WorldWideScience

Sample records for vibrio fischeri bacteria

  1. Implications of handling practices on the ecotoxic profile of alumina nanoparticles towards the bacteria Vibrio fischeri.

    Science.gov (United States)

    Tsiridis, Vasilios; Petala, Maria; Koukiotis, Chris; Darakas, Efthymios

    2017-01-02

    The complex nature and behavior of Engineered Nanomaterials (ENMs) has led to adoption of customized experimental ecotoxicity practices that are prone to possible artefacts in the inherent toxic properties of ENMs. In addition, the lack of standardized handling procedures for the ecotoxicity testing of ENMs prevents the development of experimental protocols for regulatory purposes. In this study, a suite of techniques for dispersion of ENMs was adopted and tested for two types of surface-modified alumina nanoparticles-one hydrophobic and one hydrophilic-towards the bacteria, Vibrio fischeri. The effect of certain handling practices on the observed ecotoxic effects on V. fischeri was examined. The overall goal was to evaluate by what means the handling practices of ENMs may affect the obtained toxicity results. It was realized that the toxicity of the hydrophilic and hydrophobic ENMs was mainly affected by the centrifugation and the salinity of the tested dispersions, respectively. It is more likely that both aluminium and coating substance contributed to the overall toxicity. Toxicity results are discussed with regard to generic physicochemical characteristics of the dispersions.

  2. Vibrio fischeri metabolism: symbiosis and beyond.

    Science.gov (United States)

    Dunn, Anne K

    2012-01-01

    Vibrio fischeri is a bioluminescent, Gram-negative marine bacterium that can be found free living and in a mutualistic association with certain squids and fishes. Over the past decades, the study of V. fischeri has led to important discoveries about bioluminescence, quorum sensing, and the mechanisms that underlie beneficial host-microbe interactions. This chapter highlights what has been learned about metabolic pathways in V. fischeri, and how this information contributes to a broader understanding of the role of bacterial metabolism in host colonization by both beneficial and pathogenic bacteria, as well as in the growth and survival of free-living bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah; Ravel, J.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    Physical responses of marine luminous bacteria, Vibrio harveyi (ATCC 14216) and V. fischeri (UM1373) to nutrient-limited normal strength (35 ppt iso-osmolarity) and low (10 ppt hypo-osmolarity) salinity conditions were determined. Plate counts...

  4. Arabinose induces pellicle formation by Vibrio fischeri.

    Science.gov (United States)

    Visick, Karen L; Quirke, Kevin P; McEwen, Sheila M

    2013-03-01

    Biofilms are multicellular communities of bacteria attached to a surface and embedded in a protective matrix. In many cases, the signals that induce biofilm formation are unknown. Here, we report that biofilm formation by the marine bacterium Vibrio fischeri can be induced by the addition of arabinose to LBS (Luria-Bertani-salt), a tryptone-based medium. Growth of cells in the presence of 0.2% arabinose, but not other sugars, induced the production of a pellicle at the air/liquid interfaces of static cultures. V. fischeri failed to grow on arabinose as the sole carbon source, suggesting that pellicle production did not occur as a result of increased growth, but experiments using the acid/base indicator phenol red suggested that V. fischeri may partially metabolize arabinose. Pellicle production was independent of the syp polysaccharide locus but was altered upon disruption of the bcs cellulose locus. Through a screen for mutants defective for pellicle production, we found that loss of motility disrupted the formation of the arabinose-induced pellicle. Among the ∼20 mutants that retained motility were strains with insertions in a putative msh pilus locus and a strain with a defect in yidK, which is involved in galactose catabolism. Mutants with the msh gene disrupted grew poorly in the presence of arabinose, while the yidK mutant appeared to be "blind" to the presence of arabinose. Finally, arabinose impaired symbiotic colonization by V. fischeri. This work thus identifies a novel signal and new pathways involved in control of biofilm formation by V. fischeri.

  5. Engineering Vibrio fischeri for Inducible Gene Expression.

    Science.gov (United States)

    Ondrey, Jakob M; Visick, Karen L

    2014-01-01

    The marine bacterium Vibrio fischeri serves as a model organism for a variety of natural phenomena, including symbiotic host colonization. The ease with which the V. fischeri genome can be manipulated contributes greatly to our ability to identify the factors involved in these phenomena. Here, we have adapted genetic tools for use in V. fischeri to promote our ability to conditionally control the expression of genes of interest. Specifically, we modified the commonly used mini-Tn5 transposon to contain an outward-facing, LacI-repressible/IPTG-inducible promoter, and inserted the lacI gene into the V. fischeri chromosome. Used together, these tools permit the identification and induction of genes that control specific phenotypes. To validate this approach, we identified IPTG-controllable motility mutants. We anticipate that the ability to randomly insert an inducible promoter into the genome of V. fischeri will advance our understanding of various aspects of the physiology of this microbe.

  6. [Influence of aflatoxin on Vibrio fischeri luminescence].

    Science.gov (United States)

    Li, Xiang; Pan, Li; Wang, Bin

    2011-12-01

    In the present study, we aim to evaluate the inhibitory effect of aflatoxin on Vibrio fischeri luminescence. V. fischeri culture is treated with aflatoxin or the culture broth of aflatoxin-producing strains, and the luminescence intensity of V. fischeri is detected to analyze the influence of aflatoxin on V. fischeri. The logarithmic value of aflatoxin concentration and the decrease ratio of V. fischeri luminescence is in a linear relationship. Based on the regression equation between aflatoxin concentration and luminescence decrease of V. fischeri, the toxin-producing status of different microbes can be detected quickly and exactly: all of six tested Aspergillus flavus strains show toxigenicity to V. fischeri, and their toxin yield reached 14.94 mg/L - 46.45 mg/L (represented by aflatoxin concentration), while the tested Aspergillus oryzae shows no toxigenicity. The above data showed that the luminescence change of V. fischeri could exactly reflect the capability of various microbes to produce toxin (especially aflatoxin), which provided a new clue for rapid detection of aflatoxin in industrial and agricultural production and could be developed as a potential method for aflatoxin assay.

  7. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri

    National Research Council Canada - National Science Library

    John F. Brooks; Mattias C. Gyllborg; David C. Cronin; Sarah J. Quillin; Celeste A. Mallama; Randi Foxall; Cheryl Whistler; Andrew L. Goodman; Mark J. Mandel

    2014-01-01

    .... To understand the molecular determinants of microbiota selection, we examined colonization of a simplified model in which the light organ of Euprymna scolopes squid is colonized exclusively by Vibrio fischeri bacteria...

  8. Transformation Experiment Using Bioluminescence Genes of "Vibrio fischeri."

    Science.gov (United States)

    Slock, James

    1995-01-01

    Bioluminescence transformation experiments show students the excitement and power of recombinant DNA technology. This laboratory experiment utilizes two plasmids of "Vibrio fischeri" in a transformation experiment. (LZ)

  9. Predation response of Vibrio fischeri biofilms to bacterivorus protists.

    Science.gov (United States)

    Chavez-Dozal, Alba; Gorman, Clayton; Erken, Martina; Steinberg, Peter D; McDougald, Diane; Nishiguchi, Michele K

    2013-01-01

    Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment.

  10. O-antigen and Core Carbohydrate of Vibrio fischeri Lipopolysaccharide

    Science.gov (United States)

    Post, Deborah M. B.; Yu, Liping; Krasity, Benjamin C.; Choudhury, Biswa; Mandel, Mark J.; Brennan, Caitlin A.; Ruby, Edward G.; McFall-Ngai, Margaret J.; Gibson, Bradford W.; Apicella, Michael A.

    2012-01-01

    Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other Gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of l-glycero-d-manno-heptose, d-glycero-d-manno-heptose, glucose, 3-deoxy-d-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid. PMID:22247546

  11. Rapid in situ toxicity testing with luminescent bacteria Photorhabdus luminescens and Vibrio fischeri adapted to a small portable luminometer.

    Science.gov (United States)

    Masner, Petr; Javůrková, Barbora; Bláha, Luděk

    2017-02-01

    The present study demonstrates development of a rapid testing protocol based on a small portable luminometer using flash kinetic assessment of bacterial bioluminescence. The laboratory comparisons based on six model organic toxicants and two metals showed significant correlations between responses of freshwater bacteria Photorhabdus luminescens and standard marine bacterial species Vibrio fisheri. While P. luminescens was less sensitive in standard arrangements, the responses of both organisms were comparable in the newly introduced portable luminometer setup. The applicability and reproducibility of the portable luminometer protocol was further demonstrated in the assessment of 43 European wastewater effluents that were simultaneously tested for toxicity and analysed for 150 organic and 20 inorganic contaminants grouped into 13 major chemical classes. Clear association between the toxic responses in both compared bacterial species and the elevated levels of inorganic compounds (toxic metals), chlorophenols and benzotriazole anticorrosives was observed. The new protocol with a portable luminometer provides a fast (30 s) response and may be used as a tool for rapid in situ toxicity evaluation of freshwater environmental samples such as effluents.

  12. Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs.

    Science.gov (United States)

    Aruoja, Villem; Sihtmäe, Mariliis; Dubourguier, Henri-Charles; Kahru, Anne

    2011-09-01

    A congeneric set of 58 substituted anilines and phenols was tested using the 72-h algal growth inhibition assay with Pseudokirchneriella subcapitata and 15-min Vibrio fischeri luminescence inhibition assay. The set contained molecules substituted with one, two or three groups chosen from -chloro, -methyl or -ethyl. For 48 compounds there was no REACH-compatible algal toxicity data available before. The experimentally obtained EC50 values (mg L(-1)) for algae ranged from 1.43 (3,4,5-trichloroaniline) to 197 (phenol) and for V. fischeri from 0.37 (2,3,5-trichlorophenol) to 491 (aniline). Only five of the tested 58 chemicals showed inhibitory effect to algae at concentrations >100 mg L(-1), i.e. could be classified as "not harmful", 32 chemicals as "harmful" (10-100 mg L(-1)) and 21 as "toxic" (1-10 mg L(-1)). The occupied para-position tended to increase toxicity whereas most of the ortho-substituted congeners were the least toxic. As a rule, the higher the number of substituents the higher the hydrophobicity and toxicity. However, in case of both assays, the compounds of similar hydrophobicity showed up to 30-fold different toxicities. There were also assay/organism dependent tendencies: phenols were more toxic than anilines in the V. fischeri assay but not in the algal test. The comparison of the experimental toxicity data to the data available from the literature as well as to QSAR predictions showed that toxicity of phenols to algae can be modeled based on hydrophobicity, whereas the toxicity of anilines to algae as well as toxicity of both anilines and phenols to V. fischeri depended on other characteristics in addition to log K(ow). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Effect of Magnetic Fields on the Quorum Sensing-Regulated Luminescence of Vibrio fischeri

    Science.gov (United States)

    Barron, Addie; Hagen, Steve; Son, Minjun

    2015-03-01

    Quorum sensing (QS) is a mechanism by which bacteria communicate through the secretion and detection of extracellular signaling molecules known as autoinducers. This research focuses on the quorum sensing regulated bioluminescence of Vibrio fischeri, a marine bacterium that lives in symbiosis with certain fish and squid species. Previous studies of V. harveyi, a close relative of V. fisheri, indicate that a strong magnetic field has a positive effect on V.harveyi bioluminescence. However the effect of magnetic fields on quorum sensing-regulated luminescence is in general poorly understood. We grew V. fischeri in solid and liquid growth media, subject to strong static magnetic fields, and imaged the bioluminescence over a period of forty-eight hours. Luminescence patterns were analyzed in both the spatial and time dimensions. We find no indication that a magnetic field influences Vibrio fischeri luminescence either positively or negatively. This research was funded by the Grant Number NSF DMR-1156737.

  14. Gimme shelter: how Vibrio fischeri successfully navigates an animal's multiple environments.

    Science.gov (United States)

    Norsworthy, Allison N; Visick, Karen L

    2013-01-01

    Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host's multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri cells finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria-host interaction.

  15. Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments

    Directory of Open Access Journals (Sweden)

    Allison N Norsworthy

    2013-11-01

    Full Text Available Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host’s multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria-host interaction.

  16. Shedding light on bioluminescence regulation in Vibrio fischeri.

    Science.gov (United States)

    Miyashiro, Tim; Ruby, Edward G

    2012-06-01

    The bioluminescence emitted by the marine bacterium Vibrio fischeri is a particularly striking result of individual microbial cells co-ordinating a group behaviour. The genes responsible for light production are principally regulated by the LuxR-LuxI quorum-sensing system. In addition to LuxR-LuxI, numerous other genetic elements and environmental conditions control bioluminescence production. Efforts to mathematically model the LuxR-LuxI system are providing insight into the dynamics of this autoinduction behaviour. The Hawaiian squid Euprymna scolopes forms a natural symbiosis with V. fischeri, and utilizes the symbiont-derived bioluminescence for certain nocturnal behaviours, such as counterillumination. Recent work suggests that the tissue with which V. fischeri associates not only can detect bioluminescence but may also use this light to monitor the V. fischeri population. © 2012 Blackwell Publishing Ltd.

  17. Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments

    Science.gov (United States)

    Norsworthy, Allison N.; Visick, Karen L.

    2013-01-01

    Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host’s multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri cells finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria–host interaction. PMID:24348467

  18. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity.

    Science.gov (United States)

    Nyholm, Spencer V; McFall-Ngai, Margaret J

    2003-07-01

    Previous studies of the Euprymna scolopes-Vibrio fischeri symbiosis have demonstrated that, during colonization, the hatchling host secretes mucus in which gram-negative environmental bacteria amass in dense aggregations outside the sites of infection. In this study, experiments with green fluorescent protein-labeled symbiotic and nonsymbiotic species of gram-negative bacteria were used to characterize the behavior of cells in the aggregates. When hatchling animals were exposed to 10(3) to 10(6) V. fischeri cells/ml added to natural seawater, which contains a mix of approximately 10(6) nonspecific bacterial cells/ml, V. fischeri cells were the principal bacterial cells present in the aggregations. Furthermore, when animals were exposed to equal cell numbers of V. fischeri (either a motile or a nonmotile strain) and either Vibrio parahaemolyticus or Photobacterium leiognathi, phylogenetically related gram-negative bacteria that also occur in the host's habitat, the symbiont cells were dominant in the aggregations. The presence of V. fischeri did not compromise the viability of these other species in the aggregations, and no significant growth of V. fischeri cells was detected. These findings suggested that dominance results from the ability of V. fischeri either to accumulate or to be retained more effectively within the mucus. Viability of the V. fischeri cells was required for both the formation of tight aggregates and their dominance in the mucus. Neither of the V. fischeri quorum-sensing compounds accumulated in the aggregations, which suggested that the effects of these small signal molecules are not critical to V. fischeri dominance. Taken together, these data provide evidence that the specificity of the squid-vibrio symbiosis begins early in the interaction, in the mucus where the symbionts aggregate outside of the light organ.

  19. Natural transformation of Vibrio fischeri requires tfoX and tfoY

    Science.gov (United States)

    Pollack-Berti, Amber; Wollenberg, Michael S.

    2010-01-01

    SUMMARY Recent evidence has indicated that natural genetic transformation occurs in Vibrio cholerae, and that it requires both induction by chitin oligosaccharides, like chitohexaose, and expression of a putative regulatory gene designated tfoX. Using sequence and phylogenetic analyses we have found two tfoX paralogues in all sequenced genomes of the genus Vibrio. Like V. cholerae, when grown in chitohexaose, cells of V. fischeri are able to take up and incorporate exogenous DNA. Chitohexaose-independent transformation by V. fischeri was observed when tfoX was present in multi-copy. The second tfoX paralogue, designated tfoY, is also required for efficient transformation in V. fischeri, but is not functionally identical to tfoX. Natural transformation of V. fischeri facilitates rapid transfer of mutations across strains, and provides a highly useful tool for experimental genetic manipulation in this species. The presence of chitin-induced competence in several vibrios highlights the potential for a conserved mechanism of genetic exchange across this family of environmentally important marine bacteria. PMID:21966921

  20. Vibrio fischeri exhibit the growth advantage in stationary-phase phenotype.

    Science.gov (United States)

    Petrun, Branden; Lostroh, C Phoebe

    2013-02-01

    Vibrio fischeri are bioluminescent marine bacteria that can be isolated from their symbiotic animal partners or from ocean water. A V. fischeri population increases exponentially inside the light organ of the Hawaiian bobtail squid (Euprymna scolopes) while the host is quiescent during the day. This bacterial light organ population reaches stationary phase and then remains high during the night, when the squid use bacterial bioluminescence as a counter-predation strategy. At dawn, host squid release 90%-95% of the light organ contents into the ocean water prior to burying in the sand for the day. As the squid sleeps, the cycle of bacterial population growth in the light organ begins again. These V. fischeri cells that are vented into the ocean must persist under typical marine low nutrient conditions until they encounter another opportunity to colonize a host. We hypothesized that because V. fischeri regularly encounter cycles of feast and famine in nature, they would exhibit the growth advantage in stationary phase (GASP) phenotype. We found that older V. fischeri cells exhibit a Class 2 GASP response in which old cells increase dramatically in frequency while the population of young V. fischeri cells remains almost constant during co-incubation.

  1. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.

  2. Vibrio fischeri-derived outer membrane vesicles trigger host development.

    Science.gov (United States)

    Aschtgen, Marie-Stephanie; Wetzel, Keith; Goldman, William; McFall-Ngai, Margaret; Ruby, Edward

    2016-04-01

    Outer membrane vesicles (OMV) are critical elements in many host-cell/microbe interactions. Previous studies of the symbiotic association between Euprymna scolopes and Vibrio fischeri had shown that within 12 h of colonizing crypts deep within the squid's light organ, the symbionts trigger an irreversible programme of tissue development in the host. Here, we report that OMV produced by V. fischeri are powerful contributors to this process. The first detectable host response to the OMV is an increased trafficking of macrophage-like cells called haemocytes into surface epithelial tissues. We showed that exposing the squid to other Vibrio species fails to induce this trafficking; however, addition of a high concentration of their OMV, which can diffuse into the crypts, does. We also provide evidence that tracheal cytotoxin released by the symbionts, which can induce haemocyte trafficking, is not part of the OMV cargo, suggesting two distinct mechanisms to induce the same morphogenesis event. By manipulating the timing and localization of OMV signal delivery, we showed that haemocyte trafficking is fully induced only when V. fischeri, the sole species able to reach and grow in the crypts, succeeds in establishing a sustained colonization. Further, our data suggest that the host's detection of OMV serves as a symbiotic checkpoint prior to inducing irreversible morphogenesis. © 2015 John Wiley & Sons Ltd.

  3. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion.

    Science.gov (United States)

    Wollenberg, M S; Preheim, S P; Polz, M F; Ruby, E G

    2012-03-01

    This study reports the first description and molecular characterization of naturally occurring, non-bioluminescent strains of Vibrio fischeri. These 'dark' V. fischeri strains remained non-bioluminescent even after treatment with both autoinducer and aldehyde, substrate additions that typically maximize light production in dim strains of luminous bacteria. Surprisingly, the entire lux locus (eight genes) was absent in over 97% of these dark V. fischeri strains. Although these strains were all collected from a Massachusetts (USA) estuary in 2007, phylogenetic reconstructions allowed us to reject the hypothesis that these newly described non-bioluminescent strains exhibit monophyly within the V. fischeri clade. These dark strains exhibited a competitive disadvantage against native bioluminescent strains when colonizing the light organ of the model V. fischeri host, the Hawaiian bobtail squid Euprymna scolopes. Significantly, we believe that the data collected in this study may suggest the first observation of a functional, parallel locus-deletion event among independent lineages of a non-pathogenic bacterial species. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Toxicity assessment of ionic liquids with Vibrio fischeri: an alternative fully automated methodology.

    Science.gov (United States)

    Costa, Susana P F; Pinto, Paula C A G; Lapa, Rui A S; Saraiva, M Lúcia M F S

    2015-03-02

    A fully automated Vibrio fischeri methodology based on sequential injection analysis (SIA) has been developed. The methodology was based on the aspiration of 75 μL of bacteria and 50 μL of inhibitor followed by measurement of the luminescence of bacteria. The assays were conducted for contact times of 5, 15, and 30 min, by means of three mixing chambers that ensured adequate mixing conditions. The optimized methodology provided a precise control of the reaction conditions which is an asset for the analysis of a large number of samples. The developed methodology was applied to the evaluation of the impact of a set of ionic liquids (ILs) on V. fischeri and the results were compared with those provided by a conventional assay kit (Biotox(®)). The collected data evidenced the influence of different cation head groups and anion moieties on the toxicity of ILs. Generally, aromatic cations and fluorine-containing anions displayed higher impact on V. fischeri, evidenced by lower EC50. The proposed methodology was validated through statistical analysis which demonstrated a strong positive correlation (P>0.98) between assays. It is expected that the automated methodology can be tested for more classes of compounds and used as alternative to microplate based V. fischeri assay kits. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis.

    Science.gov (United States)

    Wang, Yanling; Dunn, Anne K; Wilneff, Jacqueline; McFall-Ngai, Margaret J; Spiro, Stephen; Ruby, Edward G

    2010-11-01

    Nitric oxide (NO) is implicated in a wide range of biological processes, including innate immunity against pathogens, signal transduction and protection against oxidative stress. However, its possible roles in beneficial host-microbe associations are less well recognized. During the early stages of the squid-vibrio symbiosis, the bacterial symbiont Vibrio fischeri encounters host-derived NO, which has been hypothesized to serve as a specificity determinant. We demonstrate here that the flavohaemoglobin, Hmp, of V. fischeri protects against NO, both in culture and during colonization of the squid host. Transcriptional analyses indicate that hmp expression is highly responsive to NO, principally through the repressor, NsrR. Hmp protects V. fischeri from NO inhibition of aerobic respiration, and removes NO under both oxic and anoxic conditions. A Δhmp mutant of V. fischeri initiates squid colonization less effectively than wild type, but is rescued by the presence of an NO synthase inhibitor. The hmp promoter is activated during the initial stage of colonization, during which the Δhmp strain fails to form normal-sized aggregates of colonizing cells. Taken together, these results suggest that the sensing of host-derived NO by NsrR, and the subsequent removal of NO by Hmp, influence aggregate size and, thereby, V. fischeri colonization efficiency. © 2010 Blackwell Publishing Ltd.

  6. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes.

    Science.gov (United States)

    Thompson, Luke R; Nikolakakis, Kiel; Pan, Shu; Reed, Jennifer; Knight, Rob; Ruby, Edward G

    2017-05-01

    The marine bacterium Vibrio fischeri is the monospecific symbiont of the Hawaiian bobtail squid, Euprymna scolopes, and the establishment of this association involves a number of signaling pathways and transcriptional responses between both partners. We report here the first full RNA-Seq dataset representing host-associated V. fischeri cells from colonized juvenile E. scolopes, as well as comparative transcriptomes under both laboratory and simulated marine planktonic conditions. These data elucidate the broad transcriptional changes that these bacteria undergo during the early stages of symbiotic colonization. We report several previously undescribed and unexpected transcriptional responses within the early stages of this symbiosis, including gene expression patterns consistent with biochemical stresses inside the host, and metabolic patterns distinct from those reported in associations with adult animals. Integration of these transcriptional data with a recently developed metabolic model of V. fischeri provides us with a clearer picture of the metabolic state of symbionts within the juvenile host, including their possible carbon sources. Taken together, these results expand our understanding of the early stages of the squid-vibrio symbiosis, and more generally inform the transcriptional responses underlying the activities of marine microbes during host colonization. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Observing Chemotaxis in Vibrio fischeri Using Soft Agar Assays in an Undergraduate Microbiology Laboratory

    Directory of Open Access Journals (Sweden)

    Cindy R. DeLoney-Marino

    2013-08-01

    Full Text Available Chemotaxis, the directed movement of cells towards or away from a chemical, is both an exciting and complicated behavior observed in many bacterial species. Attempting to adequately visualize or demonstrate the chemotaxic response of bacteria in the classroom is difficult at best, with good models to illustrate the concept lacking. The BSL-1 marine bacterium Vibrio fischeri (a.k.a. Aliivibrio fischeri is easy to culture, making it an ideal candidate for experiments in an undergraduate microbiology course. A number of chemoattractants for V. fischeri have been identified, including a variety of sugars, nucleosides, and amino acids (1, 2. Below presents how the soft agar-based chemotaxis assay can be implemented in the undergraduate laboratory. As bacterial cells migrate towards one or more attractants in soft agar, students can directly observe the chemotaxic behavior of V. fischeri without the need to learn complicated techniques or use specialized equipment. Once the bands of bacterial cells are observed, the migration can then be disrupted by the addition of excess attractant to the soft agar, thereby visualizing what happens once cells are no longer in a gradient of attractant. In addition, soft agar plates lacking attractants can be used to visualize the random movements of bacterial cells that are non-chemotaxing. These exercises can be used in the microbiology laboratory to help students understand the complex behavior of bacterial chemotaxis.

  8. Comparisons of Vibrio fischeri, Photobacterium phosphoreum, and recombinant luminescent using Escherichia coli as BOD measurement.

    Science.gov (United States)

    Cheng, Chiu-Yu; Kuo, Jong-Tar; Lin, Yu-Cheng; Liao, Yi-Ru; Chung, Ying-Chien

    2010-01-01

    To shorten the time needed to measure biochemical oxygen demand (BOD) in water samples and to provide a rapid feedback of the real condition of water quality, we tested and evaluated the validity and reliability of luminescent bacteria Vibrio fischeri, Photobacterium phosphoreum, and recombinant Escherichia coli as potential indicators of BOD in the domestic wastewaters. The results indicate that the luminescence intensities of these strains are dependent on temperature, pH, and BOD concentration. In comparison to the standard BOD(5) method, the time needed for BOD measurement can be shortened by 90, 120, and 150 min when V. fischeri, P. phosphoreum, and recombinant E. coli, respectively, are used. Recombinant E. coli can be adapted to measure BOD in domestic wastewater containing a wide range of BOD concentrations, V. fischeri is not suitable for measuring diluted wastewater, and P. phosphoreum has only a limited application in measuring concentrated wastewater. To the best of our knowledge, this is the first report in which V. fischeri, P. phosphoreum, and recombinant luminescent E. coli are compared in terms of their potential in BOD measurement systems.

  9. Colonization of Euprymna scolopes squid by Vibrio fischeri.

    Science.gov (United States)

    Naughton, Lynn M; Mandel, Mark J

    2012-03-01

    Specific bacteria are found in association with animal tissue. Such host-bacterial associations (symbioses) can be detrimental (pathogenic), have no fitness consequence (commensal), or be beneficial (mutualistic). While much attention has been given to pathogenic interactions, little is known about the processes that dictate the reproducible acquisition of beneficial/commensal bacteria from the environment. The light-organ mutualism between the marine Gram-negative bacterium V. fischeri and the Hawaiian bobtail squid, E. scolopes, represents a highly specific interaction in which one host (E. scolopes) establishes a symbiotic relationship with only one bacterial species (V. fischeri) throughout the course of its lifetime. Bioluminescence produced by V. fischeri during this interaction provides an anti-predatory benefit to E. scolopes during nocturnal activities, while the nutrient-rich host tissue provides V. fischeri with a protected niche. During each host generation, this relationship is recapitulated, thus representing a predictable process that can be assessed in detail at various stages of symbiotic development. In the laboratory, the juvenile squid hatch aposymbiotically (uncolonized), and, if collected within the first 30-60 minutes and transferred to symbiont-free water, cannot be colonized except by the experimental inoculum. This interaction thus provides a useful model system in which to assess the individual steps that lead to specific acquisition of a symbiotic microbe from the environment. Here we describe a method to assess the degree of colonization that occurs when newly hatched aposymbiotic E. scolopes are exposed to (artificial) seawater containing V. fischeri. This simple assay describes inoculation, natural infection, and recovery of the bacterial symbiont from the nascent light organ of E. scolopes. Care is taken to provide a consistent environment for the animals during symbiotic development, especially with regard to water quality and light

  10. Role for cheR of Vibrio fischeri in the Vibrio-squid symbiosis.

    Science.gov (United States)

    Deloney-Marino, Cindy R; Visick, Karen L

    2012-01-01

    Upon hatching, the Hawaiian squid Euprymna scolopes is rapidly colonized by its symbiotic partner, the bioluminescent marine bacterium Vibrio fischeri . Vibrio fischeri cells present in the seawater enter the light organ of juvenile squid in a process that requires bacterial motility. In this study, we investigated the role chemotaxis may play in establishing this symbiotic colonization. Previously, we reported that V. fischeri migrates toward numerous attractants, including N-acetylneuraminic acid (NANA), a component of squid mucus. However, whether or not migration toward an attractant such as squid-derived NANA helps the bacterium to localize toward the light organ is unknown. When tested for the ability to colonize juvenile squid, a V. fischeri chemotaxis mutant defective for the methyltransferase CheR was outcompeted by the wild-type strain in co-inoculation experiments, even when the mutant was present in fourfold excess. Our results suggest that the ability to perform chemotaxis is an advantage during colonization, but not essential.

  11. The haem-uptake gene cluster in Vibrio fischeri is regulated by Fur and contributes to symbiotic colonization.

    Science.gov (United States)

    Septer, Alecia N; Wang, Yanling; Ruby, Edward G; Stabb, Eric V; Dunn, Anne K

    2011-11-01

    Although it is accepted that bacteria-colonizing host tissues are commonly faced with iron-limiting conditions and that pathogenic bacteria often utilize iron from host-derived haem-based compounds, the mechanisms of iron acquisition by beneficial symbiotic bacteria are less clear. The bacterium Vibrio fischeri mutualistically colonizes the light organ of the squid Euprymna scolopes. Genome sequence analysis of V. fischeri revealed a putative haem-uptake gene cluster, and through mutant analysis we confirmed this cluster is important for haemin use by V. fischeri in culture. LacZ reporter assays demonstrated Fur-dependent transcriptional regulation of cluster promoter activity in culture. GFP-based reporter assays revealed that gene cluster promoter activity is induced in symbiotic V. fischeri as early as 14 h post inoculation, although colonization assays with the haem uptake mutant suggested an inability to uptake haem does not begin to limit colonization until later stages of the symbiosis. Our data indicate that the squid light organ is a low iron environment and that haem-based sources of iron are used by symbiotic V. fischeri cells. These findings provide important additional information on the availability of iron during symbiotic colonization of E. scolopes by V. fischeri, as well as the role of haem uptake in non-pathogenic host-microbe interactions. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Rotation of Vibrio fischeri Flagella Produces Outer Membrane Vesicles That Induce Host Development.

    Science.gov (United States)

    Aschtgen, Marie-Stephanie; Lynch, Jonathan B; Koch, Eric; Schwartzman, Julia; McFall-Ngai, Margaret; Ruby, Edward

    2016-08-15

    Using the squid-vibrio association, we aimed to characterize the mechanism through which Vibrio fischeri cells signal morphogenesis of the symbiotic light-emitting organ. The symbiont releases two cell envelope molecules, peptidoglycan (PG) and lipopolysaccharide (LPS) that, within 12 h of light organ colonization, act in synergy to trigger normal tissue development. Recent work has shown that outer membrane vesicles (OMVs) produced by V. fischeri are sufficient to induce PG-dependent morphogenesis; however, the mechanism(s) of OMV release by these bacteria has not been described. Like several genera of both beneficial and pathogenic bacteria, V. fischeri cells elaborate polar flagella that are enclosed by an extension of the outer membrane, whose function remains unclear. Here, we present evidence that along with the well-recognized phenomenon of blebbing from the cell's surface, rotation of this sheathed flagellum also results in the release of OMVs. In addition, we demonstrate that most of the development-inducing LPS is associated with these OMVs and that the presence of the outer membrane protein OmpU but not the LPS O antigen on these OMVs is important in triggering normal host development. These results also present insights into a possible new mechanism of LPS release by pathogens with sheathed flagella. Determining the function(s) of sheathed flagella in bacteria has been challenging, because no known mutation results only in the loss of this outer membrane-derived casing. Nevertheless, the presence of a sheathed flagellum in such host-associated genera as Vibrio, Helicobacter, and Brucella has led to several proposed functions, including physical protection of the flagella and masking of their immunogenic flagellins. Using the squid-vibrio light organ symbiosis, we demonstrate another role, that of V. fischeri cells require rotating flagella to induce apoptotic cell death within surface epithelium, which is a normal step in the organ's development

  13. Complete Genome Sequence of Vibrio fischeri: A Symbiotic Bacterium with Pathogenic Congeners

    National Research Council Canada - National Science Library

    E. G. Ruby; M. Urbanowski; J. Campbell; A. Dunn; M. Faini; R. Gunsalus; P. Lostroh; C. Lupp; J. McCann; D. Millikan; A. Schaefer; E. Stabb; A. Stevens; K. Visick; C. Whistler; E. P. Greenberg

    2005-01-01

    Vibrio fischeri belongs to the Vibrionaceae, a large family of marine γ-proteobacteria that includes several dozen species known to engage in a diversity of beneficial or pathogenic interactions with animal tissue...

  14. The light organ symbiont Vibrio fischeri possesses a homolog of the Vibrio cholerae transmembrane transcriptional activator ToxR.

    OpenAIRE

    Reich, K A; Schoolnik, G K

    1994-01-01

    A cross-hybridizing DNA fragment to Vibrio cholerae toxR was cloned from the nonpathogenic light organ symbiont Vibrio fischeri, and three proteins homologous to V. cholerae ToxR, ToxS, and HtpG were deduced from its DNA sequence. V. fischeri ToxR was found to activate a V. cholerae ToxR-regulated promoter, and an antiserum raised against the amino-terminal domain of V. cholerae ToxR cross-reacts V. fischeri ToxR.

  15. Vibrio fischeri σ54 Controls Motility, Biofilm Formation, Luminescence, and Colonization

    OpenAIRE

    Wolfe, Alan J.; Millikan, Deborah S.; Campbell, Joy M.; Visick, Karen L.

    2004-01-01

    In this study, we demonstrated that the putative Vibrio fischeri rpoN gene, which encodes σ54, controls flagellar biogenesis, biofilm development, and bioluminescence. We also show that rpoN plays a requisite role initiating the symbiotic association of V. fischeri with juveniles of the squid Euprymna scolopes.

  16. Photodynamic antimicrobial chemotherapy in aquaculture: photoinactivation studies of Vibrio fischeri.

    Directory of Open Access Journals (Sweden)

    Eliana Alves

    Full Text Available BACKGROUND: Photodynamic antimicrobial chemotherapy (PACT combines light, a light-absorbing molecule that initiates a photochemical or photophysical reaction, and oxygen. The combined action of these three components originates reactive oxygen species that lead to microorganisms' destruction. The aim was to evaluate the efficiency of PACT on Vibrio fischeri: 1 with buffer solution, varying temperature, pH, salinity and oxygen concentration values; 2 with aquaculture water, to reproduce photoinactivation (PI conditions in situ. METHODOLOGY/PRINCIPAL FINDINGS: To monitor the PI kinetics, the bioluminescence of V. fischeri was measured during the experiments. A tricationic meso-substituted porphyrin (Tri-Py(+-Me-PF was used as photosensitizer (5 µM in the studies with buffer solution and 10-50 µM in the studies with aquaculture water; artificial white light (4 mW cm(-2 and solar irradiation (40 mW cm(-2 were used as light sources; and the bacterial concentration used for all experiments was ≈10(7 CFU mL(-1 (corresponding to a bioluminescence level of 10(5 relative light units--RLU. The variations in pH (6.5-8.5, temperature (10-25°C, salinity (20-40 g L(-1 and oxygen concentration did not significantly affect the PI of V. fischeri, once in all tested conditions the bioluminescent signal decreased to the detection limit of the method (≈7 log reduction. The assays using aquaculture water showed that the efficiency of the process is affected by the suspended matter. Total PI of V. fischeri in aquaculture water was achieved under solar light in the presence of 20 µM of Tri-Py(+-Me-PF. CONCLUSIONS/SIGNIFICANCE: If PACT is to be used in environmental applications, the matrix containing target microbial communities should be previously characterized in order to establish an efficient protocol having into account the photosensitizer concentration, the light source and the total light dose delivered. The possibility of using solar light in PACT to

  17. Colonization of Euprymna scolopes Squid by Vibrio fischeri

    Science.gov (United States)

    Naughton, Lynn M.; Mandel, Mark J.

    2012-01-01

    Specific bacteria are found in association with animal tissue1-5. Such host-bacterial associations (symbioses) can be detrimental (pathogenic), have no fitness consequence (commensal), or be beneficial (mutualistic). While much attention has been given to pathogenic interactions, little is known about the processes that dictate the reproducible acquisition of beneficial/commensal bacteria from the environment. The light-organ mutualism between the marine Gram-negative bacterium V. fischeri and the Hawaiian bobtail squid, E. scolopes, represents a highly specific interaction in which one host (E. scolopes) establishes a symbiotic relationship with only one bacterial species (V. fischeri) throughout the course of its lifetime6,7. Bioluminescence produced by V. fischeri during this interaction provides an anti-predatory benefit to E. scolopes during nocturnal activities8,9, while the nutrient-rich host tissue provides V. fischeri with a protected niche10. During each host generation, this relationship is recapitulated, thus representing a predictable process that can be assessed in detail at various stages of symbiotic development. In the laboratory, the juvenile squid hatch aposymbiotically (uncolonized), and, if collected within the first 30-60 minutes and transferred to symbiont-free water, cannot be colonized except by the experimental inoculum6. This interaction thus provides a useful model system in which to assess the individual steps that lead to specific acquisition of a symbiotic microbe from the environment11,12. Here we describe a method to assess the degree of colonization that occurs when newly hatched aposymbiotic E. scolopes are exposed to (artificial) seawater containing V. fischeri. This simple assay describes inoculation, natural infection, and recovery of the bacterial symbiont from the nascent light organ of E. scolopes. Care is taken to provide a consistent environment for the animals during symbiotic development, especially with regard to water

  18. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri.

    Science.gov (United States)

    Yu, Xin; Zuo, Jiane; Tang, Xinyao; Li, Ruixia; Li, Zaixing; Zhang, Fei

    2014-02-15

    The toxicity of pharmaceutical wastewaters has recently been the focus of the public in China. This study aimed to evaluate the conventional pollution parameters and toxicities of different raw and treated pharmaceutical wastewaters to algae Scenedesmus obliquus and bacteria Vibrio fischeri. Wastewater samples were collected from 16 pharmaceutical wastewater treatment plants in China. The results of the conventional parameters analysis indicated that the total suspended solids, chemical oxygen demand (COD), ammonia (NH3-N), and total phosphorus (TP) were largely removed after treatment. Pharmaceutical effluents were mainly polluted with organics and phosphorus as indicated by the average COD (388 mg/L) and TP (3.16 mg/L) concentrations. The toxicity test results indicated that the influent samples were toxic to both test species. Although the toxicities could be remarkably reduced after treatment, 10 out of the 16 effluent samples exceeded the acute toxicity discharge limit of the Chinese national standards. Spearman rank correlation coefficients indicated a significantly positive correlation between the toxicity values of S. obliquus and V. fischeri. Compared with S. obliquus, V. fischeri detected more pharmaceutical effluent samples with toxicities. Meanwhile, the toxicity indicators were significantly and positively correlated with the COD and NH3-N concentrations based on a Spearman rank correlation analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The putative oligosaccharide translocase SypK connects biofilm formation with quorum signaling in Vibrio fischeri.

    Science.gov (United States)

    Miyashiro, Tim; Oehlert, Dane; Ray, Valerie A; Visick, Karen L; Ruby, Edward G

    2014-12-01

    Quorum signaling (QS) describes how bacteria can use small signaling molecules (autoinducers) to coordinate group-level behaviors. In Vibrio fischeri, QS is achieved through a complex regulatory network that ultimately controls bioluminescence, motility, and host colonization. We conducted a genetic screen focused on qrr1, which encodes a small regulatory RNA that is necessary for the core quorum-signaling cascade to transduce autoinducer information into cellular responses. We isolated unique mutants with a transposon inserted into one of two genes within the syp locus, which is involved in biofilm formation. We found that overexpression of sypK, which encodes a putative oligosaccharide translocase, is sufficient to activate qrr1, and, in addition, this effect appears to depend on the kinase activity of the sensor LuxQ. Consistent with the established model for QS in V. fischeri, enhanced expression of qrr1 by the overexpression of sypK resulted in reduced bioluminescence and increased motility. Finally, we found that induction of the syp locus by overexpression of sypG was sufficient to activate qrr1 levels. Together, our results show how conditions that promote biofilm formation impact the quorum-signaling network in V. fischeri, and further highlight the integrated nature of the regulatory circuits involved in complex bacterial behaviors. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Characterization of the Vibrio fischeri Fatty Acid Chemoreceptors, VfcB and VfcB2.

    Science.gov (United States)

    Nikolakakis, K; Monfils, K; Moriano-Gutierrez, S; Brennan, C A; Ruby, E G

    2015-11-13

    Bacteria use a wide variety of methyl-accepting chemotaxis proteins (MCPs) to mediate their attraction to or repulsion from different chemical signals in their environment. The bioluminescent marine bacterium Vibrio fischeri is the monospecific symbiont of the Hawaiian bobtail squid, Euprymna scolopes, and encodes a large repertoire of MCPs that are hypothesized to be used during different parts of its complex, multistage lifestyle. Here, we report the initial characterization of two such MCPs from V. fischeri that are responsible for mediating migration toward short- and medium-chain aliphatic (or fatty) acids. These receptors appear to be distributed among only members of the family Vibrionaceae and are likely descended from a receptor that has been lost by the majority of the members of this family. While chemotaxis greatly enhances the efficiency of host colonization by V. fischeri, fatty acids do not appear to be used as a chemical cue during this stage of the symbiosis. This study presents an example of straight-chain fatty acid chemoattraction and contributes to the growing body of characterized MCP-ligand interactions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Regulation of lux Genes in Vibrio fischeri: Control of Symbiosis-Related Gene Expression System in a Marine Bacterium

    Science.gov (United States)

    1989-11-04

    RR04106 411d019 11 TITLE (Include Security Classification) U. Regulation of lux Genes in Vibrio fischeri : Control of a Symbiosis-Related Gene Expression...communication - - 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The lux genes of Vibrio fischeri encode the ability of this...Regulation of lux Genes in Vibrio fischeri : Control of a Symbiosis-related Gene Expression System in a Marine Bacterium START DATE: 15 August 1988

  2. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov.

    Science.gov (United States)

    Urbanczyk, Henryk; Ast, Jennifer C; Higgins, Melissa J; Carson, Jeremy; Dunlap, Paul V

    2007-12-01

    Four closely related species, Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis, form a clade within the family Vibrionaceae; the taxonomic status and phylogenetic position of this clade have remained ambiguous for many years. To resolve this ambiguity, we tested these species against other species of the Vibrionaceae for phylogenetic and phenotypic differences. Sequence identities for the 16S rRNA gene were > or =97.4 % among members of the V. fischeri group, but were Vibrio, with which they overlap in G+C content, and Enterovibrio, Grimontia and Salinivibrio, with which they do not overlap in G+C content). Combined analysis of the recA, rpoA, pyrH, gyrB and 16S rRNA gene sequences revealed that the species of the V. fischeri group form a tightly clustered clade, distinct from these other genera. Furthermore, phenotypic traits differentiated the V. fischeri group from other genera of the Vibrionaceae, and a panel of 13 biochemical tests discriminated members of the V. fischeri group from type strains of Photobacterium and Vibrio. These results indicate that the four species of the V. fischeri group represent a lineage within the Vibrionaceae that is distinct from other genera. We therefore propose their reclassification in a new genus, Aliivibrio gen. nov. Aliivibrio is composed of four species: Aliivibrio fischeri comb. nov. (the type species) (type strain ATCC 7744(T) =CAIM 329(T) =CCUG 13450(T) =CIP 103206(T) =DSM 507(T) =LMG 4414(T) =NCIMB 1281(T)), Aliivibrio logei comb. nov. (type strain ATCC 29985(T) =CCUG 20283(T) =CIP 104991(T) =NCIMB 2252(T)), Aliivibrio salmonicida comb. nov. (type strain ATCC 43839(T) =CIP 103166(T) =LMG 14010(T) =NCIMB 2262(T)) and Aliivibrio wodanis comb. nov. (type strain ATCC BAA-104(T) =NCIMB 13582(T) =LMG 24053(T)).

  3. Coordination of the arc regulatory system and pheromone-mediated positive feedback in controlling the Vibrio fischeri lux operon

    National Research Council Canada - National Science Library

    Septer, Alecia N; Stabb, Eric V

    2012-01-01

    .... We have explored the interplay between an environmentally responsive regulator and pheromone-mediated positive feedback in intercellular signaling by Vibrio fischeri ES114, a bioluminescent bacterium...

  4. Toxicity of individual naphthenic acids to Vibrio fischeri.

    Science.gov (United States)

    Jones, David; Scarlett, Alan G; West, Charles E; Rowland, Steven J

    2011-11-15

    Numerous studies have suggested that the toxicity of organic compounds containing at least one carboxylic acid group and broadly classified as "naphthenic acids", is of environmental concern. For example, the acute toxicity of the more than 1 billion m(3) of oil sands process-affected water and the hormonal activity of some offshore produced waters has been attributed to the acids. However, experimental evidence for the toxicity of the individual acids causing these effects has not been very forthcoming. Instead, most data have been gathered from assays of incompletely characterized extracts of the water, which may contain other toxic constituents. An alternative approach is to assay the individual identified toxicants. Since numerous petroleum-derived naphthenic acids and some in oil sands process water, have recently been identified, we were able to measure the toxicity of some individual acids to the bioluminescent bacterium, Vibrio fischeri. Thirty-five pure individual acids were either synthesized or purchased for this purpose. We also used the US EPA ECOSAR computer model to predict the toxicity of each acid to the water flea, Daphnia magna. Both are well-accepted toxicological screening end points. The results show how toxic some of the naphthenic acids really are (e.g., V. fischeri Effective Concentrations for 50% response (EC(50)) 0.004 to 0.7 mM) and reveal the influence of hydrophobicity and aqueous solubility on the toxicities. Comparison with measured toxicities of other known, but more minor, constituents of oil sands process water, such as polycyclic aromatic hydrocarbons and alkylphenols, helps place these toxicities into a wider context. Given the reported toxicological effects of naphthenic acids to other organisms (e.g., fish, plants), the toxicities of the acids to further end points should now be determined.

  5. Intraspecific Competition Impacts Vibrio fischeri Strain Diversity during Initial Colonization of the Squid Light Organ.

    Science.gov (United States)

    Sun, Yan; LaSota, Elijah D; Cecere, Andrew G; LaPenna, Kyle B; Larios-Valencia, Jessie; Wollenberg, Michael S; Miyashiro, Tim

    2016-05-15

    Animal development and physiology depend on beneficial interactions with microbial symbionts. In many cases, the microbial symbionts are horizontally transmitted among hosts, thereby making the acquisition of these microbes from the environment an important event within the life history of each host. The light organ symbiosis established between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri is a model system for examining how hosts acquire horizontally transmitted microbial symbionts. Recent studies have revealed that the light organ of wild-caught E. scolopes squid contains polyclonal populations of V. fischeri bacteria; however, the function and development of such strain diversity in the symbiosis are unknown. Here, we report our phenotypic and phylogenetic characterizations of FQ-A001, which is a V. fischeri strain isolated directly from the light organ of an E. scolopes individual. Relative to the type strain ES114, FQ-A001 exhibits similar growth in rich medium but displays increased bioluminescence and decreased motility in soft agar. FQ-A001 outcompetes ES114 in colonizing the crypt spaces of the light organs. Remarkably, we find that animals cocolonized with FQ-A001 and ES114 harbor singly colonized crypts, in contrast to the cocolonized crypts observed from competition experiments involving single genotypes. The results with our two-strain system suggest that strain diversity within the squid light organ is a consequence of diversity in the single-strain colonization of individual crypt spaces. The developmental programs and overall physiologies of most animals depend on diverse microbial symbionts that are acquired from the environment. However, the basic principles underlying how microbes colonize their hosts remain poorly understood. Here, we report our findings of bacterial strain competition within the coevolved animal-microbe symbiosis composed of the Hawaiian squid and bioluminescent bacterium Vibrio fischeri

  6. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms.

    Science.gov (United States)

    Ziemba, Christopher; Shabtai, Yael; Piatkovsky, Maria; Herzberg, Moshe

    2016-01-01

    Cellulose effects on Vibrio fischeri biofilm morphology were tested for the wild-type and two of its isogenic mutants that either exhibit increased cellulose production or do not produce cellulose at all. Confocal laser scanning microscopy imaging of each biofilm revealed that total sessile volume increases with cellulose expression, but the size of colonies formed with cellulose was smaller, creating a more diffuse biofilm. These morphological differences were not attributed to variations in bacterial deposition, extracellular polymeric substances affinity to the surface or bacterial growth. A positive correlation was found between cellulose expression, Young's (elastic) modulus of the biofilm analyzed with atomic force microscope and shear modulus of the related extracellular polymeric substances layers analyzed with quartz crystal microbalance with dissipation monitoring. Cellulose production also correlated positively with concentrations of extracellular DNA. A significant negative correlation was observed between cellulose expression and rates of diffusion through the extracellular polymeric substances. The difference observed in biofilm morphology is suggested as a combined result of cellulose and likely extracellular DNA (i) increasing biofilm Young's modulus, making shear removal more difficult, and (ii) decreased diffusion rate of nutrients and wastes into and out of the biofilm, which effectively limits colony size.

  7. Directed evolution of Vibrio fischeri LuxR signal sensitivity.

    Science.gov (United States)

    Kimura, Yuki; Tashiro, Yohei; Saito, Kyoichi; Kawai-Noma, Shigeko; Umeno, Daisuke

    2016-11-01

    LuxR is the core component of Vibrio fischeri quorum sensing. It acts as the transcriptional activator by binding to its cognate signaling molecules 3-oxo-hexanoyl-homoserine lactone (3OC6HSL). Although several acyl-HSLs with 3-oxo groups are known to activate LuxR with similar efficiency, acyl-HSLs without 3-oxo groups are very weak inducers. We conducted a round of LuxR directed evolution to acquire LuxR mutants with higher signal sensitivity to octanoyl-homoserine lactone (C8HSL). All of the isolated mutants showed increased signal sensitivity to many other acyl-HSLs, including C8HSL, and some to the LuxR antagonist p-coumaroyl-HSL. The evolution of their ligand sensitivity proceeded through the stabilization of the signal-bound state, thereby elevating the effective concentration of LuxR at the ON-state. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Identification of a novel matrix protein that promotes biofilm maturation in Vibrio fischeri.

    Science.gov (United States)

    Ray, Valerie A; Driks, Adam; Visick, Karen L

    2015-02-01

    Bacteria form communities, termed biofilms, in which cells adhere to each other within a matrix, typically comprised of polysaccharides, proteins, and extracellular DNA. Biofilm formation by the marine bacterium Vibrio fischeri requires the Syp polysaccharide, but the involvement of matrix proteins is as yet unknown. Here we identified three genes, termed bmpA, -B, and -C (biofilm maturation protein), with overlapping functions in biofilm maturation. A triple bmpABC mutant, but not single or double mutants, was defective in producing wrinkled colonies, a form of biofilm. Surprisingly, the triple mutant was competent to form pellicles, another biofilm phenotype, but they generally lacked a three-dimensional architecture. Transmission electron microscopy revealed that the extracellular matrix of the bmp mutant contained electron-dense, thread-like structures that were also present in the wild type but lacking in syp mutant strains. We hypothesized that the bmp mutant produces the Syp polysaccharide but fails to produce/export a distinct matrix component. Indeed, a mixture of the bmp and syp mutants produced a wrinkled colony. Finally, BmpA could be detected in cell-free supernatants from disrupted pellicles. Thus, this work identifies a new matrix protein necessary for biofilm maturation by V. fischeri and, based on the conservation of bmp, potentially other microbes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Comparison of organics and heavy metals acute toxicities to Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Yang Xuepeng

    2016-01-01

    Full Text Available Vibrio fischeri bioluminescence inhibition has been widely used to test acute toxicities of metals and organics contaminants. However, the differences of metals and organics acute toxicities to V. fischeri have not been compared. Here, four heavy metals (Zn2+, Cu2+, Cd2+, Cr6+ and five organics (phenol, benzoic acid, p-hydroxy benzoic acid, nitro-benzene and benzene acute toxicities to V. fischeri were investigated. Heavy metals toxicities to V. fischeri were increased along with the reaction time, while the organics toxicities kept the same level in different reaction times. In order to explain the difference, the relative cell death rate of V. fischeri was detected. In metals toxicities tests, the bioluminescence inhibition rate of V. fischeri was found to be significantly higher than the relative cell death rate (P<0.05, while for the organics toxicities tests, the cell death rate was similar to the bioluminescence inhibition rate. These results indicated that organics acute toxicities to V. fischeri could reflect the death of cell, but metals acute toxicities to V. fischeri may not lead to the death of cell, just represent the bioluminescence inhibition.

  10. Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri.

    Science.gov (United States)

    Brennan, Caitlin A; DeLoney-Marino, Cindy R; Mandel, Mark J

    2013-03-01

    Flagellar motility and chemotaxis by Vibrio fischeri are important behaviors mediating the colonization of its mutualistic host, the Hawaiian bobtail squid. However, none of the 43 putative methyl-accepting chemotaxis proteins (MCPs) encoded in the V. fischeri genome has been previously characterized. Using both an available transposon mutant collection and directed mutagenesis, we isolated mutants for 19 of these genes, and screened them for altered chemotaxis to six previously identified chemoattractants. Only one mutant was defective in responding to any of the tested compounds; the disrupted gene was thus named vfcA (Vibrio fischeri chemoreceptor A; locus tag VF_0777). In soft-agar plates, mutants disrupted in vfcA did not exhibit the serine-sensing chemotactic ring, and the pattern of migration in the mutant was not affected by the addition of exogenous serine. Using a capillary chemotaxis assay, we showed that, unlike wild-type V. fischeri, the vfcA mutant did not undergo chemotaxis toward serine and that expression of vfcA on a plasmid in the mutant was sufficient to restore the behavior. In addition to serine, we demonstrated that alanine, cysteine, and threonine are strong attractants for wild-type V. fischeri and that the attraction is also mediated by VfcA. This study thus provides the first insights into how V. fischeri integrates information from one of its 43 MCPs to respond to environmental stimuli.

  11. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri.

    Science.gov (United States)

    Septer, Alecia N; Bose, Jeffrey L; Dunn, Anne K; Stabb, Eric V

    2010-05-01

    Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES114. In both strains, FNR was required for normal fumarate- and nitrate-dependent respiration. However, contrary to the report in transgenic E. coli, FNR mediated the repression of lux. ArcA represses bioluminescence, and P(arcA)-lacZ reporters showed reduced expression in fnr mutants, suggesting a possible indirect effect of FNR on bioluminescence via arcA. Finally, the fnr mutant of ES114 was not impaired in colonization of its host squid, Euprymna scolopes. This study extends the characterization of FNR to the Vibrionaceae and underscores the importance of studying lux regulation in its native background.

  12. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri

    Science.gov (United States)

    Septer, Alecia N.; Bose, Jeffrey L.; Dunn, Anne K.; Stabb, Eric V.

    2010-01-01

    Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES114. In both strains, FNR was required for normal fumarate- and nitrate-dependent respiration. However, contrary to the report in transgenic E. coli, FNR mediated repression of lux. ArcA represses bioluminescence, and ParcA-lacZ reporters showed reduced expression in fnr mutants, suggesting a possible indirect effect of FNR on bioluminescence via arcA. Finally, the fnr mutant of ES114 was not impaired in colonization of its host squid, Euprymna scolopes. This study extends characterization of FNR to the Vibrionaceae and underscores the importance of studying lux regulation in its native background. PMID:20298504

  13. Measurement and analysis of Vibrio fischeri cell-based microfluidic device for personal health monitoring.

    Science.gov (United States)

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    The cell-based microfluidic chip was designed and fabricated as a low-cost detector to continuously monitor toxicants in drinking water or human urine samples, which is expected to be an important component of a household health monitoring system in the future. The bioluminescent bacterium, Vibrio Fischeri, was selected to validate the function of device. Water samples and Vibrio fischeri cells were mixed and encapsulated into droplets in air flow, which can guarantee sufficient oxygen supply for cells in droplets. Preliminary tests were performed using copper ion (Cu(2+)) as the model toxicant. The droplet system was measured and analyzed at various flow rates in different observation chambers. Both deionized water and human urine samples were tested in the cell-based device. Interestingly, a strong relation between the R.L.U. (Relative Luminescence Units) in the observation chamber and the minute concentration of toxicant (Cu(2+)) was found using deionized water as solvent, whereas the relation was insignificant using human urine as solvent. This study showed the Vibrio fischeri cell-based device might be reliably employed as an early-warning system for the safety of drinking water. However, Vibrio fischeri is not competent to detect dangerous materials in a complex biofluid. With the replacement of cell sensors, the microfluidic device might be functional to analyze urine samples in theory.

  14. NagC represses N-acetyl-glucosamine utilization genes in Vibrio fischeri within the light organ of Euprymna scolopes.

    Science.gov (United States)

    Sun, Yan; Verma, Subhash C; Bogale, Haikel; Miyashiro, Tim

    2015-01-01

    Bacteria often use transcription factors to regulate the expression of metabolic genes in accordance to available nutrients. NagC is a repressor conserved among γ-proteobacteria that regulates expression of enzymes involved in the metabolism of N-acetyl-glucosamine (GlcNAc). The polymeric form of GlcNAc, known as chitin, has been shown to play roles in chemotactic signaling and nutrition within the light organ symbiosis established between the marine bacterium Vibrio fischeri and the Hawaiian squid Euprymna scolopes. Here, we investigate the impact of NagC regulation on the physiology of V. fischeri. We find that NagC repression contributes to the fitness of V. fischeri in the absence of GlcNAc. In addition, the inability to de-repress expression of NagC-regulated genes reduces the fitness of V. fischeri in the presence of GlcNAc. We find that chemotaxis toward GlcNAc or chitobiose, a dimeric form of GlcNAc, is independent of NagC regulation. Finally, we show that NagC represses gene expression during the early stages of symbiosis. Our data suggest that the ability to regulate gene expression with NagC contributes to the overall fitness of V. fischeri in environments that vary in levels of GlcNAc. Furthermore, our finding that NagC represses gene expression within the squid light organ during an early stage of symbiosis supports the notion that the ability of the squid to provide a source of GlcNAc emerges later in host development.

  15. NagC represses N-acetyl-glucosamine utilization genes in Vibrio fischeri within the light organ of Euprymna scolopes

    Directory of Open Access Journals (Sweden)

    Yan eSun

    2015-07-01

    Full Text Available Bacteria often use transcription factors to regulate the expression of metabolic genes in accordance to available nutrients. NagC is a repressor conserved among γ-proteobacteria that regulates expression of enzymes involved in the metabolism of N-acetyl-glucosamine (GlcNAc. The polymeric form of GlcNAc, known as chitin, has been shown to play roles in chemotactic signaling and nutrition within the light organ symbiosis established between the marine bacterium Vibrio fischeri and the Hawaiian squid Euprymna scolopes. Here, we investigate the impact of NagC regulation on the physiology of V. fischeri. We find that NagC repression contributes to the fitness of V. fischeri in the absence of GlcNAc. In addition, the inability to de-repress expression of NagC-regulated genes reduces the fitness of V. fischeri in the presence of GlcNAc. We find that chemotaxis towards GlcNAc or chitobiose, a dimeric form of GlcNAc, is independent of NagC regulation. Finally, we show that NagC represses gene expression during the early stages of symbiosis. Our data suggest that the ability to regulate gene expression with NagC contributes to the overall fitness of V. fischeri in environments that vary in levels of GlcNAc. Furthermore, our finding that NagC represses gene expression within the squid light organ during an early stage of symbiosis supports the notion that the ability of the squid to provide a source of GlcNAc emerges later in host development.

  16. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica.

    Science.gov (United States)

    Soto, William; Rivera, Ferdinand M; Nishiguchi, Michele K

    2014-04-01

    Vibrio fischeri isolated from Euprymna scolopes (Cephalopoda: Sepiolidae) was used to create 24 lines that were serially passaged through the non-native host Euprymna tasmanica for 500 generations. These derived lines were characterized for biofilm formation, swarming motility, carbon source utilization, and in vitro bioluminescence. Phenotypic assays were compared between "ES" (E. scolopes) and "ET" (E. tasmanica) V. fischeri wild isolates to determine if convergent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was observed in utilization of most carbon sources examined. Convergent evolution was evident in motility, biofilm formation, and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold increase in brightness) was collectively evident in the derived lines relative to the ancestor. However, dramatic changes in other properties--time points and cell densities of first light emission and maximal light output and emergence of a lag phase in growth curves of derived lines--suggest that increased light intensity per se was not the only important factor. Convergent evolution implies that gnotobiotic squid light organs subject colonizing V. fischeri to similar selection pressures. Adaptation to novel hosts appears to involve flexible microbial metabolism, establishment of biofilm and swarmer V. fischeri ecotypes, and complex changes in bioluminescence. Our data demonstrate that numerous alternate fitness optima or peaks are available to V. fischeri in host adaptive landscapes, where novel host squids serve as habitat islands. Thus, V. fischeri founder flushes occur during the initiation of light organ colonization that ultimately trigger founder effect diversification.

  17. Ecological Diversification of Vibrio fischeri Serially Passaged for 500 Generations in Novel Squid Host Euprymna tasmanica

    Science.gov (United States)

    Soto, William; Rivera, Ferdinand M.; Nishiguchi, Michele K.

    2014-01-01

    Vibrio fischeri isolated from Euprymna scolopes (Cephalopoda: Sepiolidae) was used to create twenty-four lines that were serially passaged through the non-native host E. tasmanica for 500 generations. These derived lines were characterized for biofilm formation, swarming motility, carbon source utilization, and in vitro bioluminescence. Phenotypic assays were compared between “ES” (E. scolopes) and “ET” (E. tasmanica) V. fischeri wild isolates to determine if convergent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was observed in utilization of most carbon sources examined. Convergent evolution was evident in motility, biofilm formation, and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold increase in brightness) was collectively evident in the derived lines relative to the ancestor. However, dramatic changes in other properties—time points and cell densities of first light emission and maximal light output and emergence of a lag phase in growth curves of derived lines suggest increased light intensity per se was not the only important factor. Convergent evolution implies gnotobiotic squid light organs subject colonizing V. fischeri to similar selection pressures. Adaptation to novel hosts appears to involve flexible microbial metabolism, establishment of biofilm and swarmer V. fischeri ecotypes, and complex changes in bioluminescence. Our data demonstrate numerous alternate fitness optima or peaks are available to V. fischeri in host adaptive landscapes, where novel host squids serve as habitat islands. Thus, V. fischeri founder flushes occur during the initiation of light organ colonization that ultimately trigger founder effect diversification. PMID:24402368

  18. Oxidative stress and antioxidant enzymes activities in the African catfish, Clarias gariepinus, experimentally challenged with Escherichia coli and Vibrio fischeri.

    Science.gov (United States)

    Adeyemi, Joseph A

    2014-04-01

    The impacts of bacterial infection on cultivated fish species, African catfish, were investigated using oxidative stress biomarkers [lipid peroxidation (LPO) and protein carbonylation] and the activities of important antioxidant/detoxifying enzymes [catalase and glutathione S-transferase (GST)]. Fish were inoculated via oral gavage with one of the following treatments: 1 × 10(5) CFU/ml of Escherichia coli (EC1), 2 × 10(5) CFU/ml of E. coli (EC2), 1 × 10(5) CFU/ml of Vibrio fischeri (V1), 2 × 10(5) CFU/ml of V. fischeri (V2), gavaged with distilled water and not gavaged. Fish were maintained in the laboratory for 7 days after the bacterial inoculation, and the levels of LPO, protein carbonylation, GST, and catalase activities were determined in the muscle, gills, and liver of fish. Fish inoculated with bacteria (either E. coli or V. fischeri) had a significant higher levels of tissue LPO, protein carbonylation, and GST activities in a tissue-specific pattern (liver > muscle > gills). This appears to be related with the levels of bacterial inoculation, with effects more pronounced in fish inoculated with either EC2 or V2. The catalase activity did not differ significantly between the inoculated and fish that were not inoculated. The results of this study indicate that bacterial inoculation could result in oxidative stress in fish, and liver has a higher rate of oxidative stress per mg tissue compared to the gills and the muscle.

  19. The Role of Light Organ Symbiosis in the Distribution and Diversity of the Marine Luminous Bacterium Vibrio Fischeri

    Science.gov (United States)

    1993-06-01

    of the marine luminous bacterium Vibrio fischeri NOOO14-91-J-1670 Li L AUTHOR(S) Edward G. Ruby Di t .b-.ti&-- ś. PERFORMING ORGANIZATION NAME(S...2. Lee, K.-H., and E.G. Ruby (1992) Detection of the light organ symbiont Vibrio fischeri in Hawaiian seawater using luj gene probes. Appl. Environ...the presence of a significant population of typically ’- m culturable V. fischeri cells in seawater that have entered a non-culturable state from which

  20. How the structure of ionic liquid affects its toxicity to Vibrio fischeri?

    Science.gov (United States)

    Grzonkowska, Monika; Sosnowska, Anita; Barycki, Maciej; Rybinska, Anna; Puzyn, Tomasz

    2016-09-01

    In the present work, we have proposed a statistical model predicting the toxicity of ionic liquids (ILs) to Vibrio fischeri bacteria using the Quantitative Structure-Activity Relationships (QSAR) method. The model was developed with Multiple Linear Regression (MLR) technique, using the Gutman molecular topological index (GMTI), the lopping centric information index (LOC) and the number of oxygen atoms. Presented model is characterized by the good fit to the experimental data (R(2) = 0.78), high robustness (Q(2)CV = 0.72) and good predictive ability (Q(2)EXT = 0.75). This approach, with using very simple descriptors, helps to initially evaluate the toxicity of newly designed ionic liquids. The studied toxicity of ionic liquids depends mainly on their cations' structure: larger, more branched cations with long alkyl chains are more toxic than the smaller, linear ones. The presence of polar functional groups in the cation's structure reduces the toxic properties of ionic liquids. The structure of the anion has little effect on the toxicity of the studied ionic liquids. Obtained results will provide insight into the toxicity mechanisms and useful information for assessing the potential ecological risk of ionic liquids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Directed evolution of the autoinducer selectivity of Vibrio fischeri LuxR.

    Science.gov (United States)

    Tashiro, Yohei; Kimura, Yuki; Furubayashi, Maiko; Tanaka, Akira; Terakubo, Kei; Saito, Kyoichi; Kawai-Noma, Shigeko; Umeno, Daisuke

    2016-11-25

    LuxR family transcriptional regulators are the core components of quorum sensing in Gram-negative bacteria and exert their effects through binding to the signaling molecules acyl-homoserine lactones (acyl-HSLs). The function of the LuxR homologs is remarkably plastic, and naturally occurring acyl-HSLs are structurally diverse. To investigate the molecular basis of the functional plasticity of Vibrio fischeri LuxR, we directed the evolution of LuxR toward three different specificities in the laboratory. We found an orthogonal pair of LuxR mutants specific either to 3-oxo-hexanoyl homoserine lactone or to 3-oxo-octanoyl homoserine lactone. Interestingly, the majority of the specificity changes did not arise from modulating the recognition event but rather from changing the efficiency of the transition from the inactive form to the active form upon signal binding. This finding explains how quorum sensing systems can rapidly diverge in nature and in the laboratory and how signal orthogonality and mutual inhibition frequently occur among closely related diverging systems.

  2. Assessing single and joint toxicity of three phenylurea herbicides using Lemna minor and Vibrio fischeri bioassays.

    Science.gov (United States)

    Gatidou, Georgia; Stasinakis, Athanasios S; Iatrou, Evangelia I

    2015-01-01

    Single and joint toxicity of three substituted urea herbicides, namely monolinuron [3-(4-chlorophenyl)-1-methoxy-1-methylurea], linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] and diuron [1-(3,4 dichlorophenyl)-3,3 dimethyl urea], were studied. The duckweed Lemna minor and the luminescent bacterium Vibrio fischeri were used for the toxicity assessment and they were exposed to various concentrations of the herbicides, individually and in binary mixtures. The exposure time was 7d for the duckweed and 30 min for the bacterium. Estimation of EC50 values was performed by frond counting and reduction in light output for Lemna minor and Vibrio fischeri, respectively. Lemna minor was found to be much more sensitive than Vibrio fischeri to target compounds. The toxicity of the three herbicides applied solely was estimated to be in decreasing order: diuron (EC50=28.3 μg L(-1))≈linuron (EC50=30.5 μg L(-1))>monolinuron (EC50=300 μg L(-1)) for the duckweed and linuron (EC50=8.2 mg L(-1))>diuron (EC50=9.2 mg L(-1))>monolinuron (EC50=11.2 mg L(-1)) for the bacterium. Based on the environmental concentrations reported in the literature and EC50 values obtained from Lemna minor experiments, Risk Quotients (RQ) much higher than 1 were calculated for diuron and linuron. In Lemna minor experiments, combination of target compounds resulted to additive effects due to their same mode of phenylurea action on photosynthetic organisms. Regarding Vibrio fischeri, synergistic, additive and antagonistic effects were observed, which varied according to the concentrations of target compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114.

    Science.gov (United States)

    Septer, Alecia N; Lyell, Noreen L; Stabb, Eric V

    2013-03-01

    Bacteria often use pheromones to coordinate group behaviors in specific environments. While high cell density is required for pheromones to achieve stimulatory levels, environmental cues can also influence pheromone accumulation and signaling. For the squid symbiont Vibrio fischeri ES114, bioluminescence requires pheromone-mediated regulation, and this signaling is induced in the host to a greater extent than in culture, even at an equivalent cell density. Our goal is to better understand this environment-specific control over pheromone signaling and bioluminescence. Previous work with V. fischeri MJ1 showed that iron limitation induces luminescence, and we recently found that ES114 encounters a low-iron environment in its host. Here we show that ES114 induces luminescence at lower cell density and achieves brighter luminescence in low-iron media. This iron-dependent effect on luminescence required ferric uptake regulator (Fur), which we propose influences two pheromone signaling master regulators, LitR and LuxR. Genetic and bioinformatic analyses suggested that under low-iron conditions, Fur-mediated repression of litR is relieved, enabling more LitR to perform its established role as an activator of luxR. Interestingly, Fur may similarly control the LitR homolog SmcR of Vibrio vulnificus. These results reveal an intriguing regulatory link between low-iron conditions, which are often encountered in host tissues, and pheromone-dependent master regulators.

  4. Coordination of the Arc Regulatory System and Pheromone-Mediated Positive Feedback in Controlling the Vibrio fischeri lux Operon: e49590

    National Research Council Canada - National Science Library

    Alecia N Septer; Eric V Stabb

    2012-01-01

    .... We have explored the interplay between an environmentally responsive regulator and pheromone-mediated positive feedback in intercellular signaling by Vibrio fischeri ES114, a bioluminescent bacterium...

  5. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri.

    Science.gov (United States)

    Brooks, John F; Gyllborg, Mattias C; Cronin, David C; Quillin, Sarah J; Mallama, Celeste A; Foxall, Randi; Whistler, Cheryl; Goodman, Andrew L; Mandel, Mark J

    2014-12-02

    Animal epithelial tissue becomes reproducibly colonized by specific environmental bacteria. The bacteria (microbiota) perform critical functions for the host's tissue development, immune system development, and nutrition; yet the processes by which bacterial diversity in the environment is selected to assemble the correct communities in the host are unclear. To understand the molecular determinants of microbiota selection, we examined colonization of a simplified model in which the light organ of Euprymna scolopes squid is colonized exclusively by Vibrio fischeri bacteria. We applied high-throughput insertion sequencing to identify which bacterial genes are required during host colonization. A library of over 41,000 unique transposon insertions was analyzed before and after colonization of 1,500 squid hatchlings. Mutants that were reproducibly depleted following squid colonization represented 380 genes, including 37 that encode known colonization factors. Validation of select mutants in defined competitions against the wild-type strain identified nine mutants that exhibited a reproducible colonization defect. Some of the colonization factors identified included genes predicted to influence copper regulation and secretion. Other mutants exhibited defects in biofilm development, which is required for aggregation in host mucus and initiation of colonization. Biofilm formation in culture and in vivo was abolished in a strain lacking the cytoplasmic chaperone DnaJ, suggesting an important role for protein quality control during the elaboration of bacterial biofilm in the context of an intact host immune system. Overall these data suggest that cellular stress responses and biofilm regulation are critical processes underlying the reproducible colonization of animal hosts by specific microbial symbionts.

  6. Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri.

    Science.gov (United States)

    Dillon, Marcus M; Sung, Way; Sebra, Robert; Lynch, Michael; Cooper, Vaughn S

    2017-01-01

    The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10(-)(3)/genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Characterization of a Vibrio fischeri aminopeptidase and evidence for its influence on an early stage of squid colonization.

    Science.gov (United States)

    Fidopiastis, Pat M; Rader, Bethany A; Gerling, David G; Gutierrez, Nestor A; Watkins, Katherine H; Frey, Michelle West; Nyholm, Spencer V; Whistler, Cheryl A

    2012-08-01

    Vibrio fischeri cells are the sole colonists of a specialized light organ in the mantle cavity of the sepiolid squid Euprymna scolopes. The process begins when the bacteria aggregate in mucus secretions outside the light organ. The cells eventually leave the aggregate, enter the light organ, and encounter a rich supply of peptides. The need to dissociate from mucus and presumably utilize peptides led us to hypothesize that protease activity is integral to the colonization process. Protease activity associated with whole cells of Vibrio fischeri strain ES114 was identified as the product of a putative cell membrane-associated aminopeptidase (PepN). To characterize this activity, the aminopeptidase was cloned, overexpressed, and purified. Initial steady-state kinetic studies revealed that the aminopeptidase has broad activity, with a preference for basic and hydrophobic side chains and k(cat) and K(m) values that are lower and smaller, respectively, than those of Escherichia coli PepN. A V. fischeri mutant unable to produce PepN is significantly delayed in its ability to colonize squid within the first 12 h, but eventually it establishes a wild-type colonization level. Likewise, in competition with the wild type for colonization, the mutant is outcompeted at 12 h postinoculation but then competes evenly by 24 h. Also, the PepN-deficient strain fails to achieve wild-type levels of cells in aggregates, suggesting an explanation for the initial colonization delay. This study provides a foundation for more studies on PepN expression, localization, and role in the early stages of squid colonization.

  8. Characterization of a Vibrio fischeri Aminopeptidase and Evidence for Its Influence on an Early Stage of Squid Colonization

    Science.gov (United States)

    Rader, Bethany A.; Gerling, David G.; Gutierrez, Nestor A.; Watkins, Katherine H.; Frey, Michelle West; Nyholm, Spencer V.; Whistler, Cheryl A.

    2012-01-01

    Vibrio fischeri cells are the sole colonists of a specialized light organ in the mantle cavity of the sepiolid squid Euprymna scolopes. The process begins when the bacteria aggregate in mucus secretions outside the light organ. The cells eventually leave the aggregate, enter the light organ, and encounter a rich supply of peptides. The need to dissociate from mucus and presumably utilize peptides led us to hypothesize that protease activity is integral to the colonization process. Protease activity associated with whole cells of Vibrio fischeri strain ES114 was identified as the product of a putative cell membrane-associated aminopeptidase (PepN). To characterize this activity, the aminopeptidase was cloned, overexpressed, and purified. Initial steady-state kinetic studies revealed that the aminopeptidase has broad activity, with a preference for basic and hydrophobic side chains and kcat and Km values that are lower and smaller, respectively, than those of Escherichia coli PepN. A V. fischeri mutant unable to produce PepN is significantly delayed in its ability to colonize squid within the first 12 h, but eventually it establishes a wild-type colonization level. Likewise, in competition with the wild type for colonization, the mutant is outcompeted at 12 h postinoculation but then competes evenly by 24 h. Also, the PepN-deficient strain fails to achieve wild-type levels of cells in aggregates, suggesting an explanation for the initial colonization delay. This study provides a foundation for more studies on PepN expression, localization, and role in the early stages of squid colonization. PMID:22636772

  9. Cr(VI) reduction into Cr(III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution.

    Science.gov (United States)

    Fulladosa, Elena; Desjardin, Valérie; Murat, Jean-Claude; Gourdon, Rémy; Villaescusa, Isabel

    2006-10-01

    Vibrio fischeri bacteria, used as a biological target in either acute or chronic toxicity tests, display a low sensitivity to Cr(VI). This phenomenon could be due to the capacity of these bacteria to reduce Cr(VI) into Cr(III). This reducing capacity was found to depend on culture medium composition, pH value, incubation time and the presence of a carbon source. It also depends on the nature of the carbon source, glucose being more efficient than glycerol. This is probably related to differences in bacterial metabolism when given either glucose or glycerol. The thermostable Cr(VI)-reducing activity found in the supernatants of V. fischeri cultures grown on glucose suggests that, under these conditions, the bacteria release non-proteic reducing substances which have not been identified yet.

  10. Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process.

    Science.gov (United States)

    Czech, Bożena; Jośko, Izabela; Oleszczuk, Patryk

    2014-06-01

    The aim of the research was the determination of the toxicity of photocatalytically treated water contaminated by different pharmaceuticals: chloramphenicol (CPL), diclofenac (DCF) or metoprolol (MT). Daphtoxkit F™ with Dapnia magna and Microtox(®) with Vibrio fischeri were used to evaluate the toxicity of the water before and after treatment. D. magna showed higher sensitivity to the presence of pharmaceuticals than V. fischeri. Generally, both tested organisms revealed the greatest sensitivity to the presence of CPL. The application of photocatalytic oxidation has resulted in decreased toxicity. It may confirm the reduction of high toxic parent compounds to less toxic metabolites. The toxicity was reduced in the range from 30% to 100% depending on pharmaceutical tested. The highest reduction of toxicity to V. fischeri and D. magna was observed to MT and CPL respectively. Depending on bioassay the toxicity decrease as follows: CPL>DCF>MT for D. magna and CPL>MT>DCF for V. fischeri. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. LuxCDABE?Transformed Constitutively Bioluminescent Escherichia coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio fischeri

    OpenAIRE

    Anne Kahru; Olesja Bondarenko; Mariliis Sihtmäe; Imbi Kurvet; Angela Ivask

    2011-01-01

    We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri MicrotoxTM test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) and (pSLlux) otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash...

  12. Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products.

    Science.gov (United States)

    Ortiz de García, Sheyla; García-Encina, Pedro A; Irusta-Mata, Rubén

    2016-01-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a real and widespread concern in recent years. Therefore, the primary goal of this study was to investigate 20 common and widely used PPCPs to assess their individual and combined effect on an important species in one trophic level, i.e., bacteria. The ecotoxicological effects of PPCPs at two different concentration ranges were determined in the bacterium Vibrio fischeri using Microtox(®) and were statistically analyzed using three models in the GraphPad Prism 6 program for Windows, v.6.03. A four-parameter model best fit the majority of the compounds. The half maximal effective concentration (EC50) of each PPCP was estimated using the best-fitting model and was compared with the results from a recent study. Comparative analysis indicated that most compounds showed the same level of toxicity. Moreover, the stimulatory effects of PPCPs at environmental concentrations (low doses) were assessed. These results indicated that certain compounds have traditional inverted U- or J-shaped dose-response curves, and 55% of them presented a stimulatory effect below the zero effect-concentration point. Effective concentrations of 0 (EC0), 5 (EC5) and 50% (EC50) were calculated for each PPCP as the ecotoxicological points. All compounds that presented narcosis as a mode of toxic action at high doses also exhibited stimulation at low concentrations. The maximum stimulatory effect of a mixture was higher than the highest stimulatory effect of each individually tested compound. Moreover, when the exposure time was increased, the hormetic effect decreased. Hormesis is being increasingly included in dose-response studies because this may have a harmful, beneficial or indifferent effect in an environment. Despite the results obtained in this research, further investigations need to be conducted to elucidate the behavior of PPCPs in aquatic environments.

  13. Vibrio fischeri Outer Membrane Protein OmpU Plays a Role in Normal Symbiotic Colonization

    Science.gov (United States)

    Aeckersberg, F.; Lupp, C.; Feliciano, B.; Ruby, E. G.

    2001-01-01

    The nascent light-emitting organ of newly hatched juveniles of the Hawaiian sepiolid squid Euprymna scolopes is specifically colonized by cells of Vibrio fischeri that are obtained from the ambient seawater. The mechanisms that promote this specific, cooperative colonization are likely to require a number of bacterial and host-derived factors and activities, only some of which have been described to date. A characteristic of many host-pathogen associations is the presence of bacterial mechanisms that allow attachment to specific tissues. These mechanisms have been well characterized and often involve bacterial fimbriae or outer membrane proteins (OMPs) that act as adhesins, the expression of which has been linked to virulence regulators such as ToxR in Vibrio cholerae. Analogous or even homologous mechanisms are probably operative in the initiation and persistence of cooperative bacterial associations, although considerably less is known about them. We report the presence in V. fischeri of ompU, a gene encoding a 32.5-kDa protein homolog of two other OMPs, OmpU of V. cholerae (50.8% amino acid sequence identity) and OmpL of Photobacterium profundum (45.5% identity). A null mutation introduced into the V. fischeri ompU resulted in the loss of an OMP with an estimated molecular mass of about 34 kDa; genetic complementation of the mutant strain with a DNA fragment containing only the ompU gene restored the production of this protein. The expression of the V. fischeri OmpU was not significantly affected by either (i) iron or phosphate limitation or (ii) a mutation that renders V. fischeri defective in the synthesis of a homolog of the OMP-regulatory protein ToxR. The ompU mutant grew normally in complex nutrient media but was more susceptible to growth inhibition in the presence of either anionic detergents or the antimicrobial peptide protamine sulfate. Interestingly, colonization experiments showed that the ompU null mutant initiated a symbiotic association with

  14. Impact of Salt and Nutrient Content on Biofilm Formation by Vibrio fischeri.

    Science.gov (United States)

    Marsden, Anne E; Grudzinski, Kevin; Ondrey, Jakob M; DeLoney-Marino, Cindy R; Visick, Karen L

    2017-01-01

    Vibrio fischeri, a marine bacterium and symbiont of the Hawaiian bobtail squid Euprymna scolopes, depends on biofilm formation for successful colonization of the squid's symbiotic light organ. Here, we investigated if culture conditions, such as nutrient and salt availability, affect biofilm formation by V. fischeri by testing the formation of wrinkled colonies on solid media. We found that V. fischeri forms colonies with more substantial wrinkling when grown on the nutrient-dense LBS medium containing NaCl relative to those formed on the more nutrient-poor, seawater-salt containing SWT medium. The presence of both tryptone and yeast extract was necessary for the production of "normal" wrinkled colonies; when grown on tryptone alone, the colonies displayed a divoting phenotype and were attached to the agar surface. We also found that the type and concentration of specific seawater salts influenced the timing of biofilm formation. Of the conditions assayed, wrinkled colony formation occurred earliest in LBS(-Tris) media containing 425 mM NaCl, 35 mM MgSO4, and 5 mM CaCl2. Pellicle formation, another measure of biofilm development, was also enhanced in these growth conditions. Therefore, both nutrient and salt availability contribute to V. fischeri biofilm formation. While growth was unaffected, these optimized conditions resulted in increased syp locus expression as measured by a PsypA-lacZ transcriptional reporter. We anticipate these studies will help us understand how the natural environment of V. fischeri affects its ability to form biofilms and, ultimately, colonize E. scolopes.

  15. Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila.

    Science.gov (United States)

    Kurvet, Imbi; Juganson, Katre; Vija, Heiki; Sihtmäe, Mariliis; Blinova, Irina; Syvertsen-Wiig, Guttorm; Kahru, Anne

    2017-07-05

    Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La(3+), Ce(3+), Pr(3+), Nd(3+), Gd(3+), CeO₂, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co(2+), Fe(3+), Mn(2+), Ni(2+), Sr(2+)). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5-21 mg metal/L; minimal bactericidal concentration, MBC 6.3-63 mg/L) and to protozoa (EC50 28-42 mg/L); and (iii) also some dopant metals (Ni(2+), Fe(3+)) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La₂NiO₄ (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa.

  16. LuxCDABE—Transformed Constitutively Bioluminescent Escherichia coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Anne Kahru

    2011-08-01

    Full Text Available We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri MicrotoxTM test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux and (pSLlux otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash-Assay test format was used that differently from Microtox test is also applicable for high throughput analysis. Toxic effects (30-s till 30-min EC50 of four heavy metals (Zn, Cd, Hg, Cu and three organic chemicals (aniline, 3,5-dichloroaniline and 3,5-dichlorophenol were studied. Both E. coli strains had comparable sensitivity and the respective 30-min EC50 values highly correlated (log-log R2 = 0.99; p < 0.01 showing that the sensitivity of the recombinant bacteria towards chemicals analyzed did not depend on the bioluminescence level of the recombinant cells. The most toxic chemical for all used bacterial strains (E. coli, V. fischeri was mercury whereas the lowest EC50 values for Hg (0.04–0.05 mg/L and highest EC50 values for aniline (1,300–1,700 mg/L were observed for E. coli strains. Despite of that, toxicity results obtained with both E. coli strains (pSLlux and pDNlux significantly correlated with V. fischeri results (log-log R2 = 0.70/0.75; p < 0.05/0.01. The use of amino acids (0.25% and glucose (0.05%-supplemented M9 medium instead of leucine-supplemented saline significantly (p < 0.05 reduced the apparent toxicity of heavy metals to both E. coli strains up to three orders of magnitude, but had little or no complexing effect on organic compounds. Thus, P. luminescens luxCDABE-transformed E. coli strains can be successfully used for the acute toxicity screening of various types of organic chemicals and heavy metals and can replace V. fischeri in

  17. Bioluminescent Vibrio fischeri Assays in the Assessment of Seasonal and Spatial Patterns in Toxicity of Contaminated River Sediments.

    Science.gov (United States)

    Jarque, Sergio; Masner, Petr; Klánová, Jana; Prokeš, Roman; Bláha, Ludek

    2016-01-01

    Several bacteria-based assays, notably Vibrio fischeri luminescence assays, are often used as environmental monitoring tool for toxicity in sediments that may serve as both sinks and secondary source of contamination in aquatic ecosystems. In this study, we used 30-s kinetic bioassays based on V. fischeri to evaluate the toxicity associated to sediments from five localities with different contamination inputs (Morava River and its tributary Drevnice River in the south-eastern part of the Czech Republic). Toxicity assessed as half maximal inhibitory concentration (IC50) over the course of a year-long sampling was compared in bottom sediments and freshly trapped particulate material. Standard approach based on testing of aqueous elutriates was compared with toxicity of whole sediments (contact suspension toxicity). Bottom sediments showed lower toxicity compared to freshly trapped suspended materials in all cases. On the other hand, standardized elutriates induced generally weaker effects than suspended sediments likely due to losses during the extraction process. Toxicity generally increased during winter reaching maximum peaks in early spring months in all five sites. Total organic carbon (TOC) was found to be highly correlated with toxic effects. Toxicity from sites with direct industrial and agricultural water inputs also correlated with concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). Single time point sampling followed by the extraction and testing of elutriates, do not truly reflect the spatial and temporal variability in natural sediments and may lead to underestimation of ecotoxic risks.

  18. Bioluminescent Vibrio fischeri assays in the assessment of seasonal and spatial patterns in toxicity of contaminated river sediments

    Directory of Open Access Journals (Sweden)

    Sergio Jarque

    2016-11-01

    Full Text Available Several bacteria-based assays, notably Vibrio fischeri luminescence assays, are often used as environmental monitoring tool for toxicity in sediments that may serve as both sinks and secondary source of contamination in aquatic ecosystems. In this study, we used 30-s kinetic bioassays based on V. fischeri to evaluate the toxicity associated to sediments from five localities with different contamination inputs (Morava River and its tributary Drevnice River in the south-eastern part of the Czech Republic. Toxicity assessed as half maximal inhibitory concentration (IC50 over the course of a year-long sampling was compared in bottom sediments and freshly trapped particulate material. Standard approach based on testing of aqueous elutriates was compared with toxicity of whole sediments (contact suspension toxicity. Bottom sediments showed lower toxicity compared to freshly trapped suspended materials in all cases. On the other hand, standardized elutriates induced generally weaker effects than suspended sediments likely due to losses during the extraction process. Toxicity generally increased during winter reaching maximum peaks in early spring months in all five sites. Total organic carbon (TOC was found to be highly correlated with toxic effects. Toxicity from sites with direct industrial and agricultural water inputs also correlated with concentrations of metals, polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs. Single time point sampling followed by the extraction and testing of elutriates, do not truly reflect the spatial and temporal variability in natural sediments and may lead to underestimation of ecotoxic risks.

  19. Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction.

    Science.gov (United States)

    Tong, Fei; Zhao, Yanping; Gu, Xueyuan; Gu, Cheng; Lee, Charles C C

    2015-03-01

    Co-contamination of antibiotic and heavy metals commonly occurs in the environment. Tetracycline (TC), a common antibiotic, can behave as an efficient organic ligand to complex with cations. In this paper, the joint toxicity of TC with two commonly existing metals, copper(II) and cadmium(II), towards a luminescent bacteria, Vibrio fischeri, are investigated. Results showed that coexistence of TC and Cu(II) showed a significant antagonistic effect, while TC and Cd(II) showed a synergistic effect. The aqueous speciation of TC with two metal cations was calculated using a chemical equilibrium software Visual MINTEQ and results indicated that a strong complexation exist between TC and Cu(II), while much weaker interaction between TC and Cd(II). Traditional joint toxicity prediction model based on independent action failed to predict the combined toxicity of TC with metals. A new method based on speciation calculation was used to evaluate the joint toxicity of ligands and cations. It is assumed that the metal-ligand complexes are non-toxic to V. fischeri and the joint toxicity is determined by the sum of toxic unit of free metal-ions and free organic ligands. It explained the joint toxicity of the mixed systems reasonably well. Meanwhile, citric acid (CA) and fulvic acid (FA) were also introduced in this study to provide a benchmark comparison with TC. Results showed it is also valid for mixed systems of CA and FA with metals except for the Cd-CA mixture.

  20. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri.

    Science.gov (United States)

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-06-01

    In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. LuxU connects quorum sensing to biofilm formation in Vibrio fischeri.

    Science.gov (United States)

    Ray, Valerie A; Visick, Karen L

    2012-11-01

    Biofilm formation by Vibrio fischeri is a complex process involving multiple regulators, including the sensor kinase (SK) RscS and the response regulator (RR) SypG, which control the symbiosis polysaccharide (syp) locus. To identify other regulators of biofilm formation in V. fischeri, we screened a transposon library for mutants defective in wrinkled colony formation. We identified LuxQ as a positive regulator of syp-dependent biofilm formation. LuxQ is a member of the Lux phosphorelay and is predicted to control bioluminescence in concert with the SK AinR, the phosphotransferase LuxU and the RR LuxO. Of these, LuxU was the only other regulator that exerted a substantial impact on biofilm formation. We propose a model in which the Lux pathway branches at LuxU to control both bioluminescence and biofilm formation. Furthermore, our evidence suggests that LuxU functions to regulate syp transcription, likely by controlling SypG activity. Finally, we found that, in contrast to its predicted function, the SK AinR has little impact on bioluminescence under our conditions. Thus, this study reveals a novel connection between the Lux and Syp pathways in V. fischeri, and furthers our understanding of how the Lux pathway regulates bioluminescence in this organism. © 2012 Blackwell Publishing Ltd.

  2. Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri.

    Directory of Open Access Journals (Sweden)

    Pablo Delfino Pérez

    Full Text Available The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V. fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V. fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell.

  3. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases.

    Science.gov (United States)

    Lupp, Claudia; Ruby, Edward G

    2004-06-01

    Vibrio fischeri possesses two acyl-homoserine lactone quorum-sensing systems, ain and lux, both of which are involved in the regulation of luminescence gene expression and are required for persistent colonization of the squid host, Euprymna scolopes. We have previously demonstrated that the ain system induces luminescence at cell densities that precede lux system activation. Our data suggested that the ain system both relieves repression and initially induces the lux system, thereby achieving sequential induction of gene expression by these two systems. Analysis of the V. fischeri genome revealed the presence of a putative third system based on the enzyme LuxS, which catalyzes the synthesis of the Vibrio harveyi autoinducer 2 (AI-2). In this study, we investigated the impact of V. fischeri LuxS on luminescence and colonization competence in comparison to that of the ain system. Similar to the ain system, inactivation of the AI-2 system decreased light production in culture, but not in the squid host. However, while an ainS mutant produces no detectable light in culture, a luxS mutant expressed approximately 70% of wild-type luminescence levels. A mutation in luxS alone did not compromise symbiotic competence of V. fischeri; however, levels of colonization of an ainS luxS double mutant were reduced to 50% of the already diminished level of ainS mutant colonization, suggesting that these two systems regulate colonization gene expression synergistically through a common pathway. Introduction of a luxO mutation into the luxS and ainS luxS background could relieve both luminescence and colonization defects, consistent with a model in which LuxS, like AinS, regulates gene expression through LuxO. Furthermore, while luxS transcription appeared to be constitutive and the AI-2 signal concentration did not change dramatically, our data suggest that ainS transcription is autoregulated, resulting in an over 2,000-fold increase in signal concentration as culture density

  4. Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114.

    Science.gov (United States)

    Lyell, Noreen L; Colton, Deanna M; Bose, Jeffrey L; Tumen-Velasquez, Melissa P; Kimbrough, John H; Stabb, Eric V

    2013-11-01

    Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45-50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040-4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199-1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87-91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that goes

  5. O-antigen and core carbohydrate of Vibrio fischeri lipopolysaccharide: composition and analysis of their role in Euprymna scolopes light organ colonization.

    Science.gov (United States)

    Post, Deborah M B; Yu, Liping; Krasity, Benjamin C; Choudhury, Biswa; Mandel, Mark J; Brennan, Caitlin A; Ruby, Edward G; McFall-Ngai, Margaret J; Gibson, Bradford W; Apicella, Michael A

    2012-03-09

    Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.

  6. Genetic determinants of swimming motility in the squid light-organ symbiont Vibrio fischeri.

    Science.gov (United States)

    Brennan, Caitlin A; Mandel, Mark J; Gyllborg, Mattias C; Thomasgard, Krista A; Ruby, Edward G

    2013-08-01

    Bacterial flagellar motility is a complex cellular behavior required for the colonization of the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes, by the beneficial bioluminescent symbiont Vibrio fischeri. We characterized the basis of this behavior by performing (i) a forward genetic screen to identify mutants defective in soft-agar motility, as well as (ii) a transcriptional analysis to determine the genes that are expressed downstream of the flagellar master regulator FlrA. Mutants with severe defects in soft-agar motility were identified due to insertions in genes with putative roles in flagellar motility and in genes that were unexpected, including those predicted to encode hypothetical proteins and cell division-related proteins. Analysis of mutants for their ability to enter into a productive symbiosis indicated that flagellar motility mutants are deficient, while chemotaxis mutants are able to colonize a subset of juvenile squid to light-producing levels. Thirty-three genes required for normal motility in soft agar were also downregulated in the absence of FlrA, suggesting they belong to the flagellar regulon of V. fischeri. Mutagenesis of putative paralogs of the flagellar motility genes motA, motB, and fliL revealed that motA1, motB1, and both fliL1 and fliL2, but not motA2 and motB2, likely contribute to soft-agar motility. Using these complementary approaches, we have characterized the genetic basis of flagellar motility in V. fischeri and furthered our understanding of the roles of flagellar motility and chemotaxis in colonization of the juvenile squid, including identifying 11 novel mutants unable to enter into a productive light-organ symbiosis. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  7. CysK Plays a Role in Biofilm Formation and Colonization by Vibrio fischeri.

    Science.gov (United States)

    Singh, Priyanka; Brooks, John F; Ray, Valerie A; Mandel, Mark J; Visick, Karen L

    2015-08-01

    A biofilm, or a matrix-embedded community of cells, promotes the ability of the bacterium Vibrio fischeri to colonize its symbiotic host, the Hawaiian squid Euprymna scolopes. Biofilm formation and colonization depend on syp, an 18-gene polysaccharide locus. To identify other genes necessary for biofilm formation, we screened for mutants that failed to form wrinkled colonies, a type of biofilm. We obtained several with defects in genes required for cysteine metabolism, including cysH, cysJ, cysK, and cysN. The cysK mutant exhibited the most severe wrinkling defect. It could be complemented with a wild-type copy of the cysK gene, which encodes O-acetylserine sulfhydrolase, or by supplementing the medium with additional cysteine. None of a number of other mutants defective for biosynthetic genes negatively impacted wrinkled colony formation, suggesting a specific role for CysK. CysK did not appear to control activation of Syp regulators or transcription of the syp locus, but it did influence production of the Syp polysaccharide. Under biofilm-inducing conditions, the cysK mutant retained the same ability as that of the parent strain to adhere to the agar surface. The cysK mutant also exhibited a defect in pellicle production that could be complemented by the cysK gene but not by cysteine, suggesting that, under these conditions, CysK is important for more than the production of cysteine. Finally, our data reveal a role for cysK in symbiotic colonization by V. fischeri. Although many questions remain, this work provides insights into additional factors required for biofilm formation and colonization by V. fischeri. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Modeling Analysis of Signal Sensitivity and Specificity by Vibrio fischeri LuxR Variants.

    Directory of Open Access Journals (Sweden)

    Deanna M Colton

    Full Text Available The LuxR protein of the bacterium Vibrio fischeri belongs to a family of transcriptional activators that underlie pheromone-mediated signaling by responding to acyl-homoserine lactones (-HSLs or related molecules. V. fischeri produces two acyl-HSLs, N-3-oxo-hexanoyl-HSL (3OC6-HSL and N-octanoyl-HSL (C8-HSL, each of which interact with LuxR to facilitate its binding to a "lux box" DNA sequence, thereby enabling LuxR to activate transcription of the lux operon responsible for bioluminescence. We have investigated the HSL sensitivity of four different variants of V. fischeri LuxR: two derived from wild-type strains ES114 and MJ1, and two derivatives of LuxRMJ1 generated by directed evolution. For each LuxR variant, we measured the bioluminescence induced by combinations of C8-HSL and 3OC6-HSL. We fit these data to a model in which the two HSLs compete with each other to form multimeric LuxR complexes that directly interact with lux to activate bioluminescence. The model reproduces the observed effects of HSL combinations on the bioluminescence responses directed by LuxR variants, including competition and non-monotonic responses to C8-HSL and 3OC6-HSL. The analysis yields robust estimates for the underlying dissociation constants and cooperativities (Hill coefficients of the LuxR-HSL complexes and their affinities for the lux box. It also reveals significant differences in the affinities of LuxRMJ1 and LuxRES114 for 3OC6-HSL. Further, LuxRMJ1 and LuxRES114 differed sharply from LuxRs retrieved by directed evolution in the cooperativity of LuxR-HSL complex formation and the affinity of these complexes for lux. These results show how computational modeling of in vivo experimental data can provide insight into the mechanistic consequences of directed evolution.

  9. Modeling Analysis of Signal Sensitivity and Specificity by Vibrio fischeri LuxR Variants.

    Science.gov (United States)

    Colton, Deanna M; Stabb, Eric V; Hagen, Stephen J

    2015-01-01

    The LuxR protein of the bacterium Vibrio fischeri belongs to a family of transcriptional activators that underlie pheromone-mediated signaling by responding to acyl-homoserine lactones (-HSLs) or related molecules. V. fischeri produces two acyl-HSLs, N-3-oxo-hexanoyl-HSL (3OC6-HSL) and N-octanoyl-HSL (C8-HSL), each of which interact with LuxR to facilitate its binding to a "lux box" DNA sequence, thereby enabling LuxR to activate transcription of the lux operon responsible for bioluminescence. We have investigated the HSL sensitivity of four different variants of V. fischeri LuxR: two derived from wild-type strains ES114 and MJ1, and two derivatives of LuxRMJ1 generated by directed evolution. For each LuxR variant, we measured the bioluminescence induced by combinations of C8-HSL and 3OC6-HSL. We fit these data to a model in which the two HSLs compete with each other to form multimeric LuxR complexes that directly interact with lux to activate bioluminescence. The model reproduces the observed effects of HSL combinations on the bioluminescence responses directed by LuxR variants, including competition and non-monotonic responses to C8-HSL and 3OC6-HSL. The analysis yields robust estimates for the underlying dissociation constants and cooperativities (Hill coefficients) of the LuxR-HSL complexes and their affinities for the lux box. It also reveals significant differences in the affinities of LuxRMJ1 and LuxRES114 for 3OC6-HSL. Further, LuxRMJ1 and LuxRES114 differed sharply from LuxRs retrieved by directed evolution in the cooperativity of LuxR-HSL complex formation and the affinity of these complexes for lux. These results show how computational modeling of in vivo experimental data can provide insight into the mechanistic consequences of directed evolution.

  10. Proteomic and metabolomic profiles demonstrate variation among free-living and symbiotic vibrio fischeri biofilms.

    Science.gov (United States)

    Chavez-Dozal, Alba; Gorman, Clayton; Nishiguchi, Michele K

    2015-10-23

    A number of bacterial species are capable of growing in various life history modes that enable their survival and persistence in both planktonic free-living stages as well as in biofilm communities. Mechanisms contributing to either planktonic cell or biofilm persistence and survival can be carefully delineated using multiple differential techniques (e.g., genomics and transcriptomics). In this study, we present both proteomic and metabolomic analyses of Vibrio fischeri biofilms, demonstrating the potential for combined differential studies for elucidating life-history switches important for establishing the mutualism through biofilm formation and host colonization. The study used a metabolomics/proteomics or "meta-proteomics" approach, referring to the combined protein and metabolic data analysis that bridges the gap between phenotypic changes (planktonic cell to biofilm formation) with genotypic changes (reflected in protein/metabolic profiles). Our methods used protein shotgun construction, followed by liquid chromatography coupled with mass spectrometry (LC-MS) detection and quantification for both free-living and biofilm forming V. fischeri. We present a time-resolved picture of approximately 100 proteins (2D-PAGE and shotgun proteomics) and 200 metabolites that are present during the transition from planktonic growth to community biofilm formation. Proteins involved in stress response, DNA repair damage, and transport appeared to be highly expressed during the biofilm state. In addition, metabolites detected in biofilms correspond to components of the exopolysaccharide (EPS) matrix (sugars and glycerol-derived). Alterations in metabolic enzymes were paralleled by more pronounced changes in concentration of intermediates from the glycolysis pathway as well as several amino acids. This combined analysis of both types of information (proteins, metabolites) has provided a more complete picture of the biochemical processes of biofilm formation and what determines

  11. Substrate specificity and function of the pheromone receptor AinR in Vibrio fischeri ES114.

    Science.gov (United States)

    Kimbrough, John H; Stabb, Eric V

    2013-11-01

    Two distinct but interrelated pheromone-signaling systems, LuxI/LuxR and AinS/AinR, positively control bioluminescence in Vibrio fischeri. Although each system generates an acyl-homoserine lactone (AHL) signal, the protein sequences of LuxI/LuxR and AinS/AinR are unrelated. AinS and LuxI generate the pheromones N-octanoyl-AHL (C8-AHL) and N-3-oxo-hexanoyl-AHL (3OC6-AHL), respectively. LuxR is a transcriptional activator that responds to 3OC6-AHL, and to a lesser extent to C8-AHL. AinR is hypothesized to respond to C8-AHL and, based on homology to Vibrio harveyi LuxN, to mediate the repression of a Qrr regulatory RNA. However, a ΔainR mutation decreased luminescence, which was not predicted based on V. harveyi LuxN, raising the possibility of a distinct regulatory mechanism for AinR. Here we show that ainR can complement a luxN mutant, suggesting functional similarity. Moreover, in V. fischeri, we observed ainR-dependent repression of a Pqrr-lacZ transcriptional reporter in the presence of C8-AHL, consistent with its hypothesized regulatory role. The system appears quite sensitive, with a half-maximal effect on a Pqrr reporter at 140 pM C8-AHL. Several other AHLs with substituted and unsubstituted acyl chains between 6 and 10 carbons also displayed an AinR-dependent effect on Pqrr-lacZ; however, AHLs with acyl chains of four carbons or 12 or more carbons lacked activity. Interestingly, 3OC6-AHL also affected expression from the qrr promoter, but this effect was largely luxR dependent, indicating a previously unknown connection between these systems. Finally, we propose a preliminary explanation for the unexpected luminescence phenotype of the ΔainR mutant.

  12. Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using Daphnia magna and Vibrio fischeri.

    Science.gov (United States)

    Rossetto, Ana Letícia de O F; Melegari, Silvia Pedroso; Ouriques, Luciane Cristina; Matias, William Gerson

    2014-08-15

    Copper oxide (CuO) has various applications, as highlighted by the incorporation of this compound as a biocide of antifouling paints for coating ships and offshore oil platforms. The objective of this study was to evaluate and compare the aquatic toxicity of CuO nanoparticles (NPs) and microparticles (MPs) through acute and chronic toxicity tests with the freshwater microcrustacean Daphnia magna and an acute toxicity test with the bioluminescent marine bacteria Vibrio fischeri. Acute toxicity results for D. magna in tests with CuO NPs (EC50, 48 h=22 mg L(-1)) were ten times higher than those for tests with CuO MPs (EC50, 48 h=223.6 mg L(-1)). In both periods of exposure of V. fischeri, the CuO NPs (EC50, 15m 248±56.39 - equivalent to 12.40%; EC50, 30 m 257.6±30.8 mg L(-1) - equivalent to 12.88%) were more toxic than the CuO MPs (EC50, 15m 2404.6±277.4 - equivalent to 60.10%; EC50, 30 m 1472.9±244.7 mg L(-1) - equivalent to 36.82%). In chronic toxicity tests, both forms of CuO showed significant effects (p<0.05) on the growth and reproduction parameters of the D. magna relative to the control. Additionally, morphological changes, such as lack of apical spine development and malformed carapaces in D. magna, were observed for organisms after the chronic test. The toxicity results demonstrate that CuO NPs have a higher level of toxicity than CuO MPs, emphasizing the need for comparative toxicological studies to correctly classify these two forms of CuO with identical CAS registration numbers. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Phylogeny and fitness of Vibrio fischeri from the light organs of Euprymna scolopes in two Oahu, Hawaii populations.

    Science.gov (United States)

    Wollenberg, Michael S; Ruby, Edward G

    2012-02-01

    The evolutionary relationship among Vibrio fischeri isolates obtained from the light organs of Euprymna scolopes collected around Oahu, Hawaii, were examined in this study. Phylogenetic reconstructions based on a concatenation of fragments of four housekeeping loci (recA, mdh, katA, pyrC) identified one monophyletic group ('Group-A') of V. fischeri from Oahu. Group-A V. fischeri strains could also be identified by a single DNA fingerprint type. V. fischeri strains with this fingerprint type had been observed to be at a significantly higher abundance than other strains in the light organs of adult squid collected from Maunalua Bay, Oahu, in 2005. We hypothesized that these previous observations might be related to a growth/survival advantage of the Group-A strains in the Maunalua Bay environments. Competition experiments between Group-A strains and non-Group-A strains demonstrated an advantage of the former in colonizing juvenile Maunalua Bay hosts. Growth and survival assays in Maunalua Bay seawater microcosms revealed a reduced fitness of Group-A strains relative to non-Group-A strains. From these results, we hypothesize that there may exist trade-offs between growth in the light organ and in seawater environments for local V. fischeri strains from Oahu. Alternatively, Group-A V. fischeri may represent an example of rapid, evolutionarily significant, specialization of a horizontally transmitted symbiont to a local host population.

  14. Characterization of htrB and msbB mutants of the light organ symbiont Vibrio fischeri.

    Science.gov (United States)

    Adin, Dawn M; Phillips, Nancy J; Gibson, Bradford W; Apicella, Michael A; Ruby, Edward G; McFall-Ngai, Margaret J; Hall, Daniel B; Stabb, Eric V

    2008-02-01

    Bacterial lipid A is an important mediator of bacterium-host interactions, and secondary acylations added by HtrB and MsbB can be critical for colonization and virulence in pathogenic infections. In contrast, Vibrio fischeri lipid A stimulates normal developmental processes in this bacterium's mutualistic host, Euprymna scolopes, although the importance of lipid A structure in this symbiosis is unknown. To further examine V. fischeri lipid A and its symbiotic function, we identified two paralogs of htrB (designated htrB1 and htrB2) and an msbB gene in V. fischeri ES114 and demonstrated that these genes encode lipid A secondary acyltransferases. htrB2 and msbB are found on the Vibrio "housekeeping" chromosome 1 and are conserved in other Vibrio species. Mutations in htrB2 and msbB did not impair symbiotic colonization but resulted in phenotypic alterations in culture, including reduced motility and increased luminescence. These mutations also affected sensitivity to sodium dodecyl sulfate, kanamycin, and polymyxin, consistent with changes in membrane permeability. Conversely, htrB1 is located on the smaller, more variable vibrio chromosome 2, and an htrB1 mutant was wild-type-like in culture but appeared attenuated in initiating the symbiosis and was outcompeted 2.7-fold during colonization when mixed with the parent. These data suggest that htrB2 and msbB play conserved general roles in vibrio biology, whereas htrB1 plays a more symbiosis-specific role in V. fischeri.

  15. Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri.

    Science.gov (United States)

    Pérez, Pablo D; Weiss, Joel T; Hagen, Stephen J

    2011-09-29

    One of the puzzles in bacterial quorum sensing is understanding how an organism integrates the information gained from multiple input signals. The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism that receives input from three pheromone signals, including two acyl homoserine lactone (HSL) signals. While the role of the 3-oxo-C6 homoserine lactone (3OC6HSL) signal in activating the lux genes has been extensively studied and modeled, the role of the C8 homoserine lactone (C8HSL) is less obvious, as it can either activate luminescence or block its activation. It remains unclear how crosstalk between C8HSL and 3OC6HSL affects the information that the bacterium obtains through quorum sensing. We have used microfluidic methods to measure the response of individual V.fischeri cells to combinations of C8HSL and 3OC6HSL. By measuring the fluorescence of individual V.fischeri cells containing a chromosomal gfp-reporter for the lux genes, we study how combinations of exogenous HSLs affect both the population average and the cell-to-cell variability of lux activation levels. At the level of a population average, the crosstalk between the C8HSL and 3OC6HSL inputs is well-described by a competitive inhibition model. At the level of individual cells, the heterogeneity in the lux response depends only on the average degree of activation, so that the noise in the output is not reduced by the presence of the second HSL signal. Overall we find that the mutual information between the signal inputs and the lux output is less than one bit. A nonlinear correlation between fluorescence and bioluminescence outputs from lux leads to different noise properties for these reporters. The lux genes in V.fischeri do not appear to distinguish between the two HSL inputs, and even with two signal inputs the regulation of lux is extremely noisy. Hence the role of crosstalk from the C8HSL input may not be to improve sensing precision, but rather to

  16. Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Weiss Joel T

    2011-09-01

    Full Text Available Abstract Background One of the puzzles in bacterial quorum sensing is understanding how an organism integrates the information gained from multiple input signals. The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism that receives input from three pheromone signals, including two acyl homoserine lactone (HSL signals. While the role of the 3-oxo-C6 homoserine lactone (3OC6HSL signal in activating the lux genes has been extensively studied and modeled, the role of the C8 homoserine lactone (C8HSL is less obvious, as it can either activate luminescence or block its activation. It remains unclear how crosstalk between C8HSL and 3OC6HSL affects the information that the bacterium obtains through quorum sensing. Results We have used microfluidic methods to measure the response of individual V.fischeri cells to combinations of C8HSL and 3OC6HSL. By measuring the fluorescence of individual V.fischeri cells containing a chromosomal gfp-reporter for the lux genes, we study how combinations of exogenous HSLs affect both the population average and the cell-to-cell variability of lux activation levels. At the level of a population average, the crosstalk between the C8HSL and 3OC6HSL inputs is well-described by a competitive inhibition model. At the level of individual cells, the heterogeneity in the lux response depends only on the average degree of activation, so that the noise in the output is not reduced by the presence of the second HSL signal. Overall we find that the mutual information between the signal inputs and the lux output is less than one bit. A nonlinear correlation between fluorescence and bioluminescence outputs from lux leads to different noise properties for these reporters. Conclusions The lux genes in V.fischeri do not appear to distinguish between the two HSL inputs, and even with two signal inputs the regulation of lux is extremely noisy. Hence the role of crosstalk from the C8HSL input

  17. Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure-activity relationship method.

    Science.gov (United States)

    Yan, Fangyou; Shang, Qiaoyan; Xia, Shuqian; Wang, Qiang; Ma, Peisheng

    2015-04-09

    As environmentally friendly solvents, ionic liquids (ILs) are unlikely to act as air contaminants or inhalation toxins resulting from their negligible vapor pressure and excellent thermal stability. However, they can be potential water contaminants because of their considerable solubility in water; therefore, a proper toxicological assessment of ILs is essential. The environmental fate of ILs is studied by quantitative structure-activity relationship (QSAR) method. A multiple linear regression (MLR) model is obtained by topological method using toxicity data of 157 ILs on Vibrio fischeri, which are composed of 74 cations and 22 anions. The topological index developed in our research group is used for predicting the V. fischeri toxicity for the first time. The MLR model is precise for estimating LogEC50 of ILs on V. fischeri with square of correlation coefficient (R(2)) = 0.908 and the average absolute error (AAE) = 0.278. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles that depend on the symbiosis polysaccharide locus in Vibrio fischeri.

    Science.gov (United States)

    Shibata, Satoshi; Visick, Karen L

    2012-01-01

    Robust biofilm formation by Vibrio fischeri depends upon activation of the symbiosis polysaccharide (syp) locus, which is achieved by overexpressing the RscS sensor kinase (RscS(+)). Other than the Syp polysaccharide, however, little is known about V. fischeri biofilm matrix components. In other bacteria, biofilms contain polysaccharides, secreted proteins, and outer membrane vesicles (OMVs). Here, we asked whether OMVs are part of V. fischeri biofilms. Transmission electron microscopy revealed OMV-like particles between cells within colonies. In addition, OMVs could be purified from culture supernatants of both RscS(+) and control cells, with the former releasing 2- to 3-fold more OMVs. The increase depended upon the presence of an intact syp locus, as an RscS(+) strain deleted for sypK, which encodes a putative oligosaccharide translocase, exhibited reduced production of OMVs; it also showed a severe defect in biofilm formation. Western immunoblot analyses revealed that the RscS(+) strain, but not the control strain or the RscS(+) sypK mutant, produced a distinct set of nonproteinaceous molecules that could be detected in whole-cell extracts, OMV preparations, and lipopolysaccharide (LPS) extracts. Finally, deletion of degP, which in other bacteria influences OMV production, decreased OMV production and reduced the ability of the cells to form biofilms. We conclude that overexpression of RscS induces OMV production in a manner that depends on the presence of the syp locus and that OMVs produced under these conditions contain antigenically distinct molecules, possibly representing a modified form of lipopolysaccharide (LPS). Finally, our data indicate a correlation between OMV production and biofilm formation by V. fischeri.

  19. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  20. Impact of Surface-Active Guanidinium-, Tetramethylguanidinium-, and Cholinium-Based Ionic Liquids on Vibrio Fischeri Cells and Dipalmitoylphosphatidylcholine Liposomes

    Science.gov (United States)

    Rantamäki, Antti H.; Ruokonen, Suvi-Katriina; Sklavounos, Evangelos; Kyllönen, Lasse; King, Alistair W. T.; Wiedmer, Susanne K.

    2017-04-01

    We investigated the toxicological effect of seven novel cholinium, guanidinium, and tetramethylguanidinium carboxylate ionic liquids (ILs) from an ecotoxicological point of view. The emphasis was on the potential structure-toxicity dependency of these surface-active ILs in aqueous environment. The median effective concentrations (EC50) were defined for each IL using Vibrio (Aliivibrio) fischeri marine bacteria. Dipalmitoylphosphatidylcholine (DPPC) liposomes were used as biomimetic lipid membranes to study the interactions between the surface-active ILs and the liposomes. The interactions were investigated by following the change in the DPPC phase transition behaviour using differential scanning calorimetry (DSC). Critical micelle concentrations for the ILs were determined to clarify the analysis of the toxicity and the interaction results. Increasing anion alkyl chain length increased the toxicity, whereas branching of the chain decreased the toxicity of the ILs. The toxicity of the ILs in this study was mainly determined by the surface-active anions, while cations induced a minor impact on the toxicity. In the DSC experiments the same trend was observed for all the studied anions, whereas the cations seemed to induce more variable impact on the phase transition behaviour. Toxicity measurements combined with liposome interaction studies can provide a valuable tool for assessing the mechanism of toxicity.

  1. Impact of Surface-Active Guanidinium-, Tetramethylguanidinium-, and Cholinium-Based Ionic Liquids on Vibrio Fischeri Cells and Dipalmitoylphosphatidylcholine Liposomes.

    Science.gov (United States)

    Rantamäki, Antti H; Ruokonen, Suvi-Katriina; Sklavounos, Evangelos; Kyllönen, Lasse; King, Alistair W T; Wiedmer, Susanne K

    2017-04-21

    We investigated the toxicological effect of seven novel cholinium, guanidinium, and tetramethylguanidinium carboxylate ionic liquids (ILs) from an ecotoxicological point of view. The emphasis was on the potential structure-toxicity dependency of these surface-active ILs in aqueous environment. The median effective concentrations (EC50) were defined for each IL using Vibrio (Aliivibrio) fischeri marine bacteria. Dipalmitoylphosphatidylcholine (DPPC) liposomes were used as biomimetic lipid membranes to study the interactions between the surface-active ILs and the liposomes. The interactions were investigated by following the change in the DPPC phase transition behaviour using differential scanning calorimetry (DSC). Critical micelle concentrations for the ILs were determined to clarify the analysis of the toxicity and the interaction results. Increasing anion alkyl chain length increased the toxicity, whereas branching of the chain decreased the toxicity of the ILs. The toxicity of the ILs in this study was mainly determined by the surface-active anions, while cations induced a minor impact on the toxicity. In the DSC experiments the same trend was observed for all the studied anions, whereas the cations seemed to induce more variable impact on the phase transition behaviour. Toxicity measurements combined with liposome interaction studies can provide a valuable tool for assessing the mechanism of toxicity.

  2. Requirements for sulfur in cell density-independent induction of luminescence in Vibrio fischeri under nutrient-starved conditions.

    Science.gov (United States)

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-04-01

    Despite the universal requirement for sulfur in living organisms, it is not known whether the luminescence of Vibrio fischeri is sulfur-dependent and how sulfur affects the intensity of its luminescence. In this study, we investigated the requirement for sulfur in V. fischeri luminescence under nutrient-starved conditions. Full induction of V. fischeri luminescence required MgSO(4); in artificial seawater cultures that lacked sufficient MgSO(4), its luminescence was not fully induced. This induction of luminescence was not dependent on autoinduction because the cell density of V. fischeri did not reach the critical threshold concentration. In addition to MgSO(4), this cell density-independent luminescence was induced or maintained by nontoxic concentrations of l-cysteine, sulfate, sulfite, and thiosulfate. Moreover, the addition of N -3-oxo-hexanoyl homoserine lactone and N -octanoyl homoserine lactone, which are known autoinducers in V. fischeri, did not induce luminescence under these conditions. This result suggested that the underlying mechanism of luminescence may be different from the known autoinduction mechanism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Oil effect in freshly spiked marine sediment on Vibrio fischeri, Corophium volutator, and Echinocardium cordatum.

    Science.gov (United States)

    Brils, Jos M; Huwer, Sherri L; Kater, Belinda J; Schout, Peter G; Harmsen, Joop; Delvigne, Gerard A L; Scholten, Martin C Th

    2002-10-01

    The purpose of this study was to provide data to be used in The Netherlands for development of ecotoxicologically based quality criteria for oil-contaminated sediments and dredged material. In addition, the relation of toxicity to specific oil boiling-point fraction ranges was explored. Natural marine sediment, with a moisture, organic carbon, and silt content of approximately 80, 1.8, and 33% of the dry weight, respectively, was artificially spiked using a spiking method developed in this project. Aliquots of one part of the sediment were spiked to several concentrations of Gulf distillate marine grade A (DMA) gasoil (containing 64% C10-19) and aliquots of the other part to several concentrations of Gulf high viscosity grade 46 (HV46) hydraulic oil (containing 99.2% C19-40). Thus, for each individual oil type, a concentration series was created. Vibrio fischeri (endpoint: bioluminescence inhibition), Corophium volutator (endpoint:mortality), and Echinocardium cordatum (endpoint:mortality) were exposed to these spiked sediments for 10 min, 10 d and 14 d, respectively. Based on the test results, the effective concentration on 50% of the test animals was statistically estimated. For DMA gasoil and HV46 hydraulic oil, respectively, the effective concentrations were 43.7 and 2,682 mg/kg dry weight for V. fischeri, 100 and 9,138 mg/kg dry weight for C. volutator, 190, and 1064 mg/kg dry weight for E. cordatum. This study shows that the toxicity is strongly correlated with the lower boiling-point fractions and especially to those within the C10-C19 range.

  4. Reduction of acute toxicity of the pharmaceutical fluoxetine (Prozac) submitted to ionizing radiation to Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Dymes R.A.; Garcia, Vanessa S.G.; Vilarrubia, Anna C.S.; Borrely, Sueli I., E-mail: vanessagarcia@usp.br, E-mail: sborrely@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The constant use of pharmaceutical drugs by great part of the population and its continuous input into the environment creates a growing need of investigating its presence, behavior and the effects on aquatic biota, as well as new ways to treat wastewater containing such substances. The fluoxetine hydrochloride (FH) present in the drug Prozac is an active ingredient used in the treatment of depressive and anxiety disorders. Generally, these compounds enter the aquatic environment by sewage collectors systems after undergoing prior treatment in sewage treatment plants (STPs) or without any treatment. This study focused on evaluating the reduction of acute toxicity of the pharmaceutical FH, under its manipulated formula, for the marine bacterium Vibrio fischeri. It was also evaluated the acute toxicity of the aqueous solution containing the FH after its exposition to ionizing radiation from industrial electron accelerator. It was performed acute toxicity tests lasting 15 minutes, where the average EC (50) of the non-irradiated CF water solution was approximately 0.68 mg L-1. While the CF water solution irradiated with 1 kGy, 2.5 kGy, 7.5 kGy and 10 kGy, presented an average EC(50) 1.63 mg.L{sup -1}, 2.34 mg.L{sup -1}, 2.35 mg.L{sup -1} and 1.80 mg.L{sup -1}, respectively, showing a notable reduction of the acute toxicity for this organism. (author)

  5. Assessing chemical toxicity of ionic liquids on Vibrio fischeri: Correlation with structure and composition.

    Science.gov (United States)

    Montalbán, Mercedes G; Hidalgo, Juana M; Collado-González, Mar; Díaz Baños, F Guillermo; Víllora, Gloria

    2016-07-01

    One of the most important properties of ionic liquids is their non-volatility, making them potentially "green" alternatives to volatile organic compounds. However, they are widely soluble in water, meaning that they can be released into aquatic ecosystems and so contribute to water pollution. Nevertheless, although the toxicity of ILs has been widely assessed in the literature, the information is still scarce due to the great number of ionic liquids that have been synthesized. The present work reports the toxicity of twenty-nine imidazolium-, pyridinium- and ammonium-based ionic liquids towards the bioluminescent photobacterium Vibrio fischeri. When the effect of the type of anion, the length of the alkyl chain of the cation, the cation core and the presence of a functionalized side chain in the cation on ionic liquid toxicity were analyzed, the main influence was seen to be exercised by the alkyl chain length. A Quantitative Structure-Activity Relationships-based method was used to compare the experimental results with previously estimated values and very good agreement was obtained. A relationship between the toxicity, expressed as Log EC50, and the 1-octanol-water partition coefficient was established. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Engineering Vibrio fischeri transcriptional activator LuxR for diverse transcriptional activities.

    Science.gov (United States)

    Lu, Yang

    2016-09-01

    To alter DNA binding specificity of Vibrio fischeri LuxR and to expand the toolbox for constructing synthetic networks. A mutation library (about 10,000 individuals) of the DNA binding domain of LuxR were generated. A genetic selection was performed to obtain LuxR mutants that recognize three lux box DNA variants that are not recognized by wild-type LuxR. Six LuxR mutants were identified. The evolved LuxR mutants were further characterized by measuring the transcriptional activities of different combinations of LuxR mutants and lux box variants. Varied transcriptional activities were found in these LuxR-lux box pairs. The background expressions of the evolved LuxR-lux box systems are more tightly regulated than the wild-type LuxR-lux box system. The LuxR transcriptional system was evolved to recognize three lux box DNAs which are not recognized by wild-type LuxR.

  7. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    Science.gov (United States)

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development of QSAR model to predict the ecotoxicity of Vibrio fischeri using COSMO-RS descriptors.

    Science.gov (United States)

    Ghanem, Ouahid Ben; Mutalib, M I Abdul; Lévêque, Jean-Marc; El-Harbawi, Mohanad

    2017-03-01

    Ionic liquids (ILs) are class of solvent whose properties can be modified and tuned to meet industrial requirements. However, a high number of potentially available cations and anions leads to an even increasing members of newly-synthesized ionic liquids, adding to the complexity of understanding on their impact on aquatic organisms. Quantitative structure activity∖property relationship (QSAR∖QSPR) technique has been proven to be a useful method for toxicity prediction. In this work,σ-profile descriptors were used to build linear and non-linear QSAR models to predict the ecotoxicities of a wide variety of ILs towards bioluminescent bacterium Vibrio fischeri. Linear model was constructed using five descriptors resulting in high accuracy prediction of 0.906. The model performance and stability were ascertained using k-fold cross validation method. The selected descriptors set from the linear model was then used in multilayer perceptron (MLP) technique to develop the non-linear model, the accuracy of the model was further enhanced achieving high correlation coefficient with the lowest value being 0.961 with the highest mean square error of 0.157. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ecotoxicological screening of reclaimed disinfected wastewater by Vibrio fischeri bioassay after a chlorination-dechlorination process.

    Science.gov (United States)

    Bayo, Javier; Angosto, José M; Gómez-López, M Dolores

    2009-12-15

    It is well known that different substances can react with chlorine in a water disinfection process to produce disinfection by-products (DBPs). Some of these substances have proven to be carcinogenic in humans and animals. Because it is not possible to detect all DBPs produced in chlorinated wastewater, toxicity tests have been proposed as a useful tool for screening toxic chemicals in treated wastewater. In this study, the Microtox bioassay with Vibrio fischeri was used to evaluate the formation of toxic by-products in wastewater, after a chlorination-dechlorination disinfection treatment. All the variables were found to be normally distributed, so analysis of variance could be directly applied without transformation of variables. Significant correlations were obtained between toxicity values and total carbon, total inorganic carbon, total nitrogen, chlorine, and pH. In contrast, total organic carbon, chemical oxygen demand, electrical conductivity and turbidity had no effect on toxicity formation. Toxicity increased with the Cl2:NH4+ ratio at a higher chlorine concentration released from combined chlorine. Regression models provided a good fit for effective concentration (EC50) as a function of total carbon and total nitrogen, after 5, 10, and 15 min of exposure. These models had greater multiple determination coefficients than previously reported for similar studies, without autocorrelation in the residuals as indicated by the Durbin-Watson statistic test. The measured and predicted ecotoxicity values were strongly correlated.

  10. Time-dependent hormesis of chemical mixtures: A case study on sulfa antibiotics and a quorum-sensing inhibitor of Vibrio fischeri.

    Science.gov (United States)

    You, Ruirong; Sun, Haoyu; Yu, Yan; Lin, Zhifen; Qin, Mengnan; Liu, Ying

    2016-01-01

    Sulfa antibiotics (SAs) and quorum-sensing inhibitor (QSI) may pose potential ecological risks because mixed using of them has been proposed to inhibit bacteria from generating antibiotic resistance. This study investigated the time-dependent hormesis of single and binary mixtures of QSI and SAs of Vibrio fischeri (V. fischeri) for 0-24 h. Although the low-dose SAs stimulated the expression of LuxR protein, the high-dose SAs could inhibit bacteria growth by competitively binding to dihydropteroate synthase. Moreover, AinR protein was bound to Benzofuran-3(2H)-one (B3O) with low concentration, thus the N-octanoyl homoserine lactone signal molecules (C8) has chance to bind to LuxR protein to promote light emission. The hormesis effect induced by the mixtures could be deduced that SAs promoted the expression of LuxR protein and B3O increases the chance of C8 binding to LuxR. Our findings facilitate new insight into the mechanistic study of hormesis and ecological risks of the chemical mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Influence of Select Antibiotics on Vibrio fischeri and Desmodesmus subspicatus at μg L-1 Concentrations.

    Science.gov (United States)

    de Vasconcelos, E C; Dalke, C R; de Oliveira, C M R

    2017-07-01

    The presence of pharmaceuticals in the aquatic environment is a contemporary reality and it is necessary to understand more about the effects of this presence on organisms. The purpose of this work was to assess the ecotoxicity of antibiotics metronidazole, nitrofurantoin, trimethoprim, and sulphamethoxazole (single and mixture) in Vibrio fischeri and Desmodesmus subspicatus at μg L-1 concentrations. The evaluation of the toxic effect of the antibiotics on V. fischeri and D. subspicatus was based on fluorescence and bioluminescence tests, respectively, using nominal concentrations. When tested individually, the four antibiotics gave rise to a toxic effect on the evaluated organisms. Sulphamethoxazole caused a higher toxic effect on V. fischeri and D. subspicatus from 7.81 to 500 μg L-1. Trimethoprim and sulphamethoxazole showed hormesis for the concentrations, which ranged from 7.81 to 62.5 μg L-1. The mixture of antibiotics induced a toxic effect on the V. fischeri and D. subspicatus organisms (from 0.03 to 1 μg L-1 concentrations) than when the antibiotics were evaluated individually. These results were significant since water quality problems are widespread all over the word, and emerging pollutants such as antibiotics have been detected in the aquatic environment in very low concentrations.

  12. Quorum Sensing Signal Synthesis May Represent a Selective Advantage Independent of Its Role in Regulation of Bioluminescence in Vibrio fischeri.

    Directory of Open Access Journals (Sweden)

    Grace Chong

    Full Text Available The evolution of biological signalling systems and apparently altruistic or cooperative traits in diverse organisms has required selection against the subversive tendencies of self-interested biological entities. The bacterial signalling and response system known as quorum sensing or Acylated Homoserine Lactone (AHL mediated gene expression is thought to have evolved through kin selection. In this in vitro study on the model quorum sensing bioluminescent marine symbiont Vibrio fischeri, competition and long-term sub culturing experiments suggest that selection for AHL synthesis (encoded by the AHL synthase gene luxI is independent of the quorum sensing regulated phenotype (bioluminescence encoded by luxCDABE. Whilst results support the hypothesis that signal response (AHL binding and transcriptional activation encoded by the luxR gene is maintained through indirect fitness benefits (kin selection, signal synthesis is maintained in the V. fischeri genome over evolutionary time through direct fitness benefits at the individual level from an unknown function.

  13. The periplasmic sensing domain of Vibrio fischeri chemoreceptor protein A (VfcA): cloning, purification and crystallographic analysis.

    Science.gov (United States)

    Salah Ud-Din, Abu Iftiaf Md; Roujeinikova, Anna

    2016-05-01

    Flagella-mediated motility and chemotaxis towards nutrients are important characteristics of Vibrio fischeri that play a crucial role in the development of its symbiotic relationship with its Hawaiian squid host Euprymna scolopes. The V. fischeri chemoreceptor A (VfcA) mediates chemotaxis toward amino acids. The periplasmic sensory domain of VfcA has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 as a precipitating agent. The crystals belonged to space group P1, with unit-cell parameters a = 39.9, b = 57.0, c = 117.0 Å, α = 88.9, β = 80.5, γ = 89.7°. A complete X-ray diffraction data set has been collected to 1.8 Å resolution using cryocooling conditions and synchrotron radiation.

  14. Quorum Sensing Signal Synthesis May Represent a Selective Advantage Independent of Its Role in Regulation of Bioluminescence in Vibrio fischeri

    Science.gov (United States)

    Chong, Grace; Kimyon, Önder; Manefield, Mike

    2013-01-01

    The evolution of biological signalling systems and apparently altruistic or cooperative traits in diverse organisms has required selection against the subversive tendencies of self-interested biological entities. The bacterial signalling and response system known as quorum sensing or Acylated Homoserine Lactone (AHL) mediated gene expression is thought to have evolved through kin selection. In this in vitro study on the model quorum sensing bioluminescent marine symbiont Vibrio fischeri, competition and long-term sub culturing experiments suggest that selection for AHL synthesis (encoded by the AHL synthase gene luxI) is independent of the quorum sensing regulated phenotype (bioluminescence encoded by luxCDABE). Whilst results support the hypothesis that signal response (AHL binding and transcriptional activation encoded by the luxR gene) is maintained through indirect fitness benefits (kin selection), signal synthesis is maintained in the V. fischeri genome over evolutionary time through direct fitness benefits at the individual level from an unknown function. PMID:23825662

  15. Assessing the function of STAS domain protein SypA in Vibrio fischeri using a comparative analysis.

    Science.gov (United States)

    Thompson, Cecilia M; Visick, Karen L

    2015-01-01

    Colonization of the squid Euprymna scolopes by Vibrio fischeri requires biofilm formation dependent on the 18-gene symbiosis polysaccharide locus, syp. One key regulator, SypA, controls biofilm formation by an as-yet unknown mechanism; however, it is known that SypA itself is regulated by SypE. Biofilm-proficient strains form wrinkled colonies on solid media, while sypA mutants form biofilm-defective smooth colonies. To begin to understand the function of SypA, we used comparative analyses and mutagenesis approaches. sypA (and the syp locus) is conserved in other Vibrios, including two food-borne human pathogens, Vibrio vulnificus (rbdA) and Vibrio parahaemolyticus (sypA VP ). We found that both homologs could complement the biofilm defect of the V. fischeri sypA mutant, but their phenotypes varied depending on the biofilm-inducing conditions used. Furthermore, while SypAVP retained an ability to be regulated by SypE, RbdA was resistant to this control. To better understand SypA function, we examined the biofilm-promoting ability of a number of mutant SypA proteins with substitutions in conserved residues, and found many that were biofilm-defective. The most severe biofilm-defective phenotypes occurred when changes were made to a conserved stretch of amino acids within a predicted α-helix of SypA; we hypothesize that this region of SypA may interact with another protein to promote biofilm formation. Finally, we identified a residue required for negative control by SypE. Together, our data provide insights into the function of this key biofilm regulator and suggest that the SypA orthologs may play similar roles in their native Vibrio species.

  16. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri.

    Science.gov (United States)

    Morris, Andrew R; Visick, Karen L

    2013-02-01

    Bacteria utilize multiple regulatory systems to modulate gene expression in response to environmental changes, including two-component signalling systems and partner-switching networks. We recently identified a novel regulatory protein, SypE, that combines features of both signalling systems. SypE contains a central response regulator receiver domain flanked by putative kinase and phosphatase effector domains with similarity to partner-switching proteins. SypE was previously shown to exert dual control over biofilm formation through the opposing activities of its terminal effector domains. Here, we demonstrate that SypE controls biofilms in Vibrio fischeri by regulating the activity of SypA, a STAS (sulphate transporter and anti-sigma antagonist) domain protein. Using biochemical and genetic approaches, we determined that SypE both phosphorylates and dephosphorylates SypA, and that phosphorylation inhibits SypA's activity. Furthermore, we found that biofilm formation and symbiotic colonization required active, unphosphorylated SypA, and thus SypA phosphorylation corresponded with a loss of biofilms and impaired host colonization. Finally, expression of a non-phosphorylatable mutant of SypA suppressed both the biofilm and symbiosis defects of a constitutively inhibitory SypE mutant strain. This study demonstrates that regulation of SypA activity by SypE is a critical mechanism by which V. fischeri controls biofilm development and symbiotic colonization. © 2012 Blackwell Publishing Ltd.

  17. TfoX-based genetic mapping identifies Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains.

    Science.gov (United States)

    Brooks, John F; Gyllborg, Mattias C; Kocher, Acadia A; Markey, Laura E H; Mandel, Mark J

    2015-03-01

    Bacterial strain variation exists in natural populations of bacteria and can be generated experimentally through directed or random mutation. The advent of rapid and cost-efficient whole-genome sequencing has facilitated strain-level genotyping. Even with modern tools, however, it often remains a challenge to map specific traits to individual genetic loci, especially for traits that cannot be selected under culture conditions (e.g., colonization level or pathogenicity). Using a combination of classical and modern approaches, we analyzed strain-level variation in Vibrio fischeri and identified the basis by which some strains lack the ability to utilize glycerol as a carbon source. We proceeded to reconstruct the lineage of the commonly used V. fischeri laboratory strains. Compared to the wild-type ES114 strain, we identify in ES114-L a 9.9-kb deletion with endpoints in tadB2 and glpF; restoration of the missing portion of glpF restores the wild-type phenotype. The widely used strains ESR1, JRM100, and JRM200 contain the same deletion, and ES114-L is likely a previously unrecognized intermediate strain in the construction of many ES114 derivatives. ES114-L does not exhibit a defect in competitive squid colonization but ESR1 does, demonstrating that glycerol utilization is not required for early squid colonization. Our genetic mapping approach capitalizes on the recently discovered chitin-based transformation pathway, which is conserved in the Vibrionaceae; therefore, the specific approach used is likely to be useful for mapping genetic traits in other Vibrio species. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior.

    Science.gov (United States)

    Bongrand, Clotilde; Koch, Eric J; Moriano-Gutierrez, Silvia; Cordero, Otto X; McFall-Ngai, Margaret; Polz, Martin F; Ruby, Edward G

    2016-12-01

    Newly hatched Euprymna scolopes squid obtain their specific light-organ symbionts from an array of Vibrio (Allivibrio) fischeri strains present in their environment. Two genetically distinct populations of this squid species have been identified, one in Kaneohe Bay (KB), and another in Maunaloa Bay (MB), Oahu. We asked whether symbionts isolated from squid in each of these populations outcompete isolates from the other population in mixed-infection experiments. No relationship was found between a strain's host source (KB or MB) and its ability to competitively colonize KB or MB juveniles in a mixed inoculum. Instead, two colonization behaviors were identified among the 11 KB and MB strains tested: a 'dominant' outcome, in which one strain outcompetes the other for colonization, and a 'sharing' outcome, in which two strains co-colonize the squid. A genome-level comparison of these and other V. fischeri strains suggested that the core genomic structure of this species is both syntenous and highly conserved over time and geographical distance. We also identified ~250 Kb of sequence, encoding 194 dispersed orfs, that was specific to those strains that expressed the dominant colonization behavior. Taken together, the results indicate a link between the genome content of V. fischeri strains and their colonization behavior when initiating a light-organ symbiosis.

  19. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Letícia Flohr

    2012-01-01

    Full Text Available Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3 induced the highest toxicity level to Daphnia magna(CE50,48 h=2.21%. A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min=12.08%. All samples of pulp and paper wastes, and a textile waste (sample TX2 induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

  20. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri.

    Science.gov (United States)

    Kimbrough, John H; Stabb, Eric V

    2017-09-15

    Vibrio fischeri uses the AinS/AinR pheromone-signaling system to control bioluminescence and other symbiotic colonization factors. The Ain system is thought to initiate cell-cell signaling at moderate cell densities and to prime the LuxI/LuxR signaling system. Here we compared and analyzed the ain locus from two V. fischeri strains and a Vibrio salmonicida strain to explore ain regulation. The ainS and ainR genes were predicted to constitute an operon, which we corroborated using RT-PCR. Comparisons between strains revealed a stark area of conservation across the ainS-ainR junction, including a large inverted repeat in ainR. We found that this inverted repeat in cis can affect accumulation of the AinS-generated pheromone N-octanoyl homoserine lactone, which may account for the previously unexplained low-signal phenotype of a ∆ainR mutant, although the mechanism behind this regulation remains elusive. We also extended the previous observation of a possible "lux box" LuxR binding site upstream of ainS by showing the conservation of this site as well as a second putative lux box. Using a plasmid-based reporter we found that LuxR can mediate repression of ainS, providing a negative feedback mechanism in the Ain/Lux signaling cascade. Our results provide new insights into the regulation, expression, and evolution of ainSR.

  1. Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, Natalie, E-mail: ndejonge@vub.ac.be; Buts, Lieven; Vangelooven, Joris [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Mine, Natacha; Van Melderen, Laurence [Laboratoire de Génétique des Procaryotes, Institut de Biologie et de Médecine, Université Libre de Bruxelles, Gosselies (Belgium); Wyns, Lode; Loris, Remy [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium)

    2007-04-01

    A CcdB homologue from V. fischeri was overexpressed in E. coli and purified. The free protein was crystallized, as were its complexes with fragments of E. coli and V. fischeri gyrase and with the F-plasmid CcdA C-terminal domain. The ccd toxin–antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB{sub Vfi}) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2{sub 1}3, with unit-cell parameter a = 84.5 Å, and diffracts to 1.5 Å resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 Å, β = 110.0°, and diffracts to 1.7 Å resolution. The complex of CcdB{sub Vfi} with the GyrA14{sub Vfi} fragment of V. fischeri gyrase crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 Å, and diffracts to 2.2 Å resolution. The corresponding mixed complex with E. coli GyrA14{sub Ec} crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 Å, β = 102.6°, and diffracts to 1.95 Å. Finally, a complex between CcdB{sub Vfi} and part of the F-plasmid antitoxin CcdA{sub F} crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 Å, and diffracts to 1.9 Å resolution.

  2. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations.

    Science.gov (United States)

    Wollenberg, M S; Ruby, E G

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.

  3. Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations▿ †

    Science.gov (United States)

    Wollenberg, M. S.; Ruby, E. G.

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory. PMID:18997024

  4. Assessing the function of STAS domain protein SypA in Vibrio fischeri using a comparative analysis

    Directory of Open Access Journals (Sweden)

    Cecilia M Thompson

    2015-07-01

    Full Text Available Colonization of the squid Euprymna scolopes by Vibrio fischeri requires biofilm formation dependent on the 18-gene symbiosis polysaccharide locus, syp. One key regulator, SypA, controls biofilm formation by an as-yet unknown mechanism; however, it is known that SypA itself is regulated by SypE. Biofilm-proficient strains form wrinkled colonies on solid media, while sypA mutants form biofilm-defective smooth colonies. To begin to understand the function of SypA, we used comparative analyses and mutagenesis approaches. sypA (and the syp locus is conserved in other Vibrios, including two food-borne human pathogens, V. vulnificus (rbdA and V. parahaemolyticus (sypAVP. We found that both homologs could complement the biofilm defect of the V. fischeri sypA mutant, but their phenotypes varied depending on the biofilm-inducing conditions used. Furthermore, while SypAVP retained an ability to be regulated by SypE, RbdA was resistant to this control. To better understand SypA function, we examined the biofilm-promoting ability of a number of mutant SypA proteins with substitutions in conserved residues, and found many that were biofilm-defective. The most severe biofilm-defective phenotypes occurred when changes were made to a conserved stretch of amino acids within a predicted a-helix of SypA; we hypothesize that this region of SypA may interact with another protein to promote biofilm formation. Finally, we identified a residue required for negative control by SypE. Together, our data provide insights into the function of this key biofilm regulator and suggest that the SypA orthologs may play similar roles in their native Vibrio species.

  5. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri.

    Science.gov (United States)

    Cao, Xiaodan; Studer, Sarah V; Wassarman, Karen; Zhang, Yuanxing; Ruby, Edward G; Miyashiro, Tim

    2012-01-01

    Vibrio fischeri, the bacterial symbiont of the Hawaiian bobtail squid, Euprymna scolopes, uses quorum sensing to control genes involved in bioluminescence, host colonization, and other biological processes. Previous work has shown that AinS/R-directed quorum sensing also regulates the expression of rpoQ (VF_A1015), a gene annotated as an RpoS-like sigma factor. In this study, we demonstrate using phylogenetics that RpoQ is related to, but distinct from, the stationary-phase sigma factor RpoS. Overexpression of rpoQ results in elevated chitinase activity but decreased motility and luminescence, three activities associated with symbiosis. The reduction in bacterial luminescence associated with the overexpression of rpoQ occurs both in culture and within the light-emitting organ of the squid host. This suppression of bioluminescence is due to the repression of the luxICDABEG promoter. Our results highlight RpoQ as a novel regulatory component, embedded in the quorum-signaling network that controls several biological processes in V. fischeri. Quorum signaling is a widely occurring phenomenon that functions in diverse bacterial taxa. It is most often found associated with species that interact with animal or plant hosts, either as mutualists or pathogens, and controls the expression of genes critical to tissue colonization. We present the discovery of rpoQ, which encodes a new regulatory component in the quorum-signaling pathway of Vibrio fischeri. RpoQ is a novel protein in the RpoS family of stationary-phase sigma factors. Unlike many other regulatory proteins involved in the quorum-signaling pathways of the Vibrionaceae, the distribution of RpoQ appears to be restricted to only two closely related species. The role of this regulator is to enhance some quorum-signaling outputs (motility) while suppressing others (luminescence). We propose that RpoQ may be a recently evolved or acquired component in V. fischeri that provides this organism with an additional level of

  6. The syp enhancer sequence plays a key role in transcriptional activation by the σ54-dependent response regulator SypG and in biofilm formation and host colonization by Vibrio fischeri.

    Science.gov (United States)

    Ray, Valerie A; Eddy, Justin L; Hussa, Elizabeth A; Misale, Michael; Visick, Karen L

    2013-12-01

    Biofilm formation by Vibrio fischeri is a complex process that requires multiple regulators. One such regulator, the NtrC-like response regulator SypG, controls biofilm formation and host colonization by V. fischeri via its impact on transcription of the symbiosis polysaccharide (syp) locus. SypG is predicted to activate syp transcription by binding to the syp enhancer (SE), a conserved sequence located upstream of four syp promoters. In this study, we performed an in-depth analysis of the sequences necessary for SypG to promote syp transcription and biofilm formation. We found that the SE sequence is necessary for SypG-mediated syp transcription, identified individual bases necessary for efficient activation, and determined that SypG is able to bind to syp promoter regions. We also identified SE sequences outside the syp locus and established that SypG recognizes these sequences as well. Finally, deletion of the SE sequence upstream of sypA led to defects in both biofilm formation and host colonization that could be restored by reintroducing the SE sequence into its native location in the chromosome. This work thus fills in critical gaps in knowledge of the Syp regulatory circuit by demonstrating a role for the SE sequence in SypG-dependent control of biofilm formation and host colonization and by identifying new putative regulon members. It may also provide useful insights into other bacteria, such as Vibrio vulnificus and Vibrio parahaemolyticus, that have syp-like loci and conserved SE sequences.

  7. LuxCDABE--transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri.

    Science.gov (United States)

    Kurvet, Imbi; Ivask, Angela; Bondarenko, Olesja; Sihtmäe, Mariliis; Kahru, Anne

    2011-01-01

    We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri Microtox™ test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) and (pSLlux) otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash-Assay test format was used that differently from Microtox test is also applicable for high throughput analysis. Toxic effects (30-s till 30-min EC(50)) of four heavy metals (Zn, Cd, Hg, Cu) and three organic chemicals (aniline, 3,5-dichloroaniline and 3,5-dichlorophenol) were studied. Both E. coli strains had comparable sensitivity and the respective 30-min EC(50) values highly correlated (log-log R(2) = 0.99; p E. coli, V. fischeri) was mercury whereas the lowest EC(50) values for Hg (0.04-0.05 mg/L) and highest EC(50) values for aniline (1,300-1,700 mg/L) were observed for E. coli strains. Despite of that, toxicity results obtained with both E. coli strains (pSLlux and pDNlux) significantly correlated with V. fischeri results (log-log R(2) = 0.70/0.75; p heavy metals to both E. coli strains up to three orders of magnitude, but had little or no complexing effect on organic compounds. Thus, P. luminescens luxCDABE-transformed E. coli strains can be successfully used for the acute toxicity screening of various types of organic chemicals and heavy metals and can replace V. fischeri in certain cases where the thermostability of luciferase >30 °C is crucial. The kinetic Flash Assay test format of the bioluminescence inhibition assay facilitates high throughput analysis. The assay medium, especially in case of testing heavy metals should be a compromise: optimal for the viability/luminescence of the recombinant test strain and of minimum complexing potential.

  8. Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: Focus on point miscalls and artefactual expansions

    Directory of Open Access Journals (Sweden)

    Ruby Edward G

    2008-03-01

    Full Text Available Abstract Background Sequence closure often represents the end-point of a genome project, without a system in place for subsequent improvement and refinement. Building on the genome project of Vibrio fischeri ES114, we used a comparative approach to identify and investigate genes that had a high likelihood of sequence error. Results Comparison of the V. fischeri ES114 genome with that of conspecific strain MJ11 identified 82 target loci in ES114 as containing likely errors, and thus of high-priority for resequencing. Analysis of the targets identified 75 loci in which an error had occurred, resulting in the correction of 10,457 base pairs to generate the new ES114 genomic sequence. A majority of the inaccurate loci involved frameshift errors, correction of which fused adjacent ORFs. Although insertions/deletions are thought to be rare in microbial genome assemblies, fourteen of the loci contained extraneous sequence of over 300 bp, likely due to imperfect contig ends that were misassembled in tandem rather than as overlapping segments. Additionally we updated the entire genome annotation with 113 new features including previously uncalled protein-coding genes, regulatory RNA genes and operon leader peptides, and we analyzed the transcriptional apparatus encoded by ES114. Conclusion We demonstrate that errors in microbial genome sequences, thought to largely be confined to point mutations, may also consist of other prevalent large-scale rearrangements such as insertions. Ongoing genome quality control and annotation programs are necessary to accompany technological advancements in data generation. These updates further advance V. fischeri as an important model for understanding intercellular communication and colonization of animal tissue.

  9. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system.

    Science.gov (United States)

    Septer, Alecia N; Bose, Jeffrey L; Lipzen, Anna; Martin, Joel; Whistler, Cheryl; Stabb, Eric V

    2015-01-01

    The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence. © 2014 John Wiley & Sons Ltd.

  10. Automated evaluation of pharmaceutically active ionic liquids' (eco)toxicity through the inhibition of human carboxylesterase and Vibrio fischeri.

    Science.gov (United States)

    Costa, Susana P F; Justina, Vanessa D; Bica, Katharina; Vasiloiu, Maria; Pinto, Paula C A G; Saraiva, M Lúcia M F S

    2014-01-30

    The toxicity of 16 pharmaceutical active ionic liquids (IL-APIs) was evaluated by automated approaches based on sequential injection analysis (SIA). The implemented bioassays were centered on the inhibition of human carboxylesterase 2 and Vibrio fischeri, in the presence of the tested compounds. The inhibitory effects were quantified by calculating the inhibitor concentration required to cause 50% of inhibition (EC50). The EC50 values demonstrated that the cetylpyridinium group was one of the most toxic cations and that the imidazolium group was the less toxic. The obtained results provide important information about the safety of the studied IL-APIs and their possible use as pharmaceutical drugs. The developed automated SIA methodologies are robust screening bioassays, and can be used as a generic tools to identify the (eco)toxicity of the structural elements of ILs, contributing to a sustainable development of drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Vibrio fischeri and Escherichia coli adhesion tendencies towards photolithographically modified nanosmooth poly (tert-butyl methacrylate polymer surfaces

    Directory of Open Access Journals (Sweden)

    Elena P Ivanova

    2008-09-01

    Full Text Available Elena P Ivanova1, Natasa Mitik-Dineva1, Radu C Mocanasu1, Sarah Murphy1, James Wang2, Grant van Riessen3, Russell J Crawford11Faculty Life and Social Sciences; 2IRIS, Swinburne University of Technology, Hawthorn, Victoria, Australia; 3Centre for Materials and Surface Science, La Trobe University, Melbourne, Victoria, AustraliaAbstract: This study reports the adhesion behavior of two bacterial species, Vibrio fischeri and Escherichia coli, to the photoresistant poly(tert-butyl methacrylate (P(tBMA polymer surface. The data has demonstrated that ultraviolet irradiation of P(tBMA was able to provide control over bacterial adhesion tendencies. Following photolithography, several of the surface characteristics of P(tBMA were found to be altered. Atomic force microscopy analysis indicated that photolithographically modified P(tBMA (henceforth termed ‘modified polymer’ appeared as a ‘nanosmooth’ surface with an average surface roughness of 1.6 nm. Although confocal laser scanning microscopy and scanning electron microscopy analysis clearly demonstrated that V. fischeri and E. coli presented largely different patterns of attachment in order to adhere to the same surfaces, both species exhibited a greater adhesion propensity towards the ‘nanosmooth’ surface. The adhesion of both species to the modified polymer surface appeared to be facilitated by an elevated production of extracellular polymeric substances when in contact with the substrate.Keywords: poly(tert-butylmethacrylate polymeric surfaces, surface nanotopography, bacterial attachment, extracellular polymeric substances

  12. Experimental and predicted acute toxicity of antibacterial compounds and their mixtures using the luminescent bacterium Vibrio fischeri.

    Science.gov (United States)

    Villa, Sara; Vighi, Marco; Finizio, Antonio

    2014-08-01

    This article investigates the bioluminescence inhibition effects of the antimicrobials triclocarban, triclosan and its metabolite methyl triclosan, using the marine bacterium Vibrio fischeri as the test organism (Microtox©). The concentration response analysis was performed for the three individual substances and for a mixture in which the three compounds were mixed in a ratio of the IC50 of the individual components (equitoxic ratio). Toxicity values (the median inhibitory concentration value, in mg L(-1)) in the decreasing order of sensitivity were triclosan (0.73)>triclocarban (0.91)>methyl-triclosan (1.76). The comparison of the experimental data with those obtained by using Quantitative Structure-Activity Relationship (QSAR) equations indicated that triclosan and triclocarban act as polar narcotic compounds towards V. fischeri, whereas methyl-triclosan acts as a narcotic (baseline toxicity). The toxicity of the mixture was measured experimentally and predicted by two models (CA: concentration addition; IA: independent action). The results showed that the observed mixture toxicity (IC50=0.23 mg L(-1)) had no significant differences from those predicted by both CA and IA models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Characterizing the Host and Symbiont Proteomes in the Association between the Bobtail Squid, Euprymna scolopes, and the Bacterium, Vibrio fischeri

    Science.gov (United States)

    Schleicher, Tyler R.; Nyholm, Spencer V.

    2011-01-01

    The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association. PMID:21998678

  14. Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri.

    Science.gov (United States)

    Morris, Andrew R; Darnell, Cynthia L; Visick, Karen L

    2011-10-01

    The marine bacterium Vibrio fischeri uses a biofilm to promote colonization of its eukaryotic host Euprymna scolopes. This biofilm depends on the symbiosis polysaccharide (syp) locus, which is transcriptionally regulated by the RscS-SypG two-component regulatory system. An additional response regulator (RR), SypE, exerts both positive and negative control over biofilm formation. SypE is a novel RR protein, with its three putative domains arranged in a unique configuration: a central phosphorylation receiver (REC) domain flanked by two effector domains with putative enzymatic activities (serine kinase and serine phosphatase). To determine how SypE regulates biofilm formation and host colonization, we generated a library of SypE domain mutants. Our results indicate that the N-terminus inhibits biofilm formation, while the C-terminus plays a positive role. The phosphorylation state of SypE appears to regulate these opposing activities, as disruption of the putative site of phosphorylation results in a protein that constitutively inhibits biofilm formation. Furthermore, SypE restricts host colonization: (i) sypE mutants with constitutive inhibitory activity fail to efficiently initiate host colonization and (ii) loss of sypE partially alleviates the colonization defect of an rscS mutant. We conclude that SypE must be inactivated to promote symbiotic colonization by V. fischeri. © 2011 Blackwell Publishing Ltd.

  15. Characterizing the host and symbiont proteomes in the association between the Bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri.

    Directory of Open Access Journals (Sweden)

    Tyler R Schleicher

    Full Text Available The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.

  16. An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Tong Deyan

    2006-06-01

    Full Text Available Abstract Background Biologists are becoming increasingly aware that the interaction of animals, including humans, with their coevolved bacterial partners is essential for health. This growing awareness has been a driving force for the development of models for the study of beneficial animal-bacterial interactions. In the squid-vibrio model, symbiotic Vibrio fischeri induce dramatic developmental changes in the light organ of host Euprymna scolopes over the first hours to days of their partnership. We report here the creation of a juvenile light-organ specific EST database. Results We generated eleven cDNA libraries from the light organ of E. scolopes at developmentally significant time points with and without colonization by V. fischeri. Single pass 3' sequencing efforts generated 42,564 expressed sequence tags (ESTs of which 35,421 passed our quality criteria and were then clustered via the UIcluster program into 13,962 nonredundant sequences. The cDNA clones representing these nonredundant sequences were sequenced from the 5' end of the vector and 58% of these resulting sequences overlapped significantly with the associated 3' sequence to generate 8,067 contigs with an average sequence length of 1,065 bp. All sequences were annotated with BLASTX (E-value Conclusion Both the number of ESTs generated from each library and GO categorizations are reflective of the activity state of the light organ during these early stages of symbiosis. Future analyses of the sequences identified in these libraries promise to provide valuable information not only about pathways involved in colonization and early development of the squid light organ, but also about pathways conserved in response to bacterial colonization across the animal kingdom.

  17. An Expanded Transposon Mutant Library Reveals that Vibrio fischeri δ-Aminolevulinate Auxotrophs Can Colonize Euprymna scolopes.

    Science.gov (United States)

    Lyell, Noreen L; Septer, Alecia N; Dunn, Anne K; Duckett, Drew; Stoudenmire, Julie L; Stabb, Eric V

    2017-03-01

    Libraries of defined mutants are valuable research tools but necessarily lack gene knockouts that are lethal under the conditions used in library construction. In this study, we augmented a Vibrio fischeri mutant library generated on a rich medium (LBS, which contains [per liter] 10 g of tryptone, 5 g of yeast extract, 20 g of NaCl, and 50 mM Tris [pH 7.5]) by selecting transposon insertion mutants on supplemented LBS and screening for those unable to grow on LBS. We isolated strains with insertions in alr, glr (murI), glmS, several heme biosynthesis genes, and ftsA, as well as a mutant disrupted 14 bp upstream of ftsQ Mutants with insertions in ftsA or upstream of ftsQ were recovered by addition of Mg2+ to LBS, but their cell morphology and motility were affected. The ftsA mutant was more strongly affected and formed cells or chains of cells that appeared to wind back on themselves helically. Growth of mutants with insertions in glmS, alr, or glr was recovered with N-acetylglucosamine (NAG), d-alanine, or d-glutamate, respectively. We hypothesized that NAG, d-alanine, or d-glutamate might be available to V. fischeri in the Euprymna scolopes light organ; however, none of these mutants colonized the host effectively. In contrast, hemA and hemL mutants, which are auxotrophic for δ-aminolevulinate (ALA), colonized at wild-type levels, although mutants later in the heme biosynthetic pathway were severely impaired or unable to colonize. Our findings parallel observations that legume hosts provide Bradyrhizobium symbionts with ALA, but they contrast with virulence phenotypes of hemA mutants in some pathogens. The results further inform our understanding of the symbiotic light organ environment.IMPORTANCE By supplementing a rich yeast-based medium, we were able to recover V. fischeri mutants with insertions in conditionally essential genes, and further characterization of these mutants provided new insights into this bacterium's symbiotic environment. Most notably, we

  18. Comparative evaluation of acute toxicity by Vibrio fischeri and fern spore based bioassays in the follow-up of toxic chemicals degradation by photocatalysis.

    Science.gov (United States)

    Marugán, Javier; Bru, David; Pablos, Cristina; Catalá, Myriam

    2012-04-30

    The development of efficient bioassays is a necessary step for cost-effective environmental monitoring and evaluation of novel decontamination technologies. Marine Vibrio fischeri kits have demonstrated to be extremely sensitive but lack of ecological relevance, especially when assessing impacts on freshwater higher organisms. A novel riparian are fern spore microbioassay could merge higher ecological relevance and reduced costs. The aim of this work is the comparative evaluation of the V. fischeri and fern spore bioassays for the follow up of detoxification processes of water contaminated with cyanide and phenol by advanced oxidation technologies, using heterogeneous photocatalysis as example. In both cases, EC(50) values differed significantly for V. fischeri commercial kit, V. fischeri lab cultures and Polystichum setiferum fern spores (1.9, 16 and 101 mg cyanide L(-1) and 27.0, 49.3 and 1440 mg phenol L(-1), respectively). Whereas V. fischeri bioassays are extremely sensitive and dilution series must be prepared, toxicant solutions can be directly applied to spores. Spore microbioassay was also useful in the follow up of photoxidation processes of cyanide and phenol, also reflecting the formation of intermediate degradation by-products even more toxic than phenol. We conclude that this new microbioassay is a promising cost-effective tool for the follow up of decontamination processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Automated evaluation of pharmaceutically active ionic liquids’ (eco)toxicity through the inhibition of human carboxylesterase and Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Susana P.F.; Justina, Vanessa D. [REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Bica, Katharina; Vasiloiu, Maria [Vienna University of Technology, Institute of Applied and Synthetic Chemistry, A-1060 Vienna (Austria); Pinto, Paula C.A.G., E-mail: ppinto@ff.up.pt [REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Saraiva, M. Lúcia M.F.S., E-mail: lsaraiva@ff.up.pt [REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal)

    2014-01-30

    Highlights: • IL-APIs toxicity on humans and aquatic environment was evaluated by inhibition assays. • The inhibition assays were implemented through automated screening bioassays. • Automation of bioassays enabled a rigorous control of the reaction conditions. • EC{sub 50} obtained provide vital information on IL-APIs safety and potential use as drugs. -- Abstract: The toxicity of 16 pharmaceutical active ionic liquids (IL-APIs) was evaluated by automated approaches based on sequential injection analysis (SIA). The implemented bioassays were centered on the inhibition of human carboxylesterase 2 and Vibrio fischeri, in the presence of the tested compounds. The inhibitory effects were quantified by calculating the inhibitor concentration required to cause 50% of inhibition (EC{sub 50}). The EC{sub 50} values demonstrated that the cetylpyridinium group was one of the most toxic cations and that the imidazolium group was the less toxic. The obtained results provide important information about the safety of the studied IL-APIs and their possible use as pharmaceutical drugs. The developed automated SIA methodologies are robust screening bioassays, and can be used as a generic tools to identify the (eco)toxicity of the structural elements of ILs, contributing to a sustainable development of drugs.

  20. The time-dependent stimulation of sodium halide salts on redox reactants, energy supply and luminescence in Vibrio fischeri.

    Science.gov (United States)

    Yu, Zhenyang; Zhang, Jing; Hou, Meifang

    2017-08-28

    The excess of halide ions (F(-), Cl(-), Br(-), I(-)) can cause adverse effects. Earlier studies demonstrated time-dependent stimulations of organic salts with halide ions on photobacteria. Therefore, inorganic ones with halide ions (e.g., NaX, X=F(-), Cl(-), Br(-), I(-)) were assumed to cause similar effects. In the present study, Vibrio fischeri was exposed to NaX. Results showed that the contents of favin mono-nucleotide (FMN), nicotinamide adenine dinucleotide (NADH), and nicotinamide adenine dinucleotide phosphate (NADPH) were stimulated by NaX with a time-dependent fashion. The maximum stimulations on FMN at 24h were 172%, 168%, 211% and 298% of the control (p<0.05) in NaF, NaCl, NaBr and NaI, respectively, with an order of NaF≈NaCl

  1. In silico Prediction and Docking of Tertiary Structure of LuxI, an Inducer Synthase of Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Mohammed Zaghlool Saeed Al-Khayyat

    2016-05-01

    Full Text Available Background: LuxI is a component of the quorum sensing signaling pathway in Vibrio fischeri responsible for the inducer synthesis that is essential for bioluminescence. Methods: Homology modeling of LuxI was carried out using Phyre2 and refined with the GalaxyWEB server. Five models were generated and evaluated by ERRAT, ANOLEA, QMEAN6, and Procheck. Results: Five refined models were generated by the GalaxyWEB server, with Model 4 having the greatest quality based on the QMEAN6 score of 0.732. ERRAT analysis revealed an overall quality of 98.9%, while the overall quality of the initial model was 54%. The mean force potential energy, as analyzed by ANOLEA, were better compared to the initial model. Sterochemical quality estimation by Procheck showed that the refined Model 4 had a reliable structure, and was therefore submitted to the protein model database. Drug Discovery Workbench V.2 was used to screen 2700 experimental compounds from the DrugBank database to identify inhibitors that can bind to the active site between amino acids 24 and 110. Ten compounds with high negative scores were selected as the best in binding. Conclusion: The model produced, and the predicted acteyltransferase binding site, could be useful in modeling homologous sequences from other microorganisms and the design of new antimicrobials.

  2. Predicting the ecotoxicity of ionic liquids towards Vibrio fischeri using genetic function approximation and least squares support vector machine.

    Science.gov (United States)

    Ma, Shuying; Lv, Min; Deng, Fangfang; Zhang, Xiaoyun; Zhai, Honglin; Lv, Wenjuan

    2015-01-01

    Ionic liquids (ILs) are widely used in industrial production for their unique physicochemical properties, and they are even regarded as green solvents. However, the recent study showed ILs might pose a potential risk to aquatic ecosystems. In the present work, the quantitative structure-activity relationship (QSAR) models, including genetic function approximation (GFA) and least squares support vector machine (LSSVM) were developed for predicting the ecotoxicity of ILs towards the marine bacterium Vibrio fischeri based on the descriptors calculated from cations and anions. Five descriptors were selected by GFA and used to develop the linear model. From the discussion of descriptors, the cation structure was the main factor to the toxicity, which mainly depended on the size, lipophilic, and 3D molecular structure of cations. In order to capture the nonlinear nature, the LSSVM model was also built for more accurately predicting the ecotoxicity. The GFA and LSSVM models were performed the rigorous internal and external validation, further verifying these models with excellent robustness and predictive ability. Therefore, both of models can be used for the prediction of the ecotoxicity of newly synthesized and untested ILs, and can provide reference information and theoretical guidance for designing and synthesizing safer and more eco-friendly ILs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.

    Science.gov (United States)

    Wang, Ying; Yang, Xianhai; Wang, Juying; Cong, Yi; Mu, Jingli; Jin, Fei

    2016-05-05

    In the present study, quantitative structure-activity relationship (QSAR) techniques based on toxicity mechanism and density functional theory (DFT) descriptors were adopted to develop predictive models for the toxicity of alkylated and parent aromatic hydrocarbons to Vibrio fischeri. The acute toxicity data of 17 aromatic hydrocarbons from both literature and our experimental results were used to construct QSAR models by partial least squares (PLS) analysis. With consideration of the toxicity process, the partition of aromatic hydrocarbons between water phase and lipid phase and their interaction with the target biomolecule, the optimal QSAR model was obtained by introducing aqueous freely dissolved concentration. The high statistical values of R(2) (0.956) and Q(CUM)(2) (0.942) indicated that the model has good goodness-of-fit, robustness and internal predictive power. The average molecular polarizability (α) and several selected thermodynamic parameters reflecting the intermolecular interactions played important roles in the partition of aromatic hydrocarbons between the water phase and biomembrane. Energy of the highest occupied molecular orbital (E(HOMO)) was the most influential descriptor which dominated the toxicity of aromatic hydrocarbons through the electron-transfer reaction with biomolecules. The results demonstrated that the adoption of freely dissolved concentration instead of nominal concentration was a beneficial attempt for toxicity QSAR modeling of hydrophobic organic chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Relationship between acute and chronic toxicity for prevalent organic pollutants in Vibrio fischeri based upon chemical mode of action.

    Science.gov (United States)

    Wang, Xiao H; Fan, Ling Y; Wang, Shuo; Wang, Yue; Yan, Li C; Zheng, Shan S; Martyniuk, Christopher J; Zhao, Yuan H

    2017-09-15

    Chemicals show diverse modes of action (MOAs) in aquatic organisms depending upon acute and chronic toxicity evaluations. Here, toxicity data for Vibrio fischeri involving 52 compounds for acute and chronic toxicity were used to determine the congruence of acute and chronic toxicity for assessing MOAs. Using toxic ratios, most of the compounds categorized into MOAs that included baseline, less inert or reactive compounds with acute toxicity were also categorized as baseline, less inert or reactive compounds with chronic toxicity. However, significantly different toxic effects were observed with acute and chronic toxicity for the reactive and specific-acting compounds. The acute-chronic toxic ratios were smaller and less variable for the baseline and less inert compounds, but were greater and more variable for the reactive and specific-acting compounds. Baseline and less inert compounds share same MOAs, but reactive and specific-acting compounds have different MOAs between acute and chronic toxicity. Bioconcentration processes cannot reach an equilibrium for highly hydrophilic and ionized compounds with short-term exposure, resulting in lower toxicity compared to long-term exposure. Pronounced differences for the antibiotics were not only due to the difference in bioconcentration, but also due to a predicted difference in MOAs during acute and chronic exposures. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A best​ comprehension about the toxicity of phenylsulfonyl carboxylates in Vibrio fischeri using quantitative structure activity/property relationship methods.

    Science.gov (United States)

    de Melo, Eduardo Borges; Martins, João Paulo Athaíde; Miranda, Eduardo Hösel; Ferreira, Márcia Miguel Castro

    2016-03-05

    Aromatic sulfones comprise a class of chemicals used in agrochemical and pharmaceutical industries and as floatation and extractant agents in petrochemical and metallurgy industries. In this study, new QSA(P)R studies were carried out to predict the toxicity against Vibrio fischeri of a set of 52 aromatic sulfones. The same approach was used to evaluate the relationship between these endpoint and the water solubility, another important environmental endpoint. The study resulted in models of good statistical quality and mechanistic interpretation with a possible correlation between the two endpoints, but the toxic effect is also likely to depend on other physicochemical properties. The use of the PLS2, a method not commonly used in QSA(P)R studies, also produced models of greater reliability, and the relationship between the two endpoints was reinforced to some degree. These results are useful for better understanding the process by which these compounds exert their environmental toxicity, thus aiding in the development of industrially useful compounds with less potential environmental damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells.

    Science.gov (United States)

    Altura, Melissa A; Heath-Heckman, Elizabeth A C; Gillette, Amani; Kremer, Natacha; Krachler, Anne-Marie; Brennan, Caitlin; Ruby, Edward G; Orth, Kim; McFall-Ngai, Margaret J

    2013-11-01

    We studied the Euprymna scolopes-Vibrio fischeri symbiosis to characterize, in vivo and in real time, the transition between the bacterial partner's free-living and symbiotic life styles. Previous studies using high inocula demonstrated that environmental V. fischeri cells aggregate during a 3 h period in host-shed mucus along the light organ's superficial ciliated epithelia. Under lower inoculum conditions, similar to the levels of symbiont cells in the environment, this interaction induces haemocyte trafficking into these tissues. Here, in experiments simulating natural conditions, microscopy revealed that at 3 h following first exposure, only ∼ 5 V. fischeri cells aggregated on the organ surface. These cells associated with host cilia and induced haemocyte trafficking. Symbiont viability was essential and mutants defective in symbiosis initiation and/or production of certain surface features, including the Mam7 protein, which is implicated in host cell attachment of V. cholerae, associated normally with host cilia. Studies with exopolysaccharide mutants, which are defective in aggregation, suggest a two-step process of V. fischeri cell engagement: association with host cilia followed by aggregation, i.e. host cell-symbiont interaction with subsequent symbiont-symbiont cell interaction. Taken together, these data provide a new model of early partner engagement, a complex model of host-symbiont interaction with exquisite sensitivity. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Antisocial luxO Mutants Provide a Stationary-Phase Survival Advantage in Vibrio fischeri ES114.

    Science.gov (United States)

    Kimbrough, John H; Stabb, Eric V

    2015-12-07

    The squid light organ symbiont Vibrio fischeri controls bioluminescence using two acyl-homoserine lactone pheromone-signaling (PS) systems. The first of these systems to be activated during host colonization, AinS/AinR, produces and responds to N-octanoyl homoserine lactone (C(8)-AHL). We screened activity of a P(ainS)-lacZ transcriptional reporter in a transposon mutant library and found three mutants with decreased reporter activity, low C(8)-AHL output, and other traits consistent with low ainS expression. However, the transposon insertions were unrelated to these phenotypes, and genome resequencing revealed that each mutant had a distinct point mutation in luxO. In the wild type, LuxO is phosphorylated by LuxU and then activates transcription of the small RNA (sRNA) Qrr, which represses ainS indirectly by repressing its activator LitR. The luxO mutants identified here encode LuxU-independent, constitutively active LuxO* proteins. The repeated appearance of these luxO mutants suggested that they had some fitness advantage during construction and/or storage of the transposon mutant library, and we found that luxO* mutants survived better and outcompeted the wild type in prolonged stationary-phase cultures. From such cultures we isolated additional luxO* mutants. In all, we isolated LuxO* allelic variants with the mutations P41L, A91D, F94C, P98L, P98Q, V106A, V106G, T107R, V108G, R114P, L205F, H319R, H324R, and T335I. Based on the current model of the V. fischeri PS circuit, litR knockout mutants should resemble luxO* mutants; however, luxO* mutants outcompeted litR mutants in prolonged culture and had much poorer host colonization competitiveness than is reported for litR mutants, illustrating additional complexities in this regulatory circuit. Our results provide novel insight into the function of LuxO, which is a key component of pheromone signaling (PS) cascades in several members of the Vibrionaceae. Our results also contribute to an increasingly appreciated

  8. Coordination of the arc regulatory system and pheromone-mediated positive feedback in controlling the Vibrio fischeri lux operon.

    Directory of Open Access Journals (Sweden)

    Alecia N Septer

    Full Text Available Bacterial pheromone signaling is often governed both by environmentally responsive regulators and by positive feedback. This regulatory combination has the potential to coordinate a group response among distinct subpopulations that perceive key environmental stimuli differently. We have explored the interplay between an environmentally responsive regulator and pheromone-mediated positive feedback in intercellular signaling by Vibrio fischeri ES114, a bioluminescent bacterium that colonizes the squid Euprymna scolopes. Bioluminescence in ES114 is controlled in part by N-(3-oxohexanoyl-L-homoserine lactone (3OC6, a pheromone produced by LuxI that together with LuxR activates transcription of the luxICDABEG operon, initiating a positive feedback loop and inducing luminescence. The lux operon is also regulated by environmentally responsive regulators, including the redox-responsive ArcA/ArcB system, which directly represses lux in culture. Here we show that inactivating arcA leads to increased 3OC6 accumulation to initiate positive feedback. In the absence of positive feedback, arcA-mediated control of luminescence was only ∼2-fold, but luxI-dependent positive feedback contributed more than 100 fold to the net induction of luminescence in the arcA mutant. Consistent with this overriding importance of positive feedback, 3OC6 produced by the arcA mutant induced luminescence in nearby wild-type cells, overcoming their ArcA repression of lux. Similarly, we found that artificially inducing ArcA could effectively repress luminescence before, but not after, positive feedback was initiated. Finally, we show that 3OC6 produced by a subpopulation of symbiotic cells can induce luminescence in other cells co-colonizing the host. Our results suggest that even transient loss of ArcA-mediated regulation in a sub-population of cells can induce luminescence in a wider community. Moreover, they indicate that 3OC6 can communicate information about both cell density

  9. Inhibition of SypG-induced biofilms and host colonization by the negative regulator SypE in Vibrio fischeri.

    Directory of Open Access Journals (Sweden)

    Andrew R Morris

    Full Text Available Vibrio fischeri produces a specific biofilm to promote colonization of its eukaryotic host, the squid Euprymna scolopes. Formation of this biofilm is induced by the sensor kinase RscS, which functions upstream of the response regulator SypG to regulate transcription of the symbiosis polysaccharide (syp locus. Biofilm formation is also controlled by SypE, a multi-domain response regulator that consists of a central regulatory receiver (REC domain flanked by an N-terminal serine kinase domain and a C-terminal serine phosphatase domain. SypE permits biofilm formation under rscS overexpression conditions, but inhibits biofilms induced by overexpression of sypG. We previously investigated the function of SypE in controlling biofilm formation induced by RscS. Here, we examined the molecular mechanism by which SypE naturally inhibits SypG-induced biofilms. We found that SypE's N-terminal kinase domain was both required and sufficient to inhibit SypG-induced biofilms. This effect did not occur at the level of syp transcription. Instead, under sypG-overexpressing conditions, SypE inhibited biofilms by promoting the phosphorylation of another syp regulator, SypA, a putative anti-sigma factor antagonist. Inhibition by SypE of SypG-induced biofilm formation could be overcome by the expression of a non-phosphorylatable SypA mutant, indicating that SypE functions primarily if not exclusively to control SypA activity via phosphorylation. Finally, the presence of SypE was detrimental to colonization under sypG-overexpressing conditions, as cells deleted for sypE outcompeted wild-type cells for colonization when both strains overexpressed sypG. These results provide further evidence that biofilm formation is critical to symbiotic colonization, and support a model in which SypE naturally functions to restrict biofilm formation, and thus host colonization, to the appropriate environmental conditions.

  10. Production of L-Asparaginase by the marine luminous bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    Fortythree strains of luminous bacteria, belonging to 4 species, (Vibrio harveyi, V. fischeri, Photobacterium leiognathi and P. phosphoreum) isolated from different marine samples, were examined for the production of L-asparaginase. Presence...

  11. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level.

    Science.gov (United States)

    Wang, Xiao H; Yu, Yang; Huang, Tao; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2016-01-01

    Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR < -1) to both species indicate that the bioconcentration potential of a chemical plays a very important role in the identification of excess toxicity and MOAs.

  12. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level.

    Directory of Open Access Journals (Sweden)

    Xiao H Wang

    Full Text Available Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW for baseline and less inert compounds indicate that the internal critical concentrations (CBRs approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR < -1 to both species indicate that the bioconcentration potential of a chemical plays a very important role in the identification of excess

  13. Development of a Facile and High-Throughput Bioluminescence Assay Using Vibrio fischeri to Determine the Chronic Toxicity of Contaminated Samples.

    Science.gov (United States)

    Nasuhoglu, Deniz; Westlund, Paul; Isazadeh, Siavash; Neamatallah, Sarah; Yargeau, Viviane

    2017-02-01

    Chronic toxicity testing using the luminescent bacterium, Vibrio fischeri, has recently been demonstrated to be a suitable bioassay for water quality monitoring. The toxicity evaluation is typically based on determining the EC50 at specific time points which may lead to overlooking the dynamic nature of luminescence response and limits information regarding the possible mechanisms of action of target compounds. This study investigated various approaches (standard, integral, and luminescence rate inhibition) to evaluate the chronic toxicity of three target compounds (atrazine, trimethoprim, and acetamiprid) using a 96-well plate based method. The chronic toxicity assay and the methods used for EC50 calculation provided in this work resulted in a high-throughput method of chronic toxicity testing and indicated lower EC50 than the values provided by the standard short term methods, indicating higher toxicity. This study emphasizes the need for additional chronic toxicity testing to further evaluate the toxicity of compounds or unknown samples.

  14. Growth on glucose decreases cAMP-CRP activity while paradoxically increasing intracellular cAMP in the light-organ symbiont Vibrio fischeri.

    Science.gov (United States)

    Colton, Deanna M; Stoudenmire, Julie L; Stabb, Eric V

    2015-09-01

    Proteobacteria often co-ordinate responses to carbon sources using CRP and the second messenger cyclic 3', 5'-AMP (cAMP), which combine to control transcription of genes during growth on non-glucose substrates as part of the catabolite-repression response. Here we show that cAMP-CRP is active and important in Vibrio fischeri during colonization of its host squid Euprymna scolopes. Moreover, consistent with a classical role in catabolite repression, a cAMP-CRP-dependent reporter showed lower activity in cells grown in media amended with glucose rather than glycerol. Surprisingly though, intracellular cAMP levels were higher in glucose-grown cells. Mutant analyses were consistent with predictions that CyaA was responsible for cAMP generation, that the EIIA(Glc) component of glucose transport could enhance cAMP production and that the phophodiesterases CpdA and CpdP consumed intracellular and extracellular cAMP respectively. However, the observation of lower cAMP levels in glycerol-grown cells seemed best explained by changes in cAMP export, via an unknown mechanism. Our data also indicated that cAMP-CRP activity decreased during growth on glucose independently of crp's native transcriptional regulation or cAMP levels. We speculate that some unknown mechanism, perhaps carbon-source-dependent post-translational modulation of CRP, may help control cAMP-CRP activity in V.fischeri. © 2015 John Wiley & Sons Ltd.

  15. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri.

    Science.gov (United States)

    Pan, Shu; Nikolakakis, Kiel; Adamczyk, Paul A; Pan, Min; Ruby, Edward G; Reed, Jennifer L

    2017-06-16

    Whereas genomes can be rapidly sequenced, the functions of many genes are incompletely or erroneously annotated because of a lack of experimental evidence or prior functional knowledge in sequence databases. To address this weakness, we describe here a model-enabled gene search (MEGS) approach that (i) identifies metabolic functions either missing from an organism's genome annotation or incorrectly assigned to an ORF by using discrepancies between metabolic model predictions and experimental culturing data; (ii) designs functional selection experiments for these specific metabolic functions; and (iii) selects a candidate gene(s) responsible for these functions from a genomic library and directly interrogates this gene's function experimentally. To discover gene functions, MEGS uses genomic functional selections instead of relying on correlations across large experimental datasets or sequence similarity as do other approaches. When applied to the bioluminescent marine bacterium Vibrio fischeri, MEGS successfully identified five genes that are responsible for four metabolic and transport reactions whose absence from a draft metabolic model of V. fischeri caused inaccurate modeling of high-throughput experimental data. This work demonstrates that MEGS provides a rapid and efficient integrated computational and experimental approach for annotating metabolic genes, including those that have previously been uncharacterized or misannotated. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    Science.gov (United States)

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  17. Densities, cellulases, alginate and pectin lyases of luminous and other heterotrophic bacteria associated with marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    enzymes. No luminous bacteria examined produced cellulases, but both V. harveyi and V. fischeri strains produced substantial amounts of alginate and pectin lyases. In contrast, cellulase activities were pronounced in non-luminous vibrio, pseudomonad...

  18. Antimicrobial effect of dietary oregano essential oil against Vibrio bacteria in shrimps

    OpenAIRE

    Gracia-Valenzuela M.H.; Vergara-Jiménez M.J.; Baez-Flores M.E.; Cabrera-Chavez F.

    2014-01-01

    The effect of dietary oregano essential oils on the growth of Vibrio bacteria in shrimps was evaluated. Shrimps were fed: (i) food with oregano oil with a high level of thymol; (ii) food with oregano oil with a high level of carvacrol, and (iii) food without oregano oil (the control). The animals were infected by three species of Vibrio (vulnificus, parahaemolyticus and cholerae). The microbial counts of Vibrio species were significantly lower (p

  19. In silico modelling for predicting the cationic hydrophobicity and cytotoxicity of ionic liquids towards the Leukemia rat cell line, Vibrio fischeri and Scenedesmus vacuolatus based on molecular interaction potentials of ions.

    Science.gov (United States)

    Cho, C-W; Ranke, J; Arning, J; Thöming, J; Preiss, U; Jungnickel, C; Diedenhofen, M; Krossing, I; Stolte, S

    2013-10-01

    In this study we present prediction models for estimating in silico the cationic hydrophobicity and the cytotoxicity (log [1/EC50]) of ionic liquids (ILs) towards the Leukemia rat cell line (IPC-81), the marine bacterium Vibrio fischeri and the limnic green algae Scenedesmus vacuolatus using linear free energy relationship (LFER) descriptors computed by COSMO calculations. The LFER descriptors used for the prediction model (i.e. excess molar refraction (E), dipolarity/polarizability (S), hydrogen-bonding acidity (A), hydrogen-bonding basicity (B) and McGowan volume (V)) were calculated using sub-descriptors (sig2, sig3, HBD3, HBA4, MR, and volume) derived from COSMO-RS, COSMO and OBPROP. With the combination of two solute descriptors (B, V) of the cation we were able to predict cationic hydrophobicity values (log ko ) with r (2) = 0.987 and standard error (SE) = 0.139 log units. By using the calculated log k o values, we were able to deduce a linear toxicity prediction model. In the second prediction study for the cytotoxicity of ILs, analysis of descriptor sensitivity helped us to determine that the McGowan volume (V) terms of the cation was the most important predictor of cytotoxicity and to simplify prediction models for cytotoxicity of ILs towards the IPC-81 (r (2) of 0.778, SE of 0.450 log units), Vibrio fischeri (r (2) of 0.762, SE of 0.529 log units) and Scenedesmus vacuolatus (r (2) of 0.776, SE of 0.825 log units). The robustness and predictivity of the two models for IPC-81 and Vibrio fischeri were checked by comparing the calculated SE and r (2) (coefficient of determination) values of the test set.

  20. Time- and anion-dependent stimulation on triphosphopyridine nucleotide followed by antioxidant responses in Vibrio fischeri after exposure to 1-ethyl-3-methylimidazolium salts.

    Science.gov (United States)

    Yu, ZhenYang; Mo, LingYun; Zhang, Jing; Liu, ShuShen

    2016-11-01

    A toxicity database of over 157 ionic liquids (ILs) was established on Vibrio fischeri (VF). The database contained mainly monotonic concentration-response relationship, and its application in risk assessment was challenged by potential non-monotonic hormetic effects of ILs. In the present study, the hormetic effects of 1-ethyl-3-methylimidazolium salts ([emim]X, X = BF4, Cl and Br) were confirmed on VF, and biochemical explanations were explored in a time-dependent manner. On luminescence, [emim]BF4 showed inhibitory effects compared with the control, and the median effective concentration (EC50) increased from 3.15E-02 to 8.88E-02 mol/L from 0.25 to 24 h. Notably, [emim]BF4 also showed stimulatory effects at 18 h when the maximum stimulation (Emin) was 51.8% higher than the control, and at 24 h when the Emin increased to 120% higher than the control. Compared with [emim]BF4, [emim]Cl had higher EC50 values which increased over time, while it had less maximum stimulation which also increased over time. In results of [emim]Br, there were only inhibitory effects. At the biochemical level, the stimulatory effects of [emim]BF4 and [emim]Cl on triphosphopyridine nucleotide (NADPH) and nicotinamide adenine dinucleotide (NADH) were earlier than those on luminescence. Moreover, NAD(P)H showed stimulation in [emim]Br which did not have hormetic effects on luminescence. Meanwhile, the effects of [emim]X on flavin mononucleotide, adenosine-triphosphate, reactive oxygen species, superoxide dismutase, catalase, reduced glutathione and lipid peroxidases showed consistent time-dependent changes with those on luminescence. The results indicated different roles between NAD(P)H and other biochemical indices, e.g., the antioxidant responses, in the stimulation of [emim]X on luminescence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Coexpression of luxA and luxB genes of Vibrio fischeri in NIH3T3 mammalian cells and evaluation of its bioluminescence activities.

    Science.gov (United States)

    Tehrani, Golnaz Asaadi; Mirzaahmadi, Sina; Bandehpour, Mojgan; Kazemi, Bahram

    2014-02-01

    Expression of bacterial luciferase enzyme (lux) in eukaryotic cells would provide a new bioreporter system for in vivo imaging and diagnostics technology. In spite of this, until now only a few efforts have been made to express bacterial luciferase enzyme in eukaryotic cells. We attempted to synthesize an expression construct of luxA and luxB genes from Vibrio fischeri. The luxA and luxB genes were cloned into the MCS of pTZ57R via the 5' kpnI, BamHI and BamHI, EcoRI restriction sites to generate pTZ57R/luxA and pTZ57R/luxB respectively, then newly synthesized constructs were cleaved with the same enzymes and respectively cloned into the pcDNA3.1(+) (Hyg) and pcDNA3.1(+) (Neo) expression vectors to create pcDNA3.1(+) (Hyg)/luxA and pcDNA3.1(+) (neo)/luxB. Recombinant constructs were cotransfected to the NIH3T3 cell line. Gene expression was confirmed by reverse transcription-polymerase chain reaction, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting; in addition, bioluminescence characteristics of transfected NIH3T3 cell lines were evaluated by decanal supplement. In conclusion, in the current research, separate vector systems were constructed, which are composed of bacterial luciferase genes (luxA and luxB) that accordingly have not already been reported. These results hold promise toward the potential development of an autonomous light-generating lux reporter system in eukaryotic cells. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Determination of drugs in surface water and wastewater samples by liquid chromatography-mass spectrometry: Methods and preliminary results including toxicity studies with Vibrio fischeri

    Science.gov (United States)

    Farre, M.; Ferrer, I.; Ginebreda, A.; Figueras, M.; Olivella, L.; Tirapu, L.; Vilanova, M.; Barcelo, D.

    2001-01-01

    In the present work a combined analytical method involving toxicity and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) was developed for the determination of pharmaceutical compounds in water samples. The drugs investigated were the analgesics: ibuprofen, ketoprofen, naproxen, and diclofenac, the decomposition product of the acetyl salicylic acid: salicylic acid and one lipid lowering agent, gemfibrozil. The selected compounds are acidic substances, very polar and all of them are analgesic compounds that can be purchased without medical prescription. The developed protocol consisted, first of all, on the use Microtox?? and ToxAlert??100 toxicity tests with Vibrio fischeri for the different pharmaceutical drugs. The 50% effective concentration (EC50) values and the toxicity units (TU) were determined for every compound using both systems. Sample enrichment of water samples was achieved by solid-phase extraction procedure (SPE), using the Merck LiChrolut?? EN cartridges followed by LC-ESI-MS. Average recoveries loading 1 l of samples with pH=2 varied from 69 to 91% and the detection limits in the range of 15-56 ng/l. The developed method was applied to real samples from wastewater and surface-river waters of Catalonia (north-east of Spain). One batch of samples was analyzed in parallel also by High Resolution Gas Chromatography coupled with Mass Spectrometry (HRGC-MS) and the results have been compared with the LC-ESI-MS method developed in this work. ?? 2001 Elsevier Science B.V. All rights reserved.

  3. EVOLUTIONARY PERSPECTIVES IN A MUTUALISM OF SEPIOLID SQUID AND BIOLUMINESCENT BACTERIA: COMBINED USAGE OF MICROBIAL EXPERIMENTAL EVOLUTION AND TEMPORAL POPULATION GENETICS

    OpenAIRE

    Soto, W.; Punke, E. B.; Nishiguchi, M.K.

    2012-01-01

    The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal–bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers a...

  4. EVOLUTIONARY PERSPECTIVES IN A MUTUALISM OF SEPIOLID SQUID AND BIOLUMINESCENT BACTERIA: COMBINED USAGE OF MICROBIAL EXPERIMENTAL EVOLUTION AND TEMPORAL POPULATION GENETICS

    Science.gov (United States)

    Soto, W.; Punke, E. B.; Nishiguchi, M. K.

    2013-01-01

    The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal–bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000–20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation. PMID:22519773

  5. Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.I. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Garcia-Käufer, M. [University Medical Centre Freiburg, Department of Environmental Health Sciences, 115 B, Breisacher Straße, 79106 Freiburg (Germany); Hapeshi, E. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Menz, J. [Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg (Germany); Kostarelos, K.; Fatta-Kassinos, D. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Kümmerer, K., E-mail: Klaus.Kuemmerer@uni.leuphana.de [Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg (Germany)

    2013-04-15

    Ofloxacin (OFL), a broad-spectrum and widespread-used photolabile fluoroquinolone, is frequently found in treated wastewaters, aquatic and terrestrial ecosystems leading to increasing concern during the past decades regarding its effects to the environment and human health. The elimination of OFL and other xenobiotics by the application of advanced oxidation processes using photolytic (PL) and photocatalytic (PC) treatments seems promising. However, an integrated assessment scheme is needed, in which, not only the removal of the parent compound, but also the effects of the photo-transformation products (PTPs) are investigated. For this purpose, in the present study, a chronic ecotoxic assessment using representative bacteria of marine and terrestrial ecosystems and a cytostatic and genotoxic evaluation using hepatoma cell line were performed. PL and PC treatments of OFL were applied using UV radiation. The photo-transformation of OFL during the treatments was monitored by DOC measurements and UPLC–MS/MS analysis. The chronic ecotoxicity of OFL and treated samples was evaluated using Pseudomonas putida and Vibrio fischeri; whereas the cytostasis and genotoxicity were estimated by the cytokinesis-block micronucleus assay (CBMN). The main results suggest that photo-transformation of OFL took place during these treatments since the concentration of OFL decreased when the irradiation time increased, as quantified by UPLC–MS/MS analysis, and this was not coupled with an analogous DOC removal. Furthermore, nine compounds were identified as probable PTPs formed through piperazinyl dealkylation and decarboxylation. The ecotoxicity of treated solutions to the bacteria studied decreased while the cytostasis to the hepatoma cell line remained at low levels during both treatments. However, the genotoxicity to the hepatoma cell line demonstrated a different pattern in which treated samples induced a greater number of MNi for the 4–16 min of irradiation (p < 0.05) during

  6. Spontaneous phenotypic suppression of GacA-defective Vibrio fischeri is achieved via mutation of csrA and ihfA.

    Science.gov (United States)

    Foxall, Randi L; Ballok, Alicia E; Avitabile, Ashley; Whistler, Cheryl A

    2015-09-16

    Symbiosis defective GacA-mutant derivatives of Vibrio fischeri are growth impaired thereby creating a selective advantage for growth-enhanced spontaneous suppressors. Suppressors were isolated and characterized for effects of the mutations on gacA-mutant defects of growth, siderophore activity and luminescence. The mutations were identified by targeted and whole genome sequencing. Most mutations that restored multiple phenotypes were non-null mutations that mapped to conserved domains in or altered expression of CsrA, a post-transcriptional regulator that mediates GacA effects in a number of bacterial species. These represent an array of unique mutations compared to those that have been described previously. Different substitutions at the same amino acid residue were identified allowing comparisons of effects such as at the R6 residue, which conferred relative differences in luminescence and siderophore levels. The screen revealed residues not previously identified as critical for function including a single native alanine. Most csrA mutations enhanced luminescence more than siderophore activity, which was especially evident for mutations predicted to reduce the amount of CsrA. Although CsrA mutations compensate for many known GacA mutant defects, not all CsrA suppressors restore symbiotic colonization. Phenotypes of a suppressor allele of ihfA that encodes one subunit of the integration host factor (IHF) heteroduplex indicated the protein represses siderophore and activates luminescence in a GacA-independent manner. In addition to its established role in regulation of central metabolism, the CsrA regulator represses luminescence and siderophore as an intermediate of the GacA regulatory hierachy. Siderophore regulation was less sensitive to stoichiometry of CsrA consistent with higher affinity for the targets of this trait. The lack of CsrA null-mutant recovery implied these mutations do not enhance fitness of gacA mutants and alluded to this gene being

  7. Antimicrobial effect of dietary oregano essential oil against Vibrio bacteria in shrimps

    Directory of Open Access Journals (Sweden)

    Gracia-Valenzuela M.H.

    2014-01-01

    Full Text Available The effect of dietary oregano essential oils on the growth of Vibrio bacteria in shrimps was evaluated. Shrimps were fed: (i food with oregano oil with a high level of thymol; (ii food with oregano oil with a high level of carvacrol, and (iii food without oregano oil (the control. The animals were infected by three species of Vibrio (vulnificus, parahaemolyticus and cholerae. The microbial counts of Vibrio species were significantly lower (p <0.05 in tissues from animals whose food was supplemented with oregano oil. We concluded that dietary supplementation of shrimps with oregano oil provides antimicrobial activity into the body of the penaeids.

  8. Qualité de l'eau ? Détermination de l'effet inhibiteur d'échantillons d'eau sur la luminescence de Vibrio fischeri (Essai de bactéries luminescentes) : Partie 3: Méthode utilisant des bactéries lyophilisées

    CERN Document Server

    International Organization for Standardization. Geneva

    1998-01-01

    Qualité de l'eau ? Détermination de l'effet inhibiteur d'échantillons d'eau sur la luminescence de Vibrio fischeri (Essai de bactéries luminescentes) : Partie 3: Méthode utilisant des bactéries lyophilisées

  9. Infection Vibrio sp. Bacteria on Kappaphycus Seaweed Varieties Brown and Green

    Science.gov (United States)

    Irmawati, Yuni; Sudirjo, Fien

    2017-10-01

    Disease in seaweed or ice-ice, until today is still a major problem in the cultivation of seaweed. Changes in extreme environmental conditions is a trigger factor of ice-ice, which can result in seaweed susceptible to infection with pathogenic microorganisms, such as bacteria Vibrio sp. This research aims to determine the bacteria Vibrio sp. infection in seaweed Kappaphycus varieties of brown and green. Vibrio sp. bacteria isolated in the infected seaweed thallus ice-ice, grown on TCBS media, purification, gram staining and biochemical tests. Vibrio sp. infected to seaweed Kappaphycus brown and green varieties in containers controlled by different density, 105 CFU/ml, 106 CFU/ml and 107CFU/ml. Observations were made to change clinical effect in thallus seaweed for 14 days of observation. The results obtained show that the levels of infection bacteria Vibrio sp. higher in seaweed Kappaphycus green varieties both in density 105 CFU/ml, 106 CFU/ml and 107CFU/ml, when compared with varieties brown.

  10. Screening for antibacterial activity in 72 species of wood-colonizing fungi by the Vibrio fisheri bioluminescence method.

    Science.gov (United States)

    Zrimec, Maja Berden; Zrimec, Alexis; Slanc, Petra; Kac, Javor; Kreft, Samo

    2004-01-01

    Resistance of pathogenic bacteria to antibiotics leads scientists to discover new antibacterial drugs. Ninety samples of wood-colonizing fungi were cultivated on agar plates, and their extracts tested for antibacterial activity using the Vibrio fischeri bioluminescence test. Two fungi species, Serpula lacrymans and Nectria vilior, were found to be a potential new source of thermostable antibiotics. Vibrio fischeri bioluminescence test was found to be a useful method for antibacterial activity screening from the samples of natural origin. Copyright 2004 WILEY-VCH Verlag GmbH & Co.

  11. Quorum Sensing in the Squid-Vibrio Symbiosis

    Directory of Open Access Journals (Sweden)

    Tim Miyashiro

    2013-08-01

    Full Text Available Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization.

  12. Quorum Sensing in the Squid-Vibrio Symbiosis

    Science.gov (United States)

    Verma, Subhash C.; Miyashiro, Tim

    2013-01-01

    Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization. PMID:23965960

  13. Quorum sensing in the squid-Vibrio symbiosis.

    Science.gov (United States)

    Verma, Subhash C; Miyashiro, Tim

    2013-08-07

    Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization.

  14. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi.

    OpenAIRE

    Byers, D M

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit p...

  15. Ingestion of bacteria overproducing DnaK attenuates Vibrio infection of Artemia franciscana larvae

    Science.gov (United States)

    Dhaene, Till; Defoirdt, Tom; Boon, Nico; MacRae, Thomas H.; Sorgeloos, Patrick; Bossier, Peter

    2009-01-01

    Feeding of bacterially encapsulated heat shock proteins (Hsps) to invertebrates is a novel way to limit Vibrio infection. As an example, ingestion of Escherichia coli overproducing prokaryotic Hsps significantly improves survival of gnotobiotically cultured Artemia larvae upon challenge with pathogenic Vibrio campbellii. The relationship between Hsp accumulation and enhanced resistance to infection may involve DnaK, the prokaryotic equivalent to Hsp70, a major molecular chaperone in eukaryotic cells. In support of this proposal, heat-stressed bacterial strains LVS 2 (Bacillus sp.), LVS 3 (Aeromonas hydrophila), LVS 8 (Vibrio sp.), GR 8 (Cytophaga sp.), and GR 10 (Roseobacter sp.) were shown in this work to be more effective than nonheated bacteria in protecting gnotobiotic Artemia larvae against V. campbellii challenge. Immunoprobing of Western blots and quantification by enzyme-linked immunosorbent assay revealed that the amount of DnaK in bacteria and their ability to enhance larval resistance to infection by V. campbellii are correlated. Although the function of DnaK is uncertain, it may improve tolerance to V. campbellii via immune stimulation, a possibility of significance from a fundamental perspective and also because it could be applied in aquaculture, a major method of food production. PMID:19373565

  16. Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature.

    Science.gov (United States)

    Holzman, T F; Baldwin, T O

    1980-01-01

    Upon limited proteolysis of luciferases from the luminous marine bacteria Photobacterium fischeri, Photobacterium phosphoreum, and Beneckea harveyi, the rate of loss of luciferase activity is the same as the rate of loss of the heavier subunit of all three enzymes. It thus appears that the larger subunit of the luciferase from P. phosphoreum should be designated alpha based on its apparent homology with the alpha subunits of the luciferases from B. harveyi and P. fischeri. The luciferase from B. harveyi is more sensitive to chymotrypsin than to trypsin; the luciferases of the Photobacterium species are more sensitive to trypsin than to chymotrypsin. Proteolytic inactivation of all three luciferases results from hydrolysis of a few peptide bonds in the alpha subunit; the proteolytic fragments from the three luciferases in 0.50 M phosphate are approximately the same size, indicating that the three enzymes have a protease-labile region at about the same position in the primary structure of their alpha subunits. Phosphate stabilizes all three luciferases against inactivation by proteases. Formation and degradation of intermediate species derived from the alpha subunits are readily observable in all three luciferases. Phosphate alters both the rate of product formation and the sites of peptide bond scission. The beta subunits of the luciferases from the two Photobacterium species, unlike the enzyme of B. harveyi, appear to be degraded in buffers containing low concentrations of phosphate; in high-phosphate buffers, the beta subunits of all three luciferases appear to resist proteases. Analysis of native and chymotrypsin-inactivated P. fischeri and P. phosphoreum luciferases in the analytical ultracentrifuge indicates that, as with B. harveyi luciferase, the products of limited proteolysis do not dissociate under nondenaturing conditions. The fact that the luciferases from evolutionarily diverse species of luminous bacteria have protease-sensitive bonds in the same

  17. Distribution of luminous bacteria and bacterial luminescence in the equatorial region of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    and 500 m, and a free living pattern in the surface samples. Vibrio fischeri contributed to more than 45% of the total luminous bacteria collected for the seawater samples, while, V. harveyi was the dominant species (53%) associated with the zooplankton...

  18. Symbiosis in Marine Luminous Bacteria

    Science.gov (United States)

    1993-01-01

    1992) Detection of the light organ symbiont Vibrio fischeri in Hawaiian seawater using lux gene probes. Appl. Environ. Microbiol. 58:942-947. 3. Lee, K...H., and E.G. Ruby (1993) Evidence of viable but non-culturable symbiotic Vibrio fischeri in Hawaiian seawater. Abstr. Gen. Meet. Amer. Soc...Microbiol. 93:258. 4. Lee, K.-H., and E.G. Ruby. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis. (in

  19. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis

    OpenAIRE

    Foster, Jamie S.; Khodadad, Christina L. M.; Ahrendt, Steven R.; Mirina L. Parrish

    2013-01-01

    The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, ...

  20. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    Directory of Open Access Journals (Sweden)

    Sanchez-Alberola Neus

    2012-02-01

    Full Text Available Abstract Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an

  1. Isolation and Characterization of Bacteria Colonizing Acartia tonsa Copepod Eggs and Displaying Antagonist Effects against Vibrio anguillarum, Vibrio alginolyticus and Other Pathogenic Strains

    Directory of Open Access Journals (Sweden)

    Mahammed Zidour

    2017-10-01

    Full Text Available Copepods represent a major source of food for many aquatic species of commercial interest for aquaculture such as mysis shrimp and early stages of fishes. For the purpose of this study, the culturable mesophilic bacterial flora colonizing Acartia tonsa copepod eggs was isolated and identified. A total of 175 isolates were characterized based on their morphological and biochemical traits. The majority of these isolates (70% were Gram-negative bacteria. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS was used for rapid identification of bacterial isolates. Here, 58% of isolates were successfully identified at the genus level and among them, 54% were identified at the species level. These isolates belong to 12 different genera and 29 species. Five strains, identified as Bacillus pumilus, named 18 COPS, 35A COPS, 35R COPS, 38 COPS, and 40A COPS, showed strong antagonisms against several potential fish pathogens including Vibrio alginolyticus, V. anguillarum, Listeria monocytogenes, and Staphylococcus aureus. Furthermore, using a differential approach, we show that the antimicrobial activity of the 35R COPS strain is linked primarily to the production of antimicrobial compounds of the amicoumacin family, as demonstrated by the specific UV-absorbance and the MS/MS fragmentation patterns of these compounds.

  2. Occurrence and distribution of bacteria indicators, chemical tracers and pathogenic vibrios in Singapore coastal waters.

    Science.gov (United States)

    Goh, Shin Giek; Bayen, Stéphane; Burger, David; Kelly, Barry C; Han, Ping; Babovic, Vladan; Gin, Karina Yew-Hoong

    2017-01-15

    Water quality in Singapore's coastal area was evaluated with microbial indicators, pathogenic vibrios, chemical tracers and physico-chemical parameters. Sampling sites were grouped into two clusters (coastal sites at (i) northern and (ii) southern part of Singapore). The coastal sites located at northern part of Singapore along the Johor Straits exhibited greater pollution. Principal component analysis revealed that sampling sites at Johor Straits have greater loading on carbamazepine, while turbidity poses greater influence on sampling sites at Singapore Straits. Detection of pathogenic vibrios was also more prominent at Johor Straits than the Singapore Straits. This study examined the spatial variations in Singapore's coastal water quality and provided the baseline information for health risk assessment and future pollution management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The roles of haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaeus monodon shrimp.

    Science.gov (United States)

    van de Braak, C B T; Botterblom, M H A; Taverne, N; van Muiswinkel, W B; Rombout, J H W M; van der Knaap, W P W

    2002-10-01

    In order to study the reaction of Penaeus monodon haemocytes, live Vibrio anguillarum bacteria were injected and the shrimp were periodically sampled. Immuno-double staining analysis with specific antisera against the haemocyte granules and bacteria showed that large numbers of haemocytes encapsulated the bacteria at the site of injection. A rapid decrease of live circulating bacteria was detected in the haemolymph. Bacterial clearance in the haemolymph was induced by humoral factors, as observed by agglutinated bacteria, and followed by uptake in different places in the body. Bacteria mainly accumulated in the lymphoid organ (LO), where they, or their degradation products, could be detected for at least 7 days after injection. The LO consists of folded tubules with a central haemal lumen and a wall, layered with cells. The haemolymph, including the antigens, seemed to migrate from the central tubular lumen through the wall, where the bacteria are arrested and their degradation is started. Electron microscopy of the LO revealed the presence of many phagocytic cells that morphologically resemble small-granular haemocytes. It is proposed that haemocytes settle in the tubule walls before they phagocytose. Immunostaining suggests that many of the haemocytes degranulate in the LO, producing a layer of fibrous material in the outer tubule wall. These findings might contribute to the reduced haemocyte concentration in the haemolymph of diseased animals or following injection of foreign material. It is proposed that the LO is a filter for virtually all foreign material encountered in the haemolymph. Observations from the present study are similar to clearance mechanisms in the hepatic haemolymph vessel in most decapod crustaceans that do not possess a LO. The experimental shrimp appeared to contain many LO spheroids, where bacterial antigens were finally observed as well. It is proposed that the spheroids have a degradation function for both bacterial and viral material

  4. The modulation of catecholamines to the immune response against bacteria Vibrio anguillarum challenge in scallop Chlamys farreri.

    Science.gov (United States)

    Zhou, Zhi; Wang, Lingling; Shi, Xiaowei; Zhang, Huan; Gao, Yang; Wang, Mengqiang; Kong, Pengfei; Qiu, Limei; Song, Linsheng

    2011-12-01

    Catecholamines are pivotal signal molecules in the neuroendocrine-immune regulatory network, and implicated in the modulation of immune response. In the present study, the activities of some immune-related enzymes and the concentration of catecholamines were determined in circulating haemolymph of scallops Chlamys farreri after bacteria Vibrio anguillarum challenge. The activities of superoxide dismutase (SOD), catalase (CAT) and lysozyme (LYZ) increased significantly and reached 610 U mg(-1) at 12 h, 37.6 U mg(-1) at 6 h and 261.5 U mg(-1) at 6 h after bacteria challenge, respectively. The concentration of norepinephrine, epinephrine and dopamine also increased significantly and reached 114.9 ng mL(-1) at 12 h, 86.9 ng mL(-1) at 24 h and 480.4 pg mL(-1) at 12 h after bacteria challenge, respectively. Meanwhile, the activities of these immune-related enzymes in haemolymph were monitored in those scallops which were challenged by bacteria V. anguillarum and stimulated simultaneously with norepinephrine, epinephrine and adrenoceptor antagonist. The injection of norepinephrine and epinephrine repressed significantly the induction of bacteria challenge on the activities of immune-related enzymes, and they were reduced to about half of that in the control groups. The blocking of α and β-adrenoceptor by antagonist only repressed the increase of CAT and LYZ activities significantly, while no significant effect was observed on the increase of SOD activities. The collective results indicated that scallop catecholaminergic neuroendocrine system could be activated by bacteria challenge to release catecholamines after the immune response had been triggered, and the immune response against bacteria challenge could been negatively modulated by norepinephrine, epinephrine, and adrenoceptor antagonist. This information is helpful to further understand the immunomodulation of catecholamines in scallops. Copyright © 2011. Published by Elsevier Ltd.

  5. Occurrence of Vibrio species, beta-lactam resistant Vibrio species, and indicator bacteria in ballast and port waters of a tropical harbor.

    Science.gov (United States)

    Ng, Charmaine; Goh, Shin Giek; Saeidi, Nazanin; Gerhard, William A; Gunsch, Claudia K; Gin, Karina Yew Hoong

    2018-01-01

    Ballast water discharges are potential sources for the spread of invasive and pathogenic aquatic organisms. Ballast waters from six ships docked in the Port of Singapore were tested to determine if indictor organisms fell within proposed standards for ballast water discharge according to regulation D-2 of the Ballast Water Management Convention (BWMC) guidelines. Vibrio species were cultured on media supplemented with beta-lactam antibiotics to determine the presence of antibiotic resistant Vibrio species in the ballast waters of these vessels. Indicator organisms were quantified using culture media Colilert-18 and Enterolert in ballast waters of six ships docked in a tropical harbor, with uptake from different geographical locations. Of the six ships, one had ballast water originating from the Persian Gulf, another from the East China Sea, and four from the South China Sea. Two of the six ships which carried ballast waters from the East China Sea and the South China Sea did not meet the D-2 stipulated requirements of the Ballast Water Management Convention for indicator organisms with Enterococci values more than three times higher than the acceptable limit of 110 MPN/100mL), and Vibrio parahaemolyticus (2 to >110 MPN/100mL) were detected in at least one of six ballast water samples. Using thiosulfate-citrate-bile salts-sucrose agar (TCBS) supplemented with beta-lactam antibiotics (meropenem, ceftazidime), 11 different Vibrio species, exhibiting resistance to beta-lactam antibiotics were isolated; with Vibrio campbellii (44%) and Vibrio alginolyticus (15%) the most detected antibiotic resistant Vibrio species. A practical approach of prioritized screening of high-risk vessels should be conducted to ensure that the water quality meets D-2 standards prior to discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Chemical communication in bacteria

    Science.gov (United States)

    Suravajhala, Srinivasa Sandeep; Saini, Deepak; Nott, Prabhu

    Luminescence in Vibrio fischeri is a model for quorum-sensing-gene-regulation in bacteria. We study luminescence response of V. fischeri to both internal and external cues at the single cell and population level. Experiments with ES114, a wild-type strain, and ainS mutant show that luminescence induction in cultures is not always proportional to cell-density and there is always a basal level of luminescence. At any given concentration of the exogenously added signals, C6-HSL and C8-HSL, luminescence per cell reaches a maximum during the exponential phase and decreases thereafter. We hypothesize that (1) C6-HSL production and LuxR activity are not proportional to cell-density, and (2) there is a shift in equilibrium from C6-HSL to C8-HSL during the later stages of growth of the culture. RT-PCR analysis of luxI and luxR shows that the expression of these genes is maximum corresponding to the highest level of luminescence. The shift in equilibrium is shown by studying competitive binding of C6-HSL and C8-HSL to LuxR. We argue that luminescence is a unicellular behaviour, and an intensive property like per cell luminescence is more important than gross luminescence of the population in understanding response of bacteria to chemical signalling. Funding from the Department of Science and Technology, India is acknowledged.

  7. Defense systems in developing Artemia franciscana nauplii and their modulation by probiotic bacteria offer protection against a Vibrio anguillarum challenge.

    Science.gov (United States)

    Giarma, Eleni; Amanetidou, Eleni; Toufexi, Alexia; Touraki, Maria

    2017-07-01

    The alterations of immune responses of Artemia franciscana nauplii as a function of culture time and after a challenge with the pathogen Vibrio anguillarum were studied. The effect of the administration of the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis either alone or in combination with the pathogen was evaluated. The activity of the antioxidant enzymes superoxide dismutase (SOD), Glutathione reductase (GRed), Glutathione transferase (GST) and Phenoloxidase (PO) presented a significant increase as a function of culture time, appeared elevated following probiotic administration and were depleted 48 h following the experimental challenge. Lipid peroxidation reached peak levels at 48 h of culture, when nauplii start feeding and returned to lower values at 144 h, remaining however significantly higher than control (P  0.05). Following a combined administration of each probiotic and the pathogen the activities of all enzymes tested were significantly lower (P Artemia nauplii. In addition the pathogen induces an oxidative stress response. The probiotics B. subtilis, L. plantarum and L. lactis protect Artemia against a V. anguillarum challenge by enhancing its immune responses thus contributing to reduced oxidative damage and increased survival. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum.

    Directory of Open Access Journals (Sweden)

    Emilia Noor Sharifah

    Full Text Available BACKGROUND: Phytoplankton cultures are widely used in aquaculture for a variety of applications, especially as feed for fish larvae. Phytoplankton cultures are usually grown in outdoor tanks using natural seawater and contain probiotic or potentially pathogenic bacteria. Some Roseobacter clade isolates suppress growth of the fish pathogen Vibrio anguillarum. However, most published information concerns interactions between probiotic and pathogenic bacteria, and little information is available regarding the importance of phytoplankton in these interactions. The objectives of this study, therefore, were to identify probiotic Roseobacter clade members in phytoplankton cultures used for rearing fish larvae and to investigate their inhibitory activity towards bacterial fish pathogens in the presence of the phytoplankton Nannochloropsis oculata. METHODOLOGY/PRINCIPAL FINDINGS: The fish pathogen V. anguillarum, was challenged with 6 Roseobacter clade isolates (Sulfitobacter sp. (2 strains, Thalassobius sp., Stappia sp., Rhodobacter sp., and Antarctobacter sp. from phytoplankton cultures under 3 different nutritional conditions. In an organic nutrient-rich medium (VNSS, 6 Roseobacter clade isolates, as well as V. anguillarum, grew well (10(9 CFU/ml, even when cocultured. In contrast, in a phytoplankton culture medium (ESM based on artificial seawater, coculture with the 6 isolates decreased the viability of V. anguillarum by approximately more than 10-fold. Excreted substances in media conditioned by growth of the phytoplankton N. oculata (NCF medium resulted in the complete eradication of V. anguillarum when cocultured with the roseobacters. Autoclaved NCF had the same inhibitory effect. Furthermore, Sulfitobacter sp. much more efficiently incorporated (14C- photosynthetic metabolites ((14C-EPM excreted by N. oculata than did V. anguillarum. CONCLUSION/SIGNIFICANCE: Cocultures of a phytoplankton species and Roseobacter clade members exhibited a greater

  9. The Phytoplankton Nannochloropsis oculata Enhances the Ability of Roseobacter Clade Bacteria to Inhibit the Growth of Fish Pathogen Vibrio anguillarum

    Science.gov (United States)

    Sharifah, Emilia Noor; Eguchi, Mitsuru

    2011-01-01

    Background Phytoplankton cultures are widely used in aquaculture for a variety of applications, especially as feed for fish larvae. Phytoplankton cultures are usually grown in outdoor tanks using natural seawater and contain probiotic or potentially pathogenic bacteria. Some Roseobacter clade isolates suppress growth of the fish pathogen Vibrio anguillarum. However, most published information concerns interactions between probiotic and pathogenic bacteria, and little information is available regarding the importance of phytoplankton in these interactions. The objectives of this study, therefore, were to identify probiotic Roseobacter clade members in phytoplankton cultures used for rearing fish larvae and to investigate their inhibitory activity towards bacterial fish pathogens in the presence of the phytoplankton Nannochloropsis oculata. Methodology/Principal Findings The fish pathogen V. anguillarum, was challenged with 6 Roseobacter clade isolates (Sulfitobacter sp. (2 strains), Thalassobius sp., Stappia sp., Rhodobacter sp., and Antarctobacter sp.) from phytoplankton cultures under 3 different nutritional conditions. In an organic nutrient-rich medium (VNSS), 6 Roseobacter clade isolates, as well as V. anguillarum, grew well (109 CFU/ml), even when cocultured. In contrast, in a phytoplankton culture medium (ESM) based on artificial seawater, coculture with the 6 isolates decreased the viability of V. anguillarum by approximately more than 10-fold. Excreted substances in media conditioned by growth of the phytoplankton N. oculata (NCF medium) resulted in the complete eradication of V. anguillarum when cocultured with the roseobacters. Autoclaved NCF had the same inhibitory effect. Furthermore, Sulfitobacter sp. much more efficiently incorporated 14C- photosynthetic metabolites (14C-EPM) excreted by N. oculata than did V. anguillarum. Conclusion/Significance Cocultures of a phytoplankton species and Roseobacter clade members exhibited a greater antibacterial

  10. Prevalence of Vibrio vulnificus and Vibrio parahaemolyticus in the Maryland Coastal Bays

    Science.gov (United States)

    De Pascuale, V. O.

    2016-02-01

    The bacterial family of Vibrionaceae is indigenous in the marine estuarine environments such as the Maryland Coastal Bays. Vibrio vulnificus and Vibrio parahaemolyticus are both pathogenic bacteria. Understanding the distribution of Vibrio species is crucial because of the health concerns associated with the bacteria. The aim of this study was to evaluate the overall abundance of bacteria with a focus on Vibrio species in the Maryland Coastal Bays. Seawater samples were collected from 10 different sites that differ with regard to water quality. The total bacteria count (TBC) was determined by two methods: Total plate count and Epifluorescence microscopy. The most-probable-number (MPN) methodology was used to estimate the population of Vibrio parahaemolyticus and Vibrio vulnificus. In addition to the bacteriological analysis, the environmental parameters of temperature and salinity were measured using YSI 6600 multiparameter meter. The average total bacteria count was 2.21 log CFU ml-1. Vibrio vulnificus comprised 5% of the total bacteria count while Vibrio parahaemolyticus comprised only 2% of the total bacteria count. Vibrio vulnificus ranged from 0.30 to 2.48 log MPN ml-1 at the sites tested. Lower Vibrio parahaemolyticus count was observed at the sites with a range of 0.30 to 1.97 log MPN ml-1. There was no significant correlation between the environmental parameters and the Vibrio spp. Since both Vibrio vulnificus and Vibrio parahaemolyticus peak in the summer, there is a potential for a risk of wound infections and gastrointestinal illness based on this data.

  11. Production and Isolation of Amphibactin siderophores in Iron-stressed cultures of the marine bacteria Vibrio spp.

    Science.gov (United States)

    McLean, C.; Boiteau, R.; Bundy, R.; Gauglitz, J.; Repeta, D.

    2016-02-01

    Iron is an important micronutrient for marine microbes. Low concentrations of dissolved iron limit production in much of the ocean, putting pressure on microbial communities to develop efficient iron acquisition strategies. One such strategy is the production of siderophores, high affinity iron binding ligands, to facilitate iron uptake to meet their physiological iron quota. Recently, our lab has shown that amphibactins, siderophores with lipid side chains, are present in iron-deficient regions of the ocean. However, little is known about which organisms can utilize amphibactin bound iron. Here we describe a method to isolate amphibactins from laboratory cultures in order to identify the conditional stability constants and uptake rates of purified amphibactin compounds. We searched the National Center for Biotechnology Information database to identify microbial genomes containing homologous to the known amphibactin biosynthesis genes. Several of these strains were screened with high performance reverse-phase liquid chromatography electrospray ionization mass spectrometry (HPLC-ESIMS) to confirm amphibactin production. We then optimized amphibactin production for the strain Vibrio cyclitrophicus 1F53 under different shaking speeds and iron concentrations, using a chrome azurol S (CAS) assay to screen for siderophore abundance. Maximum production was found after 38 hours of shaking at 150-rpm, and with the addition of 10nM of desferrioxamine B to induce iron limitation. Amphibactins were extracted from the media by solid phase extraction and purified by reverse phase HPLC. The conditional stability constants for several amphibactins were then measured in seawater using competitive ligand exchange absorptive cathodic stripping voltammetry with salicylaldoxime as the added ligand. Future work will determine the uptake rates of these compounds by natural communities of marine bacteria, and give insight on the bioavailability of amphibactins in the marine environment.

  12. Selection of proteolytic bacteria with ability to inhibit Vibrio harveyi during white shrimp (Litopenaeus vannamei cultivation

    Directory of Open Access Journals (Sweden)

    Suntinanalert, P.

    2007-03-01

    Full Text Available Five isolates of bacteria with high proteolytic activity, isolated from water samples of intensive shrimp ponds in southern Thailand, were selected to test for the ability to control the shrimp pathogen Vibrioharveyi. 70 μl of each culture broth were investigated for their ability to inhibit V. harveyi using an agar well diffusion test but only one isolate W3 gave a reasonable sized inhibition zone of 21.62 mm. This zone wassimilar to that of oxolinic acid (2 μg and sulfamethoxazole (25 μg. The W3 isolate was identified as Pseudomonas sp. Shrimp cultivation in aquaria was conducted to investigate the inhibition of V. harveyi bythe isolate W3. The experiment consisted of a treatment of the shrimp culture with an inoculum of the isolate W3 and V. harveyi (biocontrol set, a positive control set (only inoculation of V. harveyi and a negativecontrol set as without inoculation. No mortality was found in the negative control. Shrimp mortality in the biocontrol set (33% was lower than that in the positive control set (40%; however, it showed no significantdifference (p>0.05. The average numbers of V. harveyi over 12 days of the biocontrol set were lower than those in the positive control set by about 1 log cycle although the numbers were not significantly different(p>0.05. The shrimp growth rate at day 32 of cultivation was in order of the biocontrol treatment (10.17% > the negative control treatment (9.44% > the positive control set (9.28%, but no significant difference (p>0.05 was observed among treatments.

  13. Isolation of bioactive compound from marine seaweeds against fish pathogenic bacteria Vibrio alginolyticus (VA09 and characterisation by FTIR

    Directory of Open Access Journals (Sweden)

    Rajasekar Thirunavukkarasu

    2013-08-01

    Full Text Available Objective: Fresh marine seaweeds Gracilaria edulis, Gracillaria verrcosa, Acanthospora spicifera, Ulva facita, Ulva lacta (U. lacta, Kappaphycus spicifera, Sargassum ilicifolium, Sargassum wightii (S. wightii, Padina tetramatica and Padina gymonospora were collected from Mandapam (Rameshwaram, Tamil Nadu of South East coast of India and were screened for antibacterial activity. Methods: All the collected seaweeds were extracted by using five different solvent (methanol, isopropanol, acetone, chloroform, diethyl ether to study their extracts against fish pathogenic bacteria V. alginolyticus (VA09 purchased from MTCC. And minimum inhibition carried out by using Resazurin micro-titre assay. Crude extract of S. wightii analysied by FTIR. Results: The methanolic extract of S. wightii produced a maximum zone of inhibition (1.95±0.11 cm, isopropanol extract maximum inhibition was produced by S. wightii (1.93±0.78 cm, Acetone extract of Gracilaria verrcosa showed maximum zone of inhibition (1.36±0.05 cm, chloroform extract of S. wightii produced a maximum zone (1.56±0.25 cm and diethyl ether extract of S. wightii produced maximum zone of inhibition(1.86±0.11 cm. Based on the antibacterial activity S. wightii, U. lacta and Padina tetramatica showed best antibacterial activity against Vibrio harveyi. In this three seaweeds were taken for MIC study. The S. wightii methanolic extract, U. lacta diethyl ether extract and Padina tetramatica methanolic extract showed a higher MIC values, and despectively were 25 mg/mL, 50 mg/mL and 50 mg/mL. FTIR result showed that mostly phenolic compounds were present in the S. wightii. Conclusions: Based on the FTIR result S. wightii have high amount of phenolic compound. Phenolic compound have the good antimicrobial activity. The results clearly show that seaweed S. wightii is an interesting source for biologically active compounds that may be applied for prophylaxis and therapy of bacterial fish diseases and it should

  14. Effects of salinity on the accumulation of hemocyte aggregates and bacteria in the gills of Callinectes sapidus, the Atlantic blue crab, injected with Vibrio campbellii.

    Science.gov (United States)

    Ikerd, Jennifer L; Burnett, Karen G; Burnett, Louis E

    2015-05-01

    In addition to respiration and ion regulation, crustacean gills accumulate and eliminate injected particles, along with hemocyte aggregates that form in response to those particles. Here we report that the dose of Vibrio campbellii previously shown to induce a decrease in respiration and hemolymph flow across the gill in the Atlantic blue crab, Callinectes sapidus, also triggered the formation of aggregates containing four or more hemocytes in the gills, compared with saline-injected controls. More bacteria were trapped and rendered non-culturable per unit weight by anterior respiratory gills than posterior gills specialized for ion regulation. Further, more bacteria accumulated in the anterior gills of animals held at 30 ppt than those at 10 ppt. Thus, the role of the gills in immune defense comes at an energetic cost to this and likely to other crustaceans; this cost is influenced by acclimation salinity and the position and specialized function of individual gills. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Obtaining hemocytes from the Hawaiian bobtail squid Euprymna scolopes and observing their adherence to symbiotic and non-symbiotic bacteria.

    Science.gov (United States)

    Collins, Andrew J; Nyholm, Spencer V

    2010-02-11

    Studies concerning the role of the immune system in mediating molecular signaling between beneficial bacteria and their hosts have, in recent years, made significant contributions to our understanding of the co-evolution of eukaryotes with their microbiota. The symbiotic association between the Hawaiian bobtail squid, Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri has been utilized as a model system for understanding the effects of beneficial bacteria on animal development. Recent studies have shown that macrophage-like hemocytes, the sole cellular component of the squid host's innate immune system, likely play an important role in mediating the establishment and maintenance of this association. This protocol will demonstrate how to obtain hemocytes from E. scolopes and then use these cells in bacterial binding assays. Adult squid are first anesthetized before hemolymph is collected by syringe from the main cephalic blood vessel. The host hemocytes, contained in the extracted hemolymph, are adhered to chambered glass coverslips and then exposed to green fluorescent protein-labeled symbiotic Vibrio fischeri and non-symbiotic Vibrio harveyi. The hemocytes are counterstained with a fluorescent dye (Cell Tracker Orange, Invitrogen) and then visualized using fluorescent microscopy.

  16. Inhibitory Activity of Lactid Acid Bacteria Isolated from Tape Waterlily Seed to Enteric Pathogenic Bacteria (Vibrio cholera, Salmonella typhi, Shigella disentri, and E.coli and Its’ Susceptibility to Antibiotic, Bile Salt and Acidic Condition

    Directory of Open Access Journals (Sweden)

    Iin Khusnul Khotimah

    2012-03-01

    Full Text Available The aim of this research was to observe inhibitory activity of LAB isolated from tape waterlily seed to enteric pathogenic bacteria (Vibrio cholera, Salmonella typhi, Shigella disentri, E.coli ATCC 25922 and it’s susceptibility to antibiotic, in bile salt and under acidic condition. Microbia in the tape ( a fermented product of waterlily seed to showed were Streptococcus thermophilus (IKH-1, Pediococcus pentosaceus (IKH-2 and Leuconostoc mesentroides (IKH-8. Streptococcus thermophillus showed inhibition against the growth of Shigella disentri with inhibition zones 16,28 mm, but did not against the growth of V. Cholera, S. typhi, E.coli. Pediococcus pentosaceus inhibit Vibrio cholera, dan Salmonella thypi with inhibition zones 18,59 mm dan 7,91 mm. So that, Leuconostoc mesenteroides inhibit Salmonella thypi with zones inhibits average 8,25 mm. Chloramfenicol at 0.05 mg concentrations did not show inhibition against the growth of isolated Streptococcus thermophillus, Pediococcus pentosaceus and Leuconostoc mesentroides. These isolates could survive too in bile salt (2% and acidified media (pH 3.   Keyword : The tape of  waterlily seed, LAB, probiotic and enteric pathogenic   KEMAMPUAN PENGHAMBATAN BAKTERI ASAM LAKTAT DARI TAPE BIJI TERATAI TERHADAP PATOGENIK ENTERIK (VIBRIO CHOLERA, SALMONELLA THYPI, SHIGELLA DISENTRI, E. COLI, ANTIBIOTIK, KETAHANANNYA TERHADAP BILE SALT DAN ASAM   ABSTRAK   Penelitian ini bertujuan untuk menguji kemampuan penghambatan bakteri asam laktat yang diisolasi dari tape biji teratai terhadap patogenik enterik (Vibrio cholera, Salmonella thypi, Shigella disentri, E. Coli ATCC 25922, antibiotik, bile salt dan asam. Jenis bakteri yang diketahui tumbuh selama fermentasi tape biji teratai adalah Streptococcus thermopilus (IKH-1, Pediococcus pentosaceus(IKH-2, dan Leuconostoc mesentroides (IKH-8. Pengamatan terhadap uji penghambatan patogenik enterik (Vibrio cholera, Salmonella thypi, Shigella disentri, dan E. Coli ATCC

  17. Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics

    Directory of Open Access Journals (Sweden)

    Andrew J. Collins

    2012-05-01

    Full Text Available The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/ tandem mass spectrometry (LC-MS/MS proteomic analyses. 454 high-throughput sequencing produced 650,686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial associated molecular patterns (MAMPs were identified. Among these was a complete open reading frame (ORF to a putative peptidoglycan recognition protein (EsPGRP5 that has conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NFκB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative PCR of complement-related genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes isolated from adult squid with colonized light organs compared to those for which the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of the host.

  18. Novel Claycunbic to Eliminate Micropollutants and Vibrio fischeri from Water

    Science.gov (United States)

    Montmorillonite clay (K10) was used as a precursor for the synthesis of a catalytic adsorbent, Claycunbic (Bi/Cu-pillared K10), which was characterized by SEM (EDS), TEM, XRD, BET, TGA and XPS analysis. The catalytic adsorption of cationic dye methylene blue (MB), anionic dye met...

  19. Exopolysaccharide production by Vibrio fischeri, a fouling marine bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, C.L; Bhosle, N.B.

    stream_size 8 stream_content_type text/plain stream_name Biofouling_4_301.pdf.txt stream_source_info Biofouling_4_301.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  20. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    Directory of Open Access Journals (Sweden)

    Wenyan Chen

    2014-07-01

    Full Text Available Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri, larvae and embryos of zebrafish (Danio rerio were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v and 1.95% (v/v respectively, and embryonic development was inhibited at just 1% (v/v. Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR, while the LC50 of larvae was 75.23% (v/v and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent.

  1. Draft genome sequence of pathogenic bacteria Vibrio parahaemolyticus strain Ba94C2, associated with acute hepatopancreatic necrosis disease isolate from South America

    Directory of Open Access Journals (Sweden)

    Leda Restrepo

    2016-09-01

    Full Text Available Vibrio parahaemolyticus is a pathogenic bacteria which has been associated to the early mortality syndrome (EMS also known as hepatopancreatic necrosis disease (AHPND causing high mortality in shrimp farms. Pathogenic strains contain two homologous genes related to insecticidal toxin genes, PirA and PirB, these toxin genes are located on a plasmid contained within the bacteria. Genomic sequences have allowed the finding of two strains with a divergent structure related to the geographic region from where they were found. The isolates from the geographic collection of Southeast Asia and Mexico show variable regions on the plasmid genome, indicating that even though they are not alike they still conserve the toxin genes. In this paper, we report for the first time, a pathogenic V. parahaemolyticus strain in shrimp from South America that showed symptoms of AHPND. The genomic analysis revealed that this strain of V. parahaemolyticus found in South America appears to be more related to the Southeast Asia as compared to the Mexican strains. This finding is of major importance for the shrimp industry, especially in regards to the urgent need for disease control strategies to avoid large EMS outbreaks and economic loss, and to determine its dispersion in South America. The whole-genome shotgun project of V. parahaemolyticus strain Ba94C2 have been deposited at DDBJ/EMBL/GenBank under the accession PRJNA335761.

  2. Draft genome sequence of pathogenic bacteria Vibrio parahaemolyticus strain Ba94C2, associated with acute hepatopancreatic necrosis disease isolate from South America.

    Science.gov (United States)

    Restrepo, Leda; Bayot, Bonny; Betancourt, Irma; Pinzón, Andres

    2016-09-01

    Vibrio parahaemolyticus is a pathogenic bacteria which has been associated to the early mortality syndrome (EMS) also known as hepatopancreatic necrosis disease (AHPND) causing high mortality in shrimp farms. Pathogenic strains contain two homologous genes related to insecticidal toxin genes, PirA and PirB, these toxin genes are located on a plasmid contained within the bacteria. Genomic sequences have allowed the finding of two strains with a divergent structure related to the geographic region from where they were found. The isolates from the geographic collection of Southeast Asia and Mexico show variable regions on the plasmid genome, indicating that even though they are not alike they still conserve the toxin genes. In this paper, we report for the first time, a pathogenic V. parahaemolyticus strain in shrimp from South America that showed symptoms of AHPND. The genomic analysis revealed that this strain of V. parahaemolyticus found in South America appears to be more related to the Southeast Asia as compared to the Mexican strains. This finding is of major importance for the shrimp industry, especially in regards to the urgent need for disease control strategies to avoid large EMS outbreaks and economic loss, and to determine its dispersion in South America. The whole-genome shotgun project of V. parahaemolyticus strain Ba94C2 have been deposited at DDBJ/EMBL/GenBank under the accession PRJNA335761.

  3. Vibrio and Pregnancy

    Science.gov (United States)

    ... 2013. Vibrio Infection. [Accessed January 2015]. Available at URL: http: / / www. cdc. gov/ vibrio/ index. html Centers for ... 2013. Vibrio parahaemolyticus. [Accessed January 2015]. Available at URL: http: / / www. cdc. gov/ vibrio/ vibriop. html Centers for ...

  4. Structural and phylogenetic analyses of the GP42 transglutaminase from Phytophthora sojae reveal an evolutionary relationship between oomycetes and marine Vibrio bacteria.

    Science.gov (United States)

    Reiss, Kerstin; Kirchner, Eva; Gijzen, Mark; Zocher, Georg; Löffelhardt, Birgit; Nürnberger, Thorsten; Stehle, Thilo; Brunner, Frédéric

    2011-12-09

    Transglutaminases (TGases) are ubiquitous enzymes that catalyze selective cross-linking between protein-bound glutamine and lysine residues; the resulting isopeptide bond confers high resistance to proteolysis. Phytophthora sojae, a pathogen of soybean, secretes a Ca(2+)-dependent TGase (GP42) that is activating defense responses in both host and non-host plants. A GP42 fragment of 13 amino acids, termed Pep-13, was shown to be absolutely indispensable for both TGase and elicitor activity. GP42 does not share significant primary sequence similarity with known TGases from mammals or bacteria. This suggests that GP42 has evolved novel structural and catalytic features to support enzymatic activity. We have solved the crystal structure of the catalytically inactive point mutant GP42 (C290S) at 2.95 Å resolution and identified residues involved in catalysis by mutational analysis. The protein comprises three domains that assemble into an elongated structure. Although GP42 has no structural homolog, its core region displays significant similarity to the catalytic core of the Mac-1 cysteine protease from Group A Streptococcus, a member of the papain-like superfamily of cysteine proteases. Proteins that are taxonomically related to GP42 are only present in plant pathogenic oomycetes belonging to the order of the Peronosporales (e.g. Phytophthora, Hyaloperonospora, and Pythium spp.) and in marine Vibrio bacteria. This suggests that a lateral gene transfer event may have occurred between bacteria and oomycetes. Our results offer a basis to design and use highly specific inhibitors of the GP42-like TGase family that may impair the growth of important oomycete and bacterial pathogens.

  5. Structural and Phylogenetic Analyses of the GP42 Transglutaminase from Phytophthora sojae Reveal an Evolutionary Relationship between Oomycetes and Marine Vibrio Bacteria*

    Science.gov (United States)

    Reiss, Kerstin; Kirchner, Eva; Gijzen, Mark; Zocher, Georg; Löffelhardt, Birgit; Nürnberger, Thorsten; Stehle, Thilo; Brunner, Frédéric

    2011-01-01

    Transglutaminases (TGases) are ubiquitous enzymes that catalyze selective cross-linking between protein-bound glutamine and lysine residues; the resulting isopeptide bond confers high resistance to proteolysis. Phytophthora sojae, a pathogen of soybean, secretes a Ca2+-dependent TGase (GP42) that is activating defense responses in both host and non-host plants. A GP42 fragment of 13 amino acids, termed Pep-13, was shown to be absolutely indispensable for both TGase and elicitor activity. GP42 does not share significant primary sequence similarity with known TGases from mammals or bacteria. This suggests that GP42 has evolved novel structural and catalytic features to support enzymatic activity. We have solved the crystal structure of the catalytically inactive point mutant GP42 (C290S) at 2.95 Å resolution and identified residues involved in catalysis by mutational analysis. The protein comprises three domains that assemble into an elongated structure. Although GP42 has no structural homolog, its core region displays significant similarity to the catalytic core of the Mac-1 cysteine protease from Group A Streptococcus, a member of the papain-like superfamily of cysteine proteases. Proteins that are taxonomically related to GP42 are only present in plant pathogenic oomycetes belonging to the order of the Peronosporales (e.g. Phytophthora, Hyaloperonospora, and Pythium spp.) and in marine Vibrio bacteria. This suggests that a lateral gene transfer event may have occurred between bacteria and oomycetes. Our results offer a basis to design and use highly specific inhibitors of the GP42-like TGase family that may impair the growth of important oomycete and bacterial pathogens. PMID:21994936

  6. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi.

    Science.gov (United States)

    Byers, D M

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  7. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  8. Mannitol is essential for the development of stress-resistant ascospores in Neosartorya fischeri (Aspergillus fischeri)

    NARCIS (Netherlands)

    Wyatt, T T; van Leeuwen, M R; Dijksterhuis, J; Wosten, Han

    2014-01-01

    The polyol mannitol is one of the main compatible solutes in Neosartorya fischeri and accumulates in conidia and ascospores. Here, it is shown that biosynthesis of mannitol in N. fischeri mainly depends on mannitol 1-phosphate dehydrogenase (MpdA). Reporter studies and qPCR analysis demonstrated

  9. Mannitol is essential for the development of stress-resistant ascospores in Neosartorya fischeri (Aspergillus fischeri)

    NARCIS (Netherlands)

    Wyatt, T T; van Leeuwen, M R; Wösten, H A B; Dijksterhuis, J

    The polyol mannitol is one of the main compatible solutes in Neosartorya fischeri and accumulates in conidia and ascospores. Here, it is shown that biosynthesis of mannitol in N. fischeri mainly depends on mannitol 1-phosphate dehydrogenase (MpdA). Reporter studies and qPCR analysis demonstrated

  10. Validation and characterization of a human volunteer challenge model for cholera by using frozen bacteria of the new Vibrio cholerae epidemic serotype, O139

    NARCIS (Netherlands)

    Cohen, MB; Giannella, RA; Losonsky, GA; Lang, DR; Parker, S; Hawkins, JA; Gunther, C; Schiff, GA

    1999-01-01

    Until recently, all epidemic strains of Vibrio cholerae were of the O1 serotype. Current epidemics have also been caused by a new serotype, Vibrio cholerae O139. Although the pathogenesis and clinical features of O139 cholera are similar to those of O1 cholera, immunity to serotype O1 does not

  11. Toxicity of five anilines to crustaceans, protozoa and bacteria

    Directory of Open Access Journals (Sweden)

    MARILIIS SIHTMÄE

    2010-09-01

    Full Text Available Aromatic amines (anilines and related derivates are an important class of environmental pollutants that can be released to the aquatic environment as industrial effluents or as breakdown products of pesticides and dyes. The toxicity of aniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline and 3,5-dichloroaniline towards a multitrophic test battery comprised of bacteria Aliivibrio fischeri (formerly Vibrio fischeri, a ciliated protozoan Tetrahymena thermophila and two crustaceans (Daphnia magna and Thamnocephalus platyurus were investigated. Under the applied test conditions, the toxicity of the anilines notably varied among the test species. The bacteria and protozoa were much less sensitive towards the anilines than the crustaceans: EC50 values 13–403 mg L-1 versus 0.13–15.2 mg L-1. No general tendency between toxicity and the chemical structure of the anilines (the degree of chloro-substitution and the position of the chloro-substituents was found in the case of all the tested aquatic species. The replacement of the artificial test medium (ATM by the river water remarkably decreased the toxicity of anilines to crustaceans but not to protozoa. This research is part of the EU 6th Framework Integrated Project OSIRIS, in which ecotoxicogenomic studies of anilines (e.g., for Daphnia magna will also be performed that may help to clarify the mechanisms of toxicity of different anilines.

  12. Anticonvulsant Activity Of Diospyros fischeri Root Extracts | Moshi ...

    African Journals Online (AJOL)

    These results provide evidence for the potential of D. fischeri extracts to treat absence seizures, especially given their seemingly innocuous nature. Keywords: Diospyros fischeri; Pentylenetetrazole; Anticonvulsant activity; Brine shrimp toxicity. African Journal of Traditional, Complementary and Alternative Medicines Vol.

  13. Autecology of Vibrio vulnificus and Vibrio parahaemolyticus in tropical waters

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, S.; Lugo, T.; Hazen, T.C. [Univ. of Puerto Rico, Rio Piedras (Puerto Rico)

    1988-12-31

    Water and shellfish samples collected from estuaries, mangroves, and beaches along the coast of Puerto Rico were examined for Vibrio vulnificus and Vibrio parahaemolyticus. An array of water quality parameters were also measured simultaneous with bacteria sampling. Both species of vibrio were associated with estuary and mangrove locations, and neither was isolated from sandy beaches. Densities of V. vulnificus were negatively correlated with salinity, 10--15 ppt being optimal. V. parahaemolyticus was isolated from sites with salinities between 20 and 35 ppt, the highest densities occurring at 20 ppt. Densities of Vibrio spp. and V. parahaemolyticus for a tropical estuary surpassed those reported for temperate estuaries by several orders of magnitude. Both densities of total Vibrio spp. and V. parahaemolyticus in the water were directly related to densities of fecal coliforms, unlike V. vulnificus. The incidence of ONPG(+) strains among sucrose({minus}) Vibrio spp. served as an indicator of the frequency of V. vulnificus in this group. More than 63% of the V. vulnificus isolated were pathogenic. V. vulnificus and V. parahaemolyticus occupy clearly separate niches within the tropical estuarine-marine ecosystem.

  14. Genome diversification within a clonal population of pandemic Vibrio parahaemolyticus seems to depend on the life circumstances of each individual bacteria.

    Science.gov (United States)

    Loyola, David E; Navarro, Cristell; Uribe, Paulina; García, Katherine; Mella, Claudia; Díaz, Diego; Valdes, Natalia; Martínez-Urtaza, Jaime; Espejo, Romilio T

    2015-03-13

    New strains of Vibrio parahaemolyticus that cause diarrhea in humans by seafood ingestion periodically emerge through continuous evolution in the ocean. Influx and expansion in the Southern Chilean ocean of a highly clonal V. parahaemolyticus (serotype O3:K6) population from South East Asia caused one of the largest seafood-related diarrhea outbreaks in the world. Here, genomics analyses of isolates from this rapidly expanding clonal population offered an opportunity to observe the molecular evolutionary changes often obscured in more diverse populations. Whole genome sequence comparison of eight independent isolates of this population from mussels or clinical cases (from different years) was performed. Differences of 1366 to 217,729 bp genome length and 13 to 164 bp single nucleotide variants (SNVs) were found. Most genomic differences corresponded to the presence of regions unique to only one or two isolates, and were probably acquired by horizontal gene transfer (HGT). Some DNA gain was chromosomal but most was in plasmids. One isolate had a large region (8,644 bp) missing, which was probably caused by excision of a prophage. Genome innovation by the presence of unique DNA, attributable to HGT from related bacteria, varied greatly among the isolates, with values of 1,366 (ten times the number of highest number of SNVs) to 217,729 (a thousand times more than the number of highest number of SNVs). The evolutionary forces (SNVs, HGT) acting on each isolate of the same population were found to differ to an extent that probably depended on the ecological scenario and life circumstances of each bacterium.

  15. Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios

    Directory of Open Access Journals (Sweden)

    Samantha M. Gromek

    2016-09-01

    Full Text Available Female members of many cephalopod species house a bacterial consortium that is part of their reproductive system, the accessory nidamental gland (ANG. These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium. □

  16. Impact and influence of the natural Vibrio-squid symbiosis in understanding bacterial-animal interactions

    Directory of Open Access Journals (Sweden)

    Mark J Mandel

    2016-12-01

    Full Text Available Animals are colonized by bacteria, and in many cases partners have co-evolved to perform mutually beneficial functions. An exciting and ongoing legacy of the past decade has been an expansion of technology to enable study of natural associations in situ/in vivo. As a result, more symbioses are being examined, and additional details are being revealed for well-studied systems with a focus on the interactions between partners in the native context. With this framing, we review recent literature from the Vibrio fischeri-Euprymna scolopes symbiosis and focus on key studies that have had an impact on understanding bacteria-animal interactions broadly. This is not intended to be a comprehensive review of the system, but rather to focus on particular studies that have excelled at moving from pattern to process in facilitating an understanding of the molecular basis to intriguing observations in the field of host-microbe interactions. In this review we discuss the following topics: processes regulating strain and species specificity; bacterial signaling to host morphogenesis; multiple roles for nitric oxide; flagellar motility and chemotaxis; and efforts to understand unannotated and poorly annotated genes. Overall these studies demonstrate how functional approaches in vivo in a tractable system have provided valuable insight into general principles of microbe-host interactions.

  17. Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance.

    Science.gov (United States)

    Morrow, Kathleen M; Bromhall, Katrina; Motti, Cherie A; Munn, Colin B; Bourne, David G

    2017-01-01

    Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the

  18. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    Science.gov (United States)

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (45) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3-); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3-); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  19. Evaluation of toxicity and genotoxicity of 2-chlorophenol on bacteria, fish and human cells.

    Science.gov (United States)

    Vlastos, Dimitris; Antonopoulou, Maria; Konstantinou, Ioannis

    2016-05-01

    Due to the extensive use of chlorophenols (CPs) in anthropogenic activities, 2-Chlorophenol (2-CP), among other CPs, can enter aquatic ecosystems and can be harmful to a variety of organisms, including bacteria, fish and humans, that are exposed directly and/or indirectly to such contaminated environments. Based on the existing knowledge and in order to move a step forward, the purpose of this study is to investigate the toxic and mainly the genotoxic effects of 2-CP using a combination of bioassays. The tests include the marine bacterium Vibrio fischeri and micronuclei induction in the erythrocytes of Carassius auratus as well as in cultured human lymphocytes. The results obtained reveal that 2-CP is able to induce dose-dependent toxic and genotoxic effects on the selected tested concentrations under the specific experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association.

    Science.gov (United States)

    Koropatnick, Tanya; Goodson, Michael S; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret

    2014-02-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.

  1. Suspension of oysters reduces the populations of Vibrio parahaemolyticus and Vibrio vulnificus.

    Science.gov (United States)

    Cole, K M; Supan, J; Ramirez, A; Johnson, C N

    2015-09-01

    Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) are associated with the consumption of raw oysters and cause illnesses ranging from simple gastroenteritis to life-threatening septicaemia. These halophilic bacteria are frequently found in marine and estuarine systems, accumulating within the tissues of a number of aquatic organisms and passing on to humans after consumption, through contaminated water, or via open wounds. As benthic organisms capable of filtering 40 gallons of water per hour, sediment is an important source of potentially pathogenic vibrios in oysters destined for raw consumption. This research used off-bottom oyster culture to reduce vibrio concentrations in oysters. Colony hybridization was used to enumerate Vp and Vv in bottom and suspended oysters. Vv and Vp concentrations were generally lower in oysters suspended off-bottom, and suspension decreased vibrio loads in oysters by an average of 13%. Suspension of oysters reduced vibrio concentrations. This study found that oyster suspension significantly reduced some populations of potentially pathogenic vibrios. These results indicate that oyster suspension could be a viable approach for preharvest treatment to reduce illness in consumers of raw oysters. © 2015 The Society for Applied Microbiology.

  2. Identification of gram-negative and gram-positive bacteria by fluorescence studies

    Science.gov (United States)

    Demchak, Jonathan; Calabrese, Joseph; Tzolov, Marian

    2011-03-01

    Several type strains of bacteria including Vibrio fischeri, Azotobacter vinelandii, Enterobacter cloacae, and Corynebacterium xerosis, were cultured in the laboratory following standard diagnostic protocol based on their individual metabolic strategies. The bacterial cultures were not further treated and they were studied in their pristine state (pure culture - axenic). The fluorescent studies were applied using a continuous wave and a pulsed excitation light sources. Emission and excitation spectra were recorded for the continuous wave excitation and they all show similar spectral features with the exception of the gram positive bacteria showing vibronic structures. The vibrational modes involved in these vibronic bands have energy typical for carbon-carbon vibrations. The fluorescence is quenched in addition of water, even a very thin layer, which confirms that the observed spectral features originate from the outer parts of the bacteria. These results allow to conclude that the fluorescence spectroscopy can be used as a method for studying the membranes of the bacteria and eventually to discriminate between gram positive and gram negative bacteria. The pulsed experiments show that the fluorescence lifetime is in the sub-microsecond range. The results indicate that the observed spectra are superposition of the emission with different lifetimes.

  3. Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria for use in a biosensor.

    Science.gov (United States)

    Camanzi, Laura; Bolelli, Luca; Maiolini, Elisabetta; Girotti, Stefano; Matteuzzi, Diego

    2011-04-01

    Bioluminescent bacteria have been used for many years for biotoxicological analysis. One of the main concerns with this microorganism is the low experimental repeatability when subjected to external factors. The aim of the present study was to obtain accurate, sensitive, and repeatable measurements with stable signals (during the detection and over days) for application in a water-analysis device for the detection of pollutants. Growth conditions were tested and optimized. An optimal freeze-drying procedure for the constitutive bioluminescent bacteria Vibrio fischeri and Photobacterium phosphoreum was developed. The luminescence stability after rehydration was also investigated. Freeze drying was found to be a critical process in survival and signal stability of luminescent bacteria; for this reason, different suspension fluids and various bacterial pellet/suspension fluid ratios (g/ml) were evaluated. The toxicity of heavy metals and organic compounds in water was determined to investigate the applicability of a test based on bacteria obtained in this way, comparing the data with legal limits. A scale-up process was developed with industrial technology: freeze-dried bacteria that emitted a stable luminous signal after rehydration were obtained. Moreover, the median effective concentration (EC50) was calculated with these bacteria. Copyright © 2011 SETAC.

  4. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Dedi Futra

    2014-12-01

    Full Text Available In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri encapsulated in alginate microspheres is described. Cu(II, Cd(II, Pb(II, Zn(II, Cr(VI, Co(II, Ni(II, Ag(I and Fe(II were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD range of 2.4–5.7% (n = 8. The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD for Cu(II (6.40 μg/L, Cd(II (1.56 μg/L, Pb(II (47 μg/L, Ag(I (18 μg/L than Zn(II (320 μg/L, Cr(VI (1,000 μg/L, Co(II (1700 μg/L, Ni(II (2800 μg/L, and Fe(III (3100 μg/L. Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.

  5. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters.

    Science.gov (United States)

    Futra, Dedi; Heng, Lee Yook; Surif, Salmijah; Ahmad, Asmat; Ling, Tan Ling

    2014-12-05

    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.

  6. A Symposium on Bioluminescence and Chemiluminescence.

    Science.gov (United States)

    1998-01-01

    in marine Vibrio . (25 min) B.L. Bassler (US) • The Vibrio fischeri LuxR-LuxI system, a model for quorum sensing in Gram-negative bacteria. (20 min...The Euprymna scolopes/ Vibrio fischeri symbiosis. The squid says: Margaret McFall-Ngai (US) The bacterium responds: Edward Ruby (US) MIXER: Meigs...Education Co-chairs: S. Albrecht (Germany) and J.D. Andrade (US) • Transformation experiment using bioluminescence genes of Vibrio fischeri as a

  7. Effects of Global Warming on Vibrio Ecology.

    Science.gov (United States)

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  8. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly

    2012-01-01

    importance in public health, Vibrio cholerae, the causative agent of cholera, has become a preferred model to study bacteria with multipartite genomes. However, most in vivo studies in V. cholerae have been hampered by its genome architecture, as it is difficult to give phenotypes to a specific chromosome....... This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae...... in V. cholerae and the general question concerning bacteria carrying circular chromosomes--by looking at the effect of chromosome size on topological issues. In this article, we show that Dam, RctB, and ParA2/ParB2 are strictly essential for chrII origin maintenance, and we formally demonstrate...

  9. Predictive models for the effect of storage temperature on Vibrio parahaemolyticus viability and counts of total viable bacteria in Pacific oysters (Crassostrea gigas).

    Science.gov (United States)

    Fernandez-Piquer, Judith; Bowman, John P; Ross, Tom; Tamplin, Mark L

    2011-12-01

    Vibrio parahaemolyticus is an indigenous bacterium of marine environments. It accumulates in oysters and may reach levels that cause human illness when postharvest temperatures are not properly controlled and oysters are consumed raw or undercooked. Predictive models were produced by injecting Pacific oysters (Crassostrea gigas) with a cocktail of V. parahaemolyticus strains, measuring viability rates at storage temperatures from 3.6 to 30.4°C, and fitting the data to a model to obtain parameter estimates. The models were evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) containing natural populations of V. parahaemolyticus. V. parahaemolyticus viability was measured by direct plating samples on thiosulfate-citrate-bile salts-sucrose (TCBS) agar for injected oysters and by most probable number (MPN)-PCR for oysters containing natural populations. In parallel, total viable bacterial counts (TVC) were measured by direct plating on marine agar. Growth/inactivation rates for V. parahaemolyticus were -0.006, -0.004, -0.005, -0.003, 0.030, 0.075, 0.095, and 0.282 log₁₀ CFU/h at 3.6, 6.2, 9.6, 12.6, 18.4, 20.0, 25.7, and 30.4°C, respectively. The growth rates for TVC were 0.015, 0.023, 0.016, 0.048, 0.055, 0.071, 0.133, and 0.135 log₁₀ CFU/h at 3.6, 6.2, 9.3, 14.9, 18.4, 20.0, 25.7, and 30.4°C, respectively. Square root and Arrhenius-type secondary models were generated for V. parahaemolyticus growth and inactivation kinetic data, respectively. A square root model was produced for TVC growth. Evaluation studies showed that predictive growth for V. parahaemolyticus and TVC were "fail safe." The models can assist oyster companies and regulators in implementing management strategies to minimize V. parahaemolyticus risk and enhancing product quality in supply chains.

  10. Desarrollo de métodos moleculares para la detección y caracterización de bacterias patógenas emergentes del género Vibrio en aguas y alimentos

    OpenAIRE

    Cañigral Cárcel, Irene

    2011-01-01

    Vibrio parahaemolyticus y Vibrio vulnificus son microorganismos patógenos pertenecientes a la familia Vibrionaceae y al género Vibrio. Son microorganismos con morfología ligeramente curvada, gram negativos y oxidasa positivos. En cuanto a sus aspectos ecológicos son halófilos, por tanto suelen estar presentes en aguas marinas costeras y en el interior de moluscos, crustáceos y peces, y tienden a encontrarse en aguas cálidas. La patología que producen está asociada al consumo de mariscos,...

  11. Oil effect in freshly spiked marine sediment on Vibrio fischeri, Corophium volutator and Echinocardium cordatum

    NARCIS (Netherlands)

    Brils, J.M.; Huwer, S.L.; Kater, B.J.; Schout, P.G.; Harmsen, J.; Delvigne, G.A.L.; Scholten, M.C.T.

    2002-01-01

    The purpose of this study was to provide data to be used in The Netherlands for development of ecotoxicologically based quality criteria for oil-contaminated sediments and dredged material. In addition, the relation of toxicity to specific oil boiling-point fraction ranges was explored. Natural

  12. Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Gmurek, M., E-mail: marta.gmurek@p.lodz.pl [Lodz University of Technology, Faculty of Process & Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 90-924 Lodz (Poland); Horn, H.; Majewsky, M. [Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)

    2015-12-15

    Sulfamethoxazole (SMX) is a bacteriostatic antibiotic ubiquitously found in the aquatic environment. Since conventional biological wastewater treatment is not efficient to remove SMX, photolysis in natural waters can represent an important transformation pathway. It was recently shown that SMX transformation products can retain antibiotic activity. Therefore, it is crucial to better understand photochemical processes occurring in natural water just as the formation of active transformation products (TPs). During long-term SMX photolysis experiments (one week), nine TPs were identified by reference standards. Moreover, five further TPs of photodecomposition of SMX were found. For the first time, a TP with m/z 271 [M + H]{sup +} was observed during photolysis and tentatively confirmed as 4,x-dihydroxylated SMX. The DOC mass balance clearly showed that only around 5 to 10% were mineralized during the experiment emphasizing the need to elucidate the fate of TPs. Bacterial bioassays confirmed that the mixture retains its antibiotic toxicity toward luminescence (24 h) and that there is no change over the treatment time on EC{sub 50}. In contrast, growth inhibition activity was found to slightly decrease over the irradiation time. However, this decrease was not proportional to the transformation of the parent compound SMX. - Highlights: • During SMX photolysis experiments, nine TPs were identified by reference standards. • Six further TPs of SMX phototransformation were found. • A TP with a m/z 271 was tentatively confirmed as 4-,x-dihydroxylated SMX. • The mixture exhibitsluminescence inhibition without changes over the irradiation time. • Growth inhibition was found to slightly decrease over the irradiation time.

  13. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, LEPOMIS MACROCHIRUS, AND VIBRIO FISCHERI TO TOLUENE

    Science.gov (United States)

    The research presented here is a continuation of work designed to further the science of available and developing online toxicity monitors(OTMs) and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system. Source waters o...

  14. Response of Vibrio fischeri to repeated exposures over time in an Online Toxicity Monitor

    Science.gov (United States)

    Online Toxicity Monitors have been developed to provide continuous, time-relevant information regarding water quality. These systems measure a physiological or behavioral response of a sentinel organism to changes water quality. One such system, the Microlan Toxcontrol, is base...

  15. Anticonvulsant activity of extracts of Diospyros fischeri stem bark ...

    African Journals Online (AJOL)

    Evaluation of extracts of Diospyros fischeri Gurke (Ebenaceae), which is used traditionally for the treatment of epilepsy shows that the aqueous extract of the tem bark has no effect against picrotoxin induced convulsions in mice. However, an 80% ethanol extract of the bark caused dose-dependent suppression of ...

  16. Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes.

    Science.gov (United States)

    Small, A L; McFall-Ngai, M J

    1999-03-15

    An enzyme with similarities to myeloperoxidase, the antimicrobial halide peroxidase in mammalian neutrophils, occurs abundantly in the light organ tissue of Euprymna scolopes, a squid that maintains a beneficial association with the luminous bacterium Vibrio fischeri. Using three independent assays typically applied to the analysis of halide peroxidase enzymes, we directly compared the activity of the squid enzyme with that of human myeloperoxidase. One of these methods, the diethanolamine assay, confirmed that the squid peroxidase requires halide ions for its activity. The identification of a halide peroxidase in a cooperative bacterial association suggested that this type of enzyme can function not only to control pathogens, but also to modulate the interactions of host animals with their beneficial partners. To determine whether the squid peroxidase functions under both circumstances, we examined its distribution in a variety of host tissues, including those that typically interact with bacteria and those that do not. Tissues interacting with bacteria included those that have specific cooperative associations with bacteria (i.e., the light organ and accessory nidamental gland) and those that have transient nonspecific interactions with bacteria (i.e., the gills, which clear the cephalopod circulatory system of invading microorganisms). These bacteria-associated tissues were compared with the eye, digestive gland, white body, and ink-producing tissues, which do not typically interact directly with bacteria. Peroxidase enzyme assays, immunocytochemical localization, and DNA-RNA hybridizations showed that the halide-dependent peroxidase is consistently expressed in high concentration in tissues that interact bacteria. Elevated levels of the peroxidase were also found in the ink-producing tissues, which are known to have enzymatic pathways associated with antimicrobial activity. Taken together, these data suggest that the host uses a common biochemical response to

  17. The Occurrence of Vibrio species in the Gut of Sardinella madrensis ...

    African Journals Online (AJOL)

    The occurrence of vibrio bacteria in the gut of “Songu”: Sardinella madrensis was investigated using enrichment procedures. Seventy percent (70%) of the total fish samples examined were positive for vibrios. The mean bacterial counts ranged between 2.68 x 102 to 1.30 x 104 cfu/g in all the fish samples. The weight of fish ...

  18. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Science.gov (United States)

    Acosta-Smith, Erika; Viveros-Jiménez, Karina; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Bolscher, Jan G. M.; Nazmi, Kamran; Flores-Villaseñor, Hector; Alapizco-Castro, Gerardo; de la Garza, Mireya; Martínez-Garcia, Jesús J.; Velazquez-Roman, Jorge; Leon-Sicairos, Nidia

    2018-01-01

    Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species. PMID:29375503

  19. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species.

    Science.gov (United States)

    Acosta-Smith, Erika; Viveros-Jiménez, Karina; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Bolscher, Jan G M; Nazmi, Kamran; Flores-Villaseñor, Hector; Alapizco-Castro, Gerardo; de la Garza, Mireya; Martínez-Garcia, Jesús J; Velazquez-Roman, Jorge; Leon-Sicairos, Nidia

    2017-01-01

    Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.

  20. Detection of Pathogenic Organisms in Food, Water and Body (Postprint)

    Science.gov (United States)

    2002-06-27

    originally cloned from the marine bacterium Vibrio fischeri . The bioluminescent (lux) genes from bacteria have been genetically and biochemically...bacteriophage specific for pathogenic bacteria. The bioreporter design will incorporate a lux gene from Vibrio fischeri into the genome of the

  1. Non-Cholera Vibrios: The Microbial Barometer of Climate Change.

    Science.gov (United States)

    Baker-Austin, Craig; Trinanes, Joaquin; Gonzalez-Escalona, Narjol; Martinez-Urtaza, Jaime

    2017-01-01

    There is a growing interest in the role of climate change in driving the spread of waterborne infectious diseases, such as those caused by bacterial pathogens. One particular group of pathogenic bacteria - vibrios - are a globally important cause of diseases in humans and aquatic animals. These Gram-negative bacteria, including the species Vibrio vulnificus, Vibrio parahaemolyticus and Vibrio cholerae, grow in warm, low-salinity waters, and their abundance in the natural environment mirrors ambient environmental temperatures. In a rapidly warming marine environment, there are greater numbers of human infections, and most notably outbreaks linked to extreme weather events such as heatwaves in temperate regions such as Northern Europe. Because the growth of pathogenic vibrios in the natural environment is largely dictated by temperature, we argue that this group of pathogens represents an important and tangible barometer of climate change in marine systems. We provide a number of specific examples of the impacts of climate change on this group of bacteria and their associated diseases, and discuss advanced strategies to improve our understanding of these emerging waterborne diseases through the integration of microbiological, genomic, epidemiological, climatic, and ocean sciences. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance.

    Science.gov (United States)

    Yamina, Benmalek; Tahar, Benayad; Marie Laure, Fardeau

    2012-01-01

    The uncontrolled discharges of wastes containing a large quantity of heavy metal create huge economical and healthcare burdens particularly for people living near that area. However, the bioremediation of metal pollutants from wastewater using metal-resistant bacteria is a very important aspect of environmental biotechnology. In this study, 13 heavy metal resistant bacteria were isolated from the wastewater of wadi El Harrach in the east of Algiers and characterized. These include zinc-, lead-, chromium- and cadmium-resistant bacteria. The metal-resistant isolates characterized include both Gram-negative (77%) and Gram-positive (23%) bacteria. The Minimum Inhibitory Concentration (MIC) of wastewater isolates against the four heavy metals was determined in solid media and ranged from 100 to 1,500 μg/ml. All the isolates showed co-resistance to other heavy metals and antibiotic resistance of which 15% were resistant to one antibiotic and 85% were multi- and bi-antibiotics resistant. The zinc-resistant species Micrococcus luteus was the much more heavy metal resistant. The results of toxicity tests on Vibrio fischeri showed that the DI(50) (5 min) as low as 0.1 carried away luminescence inhibition greater than 50%.

  3. Insights into bacteriophage application in controlling Vibrio species

    Directory of Open Access Journals (Sweden)

    Vengadesh Letchumanan

    2016-07-01

    Full Text Available Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.

  4. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.

    2009-01-01

    BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety...... analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web...

  5. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  6. Abundance and antibiotic susceptibility of Vibrio spp. isolated from microplastics

    Science.gov (United States)

    Laverty, A. L.; Darr, K.; Dobbs, F. C.

    2016-02-01

    In recent years, there has been a growing concern for `microplastics' (particles resistance profiles of Vibrio spp. found on them. We collected 22 microplastic pieces, paired seawater samples, and from them cultured 44 putative Vibrio spp. isolates, 18 of which were PCR-confirmed as V. parahaemolyticus and 3 as V. vulnificus. There were no PCR-confirmed V. cholerae isolates. We used the Kirby-Bauer disk diffusion susceptibility test to examine the isolates' response to six antibiotics: chloramphenicol (30μg), gentamicin (10μg), ampicillin (10μg), streptomycin (10μg), tetracycline (30μg), and rifampin (5μg). Vibrio isolates were susceptible to three or more of the six antibiotics tested and all were susceptible to tetracycline and chloramphenicol. There were no apparent differences between the antibiotic susceptibilities of vibrios isolated from microplastics compared to those from the water column. In every instance tested, vibrios on microplastics were enriched by at least two orders of magnitude compared to those from paired seawater samples. This study demonstrates that microplastic particles serve as a habitat for Vibrio species, in particular V. vulnificus and V. parahaemolyticus, confirming the conjecture of Zettler et al. (2013) that plastics may serve as a vector for these and other potentially pathogenic bacteria.

  7. Prevalence of Vibrio cholerae in rivers of Mpumalanga province ...

    African Journals Online (AJOL)

    Cholera is a life-threatening diarrhoeal disease, which mainly affects inhabitants of developing countries due to poor socio-economic conditions and lack of access to potable water and sanitation. Toxigenic Vibrio cholerae are the aetiological agents of cholera. These bacteria are autochthonous to aquatic environments, ...

  8. Pseudomonas piscicida kills vibrios by two distinct mechanisms

    Science.gov (United States)

    Pseudoalteromonas piscicida is a naturally-occurring marine bacterium which kills competing bacteria, including vibrios. In studies by Richards et al. (AEM00175-17), three strains of P. piscicida were isolated and characterized. Strains secreted proteolytic enzymes which likely killed competing or...

  9. The dual nature of haemocyanin in the establishment and persistence of the squid–vibrio symbiosis

    Science.gov (United States)

    Kremer, Natacha; Schwartzman, Julia; Augustin, René; Zhou, Lawrence; Ruby, Edward G.; Hourdez, Stéphane; McFall-Ngai, Margaret J.

    2014-01-01

    We identified and sequenced from the squid Euprymna scolopes two isoforms of haemocyanin that share the common structural/physiological characteristics of haemocyanin from a closely related cephalopod, Sepia officinalis, including a pronounced Bohr effect. We examined the potential roles for haemocyanin in the animal's symbiosis with the luminous bacterium Vibrio fischeri. Our data demonstrate that, as in other cephalopods, the haemocyanin is primarily synthesized in the gills. It transits through the general circulation into other tissues and is exported into crypt spaces that support the bacterial partner, which requires oxygen for its bioluminescence. We showed that the gradient of pH between the circulating haemolymph and the matrix of the crypt spaces in adult squid favours offloading of oxygen from the haemocyanin to the symbionts. Haemocyanin is also localized to the apical surfaces and associated mucus of a juvenile-specific epithelium on which the symbionts gather, and where their specificity is determined during the recruitment into the association. The haemocyanin has an antimicrobial activity, which may be involved in this enrichment of V. fischeri during symbiont initiation. Taken together, these data provide evidence that the haemocyanin plays a role in shaping two stages of the squid–vibrio partnership. PMID:24807261

  10. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis.

    Science.gov (United States)

    Kremer, Natacha; Schwartzman, Julia; Augustin, René; Zhou, Lawrence; Ruby, Edward G; Hourdez, Stéphane; McFall-Ngai, Margaret J

    2014-06-22

    We identified and sequenced from the squid Euprymna scolopes two isoforms of haemocyanin that share the common structural/physiological characteristics of haemocyanin from a closely related cephalopod, Sepia officinalis, including a pronounced Bohr effect. We examined the potential roles for haemocyanin in the animal's symbiosis with the luminous bacterium Vibrio fischeri. Our data demonstrate that, as in other cephalopods, the haemocyanin is primarily synthesized in the gills. It transits through the general circulation into other tissues and is exported into crypt spaces that support the bacterial partner, which requires oxygen for its bioluminescence. We showed that the gradient of pH between the circulating haemolymph and the matrix of the crypt spaces in adult squid favours offloading of oxygen from the haemocyanin to the symbionts. Haemocyanin is also localized to the apical surfaces and associated mucus of a juvenile-specific epithelium on which the symbionts gather, and where their specificity is determined during the recruitment into the association. The haemocyanin has an antimicrobial activity, which may be involved in this enrichment of V. fischeri during symbiont initiation. Taken together, these data provide evidence that the haemocyanin plays a role in shaping two stages of the squid-vibrio partnership.

  11. Mutation of Bacterium Vibrio gazogenes for Selective Preparation of Colorants

    OpenAIRE

    Alihosseini, Farzaneh; Lango, Jozsef; Ju, Kou-San; Hammock, Bruce D.; Sun, Gang

    2010-01-01

    A novel marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool, silk and synthetic fabrics such as polyester and polyacrylic and also show antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria on the dyed products. Methyl nitrosoguanidine was used as a mutation agent to increase the genetic diversity and the production yield of the bacteria of the family of Vibrio gazogenes. The analysis of the mutated samples show...

  12. Vibrio Parahaemolyticus: The Threat of Another Vibrio Acquiring Pandemic Potential

    Digital Repository Service at National Institute of Oceanography (India)

    Ramamurthy, T.; Nair, G.B.

    or indirectly via contaminated food and water. Food-borne Vibrio infections tend to occur more frequently in developed countries while transmission of Vibrio infections in developing countries is, by and large, water-borne. Further, the magnitude of food... and pandemics mainly due to poor water supply and personal hygiene. The other important and most common seafood-borne halophilic Vibrio is V. parahaemolyticus. Since its discovery in 1953 (Fujino et al., 1953), many aspects on this pathogen were explored...

  13. Efek Antibakteri Ekstrak Daun Mimba (Azadirachta indica A. Juss terhadap Bakteri Vibrio algynoliticus Secara In Vitro

    Directory of Open Access Journals (Sweden)

    Uli Ayini

    2014-03-01

    Full Text Available Budidaya udang windu di Indonesia telah berkembang pesat. Salah satu kendala budidaya udang adalah penyakit Vibriosis yang disebabkan oleh bakteri Vibrio algynoliticus. Tujuan penelitian ini adalah untuk mengetahui efek antibakeri ekstrak daun mimba terhadap bakteri Vibrio algynoliticus. Penelitian ini menggunakan metode dilusi untuk mengetahui efek antibakteri ekstrak daun mimba terhadap bakteri Vibrio algynoliticus secara in vitro. Konsentrasi ekstrak yang digunakan (% yaitu: 0; 2,5; 5; 7,5; 10; 12,5 dan sebagai kontrol terdiri dari kontrol positif, dan kontrol negatif. Pengumpulan data untuk menentukan MIC (Minimum Inhibitory Concentration dilakukan dengan membandingkan kejernihan kultur di medium TSB 2% pada berbagai konsentrasi yang berbeda, dengan kontrol positif dan kontrol negatif. Penentuan MBC (Minimum Bacterisidal Concentration dilakukan dengan melihat ada tidaknya dan jumlah koloni bakteri Vibrio alginolyticus yang muncul pada medium subkultur TSA 2% setelah inkubasi 24 jam. Hasil penelitian menunjukkan nilai MIC yaitu konsentrasi 5%, hal ini ditunjukkan dengan tabung yang mulai jernih. Nilai MBC ekstrak daun mimba terhadap bakteri Vibrio alginolyticus adalah konsentrasi 12,5% ditandai dengan sudah tidak munculnya  koloni bakteri Vibrio alginolyticus. Berdasarkan penelitian ini dapat disimpulkan bahwa ekstrak daun mimba dapat memberikan efek antibakteri terhadap bakteri Vibrio alginolyticus secara in vitro.Tiger shrimp cultivation in Indonesia has been growing rapidly. The main obstacle is the shrimp farming vibriosis disease caused by the bacterium Vibrio algynoliticus. The aim of this research was to determine the effects of neem leaf extract antibakeri against Vibrio algynoliticus. This study used a dilution method to determine the antibacterial effect of neem leaf extract against Vibrio algynoliticus bacteria in vitro. The concentration of the extract used (%: 0; 2.5; 5; 7.5; 10; 12.5 and as a control consisting of a positive

  14. Selection of a Battery of Rapid Toxicity Sensors for Drinking Water Evaluation

    Science.gov (United States)

    2006-01-01

    Strategic Diagnostics, nc., Newark, DE) measured changes in natural bioluminescence roduced by the marine bacteria Vibrio fischeri (Bulich, 1979...tates et al., 2003). Toxic substances decreased light output, hich was measured using a photometer.Vibrio fischeri supplied n a standard freeze-dried

  15. Effects of ambient exposure, refrigeration, and icing on Vibrio vulnificus and Vibrio parahaemolyticus abundances in oysters.

    Science.gov (United States)

    Jones, J L; Lydon, K A; Kinsey, T P; Friedman, B; Curtis, M; Schuster, R; Bowers, J C

    2017-07-17

    Vibrio vulnificus (Vv) and V. parahaemolyticus (Vp) illnesses are typically acquired through the consumption of raw molluscan shellfish, particularly oysters. As Vibrio spp. are naturally-occurring bacteria, one means of mitigation of illness is achieved by limiting post-harvest growth. In this study, effects of ambient air storage, refrigeration, and icing of oysters on Vibrio spp. abundances were examined at two sites in Alabama (AL) [Dog River (DR) and Cedar Point (CP)] and one site in Delaware Bay, New Jersey (NJ). As the United States shellfish program recommendations include testing for total these organisms and gene targets, Vv and total (tlh) and pathogenic (tdh+ and trh+) Vp were enumerated from samples using MPN-real-time-PCR approaches. Mean Vv and Vp abundances in oysters from AL-DR were lowest in immediately iced samples (2.3 and -0.1 log MPN/g, respectively) and highest in the 5h ambient then refrigerated samples (3.4 and 0.5 log MPN/g, respectively). Similarly, in AL-CP Vv and Vp mean levels in oysters were lowest in immediately iced samples (3.6 and 1.2 log MPN/g, respectively) and highest in 5h ambient then refrigerated samples (5.1 and 3.2 log MPN/g, respectively). Mean levels of pathogenic Vp from AL sites were frequently below the limit of detection (ice resulted in lower Vibrio spp. levels in oysters, compared to those that were refrigerated post-harvest. These results suggest vibriosis risk can be mitigated by shorter storage times and more rapid cooling of oysters, providing data regulatory authorities can use to evaluate Vibrio spp. control plans. Published by Elsevier B.V.

  16. Astaxanthin from psychrotrophic Sphingomonas faeni exhibits antagonism against food-spoilage bacteria at low temperatures.

    Science.gov (United States)

    Mageswari, Anbazhagan; Subramanian, Parthiban; Srinivasan, Ramachandran; Karthikeyan, Sivashanmugam; Gothandam, Kodiveri Muthukaliannan

    2015-10-01

    Food production and processing industry holds a perpetual relationship with microorganisms and their by-products. In the present study, we aimed to identify beneficial cold-adapted bacteria devoid of any food spoilage properties and study their antagonism against common food-borne pathogens at low temperature conditions. Ten isolates were obtained on selective isolation at 5 °C, which were spread across genera Pseudomonas, Sphingomonas, Psychrobacter, Leuconostoc, Rhodococcus, and Arthrobacter. Methanol extracts of strains were found to contain several bioactive metabolites. Among the studied isolates, methanol extracts of S. faeni ISY and Rhodococcus fascians CS4 were found to show antagonism against growth of Escherichia coli, Proteus mirabilis, Enterobacter aerogenes, Listeria monocytogenes and Vibrio fischeri at refrigeration temperatures. Characterization of the abundant yellow pigment in methanol extracts of S. faeni ISY through UV-Vis spectrophotometry, high performance liquid chromatography (HPLC) and mass spectrometry (LC-MS) revealed the presence of astaxanthin, which, owing to its presence in very large amounts and evidenced to be responsible for antagonistic activity of the solvent extract. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Long-term effects of ocean warming on vibrios

    Science.gov (United States)

    Pruzzo, C.; Pezzati, E.; Brettar, I.; Reid, P. C.; Colwell, R.; Höfle, M. G.; vezzulli, L.

    2012-12-01

    Vibrios are a major source of human disease, play an important role in the ecology and health of marine animals and are regarded as an abundant fraction of culturable bacteria of the ocean. There has been a considerable global effort to reduce the risk of Vibrio infections and yet in most countries both human and non-human illnesses associated with these bacteria are increasing. The cause of this increase is not known, but since vibrios are strongly thermodependant there is good reason to believe that global warming may have contributed. To investigate this possibility we examined historical samples from the Continuous Plankton Recorder (CPR) archive using advanced molecular analysis and pyrosequencing. For the first time we were able to recover environmental DNA from CPR samples that had been stored for up to ~50 years in a formalin-fixed format, which is suitable for molecular analyses of the associated prokaryotic community. To overcome the problem of DNA degradation due to the sample age and storage in formalin we develop an unbiased index of abundance for Vibrio quantification in CPR samples termed a 'relative Vibrio Abundance Index' (VAI). VAI is defined as the ratio of Vibrio spp. cells to total bacterial cells assessed by Real-Time PCR using genus-specific and universal primers, respectively, producing small amplicons of similar size (~100bp). We assessed VAI index on 55 samples (each representing 10 nautical miles tow equal to 3 m3 of filtered sewater) collected in August by the CPR survey in the North Sea from off the Rhine and Humber estuaries between 1961 to 2005 showing that the genus Vibrio has increased in prevalence in the last 44 years and that this increase is correlated significantly, during the same period, with warming sea surface temperature. In addition, by applying deep sequencing analysis of a subset of these samples we provide evidence that bacteria belonging to the genus Vibrio, including the human pathogen V. cholerae, not only increased

  18. Isolation of broad-host-range replicons from marine sediment bacteria.

    Science.gov (United States)

    Sobecky, P A; Mincer, T J; Chang, M C; Toukdarian, A; Helinski, D R

    1998-08-01

    Naturally occurring plasmids isolated from heterotrophic bacterial isolates originating from coastal California marine sediments were characterized by analyzing their incompatibility and replication properties. Previously, we reported on the lack of DNA homology between plasmids from the culturable bacterial population of marine sediments and the replicon probes specific for a number of well-characterized incompatibility and replication groups (P. A. Sobecky, T. J. Mincer, M. C. Chang, and D. R. Helinski, Appl. Environ. Microbiol. 63:888-895, 1997). In the present study we isolated 1.8- to 2.3-kb fragments that contain functional replication origins from one relatively large (30-kb) and three small (marine isolates. 16S rRNA sequence analyses indicated that the four plasmid-bearing marine isolates belonged to the alpha and gamma subclasses of the class Proteobacteria. Three of the marine sediment isolates are related to the gamma-3 subclass organisms Vibrio splendidus and Vibrio fischeri, while the fourth isolate may be related to Roseobacter litoralis. Sequence analysis of the plasmid replication regions revealed the presence of features common to replication origins of well-characterized plasmids from clinical bacterial isolates, suggesting that there may be similar mechanisms for plasmid replication initiation in the indigenous plasmids of gram-negative marine sediment bacteria. In addition to replication in Escherichia coli DH5alpha and C2110, the host ranges of the plasmid replicons, designated repSD41, repSD121, repSD164, and repSD172, extended to marine species belonging to the genera Achromobacter, Pseudomonas, Serratia, and Vibrio. While sequence analysis of repSD41 and repSD121 revealed considerable stretches of homology between the two fragments, these regions do not display incompatibility properties against each other. The replication origin repSD41 was detected in 5% of the culturable plasmid-bearing marine sediment bacterial isolates, whereas the

  19. Shaping the microenvironment: evidence for the influence of a host galaxin on symbiont acquisition and maintenance in the squid-Vibrio symbiosis.

    Science.gov (United States)

    Heath-Heckman, Elizabeth A C; Gillette, Amani A; Augustin, René; Gillette, Miles X; Goldman, William E; McFall-Ngai, Margaret J

    2014-12-01

    Most bacterial species make transitions between habitats, such as switching from free living to symbiotic niches. We provide evidence that a galaxin protein, EsGal1, of the squid Euprymna scolopes participates in both: (i) selection of the specific partner Vibrio fischeri from the bacterioplankton during symbiosis onset and, (ii) modulation of V. fischeri growth in symbiotic maintenance. We identified two galaxins in transcriptomic databases and showed by quantitative reverse-transcriptase polymerase chain reaction that one (esgal1) was dominant in the light organ. Further, esgal1 expression was upregulated by symbiosis, a response that was partially achieved with exposure to symbiont cell-envelope molecules. Confocal immunocytochemistry of juvenile animals localized EsGal1 to the apical surfaces of light-organ epithelia and surrounding mucus, the environment in which V. fischeri cells aggregate before migration into the organ. Growth assays revealed that one repeat of EsGal1 arrested growth of Gram-positive bacterial cells, which represent the cell type first 'winnowed' during initial selection of the symbiont. The EsGal1-derived peptide also significantly decreased the growth rate of V. fischeri in culture. Further, when animals were exposed to an anti-EsGal1 antibody, symbiont population growth was significantly increased. These data provide a window into how hosts select symbionts from a rich environment and govern their growth in symbiosis. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Power plays: iron transport and energy transduction in pathogenic vibrios.

    Science.gov (United States)

    Kustusch, Ryan J; Kuehl, Carole J; Crosa, Jorge H

    2011-06-01

    The Vibrios are a unique group of bacteria inhabiting a vast array of aquatic environments. Many Vibrio species are capable of infecting a wide assortment of hosts. Some of these species include V. parahaemolyticus, V. alginolyticus, V. vulnificus, V. anguillarum, and V. cholerae. The ability of these organisms to utilize iron is essential in establishing both an infection in their hosts as well as surviving in the environment. Bacteria are able to sequester iron through the secretion of low molecular weight iron chelators termed siderophores. The iron-siderophore complexes are bound by specific outer membrane receptors and are brought through both the outer and inner membranes of the cell. The energy needed to drive this active transport is achieved through the TonB energy transduction system. When first elucidated in E. coli, the TonB system was shown to be a three protein complex consisting of TonB, ExbB and ExbD. Most Vibrio species carry two TonB systems. The second TonB system includes a fourth protein; TtpC, which is essential for TonB2 mediated iron transport. Some Vibrio species have been shown to carry a third TonB system that also includes a TtpC protein.

  1. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    Science.gov (United States)

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.; Lipp, Erin K.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrioafter natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  2. Colonization state influences the hemocyte proteome in a beneficial squid-Vibrio symbiosis.

    Science.gov (United States)

    Schleicher, Tyler R; VerBerkmoes, Nathan C; Shah, Manesh; Nyholm, Spencer V

    2014-10-01

    The squid Euprymna scolopes and the luminescent bacterium Vibrio fischeri form a highly specific beneficial light organ symbiosis. Not only does the host have to select V. fischeri from the environment, but it must also prevent subsequent colonization by non-symbiotic microorganisms. Host macrophage-like hemocytes are believed to play a role in mediating the symbiosis with V. fischeri. Previous studies have shown that the colonization state of the light organ influences the host's hemocyte response to the symbiont. To further understand the molecular mechanisms behind this process, we used two quantitative mass-spectrometry-based proteomic techniques, isobaric tags for relative and absolute quantification (iTRAQ) and label-free spectral counting, to compare and quantify the adult hemocyte proteomes from colonized (sym) and uncolonized (antibiotic-treated/cured) squid. Overall, iTRAQ allowed for the quantification of 1,024 proteins with two or more peptides. Thirty-seven unique proteins were determined to be significantly different between sym and cured hemocytes (p value < 0.05), with 20 more abundant proteins and 17 less abundant in sym hemocytes. The label-free approach resulted in 1,241 proteins that were identified in all replicates. Of 185 unique proteins present at significantly different amounts in sym hemocytes (as determined by spectral counting), 92 were more abundant and 93 were less abundant. Comparisons between iTRAQ and spectral counting revealed that 30 of the 37 proteins quantified via iTRAQ exhibited trends similar to those identified by the label-free method. Both proteomic techniques mutually identified 16 proteins that were significantly different between the two groups of hemocytes (p value < 0.05). The presence of V. fischeri in the host light organ influenced the abundance of proteins associated with the cytoskeleton, adhesion, lysosomes, proteolysis, and the innate immune response. These data provide evidence that colonization by V. fischeri

  3. Colonization State Influences the Hemocyte Proteome in a Beneficial Squid–Vibrio Symbiosis*

    Science.gov (United States)

    Schleicher, Tyler R.; VerBerkmoes, Nathan C.; Shah, Manesh; Nyholm, Spencer V.

    2014-01-01

    The squid Euprymna scolopes and the luminescent bacterium Vibrio fischeri form a highly specific beneficial light organ symbiosis. Not only does the host have to select V. fischeri from the environment, but it must also prevent subsequent colonization by non-symbiotic microorganisms. Host macrophage-like hemocytes are believed to play a role in mediating the symbiosis with V. fischeri. Previous studies have shown that the colonization state of the light organ influences the host's hemocyte response to the symbiont. To further understand the molecular mechanisms behind this process, we used two quantitative mass-spectrometry-based proteomic techniques, isobaric tags for relative and absolute quantification (iTRAQ) and label-free spectral counting, to compare and quantify the adult hemocyte proteomes from colonized (sym) and uncolonized (antibiotic-treated/cured) squid. Overall, iTRAQ allowed for the quantification of 1,024 proteins with two or more peptides. Thirty-seven unique proteins were determined to be significantly different between sym and cured hemocytes (p value < 0.05), with 20 more abundant proteins and 17 less abundant in sym hemocytes. The label-free approach resulted in 1,241 proteins that were identified in all replicates. Of 185 unique proteins present at significantly different amounts in sym hemocytes (as determined by spectral counting), 92 were more abundant and 93 were less abundant. Comparisons between iTRAQ and spectral counting revealed that 30 of the 37 proteins quantified via iTRAQ exhibited trends similar to those identified by the label-free method. Both proteomic techniques mutually identified 16 proteins that were significantly different between the two groups of hemocytes (p value < 0.05). The presence of V. fischeri in the host light organ influenced the abundance of proteins associated with the cytoskeleton, adhesion, lysosomes, proteolysis, and the innate immune response. These data provide evidence that colonization by V. fischeri

  4. Ocurrence of Vibrio spp., positive coagulase staphylococci and enteric bacteria in oysters (Crassostrea gigas harvested in the south bay of Santa Catarina island, Brazil Ocorrência de Vibrio spp., estafilococos coagulase positivo e bactérias entéricas em ostras (Crassostrea gigas cultivadas na baía sul da ilha de Santa Catarina, Brasil

    Directory of Open Access Journals (Sweden)

    Roberta Juliano Ramos

    2012-09-01

    Full Text Available The aim of this study was to assess the contamination of oysters (Crassostrea gigas, harvested in six different regions of the South Bay of Santa Catarina Island, with Coliforms at 45 ºC, Escherichia coli, Vibrio spp., positive coagulase staphylococci, and Salmonella sp. over a period of one year. One hundred eighty oyster samples were collected directly from their culture sites and analyzed. Each sample consisted of a pool of 12 oysters. All of the samples analyzed showed absence of Salmonella, 18 (10% samples showed presence of Escherichia coli, 15 (8.3% samples were positive for V. alginolyticus, and Vibriocholerae was detected in 4 samples (2.2%. The counts of positive-coagulase staphylococci varied from O objetivo deste estudo foi avaliar a contaminação de ostras (Crassostrea gigas cultivadas em diferentes regiões da Baía Sul da Ilha de Santa Catarina, por coliformes a 45 ºC, Escherichia coli, Vibrio spp. Estafilococos coagulase positiva e Salmonella sp., durante o período de um ano. Foram analisadas 180 amostras, coletadas diretamente no local de cultivo. Todas as amostras analisadas apresentaram ausência de Salmonella, 18 (10% amostras apresentaram presença de Escherichia coli, 15 (8,3% amostras positivas para Vibrio alginolyticus e V. cholerae foi detectado em 4 amostras (2,2%. As contagens de Estafilococos coagulase positiva variaram de <10 a 1,9 x 102 UFC.g-1, enquanto que as contagens de coliformes a 45 ºC e E. coli variaram de <3 a 1,5 x 102 NMP.g-1 e <3 e 4,3 x 10 NMP.g-1, respectivamente. As contagens de V. parahaemolyticus e V. vulnificus variaram de <3 a 7 NMP.g-1, para ambos os microrganismos, sugerindo um monitoramento tanto destas espécies quanto da temperatura das águas marinhas nas regiões de cultivo. Com base nos resultados das análises microbiológicas, as amostras analisadas mostraram qualidade bacteriológica aceitável, ou seja, dentro dos parâmetros estabelecidos na legislação brasileira.

  5. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria

    Science.gov (United States)

    Sabrina Pankey, M; Foxall, Randi L; Ster, Ian M; Perry, Lauren A; Schuster, Brian M; Donner, Rachel A; Coyle, Matthew; Cooper, Vaughn S; Whistler, Cheryl A

    2017-01-01

    Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations. DOI: http://dx.doi.org/10.7554/eLife.24414.001 PMID:28447935

  6. Late Winter Population and Distribution of Spectacled Eiders (Somateria fischeri) in the Bering Sea

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We conducted aerial surveys in the northern Bering Sea in late winter 1995, 1996 and 1997 to estimate the population of spectacled eiders (Somateria fischeri)...

  7. Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone

    Directory of Open Access Journals (Sweden)

    Edna L. Hernández-López

    2015-09-01

    Here we describe experimental procedures and methods about our dataset (NCBI GEO accession number GSE68146 and describe the data analysis to identify different expression levels in N. fischeri using this recalcitrant carbon source.

  8. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  9. Adsorption kinetics of laterally and polarly flagellated Vibrio.

    OpenAIRE

    Belas, M R; Colwell, R R

    1982-01-01

    The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral fl...

  10. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld

    -negative bacteria (mainly Pseudoalteromonas and Vibrio), we found that some strains were capable of producing antibacterial compounds when grown on chitin, an N-acetyl-D-glucosamine polymer found in the exoskeleton of zooplankton.2 A strain of Vibrio coralliilyticus solely produced the antibiotic andrimid,3...

  11. New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities.

    Science.gov (United States)

    Rubio-Portillo, Esther; Yarza, Pablo; Peñalver, Cindy; Ramos-Esplá, Alfonso A; Antón, Josefa

    2014-09-01

    Bleaching of Oculina patagonica has been extensively studied in the Eastern Mediterranean Sea, although no studies have been carried out in the Western basin. In 1996 Vibrio mediterranei was reported as the causative agent of bleaching in O. patagonica but it has not been related to bleached or healthy corals since 2003, suggesting that it was no longer involved in bleaching of O. patagonica. In an attempt to clarify the relationship between Vibrio spp., seawater temperature and coral diseases, as well as to investigate the putative differences between Eastern and Western Mediterranean basins, we have analysed the seasonal patterns of the culturable Vibrio spp. assemblages associated with healthy and diseased O. patagonica colonies. Two sampling points located in the Spanish Mediterranean coast were chosen for this study: Alicante Harbour and the Marine Reserve of Tabarca. A complex and dynamic assemblage of Vibrio spp. was present in O. patagonica along the whole year and under different environmental conditions and coral health status. While some Vibrio spp. were detected all year around in corals, the known pathogens V. mediteranei and V. coralliilyticus were only present in diseased specimens. The pathogenic potential of these bacteria was studied by experimental infection under laboratory conditions. Both vibrios caused diseased signs from 24 °C, being higher and faster at 28 °C. Unexpectedly, the co-inoculation of these two Vibrio species seemed to have a synergistic pathogenic effect over O. patagonica, as disease signs were readily observed at temperatures at which bleaching is not normally observed.

  12. Persistence, seasonal dynamics and pathogenic potential of Vibrio communities from Pacific oyster hemolymph.

    Science.gov (United States)

    Wendling, Carolin C; Batista, Frederico M; Wegner, K Mathias

    2014-01-01

    Bacteria of the genus Vibrio occur at a continuum from free-living to symbiotic life forms, including opportunists and pathogens, that can contribute to severe diseases, for instance summer mortality events of Pacific oysters Crassostrea gigas. While most studies focused on Vibrio isolated from moribund oysters during mortality outbreaks, investigations of the Vibrio community in healthy oysters are rare. Therefore, we characterized the persistence, diversity, seasonal dynamics, and pathogenicity of the Vibrio community isolated from healthy Pacific oysters. In a reciprocal transplant experiment we repeatedly sampled hemolymph from adult Pacific oysters to differentiate population from site-specific effects during six months of in situ incubation in the field. We characterized virulence phenotypes and genomic diversity based on multilocus sequence typing in a total of 70 Vibrio strains. Based on controlled infection experiments we could show that strains with the ability to colonize healthy adult oysters can also have the potential to induce high mortality rates on larvae. Diversity and abundance of Vibrio varied significantly over time with highest values during and after spawning season. Vibrio communities from transplanted and stationary oysters converged over time, indicating that communities were not population specific, but rather assemble from the surrounding environment forming communities, some of which can persist over longer periods.

  13. Vibrio cholerae Detection in Water and Wastewater by Polymerase Chain Reaction Assay

    Directory of Open Access Journals (Sweden)

    Behnaz Barzamini

    2014-11-01

    Full Text Available Background: Vibrio cholerae is a significant human pathogen worldwide and annually causes some cases of deaths. Contaminated water plays an important role in transmission of this pathogen, which indicates the importance of early diagnosis. Objectives: The current study aimed to perform Polymerase Chain Reaction (PCR on water and wastewater samples to determine the detection limit for Vibrio cholerae. Materials and Methods: PCR was performed on the DNA extracted from Vibrio cholerae of the contaminated water and wastewater using ctxA gene specific primers. The accuracy of PCR method to detect these bacteria was also assessed. Results: The result of PCR performed on the extracted DNA showed a specific 241 base pair band. The limit of bacterial detection for water and wastewater were 40 cfu/mL and 81 cfu/mL, respectively. Conclusions: In the current study, PCR performance using the ctxA gene specific primers to detect Vibrio cholerae was found highly accurate and specific.

  14. Viscosity dictates metabolic activity of Vibrio ruber

    Science.gov (United States)

    Borić, Maja; Danevčič, Tjaša; Stopar, David

    2012-01-01

    Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase (GPD) increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment. PMID:22826705

  15. Canine visceral leishmaniasis in the metropolitan area of São Paulo: Pintomyia fischeri as potential vector of Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Galvis-Ovallos Fredy

    2017-01-01

    Full Text Available American visceral leishmaniasis is a zoonosis caused by Leishmania infantum and transmitted mainly by Lutzomyia longipalpis. However, canine cases have been reported in the absence of this species in the Greater São Paulo region, where Pintomyia fischeri and Migonemyia migonei are the predominant species. This raises the suspicion that they could be acting as vectors. Therefore, this study sought to investigate specific vector capacity parameters of these species and to compare them with those of Lu. longipalpis s.l. Among these parameters the blood feeding rate, the survival, and the susceptibility to the development of Le. infantum were evaluated for the three species, and the attractiveness of dogs to Pi. fischeri and Mg. migonei was evaluated. The estimated interval between blood meals was shorter for Lu. longipalpis s.l, followed by Pi. fischeri and Mg. migonei. The infection rate with Le. infantum flagellates in Lu. longipalpis was 9.8%, in Pi. fischeri 4.8%, and in Mg. migonei nil. The respective infective life expectancies (days of Lu. longipalpis, Mg. migonei, and Pi. fischeri were 2.4, 1.94, and 1.68. Both Pi. fischeri and Mg. migonei were captured in the kennel with a predominance (95% of Pi. fischeri. Considering the great attractiveness of dogs to Pi. fischeri, its susceptibility to infection by Le. infantum, infective life expectancies, and predominance in Greater São Paulo, this study presents evidence of Pi. fischeri as a potential vector of this parasite in the region.

  16. Toxicity Screening of Hydrolyzed H, HD, and HT using the Bioluminescent Marine Bacterium, Vibrio Fischeri, by Means of Microtox Assay

    National Research Council Canada - National Science Library

    Haley, Mark V; Checkai, Ronald T

    2006-01-01

    .... The mineralization of HD through hot water hydrolysis with subsequent neutralization using NaOH, followed by biodegradation, has been demonstrated to be an effective technology at the Aberdeen...

  17. Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi

    NARCIS (Netherlands)

    Wyatt, Timon T; van Leeuwen, M Richard; Golovina, Elena A; Hoekstra, Folkert A; Kuenstner, Eric J; Palumbo, Edward A; Snyder, Nicole L; Visagie, Cobus; Verkennis, Alex; Hallsworth, John E; Wösten, Han A B; Dijksterhuis, Jan

    Ascospores of Neosartorya, Byssochlamys and Talaromyces can be regarded as the most stress-resistant eukaryotic cells. They can survive exposure at temperatures as high as 85°C for 100 min or more. Neosartorya fischeri ascospores are more viscous and more resistant to the combined stress of heat and

  18. Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM

    DEFF Research Database (Denmark)

    Briegel, Ariane; Ortega, Davi R; Mann, Petra

    2016-01-01

    motile bacteria contain one or more additional, sometimes purely cytoplasmic, chemoreceptor systems. Vibrio cholerae contains three chemotaxis clusters (I, II, and III). Here, using electron cryotomography, we explore V. cholerae's cytoplasmic chemoreceptor array and establish that it is formed...

  19. Genetic diversity of culturable Vibrio in an Australian blue mussel Mytilus galloprovincialis hatchery.

    Science.gov (United States)

    Kwan, Tzu Nin; Bolch, Christopher J S

    2015-09-17

    Bacillary necrosis associated with Vibrio species is the common cause of larval and spat mortality during commercial production of Australian blue mussel Mytilus galloprovincialis. A total of 87 randomly selected Vibrio isolates from various stages of rearing in a commercial mussel hatchery were characterised using partial sequences of the ATP synthase alpha subunit gene (atpA). The sequenced isolates represented 40 unique atpA genotypes, overwhelmingly dominated (98%) by V. splendidus group genotypes, with 1 V. harveyi group genotype also detected. The V. splendidus group sequences formed 5 moderately supported clusters allied with V. splendidus/V. lentus, V. atlanticus, V. tasmaniensis, V. cyclitrophicus and V. toranzoniae. All water sources showed considerable atpA gene diversity among Vibrio isolates, with 30 to 60% of unique isolates recovered from each source. Over half (53%) of Vibrio atpA genotypes were detected only once, and only 7 genotypes were recovered from multiple sources. Comparisons of phylogenetic diversity using UniFrac analysis showed that the culturable Vibrio community from intake, header, broodstock and larval tanks were phylogenetically similar, while spat tank communities were different. Culturable Vibrio associated with spat tank seawater differed in being dominated by V. toranzoniae-affiliated genotypes. The high diversity of V. splendidus group genotypes detected in this study reinforces the dynamic nature of microbial communities associated with hatchery culture and complicates our efforts to elucidate the role of V. splendidus group bacteria in vibriosis.

  20. Oligotyping reveals community level habitat selection within the genus Vibrio

    Directory of Open Access Journals (Sweden)

    Victor Thomas Schmidt

    2014-11-01

    Full Text Available The genus Vibrio is a metabolically and genetically diverse group of facultative anaerobic Bacteria, common in aquatic environments and marine hosts. The genus contains several species of importance to human health and aquaculture, including the causative agents of human cholera and fish vibriosis. Vibrios display a wide variety of known life histories, from opportunistic pathogens to long-standing symbioses with individual host species. Studying Vibrio ecology has been challenging as individual species often display a wide range of habitat preferences, and groups of vibrios can act as socially cohesive groups. Although strong associations with salinity, temperature and other environmental variables have been established, the degree of habitat or host specificity at both the individual and community levels is unknown. Here we use oligotyping analyses in combination with a large collection of existing Vibrio 16S ribosomal RNA (rRNA gene sequence data to reveal patterns of Vibrio ecology across a wide range of environmental, host, and abiotic substrate associated habitats. Our data show that individual taxa often display a wide range of habitat preferences yet tend to be highly abundant in either substrate-associated or free-living environments. Our analyses show that Vibrio communities share considerable overlap between two distinct hosts (i.e., sponge and fish yet are distinct from the abiotic plastic substrates. Lastly, evidence for habitat specificity at the community level exists in some habitats, despite considerable stochasticity in others. In addition to providing insights into Vibrio ecology across a broad range of habitats, our study shows the utility of oligotyping as a facile, high-throughput and unbiased method for large scale analyses of publicly available sequence data repositories and suggests its wide application could greatly extend the range of possibilities to explore microbial ecology.

  1. Ocean warming and spread of pathogenic vibrios in the aquatic environment.

    Science.gov (United States)

    Vezzulli, Luigi; Colwell, Rita R; Pruzzo, Carla

    2013-05-01

    Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Several reports recently showed that human Vibrio illnesses are increasing worldwide including fatal acute diarrheal diseases, such as cholera, gastroenteritis, wound infections, and septicemia. Many scientists believe this increase may be associated with global warming and rise in sea surface temperature (SST), although not enough evidence is available to support a causal link between emergence of Vibrio infections and climate warming. The effect of increased SST in promoting spread of vibrios in coastal and brackish waters is considered a causal factor explaining this trend. Field and laboratory studies carried out over the past 40 years supported this hypothesis, clearly showing temperature promotes Vibrio growth and persistence in the aquatic environment. Most recently, a long-term retrospective microbiological study carried out in the coastal waters of the southern North Sea provided the first experimental evidence for a positive and significant relationship between SST and Vibrio occurrence over a multidecadal time scale. As a future challenge, macroecological studies of the effects of ocean warming on Vibrio persistence and spread in the aquatic environment over large spatial and temporal scales would conclusively support evidence acquired to date combined with studies of the impact of global warming on epidemiologically relevant variables, such as host susceptibility and exposure. Assessing a causal link between ongoing climate change and enhanced growth and spread of vibrios and related illness is expected to improve forecast and mitigate future outbreaks associated with these pathogens.

  2. INS refuerza vigilancia y diagnóstico de enfermedad diarreica producida por Vibrio parahemolyticus

    OpenAIRE

    Huapaya, Blanca

    2005-01-01

    El Instituto Nacional de Salud (INS) está fortaleciendo la vigilancia y el diagnóstico en el Perú del Vibrio parahaemolyticus, bacteria causante de una enfermedad diarreica aguda, que a inicios de este año produjo un brote de aproximadamente 10 mil casos en Chile.

  3. Phytoplankton production systems in a shellfish hatchery: variations of the bacterial load and diversity of vibrios.

    Science.gov (United States)

    Dubert, J; Fernández-Pardo, A; Nóvoa, S; Barja, J L; Prado, S

    2015-06-01

    Outbreaks of disease caused by some Vibrio species represent the main production bottleneck in shellfish hatcheries. Although the phytoplankton used as food is one of the main sources of bacteria, studies of the associated bacterial populations, specifically vibrios, are scarce. The aim of the study was the microbiological monitoring of the microalgae as the first step in assessing the risk disease for bivalve cultures. Two phytoplankton production systems were sampled weekly throughout 1-year period in a bivalve hatchery. Quantitative analysis revealed high levels of marine heterotrophic bacteria in both systems throughout the study. Presumptive vibrios were detected occasionally and at low concentrations. In most of the cases, they belonged to the Splendidus and Harveyi clades. The early detection of vibrios in the microalgae may be the key for a successful bivalve culture. Their abundance and diversity were affected by factors related to the hatchery environment. This work represents the first long study where the presence of vibrios was evaluated rigorously in phytoplankton production systems and provides a suitable microbiological protocol to control and guarantee the quality of the algal cultures to avoid the risk of transferring potential pathogens to shellfish larvae and/or broodstock. © 2015 The Society for Applied Microbiology.

  4. Zoonose Vibrio vulnificus: meldingsplicht raadzaam

    NARCIS (Netherlands)

    Dijkstra, A.; Haenen, O.L.M.; Moller, L.

    2010-01-01

    Op de lijst van meldingsplichtige infectieziekten komen een aantal zoönosen voor, zoals pest, rabiës en leptospirose. De relatief onbekende zoönotische Vibrio vulnificus valt opmerkelijk genoeg niet onder de meldingsplichtige infectieziekten. Juist vanwege het zeer agressieve beloop van een

  5. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom); Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); Lloyd, David [School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom)

    2016-08-29

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  6. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Science.gov (United States)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian

    2016-08-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  7. Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios.

    Science.gov (United States)

    Kiran, George Seghal; Lipton, Anuj Nishanth; Priyadharshini, Sethu; Anitha, Kumar; Suárez, Lucia Elizabeth Cruz; Arasu, Mariadhas Valan; Choi, Ki Choon; Selvin, Joseph; Al-Dhabi, Naif Abdullah

    2014-08-13

    Vibrio pathogens are causative agents of mid-culture outbreaks, and early mortality syndrome and secondary aetiology of most dreadful viral outbreaks in shrimp aquaculture. Among the pathogenic vibrios group, Vibrio alginolyticus and V. harveyi are considered as the most significant ones in the grow-out ponds of giant black tiger shrimp Penaeus monodon in India. Use of antibiotics was banned in many countries due to the emergence of antibiotic-resistant strains and accumulation of residual antibiotics in harvested shrimp. There is an urgent need to consider the use of alternative antibiotics for the control of vibriosis in shrimp aquaculture. Biofilm formation is a pathogenic and/or establishment mechanism of Vibrio spp. This study aims to develop novel safe antibiofilm and/or antiadhesive process using PHB to contain vibrios outbreaks in shrimp aquaculture. In this study a poly-hydroxy butyrate (PHB) polymer producing bacterium Brevibacterium casei MSI04 was isolated from a marine sponge Dendrilla nigra and production of PHB was optimized under submerged-fermentation (SmF) conditions. The effect of carbon, nitrogen and mineral sources on PHB production and enhanced production of PHB by response surface methods were demonstrated. The maximum PHB accumulation obtained was 6.74 g/L in the optimized media containing 25 g/L starch as carbon source, 96 h of incubation, 35°C and 3% NaCl. The highest antiadhesive activity upto 96% was recorded against V. vulnificus, and V. fischeri, followed by 92% against V. parahaemolyticus and V. alginolyticus and 88% inhibition was recorded against V. harveyi. In this study, a thermostable biopolymer was chemically characterized as PHB based on 1HNMR spectra, FT-IR and GC-MS spectra. The NMR spectra revealed that the polymer was an isocratic homopolymer and it also confirmed that the compound was PHB. The antiadhesive activity of PHB was determined in microtitre plate assay and an effective concentration (EC) of PHB (200

  8. Characterization of the secretomes of two vibrios pathogenic to mollusks.

    Science.gov (United States)

    Madec, Stéphanie; Pichereau, Vianney; Jacq, Annick; Paillard, Mathieu; Boisset, Claire; Guérard, Fabienne; Paillard, Christine; Nicolas, Jean-Louis

    2014-01-01

    Vibrio tapetis causes the brown ring disease in the Japanese clam Ruditapes philippinarum while Vibrio aestuarianus is associated with massive oyster mortalities. As extracellular proteins are often associated with the virulence of pathogenic bacteria, we undertook a proteomic approach to characterize the secretomes of both vibrios. The extracellular proteins (ECPs) of both species were fractionated by SEC-FPLC and in vitro assays were performed to measure the effects of each fraction on hemocyte cellular parameters (phagocytosis and adhesion). Fractions showing a significant effect were subjected to SDS-PAGE, and proteins were identified by nano LC-MS/MS. 45 proteins were identified for V. aestuarianus and 87 for V. tapetis. Most of them belonged to outer membrane or were periplasmic, including porins or adhesins that were already described as virulence factors in other bacterial species. Others were transporter components, flagella proteins, or proteins of unknown function (14 and 15 respectively). Interestingly, for V. aestuarianus, we noted the secretion of 3 extracellular enzymes including the Vam metalloprotease and two other enzymes (one putative lipase and one protease). For V. tapetis, we identified five extracellular enymes, i.e. two different endochitinases, one protease, one lipase and an adhesin. A comparison of both secretomes also showed that only the putative extracellular lipase was common to both secretomes, underscoring the difference in pathogenicity mechanisms between these two species. Overall, these results characterize for the first time the secretomes of these two marine pathogenic vibrios and constitute a useful working basis to further analyze the contribution of specific proteins in the virulence mechanisms of these species.

  9. Wind direction and its linkage with Vibrio cholerae dissemination.

    Science.gov (United States)

    Paz, Shlomit; Broza, Meir

    2007-02-01

    The relevance of climatic events as causative factors for cholera epidemics is well known. However, examinations of the involvement of climatic factors in intracontinental disease distribution are still absent. The spreading of cholera epidemics may be related to the dominant wind direction over land. We examined the geographic diffusion of three cholera outbreaks through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970-1971 and b) again in 2005-2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992-1993. We also discuss the possible influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Analysis of air pressure data at sea level and at several altitudes over Africa, India, and Bangladesh show a correspondence between the dominant wind direction and the intracontinental spread of cholera. We explored the hypothesis that winds have assisted the progress of cholera Vibrios throughout continents. The current analysis supports the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. This finding may improve our understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease's geographic dissemination.

  10. Gene-swapping mediates host specificity among symbiotic bacteria in a beneficial symbiosis.

    Directory of Open Access Journals (Sweden)

    Alba A Chavez-Dozal

    Full Text Available Environmentally acquired beneficial associations are comprised of a wide variety of symbiotic species that vary both genetically and phenotypically, and therefore have differential colonization abilities, even when symbionts are of the same species. Strain variation is common among conspecific hosts, where subtle differences can lead to competitive exclusion between closely related strains. One example where symbiont specificity is observed is in the sepiolid squid-Vibrio mutualism, where competitive dominance exists among V. fischeri isolates due to subtle genetic differences between strains. Although key symbiotic loci are responsible for the establishment of this association, the genetic mechanisms that dictate strain specificity are not fully understood. We examined several symbiotic loci (lux-bioluminescence, pil = pili, and msh-mannose sensitive hemagglutinin from mutualistic V. fischeri strains isolated from two geographically distinct squid host species (Euprymna tasmanica-Australia and E. scolopes-Hawaii to determine whether slight genetic differences regulated host specificity. Through colonization studies performed in naïve squid hatchlings from both hosts, we found that all loci examined are important for specificity and host recognition. Complementation of null mutations in non-native V. fischeri with loci from the native V. fischeri caused a gain in fitness, resulting in competitive dominance in the non-native host. The competitive ability of these symbiotic loci depended upon the locus tested and the specific squid species in which colonization was measured. Our results demonstrate that multiple bacterial genetic elements can determine V. fischeri strain specificity between two closely related squid hosts, indicating how important genetic variation is for regulating conspecific beneficial interactions that are acquired from the environment.

  11. Population dynamics of Vibrio and Pseudomonas species isolated from farmed Tasmanian Atlantic salmon (Salmo salar L.): a seasonal study.

    Science.gov (United States)

    Hatje, Eva; Neuman, Christina; Stevenson, Hollie; Bowman, John P; Katouli, Mohammad

    2014-11-01

    Vibrio and Pseudomonas species have been shown to be part of the normal microbiota of Atlantic salmon (Salmo salar L.), with some strains causing disease in fish. The factors affecting their prevalence and persistence in the salmon gut, however, have not been well studied. In this study, we collected 340 Vibrio and 150 Pseudomonas isolates from the hindgut of farmed Tasmanian Atlantic salmon, fed with two commercially available diets. Samples were collected every 6-8 weeks between July 2011 and May 2012. Isolates from selective agar were initially identified using biochemical tests and confirmed using genus-specific primers and 16S ribosomal RNA (16S rRNA) sequencing. Random amplified polymorphic DNA (RAPD) PCR was used to type both Pseudomonas and Vibrio; the latter was further typed using a biochemical fingerprinting method (PhP-RV plates). We observed low species diversity with strains comprising Vibrio ichthyoenteri/Vibrio scophthalmi, Vibrio crassostreae/Vibrio splendidus, Aliivibrio finisterrensis, Photobacterium phosphoreum and Pseudomonas fragi. Out of 340 Vibrio isolates, 238 (70 %) belonged to 21 clonal types and were found predominantly during summer when water temperatures reached 15 to 21 °C. Of these, the four major clonal types were found in multiple samples (70 %). P. fragi, on the other hand, was only found during the colder water temperatures and belonged to 18 clonal types. The presence of both groups of bacteria and their clonal types were independent of the fish diets used, suggesting that the water temperature was the main factor of the prevalence and persistence of these bacteria in the gut of Atlantic salmon.

  12. Vibrio alginolyticus Associated Chronic Myringitis Acquired in Mediterranean Waters of Turkey

    Directory of Open Access Journals (Sweden)

    Burak Ekrem Citil

    2015-01-01

    Full Text Available Vibrio alginolyticus was originally classified as biotype 2 of Vibrio parahaemolyticus. Most clinical isolates are recovered from superficial wounds or the external ear infections. V. alginolyticus is acknowledged to be nearly nonpathogenic in humans. The reason for presence of V. alginolyticus’s virulence is uncertain. We describe a chronic myringitis case in a 47-year-old female due to V. alginolyticus. According to her anamnesis, it was detected that she had sea bathing history in Mugla Coast in Turkey. Pure isolation of V. alginolyticus was obtained from external auditory canal’s culture. Investigation and antimicrobial susceptibility of the isolate were performed by the automatized BD Phoenix system and Kirby-Bauer disk diffusion method, respectively. The bacteria were sensitive to all antibiotics. This case was presented to pay attention to Vibrio alginolyticus infections.

  13. Isolation of Vibrio parahaemolyticus from fecal specimens on mannitol salt agar.

    Science.gov (United States)

    Carruthers, M M; Kabat, W J

    1976-08-01

    Unless laboratories use an inhibitory medium, Vibrio parahaemolyticus will be unrecognizable in fecal specimens. The use of a medium exclusively for vibrio isolation, such as thiosulfate-citrate-bile salts-sucrose agar (TCBS), however, may not be considered economically justified in the United States. The isolation and recognition of V. parahaemolyticus is reported on mannitol salt agar (MS), a medium which is used for fecal specimens here. Eight Kanagawa-positive and two of three Kanagawa-negative strains of V. parahaemolyticus grew as well on MS as on TCBS and better than on a representative enteric medium, Hektoen enteric agar (HE). Twenty-two fecal specimens from 16 noninfected individuals were inoculated with known quantities of V. parahaemolyticus, and recovery of these vibrios was assessed on TCBS, MS, and HE. Recovery of vibrios from MS and TCBS was similar when inoculum size was 10(3) colony-forming units/ml or greater. Recovery of vibrios from mixed culture was distinctly lower on HE. The colonial morphology of V. parahaemolyticus and several other bacteria on MS is illustrated.

  14. Surface-attachment sequence in Vibrio Cholerae

    Science.gov (United States)

    Utada, Andrew; Gibiansky, Maxsim; Wong, Gerard

    2013-03-01

    Vibrio cholerae is a gram-negative bacterium that causes the human disease cholera. It is found natively in brackish costal waters in temperate climates, where it attaches to the surfaces of a variety of different aquatic life. V. cholerae has a single polar flagellum making it highly motile, as well as a number of different pili types, enabling it to attach to both biotic and abiotic surfaces. Using in-house built tracking software we track all surface-attaching bacteria from high-speed movies to examine the early-time attachment profile of v. cholerae onto a smooth glass surface. Similar to previous work, we observe right-handed circular swimming trajectories near surfaces; however, in addition we see a host of distinct motility mechanisms that enable rapid exploration of the surface before forming a more permanent attachment. Using isogenic mutants we show that the motility mechanisms observed are due to a complex combination of hydrodynamics and pili-surface interactions. Lauga, E., DiLuzio, W. R., Whitesides, G. M., Stone, H. A. Biophys. J. 90, 400 (2006).

  15. Vibrio parahaemolyticus- An emerging foodborne pathogen

    Directory of Open Access Journals (Sweden)

    S Nelapati

    2012-02-01

    Full Text Available Vibrio parahaemolyticus is a halophilic gram negative, motile, oxidase positive, straight or curved rod-shaped, facultative anaerobic bacteria that occur naturally in the marine environment. They form part of the indigenous microflora of aquatic habitats of various salinity and are the major causative agents for some of the most serious diseases in fish, shellfish and penacid shrimp. This human pathogen causes acute gastroenteritis characterized by diarrhea, vomiting and abdominal cramps through consumption of contaminated raw fish or shellfish. V. parahaemolyticus is the leading cause of gastroenteritis due to the consumption of seafood worldwide. The incidence of V. parahaemolyticus infection has been increasing in many parts of the world, due to the emergence of O3:K6 serotype carrying the tdh gene which is responsible for most outbreaks worldwide. The pathogenicity of this organism is closely correlated with the Kanagawa phenomenon (KP + due to production of Kanagawa hemolysin or the thermostable direct hemolysin (TDH. The TDH and TRH (TDH-related hemolysin encoded by tdh and trh genes are considered to be important virulence factors. [Vet. World 2012; 5(1.000: 48-63

  16. Occurrences of pathogenic Vibrio parahaemolyticus from Vellar ...

    African Journals Online (AJOL)

    Vibrio parahaemolyticus is the predominant seafood pathogen associated with human gastroenteritis. Samples were collected from Vellar estuary, shrimp ponds and shrimp for characterization of V. parahaemolyticus. A total of 26 blue green centre (BG) Vibrio strains were isolated and characterized through biochemical ...

  17. Contaminant Case Report: Spectacled eider (Somateria fischeri) eggs and feathers from the Yukon-Kuskokwim Delta, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We collected spectacled eider (Somateria fischeri) eggs and shed breast contour feathers from nests on the Yukon-Kuskokwim Delta, Alaska, in 1992 to evaluate...

  18. Bioluminescent hydrocarbonclastic bacteria of the Niger Delta ...

    African Journals Online (AJOL)

    Utilization of three petroleum hydrocarbons (Mobil SAE 40 Engine Oil, Diesel and Bonny light Crude Oil) by four bioluminescent bacteria (Vibrio harveyi, V. fisheri, Photobacterium leiognathi and P. Phosphoreum isolated from the Bonny estuary in the Niger Delta, Nigeria was investigated. Microbial utilization was monitored ...

  19. Prevalence of enteropathogenic bacteria in treated effluents and receiving water bodies and their potential health risks

    CSIR Research Space (South Africa)

    Teklehaimanot, GZ

    2015-06-01

    Full Text Available in developing countries for multiple purposes, which include drinking, recreation and agriculture. The current study investigated the prevalence and potential health risks of enteropathogenic bacteria (Salmonella typhimurium, Shigella dysenteriae and Vibrio...

  20. Microbial Experimental Evolution as a Novel Research Approach in the Vibrionaceae and Squid-Vibrio Symbiosis

    Directory of Open Access Journals (Sweden)

    William eSoto

    2014-12-01

    Full Text Available The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists. The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to a solid substrate such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study.

  1. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis

    Science.gov (United States)

    Soto, William; Nishiguchi, Michele K.

    2014-01-01

    The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study. PMID:25538686

  2. Free living and plankton-associated vibrios: assessment in ballast water, harbor areas and coastal ecosystems in Brazil

    Directory of Open Access Journals (Sweden)

    Irma Nelly G. Rivera

    2013-01-01

    Full Text Available Ballast water is a major transport vector of exotic aquatic species and pathogenic microorganisms. The wide-ranging spread of toxigenic Vibrio cholerae O1 from harbor areas has been frequently ascribed to discharge of contaminated ballast water into eutrophic coastal environments, such as during the onset of the seventh cholera pandemic in South America in the early 1990s. To determine the microbiological hazards of ballast waters transported to Brazilian ports, we evaluated water and plankton samples taken from (i ballast water tanks of recently arrived ships, (ii port areas along the Brazilian coastline from ~1 to 32 oS and (iii three coastal areas in São Paulo State. Vibrio concentration and toxigenic V. cholerae O1 occurrence were analyzed. Plankton-associated vibrios were more abundant than free-living vibrios in all studied environments. Vibrio cholerae was found in 9.5% of ballast tanks and 24.2% of port samples, both as free-living and attached forms, and was absent off São Paulo State. Toxigenic V. cholerae O1 isolates (ctxA+, tcpA+, involved in cholera disease, were found in ballast water (2% and harbor (2% samples. These results confirm that ballast water is an important carrier of pathogenic organisms, and that monitoring of vibrios and other plankton-attached bacteria is of paramount importance in ballast water management programs.

  3. Diversity and dynamics of the Vibrio community in well water used for drinking in Guinea-Bissau (West Africa).

    Science.gov (United States)

    Machado, A; Bordalo, A A

    2014-09-01

    Bacteria of the genus Vibrio are ubiquitous in aquatic environments and can be found either in culturable or in a viable but nonculturable (VBNC) state. The genus comprises many pathogenic species accountable for water and food-borne diseases that prove to be fatal, especially in developing countries, as in Guinea-Bissau (West Africa), where cholera is endemic. In order to ascertain the abundance and structure of Vibrio spp. community in well waters that serve as the sole source of water for the population, quantitative polymerase chain reaction (qPCR), PCR-denaturant gradient gel electrophoresis (DGGE), and cloning approaches were used. Results suggest that Vibrio spp. were present throughout the year in acidic, freshwater wells with a seasonal community composition shift. Vibrio spp. abundance was in accordance with the abundance found in coastal environments. Sequences closely related to pathogenic Vibrio species were retrieved from well water revealing exposure of the population to such pathogens. pH, ammonium, and turbidity, regulated by the rain pattern, seem to be the variables that contributed mostly to the shaping and selection of the Vibrio spp. community. These results reinforce the evidence for water monitoring with culture-independent methods and the clear need to create/recover water infrastructures and a proper water resources management in West African countries with similar environmental conditions.

  4. First study of Vibrios in larval cultures of pullet carpet shell clam (Venerupis corrugata in hatchery

    Directory of Open Access Journals (Sweden)

    Javier Dubert Pérez

    2014-07-01

    Full Text Available Protocol for hatchery culture of the pullet carpet shell clam Venerupis corrugata spat is currently under development, as the only reliable means of providing spat to replenish natural beds or to support aquaculture activities. Among other variables, the microbiota has been demonstrated to be critical for successful bivalve culture. Shellfish hatcheries are hindered by fatal outbreaks of disease, regardless the bivalve species. These mass mortalities are mainly caused by opportunistic bacteria belonging to genus Vibrio and constitute one bottleneck for this economic activity. Different species, as V. tubiashii, V. pectenicida, V. splendidus, V. neptunius, V. ostreicida and V. bivalvicida, have been identified as responsible of mortalities in hatchery-reared larvae, affecting a wide range of bivalves. This is the first report of the microbiota associated with larval cultures of the pullet carpet shell clam. We present the results of the microbiological analyses of two larval cultures of pullet carpet shell reared in the Centro de Investigacións Mariñas (CIMA, Xunta de Galicia de Ribadeo (Galicia, NW Spain following the procedures developed in the institution. Each batch, A and B, was obtained from broodstocks collected in natural environment but in different geographical locations, the stock A (SW Galicia and the stock B (NW Galicia. Previous records of mortalities led us to divide each batch in two. One sub-batch (A1 and B1 was cultured following the routine procedures. Antibiotic was experimentally added to the other sub-batch (A2 and B2 with the aim of evaluating the effects on the culturable bacterial population (total marine bacteria and presumptive vibrios and on larval survival. Chloramphenicol, formerly the most commonly used antibiotic in bivalve hatcheries, was supplied with each change of seawater during larval development. Microbiological samples of broodstock, larvae and seawater in culture tanks were taken and processed

  5. A novel protein, TtpC, is a required component of the TonB2 complex for specific iron transport in the pathogens Vibrio anguillarum and Vibrio cholerae.

    NARCIS (Netherlands)

    Stork, M.; Otto, B.R.; Crosa, J.H.

    2007-01-01

    Active transport across the outer membrane in gram-negative bacteria requires the energy that is generated by the proton motive force in the inner membrane. This energy is transduced to the outer membrane by the TonB protein in complex with the proteins ExbB and ExbB. In the pathogen Vibrio

  6. Assessment of bacterial biodetoxification of herbicide atrazine using Aliivibrio fischeri cytotoxicity assay with prolonged contact time.

    Science.gov (United States)

    Háhn, Judit; Szoboszlay, Sándor; Tóth, Gergő; Kriszt, Balázs

    2017-07-01

    In our study, we determined and compared the atrazine-biodetoxification ability of 41 bacterial strains and 21 consortia created of those with over 50% degradation rate in pure cultures. Biodegradation capacity was measured with GC-MS. Detoxification was assessed based on the cytotoxic effect of end-products to Aliivibrio fischeri in chronic bioluminescence inhibition assay with 25 h contact time. Chronic A. fischeri assay adapted to a microplate, which is suitable for examine numerous residues simultaneously, also appeared to be significantly more sensitive to atrazine compared to the standard acute (30 min) test. Due to its sensitivity, the chronic assay could be a valuable tool to provide a more comprehensive view of the ecological risks of atrazine and other chemicals. Thirteen strains were able to degrade more than 50% of 50 ppm atrazine. Four of these belong to Rhodococcus aetherivorans, R. qingshengii, Serratia fonticola and Olivibacter oleidegradans which species' atrazine degrading ability has never been reported before. Four consortia degrading ability was more effective than that of the creating individual strains; moreover, their residues did not show cytotoxic effects to A. fischeri. However, in several cases, the degradation products of sole strains and consortia resulted in significant bioluminescence inhibition. Thus high biodegradation (>90%) does not certainly mean the reduction or cessation of toxicity highlighting the importance of the evaluation of biological effects of degradation residues to improve the efficiency and abate the ecological risks of bioremediation techniques.

  7. MICROFLORA EN OSTRAS CHILENAS Y SU INCIDENCIA EN LA COLONIZACION POR VIBRIOS PATOGENOS Y EN LA DESCOMPOSICION POST COSECHA.

    OpenAIRE

    ROMERO ORMAZABAL, JAIME MOISES

    2002-01-01

    Las ostras constituyen un importante producto de exportación y de consumo interno. Estos bivalvos se consumen crudos y enteros, con toda su carga bacteriana, que en algunos casos puede incluir vibrios patógenos. La carga bacteriana consiste de bacterias a 95p.

  8. Complete genome sequence of a giant Vibrio phage ValKK3 infecting Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Tamrin M. Lal

    2016-06-01

    Full Text Available This paper describes the complete sequence of a giant lytic marine myophage, Vibrio phage ValKK3 that is specific to Vibrio alginolyticus ATCC® 17749™. Vibrio phage ValKK3 was subjected to whole genome sequencing on MiSeq sequencing platform and annotated using Blast2Go. The complete sequence of ValKK3 genome was deposited in DBBJ/EMBL/GenBank under accession number KP671755.

  9. Complete genome sequence of a giant Vibrio phage ValKK3 infecting Vibrio alginolyticus.

    Science.gov (United States)

    Lal, Tamrin M; Sano, Motohiko; Hatai, Kishio; Ransangan, Julian

    2016-06-01

    This paper describes the complete sequence of a giant lytic marine myophage, Vibrio phage ValKK3 that is specific to Vibrio alginolyticus ATCC(®) 17749™. Vibrio phage ValKK3 was subjected to whole genome sequencing on MiSeq sequencing platform and annotated using Blast2Go. The complete sequence of ValKK3 genome was deposited in DBBJ/EMBL/GenBank under accession number KP671755.

  10. Daya Hambat Ekstrak Daun Pegagan (Centella asiatica yang Diambil di Batusangkar terhadap Pertumbuhan Kuman Vibrio cholerae secara In Vitro

    Directory of Open Access Journals (Sweden)

    Nelvita Sari Ramadhan

    2015-01-01

    . The study was conducted with laboratory experimental method with diffusion method (disc, at various concentrations of 5%,10%, 20%, 30%, 40%, 50%, and 100%, in the Laboratory of Microbiology, Faculty of Medicine, University of Andalas. The results showed that extractof Centella asiatica were taken in Batusangkar, did not inhibit the growth of Vibrio cholerae in vitro, whereas tetracycline is used as a positive control gave good inhibition of the growth of Vibrio cholerae, the inhibition zone16, 3mm. Factors influencing the presence or absence of inhibition of Centella asiatica on extracts the growth of Vibrio cholerae, among others, is a type of bacteria used, the method of making the extract used, and the source of Centella asiatica leaves are used in research.Keywords:antibacterial effects, Centella asiatica extract, Vibrio cholerae

  11. The LuxR regulator protein controls synthesis of polyhydroxybutyrate in Vibrio harveyi.

    Science.gov (United States)

    Miyamoto, C M; Sun, W; Meighen, E A

    1998-05-19

    The LuxR regulatory protein of Vibrio harveyi has been shown to control synthesis of polyhydroxybutyrate (PHB) as well as luminescence so as to occur at high cell density, suggesting that it is a general regulatory protein. Mutants defective in the production of LuxR (D1, D34, and MR1130) were found to be missing PHB, whose synthesis could be restored by complementation with luxR. Triparental mating with a V. harveyi genomic library revealed the presence of three genomic clones (G1, G2 and G3) that could also restore PHB synthesis and luminescence to cells which express low levels of luxR (D1 and D34) but not to luxR- cells (MR1130) suggesting that luxR expression was being stimulated. Analyses of luxR mRNA levels by mRNA dot blot hybridization and by primer extension confirmed that luxR mRNA levels were increased 4 to 7-fold in the D1 and D34 cells by the G1, G2 and G3 fragments and show that expression of a single genomic copy of luxR is sufficient to restore synthesis of PHB. The results demonstrate that V. harveyi LuxR controls the induction of a process not intimately involved in the bioluminescence system and clearly distinguishes its role in V. harveyi from that of LuxR from Vibrio (Photobacterium) fischeri, which has only been associated with regulation of light emission.

  12. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-Vibrio symbiosis.

    Science.gov (United States)

    Heath-Heckman, Elizabeth A C; Peyer, Suzanne M; Whistler, Cheryl A; Apicella, Michael A; Goldman, William E; McFall-Ngai, Margaret J

    2013-04-02

    The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut.

  13. Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon.

    Directory of Open Access Journals (Sweden)

    Wipasiri Soonthornchai

    Full Text Available Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh and V. parahaemolyticus (Vp have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host's epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host's gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids.

  14. Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon

    Science.gov (United States)

    Soonthornchai, Wipasiri; Chaiyapechara, Sage; Jarayabhand, Padermsak; Söderhäll, Kenneth; Jiravanichpaisal, Pikul

    2015-01-01

    Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids. PMID:26285030

  15. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    Incidents of Vibrio-associated diseases in marine aquaculture are increasingly reported on a global scale, incited also by the world’s rising temperature. Administration of antibiotics has been the most commonly applied remedy used for facing vibriosis outbreaks, giving rise to concerns about...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... to studying the interactions between marine pathogenic Vibrio and their corresponding bacteriophages, while discussing the potential and limitations of phage therapy application in the biological control of vibriosis....

  16. Occurrences of pathogenic Vibrio parahaemolyticus from Vellar ...

    African Journals Online (AJOL)

    user

    2013-04-03

    2001). Vibrio vulnificus as a health hazard for shrimp consumers. Revista do Instituto de Medicina Tropical de Sao Paulo. 43: 263- 266. Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning: A. Laboratory Manual, 2nd ed.

  17. Vibrio diseases of marine fish populations

    Science.gov (United States)

    Colwell, R. R.; Grimes, D. J.

    1984-03-01

    Several Vibrio spp. cause disease in marine fish populations, both wild and cultured. The most common disease, vibriosis, is caused by V. anguillarum. However, increase in the intensity of mariculture, combined with continuing improvements in bacterial systematics, expands the list of Vibrio spp. that cause fish disease. The bacterial pathogens, species of fish affected, virulence mechanisms, and disease treatment and prevention are included as topics of emphasis in this review.

  18. Vibrio chromosomes share common history

    Directory of Open Access Journals (Sweden)

    Gevers Dirk

    2010-05-01

    Full Text Available Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Results Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Conclusions Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA for one chromosome to be applied equally to both chromosomes.

  19. Vibrio Bacteria Counts from Hatcheries and Shellfish Beds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1996 to the present samples of water, sediment and macerated oyster set (Crassostrea virginica, Gmelin) taken at low tide at a Long Island oyster hatchery were...

  20. Antibiotic Susceptibility Patterns of Vibrio cholerae isolates

    Directory of Open Access Journals (Sweden)

    S D Shrestha

    2010-09-01

    Full Text Available INTRODUCTION: Cholera is one of the most common diarrhoeal diseases in Nepal. Etiological agent of cholera is Vibrio cholerae which removes essential body fluids, salts and vital nutrients, which are necessary for life causing dehydration and malnutrition. Emerging antimicrobial resistant is common. The aim of the present study was to determine the antibiotic susceptibility pattern of cholera patients in Nepal. METHODS: All the laboratory works were conducted in the bacteriology section of National Public Health Laboratory, Teku from March to September 2005. During this period a total of 340 stool samples from diarrhoeal patients were collected and processed according to the standard laboratory methods. Each patient suffering from diarrhoea was directly interviewed for his or her clinical history during sample collection. RESULTS: A total of 340 stool samples were processed and studied from both sex including all ages of patients. Among the processed sample 53 Vibrio cholerae cases were found. All isolated Vibrio cholerae O1 were El Tor, Inaba. All isolated (100% Vibrio cholerae O1 were sensitive to Ampicillin, Ciprofloxacin, Erythromycin and Tetracycline whereas all were resistant to Nalidixic acid and Cotrimoxazole. Only 15.1% cases were sensitive to Furazolidone whereas 84.9% were resistant. CONCLUSION: All V. cholerae strains isolated in this study were found resistant to Multi Drug Resistant (resistant to at least two antibiotics of different group. Ampicillin, Ciprofloxacin, Erythromycin and Tetracycline were found still more potent antibiotics against Vibrio cholerae isolated during the study. Keywords: antibiotics, susceptibility, Vibrio cholera.

  1. Identification and Initial Characterization of Prophages in Vibrio campbellii.

    Directory of Open Access Journals (Sweden)

    Nicola Lorenz

    Full Text Available Phages are bacteria targeting viruses and represent the most abundant biological entities on earth. Marine environments are exceptionally rich in bacteriophages, harboring a total of 4x1030 viruses. Nevertheless, marine phages remain poorly characterized. Here we describe the identification of intact prophage sequences in the genome of the marine γ-proteobacterium Vibrio campbellii ATCC BAA-1116 (formerly known as V. harveyi ATCC BAA-1116, which presumably belong to the family of Myoviridae. One prophage was found on chromosome I and shows significant similarities to the previously identified phage ΦHAP-1. The second prophage region is located on chromosome II and is related to Vibrio phage kappa. Exposure of V. campbellii to mitomycin C induced the lytic cycle of two morphologically distinct phages and, as expected, extracellular DNA from induced cultures was found to be specifically enriched for the sequences previously identified as prophage regions. Heat stress (50°C, 30 min was also found to induce phage release in V. campbellii. Notably, promoter activity of two representative phage genes indicated heterogeneous phage induction within the population.

  2. Invariant recognition of polychromatic images of Vibrio cholerae 01

    Science.gov (United States)

    Alvarez-Borrego, Josue; Mourino-Perez, Rosa R.; Cristobal, Gabriel; Pech-Pacheco, Jose L.

    2002-04-01

    Cholera is an acute intestinal infectious disease. It has claimed many lives throughout history, and it continues to be a global health threat. Cholera is considered one of the most important emergence diseases due its relation with global climate changes. Automated methods such as optical systems represent a new trend to make more accurate measurements of the presence and quantity of this microorganism in its natural environment. Automatic systems eliminate observer bias and reduce the analysis time. We evaluate the utility of coherent optical systems with invariant correlation for the recognition of Vibrio cholerae O1. Images of scenes are recorded with a CCD camera and decomposed in three RGB channels. A numeric simulation is developed to identify the bacteria in the different samples through an invariant correlation technique. There is no variation when we repeat the correlation and the variation between images correlation is minimum. The position-, scale-, and rotation-invariant recognition is made with a scale transform through the Mellin transform. The algorithm to recognize Vibrio cholerae O1 is the presence of correlation peaks in the green channel output and their absence in red and blue channels. The discrimination criterion is the presence of correlation peaks in red, green, and blue channels.

  3. Hatchery mortalities of larval oysters caused by Vibrio tubiashii and Vibrio coralliilyticus

    Science.gov (United States)

    Hatchery production of bivalve shellfish has been hampered by the occasional presence of opportunistic pathogens, particularly Vibrio coralliilyticus and Vibrio tubiashii. The present study reports the results of several avenues of research to better define these pathogens and the roles they play i...

  4. Diversity of Vibrio spp in Karstic Coastal Marshes in the Yucatan Peninsula.

    Science.gov (United States)

    Ortiz-Carrillo, Icela; Estrella-Gómez, Neyi Eloísa; Zamudio-Maya, Marcela; Rojas-Herrera, Rafael

    2015-01-01

    Coastal bodies of water formed by the combination of seawater, underground rivers and rainwater comprise the systems with the greatest solar energy flow and biomass production on the planet. These characteristics make them reservoirs for a large number species, mainly microorganisms. Bacteria of the genus Vibrio are natural inhabitants of these environments and their presence is determined by variations in the nutrient, temperature and salinity cycles generated by the seasonal hydrologic behavior of these lagoon systems. This study determined the diversity of the genus Vibrio in 4 coastal bodies of water on the Yucatan Peninsula (Celestun Lagoon, Chelem Lagoon, Rosada Lagoon and Sabancuy Estuary). Using the molecular technique of 454 pyrosequencing, DNA extracted from water samples was analyzed and 32,807 reads were obtained belonging to over 20 culturable species of the genus Vibrio and related genera. OTU (operational taxonomic unit) richness and Chao2 and Shannon Weaver diversity indices were obtained with the database from this technique. Physicochemical and environmental parameters were determined and correlated with Vibrio diversity measured in OTUs.

  5. Diversity of Vibrio spp in Karstic Coastal Marshes in the Yucatan Peninsula

    Science.gov (United States)

    2015-01-01

    Coastal bodies of water formed by the combination of seawater, underground rivers and rainwater comprise the systems with the greatest solar energy flow and biomass production on the planet. These characteristics make them reservoirs for a large number species, mainly microorganisms. Bacteria of the genus Vibrio are natural inhabitants of these environments and their presence is determined by variations in the nutrient, temperature and salinity cycles generated by the seasonal hydrologic behavior of these lagoon systems. This study determined the diversity of the genus Vibrio in 4 coastal bodies of water on the Yucatan Peninsula (Celestun Lagoon, Chelem Lagoon, Rosada Lagoon and Sabancuy Estuary). Using the molecular technique of 454 pyrosequencing, DNA extracted from water samples was analyzed and 32,807 reads were obtained belonging to over 20 culturable species of the genus Vibrio and related genera. OTU (operational taxonomic unit) richness and Chao2 and Shannon Weaver diversity indices were obtained with the database from this technique. Physicochemical and environmental parameters were determined and correlated with Vibrio diversity measured in OTUs. PMID:26252792

  6. DAYA HAMBAT INFUSA RIMPANG KUNYIT (Curcuma longa Linn TERHADAP PERTUMBUHAN Escherichia coli dan Vibrio sp. pada IKAN KERAPU LUMPUR (Epinephelus tauvina di PASAR KEDONGANAN KABUPATEN BADUNG, BALI

    Directory of Open Access Journals (Sweden)

    Ni Putu Sinta Puspa Dewi

    2017-09-01

    inhibited turmeric infusa rhizome is determined by counting the population of bacteria test after treatment by the method of dilution sampling (Plating Method. The results showed that turmeric rhizome infusion was able significantly (P<0,05 inhibitionto the growth of E. coli and Vibrio sp. both in vitro and in vivo. The control (0% in vitro population E. coli and Vibrio sp. each of 5,23x102 CFU/g and 4,98x102 CFU/g higher than with the treatment of concentration 5%, 10%, 15% and 20%. Population E. coli and Vibrio sp. in testing by in vivo (concentration 0% each is obtained 4,17x102 CFU/g dan 4,20x102 CFU/g in statistic is different (P<0,05 with the concentration 10%, 15% and 20%. Keywords: Epinephelus tauvina, Curcuma longa Linn, E. coli, Vibrio sp.

  7. Updating the Vibrio Clades Defined by Multilocus Sequence Phylogeny: Proposal of Eight New Clades, and the Description of Vibrio tritonius sp. nov.

    Directory of Open Access Journals (Sweden)

    Tomoo eSawabe

    2013-12-01

    Full Text Available To date 142 species have been described in the Vibrionaceae family of bacteria, classified into seven genera; Aliivibrio, Echinomonas, Enterovibrio, Grimontia, Photobacterium, Salinivibrio and Vibrio. As vibrios are widespread in marine environments and show versatile metabolisms and ecologies, these bacteria are recognized as one of the most diverse and important marine heterotrophic bacterial groups for elucidating the correlation between genome evolution and ecological adaptation. However, on the basis of 16S rRNA gene phylogeny, we could not find any robust monophyletic lineages in any of the known genera. We needed further attempts to reconstruct their evolutionary history based on multilocus sequence analysis (MLSA and/or genome wide taxonomy of all the recognized species groups. In our previous report in 2007, we conducted the first broad multilocus sequence analysis (MLSA to infer the evolutionary history of vibrios using nine housekeeping genes (the 16S rRNA gene, gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA, and we proposed 14 distinct clades in 58 species of Vibrionaceae. Due to the difficulty of designing universal primers that can amplify the genes for MLSA in every Vibrionaceae species, some clades had yet to be defined. In this study, we present a better picture of an updated molecular phylogeny for 86 described vibrio species and 10 genome sequenced Vibrionaceae strains, using 8 housekeeping gene sequences. This new study places special emphasis on 1 eight newly identified clades (Damselae, Mediterranei, Pectenicida, Phosphoreum, Profundum, Porteresiae, Rosenbergii, and Rumoiensis; 2 clades amended since the 2007 proposal with recently described new species; 3 orphan clades of genomospecies F6 and F10; 4 phylogenetic positions defined in 3 genome-sequenced strains (N418, EX25, and EJY3; and 5 description of V. tritonius sp. nov., which is a member of the Porteresiae clade.

  8. Rapid proliferation of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae during freshwater flash floods in French Mediterranean coastal lagoons.

    Science.gov (United States)

    Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R; Monfort, Patrick

    2015-11-01

    Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 10(3) most probable number (MPN)/liter, 0.7 to 2.1 × 10(3) MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 10(4) MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Pappu Kumar Gupta

    2016-06-01

    Full Text Available Abstract Background Cholera is a major cause of mortality and morbidity in underdeveloped countries including Nepal. Recently drug resistance in Vibrio cholerae has become a serious problem mainly in developing countries. The main objectives of our study were to investigate the occurrence of Vibrio cholerae in stool samples from patients with watery diarrhea and to determine the antimicrobial susceptibility patterns of V. cholerae isolates. Methods A total of 116 stool samples from patients suffering from watery diarrhea during July to December 2012 were obtained from outbreak areas from all over Nepal. Alkaline peptone water and thiosulphate citrate bile salt sucrose agar (TCBS were used to isolate the Vibrio cholerae. The isolates were identified with the help of colony morphology, Gram’s staining, conventional biochemical testing, serotyping and biotyping. Antimicrobial susceptibility testing was performed by determining the minimum inhibitory concentration (MIC by agar dilution method. Results Vibrio cholerae was isolated from 26.72 % of total samples. All isolated Vibrio cholerae were confirmed to be Vibrio cholerae serogoup O1 biotype El Tor and serotype Ogawa. All isolates were resistant to ampicillin and cotrimoxazole. Twenty nine isolates were resistant toward two different classes of antibiotics, one strain was resistant to three different classes of antibiotics and one strain was resistant to four different classes of antibiotics. According to the definition of the multidrug resistant bacteria; 6.45 % of the strains of Vibrio cholerae were found to be multidrug resistant. Conclusions Cholera due to multidrug resistant Vibrio cholerae is also possible in Nepal. According to the antimicrobial susceptibility pattern of Vibrio cholerae in our study we recommend to use any antibiotics among tetracycline, doxycycline, levofloxacin, azithromycin, chloramphenicol and ciprofloxacin for preliminary treatment of cholera in Nepal.

  10. Vibrios associated with red tides caused by Mesodinium rubrum.

    OpenAIRE

    Romalde, J L; Barja, J L; Toranzo, A E

    1990-01-01

    Vibrios were isolated from red tides caused by Mesodinium rubrum and also throughout the year in the Ria de Pontevedra, Spain. The isolates were grouped into 14 phena by numerical toxonomy. Strains associated with red tides were restricted to four phena: phena I and II were Vibrio alginolyticus, and phena III and IV were Vibrio tubiashii and Vibrio anguillarum, respectively. V. anguillarum-like strains (phena V through XI) predominated throughout the year outside the red tide areas. Cytotoxic...

  11. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11-12th March 2015).

    Science.gov (United States)

    Le Roux, Frédérique; Wegner, K Mathias; Baker-Austin, Craig; Vezzulli, Luigi; Osorio, Carlos R; Amaro, Carmen; Ritchie, Jennifer M; Defoirdt, Tom; Destoumieux-Garzón, Delphine; Blokesch, Melanie; Mazel, Didier; Jacq, Annick; Cava, Felipe; Gram, Lone; Wendling, Carolin C; Strauch, Eckhard; Kirschner, Alexander; Huehn, Stephan

    2015-01-01

    Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security.

  12. The Emergence of Vibrio pathogens in Europe: Ecology, Evolution and Pathogenesis (Paris, 11-12 March 2015

    Directory of Open Access Journals (Sweden)

    Frederique eLe Roux

    2015-08-01

    Full Text Available Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security.

  13. Free-Living and Plankton-Associated Vibrios: Assessment in Ballast Water, Harbor Areas, and Coastal Ecosystems in Brazil

    Science.gov (United States)

    Rivera, Irma N. G.; Souza, Keili M. C.; Souza, Claudiana P.; Lopes, Rubens M.

    2013-01-01

    Ballast water (BW) is a major transport vector of exotic aquatic species and pathogenic microorganisms. The wide-ranging spread of toxigenic Vibrio cholerae O1 from harbor areas has been frequently ascribed to discharge of contaminated BW into eutrophic coastal environments, such as during the onset of the seventh cholera pandemic in South America in the early 1990s. To determine the microbiological hazards of BWs transported to Brazilian ports, we evaluated water and plankton samples taken from (i) BW tanks of recently arrived ships, (ii) port areas along the Brazilian coastline from ∼1 to 32°S and (iii) three coastal areas in São Paulo State. Vibrio concentration and toxigenic V. cholerae O1 occurrence were analyzed. Plankton-associated vibrios were more abundant than free-living vibrios in all studied environments. V. cholerae was found in 9.5% of ballast tanks and 24.2% of port samples, both as free-living and attached forms and, apart from the Santos harbor, was absent off São Paulo State. Toxigenic V. cholerae O1 isolates (ctxA+, tcpA+), involved in cholera disease, were found in BW (2%) and harbor (2%) samples. These results confirm that BW is an important carrier of pathogenic organisms, and that monitoring of vibrios and other plankton-attached bacteria is of paramount importance in BW management programs. PMID:23335920

  14. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11–12th March 2015)

    Science.gov (United States)

    Roux, Frédérique Le; Wegner, K. Mathias; Baker-Austin, Craig; Vezzulli, Luigi; Osorio, Carlos R.; Amaro, Carmen; Ritchie, Jennifer M.; Defoirdt, Tom; Destoumieux-Garzón, Delphine; Blokesch, Melanie; Mazel, Didier; Jacq, Annick; Cava, Felipe; Gram, Lone; Wendling, Carolin C.; Strauch, Eckhard; Kirschner, Alexander; Huehn, Stephan

    2015-01-01

    Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security. PMID:26322036

  15. Necrotizing soft-tissue infections and sepsis caused by Vibrio vulnificus compared with those caused by Aeromonas species.

    Science.gov (United States)

    Tsai, Yao-Hung; Hsu, Robert Wen-Wei; Huang, Tsung-Jen; Hsu, Wei-Hsiu; Huang, Kuo-Chin; Li, Yen-Yao; Peng, Kuo-Ti

    2007-03-01

    Vibrio and Aeromonas species, which can cause necrotizing fasciitis and primary septicemia, are members of the Vibrionaceae family and thrive in aquatic environments. Because the clinical symptoms and signs of necrotizing fasciitis and sepsis caused by these two bacteria are similar, the purposes of this study were to describe the clinical characteristics of Vibrio vulnificus and Aeromonas infections, to analyze the risk factors for death, and to compare the effects of surgical treatment on the outcome. The cases of thirty-two patients with necrotizing soft-tissue infections and sepsis caused by Vibrio vulnificus (seventeen patients) and Aeromonas species (fifteen patients) were retrospectively reviewed over a four-year period. Surgical débridement or immediate limb amputation was initially performed in all patients. Demographic data, underlying diseases, laboratory results, and clinical outcome were analyzed for each patient in both groups. Six patients in the Vibrio vulnificus group and four patients in the Aeromonas group died. The patients who died had significantly lower serum albumin levels than did the patients who survived (p tissue infection with Vibrio vulnificus (contact with seawater or raw seafood) or Aeromonas species (contact with fresh or brackish water, soil, or wood). Early fasciotomy and culture-directed antimicrobial therapy should be aggressively performed in those patients with hypotensive shock, leukopenia, severe hypoalbuminemia, and underlying chronic illness, especially a combination of hepatic dysfunction and diabetes mellitus.

  16. Free-living and plankton-associated vibrios: assessment in ballast water, harbor areas, and coastal ecosystems in Brazil.

    Science.gov (United States)

    Rivera, Irma N G; Souza, Keili M C; Souza, Claudiana P; Lopes, Rubens M

    2012-01-01

    Ballast water (BW) is a major transport vector of exotic aquatic species and pathogenic microorganisms. The wide-ranging spread of toxigenic Vibrio cholerae O1 from harbor areas has been frequently ascribed to discharge of contaminated BW into eutrophic coastal environments, such as during the onset of the seventh cholera pandemic in South America in the early 1990s. To determine the microbiological hazards of BWs transported to Brazilian ports, we evaluated water and plankton samples taken from (i) BW tanks of recently arrived ships, (ii) port areas along the Brazilian coastline from ∼1 to 32°S and (iii) three coastal areas in São Paulo State. Vibrio concentration and toxigenic V. cholerae O1 occurrence were analyzed. Plankton-associated vibrios were more abundant than free-living vibrios in all studied environments. V. cholerae was found in 9.5% of ballast tanks and 24.2% of port samples, both as free-living and attached forms and, apart from the Santos harbor, was absent off São Paulo State. Toxigenic V. cholerae O1 isolates (ctxA(+), tcpA(+)), involved in cholera disease, were found in BW (2%) and harbor (2%) samples. These results confirm that BW is an important carrier of pathogenic organisms, and that monitoring of vibrios and other plankton-attached bacteria is of paramount importance in BW management programs.

  17. Mutation of Bacterium Vibrio gazogenes for Selective Preparation of Colorants

    Science.gov (United States)

    Alihosseini, Farzaneh; Lango, Jozsef; Ju, Kou-San; Hammock, Bruce D.; Sun, Gang

    2010-01-01

    A novel marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool, silk and synthetic fabrics such as polyester and polyacrylic and also show antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria on the dyed products. Methyl nitrosoguanidine was used as a mutation agent to increase the genetic diversity and the production yield of the bacteria of the family of Vibrio gazogenes. The analysis of the mutated samples showed that two new main colorants as well as three previously found ones were produced. Liquid chromatography electro spray ionization mass spectrometry (LC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic techniques were used to elucidate the structures of the newly produced colorants. Mass measurements revealed that the colorants C1, C2, C3, C4 have molecular masses of 321, 323, 351, and 295 Da. One unstable colorant C5 with molecular mass of 309 Da was detected as well. The mutated bacteria strains increased the yield of pigment production by about 81% and produced prodigiosin in 97% purity. The antibiotic activities of pure colorants are discussed as well. Based on their bio-activity and excellent dyeing capabilities, these colorants could be employed in cosmetic and textile industries. PMID:19902486

  18. Mutation of bacterium Vibrio gazogenes for selective preparation of colorants.

    Science.gov (United States)

    Alihosseini, Farzaneh; Lango, Jozsef; Ju, Kou-San; Hammock, Bruce D; Sun, Gang

    2010-01-01

    A novel marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool, silk and synthetic fabrics such as polyester and polyacrylic and also show antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria on the dyed products. Methyl nitrosoguanidine was used as a mutation agent to increase the genetic diversity and the production yield of the bacteria of the family of Vibrio gazogenes. The analysis of the mutated samples showed that two new main colorants as well as three previously found ones were produced. Liquid chromatography electro spray ionization mass spectrometry (LC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic techniques were used to elucidate the structures of the newly produced colorants. Mass measurements revealed that the colorants C1, C2, C3, C4 have molecular masses of 321, 323, 351, and 295 Da. One unstable colorant C5 with molecular mass of 309 Da was detected as well. The mutated bacteria strains increased the yield of pigment production by about 81% and produced prodigiosin in 97% purity. The antibiotic activities of pure colorants are discussed as well. Based on their bio-activity and excellent dyeing capabilities, these colorants could be employed in cosmetic and textile industries.

  19. Vibrios in hatchery cultures of the razor clam, Solen marginatus (Pulteney).

    Science.gov (United States)

    Prado, S; Dubert, J; da Costa, F; Martínez-Patiño, D; Barja, J L

    2014-03-01

    Hatchery culture of the razor clam, Solen marginatus (Pulteney), has recently been developed in Galicia (NW Spain). However, recurrent episodes of mortalities of larval and post-larval cultures have been recorded during the course of various studies. The disease signs were similar to those described for other bivalve species in outbreaks caused by bacteria of the genus Vibrio. In this article, we present the results of microbiological monitoring of two batches of razor clams with different survival rates. All fermentative isolates were identified as members of the Splendidus clade within the genus Vibrio. Some of these isolates, identified as Vibrio splendidus-like, were clearly associated with the batch suffering mortalities, indicating their possible role as pathogens. Similar strains were found in the broodstock, suggesting vertical transmission of these bacteria. This is the first study of the microbiota associated with hatchery culture of S. marginatus, and the results will provide useful information for the optimization of a protocol for hatchery culture of this bivalve species. © 2013 John Wiley & Sons Ltd.

  20. Stem Rot on Ligularia fischeri Caused by Sclerotium rolfsii in Korea

    Directory of Open Access Journals (Sweden)

    Youn-Gi Moon

    2015-03-01

    Full Text Available In June 2012 and 2013, a destructive stem rot symptoms of Ligularia fischeri occurred sporadically in Hoengseong- gun and Pyeongchang-gun Gangwon-do, Korea. The typical symptom included water-soaking on the main stem, rotting, wilting and blighting, which eventually leads to death of the plant. White mycelial mats were spread over lesions and brown sclerotia were formed on stems and near soil surface. The sclerotia were white to brown, spherical or irregular, 1-3 mm in size on potato dextrose agar (PDA, The optimum temperature range of hyphal growth was 25-30oC and the hyphal diameter was 4-10 mm. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. The resulting sequence of 695 bp was deposited in GenBank. A BLAST search revealed that sequences of the this isolates showed >99% identity with those of Sclerotium rolfsii. On the basis of the morphological characteristics and phylogenetic analyses of molecular markers ITS rDNA, the fungi were identified as S. rolfsii. A pathogenicity test was carried out to fulfill Koch’s postulates. To our knowledge, this is the first report of S. rolfsii on Ligularia fischeri in Korea

  1. A decrease in bulk water and mannitol and accumulation of trehalose and trehalose-based oligosaccharides define a two-stage maturation process towards extreme stress resistance in ascospores of Neosartorya fischeri (Aspergillus fischeri)

    NARCIS (Netherlands)

    Wyatt, Timon T; Golovina, Elena A; van Leeuwen, Richard; Hallsworth, John E; Wösten, Han A B; Dijksterhuis, Jan

    Fungal propagules survive stresses better than vegetative cells. Neosartorya fischeri, an Aspergillus teleomorph, forms ascospores that survive high temperatures or drying followed by heat. Not much is known about maturation and development of extreme stress resistance in fungal cells. This study

  2. Gene cloning and prokaryotic expression of recombinant flagellin A from Vibrio parahaemolyticus

    Science.gov (United States)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Liu, Yang; Ge, Hui; Qiu, Xuemei

    2010-11-01

    The Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. Bacteria flagellins play an important role during infection and induction of the host immune response. Thus, flagellin proteins are an ideal target for vaccines. We amplified the complete flagellin subunit gene ( flaA) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 62.78 kDa. We purified and characterized the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for further studies into the utility of the FlaA protein as a vaccine candidate against infection by Vibrio parahaemolyticus. In addition, the purified FlaA protein can be used for further functional and structural studies.

  3. Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae.

    Science.gov (United States)

    Allred, Benjamin E; Correnti, Colin; Clifton, Matthew C; Strong, Roland K; Raymond, Kenneth N

    2013-09-20

    The human protein siderocalin (Scn) inhibits bacterial iron acquisition by binding catechol siderophores. Several pathogenic bacteria respond by making stealth siderophores that are not recognized by Scn. Fluvibactin and vibriobactin, respectively of Vibrio fluvialis and Vibrio cholerae , include an oxazoline adjacent to a catechol. This chelating unit binds iron either in a catecholate or a phenolate-oxazoline coordination mode. The latter has been suggested to make vibriobactin a stealth siderophore without directly identifying the coordination mode in relation to Scn binding. We use Scn binding assays with the two siderophores and two oxazoline-substituted analogs and the crystal structure of Fe-fluvibactin:Scn to show that the oxazoline does not prevent Scn binding; hence, vibriobactin is not a stealth siderophore. We show that the phenolate-oxazoline coordination mode is present at physiological pH and is not bound by Scn. However, Scn binding shifts the coordination to the catecholate mode and thereby inactivates this siderophore.

  4. Tropical Atlantic marine macroalgae with bioactivity against virulent and antibiotic resistant Vibrio

    Directory of Open Access Journals (Sweden)

    Giselle Cristina Silva

    2013-03-01

    Full Text Available The antibacterial activity of ethanol, methanol, hexane and acetone-based extracts of the macroalgae Padina gymnospora (PG, Hypnea musciformes (HM, Ulva fasciata (UF and Caulerpa prolifera (CP was investigated. The disk diffusion method was used to evaluate the algae antimicrobial effect against standard strains of Vibrio parahaemolyticus, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enterica and five virulent antibiotic-resistant strains of V. brasiliensis, V. xuii and V. navarrensis (isolated from the hemolymph of Litopenaeus vannamei. Ethanol extracts of PG and HM inhibited all Vibrio strains. E. coli and P. aeruginosa were only susceptible to ethanol extracts of PG. Among the methanol extracts, only UF was bioactive, inhibiting V. navarrensis. The observed inhibitory effect of ethanol extracts of PG, HM and UF against virulent antibiotic-resistant bacteria suggests these macroalgal species constitute a potential source of bioactive compounds.

  5. Adverse Effects of Immobilised Pseudoalteromonas on the Fish Pathogenic Vibrio anguillarum: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Wiebke Wesseling

    2016-01-01

    Full Text Available As a prerequisite for use in marine aquaculture, two immobilisation systems were developed by employing the probiotic bacterium Pseudoalteromonas sp. strain MLms_gA3. Their impact on the survivability of the fish pathogen Vibrio anguillarum was explored. Probiotic bacteria either grown as a biofilm on ceramic tiles or embedded in alginate beads were added to sterile artificial seawater that contained the fish pathogen. While immobilisation on ceramics followed a recently developed protocol, a medium allowing for alginate microencapsulation was newly developed. Anti-Vibrio activities were obtained with both immobilisation systems. The viable cell counts of V. anguillarum constantly decreased within the first two weeks of the treatments evidencing the potential of the immobilisation systems for providing probiotic-based protection against this pathogen.

  6. Construction of a Vibrio splendidus Mutant Lacking the Metalloprotease Gene vsm by Use of a Novel Counterselectable Suicide Vector▿ †

    Science.gov (United States)

    Le Roux, Frédérique; Binesse, Johan; Saulnier, Denis; Mazel, Didier

    2007-01-01

    Vibrio splendidus is a dominant culturable Vibrio in seawater, and strains related to this species are also associated with mortality in a variety of marine animals. The determinants encoding the pathogenic properties of these strains are still poorly understood; however, the recent sequencing of the genome of V. splendidus LGP32, an oyster pathogen, provides an opportunity to decipher the basis of the virulence properties by disruption of candidate genes. We developed a novel suicide vector based on the pir-dependent R6K replicative origin, which potentially can be transferred by RP4-based conjugation to any Vibrio strain and which also carries the plasmid F toxin ccdB gene under control of the PBAD promoter. We demonstrated that this genetic system allows efficient counterselection of integrated plasmids in the presence of arabinose in both V. splendidus and Vibrio cholerae and thus permits efficient markerless allelic replacement in these species. We used this technique to construct several mutants of V. splendidus LGP32, including a derivative with a secreted metalloprotease gene, vsm, deleted. We found that this gene is essential for LGP32 extracellular product toxicity when the extracellular products are injected into oysters but is not necessary for virulence of bacteria in the oyster infection model when bacteria are injected. PMID:17122399

  7. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector.

    Science.gov (United States)

    Le Roux, Frédérique; Binesse, Johan; Saulnier, Denis; Mazel, Didier

    2007-02-01

    Vibrio splendidus is a dominant culturable Vibrio in seawater, and strains related to this species are also associated with mortality in a variety of marine animals. The determinants encoding the pathogenic properties of these strains are still poorly understood; however, the recent sequencing of the genome of V. splendidus LGP32, an oyster pathogen, provides an opportunity to decipher the basis of the virulence properties by disruption of candidate genes. We developed a novel suicide vector based on the pir-dependent R6K replicative origin, which potentially can be transferred by RP4-based conjugation to any Vibrio strain and which also carries the plasmid F toxin ccdB gene under control of the PBAD promoter. We demonstrated that this genetic system allows efficient counterselection of integrated plasmids in the presence of arabinose in both V. splendidus and Vibrio cholerae and thus permits efficient markerless allelic replacement in these species. We used this technique to construct several mutants of V. splendidus LGP32, including a derivative with a secreted metalloprotease gene, vsm, deleted. We found that this gene is essential for LGP32 extracellular product toxicity when the extracellular products are injected into oysters but is not necessary for virulence of bacteria in the oyster infection model when bacteria are injected.

  8. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae

    Science.gov (United States)

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-01-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp. PMID:22673627

  9. Phaeobacter inhibens as probiotic bacteria in non-axenic Artemia and algae cultures

    DEFF Research Database (Denmark)

    Grotkjær, Torben; Bentzon-Tilia, Mikkel; D'Alvise, Paul

    2016-01-01

    was to determine if marine roseobacters in non-axenic systems were capable of antagonizing fish pathogenic vibrios. We added a controlled background microbiota of four bacterial strains to axenic Artemia and algae (Duniella) and these bacteria had a marginal but significant reducing effect on inoculated Vibrio......-axenic natural Artemia and algae (Tetraselmis) received from an aquaculture unit, Vibrio anguillarum grew to 107 CFU/ml but only reached 104 CFU/ml when P. inhibens was also added. P. inhibens was added at a concentration 106 CFU/ml in all systems and remained at this concentration at the end of the study...

  10. Phylogenetic diversity of carbohydrate degrading culturable bacteria from Mandovi and Zuari estuaries, Goa, west coast of India

    Science.gov (United States)

    Khandeparker, Rakhee; Verma, Preeti; Meena, Ram M.; Deobagkar, Deepti D.

    2011-12-01

    Coastal and estuarine waters are highly productive and dynamic ecosystems. The complex carbohydrate composition of the ecosystem would lead to colonisation of microbial communities with abilities to produce an array of complex carbohydrate degrading enzymes. We have examined the abundance and phylogenetic diversity of culturable bacteria with abilities to produce complex carbohydrate degrading enzymes in the Mondovi and Zuari eustauri. It was interesting to note that 65% of isolated bacteria could produce complex carbohydrate degrading enzymes. A majority of these bacteria belonged to Bacillus genera followed by Vibrio, Marinobacter, Exiquinobacterium, Alteromonas, Enterobacter and Aeromonas. Most abundant bacterial genus to degrade hemicellulose and cellulose were Bacillus and Vibrio respectively. Most abundant bacterial genus to degrade hemicellulose and cellulose were Bacillus and Vibrio respectively. It was seen that 46% of Bacillus had ability to degrade both the substrate while only 14% of Vibrio had bifunctionality.

  11. Vibrio population structure - Genetic and population structure analysis of clinical and environmental Vibrio parahaemolyticus strains

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Vibrio parahaemolyticus (Vp) is a marine bacterium capable of causing severe gastroenteritis in humans, usually through the consumption of raw shellfish. Before...

  12. Vibrio ecology - Identifying Environmental Determinants Favorable for the Presence and Transmission of Pathogenic Vibrios

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In a tri-coastal collaborative study, the population densities of vibrios are being determined in the Mississippi Sound, Puget Sound, Chesapeake Bay, and Timbalier...

  13. Method Designed To Detect Alginate-Degrading Bacteria

    OpenAIRE

    Kitamikado, Manabu; Yamaguchi, Kuniko; Tseng, Chao-Huang; Okabe, Bun'Ichi

    1990-01-01

    A simple turbidimetric method was developed to detect alginate degradation. Bacteria were grown in alginate-containing media, and culture fluids were mixed with an acidic albumin solution. Failure to develop a white turbidity indicated an alginate degrader. The method showed alginate degradation by Vibrio alginolyticus ATCC 17749, in contrast to prior descriptions.

  14. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    The species of bacteria detected included Bacillus spp, Pseudomonas spp, Staphylococcus spp, Streptococcus spp, Aeromonas spp, Burkholderia spp, Citrobacter spp, Escherichia spp, Enterobacter spp, Pasteurella spp, Burkholderia spp, Shewanella spp and Vibrio spp. Susceptibility of all identified isolates to ...

  15. Loss of outer membrane integrity in Gram-negative bacteria by silver ...

    Indian Academy of Sciences (India)

    The antimicrobial activity of NP was investigated against three Gram-negative pathogenic bacteria (Shigella dysentriae, Salmonella infestis and Vibrio parahaemolyticus). The outer membrane ofGram-negative bacteria is a lipopolysaccharide (LPS) in nature and provides protection from various stress conditions and ...

  16. Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy).

    Science.gov (United States)

    Vezzulli, Luigi; Pezzati, Elisabetta; Moreno, Mariapaola; Fabiano, Mauro; Pane, Luigi; Pruzzo, Carla

    2009-11-01

    We carried out a 16-month in situ study to investigate the ecology of Vibrio spp. and pathogenic Vibrio species in coastal sediments of the Mediterranean Sea, employing multiple-regression analysis to reveal the major environmental factors controlling their occurrence in the benthic environment. In addition, association between vibrios and sediment-inhabiting meiofauna, which is a major component of benthic ecosystems, was investigated. Culturable and total Vibrio spp. estimates by most-probable-number technique coupled with standard polymerase chain reaction (PCR) and real-time PCR methods, respectively, were at least one order of magnitude higher in sediment than in seawater. In addition, potential human pathogenic species Vibrio cholerae, Vibrio vulnificus and Vibrio parahaemolyticus occurred in the sediment with V. parahaemolyticus being the most frequently found. In the pelagic environment, 60% of total variance in culturable Vibrio data was explained by sea surface temperature (40%), salinity (13%) and organic matter concentration (7%). In the benthic environment, sea surface temperature was the only factor that significantly affected culturable Vibrio occurrence although it explained only 25% of total variance, suggesting that additional unexplored factors may play a role as well. No correlation was found between culturable Vibrio spp. concentrations and the abundance of harpacticoid copepods in the sediment whilst a negative correlation was found between Vibrio spp. and nematode abundance which accounted for almost 90% of the total meiofaunal density. Taxonomic analysis revealed that selective bacterial feeders accounted for nearly 50% of the total nematode community and included genera such as Terschellingia, Molgolaimus and Halalaimus, suggesting that top-down control by nematode grazing may be an important factor affecting Vibrio occurrence in these sediments. It is concluded that the benthic marine environment may function as a reservoir of Vibrio spp

  17. Antimicrobial susceptibilty of potentially pathogenic halophilic Vibrio ...

    African Journals Online (AJOL)

    Surveillance of antimicrobial resistance is indispensable for empirical treatment of infections and in preventing the spread of antimicrobial resistant microorganisms. This study is aimed at determining the antibiotic susceptibility of potentially pathogenic halophylic Vibrio species isolated in Lagos, Nigeria. Susceptibility ...

  18. Comparison of classifications of aptamers against Vibrio ...

    African Journals Online (AJOL)

    As a novel method to detect the pathogen Vibrio alginolyticus, 45 aptamers were previously selected and tested. In order to better understand the properties of these aptamers, it was essential to classify these aptamers based on appropriate criteria. The primary structure of 45 aptamers against V. alginolyticus was analyzed ...

  19. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  20. AKTIVITAS ANTIBAKTERI EKSTRAK BUAH ADAS (Foeniculum vulgare, Mill PADA Vibrio harveyi DAN Vibrio alginolyticus Antibacterial Activity of Fennel (Foeniculum vulgare Mill Extract on Vibrio alginolyticus and Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Budianto Budianto

    2015-10-01

    Pada penelitian ini menggunakan ekstrak air dari buah adas untuk mengetahui aktivitas antibakteri terhadap Vibrio harveyi dan Vibrio alginolyticus dengan menggunakan metode uji Minimum Inhibitory Concentration (MIC dan difusi cakram kertas. Hasil yang diperoleh pada uji MIC, konsentrasi terkecil untuk menghambat pertumbuhan adalah 0,060 g/ml, untuk kedua spesies bakteri. Variasi perlakuan pada uji cakram kertas yaitu konsentrasi A (0,065 g/ml, B (0,070 g/ml, C (0,075 g/ml, D (0,080 g/ml, E (0,085 g/ml, F (0,090 g/ml dan kontrol (0,000 g/ml, hasil yang diperoleh adalah konsentrasi 0,090 g/ml memiliki diameter zona hambat tertinggi sebesar 11,17 ± 0,5 mm (V. harveyi dan 12,53 ± 1,14 mm (V. alginolyticus, sehingga dapat disimpulkan bahwa buah adas (F. vulgare Mill memiliki peranan ekologi yang sangat penting sebagai bahan pengobatan alternatif dalam pengendalian penyebaran penyakit Vibriosis yang disebabkan oleh V. harveyi dan V. alginolyticus. Kata kunci: Foeniculum vulgare Mill, Vibrio harveyi, Vibrio alginolyticus, uji MIC dan difusi cakram kertas

  1. RpoS controls the Vibrio cholerae mucosal escape response.

    Directory of Open Access Journals (Sweden)

    Alex Toftgaard Nielsen

    2006-10-01

    Full Text Available Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the "mucosal escape response," this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR. Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle.

  2. Identification of a novel UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Vibrio fischeri that confers high fosfomycin resistance in Escherichia coli

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Parvathi, A; Hernandez, R.L.; Cadle, K.M.; Varela, M.F.

    MurA [UDP-N-acetylglucosamine (UDP-NAG) enolpyruvyl transferase] is a key enzyme involved in bacterial cell wall peptidoglycan synthesis and a target for the antimicrobial agent fosfomycin, a structural analog of the MurA substrate phosphoenol...

  3. Genetic components of stringent response in Vibrio cholerae

    Science.gov (United States)

    Pal, Ritesh Ranjan; Das, Bhabatosh; Dasgupta, Shreya; Bhadra, Rupak K.

    2011-01-01

    Nutritional stress elicits stringent response in bacteria involving modulation of expression of several genes. This is mainly triggered by the intracellular accumulation of two small molecules, namely, guanosine 3’-diphosphate 5’-triphosphate and guanosine 3’,5’-bis(diphosphate), collectively called (p)ppGpp. Like in other Gram-negative bacteria, the cellular level of (p)ppGpp is maintained in Vibrio cholerae, the causative bacterial pathogen of the disease cholera, by the products of two genes relA and spoT. However, apart from relA and spoT, a novel gene relV has recently been identified in V. cholerae, the product of which has been shown to be involved in (p)ppGpp synthesis under glucose or fatty acid starvation in a ΔrelA ΔspoT mutant background. Furthermore, the GTP binding essential protein CgtA and a non-DNA binding transcription factor DksA also seem to play several important roles in modulating stringent response and regulation of other genes in this pathogen. The present review briefly discusses about the role of all these genes mainly in the management of stringent response in V. cholerae. PMID:21415497

  4. Plankton composition and environmental factors contribute to Vibrio seasonality.

    Science.gov (United States)

    Turner, Jeffrey W; Good, Brooks; Cole, Dana; Lipp, Erin K

    2009-09-01

    Plankton represent a nutrient-rich reservoir capable of enriching Vibrio species, which can include human pathogens, at higher densities than the surrounding water column. To better understand the relationship between vibrios and plankton, the partitioning of culturable vibrios, on TCBS, between free living and plankton associated (63-200- and >200-microm-size fractions) was monitored over a 1-year period in coastal waters of Georgia, USA. Seasonal changes in the total Vibrio concentration were then compared with changes in environmental parameters as well as changes in the relative composition of the plankton community. Using univariate analyses, Vibrio concentrations were strongly associated with temperature, especially when those vibrios were plankton associated (R(2)=0.69 and 0.88 for the water and both plankton fractions; respectively) (Pplankton fractions were also correlated to shifts in the relative abundance of specific plankton taxa. In the 63-200-micro fraction, Vibrio concentrations were inversely associated with copepods, cyanobacteria and diatoms. In the >200-micro fraction, Vibrio concentrations were positively associated with copepods and negatively associated with decapod larvae. Our results confirm the role of temperature in Vibrio seasonality and highlight an important and independent role for plankton composition in explaining seasonal changes in Vibrio concentration.

  5. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists.

    Directory of Open Access Journals (Sweden)

    Shuyang Sun

    Full Text Available Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS. In addition to negatively controlling vps genes, the global quorum sensing (QS regulator, HapR, plays a role in grazing resistance as the ΔhapR strain is efficiently consumed while the wild type (WT is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms.

  6. Pathogenesis of Infection by Clinical and Environmental Strains of Vibrio vulnificus in Iron-Dextran-Treated Mice

    OpenAIRE

    Starks, Angela M.; Schoeb, Trenton R.; Tamplin, Mark L.; Parveen, Salina; Doyle, Thomas J.; Bomeisl, Philip E.; Escudero, Gloria M.; Gulig, Paul A.

    2000-01-01

    Vibrio vulnificus is an opportunistic pathogen that contaminates oysters harvested from the Gulf of Mexico. In humans with compromising conditions, especially excess levels of iron in plasma and tissues, consumption of contaminated seafood or exposure of wounds to contaminated water can lead to systemic infection and disfiguring skin infection with extremely high mortality. V. vulnificus-associated diseases are noted for the rapid replication of the bacteria in host tissues, with extensive ti...

  7. Nigribactin, a Novel Siderophore from Vibrio nigripulchritudo, Modulates Staphylococcus aureus Virulence Gene Expression

    DEFF Research Database (Denmark)

    Nielsen, Anita; Månsson, Maria; Wietz, Matthias

    2012-01-01

    Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathea...... 3 expedition, a strain collection was established comprising bacteria that express antimicrobial activity against Vibrio anguillarum and/or Staphylococcus aureus. Within this collection we searched colony material, culture supernatants, and cell extracts for virulence modulating activity showing...... that 68 out of 83 marine bacteria (affiliated with the Vibrionaceae and Pseudoalteromonas sp.) influenced expression of S. aureus hla encoding α-hemolysin toxin and/or spa encoding Protein A. The isolate that upon initial screening showed the highest degree of interference (crude ethyl acetate extract...

  8. Effect of dietary supplementation with butyrate and probiotic on the survival of Pacific white shrimp after challenge with Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Norha Constanza Bolívar Ramírez

    Full Text Available ABSTRACT This study evaluated the performance, immunology, and survival of the Pacific white shrimp Litopenaeus vannamei to experimental challenge to Vibrio alginolyticus based on the use of the probiotic Lactobacillus plantarum and the combined use of probiotic and butyrate. Four different diets resulted from the addition of additives: butyrate, probiotic, butyrate + probiotic, and control (no additives. The attractiveness of the diets was assessed by the percentage of positive choices and rejections, using a dual-choice Y-maze format aquarium. The shrimps were fed during four weeks and performance parameters, intestinal microbiota, and immunological parameters were all evaluated. Subsequently, the shrimps were challenged with V. alginolyticus and after 48 h, survival and immunological parameters were evaluated. The results showed increased attractiveness and intake, but only with diets supplemented with sodium butyrate. However, other diets were not rejected. No difference in performance or immunological parameters was observed among the different diets. Also, among the treatments, no difference in Vibrio spp., or total heterotrophic bacteria counts, was found in the intestinal tract. However, the lactic acid bacteria count was higher in the intestinal tract of shrimps fed diets supplemented with probiotic. After bacterial challenge, shrimp fed all diets had a greater survival when compared with the control group. Lactobacillus plantarum and sodium butyrate increase the resistance of shrimp to infection with V. alginolyticus, but do so without affecting performance, immunological parameters, or Vibrio spp., and total heterotrophic bacteria counts in the intestinal tract.

  9. Antimicrobial Effects of Blueberry, Raspberry, and Strawberry Aqueous Extracts and their Effects on Virulence Gene Expression in Vibrio cholerae.

    Science.gov (United States)

    Khalifa, Hazim O; Kamimoto, Maki; Shimamoto, Toshi; Shimamoto, Tadashi

    2015-11-01

    The antimicrobial effects of aqueous extracts of blueberry, raspberry, and strawberry on 13 pathogenic bacteria were evaluated. The minimum inhibitory concentrations and minimum bactericidal concentrations of the extracts were determined before and after neutralization to pH 7.03 ± 0.15. Both Gram-positive and Gram-negative pathogenic bacteria were selectively inhibited by the non-neutralized berries. Blueberry was the best inhibitor, and Vibrio and Listeria were the most sensitive bacteria. After neutralization, blueberry affected only Vibrio and Listeria, whereas the antimicrobial activities of raspberry and strawberry were abolished. The total contents of phenolics, flavonoids, and proanthocyanidins in the extracts were measured with colorimetric methods and were highest in strawberry, followed by raspberry, and then blueberry. We also studied the effects of sub-bactericidal concentrations of the three berry extracts on virulence gene expression in Vibrio cholerae. Real-time quantitative reverse transcription-polymerase chain reaction revealed that the three berry extracts effectively repressed the transcription of the tcpA gene. Raspberry also repressed the transcription of the ctxA gene, whereas blueberry and strawberry did not. However, the three berry extracts did not affect the transcription of toxT. These results suggest that the three berry extracts exert potent antimicrobial effects and inhibit the expression of the virulence factors of V. cholerae. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Priming the prophenoloxidase system of Artemia franciscana by heat shock proteins protects against Vibrio campbellii challenge.

    Science.gov (United States)

    Baruah, Kartik; Ranjan, Jayant; Sorgeloos, Patrick; Macrae, Thomas H; Bossier, Peter

    2011-07-01

    Like other invertebrates, the brine shrimp Artemia franciscana relies solely on innate immunity, which by definition lacks adaptive characteristics, to combat against invading pathogens. One of the innate mechanisms is melanisation of bacteria mediated by the activation of the prophenoloxidase (proPO) system. The 70 kDa heat shock proteins (Hsp70) derived from either prokaryote (Escherichia coli) or eukaryote (Artemia), well conserved and immune-dominant molecules, protect Artemia against Vibrio campbellii. However, the molecular mechanisms by which these proteins protect Artemia against Vibrio campbellii infection are unknown. Here we demonstrated that feeding gnotobiotically grown Artemia with either Artemia Hsp70 or the E. coli Hsp70 equivalent DnaK, each overproduced in E. coli, followed by V. campbellii challenge enhanced the proPO system, at both mRNA and protein activity levels. Additionally, the Artemia fed with these proteins survived well in a Vibrio challenge assay. These results indicated that Hsp70s derived from either prokaryotic or eukaryotic sources generate protective immunity in the crustacean Artemia against V. campbellii infection by priming the proPO system. This is apparently the first in vivo report on priming activity of Hsp70 in an invertebrate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Taxonomic revision of Harveyi clade bacteria (family Vibrionaceae) based on analysis of whole genome sequences.

    Science.gov (United States)

    Urbanczyk, Henryk; Ogura, Yoshitoshi; Hayashi, Tetsuya

    2013-07-01

    Use of inadequate methods for classification of bacteria in the so-called Harveyi clade (family Vibrionaceae, Gammaproteobacteria) has led to incorrect assignment of strains and proliferation of synonymous species. In order to resolve taxonomic ambiguities within the Harveyi clade and to test usefulness of whole genome sequence data for classification of Vibrionaceae, draft genome sequences of 12 strains were determined and analysed. The sequencing included type strains of seven species: Vibrio sagamiensis NBRC 104589(T), Vibrio azureus NBRC 104587(T), Vibrio harveyi NBRC 15634(T), Vibrio rotiferianus LMG 21460(T), Vibrio campbellii NBRC 15631(T), Vibrio jasicida LMG 25398(T), and Vibrio owensii LMG 25443(T). Draft genome sequences of strain LMG 25430, previously designated the type strain of [Vibrio communis], and two strains (MWB 21 and 090810c) from the 'beijerinckii' lineage were also determined. Whole genomes of two additional strains (ATCC 25919 and 200612B) that previously could not be assigned to any Harveyi clade species were also sequenced. Analysis of the genome sequence data revealed a clear case of synonymy between V. owensii and [V. communis], confirming an earlier proposal to synonymize both species. Both strains from the 'beijerinckii' lineage were classified as V. jasicida, while the strains ATCC 25919 and 200612B were classified as V. owensii and V. campbellii, respectively. We also found that two strains, AND4 and Ex25, are closely related to Harveyi clade bacteria, but could not be assigned to any species of the family Vibrionaceae. The use of whole genome sequence data for the taxonomic classification of the Harveyi clade bacteria and other members of the family Vibrionaceae is also discussed.

  12. Nigribactin, a Novel Siderophore from Vibrio nigripulchritudo, Modulates Staphylococcus aureus Virulence Gene Expression

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2012-11-01

    Full Text Available Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathea 3 expedition, a strain collection was established comprising bacteria that express antimicrobial activity against Vibrio anguillarum and/or Staphylococcus aureus. Within this collection we searched colony material, culture supernatants, and cell extracts for virulence modulating activity showing that 68 out of 83 marine bacteria (affiliated with the Vibrionaceae and Pseudoalteromonas sp. influenced expression of S. aureus hla encoding α-hemolysin toxin and/or spa encoding Protein A. The isolate that upon initial screening showed the highest degree of interference (crude ethyl acetate extract was a Vibrio nigripulchritudo. Extraction, purification and structural elucidation revealed a novel siderophore, designated nigribactin, which induces spa transcription. The effect of nigribactin on spa expression is likely to be independent from its siderophore activity, as another potent siderophore, enterobactin, failed to influence S. aureus virulence gene expression. This study shows that marine microorganisms produce compounds with potential use in therapeutic strategies targeting virulence rather than viability of human pathogens.

  13. The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle

    DEFF Research Database (Denmark)

    Rasmussen, Tue; Jensen, Rasmus Bugge; Skovgaard, Ole

    2007-01-01

    The bacterium Vibrio cholerae, the cause of the diarrhoeal disease cholera, has its genome divided between two chromosomes, a feature uncommon for bacteria. The two chromosomes are of different sizes and different initiator molecules control their replication independently. Using novel methods...... at approximately the same time and the average number of replication origins per cell is higher for chromosome I than for chromosome II. Analysis of cell-cycle parameters shows that chromosome replication and segregation is exceptionally fast in V. cholerae. The divided genome and delayed replication of chromosome...

  14. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons

    Science.gov (United States)

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294

  15. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Directory of Open Access Journals (Sweden)

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  16. Penggunaan antimikroba dari isolat Lactobacillus terseleksi sebagai bahan pengawet alami untuk menghambat pertumbuhan Vibrio sp. dan Staphylococcus aureus pada fillet ikan kakap

    Directory of Open Access Journals (Sweden)

    Titin Yulinery

    2012-02-01

    Full Text Available The fillet of kakap fish is easy to spoil, because of bacteria deterioration. Antimicrobes produced by Lactobacillus is one of save alternatives. The aim of this research was to know the potency of antimicrobes produced by the selected Lactobacillus to inhibit the growth of pathogenic bacteria that contaminated the kakap fillet such as Vibrio sp. and S. aureus. Selected Lactobacillus had been done by the variation of temperature treatments. Diffusion method was used to measure the wide of clear zone made by Vibrio sp.and S.aureus. In application, antimicrobe solution of selected microbes was used for soaking the kakap fillet, then the bacteria grown were counted on the beginning and the seventh day. The result shown that the wide of the inhibition area on Vibrio sp. was wider compareto the inhibition area made by S. aureus of kakap fillet. At treatment of temperature, antimicrobe solution remain to be active, onlyits resistivity depend on stability of antimicrobe yielded by selected Lactobacillus. For application used the antimicrobe producedby Lactobacillus (Mar 8 could inhibit the growth of Vibrio sp. and S. aureus on the 0 day and the seventh day, so that compound of antimicrobe can be used as natural preservative at fish product.

  17. Molecular uptake of chitooligosaccharides through chitoporin from the marine bacterium Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Wipa Suginta

    Full Text Available BACKGROUND: Chitin is the most abundant biopolymer in marine ecosystems. However, there is no accumulation of chitin in the ocean-floor sediments, since marine bacteria Vibrios are mainly responsible for a rapid turnover of chitin biomaterials. The catabolic pathway of chitin by Vibrios is a multi-step process that involves chitin attachment and degradation, followed by chitooligosaccharide uptake across the bacterial membranes, and catabolism of the transport products to fructose-6-phosphate, acetate and NH(3. PRINCIPAL FINDINGS: This study reports the isolation of the gene corresponding to an outer membrane chitoporin from the genome of Vibrio harveyi. This porin, expressed in E. coli, (so called VhChiP was found to be a SDS-resistant, heat-sensitive trimer. Immunoblotting using anti-ChiP polyclonal antibody confirmed the expression of the recombinant ChiP, as well as endogenous expression of the native protein in the V. harveyi cells. The specific function of VhChiP was investigated using planar lipid membrane reconstitution technique. VhChiP nicely inserted into artificial membranes and formed stable, trimeric channels with average single conductance of 1.8±0.13 nS. Single channel recordings at microsecond-time resolution resolved translocation of chitooligosaccharides, with the greatest rate being observed for chitohexaose. Liposome swelling assays showed no permeation of other oligosaccharides, including maltose, sucrose, maltopentaose, maltohexaose and raffinose, indicating that VhChiP is a highly-specific channel for chitooligosaccharides. CONCLUSION/SIGNIFICANCE: We provide the first evidence that chitoporin from V. harveyi is a chitooligosaccharide specific channel. The results obtained from this study help to establish the fundamental role of VhChiP in the chitin catabolic cascade as the molecular gateway that Vibrios employ for chitooligosaccharide uptake for energy production.

  18. [ISOLATION OF ANTIBIOTICS RESISTANCE GENES IN VIBRIO CHOLERAE O1 AND O139 SEROGROUP STRAINS].

    Science.gov (United States)

    Zadnova, S P; Smirnova, N I

    2015-01-01

    Determination of sensitivity of V. cholerae O1 serogroup El Tor biovar and O139 serogroup strains to antibiotics and determination of the presence of antibiotics resistance genes in their genome. The studies were carried out in 75 V. cholerae O1 and O139 serogroup strains. Sensitivity of cultures to antibiotics was determined by disc-diffusion method. DNA isolation was carried out in the presence of 6M guanidine thiocyanate. PCR was carried out in multi-channel amplificator Tercyc. A multiplex PCR was constructed, that includes 5 primer pairs for the detection of O1 and O139 serogroup resistance genes of vibrios to sulfame- thoxazolum, streptomycin B, trimethoprim, the presence of SXT element, an amplification program was developed. Using the developed PCR, V. cholerae O1 serogroup El Tor biovar strains with multiple drug resistance were established to be imported into Russia in 1993. The presence of SXT elements with genes of resistance to 4 antibiotics simultaneously was detected precisely in these strains, that belong to toxigenic genovariants of V. cholerae El Tor biovar. All the El Tor vibrio strains imported in the subsequent years were shown to stably preserve SXT element, this indicates its important role in biology of cholera vibrios. O139 serogroup strains with intact SXT element and having a deletion of the gene coding trimethoprim resistance were isolated. The data obtained may be used to establish molecular-genetic mechanisms of emergence of antibiotics resistant strains of cholera vibrio, construction of novel gene diagnostic test-systems and carrying out passportization of strains that are stored in the State collection of pathogenic bacteria.

  19. The effect of γ radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp.

    Science.gov (United States)

    Lim, Sangyong; Jung, Jinwoo; Kim, Dongho

    2007-11-01

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after γ radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that γ radiation is much more likely to reduce the virulence gene expression of surviving pathogens.

  20. Vibrios associated with red tides caused by Mesodinium rubrum.

    Science.gov (United States)

    Romalde, J L; Barja, J L; Toranzo, A E

    1990-11-01

    Vibrios were isolated from red tides caused by Mesodinium rubrum and also throughout the year in the Ria de Pontevedra, Spain. The isolates were grouped into 14 phena by numerical toxonomy. Strains associated with red tides were restricted to four phena: phena I and II were Vibrio alginolyticus, and phena III and IV were Vibrio tubiashii and Vibrio anguillarum, respectively. V. anguillarum-like strains (phena V through XI) predominated throughout the year outside the red tide areas. Cytotoxicity assays conducted in different poikilothermic and homoiothermic cell lines showed that cytotoxin production was not necessarily associated with the species selected during the red tides.

  1. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Science.gov (United States)

    2010-04-01

    ... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera. Cholera is an acute infectious disease characterized by severe diarrhea with extreme fluid and electrolyte...

  2. Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade.

    Directory of Open Access Journals (Sweden)

    Adelfia Talà

    Full Text Available In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule.

  3. Modeling the growth of Byssochlamys fulva and Neosartorya fischeri on solidified apple juice by measuring colony diameter and ergosterol content.

    Science.gov (United States)

    Tremarin, Andréia; Longhi, Daniel Angelo; Salomão, Beatriz de Cassia Martins; Aragão, Gláucia Maria Falcão

    2015-01-16

    Byssochlamys fulva and Neosartorya fischeri are heat-resistant fungi which are a concern to food industries (e.g. apple juice industry) since their growth represents significant economic liabilities. Although the most common method used to assess fungal growth in solid substrates is by measuring the colony's diameter, it is difficult to apply this method to food substrates. Alternatively, ergosterol contents have been used to quantify fungal contamination in some types of food. The current study aimed at modeling the growth of the heat-resistant fungi B. fulva and N. fischeri by measuring the colony diameter and ergosterol content, fitting the Baranyi and Roberts model to the results, and finally establishing a correlation between the parameters of the two analytical methods. Whereas the colony diameter was measured daily, the quantification of ergosterol was performed when the colonies reached diameters of 30, 60, 90, 120 and 150 mm. Results showed that B. fulva and N. fischeri were able to grow successfully on solidified apple juice at 10, 15, 20, 25 and 30 °C, and the Baranyi and Roberts model showed good ability to describe growth data. The correlation curves between the parameters of colony diameter and ergosterol content were obtained with satisfactory statistical indexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mortality event involving larvae of the carpet shell clam Ruditapes decussatus in a hatchery: isolation of the pathogen Vibrio tubiashii subsp. europaeus.

    Science.gov (United States)

    Dubert, J; Aranda-Burgos, J A; Ojea, J; Barja, J L; Prado, S

    2017-09-01

    Diseases caused by bacteria belonging to the genus Vibrio are a common, as yet unresolved, cause of mortality in shellfish hatcheries. In this study, we report the results of routine microbiological monitoring of larval cultures of the carpet shell clam Ruditapes decussatus in a hatchery in Galicia (NW Spain). Previous episodes of mortality with signs similar to those of vibriosis affecting other species in the installation indicated the possibility of bacterial infection and led to division of the culture at the early D-veliger larval stage. One batch was cultured under routine conditions, and the other was experimentally treated with antibiotic (chloramphenicol). Differences in larval survival were assessed, and culturable bacterial population in clams and sea water was evaluated, with particular attention given to vibrios. Severe mortalities were recorded from the first stages of culture onwards. The pathogen Vibrio tubiashii subsp. europaeus was detected in both batches, mainly associated with larvae. Moreover, initial detection of the pathogen in the eggs suggested the vertical transmission from broodstock as a possible source. Experimental use of antibiotic reduced the presence and diversity of vibrios in sea water, but proved inefficient in controlling vibrios associated with larvae from early stages and it did not stop mortalities. © 2017 John Wiley & Sons Ltd.

  5. Caracterización de bacterias aisladas en larvas de p.v. mediante rapds

    OpenAIRE

    Cedeño, Ricardo

    2003-01-01

    Caracterización de bacterias aisladas en larvas de P.V. mediante RAPDs La “Vibriosis luminiscente” reportada por varios laboratorios de larvas del Ecuador es asociada principalmente a la bacteria Vibrio harveyi. Los métodos de identificación bacteriana tradicionales se basan en la observación de características morfológicas y pruebas bioquímicas, sin embargo la identificación de especies bacterianas y en especial de Vibrios ambientales ha presentado ciertas dificultades debido al tiempo qu...

  6. Vibrio cholerae: A historical perspective and current trend

    Directory of Open Access Journals (Sweden)

    Mary Oyenike Oladokun

    2016-11-01

    Full Text Available Vibrio cholerae (V. cholerae is a Gram-negative, curved, rod-shaped bacteria with two of its strains V. cholerae O1 and V. cholerae O139 known to cause cholera, a deadly diarrheal disease that has repeatedly plagued the world in pandemics since 1817 and still remains a public health problem globally till today. The pathogens’ persistence in aquatic milieux during inter-epidemic periods is facilitated by the production of a biofilm, thus evolving from being an infection of oral-fecal transmission to a more composite ecological framework of a communicable disease. The outbreaks of cholera spread rapidly in various intensities within and among countries and even continents and the World Health Organization estimates that 3–5 million cases outbreak and over 200 000 die yearly from cholera. Also, the impact of a cholera epidemic is not limited to its high morbidity and mortality rates alone, but also the grievous impact on the economy of the countries experiencing the outbreaks. In this review, we carried out an overview of V. cholerae including its isolation and detection, genetics as well as a comparison of the toxigenic and non-toxigenic determinants in the human host and the host defences. Furthermore, the history of global pandemics, cost implications, conflict and ecological methodologies of cholera prevention and control. The management of disease and antibiotic resistance in V. cholerae are also highlighted.

  7. Carriage of vibrio species by shrimps harvested from the coastal ...

    African Journals Online (AJOL)

    Objectives: To determine the prevalence of Vibrio spp in unprocessed shrimps and their susceptibility to antibiotics. Design: A prospective study of Vibrio spp associated with shrimps harvested from the coastal waters of South West Cameroon. Setting: A laboratory based study at the Department of Life Sciences, University ...

  8. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran.

    Science.gov (United States)

    Momtaz, Hassan; Dehkordi, Farhad Safarpoor; Rahimi, Ebrahim; Asgarifar, Amin

    2013-06-07

    The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P waters of southern part and tap waters of central part of Isfahan. This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health problem in Isfahan, Iran.

  9. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective.

    Science.gov (United States)

    Baker-Austin, Craig; Stockley, Louise; Rangdale, Rachel; Martinez-Urtaza, Jaime

    2010-02-01

    Vibrio vulnificus and Vibrio parahaemolyticus are ubiquitous Gram-negative bacterial pathogens found naturally in marine and estuarine waters, and are a leading cause of seafood-associated bacterial illness. These pathogens are commonly reported in the USA and in many Asian countries, including China, Japan and Taiwan; however, there is growing concern that V. vulnificus and V. parahaemolyticus may represent an important and increasing clinical problem in Europe. Several factors underlie the need for a greater understanding of these non-cholera vibrios within a European context. First, there is a growing body of evidence to suggest that V. vulnificus and V. parahaemolyticus infections are increasing, and tend to follow regional climatic trends, with outbreaks typically following episodes of unusually warm weather. Such findings are especially alarming given current predictions regarding warming of marine waters as a result of global climatic change. Second, a myriad of epidemiological factors may greatly increase the incidence as well as clinical burden of these pathogens - including increasing global consumption and trade of seafood produce coupled to an increase in the number of susceptible individuals consuming seafood produce. Finally, there is currently a lack of detailed surveillance information regarding non-cholerae Vibrio infections in Europe, as these pathogens are not notifiable in many countries, which probably masks the true clinical burden of many human infections. This review will present a pertinent overview of both the environmental occurrence and clinical impact of V. vulnificus and V. parahaemolyticus in Europe. © 2010 Crown copyright.

  10. A Mobile Element in mutS Drives Hypermutation in a Marine Vibrio.

    Science.gov (United States)

    Chu, Nathaniel D; Clarke, Sean A; Timberlake, Sonia; Polz, Martin F; Grossman, Alan D; Alm, Eric J

    2017-02-07

    Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS-different from the bacterium's original mutS promoter region-which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. DNA mutations are a double-edged sword. Most mutations are harmful; they can scramble precise genetic sequences honed over thousands of generations. However, in rare cases, mutations also produce beneficial new traits that allow populations to adapt to changing environments. Recent evidence suggests that some bacteria balance

  11. KEBERADAAN BAKTERI PATOGEN Vibrio cholerae PADA BEBERAPA HASIL PERIKANAN YANG DIJUAL DI PASAR TRADISIONAL KOTA DENPASAR

    Directory of Open Access Journals (Sweden)

    I Wayan Yogi Widyastana

    2015-08-01

    Full Text Available The purpose of this research was to find out the existence of Vibrio cholerae, bacteria that may cause cholera disease, in some fishery products in Denpasar traditional market, Bali. This research used samples taken from three different fisheries products: tuna fishes (Euthynnus affinis, shrimps (Penaeus indicus, and shellfish (Anodonta sp.. They were taken from three traditional markets in Denpasar City: Ketapian, Kumbasari, and Pidada Markets. All samples were cultured on Alkaline Peptone Water (APW media, continued by Thiosulfate Citrate Bile Salt Sucrose (TCBS, and then Biochemical Test and Serology Test undertaken. The results of this study showed that two (7.4% samples taken from Ketapian Market were proved to be positive containing pathogenic bacteria of V. cholerae; they were the shrimps with UA2 code and the shellfish with KA2 code. Meanwhile, there were no V. cholerae contaminations proven to exist in two other kind of products in other two traditional markets.

  12. Antagonistic Activity of Probiotic Organism Against Vibrio cholerae and Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Vidya, R.

    2010-01-01

    Full Text Available The microbes are useful in many ways in the modern world. Probiotics one of them, which refers to, acid adherence bacteria in the intestinal cells, are able to survive at low pH and produce large amount of lactic acid. The present investigation deals with the antagonistic activity of Lactobacillus acidophilus organism against pathogens. The organism was isolated from the curd sample. Identification of bacteria was done by various biochemical testing. The present study revealed that L. acidophilus inhibits Vibrio cholerae more efficiently than Streptococcus pneumoniae and Shigella dysentriae. When L. acidophilus and V. cholerae were grown together, L. acidophilus dominated the growth and competitively inhibited the growth of V. cholerae. L. acidophilus was also found to inhibit Cryptococcus neoformans.

  13. Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products

    DEFF Research Database (Denmark)

    Østergaard, Anya; Embarek, Peter Karim Ben; Wedell-Neergaard, C.

    1998-01-01

    Thai fermented fish products were screened for lactic acid bacteria capable of inhibiting Listeria sp. (Listeria innocua). Of 4150 assumed lactic acid bacteria colonies from MRS agar plates that were screened by an agar-overlay method 58 (1.4%) were positive. Forty four of these strains were...... further characterized and 43 strains were inhibitory against Listeria monocytogenes. The strains were inhibitory to other Gram- positive (lactic acid) bacteria probably because of production of bacteriocins. All 44 strains inhibited both Vibrio cholerae and Vibrio parahaemolyticus and 37 were inhibitory...... be responsible for the rapid spontaneous fermentation of the products or that other yet-unknown factors ensure rapid fermentation. Overall anti-listerial lactic acid bacteria do occur in fermented fish products and the antibacterial activity against pathogenic bacteria indicates that they may be important...

  14. The Role of Vibrios in Diseases of Corals.

    Science.gov (United States)

    Munn, Colin B

    2015-08-01

    The tissue, skeleton, and secreted mucus of corals supports a highly dynamic and diverse community of microbes, which play a major role in the health status of corals such as the provision of essential nutrients or the metabolism of waste products. However, members of the Vibrio genus are prominent as causative agents of disease in corals. The aim of this chapter is to review our understanding of the spectrum of disease effects displayed by coral-associated vibrios, with a particular emphasis on the few species where detailed studies of pathogenicity have been conducted. The role of Vibrio shilonii in seasonal bleaching of Oculina patagonica and the development of the coral probiotic hypothesis is reviewed, pointing to unanswered questions about this phenomenon. Detailed consideration is given to studies of V. coralliilyticus and related pathogens and changes in the dominance of vibrios associated with coral bleaching. Other Vibrio-associated disease syndromes discussed include yellow band/blotch disease and tissue necrosis in temperate gorgonian corals. The review includes analysis of the role of enzymes, resistance to oxidative stress, and quorum sensing in virulence of coral-associated vibrios. The review concludes that we should probably regard most-possibly all-vibrios as "opportunistic" pathogens which, under certain environmental conditions, are capable of overwhelming the defense mechanisms of appropriate hosts, leading to rapid growth and tissue destruction.

  15. Antibacterial effect of Gracilaria verrucosa bioactive on fish pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Maftuch

    2016-12-01

    Full Text Available Gracilaria verrucosa seaweed is a type of seaweed commonly found in water. This study was conducted to investigate the effect of G. verrucosa on fish pathogenic bacteria to support fish farming. The method used in this research was the separation of G. verrucosa fractions using column chromatography. The active antibacterial fraction of G. verrucosa which is obtained from column chromatography indicated fractions containing antibacterial compounds. It was fraction number 3 by using an eluent 16 (ethanol: 4 (ethyl acetate. Furthermore, based on phytochemical screening, ultraviolet spectrophotometer and LC–MS analysis, antibacterial compounds contained in those fraction number 3 are Alkaloid, Flavonoid, Tannin, Phenolic compound. Based on LC–MS and UV–Vis analysis, flavonoid group, Quercetin-7-methyl-ether is a dominant group of the antibacterial compound on fraction no. 3. This fraction had moderate antibacterial activity against Aeromonas hydrophila, Pseudomonas aeruginosa, Pseudomonas putida and had weak antibacterial activity against Vibrio harveyi and Vibrio algynoliticus bacteria.

  16. Molecular Detection of the Three Major Pathogenic Vibrio Species from Seafood Products and Sediments in Tunisia Using Real-Time PCR.

    Science.gov (United States)

    Gdoura, Morsi; Sellami, Hanen; Nasfi, Hanen; Trabelsi, Rahma; Mansour, Sabeur; Attia, Touraya; Nsaibia, Siwar; Vallaeys, Tatiana; Gdoura, Radhouane; Siala, Mariam

    2016-12-01

    Vibrio spp. have emerged as a serious threat to human health worldwide. V. parahaemolyticus , V. cholerae , and V. vulnificus pose a considerable public health risk in Tunisia because they cause sporadic and epidemic foodborne infections associated with the consumption of raw or undercooked contaminated seafood. More recently, toxR-positive V. alginolyticus was also reported to be a potential source of contaminated seafood. A total of 247 samples, including 113 fishes ( Labrus viridis , Penaeus kerathurus , Diplodus annularis , Diplodus sparaillon , Scorparna porcus , Sarpa salpa , Dentex dentex , Scorparna scrofa , Sardinella aurita , Trachurus trachurus , Synodus saurus , Pagellus erythrinus , and Metapenaeus monoceros ), 83 clams ( Ruditapes decussatus species), 30 seawater samples, and 21 sediment samples were analyzed using traditional culture methods (ISO/TS 21872-1; International Organization for Standardization 2007) and a conventional PCR method for Vibrio spp. A rapid, sensitive, and highly reproducible real-time PCR assay was developed to detect the three major Vibrio spp. pathogenic for humans in Tunisian seafood products and sediments. A conventional culture method found 102 (41.3%) of 247 analyzed samples positive for Vibrio spp.; a conventional PCR method found 126 (51%) of the 247 samples positive. Real-time PCR assay found 126 (51.1%) samples positive; V. alginolyticus toxR was the most common, found in 99 (78.57%) of samples, followed by V. parahaemolyticus in 26 (20.63%) and V. cholerae in 1 (0.7%). All culture-positive samples were PCR positive. However, 24 samples that were positive by conventional PCR and real-time PCR were culture negative. Our findings indicate that retail seafood is commonly contaminated with Vibrio spp. and presents a potential risk to human health in Tunisia. These data also indicate that real-time PCR can provide sensitive species-specific detection of Vibrio spp. in seafood without prior isolation and characterization

  17. Evaluation of antibacterial activity of extracts of five species of wood-colonizing fungi.

    Science.gov (United States)

    Janes, Damjan; Umek, Andrej; Kreft, Samo

    2006-01-01

    Screening new organisms for antibacterial activity and searching for new antibacterial drugs is important due to the constant generation of new antibiotic-resistant strains of pathogenic bacteria. An E. coli broth microdilution test was used to evaluate the results of the Vibrio fischeri bioluminescence test in five of the most antibacterially active species of wood-colonizing fungi. Serpula lacrymans was found to be a potential source of thermostable antibiotic(s) and the Vibrio fischeri bioluminescence test was confirmed to be a useful method for screening for antibacterial activity.

  18. Distribution of potentially pathogenic enteric bacteria in coastal sea waters along the Southern Kerala Coast, India.

    Science.gov (United States)

    Sudhanandh, V S; Udayakumar, P; Faisal, A K; Potty, V P; Ouseph, P P; Prasanthan, V; Babu, K Narendra

    2012-01-01

    This study evaluated the relationship between the traditional indicators of faecal pollution, total coliforms (TC), faecal coliforms (FC) and Faecalstreptococci (FS), and the presence of few potentially pathogenic enteric bacteria, Vibrio cholerae (VC), Vibrio parahaemolyticus (VP), Shigella spp. (SH) and Salmonella spp. (SL) in coastal sea water. The distributional statuses of these bacteria were also studied along the Southern Kerala coast. Cluster analyses were done to identify similar groups of indicator as well as enteric pathogenic bacteria. Kochi was found to be highly polluted with enteric pathogens and indicator bacteria (TC of 4700, VC of 820, FC of 920 and FS of 410 CFU ml(-1)). Percentage incidence of VC (97.42%) was comparatively higher than the traditional indicator bacteria (TC 95.04%, FC of 63.64% and FS of 47.64%). VC found to be rather stable and showed significant relationship with all the traditional indicator bacteria (R2 > 0.370), suggests that both quantitatively and qualitatively the abundance of Vibrio cholerae can determine faecal pollution, could be used as a faecal pollution indicator bacterium, especially in the marine environment where traditional indicator bacteria failed to survive. It would be advisable to always perform the detection of SH and VP beside the traditional indicators as no significant relationship (R20.05) exists among them.

  19. Isolation and characterisation of Bacillus spp. antagonistic to Vibrio parahaemolyticus for use as probiotics in aquaculture.

    Science.gov (United States)

    Liu, Xue-Fei; Li, Ya; Li, Jian-Rong; Cai, Lu-Yun; Li, Xiu-Xia; Chen, Jin-Ru; Lyu, Shu-Xia

    2015-05-01

    Acute gastroenteritis caused by pathogenic Vibrio parahaemolyticus is one of the major factors affecting the development of aquaculture and the safety of seafood. Using the antagonism of probiotics against pathogens is an alternative strategy to antibiotics and a common trend to control food-borne pathogenic bacteria. In this study, a total of 249 isolates were isolated from four types of seafood (Litopenaeus vannamei, Oratosquilla oratoria, Mactra veneriformis and Portunus trituberculatus) and coastal sediment from Liaodong Bay in the Bohai Sea, China with five different separation agars. The most isolates came from the sample of coastal sediment and on agar of 2216E, which accounted for 36.14 and 54.62 % respectively. Twenty-four among 249 isolates displayed direct antimicrobial activity to V. parahaemolyticus with spot inoculation. Sixteen active isolates were selected for extracellular antimicrobial activity using the Oxford cup method. Only strains of B16 and J7 showed extracellular antimicrobial activity and were identified as Bacillus pumilus and Bacillus mojavensis respectively based on the physiological identification and 16S rRNA sequence analysis. Both of the strains B16 and J7 exhibited extracellular hydrolytic enzyme activity and antagonism against more than one indicator bacteria in vitro, which indicates that the two strains have broad potential application as suitable probiotic candidates in aquaculture while B. mojavensis was first reported to inhibit pathogenic Vibrio spp. in vitro. There is no particular trait as to antagonism of B. pumilus B16 or B. mojavensis J7 to Gram-positive or Gram-negative indicator bacteria.

  20. Catechol Siderophore Transport by Vibrio cholerae.

    Science.gov (United States)

    Wyckoff, Elizabeth E; Allred, Benjamin E; Raymond, Kenneth N; Payne, Shelley M

    2015-09-01

    Siderophores, small iron-binding molecules secreted by many microbial species, capture environmental iron for transport back into the cell. Vibrio cholerae synthesizes and uses the catechol siderophore vibriobactin and also uses siderophores secreted by other species, including enterobactin produced by Escherichia coli. E. coli secretes both canonical cyclic enterobactin and linear enterobactin derivatives likely derived from its cleavage by the enterobactin esterase Fes. We show here that V. cholerae does not use cyclic enterobactin but instead uses its linear derivatives. V. cholerae lacked both a receptor for efficient transport of cyclic enterobactin and enterobactin esterase to promote removal of iron from the ferrisiderophore complex. To further characterize the transport of catechol siderophores, we show that the linear enterobactin derivatives were transported into V. cholerae by either of the catechol siderophore receptors IrgA and VctA, which also transported the synthetic siderophore MECAM [1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene]. Vibriobactin is transported via the additional catechol siderophore receptor ViuA, while the Vibrio fluvialis siderophore fluvibactin was transported by all three catechol receptors. ViuB, a putative V. cholerae siderophore-interacting protein (SIP), functionally substituted for the E. coli ferric reductase YqjH, which promotes the release of iron from the siderophore in the bacterial cytoplasm. In V. cholerae, ViuB was required for the use of vibriobactin but was not required for the use of MECAM, fluvibactin, ferrichrome, or the linear derivatives of enterobactin. This suggests the presence of another protein in V. cholerae capable of promoting the release of iron from these siderophores. Vibrio cholerae is a major human pathogen and also serves as a model for the Vibrionaceae, which include other serious human and fish pathogens. The ability of these species to persist and acquire essential

  1. Survival of Vibrio parahaemolyticus in cooked seafood at refrigeration temperatures.

    Science.gov (United States)

    Bradshaw, J G; Francis, D W; Twedt, R M

    1974-04-01

    The growth and survival of two strains of Vibrio parahaemolyticus isolated during food-borne gastroenteritis outbreaks in Japan and surface inoculated on cooked shrimp, shrimp with sauce, or cooked crab were tested at various refrigeration temperatures during a 48-h holding period. On cooked shrimp and crab, the vibrios grew well at 18.3 C, but their numbers declined gradually at 10 C and below. At 12.8 C, vibrios remained static for the most part. Thus, it appeared that 12.8 C was the borderline temperature for growth of the organism on cooked seafood. When cocktail sauce was added to surface-inoculated shrimp at a ratio of 2:1, the vibrio die-off rate was accelerated. In the shrimp and sauce few cells remained after 48 h, but in the sauce alone die-off was complete at 6 h.

  2. Opkomst van Vibrio infecties in brakwaterkweekvis : uit de ziekenboeg

    NARCIS (Netherlands)

    Haenen, O.L.M.; Engelsma, M.Y.

    2010-01-01

    De laatste paar jaar zijn er diverse Vibrio-soorten als ziekteverwekkende bacterie aangetoond in brak- en zoutwaterkweekvis. We gaan in dit artikel in op vibriose bij tong, tarbot, barramundi een zeebaars.

  3. Antibiotic Susceptibility Patterns and Plasmid Profile of Vibrio ...

    African Journals Online (AJOL)

    32.14%) samples of Vibrio cholerae isolates recovered from water samples from Elele Community. All isolates showed a multiple resistance patterns to 7 antibiotics namely amoxicillin, cotrimoxazole, nitrofurantoin, gentamicin, tetracycline, ...

  4. Ingestion of food pellets containing Escherichia coli overexpressing the heat-shock protein DnaK protects Penaeus vannamei (Boone) against Vibrio harveyi (Baumann) infection.

    Science.gov (United States)

    Sinnasamy, S; Noordin, N Mat; MacRae, T H; Bin Abdullah, M Ikhwanuddin; Bossier, P; Wahid, M E Bin Abdul; Noriaki, A; Sung, Y Y

    2016-05-01

    Feeding aquatic animals with bacterial encapsulated heat-shock proteins (Hsps) is potentially a new method to combat vibriosis, an important disease affecting aquatic animals used in aquaculture. Food pellets comprised of shrimp and containing Escherichia coli overexpressing either DnaK-DnaJ-GrpE, the prokaryotic equivalents of Hsp70-Hsp40-Hsp20, or only DnaK were fed to juveniles of the white leg shrimp Penaeus vannamei, and protection against pathogenic Vibrio harveyi was determined. Maintaining pellets at different temperatures for varying lengths of time reduced the number of live adhering E. coli, as did contact with sea water, demonstrating that storage and immersion adversely affected bacterial survival and attachment to pellets. Feeding P. vannamei with E. coli did not compromise their survival, indicating that the bacteria were not pathogenic to shrimp. Feeding P. vannamei with pellets containing bacteria overproducing DnaK (approximately 60 cells g(-1) pellets) boosted P. vannamei survival twofold against V. harveyi, suggesting that DnaK plays a role in Vibrio tolerance. Pellets containing DnaK were effective in providing protection to P. vannamei for up to 2 weeks before loss of viability and that DnaK encapsulated by these bacteria enhanced shrimp resistance against Vibrio infection. © 2015 John Wiley & Sons Ltd.

  5. Uncertainty in model predictions of Vibrio vulnificus response to climate variability and change: a Chesapeake Bay case study.

    Directory of Open Access Journals (Sweden)

    Erin A Urquhart

    Full Text Available The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.

  6. Uncertainty in Model Predictions of Vibrio Vulnificus Response to Climate Variability and Change: A Chesapeake Bay Case Study

    Science.gov (United States)

    Urquhart, Erin A.; Zaitchik, Benjamin F.; Waugh, Darryn W.; Guikema, Seth D.; Del Castillo, Carlos E.

    2014-01-01

    The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4 C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.

  7. Isolation and characterization of agar-digesting Vibrio species from the rotten thallus of Gracilariopsis heteroclada Zhang et Xia.

    Science.gov (United States)

    Martinez, Joval N; Padilla, Philip Ian P

    2016-08-01

    Gracilariopsis heteroclada Zhang et Xia (Gracilariaceae, Rhodophyta) is one of the most studied marine seaweeds due to its economic importance. This has been cultivated extensively on commercial scale in the Philippines and other Asian countries. However, sustainable production of G. heteroclada in the Philippines could not be maximized due to the occurrence of rotten thallus disease. Thus, isolation and characterization of agar-digesting bacteria from the rotten thalli of G. heteroclada was conducted. A total of seven representative bacterial isolates were randomly selected based on their ability to digest agar as evidenced by the formation of depressions around the bacterial colonies on nutrient agar plates supplemented with 1.5% NaCl and liquefaction of agar. Gram-staining and biochemical characterization revealed that isolates tested were gram-negative rods and taxonomically identified as Vibrio parahaemolyticus (86-99.5%) and Vibrio alginolyticus (94.2-97.7%), respectively. It is yet to be confirmed whether these agar-digesting vibrios are involved in the induction and development of rotten thallus disease in G. heteroclada in concomitance with other opportunistic bacterial pathogens coupled with adverse environmental conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Isolation and molecular identification of Vibrio spp. by sequencing of ...

    African Journals Online (AJOL)

    Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 х104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 х104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio ...

  9. Inactivation of Vibrio anguillarum by attached and planktonic Roseobacter cells

    DEFF Research Database (Denmark)

    D'Alvise, Paul; Melchiorsen, Jette; Porsby, Cisse Hedegaard

    2010-01-01

    The purpose of the present study was to investigate inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (10e7 cfu/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 10e2 – 10...... cfu/ml. The effect was likely associated with production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum....

  10. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anisia J Silva

    2016-02-01

    Full Text Available Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i the evidence for biofilm formation during infection, (ii the coordinate regulation of biofilm and virulence gene expression, and (iii the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv we discuss a model for the role of V. cholerae biofilms in pathogenicity.

  11. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios.

    Directory of Open Access Journals (Sweden)

    Wai-Leung Ng

    Full Text Available Quorum sensing (QS is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

  12. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios.

    Science.gov (United States)

    Ng, Wai-Leung; Perez, Lark; Cong, Jianping; Semmelhack, Martin F; Bassler, Bonnie L

    2012-01-01

    Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

  13. IN VITRO ANTAGONISTIC ACTIVITIES OF INDONESIAN MARINE SPONGE AAPTOS AAPTOS AND CALLYSPONGIA PSEUDORETICULATA EXTRACTS AND THEIR TOXICITY AGAINST Vibrio spp.

    Directory of Open Access Journals (Sweden)

    Rosmiati Rosmiati

    2011-12-01

    Full Text Available Vibriosis is one of diseases which often results in mass mortality of Penaeus monodon larval rearing systems. It attacks shrimp of all stages in zoea, mysis and shrimp postlarva stage. This disease is caused by Vibrio spp, particularly Vibrio harveyi (a luminescent bacterium. Several kinds of antibiotics and chemical material have been used to overcome the disease but they have side effects to environment and human. The searching of bioactive compounds as an alternative treatment has been done for multi purposes. In this study diethyl eter, butanol and aqueous extract of Indonesian sponges Aaptos aaptos and Callyspongia pseudoreticulata were tested for in vitro activity against Vibrio spp. and Vibrio harveyi by using disc diffusion method. The result showed that all extracts of Aaptos aaptos gave a positive antibacterial activity towards those pathogenic bacteria. Meanwhile, only butanol extract of Callyspongia pseudoreticulata obtained to exhibit an antibacterial activity on those pathogenic bacteria. The strong anti-vibrio activity were shown by butanol and aqueous extract of Aaptos aaptos with the minimum inhibitory concentration (MIC value of 0.313 and 0.625 mg/mL, respectively. Whilst, the butanol extract of Callyspongia pseudoreticulata indicated a low antibacterial activity with the MIC value of 10 mg/mL. Toxicity of those active extracts was evaluated by Brine Shrimp Lethality Test (BST. Interestingly, butanol and aqueous extracts of Aaptos aaptos did not show any toxic effect in Artemia salina larvae up to 8 x MIC (2.504 mg/mL and 5.000 mg/mL. It is the first report for the anti-vibr io activity of both Aaptos aaptos and Callyspongia pseudoreticulata. This results suggest that Aaptos aaptos has a potential to be used as a source of alternative compound to vibriosis prevention for mariculture.

  14. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    Science.gov (United States)

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-01-01

    Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds. PMID:24663118

  15. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    Directory of Open Access Journals (Sweden)

    André Horta

    2014-03-01

    Full Text Available Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC. Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%, Alteromonas sp. (12.82%, Shewanella sp. (12.26%, Serratia sp. (2.56%, Citricoccus sp. (2.56%, Cellulophaga sp. (2.56%, Ruegeria sp. (2.56% and Staphylococcus sp. (2.56%. Six (15.38% of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis was exhibited by strain 16 (Shewanella sp.. Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  16. Isolation of TDA-producing Phaeobacter strains from sea bass larval rearing units and their probiotic effect against pathogenic Vibrio spp. in Artemia cultures.

    Science.gov (United States)

    Grotkjær, Torben; Bentzon-Tilia, Mikkel; D'Alvise, Paul; Dourala, Nancy; Nielsen, Kristian Fog; Gram, Lone

    2016-05-01

    Fish-pathogenic Vibrio can cause large-scale crashes in marine larval rearing units and, since the use of antibiotics can result in bacterial antibiotic resistance, new strategies for disease prevention are needed. Roseobacter-clade bacteria from turbot larval rearing facilities can antagonize Vibrio anguillarum and reduce mortality in V. anguillarum-infected cod and turbot larvae. In this study, it was demonstrated that antagonistic Roseobacter-clade bacteria could be isolated from sea bass larval rearing units. In addition, it was shown that they not only antagonized V. anguillarum but also V. harveyi, which is the major bacterial pathogen in crustaceans and Mediterranean sea bass larvae cultures. Concomitantly, they significantly improved survival of V. harveyi-infected brine shrimp. 16S rRNA gene sequence homology identified the antagonists as Phaeobacter sp., and in silico DNA-DNA hybridization indicated that they could belong to a new species. The genomes contained genes involved in synthesis of the antibacterial compound tropodithietic acid (TDA), and its production was confirmed by UHPLC-TOFMS. The new Phaeobacter colonized live feed (Artemia) cultures and reduced Vibrio counts significantly, since they reached only 10(4)CFUmL(-1), as opposed to 10(8)CFUmL(-1) in non-Phaeobacter treated controls. Survival of V. anguillarum-challenged Artemia nauplii was enhanced by the presence of wild type Phaeobacter compared to challenged control cultures (89±1.0% vs 8±3.2%). In conclusion, TDA-producing Phaeobacter isolated from Mediterranean marine larviculture are promising probiotic bacteria against pathogenic Vibrio in crustacean live-feed cultures for marine fish larvae. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    Science.gov (United States)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  18. Antibiotic Resistance and Integron of Vibrio cholerae Detection from School Street Foods in Jakarta

    Directory of Open Access Journals (Sweden)

    NADIA DEASHINTA

    2007-06-01

    Full Text Available Street foods represent foods and beverages prepared by vendors in streets or other public places, i.e. schools. Food safety issues perceive street foods as a potential major public risk. Street foods contaminated with toxigenic Vibrio cholerae may lead to serious poisoning to school-age children. In this study, 17 isolates of V. cholerae were obtained from nine (45% of total 20 street foods samples collected in Jakarta. Five (29% were confirmed to be V. cholerae O1, serotype Ogawa using biochemical tests and serological identification. Of the 17 V. cholerae isolates 47% proved to be resistant to ampicillin, 35% to trimethoprim, 17.6% to tetracycline, and 17.6% to streptomycin. A class 1 integrons bearing streptomycin/spectinomycin resistant gene cassette of aadA1c were discovered on isolate Vc25n. This may leads to horizontal transfer of the antibiotic resistant genes to other bacteria.

  19. The Potential of Bdellovibrio For the Biocontrol of the Infectious Agent Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Natalia Olsson Markelova

    2015-12-01

    Full Text Available Members of the genus Bdellovibrio are small and highly motile Gram-negative predators of other Gram-negative bacteria. Bdellovibrio enters the prey cell, transforming it into a structure that is referred to as a bdelloplast. It then grows and divides inside the bdelloplast, ending in lysis and the release of the Bdellovibrio progeny. Because of this capability, Bdellovibrio is a potential antibacterial agent. In this article, we report the results of studies on the interactions of Bdellovibrio with actively growing and viable but nonculturable (VBNC Vibrio cholerae. A significant observation was that Bdellovibrio attacked both VBNC and actively growing V. cholerae. These results indicate that Bdellovibrio, a “living antibiotic,” has potential as an antibacterial agent in environmental and public health bioprotection.

  20. Vibrio vulnificus produces quorum sensing signals of the AHL-class

    DEFF Research Database (Denmark)

    Valiente, E.; Bruhn, Jesper Bartholin; Nielsen, Kristian Fog

    2009-01-01

    Vibrio vulnificus is an aquatic pathogenic bacterium that can cause vibriosis in humans and fish. The species is subdivided into three biotypes with the fish-virulent strains belonging to biotype 2. The quorum sensing (QS) phenomenon mediated by furanosyl borate diester or autoinducer 2 (AI-2) ha...... biotype 2 strains. No known AHL-related gene was detected by PCR or Southern blot suggesting that AHL-related genes in V. vulnificus are different from those found in other Gram-negative bacteria....... was detected when AHL-positive strains were grown in low-nutrient medium [modified sea water yeast extract (MSWYE)] but not in rich media (tryptic soy broth or brain–heart infusion) and its production was enhanced when blood factors were added to MSWYE. C4-HL was detected in vivo, in eels infected with AHL-positive...

  1. Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization

    Science.gov (United States)

    León-Sicairos, Nidia; Angulo-Zamudio, Uriel A.; de la Garza, Mireya; Velázquez-Román, Jorge; Flores-Villaseñor, Héctor M.; Canizalez-Román, Adrian

    2015-01-01

    Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed. PMID:26217331

  2. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum

    DEFF Research Database (Denmark)

    Tan, Demeng; Svenningsen, Sine Lo; Middelboe, Mathias

    2015-01-01

    -acylhomoserine lactone quorum-sensing signals in the culture medium, and (iii) survives mainly by one of these two defense mechanisms, rather than by genetic mutation to phage resistance. Taken together, our results demonstrate that V. anguillarum employs quorum-sensing information to choose between two complementary...... antiphage defense strategies. Further, the prevalence of nonmutational defense mechanisms in strain PF430-3 suggests highly flexible adaptations to KVP40 phage infection pressure, possibly allowing the long-term coexistence of phage and host. IMPORTANCE: Comprehensive knowledge on bacterial antiphage...... in pathogenic bacteria. Here, we demonstrate for the first time the presence of quorum-sensing-regulated phage defense mechanisms in the fish pathogen Vibrio anguillarum and provide evidence that quorum-sensing regulation allows V. anguillarum to alternate between different phage protection mechanisms depending...

  3. Thiocarbamates from Moringa oleifera Seeds Bioactive against Virulent and Multidrug-Resistant Vibrio Species

    Science.gov (United States)

    de Sousa, Oscarina Viana; Hofer, Ernesto; Mafezoli, Jair; Barbosa, Francisco Geraldo

    2017-01-01

    Prospect of antibacterial agents may provide an alternative therapy for diseases caused by multidrug-resistant bacteria. This study aimed to evaluate the in vitro bioactivity of Moringa oleifera seed extracts against 100 vibrios isolated from the marine shrimp Litopenaeus vannamei. Ethanol extracts at low (MOS-E) and hot (MOS-ES) temperature are shown to be bioactive against 92% and 90% of the strains, respectively. The most efficient Minimum Inhibitory Concentration (MIC) levels of MOS-E and MOS-ES against a high percentage of strains were 32 µg mL−1. Bioguided screening of bioactive compounds showed that the ethyl acetate fraction from both extracts was the only one that showed antibacterial activity. Vibriocidal substances, niazirine and niazimicine, were isolated from the aforementioned fraction through chromatographic fractionation. PMID:28770224

  4. Anti-vibrio potentials of acetone and aqueous leaf extracts of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the anti-vibrio potentials of acetone and aqueous leaf extracts of Ocimum gratissimum and determine its relevance in the treatment of vibrios infection. Methods: The agar-well diffusion method was used for screening the extracts for their anti-vibrio activity. Broth micro-dilution assay was used to ...

  5. Prevalence study of Vibrio species and frequency of the virulence genes of Vibrio parahaemolyticus isolated from fresh and salted shrimps in Genaveh seaport

    Directory of Open Access Journals (Sweden)

    S Hosseini

    2014-08-01

    Full Text Available Vibrio species are important seafood-borne pathogens that are responsible for 50-70% of gasteroenteritis. The present study was carried out in order to determine the prevalence of Vibrio species and the distribution of tdh, tlh and trh virulence genes in Vibrio parahaemolyticus isolated from fresh and salted shrimp samples. Totally, 60 fresh and salted shrimp samples were collected from the Genaveh seaport. Microbial culture was used to isolate Vibrio species. In addition, the presences of Vibrio parahaemolyticus, Vibrio cholera, Vibrio vulnificus and Vibrio harveyi and the virulence genes of V. parahaemolyticus were studied using the PCR method. Results showed that 20% of fresh and 23.33% of salted shrimp samples were positive for Vibrio species. In studied samples, V. vulnificus had the highest prevalence rate (8.33%, while V. cholera had the lowest prevalence rate (1.66%. From a total of 4 detected V. parahaemolyticus, all of them had tlh gene (100%. The distribution of tdh and trh genes in isolated V. parahaemolyticus strains were 50% and 25%, respectively. High prevalence of Vibrio species and especially virulent V. parahaemolyticus in samples confirmed the lack of hygienic condition in the production and distribution centers of shrimp.

  6. Bacterias marinas productoras de compuestos antibacterianos aisladas a partir de invertebrados intermareales Marine bacteria producing antibacterial compounds Isolated from inter-tidal invertebrates

    Directory of Open Access Journals (Sweden)

    Jorge León

    2010-06-01

    Full Text Available Se realizó actividades prospectivas de muestreo de invertebrados intermareales en la Bahía de Ancón (Lima - Perú con el objetivo de seleccionar bacterias marinas productoras de sustancias antimicrobianas. El estudio comprendió el aislamiento de bacterias en agar marino, pruebas de susceptibilidad antimicrobiana in vitro y observaciones de microscopía electrónica. Se reporta el aislamiento, caracterización fenotípica y propiedades antimicrobianas de diez cepas de bacterias marinas que incluyen a los géneros Vibrio, Pseudomonas y Flavobacterium y del orden Actinomycetal que inhiben a patógenos de humanos. Los resultados indicarían que los invertebrados marinos serían fuentes de bacterias productoras de sustancias antibióticas.Prospective sampling activities of intertidal invertebrates in the Ancon Bay (Lima, Peru were done in order to select marine bacteria producing antimicrobial substances. The study included the isolation of bacteria in marine agar, in vitro antimicrobial susceptibility testing and electronic microscopic observations. We report the isolation, phenotypical characterization and antimicrobial properties of 10 strains of marine bacteria including the genus Vibrio, Pseudomonas, and Flavobacterium, and the order Actinomycetae that inhibit human pathogens. The results indicate that the marine invertebrates would be sources of bacteria producing antibiotic substances.

  7. Toxigenic Vibrio cholerae identified in estuaries of Tanzania using PCR techniques.

    Science.gov (United States)

    Dalusi, Lucy; Lyimo, Thomas J; Lugomela, Charles; Hosea, Ken M M; Sjöling, Sara

    2015-03-01

    The current study assessed the occurrence of the Vibrio cholerae serogroups O1 and O139 in environmental samples along salinity gradients in three selected estuaries of Tanzania both through culture independent methods and by cultured bacteria. Occurrence of V. cholerae was determined by PCR targeting the V. cholerae outer membrane protein gene ompW. Furthermore, the presence of toxigenic strains and serogroups O1 and O139 was determined using multiplex PCR with specific primers targeting the cholera toxin gene subunit A, ctxA, and serotype specific primers, O1-rfb and O139-rfb, respectively. Results showed that V. cholerae occurred in approximately 10% (n = 185) of both the environmental samples and isolated bacteria. Eight of the bacteria isolates (n = 43) were confirmed as serogroup O1 while one belonged to serogroup O139, the first reported identification of this epidemic strain in East African coastal waters. All samples identified as serogroup O1 or O139 and a number of non-O1/O139 strains were ctxA positive. This study provides in situ evidence of the presence of pathogenic V. cholerae O1 and O139 and a number of V. cholerae non-O1/O139 that carry the cholera toxin gene in estuaries along the coast of Tanzania. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Household Transmission of Vibrio cholerae in Bangladesh.

    Science.gov (United States)

    Sugimoto, Jonathan D; Koepke, Amanda A; Kenah, Eben E; Halloran, M Elizabeth; Chowdhury, Fahima; Khan, Ashraful I; LaRocque, Regina C; Yang, Yang; Ryan, Edward T; Qadri, Firdausi; Calderwood, Stephen B; Harris, Jason B; Longini, Ira M

    2014-11-01

    Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures. Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001-2006. We estimated the probabilities of cholera transmission through 1) direct exposure within the household and 2) contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-valuelevels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered. Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of the transmissibility of endemic cholera within prospectively-followed members of households. The role of direct transmission must be considered when planning cholera control activities.

  9. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis.

    Science.gov (United States)

    Fong, Jiunn C N; Syed, Khalid A; Klose, Karl E; Yildiz, Fitnat H

    2010-09-01

    Biofilm formation enhances the survival and persistence of the facultative human pathogen Vibrio cholerae in natural ecosystems and its transmission during seasonal cholera outbreaks. A major component of the V. cholerae biofilm matrix is the Vibrio polysaccharide (VPS), which is essential for development of three-dimensional biofilm structures. The vps genes are clustered in two regions, the vps-I cluster (vpsU, vpsA-K, VC0916-27) and the vps-II cluster (vpsL-Q, VC0934-39), separated by an intergenic region containing the rbm gene cluster that encodes biofilm matrix proteins. In-frame deletions of the vps clusters and genes encoding matrix proteins drastically altered biofilm formation phenotypes. To determine which genes within the vps gene clusters are required for biofilm formation and VPS synthesis, we generated in-frame deletion mutants for all the vps genes. Many of these mutants exhibited reduced capacity to produce VPS and biofilms. Infant mouse colonization assays revealed that mutants lacking either vps clusters or rbmA (encoding secreted matrix protein RbmA) exhibited a defect in intestinal colonization compared to the wild-type. Understanding the roles of the various vps gene products will aid in the biochemical characterization of the VPS biosynthetic pathway and elucidate how vps gene products contribute to VPS biosynthesis, biofilm formation and virulence in V. cholerae.

  10. Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges.

    Science.gov (United States)

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2013-12-01

    Clam Ruditapes philippinarum is one of the important marine aquaculture species in North China. However, pathogens can often cause diseases and lead to massive mortalities and economic losses of clam. In this work, we compared the metabolic responses induced by Vibrio anguillarum and Vibrio splendidus challenges towards hepatopancreas of clam using NMR-based metabolomics. Metabolic responses suggested that both V. anguillarum and V. splendidus induced disturbances in energy metabolism and osmotic regulation, oxidative and immune stresses with different mechanisms, as indicated by correspondingly differential metabolic biomarkers (e.g., amino acids, ATP, glucose, glycogen, taurine, betaine, choline and hypotaurine) and altered mRNA expression levels of related genes including ATP synthase, ATPase, glutathione peroxidase, heat shock protein 90, defensin and lysozyme. However, V. anguillarum caused more severe oxidative and immune stresses in clam hepatopancreas than V. splendidus. Our results indicated that metabolomics could be used to elucidate the biological effects of pathogens to the marine clam R. philippinarum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Reclassification of the larval pathogen for marine bivalves Vibrio tubiashii subsp. europaeus as Vibrio europaeus sp. nov.

    Science.gov (United States)

    Dubert, Javier; Romalde, Jesús L; Spinard, Edward J; Nelson, David R; Gomez-Chiarri, Marta; Barja, Juan L

    2016-11-01

    The Orientalis clade has a relevant significance for bivalve aquaculture since it includes the pathogens Vibrio bivalvicida, Vibrio tubiashii subsp. tubiashii and Vibrio tubiashii subsp. europaeus. However, the previous taxonomic description of the subspecies of V. tubiashii shows some incongruities that should be emended. In the genomic age, the comparison between genome assemblies is the key to clarify the taxonomic position of both subspecies. With this purpose, we have tested the ability of multilocus sequence analysis based on eight housekeeping gene sequences (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA and topA), different in silico genome-to-genome comparisons, chemotaxonomic features and phenotypic traits to reclassify the subspecies V. tubiashii subsp. europaeus within the Orientalis clade. This polyphasic approach clearly demonstrated that this subspecies is phylogenetically and phenotypically distinct from V. tubiashii and should be elevated to the rank of species as Vibrio europaeus sp. nov. This reclassification allows us to update the Orientalis clade (V. bivalvicida,V. brasiliensis, V. crosai, V. hepatarius, V. orientalis, V. sinaloensis, V. tubiashii and V. europaeus sp. nov.) and reconstruct a better phylogeny of the genus Vibrio. An emended description of V. tubiashii is provided. Finally, the proposed novel species is represented by emergent bivalve pathogens [type strain PP-638T (=CECT 8136T=DSM 27349T), PP2-843 and 07/118 T2] responsible for high mortalities in Spanish and French hatcheries.

  12. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size....... By their ability to store vast quantities of both nitrate and elemental sulfur in the cells, these bacteria have become independent of the coexistence of their substrates. In fact, a close relative, T. namibiensis, can probably respire in the sulfidic mud for several months before again filling up their large...

  13. [Genomic variability of vibrio cholerae El Tor biovariant strains].

    Science.gov (United States)

    Smirnova, N I; Kostromitina, E A; Osin, A V; Kutyrev, V V

    2005-01-01

    The authors performed comparative analysis of the genomes of 145 clinical and environmental isolates of Vibrio cholerae El Tor biovariants using single locus and multiplex PCR. The study found that clinical strains isolated from patients with cholera formed a genetically homogenous group, where bacterial chromosome contained all the tested virulence genes, situated on mobile genetic elements that had been acquired by the pathogen at various stages of its evolution. Strains isolated from water ecosystems during interepidemic period were heterogeneous and formed three groups: a small number of virulent strains; non-toxigenic vibrio strains that, in the process of reductional variation in their new econiche, had only managed to maintain individual virulence genes; non-pathogenic "water" vibrios, whose chromosome contained only the genes from its core part, mobile genetic elements being optionally represented only by the persistence island. Molecular typing established genetic relations among V. cholerae strains under study.

  14. A Mobile Element in mutS Drives Hypermutation in a Marine Vibrio

    Science.gov (United States)

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; Polz, Martin F.; Grossman, Alan D.

    2017-01-01

    ABSTRACT Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. PMID:28174306

  15. Temperature effect on high salinity depuration of Vibrio vulnificus and V. parahaemolyticus from the Eastern oyster (Crassostrea virginica).

    Science.gov (United States)

    Larsen, A M; Rikard, F S; Walton, W C; Arias, C R

    2015-01-02

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are opportunistic human pathogens naturally associated with the Eastern oyster Crassostrea virginica. The abundances of both pathogens in oysters are positively correlated with temperature, thus ingestion of raw oysters during the warm summer months is a risk factor for contracting illness from these bacteria. Current post-harvest processing (PHP) methods for elimination of these pathogens are expensive and kill the oyster, changing their organoleptic properties and making them less appealing to some consumers. High salinity has proven effective in reducing Vv numbers in the wild and our research aims at developing an indoor recirculating system to reduce pathogenic Vibrios while maintaining the taste and texture of live oysters. The goal of this study was to determine the influence of temperature on the efficacy of high salinity depuration. Vv was enumerated as most probable number (MPN) per gram of oyster tissue using the FDA-approved modified cellobiose polymyxin colistin (mCPC) protocol and with an alternative Vibrio specific media CHROMagar™ Vibrio (CaV). CaV was also used to quantify Vp. Oysters were held at 35 psu for 10 days at three temperatures: low (20°C), mid (22.5°C) and high (25°C). There was no difference in MPN/g of Vv between media; however more Vv isolates were obtained from mCPC than CaV. There was no significant effect of temperature on reduction of Vv or Vp throughout depuration but there was a tendency for low temperatures to be less effective than the higher ones. High salinity resulted in a significant decrease in Vv by day 3 and again by day 10, and a decrease in Vp by day 3. Oyster condition indices were maintained throughout depuration and mortality was low (4% across three trials). Overall these results support the use of mCPC for Vv enumeration and demonstrate the promise of high salinity depuration for PHP of the Eastern oyster. The trend for lower temperatures to be less

  16. Penetración de vibrio mimicus a través de la cáscara del huevo de tortuga lora (lepidochelys olivacea)

    OpenAIRE

    M\\u00F3nica Pereira-Zamora; Francisco Hern\\u00E1ndez-Chavarr\\u00EDa; Eric Wong-Gonz\\u00E1lez

    2007-01-01

    Penetración de Vibrio mimicus a través de la cáscara del huevo de tortuga lora (Lepidochelys olivacea). El objetivo de esta investigación consistió en determinar la capacidad de penetración del Vibrio mimicus a través de la cáscara del huevo. La investigación se realizó en el Centro Nacional de Ciencia y Tecnología de Alimentos en el año 2000. Se inoculó la superfi cie de la cáscara con la bacteria y se procedió a incubar las muestras por 72 horas a 25°C. Después de este período se observaron...

  17. Vibrio spp. ISOLATED FROM SHRIMPS AND WATER FROM A MARINE FARM IN PERNAMBUCO, BRAZIL Víbrios en el agua y en las gambas del mar (Litopenaeus vannamei, Boone, 1931 cultivado en Pernambuco Vibrio spp. ISOLADOS DE CAMARÃO E ÁGUA DE CULTIVO DE FAZENDA MARINHA EM PERNAMBUCO

    Directory of Open Access Journals (Sweden)

    Carlos André Bezerra Alves

    2009-12-01

    Full Text Available

    Water and shrimp samples were collected monthly, during all cultivation phases, in three located farms at Pernambuco coast, on winter and summer, for Vibrio spp. quantification and identification. The counting’s were correlated, through mathematical models (P<0.05, with the variables season, water biochemical parameters, wet mount, histopathology exam, toxins presence and handling techniques used. Just the variable cultivation time interfered at total counting of Vibrio spp. in all samples were obtained countings that varied 0.1x 10 to 6.2 x 103 UFC/mL in water, of 7.0 x 10 to 8.2 x 105 UFC/g in powder-larva, of 1.1 x 10 to 1.1 x 105 UFC/mL in hemolymph and of 2.5 x 102 to 1.1 x 106UFC/g in hepatopancreas. The species V. mediterranei (1%, V. mimicus (1.25%, V. fischeri (4.25%, V. cincinnatiensis (4.25%, V. metschnikovii (4.25%, V. proteolyticus (5.5%, V. harveyi (5.5%, V. hollisae (5.5%, V. carchariae (7%, V. vulnificus (8.5%, V. damsela (8.5%, V. parahaemolyticus (13%, V. fluvialis (15%, V. anguillarum (16.5% were identified. It is concluded that the Vibrionaceae load increases proportionally with cultivation time, due to the organic matter increment, what can turn the susceptible animals to the infection for vibrios.

    KEY WORD: Vibrionaceae, Vibrio spp., shrimp and pond water.
    El agua y muestras de la gamba eran la publicación mensual reunido, durante todas las fases del cultivo, en tres granjas localizadas a la costa de Pernambuco, en invierno y verano, para la cuantificación e identificación el de Vibrio spp.. El contando fueron puestos en correlación, a través de los modelos matemáticos (P <0,05, con la estación de las variables, agua que los parámetros bioquímicos, montaña mojada, examen del histopatologia, presencia de las toxinas y técnicas manejando usaron. Simplemente el tiempo del cultivo inconstante interfirió a total que

  18. Development of a More Sensitive and Specific Chromogenic Agar Medium for the Detection of Vibrio parahaemolyticus and Other Vibrio Species.

    Science.gov (United States)

    Yeung, Marie; Thorsen, Trevor

    2016-11-08

    Foodborne infections in the US caused by Vibrio species have shown an upward trend. In the genus Vibrio, V. parahaemolyticus is responsible for the majority of Vibrio-associated infections. Thus, accurate differentiation among Vibrio spp. and detection of V. parahaemolyticus is critically important to ensure the safety of our food supply. Although molecular techniques are increasingly common, culture-depending methods are still routinely done and they are considered standard methods in certain circumstances. Hence, a novel chromogenic agar medium was tested with the goal of providing a better method for isolation and differentiation of clinically relevant Vibrio spp. The protocol compared the sensitivity, specificity and detection limit for the detection of V. parahaemolyticus between the new chromogenic medium and a conventional medium. Various V. parahaemolyticus strains (n=22) representing diverse serotypes and source of origins were used. They were previously identified by Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC), and further verified in our laboratory by tlh-PCR. In at least four separate trials, these strains were inoculated on the chromogenic agar and thiosulfate-citrate-bile salts-sucrose (TCBS) agar, which is the recommended medium for culturing this species, followed by incubation at 35-37 °C for 24-96 hr. Three V. parahaemolyticus strains (13.6%) did not grow optimally on TCBS, nonetheless exhibited green colonies if there was growth. Two strains (9.1%) did not yield the expected cyan colonies on the chromogenic agar. Non-V. parahaemolyticus strains (n=32) were also tested to determine the specificity of the chromogenic agar. Among these strains, 31 did not grow or exhibited other colony morphologies. The mean recovery of V. parahaemolyticus on the chromogenic agar was ~96.4% relative to tryptic soy agar supplemented with 2% NaCl. In conclusion, the new chromogenic agar is an effective medium to detect V

  19. Designation of pathogenic resistant bacteria in the Sparusaurata sea collected in Tunisia coastlines: Correlation with high performance liquid chromatography-tandem mass spectrometry analysis of antibiotics.

    Science.gov (United States)

    Zouiten, Amina; Mehri, Ines; Beltifa, Asma; Ghorbel, Asma; Sire, Olivier; Van Loco, Joris; Abdenaceur, Hassen; Reyns, Tim; Ben Mansour, Hedi

    2017-05-01

    Vibrio is characterized by a large number of species and some of them are human pathogens causing gastro intestinal and wound infections through the ingestion or manipulation of contaminated fishes including Vibrio parahaemolyticus and Vibrio alginolyticus. In this study, we reported the phenotypic and molecular characterization of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from wild and farm sea bream (Sparus aurata L.) along the Tunisian coast from December 2015 to April 2016. Therefore, the antibiograms indicate a difference between farmed and wild fish. Resistance against amoxicillin antibiotic appears for the bacteria isolated from wild fish, while those from aquaculture farming presented sensitivity to amoxicillin and resistance to antibiotics colistin and fusidic acid. The chloramphenicol antibiotic exhibited a high sensitivity in all isolated bacteria. In fact, traces of amoxicillin in the organs of the fish from Hergla farm were detected by UPLC-MS/MS analysis during December 2016 to April 2016. In addition, antibiotics were detected in January 2014 with high concentration of norfloxacin 2262 ng/g in fish from Hergla coast. The results obtained in this work indicated that the use and presence of antibiotics in water impacts on the occurrence of resistant bacteria and the detection of antibiotic in fish. Copyright © 2017. Published by Elsevier Ltd.

  20. Localization of immunodominant linear B-cell epitopes of Vibrio ...

    African Journals Online (AJOL)

    Outer membrane protein U (OmpU), an adhesion protein of Vibrio mimicus, is a good antigen, but its epitopes are still unclear. In order to locate the epitopes of OmpU protein, epitope prediction was performed using the amino acid sequence of OmpU protein of V. mimicus HX4 strain that was isolated from the diseased ...

  1. Vibrio vulnificus-infektioner i Danmark sommeren 1994

    DEFF Research Database (Denmark)

    Bruun, Brita Grønbech; Frimodt-Møller, N; Dalsgaard, A.

    1996-01-01

    The clinical manifestations and epidemiological data of 11 patients infected with Vibrio vulnificus found in Denmark during the unusually warm summer of 1994 are reported. All patients had been exposed to seawater prior to illness, but none had consumed seafood. Nine patients, including four...

  2. Genome sequence of the human pathogen Vibrio cholerae Amazonia.

    NARCIS (Netherlands)

    Thompson, C.C.; Marin, M.A.; Dias, G.M.; Dutilh, B.E.; Edwards, R.A.; Iida, T.; Thompson, F.L.; Vicente, A.C.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis

  3. Detection of viable toxigenic Vibrio cholerae and virulent Shigella ...

    African Journals Online (AJOL)

    A rapid and sensitive assay was developed for the detection of low numbers of viable Vibrio cholerae and Shigella spp. cells in environmental and drinking water samples. Water samples were filtered, and the filters were enriched in a non-selective medium. The enrichment cultures were prepared for polymerase chain ...

  4. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus

    DEFF Research Database (Denmark)

    Boyd, EF; Cohen, AL; Naughton, LM

    2008-01-01

    Background Vibrio parahaemolyticus is abundant in the aquatic environment particularly in warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995, numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an O3:K6 serogroup...

  5. Detection of quorum sensing molecules from Vibrio harveyi and use ...

    African Journals Online (AJOL)

    This paper explores the extraction and detection processes of quorum sensing molecules such as N-aceyl homoserine lactone compounds (AHL) from marine Vibrio harveyi. The spent culture of V. harveyi was solvent partitioned for AHL, rotary evaporated and re-suspended in 50% acetonitrile then detected with reporter ...

  6. Detection of viable toxigenic Vibrio cholerae and virulent Shigella ...

    African Journals Online (AJOL)

    DRINIE

    2003-04-02

    Apr 2, 2003 ... A rapid and sensitive assay was developed for the detection of low numbers of viable Vibrio cholerae and Shigella spp. cells in environmental and drinking water samples. Water samples were filtered, and the filters were enriched in a non-selective medium. The enrichment cultures were prepared for ...

  7. Survival of Vibrio cholerae in industrially polluted water, with ...

    African Journals Online (AJOL)

    containing industrial effluents. The effect of iron as well as pH on the survival of Vibrio cholerae (non-O1, El Tor and classical strains) in water samples from 12 points, where selected industrial effluents were discharged into rivers, was studied.

  8. Detection and confirmation of toxigenic Vibrio cholerae O1 in ...

    African Journals Online (AJOL)

    Epidemic cholera caused by toxigenic Vibrio cholerae O1 is a major health problem in several developing countries. Traditional methods for identifying V. cholerae involve cultural, biochemical and immunological assays which are cumbersome and often take several days to complete. In the present study, a direct cell ...

  9. Vibrio Cholerae 01 Infections In Jos, Nigeria | Opajobi | African ...

    African Journals Online (AJOL)

    A study to determine the prevalence of Vibrio cholerae 01 in stool sample submitted for routine examination of enteric pathogens, as well as identify the serotypes and antibiogram of the isolates to commonly used antibiotics was undertaken. The survey involved the examination of 774 (763 stool and 11 rectal swabs) ...

  10. Ion-swimming speed variation of Vibrio cholerae cells

    Indian Academy of Sciences (India)

    In the present work we report the variation in swimming speed of Vibrio cholerae with respect to the change in concentration of sodium ions in the medium. We have also studied the variation in swimming speed with respect to temperature. We find that the swimming speed initially shows a linear increase with the increase of ...

  11. Salmonella and Vibrio cholerae in Nile perch ( Lates niloticus ...

    African Journals Online (AJOL)

    The Nile perch (Lates niloticus) industry in East Africa has suffered severe economic losses in the last few years due to failure to comply with the microbiological standards of European Union (E.U). Fresh and frozen products have been suspected to be contaminated with Salmonella and Vibrio cholerae. This has led to a ...

  12. Detection and confirmation of toxigenic Vibrio cholerae O1 in ...

    African Journals Online (AJOL)

    2013-08-20

    Aug 20, 2013 ... Epidemic cholera caused by toxigenic Vibrio cholerae O1 is a major health problem in several developing countries. Traditional methods for identifying V. cholerae involve cultural, biochemical and immunological assays which are cumber- some and often take several days to complete. In the present study, ...

  13. antimicrobial susceptibility pattern of vibrio cholerae 01 strains

    African Journals Online (AJOL)

    hi-tech

    East African Medical Journal Vol. 77 No. 7 July 2000. ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF VIBRIO CHOLERAE 01 STRAINS DURING TWO CHOLERA OUTBREAKS IN DAR ES SALAAM,. TANZANIA. W.K. Urassa, MD, MSc, MMed, Lecturer, Department of Microbiology and Immunology, Muhimbili University ...

  14. Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum

    DEFF Research Database (Denmark)

    Tan, Demeng; Gram, Lone; Middelboe, Mathias

    2014-01-01

    Vibrio anguillarum is an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen...

  15. Evaluation of in vitro Vibrio static activity of Shewanella algae ...

    African Journals Online (AJOL)

    conventional methods followed by Biolog microlog software. Since production of antagonistic agents rely on cultural conditions, antagonistic ability of candidate probioic against the mentioned Vibrios was assessed using Response Surface Methodology, with central composite design in which four independents variables ...

  16. Evaluation of antibiotic resistance among isolated pathogenic bacteria from shrimp hatcheries in Bushehr province

    Directory of Open Access Journals (Sweden)

    Azam Moghimi

    2014-01-01

    Full Text Available Abstract Background: Rapid development of shrimp aquaculture has resulted in widespread use of antibiotics for preventing and curing diseases. In aquaculture, particularly shrimp hatcheries antibiotics are routinely used at therapeutic levels to treat disease and at sub-therapeutic levels as prophylactic agents to increase feed efficiency. Antibiotic residues in the environment are likely to lead to the development and maintenance of antibiotic resistance in microbial populations. The aim of this study was determine of antibiotic resistance to two shrimp pathogens Vibrio harveyi, V.alginolyticus, that they are agents of mortality in shrimp hatcheries. Material and Methods: After isolation and detection(by biochemical tests of two species of bacterial pathogens from three hatcheries of Bushehr province, bacterial strains were tested for sensitivity to antibiotics including erythromycin, streptomycin, oxytetracyclin, and trimetoprim by disk diffusion method. Results: Results showed that all isolated bacteria Vibrio harveyi from three hatcheries were sensitive to oxytetracyclin and trimetoprim, but to streptomycin were resistant, and to erythromycin in hatcheries A, B, C was intermediate, resistance, sensitive respectively. Bacteria Vibrio alginolyticus isolated from three hatcheries were resistant to streptomycin. But they isolated from a hatchery to the other antibiotics erythromycin, oxytetracyclin and trimetoprim were resistant, intermediate and intermediate, respectively. Also they isolated from B hatchery were resistant, sensitive and sensitive to erythromycin, oxytetracyclin and trimetoprim, respectively And from C hatchery were intermediate, sensitive and sensitive to antibiotics, respectively. Conclusion: Isolated bacteria showed the most resistance to streptomycin and erythromycin respectively. These antibiotics is used frequently in medicine and veterinary, with entrance of human and animal's bacteria resistance via waste and fluid water

  17. Vibrio cholerae Combines Individual and Collective Sensing to Trigger Biofilm Dispersal.

    Science.gov (United States)

    Singh, Praveen K; Bartalomej, Sabina; Hartmann, Raimo; Jeckel, Hannah; Vidakovic, Lucia; Nadell, Carey D; Drescher, Knut

    2017-11-06

    Bacteria can generate benefits for themselves and their kin by living in multicellular, matrix-enclosed communities, termed biofilms, which are fundamental to microbial ecology and the impact bacteria have on the environment, infections, and industry [1-6]. The advantages of the biofilm mode of life include increased stress resistance and access to concentrated nutrient sources [3, 7, 8]. However, there are also costs associated with biofilm growth, including the metabolic burden of biofilm matrix production, increased resource competition, and limited mobility inside the community [9-11]. The decision-making strategies used by bacteria to weigh the costs between remaining in a biofilm or actively dispersing are largely unclear, even though the dispersal transition is a central aspect of the biofilm life cycle and critical for infection transmission [12-14]. Using a combination of genetic and novel single-cell imaging approaches, we show that Vibrio cholerae integrates dual sensory inputs to control the dispersal response: cells use the general stress response, which can be induced via starvation, and they also integrate information about the local cell density and molecular transport conditions in the environment via the quorum sensing apparatus. By combining information from individual (stress response) and collective (quorum sensing) avenues of sensory input, biofilm-dwelling bacteria can make robust decisions to disperse from large biofilms under distress, while preventing premature dispersal when biofilm populations are small. These insights into triggers and regulators of biofilm dispersal are a key step toward actively inducing biofilm dispersal for technological and medical applications, and for environmental control of biofilms. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Competitive Survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in Riverbed Sediments.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2016-11-01

    Studies on the survival of bacterial enteric pathogens in riverbed sediments have mostly focused on individual organisms. Reports on the competitive survival of these pathogens in riverbed sediments under the same experimental setup are limited. We investigated the survival of Escherichia coli, Salmonella enterica ser. Typhimurium, Vibrio cholerae and Shigella dysenteriae in riverbed sediments of the Apies River. Experiments were performed in flow chambers containing three sediment types and connected to aquarium pumps immersed in river water to maintain continuous water circulation. Each chamber was inoculated with ~10 7  CFU/mL (final concentration) of each microorganism and kept at 4, 20 and 30 °C. Chambers were sampled on days 0, 1, 2, 7, 14 and 28. At 4 °C, only E. coli and S. typhimurium survived throughout the 28 experimental days. V. cholerae had the shortest survival time at this temperature and was not detected in any of the sediment chambers 24 h after inoculation. S. dysenteriae only survived until day 7. At an increased temperature of 20 °C, only S. dysenteriae was not detected on day 28 of the experiment. At 30 °C, V. cholerae and Salmonella survived longer (28 days) than E. coli (14 days) and S. dysenteriae (4 days). Vibrio cholerae was shown to have the highest T 90 values (32 days) in all sediment types at 20 and 30 °C. We conclude that the sediments of the Apies River present a favourable environment for the survival of indicator and pathogenic bacteria depending on the prevailing temperature.

  19. Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine.

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E Fidelma

    2009-09-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.

  20. Sialic Acid Catabolism Confers a Competitive Advantage to Pathogenic Vibrio cholerae in the Mouse Intestine▿

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E. Fidelma

    2009-01-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment. PMID:19564383

  1. Role of Indole Production on Virulence of Vibrio cholerae Using Galleria mellonella Larvae Model.

    Science.gov (United States)

    Nuidate, Taiyeebah; Tansila, Natta; Saengkerdsub, Suwat; Kongreung, Jetnaphang; Bakkiyaraj, Dhamodharan; Vuddhakul, Varaporn

    2016-09-01

    Cell to cell communication facilitated by chemical signals plays crucial roles in regulating various cellular functions in bacteria. Indole, one such signaling molecule has been demonstrated to control various bacterial phenotypes such as biofilm formation and virulence in diverse bacteria including Vibrio cholerae. The present study explores some key factors involved in indole production and the subsequent pathogenesis of V. cholerae. Indole production was higher at 37 °C than at 30 °C, although the growth at 37 °C was slightly higher. A positive correlation was observed between indole production and biofilm formation in V. cholerae. Maximum indole production was detected at pH 7. There was no significant difference in indole production between clinical and environmental V. cholerae isolates, although indole production in one environmental isolate was significantly different. Both growth and indole production showed relevant changes with differences in salinity. An indole negative mutant strain was constructed using transposon mutagenesis and the direct effect of indole on the virulence of V. cholerae was evaluated using Galleria mellonella larvae model. Comparison to the wild type strain, the mutant significantly reduced the mortality of G. mellonella larvae which regained its virulence after complementation with exogenous indole. A gene involved in indole production and the virulence of V. cholerae was identified.

  2. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae.

    Science.gov (United States)

    Berney, M; Weilenmann, H-U; Simonetti, A; Egli, T

    2006-10-01

    To determine the efficacy of solar disinfection (SODIS) for enteric pathogens and to test applicability of the reciprocity law. Resistance to sunlight at 37 degrees C based on F99 values was in the following order: Salmonella Typhimurium>Escherichia coli>Shigella flexneri>Vibrio cholerae. While F90 values of Salm. Typhimurium and E. coli were similar, F99 values differed by 60% due to different inactivation curve shapes. Efficacy seemed not to be dependent on fluence rate for E. coli stationary cells. Sensitivity to mild heat was observed above a temperature of 45 degrees C for E. coli, Salm. Typhimurium and Sh. flexneri, while V. cholerae was already susceptible above 40 degrees C. Salmonella Typhimurium was the most resistant and V. cholerae the least resistant enteric strain. The reciprocity law is applicable for stationary E. coli cells irradiated with sunlight or artificial sunlight. Escherichia coli might not be the appropriate indicator bacterium to test the efficacy of SODIS on enteric bacteria and the physiological response to SODIS might be different among enteric bacteria. The applicability of the reciprocity law indicates that fluence rate plays a secondary role in SODIS efficacy. Stating inactivation efficacy with T90 or F90 values without showing original data is inadequate for SODIS studies.

  3. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins.

    Directory of Open Access Journals (Sweden)

    Verena Olivier

    Full Text Available Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX, and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.

  4. Characterization of Aeromonas trota strains that cross-react with Vibrio cholerae O139 Bengal.

    Science.gov (United States)

    Albert, M J; Ansaruzzaman, M; Shimada, T; Rahman, A; Bhuiyan, N A; Nahar, S; Qadri, F; Islam, M S

    1995-12-01

    It has previously been shown that Vibrio cholerae O139 Bengal shares antigens with V. cholerae serogroups O22 and O155. We detected six surface water isolates of Aeromonas trota that agglutinated in polyclonal antisera to V. cholerae O139 and V. cholerae O22 but not in antiserum to V. cholerae O155. On the basis of agglutinin-absorption studies, the antigenic relationship between the cross-reacting bacteria were found to be in an a,b-a,c fashion, where a is the common antigenic epitope and b and c are unique epitopes. The antigen sharing between A. trota strains and V. cholerae O139 was confirmed in immunoblot studies. However, A. trota strains did not react with two monoclonal antibodies specific for V. cholerae O139 and, consequently, tested negative in the Bengal SMART rapid diagnostic test for V. cholerae O139 which uses one of the monoclonal antibodies. A polyclonal antiserum to a cross-reacting A. trota strain cross-protected infant mice against cholera on challenge with virulent V. cholerae O139. All A. trota strains were cytotoxic for HeLa cells, positive for adherence to HEp-2 cells, and weakly invasive for HEp-2 cells; one strain was heat-stable toxin positive in the suckling mouse assay; however, all strains were negative for cholera toxin-like enterotoxin. Studies on bacteria that share somatic antigen with V. cholerae O139 may shed further light on the genesis of V. cholerae O139.

  5. Susceptibility of Vibrio cholerae O139 to Antibody-Dependent, Complement-Mediated Bacteriolysis

    Science.gov (United States)

    Attridge, Stephen R.; Qadri, Firdausi; Albert, M. John; Manning, Paul A.

    2000-01-01

    Volunteer studies with Vibrio cholerae O1 have shown that the best correlate of a vaccine's protective efficacy is its propensity to elicit serum bactericidal responses in its recipients. Attempts to detect such responses following infection with V. cholerae O139, however, have met with varying success. Using a tube-based assay which involves viable counting, we now report that strains of serogroup O139 can appear to be sensitive or resistant to a fixed concentration of complement in the presence of antibody, depending on assay conditions. Susceptibility to lysis is critically dependent on the availability of complement, but with O139 indicator strains this is not simply determined by the concentration of serum added to the reaction mix. The nature of the assay diluent and the concentration of indicator bacteria can also dramatically affect bactericidal end points, whereas such variables have minimal significance with O1 indicator bacteria. Although some laboratories use unencapsulated mutant strains to seek evidence of seroconversion following exposure to V. cholerae O139, this is not necessary, and our findings question the significance of capsule expression as a determinant of complement sensitivity when antibody is present. The medium used for growth of the indicator strain and the particular strain used appeared to be unimportant. Each of seven O139 isolates tested was found to be lysed by antibody and complement in our standard assay system, which allowed the detection of significant serum bactericidal responses in 9 of 11 cases of O139 disease. PMID:10799459

  6. Household Transmission of Vibrio cholerae in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Jonathan D Sugimoto

    2014-11-01

    Full Text Available Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures.Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001-2006. We estimated the probabilities of cholera transmission through 1 direct exposure within the household and 2 contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001 occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%-22.8% risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length. The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%-8.0%. The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%-16.6% and 8.2% (2.1%-27.1% through direct exposure, and 3.4% (1.7%-6.7% and 2.0% (0.5%-7.3% through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered.Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of

  7. Effects of tussah immunoreactive substances on growth, immunity, disease resistance against Vibrio splendidus and gut microbiota profile of Apostichopus japonicus.

    Science.gov (United States)

    Ma, Shuhui; Sun, Yongxin; Wang, Fuqiang; Mi, Rui; Wen, Zhixin; Li, Xuejun; Meng, Nan; Li, Yajie; Du, Xingfan; Li, Shuying

    2017-04-01

    Tussah immunoreactive substance (TIS) comprises a number of active chemicals with various bioactivities. The current study investigated the effects of these substances on the sea cucumber Apostichopus japonicus. The specific growth rate (SGR) of TIS-fed sea cucumbers was significantly enhanced, whereas no significant difference in SGR was observed between those soaked in antibiotics and those fed with basal diet only. TIS also improved the immune response of the animals when given at a dose of 1.0% or 2.0%, as shown by increased phagocytic, lysozyme, superoxide dismutase, alkaline phosphatase, acid phosphatase, and catalase activities following injection with live Vibrio splendidus. At a dose of 1.0% or 2.0%, TIS significantly enhanced the immune ability (P flora counts and high-throughput sequencing showed that dietary TIS could improve the amount of probiotic bacteria, yielding a 6-fold increase in Bacillus and 10-fold increase in Lactobacillus for sea cucumbers fed with 2.0% TIS diet compared to the control. Furthermore, TIS-containing diet also greatly reduced the number of harmful bacteria, with the number of Vibrio in sea cucumbers fed with 1%TIS diet decreased by 67% compared to the control. The results thus indicated that TIS increased the growth of sea cucumbers and enhanced their resistance to V. splendidus infection by improving the immunity of the animals. TIS also improved the gut microbiota profiles of the animals by increasing the probiotics and reducing the harmful bacteria within their guts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Atikya Farjana

    2014-09-01

    Full Text Available Objective: To determine antibacterial activity of water, oil and methanol extracts of guava (Psidium guajava, green tea (Camellia sinensis, neem (Azadirachta indica and marigold (Calendula officinalis against different species of bacteria, Pseudomonas spp., Vibrio cholerae, Vibrio parahaemolyticus (V. parahaemolyticus, Klebsiella spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus (S. aureus. Methods: Antibacterial activity of plant extracts was measured by agar well diffusion method. Results: Boiled water extracts of guava leaf showed the largest zone of inhibition (22 mm against V. parahaemolyticus. Water extracts of green tea leaf at boiling and room temperature showed 17.5 mm and 19 mm zone of inhibitions against V. parahaemolyticus and S. aureus, respectively. Boiled water extract of neem leaf showed moderate zone of inhibition against Escherichia coli (10 mm and Klebsiella spp. (11 mm. Water and oil extracts of marigold leaf at both boiling and room temperature did not show any zone of inhibition against any of the tested microorganisms. Methanol extracts of both guava and green tea leaves showed same zone of inhibition against Pseudomonus spp. (18 mm. Methanol extract of neem leaf showed antibacterial acitivity against Klebsiella spp. (16 mm and Vibrio cholerae (14 mm and that of marigold leaf showed antimicrobial activity against S. aureus (18 mm and Klebsiella spp. (12 mm. Conclusions: The results from the study suggest that the leaves of guava, green tea, neem and marigold show anibacterial activity against different bacterial species. They could be used as alternatives to common antimicrobial agents for treatment of bacterial infections.

  9. Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; Grotkjær, Torben; D'Alvise, Paul

    2016-01-01

    prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish......Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish......-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any...

  10. Detección, cuantificación y caracterización morfológica de bacteriófagos indicadores de Vibrio Cholerae

    Directory of Open Access Journals (Sweden)

    Miguel Talledo

    2014-06-01

    Full Text Available La especificidad entre bacteriófagos y bacterias es una característica utilizada exitosamente para la detección de varias especies microbianas, Por este motivo, la detección de vibriófagos es una herramienta útil de investigación y podría ser un método rápido y conveniente de diagnóstico de Vibrio cholerae. El objetivo de este estudio fue detectar vibriófagos en muestras de aguas marinas someras y determinar las características morfológicas de estos vibriófagos. Se determinó la cinética de crecimiento de una cepa de Vibrio cholerae serotipo Inaba. Se analizaron cualitativa y cuantitativamente muestras tomadas de cinco puntos de un sector adyacente a la playa La Chira y de las desembocaduras del río Rímac y río Chillón, usándose distintos inóculos y varios periodos de incubación. Los bacteriófagos fueron concentrados y teñidos para el estudio morfológico por microscopía electrónica de transmisión. Los resultados obtenidos indican que la detección de vibriófagos podría ser una herramienta importante como indicador de la presencia de Vibrio cholerae.

  11. Development of a PCR-free DNA-based assay for the specific detection of Vibrio species in environmental samples by targeting the 16S rRNA.

    Science.gov (United States)

    Da-Silva, E; Barthelmebs, L; Baudart, J

    2017-02-01

    A novel PCR-free DNA-based assay was developed for the detection of Vibrio spp. A sandwich hybridization format using an immobilized capture probe and a labeled signal probe was selected and combined with chemiluminescent method for the detection of the RNA target. In a first step, probes were validated using positive controls (PCs). A linearity was observed between 0.1 and 2.5 nM of PC, and detection limit was determined as 0.1 nM. In a second step, specificity was checked by using RNA extracted from a panel of 31 environmental bacterial strains. Detection limit of 5 ng μL-1 of total fragmented RNA was obtained, and the assay allowed a good discrimination between the 21 Vibrio and the 10 non-Vibrio strains tested. Finally, the DNA-based assay was successfully applied to analysis of spiked and natural environmental samples. Stability and analysis time of the DNA-based assay were also investigated to optimize working conditions. We demonstrated that microplates can be coated beforehand with capture probe and stored at 4 °C without any buffer in wells for at least 30 days. The use of the pre-made plates enables the assay to be completed in 2 h. The developed assay appeared as an interesting tool to determine the presence of bacteria in environmental samples.

  12. Preliminary stochastic model for managing Vibrio parahaemolyticus and total viable bacterial counts in a Pacific oyster (Crassostrea gigas) supply chain.

    Science.gov (United States)

    Fernandez-Piquer, Judith; Bowman, John P; Ross, Tom; Estrada-Flores, Silvia; Tamplin, Mark L

    2013-07-01

    Vibrio parahaemolyticus can accumulate and grow in oysters stored without refrigeration, representing a potential food safety risk. High temperatures during oyster storage can lead to an increase in total viable bacteria counts, decreasing product shelf life. Therefore, a predictive tool that allows the estimation of both V. parahaemolyticus populations and total viable bacteria counts in parallel is needed. A stochastic model was developed to quantitatively assess the populations of V. parahaemolyticus and total viable bacteria in Pacific oysters for six different supply chain scenarios. The stochastic model encompassed operations from oyster farms through consumers and was built using risk analysis software. Probabilistic distributions and predictions for the percentage of Pacific oysters containing V. parahaemolyticus and high levels of viable bacteria at the point of consumption were generated for each simulated scenario. This tool can provide valuable information about V. parahaemolyticus exposure and potential control measures and can help oyster companies and regulatory agencies evaluate the impact of product quality and safety during cold chain management. If coupled with suitable monitoring systems, such models could enable preemptive action to be taken to counteract unfavorable supply chain conditions.

  13. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Gotoh

    Full Text Available Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2 encoded in pathogenicity island (Vp-PAI is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections.

  14. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water.

    Science.gov (United States)

    Kierek, Katharine; Watnick, Paula I

    2003-11-25

    Vibrio cholerae is both an inhabitant of estuarine environments and the etiologic agent of the diarrheal disease cholera. Previous work has demonstrated that V. cholerae forms both an exopolysaccharide-dependent biofilm and a Ca2+-dependent biofilm. In this work, we demonstrate a role for the O-antigen polysaccharide of V. cholerae in Ca2+-dependent biofilm development in model and true sea water. Interestingly, V. cholerae biofilms, as well as the biofilms of several other Vibrio species, disintegrate when Ca2+ is removed from the bathing medium, suggesting that Ca2+ is interacting directly with the O-antigen polysaccharide. In the Bay of Bengal, cholera incidence has been correlated with increased sea surface height. Because of the low altitude of this region, increases in sea surface height are likely to lead to transport of sea water, marine particulates, and marine biofilms into fresh water environments. Because fresh water is Ca2+-poor, our results suggest that one potential outcome of an increase is sea surface height is the dispersal of marine biofilms with an attendant increase in planktonic marine bacteria such as V. cholerae. Such a phenomenon may contribute to the correlation of increased sea surface height with cholera.

  15. Biosurfactant production by hydrocarbon-degrading Brevibacterium and Vibrio isolates from the sea pen Pteroeides spinosum (Ellis, 1764).

    Science.gov (United States)

    Graziano, Marco; Rizzo, Carmen; Michaud, Luigi; Porporato, Erika Maria Diletta; De Domenico, Emilio; Spanò, Nunziacarla; Lo Giudice, Angelina

    2016-09-01

    Among filter-feeders, pennatulids are the most complex and polymorphic members of the cnidarian class Anthozoa. They display a wide distribution throughout all the oceans, constituting a significant component of the sessile megafauna from intertidal to abyssal depths. In this study, a total of 118 bacterial isolates from enrichment cultures, carried out with homogenates of the sea pen Pteroeides spinosum (Ellis, 1764), were screened for hydrocarbon utilization by using the 2,6-dichlorophenol indophenol assay. Among them, 83 hydrocarbon-oxidizing isolates were analyzed for biosurfactant production by standard screening tests (i.e., emulsifying activity, E24 detection, surface tension measurement, microplate assay). The 16S rRNA gene sequencing revealed the affiliation of the most promising isolates to the genera Brevibacterium and Vibrio. Biosurfactant production resulted strongly affected by salinity and temperature conditions, and occurred in the presence of diesel oil and/or crude oil, whereas no production was observed when isolates were grown on tetradecane. The strains resulted able to create stable emulsions, thus suggesting the production of biosurfactants. Further analyses revealed a glycolipidic nature of the biosurfactant extracted from Vibrio sp. PBN295, a genus that has been only recently reported as biosurfactant producer. Results suggest that pennatulids could represent a novel source for the isolation of hydrocarbon-oxidizing bacteria with potential in biosurfactant production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome

    Directory of Open Access Journals (Sweden)

    Gary Xie

    2017-01-01

    Full Text Available The genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition to large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as are recA and mismatch repair (MMR genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.

  17. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum

    Directory of Open Access Journals (Sweden)

    Panos G. Kalatzis

    2017-05-01

    Full Text Available Nineteen Vibrio anguillarum-specific temperate bacteriophages isolated across Europe and Chile from aquaculture and environmental sites were genome sequenced and analyzed for host range, morphology and life cycle characteristics. The phages were classified as Siphoviridae with genome sizes between 46,006 and 54,201 bp. All 19 phages showed high genetic similarity, and 13 phages were genetically identical. Apart from sporadically distributed single nucleotide polymorphisms (SNPs, genetic diversifications were located in three variable regions (VR1, VR2 and VR3 in six of the phage genomes. Identification of specific genes, such as N6-adenine methyltransferase and lambda like repressor, as well as the presence of a tRNAArg, suggested a both mutualistic and parasitic interaction between phages and hosts. During short term phage exposure experiments, 28% of a V. anguillarum host population was lysogenized by the temperate phages and a genomic analysis of a collection of 31 virulent V. anguillarum showed that the isolated phages were present as prophages in >50% of the strains covering large geographical distances. Further, phage sequences were widely distributed among CRISPR-Cas arrays of publicly available sequenced Vibrios. The observed distribution of these specific temperate Vibriophages across large geographical scales may be explained by efficient dispersal of phages and bacteria in the marine environment combined with a mutualistic interaction between temperate phages and their hosts which selects for co-existence rather than arms race dynamics.

  18. Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus.

    Science.gov (United States)

    Zhang, Xichang; Zhang, Wei; Xue, Lingyun; Zhang, Bi; Jin, Meifang; Fu, Wantao

    2010-01-01

    Sessile filter-feeding marine sponges (Porifera) have been reported to possess high efficiency in removing bacteria pollution from natural or aquaculture seawater. However, no investigation has been carried out thus far in a true mariculture farm water system. Therefore this study sought to investigate the ability of the marine sponge Hymeniacidon perlevis to bioremediate the bacteria pollution in the intensive aquaculture water system of turbot Scophthalmus maximus. Sponge specimens were hung in fish culture effluent at different temperature to investigate the optimal temperature condition for bacteria removal by H. perlevis. Turbots S. maximus were co-cultured with sponge H. perlevis in 1.5 m(3) of water system at 15-18 degrees C for 6 weeks to control the growth of bacteria. It was found that H. perlevis was able to remove pathogenic bacteria efficiently at 10-20 degrees C, with a maximal removal of 71.4-78.8% of fecal coliform, 73.9-98.7% of pathogenic vibrio, and 75.0-83.7% of total culturable bacteria from fish-culture effluent at 15 degrees C; H. perlevis continuously showed good bioremediation of bacteria pollution in the S. maximus culture water system, achieving removal of 60.0-90.2% of fecal coliform, 37.6-81.6% of pathogenic vibrio, and 45.1-83.9% of total culturable bacteria. The results demonstrate that H. perlevis is an effective bioremediator of bacteria pollution in the turbot S. maximus culture farm water system.

  19. Antagonistic Potential of Lactobacillus Spp against Enteropathogenic Bacteria; Purification and Characterization of their Bacteriocins

    OpenAIRE

    Asha; Gayathri, D.

    2012-01-01

    In the present study, Lactobacillus (160) isolates were isolated from curd sample. The isolates were aimed to analyze the antibacterial potential against Escherichia coli, Vibrio cholerae sub sp., ogawa, V. cholerae sub sp., inaba, Klebsiella sp., Proteus sp. and Shigella dysenteriae. All the isolates were inhibiting the tested Enteropathogenic bacteria except S. dysenteriae. Lactobacillus isolates produced highest inhibition zone (30 to 37 mm) against V. cholerae sub sp., inaba and Klebsiell...

  20. Survival and growth of Salmonella and Vibrio in som-fak, a Thai low-salt garlic containing fermented fish product

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Paludan-Müller, Christine

    2009-01-01

    Fermentation of raw fish is a common process in Asia for improvement of shelf life and safety, however, little is known about the survival of pathogenic bacteria in these products. Raw fish may be contaminated with Salmonella and Vibrio species. The purpose of this study was to determine survival...... substances normally present in this type of product, emphasising the importance of preventing contamination. However, our results also suggest that the use of garlic fermenting starter cultures in combination with garlic could improve safety of fermented fish products. © 2009...

  1. Evaluation of Cholera Toxin Expression in Different Populations of Vibrio cholera

    OpenAIRE

    Sedigheh Ebrahimi Kasgari; Mahnaz Nourani; Yousef Yahyapour; Seyed Ehsanollah Mousavi; Enayatollah Kalantar; Hami Kaboosi; Seyed Mahmoud Amin Marashi

    2015-01-01

    Background: Cholera is one of the most diseases of human. Cholera toxin is the most important pathogenic factor in humans that causes diarrhea. The cholera toxin is produced by V. cholerae and CTXфPhage. Objectives: In this study, we have investigated the production cholera toxin with different density of Vibrio cholerae. Materials and Methods: With this propose we inoculated classical strain O1 of Vibrio cholerae ATCC 14035 and Vibrio cholerae O1biovar El Tor N16961 into th...

  2. Antioxidant activity of Sphaerococcus coronopifolius associated bacteria

    Directory of Open Access Journals (Sweden)

    Nádia Fino

    2014-06-01

    Full Text Available Associated bacteria living on macroalgae surfaces are an interesting source of new secondary metabolites with biological activities. The aim of this study was the isolation and identification of epiphytic bacteria from the marine algae Sphaerococcus coronopifolius and the evaluation of the antioxidant activity of the bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. Antioxidant activity was evaluated by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbent capacity (ORAC. The extracts with higher antioxidant activity were tested on MCF-7 and HepG-2 cell lines in oxidative stress conditions induced by H2O2 at 0.2 mM and 0.5 mM, respectively. In total were isolated 21 Sphaerococcus coronopifolius associated bacteria and identified as Vibrio sp. (28.57%, Shewanella sp. (23.81%, Pseudoalteromonas sp. (19.05%, Bacillus sp. (9.52% and Halomonas sp. (9.52%. Two (9.52% of them presented less than 90% Basic Local Alignment Search Tool (BLAST match. The epiphytic bacteria with the most antioxidant potential evaluated by ORAC and DPPH methods were Sp2, Sp12, Sp23, Sp25 and Sp27. The strain Sp4 show high antioxidant activity in all antioxidant methods (ORAC, DPPH and TPC. In oxidative stress conditions on MCF-7 cell line, the extracts of bacteria (1mg.ml-1: 24hours Sp4 (16.15%, Sp25 (17.95% and Sp27 (10.65% prevented the cell death induced by H2O2. In the HepG-2 cell line was the extracts of Sp2 (9.01%, Sp4 (11.21%, Sp12 (7.20% and Sp23 (8.81% bacteria that high prevented the oxidative stress condition induced by H2O2. In conclusion, the Sphaerococcus coronopifolius associated bacteria can be an interesting and excellent source of marine natural compounds with antioxidant activity.

  3. Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015.

    Science.gov (United States)

    Dengo-Baloi, Liliana Candida; Semá-Baltazar, Cynthia Amino; Manhique, Lena Vania; Chitio, Jucunu Elias; Inguane, Dorteia Luísa; Langa, José Paulo

    2017-01-01

    Mozambique has recorded cyclically epidemic outbreaks of cholera. Antibiotic therapy is recommended in specific situations for management and control of cholera outbreaks. However, an increase in resistance rates to antibiotics by Vibrio cholerae has been reported in several epidemic outbreaks worldwide. On the other hand, there are few recent records of continuous surveillance of antibiotics susceptibility pattern of V. cholerae in Mozambique. The purpose of this study was to evaluate antibiotics resistance pattern of Vibrio cholerae O1 Ogawa isolated during Cholera outbreaks in Mozambique to commonly used antibiotics. We analyzed data from samples received in the context of surveillance and response to Cholera outbreaks in the National Reference Laboratory of Microbiology from the National Institute of Health of Mozambique, 159 samples suspected of cholera from cholera treatment centers of, Metangula (09), Memba (01), Tete City (08), Moatize (01), Morrumbala (01) districts, City of Quelimane (01), Lichinga (06) and Nampula (86) districts, from 2012 to 2015. Laboratory culture and standard biochemical tests were employed to isolate and identify Vibrio cholerae; serotypes were determined by antisera agglutination reaction in blade. Biotype and presence of important virulence factors analysis was done by PCR. Antibiotics susceptibility pattern was detected by disk diffusion method Kirby Bauer. Antibiotic susceptibility and results were interpreted by following as per recommendations of CLSI (Clinical and Laboratory Standards Institute) 2014. All samples were collected and tested in the context of Africhol Project, approved by the National Bioethics Committee for Health. Among isolates from of Vibrio cholerae O1 El Tor Ogawa resistance to Sulphamethoxazole-trimethropim was 100% (53/53) to Trimethoprim-, being 100% (54/54) for Ampicillin, 99% (72/74) for Nalidixic Acid, 97% (64/66) to Chloramphenicol, 95% (42/44) for Nitrofurantoin and (19/20) Cotrimoxazole, 83% (80

  4. Vibrio cholerae No O1 en muestras de aguas no cloradas consumidas por pobladores de las localidades de Santa y Coishco (Ancash, 2003 - 2004

    Directory of Open Access Journals (Sweden)

    Ana García P

    2006-07-01

    Full Text Available Objetivo: Identificar la presencia de Vibrio cholerae en muestras de agua no cloradas para consumo humano en las localidades de Santa y Coishco. Materiales y métodos: Entre julio de 2003 a junio de 2004 se tomaron muestras de agua, en forma semanal, provenientes de siete pozos con bomba manuable y de seis pozos con reservorio. A cada muestra de agua se le midió in situ el cloro residual mediante un comparador de cloro Hatch, método colorimétrico, usando para ello las pastillas DPD 1. En las muestras con cloro <0,05mg/L se realizó el cultivo según los manuales de procedimientos del Instituto Nacional de Salud (INS, Lima. Las cepas aisladas se enviaron al INS para confirmación diagnóstica y pruebas serológicas. Resultados: Se incluyeron 308 muestras de agua para consumo humano en