van Genuchten model is used to represent the soil-water characteristic curve. The model, incorporating coupled infiltration and deformation, was developed to resolve the coupled problem in a semi-infinite domain based on numerical methods. The numerical solution is verified by the analytical solution when the coupled effects in an unsaturated medium of semi-infinite extent are considered. The computational results show that a numerical procedure can be employed to examine the semi-infinite unsaturated seepage incorporating coupled water infiltration and deformation. The analysis indicates that the coupling effect is significantly influenced by the boundary conditions of the problem and varies with the duration of water infiltration.

  4. Effect of Registered Partnership on Labor Earnings and Fertility for Same-Sex Couples: Evidence From Swedish Register Data.

    Science.gov (United States)

    Aldén, Lina; Edlund, Lena; Hammarstedt, Mats; Mueller-Smith, Michael

    2015-08-01

    The expansion of legal rights to same-sex couples is a foot in a number of Western countries. The effects of this rollout are not only important in their own right but can also provide a window on the institution of marriage and the rights bundled therein. In this article, using Swedish longitudinal register data covering 1994-2007, we study the impact of the extension of rights to same-sex couples on labor earnings and fertility. In 1994, registered partnership for same-sex couples was introduced, which conferred almost all rights and obligations of marriage--a notable exception being joint legal parenting, by default or election. The latter was added in the 2002 adoption act. We find registered partnership to be important to both gays and lesbians but for different reasons. For gays, resource pooling emerges as the main function of registered partnerships. For lesbians, registered partnership appears to be an important vehicle for family formation, especially after the 2002 adoption act. In contrast to heterosexual couples (included for comparison), we find no evidence of household specialization among lesbians. The lack of specialization is noteworthy given similar fertility effects of registered partnership (after 2002) and the fact that lesbian couples were less assortatively matched (on education) than heterosexual couples--children and unequal earnings power being two factors commonly believed to promote specialization.

  5. Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System.

    Science.gov (United States)

    Ma, Nan; Zhang, Kewei; Yang, Ya

    2017-12-01

    Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7-4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8-20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near-UV irradiations. Here, a ferroelectric BaTiO 3 film-based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light-induced photovoltaic-pyroelectric coupled effect. A self-powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Coupled effects of the temperature and the relative humidity on gecko adhesion

    International Nuclear Information System (INIS)

    Peng, Zhilong; Yang, Yazheng; Chen, Shaohua

    2017-01-01

    To explain the inconsistent results of experiments on temperature-dependent gecko adhesion, a theoretical peeling model is established wherein a nano-thin film is adopted to simulate a gecko spatula. The model considers not only the respective effects of temperature and environmental humidity on the peel-off force but also the coupled effect of both factors. Increasing temperature is found to lead to a decreasing peel-off force if the environmental humidity is uncontrolled. However, if the environmental humidity is constant, the peel-off force is insensitive to the temperature and remains almost constant. The synthetic theoretical analysis demonstrates that the seemingly contradictory results of temperature-dependent gecko adhesion experiments are actually consistent under their respective experimental conditions. This inconsistency is mainly due to the environmental humidity, which varies with the changing temperature if it is not artificially controlled. The results cannot only reasonably explain the different experimental results for the effect of temperature on gecko adhesion but can also facilitate the design of temperature-controlled or humidity-controlled adhesion sensors by tuning the environmental humidity or temperature. (paper)

  7. The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel

    International Nuclear Information System (INIS)

    Guo, W.; Dong, H.; Lu, M.; Zhao, X.

    2002-01-01

    The effects of thickness and delamination on the fracture toughness and stable crack growth behaviour of high-toughness pipeline steels were investigated experimentally by use of compact tension specimens with thicknesses of 3-15 mm cut from a 17 mm-thick wall pipe. Material resistance curves were generated based on the stress intensity factor (SIF) K and the J-integral. The critical SIF K c and the J-resistance curves are found to be independent of thickness as the delaminations near the crack tip within the material reduce the out-of-plane constraint in thicker specimens. Both fracture mechanism and mechanics analyses shown that the fracture behaviour of the steel is controlled by the strong-coupled effects of thickness and delaminations. With increasing thickness, the out-of-plane stress constraint increases and causes the inclusion separation, growth and coalescence to form delaminations of different sizes before the main crack initiates. The delaminations in turn, reduce the out-of-plane constraint and thus, the thickness effect upon fracture. The advantages and disadvantages of delaminations in a safety assessment of pipelines are also discussed based on three-dimensional fracture theory

  8. Simulations of electromagnetic effects in high-frequency capacitively coupled discharges using the Darwin approximation

    International Nuclear Information System (INIS)

    Eremin, Denis; Hemke, Torben; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2013-01-01

    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high-frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that the Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and efficient solver, which can be used in fluid and kinetic models for self-consistent description of technical plasmas exhibiting certain electromagnetic activity. (paper)

  9. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals.

    Science.gov (United States)

    Flakus, Henryk T; Michta, Anna

    2010-02-04

    This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems.

  10. Coupling effect of topological states and Chern insulators in two-dimensional triangular lattices

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Xue, Yang; Zhou, Tong; Yang, Zhongqin

    2018-03-01

    We investigate topological states of two-dimensional (2D) triangular lattices with multiorbitals. Tight-binding model calculations of a 2D triangular lattice based on px and py orbitals exhibit very interesting doubly degenerate energy points at different positions (Γ and K /K' ) in momentum space, with quadratic non-Dirac and linear Dirac band dispersions, respectively. Counterintuitively, the system shows a global topologically trivial rather than nontrivial state with consideration of spin-orbit coupling due to the "destructive interference effect" between the topological states at the Γ and K /K' points. The topologically nontrivial state can emerge by introducing another set of triangular lattices to the system (bitriangular lattices) due to the breakdown of the interference effect. With first-principles calculations, we predict an intrinsic Chern insulating behavior (quantum anomalous Hall effect) in a family of the 2D triangular lattice metal-organic framework of Co(C21N3H15) (TPyB-Co) from this scheme. Our results provide a different path and theoretical guidance for the search for and design of new 2D topological quantum materials.

  11. A numerical study of water percolation through an unsaturated variable aperture fracture under coupled thermomechanical effects

    International Nuclear Information System (INIS)

    Tsang, C.F.; Noorishad, J.; Hale, F.V.

    1991-12-01

    In calculation of ground water travel times associated with performance assessment of a nuclear waste repository, the role of fractures may turn out to be very important. There are two aspects related to fracture flow that have not been fully resolved. The first is the effect of coupled thermomechanical impact on fracture apertures due to the thermal output of the nuclear waste repository. The second is the effect of the variable aperture nature of the fractures. The present paper is an exploratory study of the impact of these two effects on water percolation through unsaturated fractures. The paper is divided into two main sections. the first section describes a calculation of the thermomechanical behavior of the geologic formation around a waste repository. In this exploratory study we assume two major fractures, one vertical and one horizontal through the repository center. Temperatures and thermally induced stress fields are calculated. The second part of the paper considers the unsaturated case and describes a study of water infiltration from the land surface through the vertical fracture to the repository

  12. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  13. Effects of air-sea coupling on the boreal summer intraseasonal oscillations over the tropical Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ailan [CMA, Key Open Laboratory for Tropical Monsoon, Institute of Tropical and Marine Meteorology, Guangzhou (China); Li, Tim [CMA, Key Open Laboratory for Tropical Monsoon, Institute of Tropical and Marine Meteorology, Guangzhou (China); University of Hawaii, IPRC, Honolulu, Hawaii (United States); University of Hawaii, Department of Meteorology, Honolulu, Hawaii (United States); Fu, Xiouhua [University of Hawaii, IPRC, Honolulu, Hawaii (United States); Luo, Jing-Jia; Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2011-12-15

    The effects of air-sea coupling over the tropical Indian Ocean (TIO) on the eastward- and northward-propagating boreal summer intraseasonal oscillation (BSISO) are investigated by comparing a fully coupled (CTL) and a partially decoupled Indian Ocean (pdIO) experiment using SINTEX-F coupled GCM. Air-sea coupling over the TIO significantly enhances the intensity of both the eastward and northward propagations of the BSISO. The maximum spectrum differences of the northward- (eastward-) propagating BSISO between the CTL and pdIO reach 30% (25%) of their respective climatological values. The enhanced eastward (northward) propagation is related to the zonal (meridional) asymmetry of sea surface temperature anomaly (SSTA). A positive SSTA appears to the east (north) of the BSISO convection, which may positively feed back to the BSISO convection. In addition, air-sea coupling may enhance the northward propagation through the changes of the mean vertical wind shear and low-level specific humidity. The interannual variations of the TIO regulate the air-sea interaction effect. Air-sea coupling enhances (reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole (IOD) mode, positive Indian Ocean basin (IOB) mode and normal years (during positive IOD and negative IOB years). Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback. A climatological weak westerly in the equatorial Indian Ocean can be readily reversed by anomalous zonal SST gradients during the positive IOD and negative IOB events. Although the SSTA is always positive to the northeast of the BSISO convection for all interannual modes, air-sea coupling reduces the zonal asymmetry of the low-level specific humidity and thus the eastward propagation spectrum during the positive IOD and negative IOB modes, while strengthening them during the other modes. Air-sea coupling enhances the northward propagation under all

  14. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas Puli, Venkata, E-mail: pvsri123@gmail.com [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Kumar Pradhan, Dhiren [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Gollapudi, Sreenivasulu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Coondoo, Indrani [Department of Materials and Ceramic and CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Panwar, Neeraj [Department of Physics, Central University of Rajasthan, Bandar Sindri, Kishangarh 305801, Rajasthan (India); Adireddy, Shiva; Chrisey, Douglas B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2014-11-15

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO{sub 3} (BFO) thin films have been deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d{sub 33}) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO{sub 3} thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO{sub 3} thin films. • High magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO{sub 3} thin films. • A notable piezoelectric constant d{sub 33} ∼94 pm/V was found in BiFeO{sub 3} thin films.

  15. Effects of Mg on corrosion resistance of Al galvanically coupled to Fe

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2013-01-01

    Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [Cl - ] around 0.025 M of [Cl - ] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions

  16. Effects of Mg on corrosion resistance of Al galvanically coupled to Fe

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik Univ., Sejong (Korea, Republic of)

    2013-01-15

    Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [Cl{sup -}] around 0.025 M of [Cl{sup -}] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.

  17. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-01-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d 33 ) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO 3 thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO 3 thin films. • High magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO 3 thin films. • A notable piezoelectric constant d 33 ∼94 pm/V was found in BiFeO 3 thin films

  18. Stress spillover, African Americans' couple and health outcomes, and the stress-buffering effect of family-centered prevention.

    Science.gov (United States)

    Barton, Allen W; Beach, Steven R H; Bryant, Chalandra M; Lavner, Justin A; Brody, Gene H

    2018-03-01

    This study investigated (a) the stress spillover pathways linking contextual stressors, changes in couple relationship functioning and depressive symptoms, and changes in individuals' physical health, and (b) the stress-buffering effect of participation in an efficacious, family centered prevention program designed to protect couples from the deleterious effects of stressors. The sample consisted of 346 rural African American couples (63% married) who participated in a randomized controlled trial of the Protecting Strong African American Families (ProSAAF) program. Participants were assessed at three time points across 17 months. Results examining stress spillover within the control group indicated that elevated current, but not prior, financial hardship was associated with decreased effective communication, relationship satisfaction, and relationship confidence as well as increased depressive symptoms; current levels of racial discrimination also predicted greater depressive symptoms. Relationship confidence and relationship satisfaction, but not communication or depressive symptoms, in turn predicted declines in self-reported physical health. Results examining stress-buffering effects suggested that participation in ProSAAF protected individuals' relationship confidence from declines associated with elevated financial hardship. In addition, the indirect effect linking financial hardship to declines in physical health through relationship confidence that emerged among participants in the control group was no longer evident for ProSAAF couples. Results highlight the effect of contextual stressors on African Americans' couple and individual well-being and the potential for the ProSAAF program to provide a constructed resilience resource, protecting couple's confidence in their relationship from the negative effects of financial hardship and, consequently, promoting physical health. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Posttraumatic growth in cancer patients and partners--effects of role, gender and the dyad on couples' posttraumatic growth experience.

    Science.gov (United States)

    Zwahlen, Diana; Hagenbuch, Niels; Carley, Margaret I; Jenewein, Josef; Buchi, Stefan

    2010-01-01

    Little is known about factors influencing positive effects in couples facing a cancer diagnosis. A heterogeneous sample of 224 couples from a multi-site study (four oncology units) completed questionnaire surveys including the Posttraumatic Growth Inventory (PTGI) as a measure of positive psychological effects. The data demonstrated that all three investigated factors--gender, role (patient vs partner) and the dyad (belonging to any of the 224 couples)--significantly contributed to variation in PTGI total scores and subscales. Variability between couples (factor dyad) appeared stronger than variability between patient and partner participants (factor role) and between male and female participants (factor gender). Role and gender analysis showed that patients demonstrated higher levels of posttraumatic growth than partners; and female participants scored higher on PTGI than males. Male patient-female partner pairs show greater association in their experience of posttraumatic growth than female patient-male partner pairs. Correlations also suggested that, regardless of the gender and role composition, patients and partners may experience parallel growth. Our findings indicate that positive psychological experiences may be shared by partners affected by cancer in similar ways as have been shown for negative psychological effects. Intra-couple similarities or processes may have a more important function in experiencing benefits than factors like gender or being the patient or the partner. These results underline the importance of a family approach to understanding negative and positive psychological effects of cancer. (c) 2009 John Wiley & Sons, Ltd.

  20. Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates: Effects of the Rashba-Dresselhaus coupling and Zeeman splitting.

    Science.gov (United States)

    Sakaguchi, Hidetsugu; Sherman, E Ya; Malomed, Boris A

    2016-09-01

    We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ∼1.5×10^{4}. The results are obtained by means of combined analytical and numerical methods.

  1. Does air-sea coupling influence model projections of the effects of the Paris Agreement?

    Science.gov (United States)

    Klingaman, Nicholas; Suckling, Emma; Sutton, Rowan; Dong, Buwen

    2017-04-01

    The 2015 Paris Agreement includes the long-term goal to hold global-mean temperature to "well below 2°C above pre-industrial levels", with the further stated aim of limiting the global-mean warming to 1.5°C, in the belief that this would "significantly reduce the risks and impacts of climate change". However, it is not clear which risks and impacts would be avoided, or reduced, by achieving a 1.5°C warming instead of a 2.0°C warming. Initial efforts to quantify changes in risk have focused on analysis of existing CMIP5 simulations at levels of global-mean warming close to 1.5°C or 2.0°C, by taking averages over ≈20 year periods. This framework suffers from several drawbacks, however, including the effect of model internal multi-decadal variability, the influence of coupled-model systematic errors on regional circulation patterns, and the presence of a warming trend across the averaging period (i.e., the model is not in steady state). To address these issues, the "Half a degree Additional warming, Prognosis and Projected Impacts" (HAPPI) project is performing large ensembles of atmosphere-only experiments with prescribed sea-surface temperatures (SSTs) for present-day and 1.5°C and 2.0°C scenarios. While these experiments reduce the complications from a limited dataset and coupled-model systematic errors, the use of atmosphere-only models neglects feedbacks between the atmosphere and ocean, which may have substantial effects on the representation of local and regional extremes, and hence on the response of these extremes to global-mean warming. We introduce a set of atmosphere-ocean coupled simulations that incorporate much of the HAPPI experiment design, yet retain a representation of air-sea feedbacks. We use the Met Office Unified Model Global Ocean Mixed Layer (MetUM-GOML) model, which comprises the MetUM atmospheric model coupled to many columns of the one-dimensional K Profile Parameterization mixed-layer ocean. Critically, the MetUM-GOML ocean mean

  2. Influence of void effects on reactivity of coupled fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.

    1997-01-01

    Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents

  3. Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field

    International Nuclear Information System (INIS)

    Sato, Masahiro; Oshikawa, Masaki

    2002-01-01

    We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)

  4. Effect of sample matrix on the fundamental properties of the inductively coupled plasma

    International Nuclear Information System (INIS)

    Lehn, Scott A.; Warner, Kelly A.; Huang Mao; Hieftje, Gary M.

    2003-01-01

    In the inductively coupled plasma (ICP), the emission intensities of atomic and ionic spectral lines are controlled by fundamental parameters such as electron temperature, electron number density, gas-kinetic temperature, analyte atom and ion number densities, and others. Accordingly, the effect of a sample matrix on the analyte emission intensity in an ICP might be attributable to changes in these fundamental parameters caused by the matrix elements. In the present study, a plasma imaging instrument that combines Thomson scattering, Rayleigh scattering, laser-induced fluorescence and computed tomography has been employed to measure the above-mentioned parameters in the presence and absence of matrix elements. The data thus obtained were all collected on a spatially resolved basis and without the need for Abel inversion. Calcium, strontium and barium served as analytes, while lithium, copper and zinc were introduced as matrix elements. Comparing the data with and without the matrix elements allows us to determine the extent to which each fundamental parameter changes in the presence of a matrix element, and to better understand the nature of the matrix effects that occur in the ICP. As has been seen in previous studies with different matrix elements, ion emission and ion number densities follow opposite trends when matrix interferents are introduced into the plasma: ion emission is enhanced by the presence of matrix interferents while ion concentrations are lowered. These changes are consistent with a shift from collisional deactivation to radiative decay of excited-state analyte species

  5. Effect of silane/hydrogen ratio on microcrystalline silicon thin films by remote inductively coupled plasma

    Science.gov (United States)

    Guo, Y. N.; Wei, D. Y.; Xiao, S. Q.; Huang, S. Y.; Zhou, H. P.; Xu, S.

    2013-05-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by remote low frequency inductively coupled plasma (ICP) chemical vapor deposition system, and the effect of silane/hydrogen ratio on the microstructure and electrical properties of μc-Si:H films was systematically investigated. As silane/hydrogen ratio increases, the crystalline volume fraction Fc decreases and the ratio of the intensity of (220) peak to that of (111) peak drops as silane flow rate is increased. The FTIR result indicates that the μc-Si:H films prepared by remote ICP have a high optical response with a low hydrogen content, which is in favor of reducing light-induced degradation effect. Furthermore, the processing window of the phase transition region for remote ICP is much wider than that for typical ICP. The photosensitivity of μc-Si:H films can exceed 100 at the transition region and this ensures the possibility of the fabrication of microcrystalline silicon thin film solar cells with a open-circuit voltage of about 700 mV.

  6. Dry Etch Black Silicon with Low Surface Damage: Effect of Low Capacitively Coupled Plasma Power

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Plakhotnyuk, Maksym; Gaudig, Maria

    2017-01-01

    Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we pr...... carrier lifetime thanks to reduced ion energy. Surface passivation using atomic layer deposition of Al2O3 improves the effective lifetime to 7.5 ms and 0.8 ms for black silicon n- and p-type wafers, respectively.......Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we...... present a RIE optimization leading to reduced surface damage while retaining excellent light trapping and low reflectivity. In particular, we demonstrate that the reduction of the capacitively coupled power during reactive ion etching preserves a reflectance below 1% and improves the effective minority...

  7. Kelvin wave coupling from TIMED and GOCE: Inter/intra-annual variability and solar activity effects

    Science.gov (United States)

    Gasperini, Federico; Forbes, Jeffrey M.; Doornbos, Eelco N.; Bruinsma, Sean L.

    2018-06-01

    The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the thermosphere is through the generation and propagation of atmospheric waves. It is becoming increasingly evident that a few waves from the tropical wave spectrum preferentially propagate into the thermosphere and contribute to modify satellite drag. Two of the more prominent and well-established tropical waves are Kelvin waves: the eastward-propagating 3-day ultra-fast Kelvin wave (UFKW) and the eastward-propagating diurnal tide with zonal wave number 3 (DE3). In this work, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures at 110 km and Gravity field and steady-state Ocean Circulation Explorer (GOCE) neutral densities and cross-track winds near 260 km are used to demonstrate vertical coupling in this height regime due to the UFKW and DE3. Significant inter- and intra-annual variability is found in DE3 and the UFKW, with evidence of latitudinal broadening and filtering of the latitude structures with height due to the effect of dissipation and mean winds. Additionally, anti-correlation between the vertical penetration of these waves to the middle thermosphere and solar activity level is established and explained through the effect of molecular dissipation.

  8. Core-edge coupling and the effect of the edge on overall plasma performance

    International Nuclear Information System (INIS)

    Fichtmueller, M.; Corrigan, G.; Lauro-Taroni, L.

    1999-01-01

    Several attempts to model the entire plasma cross section have been reported in the last few years. Two possibilities are to either couple a core code to a scrape-off layer (SOL) code at a specified interface or to extend the computational region of an SOL-code all the way to the plasma centre. The most advanced global code is the code COCONUT which is based on the former principle and comprises the Monte-Carlo code NIMBUS, the 2D scrape-off layer code EDGE2D, the core transport code JETTO and the core impurity transport code SANCO. A main feature of COCONUT is its modular structure which ensures a high degree of flexibility and the capability to cover a large range of time-scales. The influence of the SOL on the core is illustrated with a range of global simulations carried out with COCONUT. The simulations show that the primary effect of the SOL is the control of the particle sources and sinks with a secondary effect on plasma dilution, radiation and perhaps pedestal temperatures. (author)

  9. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe

    KAUST Repository

    Huang, Bin-Juine

    2015-04-01

    © 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest daily pure water production is 40.6kgd-1. The measured highest productivity based on the area of glass cover, solar absorber, and evaporating surface is 34.7, 40.6, and 7.96kgm-2d-1, respectively, which are much higher than the published results. The measured solar distillation efficiency is 2.0-3.5. The performance enhancement results mainly from the lateral diffusion process in the spiraled still cell. The vapor flow generated by heat input can flow freely and laterally through the spiral channel down to the end when solar heat input is high. Besides, the larger evaporating and condensing area at the outer cell may increase heat and mass transfer at the outer cell.

  10. Kenaf-polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2010-10-01

    Full Text Available This paper presents an experimental study on the use of zein as a coupling agent in natural fibre composites. Kenaf nonwovens were treated with zein coupling agent, which is a protein extracted from corn. The surface characteristics of untreated...

  11. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  12. Kerr-effect analysis in a three-level negative index material under magneto cross-coupling

    Science.gov (United States)

    Boutabba, N.

    2018-02-01

    We discuss the feasibility of the Kerr effect in negative refractive index materials under magneto cross-coupling and reservoir interaction. The considered medium is a typical three-level atomic system where we derive both the refractive and the gain spectrum. The profiles are analyzed for a weak probe field, and for varying strengths of the strong control field. The considered scheme shows an enhancement of the Kerr nonlinearity which we attribute to the contribution of the electromagnetic components of the fields. For more realistic experimental conditions, we discuss the dependence of the Kerr effect on different thermal bath coupling constants.

  13. Combined Effect of Piezoviscous Dependency and Non-Newtonian Couple Stress on Squeeze-Film Porous Annular Plate

    Science.gov (United States)

    Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.

    2018-04-01

    Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.

  14. Effects of curcumin and ursolic acid on the mitochondrial coupling efficiency and hydrogen peroxide emission of intact skeletal myoblasts.

    Science.gov (United States)

    Tueller, Daniel J; Harley, Jackson S; Hancock, Chad R

    2017-10-21

    Curcumin may improve blood glucose management, but the mechanism is not fully established. We demonstrated that curcumin (40 μM) reduced the mitochondrial coupling efficiency (percentage of oxygen consumption coupled to ATP synthesis) of intact skeletal muscle cells. A 30-minute pretreatment with curcumin reduced mitochondrial coupling efficiency by 17.0 ± 0.4% relative to vehicle (p Curcumin pretreatment also decreased the rate of hydrogen peroxide emission by 43 ± 13% compared to vehicle (p curcumin revealed a 40 ± 4% increase in the rate of oxygen consumption upon curcumin administration (p curcumin-pretreated cells after permeabilization of cell membranes (p > 0.7). The interaction between curcumin and ursolic acid, another natural compound that may improve blood glucose management, was also examined. Pretreatment with ursolic acid (0.12 μM) increased the mitochondrial coupling efficiency of intact cells by 4.1 ± 1.1% relative to vehicle (p curcumin when the two compounds were used in combination. The observed changes to mitochondrial coupling efficiency and hydrogen peroxide emission were consistent with the established effects of curcumin on blood glucose control. Our findings also show that changes to mitochondrial coupling efficiency after curcumin pretreatment may go undetected unless cells are assessed in the intact condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The electron–phonon coupling of fundamental, overtone, and combination modes and its effects on the resonance Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zhanlong; Wang, Shenghan; Gao, Shuqin [College of Physics, Jilin University, Changchun 130012 (China); Sun, Chenglin, E-mail: chenglin@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zuowei [College of Physics, Jilin University, Changchun 130012 (China)

    2015-12-15

    Highlights: • The Huang–Rhys factors and electron–phonon coupling constants are calculated. • The changes of overtone mode are larger than those of fundamental mode. • The variation pattern of electron–phonon coupling well interprets the changes of spectra. - Abstract: External field plays a very important role in the interaction between the π-electron transition and atomic vibration of polyenes. It has significant effects on both the Huang–Rhys factor and the electron–phonon coupling. In this paper, the visible absorption and resonance Raman spectra of all-trans-β-carotene are measured in the 345–295 K temperature range and it is found that the changes of the 0–1 and 0–2 vibration bands of the absorption spectra with the temperature lead to the different electron–phonon coupling of fundamental, overtone, and combination modes. The electron-phonon coupling constants of all the modes are calculated and analyzed under different temperatures. The variation law of the electron–phonon coupling with the temperature well interprets the changes of the resonance Raman spectra, such as the shift, intensity and line width of the overtone and combination modes, which are all greater than those of the fundamental modes.

  16. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography

    Science.gov (United States)

    Xiao, Zhili; Tan, Chao; Dong, Feng

    2017-08-01

    Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.

  17. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    International Nuclear Information System (INIS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-01-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler–Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained. -- Highlights: ► Increasing arc current will increase the coupling arc temperature. ► Arc length seldom affects the peak temperature of the coupling arc. ► Increasing arc length will increase the extension of temperature near the anode. ► Increasing distance will decrease temperatures in the central part of the arc.

  18. Divorce and subsequent increase in uptake of antidepressant medication: a Finnish registry-based study on couple versus individual effects.

    Science.gov (United States)

    Monden, Christiaan W S; Metsä-Simola, Niina; Saarioja, Saska; Martikainen, Pekka

    2015-02-19

    There is an average negative mental health effect for individuals who experience divorce. Little is known whether the pattern of such divorce effects varies within couples. We study whether the husband and wife experience similar harmful effects of divorce, whether they experience opposite effects, or whether divorce effects are purely individual. We use Finnish registry data to compare changes over a period of 5 years in antidepressant use of husbands and wives from 4,558 divorcing couples to 108,637 continuously married pairs aged 40-64, all of whom were healthy at baseline. In the period three years before and after divorce antidepressant use increases substantially. However, the likelihood of uptake of antidepressant medication during this process of divorce by one partner appears to be independent of medication uptake in the other partner. In contrast, among continuously married couples there is a clear pattern of convergence: If one partner starts to use antidepressants this increases the likelihood of uptake of antidepressant medication in the other partner. Our findings suggest that divorce effects on antidepressant use are individual and show no pattern of either convergence or divergence at the level of the couple. The increased incidence of antidepressant use associated with divorce occurs in individuals independent of what happens to their ex-partner.

  19. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors

    International Nuclear Information System (INIS)

    Ye Yu; Tian Tong

    2013-01-01

    A 50 GHz cross-coupled voltage controlled oscillator (VCO) considering the coupling effect of inductors based on a 65 nm standard complementary metal oxide semiconductor (CMOS) technology is reported. A pair of inductors has been fabricated, measured and analyzed to characterize the coupling effects of adjacent inductors. The results are then implemented to accurately evaluate the VCO's LC tank. By optimizing the tank voltage swing and the buffer's operation region, the VCO achieves a maximum efficiency of 11.4% by generating an average output power of 2.5 dBm while only consuming 19.7 mW (including buffers). The VCO exhibits a phase noise of −87 dBc/Hz at 1 MHz offset, leading to a figure of merit (FoM) of −167.5 dB/Hz and a tuning range of 3.8% (from 48.98 to 50.88 GHz). (semiconductor integrated circuits)

  20. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.