WorldWideScience

Sample records for vibratory cavitation erosion

  1. The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion

    DEFF Research Database (Denmark)

    Hansson, I.; Mørch, Knud Aage

    1980-01-01

    The erosion of solids caused by cavitating liquids is a result of the concerted collapse of clusters of cavities. In vibratory cavitation equipment the clusters grow and collapse adjacent to a solid surface and are typically of hemispherical or cylindrical form. In the present paper the collapse...... process of these clusters is described and the collapse equations are developed and solved. The theoretical results are compared with results from high-speed photography of the clusters and with the initial stages of cavitation erosion on metal specimens. Experimental and theoretical results show...

  2. Cavitation Erosion Tests Performed by Indirect Vibratory Method on Stainless Steel Welded Samples with Hardened Surface

    Directory of Open Access Journals (Sweden)

    Marian-Dumitru Nedeloni

    2012-09-01

    Full Text Available The paper presents the results of cavitation erosion tests performed on two types of samples. The materials of the samples are frequently used for manufacturing and repairs of the hydro turbines components submitted to cavitation. The first sample was made by welding of an austenitic stainless steel on austenito-feritic base material. The second sample was made similarly with the first but with a martensitic base material. After the welding processes, on both samples was applied a hardening treatment by surface peening. The cavitation erosion tests were performed on vibratory equipment using the indirect method with stationary specimen. The results show a good cavitation erosion resistance on both samples.

  3. Influence of the vibratory test facility type and parameters upon the cavitation erosion evolution

    Science.gov (United States)

    Bordeasu, I.; Popoviciu, M. O.; Balasoiu, V.; Jurchela, A. D.; Karabenciov, A.

    2010-08-01

    Paper analyses the configuration of area and depth for the laboratory produced cavitation erosion. The affected zones were examined using both an optic microscope and a device for obtaining the cross-sectional profile of the eroded area. The cavitation was produced with a nickel tube magnetostrictive device (vibration amplitude 94 μm, vibration frequency 7 kHz, specimen diameter 14 mm and power 500 W) as well as with a standard piezoceramic crystals device (vibration amplitude 50 μm, vibration frequency 20 kHz, specimen diameter 16 mm and the power 500 W). The test specimens were manufactured from two different materials (steel and bronze). We found that the vibrations amplitude has greater influence upon the erosion (we obtained increase in the erosion maximum depth, in the total eroded mass and in the erosion velocity). Regardless of the running parameters, the way in which the deformations, the cracks and the dislocations are produced, is very similar.

  4. Cavitation Erosion of Nodular Cast Iron − Microstructural Effects

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2017-12-01

    Full Text Available The paper deals with susceptibility of nodular cast iron with ferritic-pearlitic matrix on cavitation erosion. Cavitation tests were carried out with the use of a cavitation erosion vibratory apparatus employing a vibration exciter operated at frequency of 20 kHz. The study allowed to determine the sequence of subsequent stages in which microstructure of cast iron in superficial regions is subject to degradation. The first features to be damaged are graphite precipitates. The ferritic matrix of the alloy turned out to be definitely less resistant to cavitation erosion compared to the pearlitic matrix component.

  5. Pressure and velocity dependence of flow-type cavitation erosion

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available for rotating disc test rig Parameter Static water pressure Water temperature Sample velocity Air content of water Water flow rate Water quality Range 0.1-2 MPa Ambient to 100 ?C ~40-60 m s-l Deaerated to supersaturated O-30 1... ship?s screw), as opposed to vibratory cavitation erosion. For flow-type cavitation erosion, well-defined rela- tions exist between the flow velocity and liquid pressure, and the amount of cavitation and erosion damage...

  6. Influence at Work Distance between the Sonotrode and Specimen to Cavitational Erosion

    Directory of Open Access Journals (Sweden)

    Relu-Costel Ciubotariu

    2015-07-01

    Full Text Available The paper presents the results of cavitation erosion tests performed on five samples from pure aluminum using the vibratory method with stationary specimen. The main purpose of this research is for determine which is the distance between the sonotrode and specimen favorable for an aggressive cavitational attack. For this, has been calculated the Mean Depth of Erosion (MDE and the cavitation erosion rate (Vec. After that the specific curve for Vec has been analytically processed.

  7. Influence of the fabrication process of copper matrix composites on cavitation erosion resistance

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2018-01-01

    Full Text Available Copper matrix composites reinforced with ZrB2 particles were produced in two ways: by hot pressing (HP and laser-sintering process. Powder mixture Cu-Zr-B was mechanically alloyed before densification processes. Variations in the microstructure of treated samples obtained during cavitation test were analyzed by scanning electron microscopy (SEM. Cavitation erosion resistance was investigated with the standard test method for cavitation erosion using vibratory apparatus. Changes in mechanical alloying duration show a strong influence on cavitation erosion resistance of Cu–ZrB2 composites regardless the number of reinforcements. Laser-sintered samples show better cavitation erosion resistance than hot-pressed samples.

  8. Cavitation erosion size scale effects

    Science.gov (United States)

    Rao, P. V.; Buckley, D. H.

    1984-01-01

    Size scaling in cavitation erosion is a major problem confronting the design engineers of modern high speed machinery. An overview and erosion data analysis presented in this paper indicate that the size scale exponent n in the erosion rate relationship as a function of the size or diameter can vary from 1.7 to 4.9 depending on the type of device used. There is, however, a general agreement as to the values of n if the correlations are made with constant cavitation number.

  9. Development of a Cavitation Erosion Resistant Advanced Material System

    National Research Council Canada - National Science Library

    Kendrick, Light H; Caccese, Vincent

    2005-01-01

    .... Historically, neither of these materials has performed well in a cavitating environment. The objective of this effort was to evaluate cavitation erosion protection alternatives for a GRP composite structure used in a cavitating environment...

  10. Cavitation erosion and corrosion behavior of copper-manganese-aluminum alloy weldment

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y.; Yan, Y.G.; Ma, L.; Xu, Z.M.; Li, J.G

    2004-09-25

    Welding is a common method for repairing damaged ship propellers, especially by cavitation erosion. Reports on cavitation erosion and corrosion behavior of copper-manganese-aluminum (CMA) alloy weldment are sparse. In this paper, CMA weldment was prepared by tungsten inert gas welding (TIG), and its cavitation erosion behavior and corrosion behavior in 3.5% NaCl aqueous solution were studied by magnetostrictive vibratory device for cavitation erosion and electrochemical device, respectively. Results show that the weld zone (WZ) of the weldment exhibits better cavitation erosion and corrosion resistance than the heat-affected zone (HAZ) and the base metal. The cumulative mass loss of the WZ is only 1/4 that of the base metal. SEM analysis of eroded specimens reveals that the base metal is attacked most severely; the HAZ less and the WZ least. The microcracks causing cavitation damage initiate at the phase boundaries. Among the three zones of the weldment, the WZ is the noblest, its corrosion potential is -266 mV, while the HAZ, -284 mV, and the base metal, -279 mV, in about 60 h exposure to 3.5% NaCl aqueous solution. And its corrosion current density is the lowest, about 0.035 A m{sup -2}, while the HAZ, 0.078 A m{sup -2}, and the base metal, {+-}0.79 A m{sup -2}.

  11. Towards numerical prediction of cavitation erosion.

    Science.gov (United States)

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-10-06

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s(-1)). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction.

  12. Advanced experimental and numerical techniques for cavitation erosion prediction

    CERN Document Server

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat

    2014-01-01

    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  13. Assessment of Cavitation Erosion with a Multiphase Reynolds-Averaged Navier-Stokes Method

    NARCIS (Netherlands)

    Li, Z.R.

    2012-01-01

    Cavitation erosion is one of the remarkable catastrophic consequences of cavitation. Predicting the cavitation aggressiveness quantitatively and predicting the most probable location of cavitation erosion are complex problems that currently still motivate an important amount of basic and applied

  14. Assessment of Cavitation-Erosion Resistance of 316LN Stainless Steel Following a Nitro-Carburizing Surface Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL

    2009-11-01

    A nitro-carburizing surface treatment known domestically as the Melonite process was applied to type 316LN stainless steel test pieces and exposed to sonication conditions in mercury using a vibratory horn technique. Cavitation-erosion damage was evaluated for extended exposures and compared to other surface treatments on the same substrate alloy. The results indicate that the Melonite process substantially retards weight loss and crater development for extended periods, but gradually is eroded/destroyed leading to exposure of the substrate and cavitation-erosion behavior similar to untreated specimens. Compared with other surface treatments, cavitation-erosion results indicate that specimens treated with Melonite perform similarly to specimens treated with a simple nitriding process. Neither the simple nitriding nor the Melonite treatment is quite as effective as a previously evaluated low temperature carburizing treatment, the latter being about a factor of three better than Melonite in terms of weight loss during sonication in mercury.

  15. Cavitation Erosion of P110 Steel in Different Drilling Muds

    OpenAIRE

    Kmieć M.; Karpiński B.; Szkodo M.

    2016-01-01

    The P110 steel specimens were subjected to ultrasonic cavitation erosion in different compositions of drilling muds and surfactant additive. The test procedure was based on ASTM-G-32 standard recommendations. API 5CT-P110 steel is used for pipes in oil and gas industry. The harsh environment and high velocity of flows poses corrosive and erosive threat on materials used there. The composition of drilling fluid influences its rheological properties and thus intensity of cavitation erosion. The...

  16. Sediment and Cavitation Erosion Studies through Dam Tunnels

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2016-01-01

    Full Text Available This paper presents results of sediment and cavitation erosion through Tunnel 2 and Tunnel 3 of Tarbela Dam in Pakistan. Main bend and main branch of Tunnel 2 and outlet 1 and outlet 3 of Tunnel 3 are concluded to be critical for cavitation and sediment erosion. Studies are also performed for increased sediments flow rate, concluding 5 kg/sec as the critical value for sudden increase in erosion rate density. Erosion rate is concluded to be the function of sediment flow rate and head condition. Particulate mass presently observed is reasonably low, hence presently not affecting the velocity and the flow field.

  17. Cavitation erosion of copper and aluminium in water at elevated-temperature

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available Cavitation erosion tests were carried out in tap water on aluminium and copper samples in a rotating disk cavitations test apparatus, to study the effect of water temperature on cavitation dynamics and cavitation erosion. A shift in the position...

  18. Cavitation Erosion of Cermet-Coated Aluminium Bronzes

    Directory of Open Access Journals (Sweden)

    Ion Mitelea

    2016-03-01

    Full Text Available The cavitation erosion resistance of CuAl10Ni5Fe2.5Mn1 following plasma spraying with Al2O3·30(Ni20Al powder and laser re-melting was analyzed in view of possible improvements of the lifetime of components used in hydraulic environments. The cavitation erosion resistance was substantially improved compared with the one of the base material. The thickness of the re-melted layer was in the range of several hundred micrometers, with a surface microhardness increasing from 250 to 420 HV 0.2. Compositional, structural, and microstructural explorations showed that the microstructure of the re-melted and homogenized layer, consisting of a cubic Al2O3 matrix with dispersed Ni-based solid solution is associated with the hardness increase and consequently with the improvement of the cavitation erosion resistance.

  19. FULLY-STEEL ALLOYS WITH INCREASED CAVITATION-EROSION PROPERTIES

    Directory of Open Access Journals (Sweden)

    M. I. Karpenko

    2004-01-01

    Full Text Available In the work the research of influence of the complex alloy addition as well as the additional microalloying by ligature NbVA, by zirconium nitride and ferrotitanium on the structure, mechanical and cavitation-erosive qualities of steels.

  20. Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury Service at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL

    2007-03-01

    Using a standard vibratory horn apparatus, the relative cavitation-erosion resistance of a number of cast alloys in mercury was evaluated to facilitate material selection decisions for Hg pumps. The performance of nine different alloys - in the as-cast condition as well as following a case-hardening treatment intended to increase surface hardness - was compared in terms of weight loss and surface profile development as a function of sonication time in Hg at ambient temperature. The results indicated that among several potentially suitable alloys, CD3MWCuN perhaps exhibited the best overall resistance to cavitation in both the as-cast and surface treated conditions while the cast irons examined were found unsuitable for service of this type. However, other factors, including cost, availability, and vendor schedules may influence a material selection among the suitable alloys for Hg pumps.

  1. Enhancement of cavitation erosion resistance of 316 L stainless steel by adding molybdenum.

    Science.gov (United States)

    Li, D G; Chen, D R; Liang, P

    2017-03-01

    The influence of Mo on ultrasonic cavitation erosion of 316 L stainless steel in 3.5% NaCl solution were investigated using an ultrasonic cavitation erosion (CE) facility. The morphologies of specimen after cavitation erosion were observed by scanning electron microscopy (SEM). The results showed that the addition of Mo can sharply decrease the mean depth of erosion (MDE) of 316 L SS, implying the increased resistance of cavitation erosion. In order to better understanding the influence of Mo on the cavitation erosion of 316 L SS, the semi-conductive property of passive films on 316 L SS containing different concentrations of Mo were studied by Mott-Schottky plot. Based on Mott-Schottky results and semiconductor physics, a physical model was proposed to explain the effect mechanism of Mo on cavitation erosion of 316 L SS. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Flow visualization in the high shear flow on cavitation erosion around a butterfly valve. Butterfly ben karyu no ko sendanryoiki ni okeru cavitation shogekiatsu bunpu

    Energy Technology Data Exchange (ETDEWEB)

    Tani, K. (Tohoku University, Sendai (Japan)); Ito, Y.; Oba, R. (Tohoku University, Sendai (Japan). Inst. of Fluid Science)

    1991-05-25

    In order to suppress the cavitation erosion occurring at a butterfly valve, the spatial distribution of cavitation induced pressure pulses and the aspect of extremely erosive vortex cavitation in the erosive region recognized in a practical valve were clarified, using pressure sensitive films and an instant stereophotography for the representative valve opening and cavitation factor. The highly erosive cavitation taking place at the orifice side downstream of the butterfly valve is an extremely erosive cavitation, and the occurred region is limited to the highly shear layers forming the violent disturbance of the orifice jet. It was found that the erosion could greatly be alleviated by eliminating this highly shear layers being the basis of the extremely erosive vortex cavitation. It was also found that the risk of erosion was very low for the nozzle side by the measurement of cavitation impact pressure ranging all periphery of the pipe wall around the valve body. 10 refs., 5 figs.

  3. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.

    Science.gov (United States)

    Shi, Aiwei; Huang, Peixuan; Guo, Shifang; Zhao, Lu; Jia, Yingjie; Zong, Yujin; Wan, Mingxi

    2016-07-01

    In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cavitation erosion: Using the target material as a pressure sensor

    Science.gov (United States)

    Roy, Samir Chandra; Franc, Jean-Pierre; Fivel, Marc

    2015-10-01

    Numerical prediction of mass loss due to cavitation erosion requires the knowledge of the hydrodynamic impact loads generated by cavitation bubble collapses. Experimental measurements of such impact loads using conventional pressure sensors are not reliable (if not impossible) due to the micron size and the very small duration of the loading. In this paper, a new method to estimate these loading conditions is proposed based on cavitation pitting tests and an iterative inverse finite element modeling. The principle of the method is as follows. First, numerous pits corresponding to localized plastically deformed regions are identified from a cavitation test performed in a dedicated tunnel. Then each pit is numerically reproduced by finite element simulations of the material response to a representative Gaussian pressure field supposed to mimic a single bubble collapse. This gives the size and pressure distribution of the bubble impacts. The prime objective of this study is to find out if the target material itself could be used as a pressure sensor or not, i.e., if the cavitation pits left on the surface of the tested specimen could provide the characteristics of the cavitating flow in terms of pressure fields independently of the target material. Pitting tests were done on three materials, namely, 7075 Aluminum alloy (Al-7075), 2205 duplex stainless steel (A-2205), and Nickel-Aluminum Bronze (NAB) at three different flow conditions and the impact loads have been estimated for each identified pit. Very interestingly, a statistical analysis shows that the estimated impact loads are material independent at all flow conditions, provided the material properties are characterized properly. It is also shown that for some materials, the constitutive parameters obtained from compression tests are not satisfactory.

  5. Cavitation erosion of piping line behind a butterfly valve. Butterfly valve koryu ni hasseisuru cavitation ni yoru haikan no kaishoku

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T.; Ogawa, K. (Kobe University, Kobe (Japan)); Uehara, I. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan)); Kuwata, C.

    1993-11-01

    The purpose of this study is to clarify the characteristics of cavitation erosion in piping line behind a butterfly valve and to propose a method of predicting the erosion resistance. One of the major obstructions in the experiment of cavitation erosion is to take a long time by using a metal specimen. Then, a substitutive material having the fragile property to anti-cavitation erosion was used in this study. The similarity of erosion characteristics was confirmed between the substitutive material and the real material. In the second stage of this study, the substitutive material was placed as pipe wall at a bend behind a butterfly valve. It was verified from observations and measurements of the erosion position that the erosion of the material was caused by cavitation occurred at the butterfly valve. Accordingly, it was demonstrated that the erosion resistance under the real condition can be predicted from the result of the similarities of erosion characteristics of the substitutive material. 7 refs., 14 figs.

  6. Cavitation pitting and erosion of Al 6061-T6 in mineral oil and water

    Science.gov (United States)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    The authors are currently carrying out a study of the cavitation erosion of different bearing metals and alloys in mineral oils were studied. The variations of weight loss, the pit diameter and depth due to cavitation erosion on Al 6061-T6 in mineral oil and water are presented.

  7. Cavitation erosion resistance of 13/4 and 21-4-N steels

    Indian Academy of Sciences (India)

    The cavitation erosion is highly dependent on microstructure and mechanical properties. The results show that hot rolled 21-4-N steel is more cavitation erosion resistant than the 13/4 and 21-4-N steels in as cast condition. The eroded surfaces were analysed through optical microscope and scanning electron microscope ...

  8. Cavitation Erosion of Electro Spark Deposited Nitinol vs. Stellite Alloy on Stainless Steel Substrate

    Science.gov (United States)

    2015-07-15

    Printed on recycled paper Approved for public release; distribution is unlimited. TECHNICAL REPORT TR-NAVFAC-EXWC-CI-1603 JULY 2015 CAVITATION ...SUBTITLE 5a. CONTRACT NUMBER CAVITATION EROSION TESTING OF ELECTRO SPARK DEPOSITED NITINOL VS STELLITE® ALLOY ON STAINLESS STEEL SUBTRATE 5b. GRANT...of combining Nitinol (NiTi) superelastic metal alloy with ElectroSpark Deposition (ESD) technology to increase the cavitation erosion resistance of

  9. Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy.

    Science.gov (United States)

    Pola, Annalisa; Montesano, Lorenzo; Tocci, Marialaura; La Vecchia, Giovina Marina

    2017-03-03

    Ultrasound treatment of liquid aluminum alloys is known to improve mechanical properties of castings. Aluminum foundry alloys are frequently used for production of parts that undergo severe cavitation erosion phenomena during service. In this paper, the effect of the ultrasound treatment on cavitation erosion resistance of AlSi7 alloy was assessed and compared to that of conventionally cast samples. Cavitation erosion tests were performed according to ASTM G32 standard on as-cast and heat treated castings. The response of the alloy in each condition was investigated by measuring the mass loss as a function of cavitation time and by analyzing the damaged surfaces by means of optical and scanning electron microscope. It was pointed out that the ultrasound treatment increases the cavitation erosion resistance of the alloy, as a consequence of the higher chemical and microstructural homogeneity, the finer grains and primary particles and the refined structure of the eutectic induced by the treatment itself.

  10. Ultrasonic cavitation erosion of gas nitrided Ti-6Al-4V alloys.

    Science.gov (United States)

    Mitelea, I; Dimian, E; Bordeaşu, I; Crăciunescu, C

    2014-07-01

    Ultrasonic cavitation erosion experiments were performed on Ti-6Al-4V alloys samples in annealed, nitrided and nitrided and subsequently heat treated state. The protective oxide layer formed as a result of annealing and heat treatment after nitriding is eliminated after less than 30 min cavitation time, while the nitride layer lasts up to 90 min cavitation time. Once the protective layer is removed, the cavitation process develops by grain boundary erosion, leading to the expulsion of grains from the surface. The gas nitrided Ti-6Al-4V alloy, forming a TixN surface layer, proved to be a better solution to improve the cavitation erosion resistance, compared to the annealed and nitrided and heat treated state, respectively. The analysis of the mean depth of erosion rate at 165 min cavitation time showed an improvement of the cavitation erosion resistance of the nitrided samples of up to 77% higher compared to the one of the annealed samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The use of Rz roughness parameter for evaluation of materials behavior to cavitation erosion

    Science.gov (United States)

    Bordeasu, I.; Popoviciu, M. O.; Ghera, C.; Micu, L. M.; Pirvulescu, L. D.; Bena, T.

    2018-01-01

    It is well known that the cavitation eroded surfaces have a porous appearance with a pronounced roughness. The cause is the pitting resulted from the impact with the micro jets as well as the shock waves both determined by the implosion of cavitation bubbles. The height and the shape of roughness is undoubtedly an expression of the resistance of the surface to the cavitation stresses. The paper put into evidence the possibility of using the roughness parameter Rz for estimating the material resistance to cavitation phenomena. For this purpose, the mean depth erosion penetration (MDE-parameter, recommended by the ASTM G32-2010 Standard) was compared with the roughness of three different materials (an annealed bronze, the same bronze subjected to quenching and an annealed alloyed steel), both measured at four cavitation erosion exposure (30, 75, 120 and 165 minutes). The roughness measurements were made in 18 different zones, disposed after two perpendicular diameters, along a measuring lengths of 4 mm. The results confirm the possibility of using the parameter Rz for estimating the cavitation erosion resistance of a material. The differences between the measured values of Rz and those of the characteristic parameter MDE are of the same order of magnitude as those obtained for MDE determination, using more samples of the same material.

  12. Cavitation erosion tests of high tensile stainless steels for the Techno-Superliner (TSL-F) hulls; Techno superliner (TSL-F) sentai kozoyo kokyodo stainless ko no cavitation erosion

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Ito, H.; Shibasaki, K. [NKK Corp., Tokyo (Japan); Mizuta, A.; Sugimoto, H. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tomono, Y. [Hitachi Zosen Corp., Osaka (Japan)

    1996-12-31

    Investigations were given by using the magnetostrictive vibration method and the high-speed fluid testing method on cavitation erosion resistance of high-tensile stainless steels thought to have high applicability to submerged hull structures of Techno-Supeliner (TSL-L). The investigations revealed that these steels have nearly equivalent resistance to even SUS 304 or 15-5PH steel which is thought to have the highest cavitation erosion resistance among the conventional materials used customarily. An experiment using both materials provided a result different quantitatively but similar qualitatively in relative merits between the materials. Correlation between both materials was presented. A cavitation erosion experiment using a 1/6 scale model of the actual TSL-F was carried out to measure the amount of cavitation erosion generated on wing surfaces. Results from the experiment were used to attempt estimation of cavitation erosion amount at the level of the actual TSL-F. 21 refs., 12 figs., 3 tabs.

  13. Effect of micro-particles on cavitation erosion of Ti6Al4V alloy in sulfuric acid solution.

    Science.gov (United States)

    Li, D G; Long, Y; Liang, P; Chen, D R

    2017-05-01

    The influences of micro-particles on ultrasonic cavitation erosion of Ti6Al4V alloy in 0.1M H 2 SO 4 solution were investigated using mass loss weight, scanning electron microscopy (SEM) and white light interferometer. Mass loss results revealed that the cavitation erosion damage obviously decreased with increasing particle size and mass concentration. Open circuit potential recorded during cavitation erosion shifted to positive direction with the decreased mass loss. Meanwhile, the mass loss sharply decreased with applying a positive potential during the entire ultrasonic cavitation erosion, and the relationship between the open circuit potential and the cavitation erosion resistance was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery

    Science.gov (United States)

    Tzanakis, I.; Bolzoni, L.; Eskin, D. G.; Hadfield, M.

    2017-05-01

    The erosion response under cavitation of different steel grades was assessed by studying the erosion rate, the volume removal, the roughness evolution, and the accumulated strain energy. A 20 kHz ultrasonic transducer with a probe diameter of 5 mm and peak-to-peak amplitude of 50 μm was deployed in distilled water to induce damage on the surface of commercial chromium and carbon steel samples. After a relatively short incubation period, cavitation induced the formation of pits, cracks, and craters whose features strongly depended on the hardness and composition of the tested steel. AISI 52100 chromium steel showed the best performance and is, therefore, a promising design candidate for replacing the existing fluid machinery materials that operate within potential cavitating environments.

  15. The cavitational erosion resistance of the B2-type Fe-Al casting alloys

    Directory of Open Access Journals (Sweden)

    R. Jasionowski

    2010-01-01

    Full Text Available The problem of the destruction of turbo-machinery components is very complex, because it consists of processes of erosion and corrosion. The most dangerous factor is the cavitation phenomenon, which is very difficult to eliminate through the use of design solutions. It causes deterioration of the operating characteristics of machinery and equipment, such as water turbines, steam turbines, centrifugal pumps, screw vessels, cylinder liners with water-cooled engines, acoustic probe. The most commonly used method of limiting the destruction of cavitation phenomenon is the optimum choice of parameters of geometric and hydraulic machines, the appropriate design of elements and streamlined flow and providing working conditions of flow devices. The above-mentioned methods by design, the size of flow devices are limited, so better action to prevent the flow of erosion may use the material for greater resistance to erosion and cavitation corrosion is the alloy of intermetallic FeAl phase, which production costs are low compared to cast steel and cast iron alloy based on chromium and nickel.The paper presents results of an investigation carried out for cavitational resistance of the B2-type Fe-Al casting alloys using a flux-impact measuring device. The intermetallic FeAl alloys proved to have good resistance to this type of erosion in comparison to other construction materials, investigated by flux-impact device.

  16. Abrasion, Erosion and Cavitation Erosion Wear Properties of Thermally Sprayed Alumina Based Coatings

    Directory of Open Access Journals (Sweden)

    Ville Matikainen

    2014-01-01

    Full Text Available Thermally-sprayed alumina based materials, e.g., alumina-titania (Al2O3-TiO2, are commonly applied as wear resistant coatings in industrial applications. Properties of the coatings depend on the spray process, powder morphology, and chemical composition of the powder. In this study, wear resistant coatings from Al2O3 and Al2O3-13TiO2 powders were sprayed with plasma and high-velocity oxygen-fuel (HVOF spray processes. Both, fused and crushed, and agglomerated and sintered Al2O3-13TiO2 powders were studied and compared to pure Al2O3. The coatings were tested for abrasion, erosion, and cavitation resistances in order to study the effect of the coating structure on the wear behavior. Improved coating properties were achieved when agglomerated and sintered nanostructured Al2O3-13TiO2 powder was used in plasma spraying. Coatings with the highest wear resistance in all tests were produced by HVOF spraying from fused and crushed powders.

  17. Destruction Mechanism of ZnAl4 as Cast Alloy Subjected to Cavitational Erosion Using Different Laboratory Stands

    Directory of Open Access Journals (Sweden)

    Jasionowski R.

    2016-03-01

    Full Text Available The main reason of a cavitational destruction is the mechanical action of cavitation pulses onto the material’s surface. The course of cavitation destruction process is very complex and depends on the physicochemical and structural features of a material. A resistance to cavitation destruction of the material increases with the increase of its mechanical strength, fatigue resistance as well as hardness. Nevertheless, the effect of structural features on the material’s cavitational resistance has been not fully clarified. In the present paper, the cavitation destruction of ZnAl4 as cast alloy was investigated on three laboratory stands: vibration, jet-impact and flow stands. The destruction mechanism of ZnAl4 as cast alloy subjected to cavitational erosion using various laboratory stands is shown in the present paper.

  18. Real-time monitoring of controllable cavitation erosion in a vessel phantom with passive acoustic mapping.

    Science.gov (United States)

    Lu, Shukuan; Shi, Aiwei; Jing, Bowen; Du, Xuan; Wan, Mingxi

    2017-11-01

    Cavitation erosion in blood vessel plays an important role in ultrasound thrombolysis, drug delivery, and other clinical applications. The controllable superficial vessel erosion based on ultrasonic standing wave (USW) has been used to effectively prevent vessel ruptures and haemorrhages, and optical method is used to observe the experiments. But optical method can only work in transparent media. Compared with standard B-mode imaging, passive acoustic mapping (PAM) can monitor erosion in real time and has better sensitivity of cavitation detection. However, the conventionally used PAM has limitations in imaging resolution and artifacts. In this study, a unique PAM method that combined the robust Capon beamformer (RCB) with the sign coherence factor (SCF) was proposed to monitor the superficial vessel erosion in real time. The performance of the proposed method was validated by simulations. In vitro experiments showed that the lateral (axial) resolution of the proposed PAM was 2.31±0.51 (3.19±0.38) times higher than time exposure acoustics (TEA)-based PAM and 1.73±0.38 (1.76±0.48) times higher than RCB-based PAM, and the cavitation-to-artifact ratio (CAR) of the proposed PAM could be improved by 22.5±3.2dB and 7.1±1.2dB compared with TEA and RCB-based PAM. These results showed that the proposed PAM can precisely monitor the superficial vessel erosion and the erosion shift after USW modulation. This work may have the potential of developing a useful tool for precise spatial control and real-time monitoring of the superficial vessel erosion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cavitation

    CERN Document Server

    Young, F Ronald

    1999-01-01

    First published by McGraw-Hill in 1989, this book provides a unified treatment of cavitation, a phenomenon which extends across the boundaries of many fields. The approach is wide-ranging and the aim is to give due consideration to the many aspects of cavitation in proportion to their importance. Particular attention is paid to the diverse situations in which cavitation occurs and to its practical applications.

  20. Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water

    Science.gov (United States)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1.

  1. Cavitation Erosion of Copper, Brass, Aluminum and Titanium Alloys in Mineral Oil

    Science.gov (United States)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    The variations of the mean depth of penetration, the mean depth rate of penetration, MDRP, the pit diameter 2a and depth h due to cavitation attack on Al 6061-T6, Cu, brass of composition Cu-35Zn-3Pb and Ti-5A1-2.5Sn are presented. The experiments are conducted in a mineral oil of viscosity 110 CS using a magnetostrictive oscillator of 20 kHz frequency. Based on MDRP on the materials, it is found that Ti-5Al-2.5Sn exhibits cavitation erosion resistance which is two orders of magnitude higher than the other three materials. The values of h/a are the largest for copper and decreased with brass, titanium, and aluminum. Scanning electron microscope studies show that extensive slip and cross slip occurred on the surface prior to pitting and erosion. Twinning is also observed on copper and brass.

  2. Formation of the self-assembled structures by the ultrasonic cavitation erosion-corrosion effect on carbon steel

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-11-01

    Full Text Available The cavitation erosion-corrosion effect on the metal surface always forms irregular oxide structures. In this study, we reported the formation of regular self-assembled structures of amorphous nanoparticles around the cavitation erosion pits on carbon steel upon the ultrasonic cavitation in methylene blue solution. Each self-assembled structure was composed of linearly aligned nanoparticles of about 100 nm. The formation of self-assembled structures might be due to the combined effect of corrosion, specific sonochemical reaction in methylene blue solution, and the magnetic domain structures on the carbon steel.

  3. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy.

    Science.gov (United States)

    Nair, R B; Arora, H S; Mukherjee, Sundeep; Singh, S; Singh, H; Grewal, H S

    2018-03-01

    Cavitation erosion and corrosion of structural materials are serious concerns for marine and offshore industries. Durability and performance of marine components are severely impaired due to degradation from erosion and corrosion. Utilization of advanced structural materials can play a vital role in limiting such degradation. High entropy alloys (HEAs) are a relatively new class of advanced structural materials with exceptional properties. In the present work, we report on the cavitation erosion behavior of Al 0.1 CoCrFeNi HEA in two different media: distilled water with and without 3.5wt% NaCl. For comparison, conventionally used stainless steel SS316L was also evaluated in identical test conditions. Despite lower hardness and yield strength, the HEA showed significantly longer incubation period and lower erosion-corrosion rate (nearly 1/4th) compared to SS316L steel. Enhanced erosion resistance of HEA was attributed to its high work-hardening behavior and stable passivation film on the surface. The Al 0.1 CoCrFeNi HEA showed lower corrosion current density, high pitting resistance and protection potential compared to SS316L steel. Further, HEA showed no evidence of intergranular corrosion likely due to the absence of secondary precipitates. Although, the degradation mechanisms (formation of pits and fatigue cracks) were similar for both the materials, the damage severity was found to be much higher for SS316L steel compared to HEA. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The effect of casting porosities on cavitational erosion of intermetallic alloy FeAl36

    Directory of Open Access Journals (Sweden)

    R. Jasionowski

    2010-07-01

    Full Text Available The machinery and equipment elements operating in a turbulent fluid flow, are exposed to destruction as a result of the impact of thecavitation, corrosion and abrasion processes, among which are hardest to minimize the imploding cavitation bubbles. Repeated cavitationimplosions of bubbles give rise to cracks, material loss, resulting in increased flow resistance and reduction of the efficiency of the device, or even its destruction. In order to prevent or mitigate the cavitation phenomenon and its harmful effects, two basic methods are applied. The first of these is the selection of geometrical parameters and hydraulic machinery and the relevant elements of the streamlined shape and flow channels. The second solution is the selection of engineering plastics with greater resistance to cavitation. In case of materials manufactured with the casting method, a very important role is being played by the quality of manufactured casting having the smallest number of casting defects. The aim of the present study was to examine the effect of casting porosities of an intermetallic alloy FeAl36 on cavitational erosion.

  5. Effects of Laser Shock Processing on Morphologies and Mechanical Properties of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion

    Science.gov (United States)

    Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze

    2017-01-01

    Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652

  6. Effects of Laser Shock Processing on Morphologies and Mechanical Properties of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Effects of laser shock processing (LSP on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM, scanning electron microscope (SEM observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties.

  7. Cavitation erosion characteristics of poly(methyl methacrylate) in a rotating disk device

    Science.gov (United States)

    Veerabhadra Rao, P.; Rao, N. S. L.; Rao, B. C. S.

    1983-01-01

    The cavitation erosion behavior including the initiation, dynamics and mechanism of damage process on perspex and epoxy resin specimens tested in a rotating disk device were discussed with respect to exposure time. The inception of erosion always took place at the location nearest to the center of rotation of the disk. Subsequently, as exposure time increased, erosion initiated at other locations as well. Light optical photographs and scanning electron micrographs clearly indicate that most of the material loss appears to occur form the networks of cracks due to their interaction and pits indicate particle debris. The optical degradation (loss of transmittance) on perspex was observed to be more on the rear side than on the front side. Previously announced in STAR as N83-11329

  8. High-speed observations of highly erosive vortex cavitation around butterfly valve. Batafurai ben mawari no kokaishokusei uzu kyabiteshon no kosoku shashin kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Soyama, H.; Oba, R. (Tohoku Univ., Sendai (Japan). Inst. of Fluid Science); Oba, K. (Tohoku Univ., Sendai (Japan). Inst. of Information Science); Takeda, S. (Tohoku Univ., Sendai (Japan). Graduate School)

    1994-04-25

    Although various types and sizes of butterfly valves are used in various types of plants since they are simple in construction and superior in controllability, as they have became larger in size and come to be used in ultimate environments, cavitation erosion has became a serious issue. In this report, taking as an example the flow around a one-fourth scale model of a practical butterfly valve, the condition of a cavitation related to erosion were observed with a high-speed video camera as a first step of solving the behaviour of a high erosive vortex cavitation causing severe erosion. It was able to measure the local flow velocity distribution around a unique vortex cavitation by processing by a correlation method the images taken with the high-speed video camera. It was clarified that the vortex core of a unique vortex cavitation consisted of a plurality of vortex cavitations constituted by a number of bubbles. 12 refs., 8 figs.

  9. Cavitation Erosion Behavior of Electroless Ni-P Coating and Optimization of Process Parameter Using Analysis of Variance with Orthogonal Array.

    Science.gov (United States)

    Park, Il-Cho; Kim, Seong-Jong

    2018-03-01

    This study investigated the cavitation erosion resistance of electroless Ni-P (EN) coated gray cast iron (GCI) in seawater solution. Furthermore, the optimum coating design parameters were examined to minimize cavitation erosion damage through analysis of variance (ANOVA) based on the L9 orthogonal array. In this study, four coating design factors were used: concentration of source of nickel (A), concentration of reducer agent (B), deposition temperature (C), and pressure of shot peening (D). In accordance with the regulation of the modified ASTM G32, the cavitation erosion experiment was conducted for 1 hour in a seawater solution to find the optimum design parameters which can minimize the cavitation erosion damage. Besides, ANOVA was performed to verify the contribution of each coating design parameter. As a result, the concentration of reducer agent among the EN process parameters was determined as the most significant factor in the cavitation erosion behavior.

  10. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.

    Science.gov (United States)

    Mottyll, Stephan; Skoda, Romuald

    2016-07-01

    As a contribution to a better understanding of cavitation erosion mechanisms, a compressible inviscid finite volume flow solver with barotropic homogeneous liquid-vapor mixture cavitation model is applied to ultrasonic horn set-ups with and without stationary specimen, that exhibit attached cavitation at the horn tip. Void collapses and shock waves, which are closely related to cavitation erosion, are resolved. The computational results are compared to hydrophone, shadowgraphy and erosion test data. At the horn tip, vapor volume and topology, subharmonic oscillation frequency as well as the amplitude of propagating pressure waves are in good agreement with experimental data. For the evaluation of flow aggressiveness and the assessment of erosion sensitive wall zones, statistical analyses of wall loads and of the multiplicity of distinct collapses in wall-adjacent flow regions are applied to the horn tip and the stationary specimen. An a posteriori projection of load collectives, i.e. cumulative collapse rate vs. collapse pressure, onto a reference grid eliminates the grid dependency effectively for attached cavitation at the horn tip, whereas a significant grid dependency remains at the stationary specimen. The load collectives show an exponential decrease towards higher collapse pressures. Erosion sensitive wall zones are well predicted for both, horn tip and stationary specimen, and load profiles are in good qualitative agreement with measured topography profiles of eroded duplex stainless steel samples after long-term runs. For the considered amplitude and gap width according to ASTM G32-10 standard, the analysis of load collectives reveals that the distinctive erosive ring shape at the horn tip can be attributed to frequent breakdown and re-development of a small portion of the tip-attached cavity. This partial breakdown of the attached cavity repeats at each driving cycle and is associated with relatively moderate collapse peak pressures, whereas the

  11. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  12. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-21

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  13. Cavitation wear of pump impellers

    Directory of Open Access Journals (Sweden)

    Mirosław Szala

    2016-12-01

    Full Text Available Cavitation is a common phenomenon in pump systems, negatively influencing their operating parameters and components such as impellers and, thus, causing considerable financial losses. This paper explains the problem of cavitation and cavitation erosion. The causes of cavitation in pump systems are analyzed. A selection of centrifugal pump impellers damaged by cavitation erosion are presented and examined. The authors also discuss ways of preventing cavitation and cavitation erosion in pump systems. Finally, relevant conclusions are drawn.

  14. Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material.

    Science.gov (United States)

    Zhou, Yufeng; Wang, Xiaotong

    2018-03-01

    Cavitation histotripsy with the short pulse duration (PD) but high pulse repetition frequency (PRF) disintegrates the tissue at a fluid interface. However, longer PD and lower PRF are used in the other focused ultrasound applications, where the acoustic radiation force, streaming, and cavitation are different, and their effects on erosion are unknown. In this study, the erosion at the surface of phantom/ex vivo tissue and the characteristics of induced bubble cloud captured by high-speed photography, passive cavitation detection, and light transmission during histotripsy exposure at varied PDs and PRFs but the same duty cycle were compared. The peak negative pressure of 6.6 MPa at the PD of 20 ms and PRF of 1 Hz began to erode the phantom, which becomes more significant with the increase of peak negative pressure, PD, and interval time between bursts. The increase of the PRF from 1 Hz to 1000 Hz, while the decrease of the PD from 20 ms to 20 μs (duty cycle of 2%) at the same energy was delivered to the gel phantom immersed in the degassed water led to the decrease of erosion volume but a slight increase of the erosion area and smoother surface. Low PRF and long PD produce the significant tissue deformation, acoustic wave refocusing, confinement of bubbles in a conical region, and more bubble dissolution after the collapse for the high acoustic scattering and light transmission signals. In comparison, high PRF and low PD produce a wide distribution of bubbles with only little wave refocusing at the beginning of cavitation histotripsy and high inertial cavitation. Acoustic emission dose has a good correlation with the erosion volume. The erosion on the porcine kidney at the varied PRFs and PDs with the same energy output showed similar trends as those in the phantom but at a slow rate. In summary, the PRF and PD are important parameters for the cavitation histotripsy-induced erosion at the interface of fluid and soft material, and they should be

  15. Study Regarding the Good Cavitation Erosion Resistance of a 13Cr-4Ni Stainless Steel used to Manufacture the Components Exposed to Water of the Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Marian-Dumitru Nedeloni

    2017-11-01

    Full Text Available This paper presents some information regarding the hydraulic turbines respectively the experimental results on cavitation erosion behavior of a 13Cr-4Ni stainless steel used to manufacture the components exposed to water of the Francis, Kaplan and Pelton hydraulic turbines. So, the presented experimental results of this paper highlight the good cavitation erosion resistance of the analyzed 13Cr-4Ni stainless steel.

  16. Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.

    Science.gov (United States)

    Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren

    2017-11-01

    Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.

  17. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings.

    Science.gov (United States)

    Qiao, Lei; Wu, Yuping; Hong, Sheng; Zhang, Jianfeng; Shi, Wei; Zheng, Yugui

    2017-11-01

    Fe-based amorphous/nanocrystalline coatings were prepared on the AISI 321 steel substrate by the high-velocity oxygen-fuel (HVOF) thermal spraying technology. The effect of selected parameters (oxygen flow, kerosene flow and spray distance) on the cavitation erosion resistance (denoted as Rc) of the coating were investigated by using the Taguchi method. Statistical tools such as design of experiments (DOE), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were used to meet the expected objective. It was concluded that the kerosene flow had greater influence on the Rc of the coating and followed by the spray distance and the oxygen flow, respectively. The optimum spray parameters (OSP) were 963L/min for the oxygen flow, 28L/h for the kerosene flow, and 330mm for the spray distance. The Rc of the coating increased with the increase of hardness or the decrease of porosity, and the hardness had a greater influence on Rc than the porosity. The Fe-based coating deposited under the OSP exhibited the best cavitation erosion resistance in distilled water. The cracks initiated at the edge of the pores and the interfaces between the un-melted or half-melted particles, and finally leaded to the delamination of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Structure of Micro-nano WC-10Co4Cr Coating and Cavitation Erosion Resistance in NaCl Solution

    Science.gov (United States)

    Ding, Xiang; Cheng, Xu-Dong; Yuan, Cheng-Qing; Shi, Jin; Ding, Zhang-Xiong

    2017-09-01

    Cavitation erosion (CE) is the predominant cause for the failure of overflow components in fluid machinery. Advanced coatings have provided an effective solution to cavitation erosion due to the rapid development of surface engineering techniques. However, the influence of coating structures on CE resistance has not been systematically studied. To better understand their relationship, micro-nano and conventional WC-10Co4Cr cermet coatings are deposited by high velocity oxygen fuel spraying(HVOF), and their microstructures are analyzed by OM, SEM and XRD. Meanwhile, characterizations of mechanical and electrochemical properties of the coatings are carried out, as well as the coatings' resistance to CE in 3.5 wt % NaCl solution, and the cavitation mechanisms are explored. Results show that micro-nano WC-10Co4Cr coating possesses dense microstructure, excellent mechanical and electrochemical properties, with very low porosity of 0.26 ± 0.07% and extraordinary fracture toughness of 5.58 ± 0.51 MPa·m1/2. Moreover, the CE resistance of micro-nano coating is enhanced above 50% than conventional coating at the steady CE period in 3.5 wt % NaCl solution. The superior CE resistance of micro-nano WC-10Co4Cr coating may originate from the unique micro-nano structure and properties, which can effectively obstruct the formation and propagation of CE crack. Thus, a new method is proposed to enhance the CE resistance of WC-10Co4Cr coating by manipulating the microstructure.

  19. Cavitation erosion resistance of 13/4 and 21-4-N steels

    Indian Academy of Sciences (India)

    operating efficiency of the turbine. Considering the cost of electrical energy, even a relatively small change in the operating efficiency can be very expensive. Cavitation causes surface pene- tration damage of up to 10 mm per year to critical components such as impellors, turbine blades, and casings (Simoneau 1984).

  20. Influence of water air content on cavitation erosion in distilled water

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available The influence of increased air content of the cavitating liquid (distilled water) was studied in a rotating disk test rig. A rise in the total air content including dissolved and entrained air of the water in the under saturated range resulted...

  1. Genetics Home Reference: vibratory urticaria

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions vibratory urticaria vibratory urticaria Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Vibratory urticaria is a condition in which exposing the skin ...

  2. Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part II: Cavitation Erosion

    Directory of Open Access Journals (Sweden)

    D. Kekes

    2014-12-01

    Full Text Available Composite coatings with five different proportions of WC-Co/Cr and NiCrFeBSiC components were deposited on stainless steel by HVOF spraying. Cavitation erosion tests were performed and the material removal micro-mechanisms were identified by SEM of both the eroded areas and the specimens’ cross-sections. Waves’ propagation and deflection at the weak interfaces within the coatings resulted in local tensile stresses perpendicular to the interface direction that eventually led to material removal. Such weak interfaces are the boundaries of the carbide particles with the metal binder within the same splat, those between splats along the same layer and those between successively deposited layers.

  3. Erosion due to impingement of a cavitating jet. 4th report. Effects of nozzles shape and upstream pressure pulsation; Kyabiteshon kaishoku ni kansuru kenkyu. 4. Shibori keijo oyobi joryu atsuryoku hendo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, J.; Wang, Xiongying [Yokohama National Univ. (Japan). Faculty of Engineering; Kazama, T. [Muroran Inst. of Technology, Hokkaido (Japan)

    1997-05-15

    Erosion related to the collision of jet flow including cavitation bubble is one of the factor to verify the limitation of hydrostatic technology. The authors have so far investigated the effect of unsteady flow, up and down stream pressure, cavitation constant, specimen material and form, laboratory conditions, form around the nozzle path and nozzle outlet and so forth on erosion using jet flow collision type cavitation erosion experimental instrument that makes possible the easy handling of the phenomena caused in machines. Further, equation for estimating the amount of erosion was derived and level of effects of main factors was clarified. However, this method was limited to only circular nozzle fixed flow. In this report, comparative study of orifice nozzle and circular nozzle at both constant normal flow and unsteady flow was carried out using same experimental instrument as in the previous report. As a result, as for the nozzle used in this experiment, erosion in case of orifice nozzle was higher than that of circular nozzle. 15 refs., 13 figs.

  4. A vibratory micromechanical gyroscope

    Science.gov (United States)

    Boxenhorn, Burton; Greiff, Paul

    A novel vibratory micromechanical gyro with an active area less than one millimeter square has been analyzed, designed, and built. It has been demonstrated that such a gyro can be built using semiconductor fabrication techniques, and that the resulting performance is reasonably predictable. Further improvement of this gyro will result in an instrument that is small, low power, and in particular, will be very cheap in large quantitites.

  5. Cavitation simulation on marine propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo

    Cavitation on marine propellers causes thrust breakdown, noise, vibration and erosion. The increasing demand for high-efficiency propellers makes it difficult to avoid the occurrence of cavitation. Currently, practical analysis of propeller cavitation depends on cavitation tunnel test, empirical...... criteria and inviscid flow method, but a series of model test is costly and the other two methods have low accuracy. Nowadays, computational fluid dynamics by using a viscous flow solver is common for practical industrial applications in many disciplines. Cavitation models in viscous flow solvers have been...... developed in the last decade. They show the potential for the simulation of propeller cavitation with robustness, but they are still to be more proved for practical applications. In the present work, hydrodynamic and numerical characteristics of several cavitation models developed for a viscous flow solver...

  6. Feasibility Study of Low Force Robotic Friction Stir Process and its Effect On Cavitation Erosion and Electrochemical Corrosion for Ni Al Bronze Alloys

    Science.gov (United States)

    Ahmad, Azman; Li, Huijun; Pan, Zengxi; Cuiuri, Dominic; van Duin, Stephen; Larkin, Nathan; Polden, Joseph; Lane, Nathan

    2014-12-01

    Robotic friction stir processing (FSP) has not been widely researched to date. This is perhaps due to the limited force capabilities of industrial robots in comparison with dedicated commercial FSP equipment. When operating a FSP machine, the force used to plunge the tools may range from 5000 to 8000 N which is currently beyond the capability of most robots. However, the capacity of robotic manipulators is increasing, so low force friction stir processing is becoming feasible. The ability of the robot arm to apply a controlled force that is normal to a 3-dimensional surface without the need to reorient the workpiece makes it a very useful tool for FSP of complex components. In this analysis, a robot arm with a capacity of 2500 N is used to improve the surface properties of nickel aluminum bronze (NAB) using low force FSP. Multiple passes were applied to the surface of the test sample for a more consistent spread of the stir zone. The sample was then microhardness tested and demonstrated a 62 pct increase in surface hardness. Cavitation erosion testing of the original and processed surfaces was also performed as per ASTM G-32. The erosion rate of the processed NAB sample was 44 pct of the rate experienced by the original cast NAB sample. Finally, the corrosion potentials of FSP NAB were measured at 45 mV less anodic than the unprocessed material, indicating that the processed material is more noble relative to the cast NAB sample.

  7. Analysis of the cavitating flow induced by an ultrasonic horn – Numerical 3D simulation for the analysis of vapour structures and the assessment of erosion-sensitive areas

    Directory of Open Access Journals (Sweden)

    Mottyll Stephan

    2014-03-01

    Full Text Available This paper reports the outcome of a numerical study of ultrasonic cavitation using a CFD flow algorithm based on a compressible density-based finite volume method with a low-Machnumber consistent flux function and an explicit time integration [15; 18] in combination with an erosion-detecting flow analysis procedure. The model is validated against erosion data of an ultrasonic horn for different gap widths between the horn tip and a counter sample which has been intensively investigated in previous material studies at the Ruhr University Bochum [23] as well as on first optical in-house flow measurement data which is presented in a companion paper [13]. Flow features such as subharmonic cavitation oscillation frequencies as well as constricted vapour cloud structures can also be observed by the vapour regions predicted in our simulation as well as by the detected collapse event field (collapse detector [12]. With a statistical analysis of transient wall loads we can determine the erosion sensitive areas qualitatively. Our simulation method can reproduce the influence of the gap width on vapour structure and on location of cavitation erosion.

  8. Correlation between simulations and cavitation-induced erosion damage in Spallation Neutron Source target modules after operation

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [ORNL; McClintock, David A [ORNL; Kaminskas, Saulius [ORNL; Abdou, Ashraf A [ORNL

    2014-01-01

    An explicit finite element (FE) technique developed for estimating dynamic strain in the Spallation Neutron Source (SNS) mercury target module vessel is now providing insight into cavitation damage patterns observed in used targets. The technique uses an empirically developed material model for the mercury that describes liquid-like volumetric stiffness combined with a tensile pressure cut-off limit that approximates cavitation. The longest period each point in the mercury is at the tensile cut-off threshold is denoted its saturation time. Now, the pattern of saturation time can be obtained from these simulations and is being positively correlated with observed damage patterns and is interpreted as a qualitative measure of damage potential. Saturation time has been advocated by collaborators at J-Parc as a factor in predicting bubble nuclei growth and collapse intensity. The larger the ratio of maximum bubble size to nucleus, the greater the bubble collapse intensity to be expected; longer saturation times result in greater ratios. With the recent development of a user subroutine for the FE solver saturation time is now provided over the entire mercury domain. Its pattern agrees with spots of damage seen above and below the beam axis on the SNS inner vessel beam window and elsewhere. The other simulation result being compared to observed damage patterns is mercury velocity at the wall. Related R&D has provided evidence for the damage mitigation that higher wall velocity provides. In comparison to observations in SNS targets, inverse correlation of high velocity to damage is seen. In effect, it is the combination of the patterns of saturation time and low velocity that seems to match actual damage patterns.

  9. Silicon Bulk Micromachined Vibratory Gyroscope

    Science.gov (United States)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.

    1996-01-01

    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  10. Cavitation instabilities and rotordynamic effects in turbopumps and hydroturbines turbopump and inducer cavitation, experiments and design

    CERN Document Server

    Salvetti, Maria

    2017-01-01

    The book provides a detailed approach to the physics, fluid dynamics, modeling, experimentation and numerical simulation of cavitation phenomena, with special emphasis on cavitation-induced instabilities and their implications on the design and operation of high performance turbopumps and hydraulic turbines. The first part covers the fundamentals (nucleation, dynamics, thermodynamic effects, erosion) and forms of cavitation (attached cavitation, cloud cavitation, supercavitation, vortex cavitation) relevant to hydraulic turbomachinery, illustrates modern experimental techniques for the characterization, visualization and analysis of cavitating flows, and introduces the main aspects of the hydrodynamic design and performance of axial inducers, centrifugal turbopumps and hydo-turbines. The second part focuses on the theoretical modeling, experimental analysis, and practical control of cavitation-induced fluid-dynamic and rotordynamic instabilities of hydraulic turbomachinery, with special emphasis on cavitating...

  11. Techniques of Ultrasound Cavitation Control

    Directory of Open Access Journals (Sweden)

    S. P. Skvortsov

    2015-01-01

    Full Text Available The control methods of ultrasonic cavitation applied now within the range from 20 kHz to 80 kHz use either control of ultrasound source parameters (amplitude, acoustic power, etc. or control of one of the cavitation effects (erosion of materials, sonoluminescence, power of acoustic noise, etc.. These methods provide effective management of technological processes, however, make it impossible to relate the estimated effect with parameters of pulsations of cavitation bubbles. This is, mainly, due to influence of a number of uncontrollable parameters, in particular, such as temperature, composition of liquid, gas content, etc. as well as because of the difficulty to establish interrelation between the estimated effect and parameters of pulsations. As a result, in most cases it is difficult to compare controlled parameters of ultrasonic cavitation among themselves, and quantitative characteristics of processes become depending on the type of ultrasonic installation and conditions of their measurement.In this regard, methods to determine parameters of bubble pulsations through sounding a cavitation area by low-intensity laser radiation or to record cavitation noise sub-harmonics reflecting dynamics of changing radius of cavitation bubbles are of interest. The method of optical sounding, via the analysis of spectral components of a scattered signal recorded by a photo-detector, allows us to define a phase of the bubbles collapse with respect to the sound wave and a moving speed of the bubbles wall, as well as to estimate a cavitation index within the light beam section.The method to record sub-harmonicas of cavitation noise allows us to define parameters of pulsations, average for cavitation areas.The above methods allow us both to study mechanisms of cavitation action and to form quantitative criteria of its efficiency based on the physical processes, rather than their consequences and are convenient for arranging a feedback in the units using

  12. Resistência à erosão por cavitação de aços inoxidáveis austeníticos CrMnSiN depositados por PTA Cavitation erosion resistance of CrMnSiN austenitic stainless steels deposited by PTA

    Directory of Open Access Journals (Sweden)

    Hélio Ormeu Ribeiro

    2010-06-01

    power generation. Among the materials usually applied in the welding repair of cavitation erosion are included the common stainless steels AISI 308 and 309, special Co-alloyed stainless steels and Co-base alloys (stellites, whereby these have as handicap a higher susceptibility to cracking, the difficult in finishing by grinding and the higher cost. In this context this work had the purpose to design, develop and evaluate CrMnSiN austenitic stainless steels, as deposited by the PTA process. The cavitation erosion resistance was evaluated using the vibratory ultrasonic test according ASTM G32-92. The microstructure was analyzed by means of optical and scanning electronical microscopy and the nature of phases present in the coatings - the cavitation induced formation of martensites α' and ε - was estimated by x-rays diffraction. Besides that the surface quality as examined by NDT, the hardness and the feasibility of finishing by grinding, where all evaluation criteria of the welded deposits. It was verified that the coatings applied by PTA were free from solidification cracks, had low porosity, good wetability and adequate surface finishment. The best austenitic stainless steel developed (0,03%C; 0,35% N; 13,2%Cr; 11,8% Mn; 2,8%Si; bal %Fe showed a cavitation erosion resistance quite near the most resistant commercial alloys.

  13. Rotating Cavitation Supression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating cavitation,...

  14. Comparison of Different Mathematical Models of Cavitation

    Directory of Open Access Journals (Sweden)

    Dorota HOMA

    2014-12-01

    Full Text Available Cavitation occurs during the flow when local pressure drops to the saturation pressure according to the temperature of the flow. It includes both evaporation and condensation of the vapor bubbles, which occur alternately with high frequency. Cavitation can be very dangerous, especially for pumps, because it leads to break of flow continuity, noise, vibration, erosion of blades and change in pump’s characteristics. Therefore it is very important for pump designers and users to avoid working in cavitation conditions. Simulation of flow can be very useful in that and can indicate if there is risk of cavitating flow occurrence. As this is a multiphase flow and quite complicated phenomena, there are a few mathematical models describing it. The aim of this paper is to make a short review of them and describe their approach to model cavitation. It is desirable to know differences between them to model this phenomenon properly.

  15. GEC Ferranti piezo vibratory gyroscope

    Science.gov (United States)

    Nuttall, J. D.

    1993-01-01

    Prototypes of a piezo-electric vibratory angular rate transducer (gyroscope) (PVG) have been constructed and evaluated. The construction is on the lines suggested by Burdess. The sensitive element is a cylinder of radially poled piezo-electric ceramic. The cylinder is metallized inside and out, and the outer metallization is divided into eight electrodes. The metallization on the inside is earthed. A phase locked loop, using pairs of the electrodes, causes the cylinder to vibrate in one of its two fundamental, degenerate modes. In the presence of rotation, some of the vibration is coupled into the outer mode. This can be detected, or suppressed with a closed-up technique and provides a measure of rotation rate. The gyroscope provides a number of advantages over rotating mass and optical instruments: low size and mass, lower power consumption, potentially high reliability, potentially good dormancy, low cost and high maximum rate.

  16. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    Science.gov (United States)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  17. Capability evaluation of ultrasonic cavitation peening at different standoff distances.

    Science.gov (United States)

    Bai, Fushi; Saalbach, Kai-Alexander; Long, Yangyang; Twiefel, Jens; Wallaschek, Jörg

    2018-03-01

    Ultrasonic cavitation peening is a novel surface treatment technology which utilizes the effect of cavitation bubble collapses to improve the properties of metal surfaces. In order to obtain high impact during ultrasonic cavitation peening, a small standoff distance between a sound radiator and a rigid reflector (the surface of treated specimen) is necessary. However, the effects of different standoff distances on the capability of ultrasonic cavitation peening are not yet clear. In this paper, a simplified model was developed to evaluate the cavitation capability at different standoff distances. Meanwhile, to validate the theoretical model, the plastic deformation or erosion on the peening surface before and after treatment were compared. It was found that at a very small standoff distance the impact pressure generated by cavitation bubbles did not cause much deformation or erosion, as the dynamics of cavitation bubbles was limited. At a large standoff distance, due to much attenuation of sound propagation in the bubbly liquid, little impact pressure was generated by the collapse of cavitation bubbles and reached the treated surface. A fixed vibration amplitude, however, corresponded to a standoff distance which caused the largest deformation or erosion on the treated surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of HIFU induced cavitation on flooded lung parenchyma.

    Science.gov (United States)

    Wolfram, Frank; Dietrich, Georg; Boltze, Carsten; Jenderka, Klaus Vitold; Lesser, Thomas Günther

    2017-01-01

    High intensity focused ultrasound (HIFU) has gained clinical interest as a non-invasive local tumour therapy in many organs. In addition, it has been shown that lung cancer can be targeted by HIFU using One-Lung Flooding (OLF). OLF generates a gas free saline-lung compound in one lung wing and therefore acoustic access to central lung tumours. It can be assumed that lung parenchyma is exposed to ultrasound intensities in the pre-focal path and in cases of misguiding. If so, cavitation might be induced in the saline fraction of flooded lung and cause tissue damage. Therefore this study was aimed to determine the thresholds of HIFU induced cavitation and tissue erosion in flooded lung. Resected human lung lobes were flooded ex-vivo. HIFU (1,1 MHz) was targeted under sonographic guidance into flooded lung parenchyma. Cavitation events were counted using subharmonic passive cavitation detection (PCD). B-Mode imaging was used to detect cavitation and erosion sonographically. Tissue samples out of the focal zone were analysed histologically. In flooded lung, a PCD and a sonographic cavitation detection threshold of 625  Wcm - 2 ( p r  = 4, 3  MPa ) and 3.600  Wcm - 2 ( p r  = 8, 3  MPa ) was found. Cavitation in flooded lung appears as blurred hyperechoic focal region, which enhances echogenity with insonation time. Lung parenchyma erosion was detected at intensities above 7.200  Wcm - 2 ( p r  = 10, 9  MPa ). Cavitation occurs in flooded lung parenchyma, which can be detected passively and by B-Mode imaging. Focal intensities required for lung tumour ablation are below levels where erosive events occur. Therefore focal cavitation events can be monitored and potential risk from tissue erosion in flooded lung avoided.

  19. Microbubble Cavitation Imaging

    Science.gov (United States)

    Vignon, Francois; Shi, William T.; Powers, Jeffry E.; Everbach, E. Carr; Liu, Jinjin; Gao, Shunji; Xie, Feng; Porter, Thomas R.

    2014-01-01

    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 µs. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented. PMID:23549527

  20. Numerical investigations on cavitation intensity for 3D homogeneous unsteady viscous flows

    Science.gov (United States)

    Leclercq, C.; Archer, A.; Fortes-Patella, R.

    2016-11-01

    The cavitation erosion remains an industrial issue. In this paper, we deal with the cavitation intensity which can be described as the aggressiveness - or erosive capacity - of a cavitating flow. The estimation of this intensity is a challenging problem both in terms of modelling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a model was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. An intensity model based on pressure and void fraction derivatives was developped and applied to a NACA 65012 hydrofoil tested at LMH-EPFL (École Polytechnique Fédérale de Lausanne) [1]. 2D and 3D unsteady cavitating simulations were performed using a homogeneous model with void fraction transport equation included in Code_Saturne with cavitating module [2]. The article presents a description of the numerical code and the physical approach considered. Comparisons between 2D and 3D simulations, as well as between numerical and experimental results obtained by pitting tests, are analyzed in the paper.

  1. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    Science.gov (United States)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  2. Dynamics of Vortex Cavitation

    NARCIS (Netherlands)

    Pennings, P.C.

    2016-01-01

    This thesis describes the mechanisms with which tip vortex cavitation is responsible for broadband pressure fluctuations on ship propellers. Hypotheses for these are described in detail by Bosschers (2009). Validation is provided by three main cavitation-tunnel experiments, one on a model propeller

  3. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency.

    Science.gov (United States)

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Koda, Shinobu; Yasuda, Keiji

    2017-11-01

    Cavitation, chemical effect, and mechanical effect thresholds were investigated in wide frequency ranges from 22 to 4880kHz. Each threshold was measured in terms of sound pressure at fundamental frequency. Broadband noise emitted from acoustic cavitation bubbles was detected by a hydrophone to determine the cavitation threshold. Potassium iodide oxidation caused by acoustic cavitation was used to quantify the chemical effect threshold. The ultrasonic erosion of aluminum foil was conducted to estimate the mechanical effect threshold. The cavitation, chemical effect, and mechanical effect thresholds increased with increasing frequency. The chemical effect threshold was close to the cavitation threshold for all frequencies. At low frequency below 98kHz, the mechanical effect threshold was nearly equal to the cavitation threshold. However, the mechanical effect threshold was greatly higher than the cavitation threshold at high frequency. In addition, the thresholds of the second harmonic and the first ultraharmonic signals were measured to detect bubble occurrence. The threshold of the second harmonic approximated to the cavitation threshold below 1000kHz. On the other hand, the threshold of the first ultraharmonic was higher than the cavitation threshold below 98kHz and near to the cavitation threshold at high frequency. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. CFD analysis of cloud cavitation on three tip-modified propellers with systematically varied tip geometry

    Science.gov (United States)

    Shin, K. W.; Andersen, P.

    2015-12-01

    The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used as the reference propeller. For the reference propeller, sheet cavitation extends over a whole chord length in the hull wake peak. As the blade gets out of the wake peak, the rear part of sheet cavity is detached in a form of cloud cavitation. For the reference propeller, the tip pitch reduction from the maximum is about 35%. When decreasing the tip pitch reduction to 10%, tip vortex cavitation is formed and cloud cavitation is significantly weakened. When increasing the tip pitch reduction to 60%, sheet cavitation slightly moves to inner radii and cloud cavitation grows larger.

  5. Can Cavitation Be Anticipated?

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Dress, W.B.; Hylton, J.O.; Kercel, S.W.

    1999-04-25

    The major problem with cavitation in pumps and hydraulic systems is that there is no effective (conventional) method for detecting or predicting its inception. The traditional method of recognizing cavitation in a pump is to declare the event occurring when the total head drops by some arbitrary value (typically 3%) in response to a pressure reduction at the pump inlet. However, the device is already seriously cavitating when this happens. What is actually needed is a practical method to detect impending rather than incipient cavitation. Whereas the detection of incipient cavitation requires the detection of features just after cavitation starts, the anticipation of cavitation requires the detection and identification of precursor features just before it begins. Two recent advances that make this detection possible. The first is acoustic sensors with a bandwidth of 1 MHz and a dynamic range of 80 dB that preserve the fine details of the features when subjected to coarse vibrations. The second is the application of Bayesian parameter estimation which makes it possible to separate weak signals, such as those present in cavitation precursors, from strong signals, such as pump vibration. Bayesian parameter estimation derives a model based on cavitation hydrodynamics and produces a figure of merit of how well it fits the acquired data. Applying this model to an anticipatory engine should lead to a reliable method of anticipating cavitation before it occurs. This paper reports the findings of precursor features using high-performance sensors and Bayesian analysis of weak acoustic emissions in the 100-1000kHz band from an experimental flow loop.

  6. Simulation of Cavitation Water Flows

    Directory of Open Access Journals (Sweden)

    Piroz Zamankhan

    2015-01-01

    Full Text Available The air-water mixture from an artificially aerated spillway flowing down to a canyon may cause serious erosion and damage to both the spillway surface and the environment. The location of an aerator, its geometry, and the aeration flow rate are important factors in the design of an environmentally friendly high-energy spillway. In this work, an analysis of the problem based on physical and computational fluid dynamics (CFD modeling is presented. The numerical modeling used was a large eddy simulation technique (LES combined with a discrete element method. Three-dimensional simulations of a spillway were performed on a graphics processing unit (GPU. The result of this analysis in the form of design suggestions may help diminishing the hazards associated with cavitation.

  7. Cavitation in flowing superfluid helium

    Science.gov (United States)

    Daney, D. E.

    1988-01-01

    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  8. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian

    2017-12-01

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.

  9. Fundamentals of Cavitation

    CERN Document Server

    Franc, Jean-Pierre

    2005-01-01

    The present book is aimed at providing a comprehensive presentation of cavitation phenomena in liquid flows. It is further backed up by the experience, both experimental and theoretical, of the authors whose expertise has been internationally recognized. A special effort is made to place the various methods of investigation in strong relation with the fundamental physics of cavitation, enabling the reader to treat specific problems independently. Furthermore, it is hoped that a better knowledge of the cavitation phenomenon will allow engineers to create systems using it positively. Examples in the literature show the feasibility of this approach.

  10. Parametrically disciplined operation of a vibratory gyroscope

    Science.gov (United States)

    Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  11. Coriolis vibratory gyroscopes theory and design

    CERN Document Server

    Apostolyuk, Vladislav

    2016-01-01

    This book provides the latest theoretical analysis and design methodologies of different types of Coriolis vibratory gyroscopes (CVG). Together, the chapters analyze different types of sensitive element designs and their kinematics, derivation of motion equations, analysis of sensitive elements dynamics in modulated and demodulated signals, calculation and optimization of main performance characteristics, and signal processing and control. Essential aspects of numerical simulation of CVG using Simulink® are also covered. This is an ideal book for graduate students, researchers, and engineers working in fields that require gyroscope application, including but not limited to: inertial sensors and systems, automotive and consumer electronics, small unmanned aircraft control systems, personal mobile navigation systems and related software development, and augmented and virtual reality systems.

  12. Controlling cavitation-based image contrast in focused ultrasound histotripsy surgery.

    Science.gov (United States)

    Allen, Steven P; Hall, Timothy L; Cain, Charles A; Hernandez-Garcia, Luis

    2015-01-01

    To develop MRI feedback for cavitation-based, focused ultrasound, tissue erosion surgery (histotripsy), we investigate image contrast generated by transient cavitation events. Changes in GRE image intensity are observed while balanced pairs of field gradients are varied in the presence of an acoustically driven cavitation event. The amplitude of the acoustic pulse and the timing between a cavitation event and the start of these gradient waveforms are also varied. The magnitudes and phases of the cavitation site are compared with those of control images. An echo-planar sequence is used to evaluate histotripsy lesions in ex vivo tissue. Cavitation events in water cause localized attenuation when acoustic pulses exceed a pressure threshold. Attenuation increases with increasing gradient amplitude and gradient lobe separation times and is isotropic with gradient direction. This attenuation also depends upon the relative timing between the cavitation event and the start of the balanced gradients. These factors can be used to control the appearance of attenuation while imaging ex vivo tissue. By controlling the timing between cavitation events and the imaging gradients, MR images can be made alternately sensitive or insensitive to cavitation. During therapy, these images can be used to isolate contrast generated by cavitation. © 2014 Wiley Periodicals, Inc.

  13. Cavitation During Superplastic Forming

    Directory of Open Access Journals (Sweden)

    John Campbell

    2011-07-01

    Full Text Available Cavitation is the opening of pores during superplastic forming, typically at grain boundary triple points or on second phase grain boundary particles during slip of grain boundaries. Theories for the initiation of cavitation are reviewed. It seems that cavitation is unlikely to occur by processes intrinsic to metals such as dislocation mechanisms or point defect condensation. It is proposed that cavitation can only occur at non-bonded interfaces such as those introduced extrinsically (i.e., from the outside during the original casting of the metal. These defects, known as oxide bifilms, are naturally introduced during pouring of the liquid metal, and are frozen into the solid, often pushed by dendritic growth into grain boundaries where they are difficult to detect because of their extreme thinness, often measured in nanometres. Their unbonded central interface acts as a crack and can initiate cavitation. Second phase precipitates probably do not nucleate and grow on grain boundaries but grow on bifilms in the boundaries, explaining the apparent association between boundaries, second phase particles and failure initiation. Improved melting and casting techniques can provide metal with reduced or zero bifilm population for which cavitation would not be possible, promising significant improvements in superplastic behaviour.

  14. Cavitation During Superplastic Forming.

    Science.gov (United States)

    Campbell, John

    2011-07-08

    Cavitation is the opening of pores during superplastic forming, typically at grain boundary triple points or on second phase grain boundary particles during slip of grain boundaries. Theories for the initiation of cavitation are reviewed. It seems that cavitation is unlikely to occur by processes intrinsic to metals such as dislocation mechanisms or point defect condensation. It is proposed that cavitation can only occur at non-bonded interfaces such as those introduced extrinsically (i.e., from the outside) during the original casting of the metal. These defects, known as oxide bifilms, are naturally introduced during pouring of the liquid metal, and are frozen into the solid, often pushed by dendritic growth into grain boundaries where they are difficult to detect because of their extreme thinness, often measured in nanometres. Their unbonded central interface acts as a crack and can initiate cavitation. Second phase precipitates probably do not nucleate and grow on grain boundaries but grow on bifilms in the boundaries, explaining the apparent association between boundaries, second phase particles and failure initiation. Improved melting and casting techniques can provide metal with reduced or zero bifilm population for which cavitation would not be possible, promising significant improvements in superplastic behaviour.

  15. キャビテーション壊食とスラリー摩耗の複合損傷に及ぼすスラリー濃度の影響

    National Research Council Canada - National Science Library

    服部, 修次; 前川, 紀英

    2001-01-01

    Simultaneous damage of cavitation erosion, and slurry wear of SUS 304 was studied by using a test apparatus with the combination of an ultrasonic vibratory cavitation device and a slurry jet device...

  16. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control

    CSIR Research Space (South Africa)

    Loveday, PW

    1998-09-01

    Full Text Available A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing...

  17. Vibratory gyroscopes : identification of mathematical model from test data

    CSIR Research Space (South Africa)

    Shatalov, MY

    2007-05-01

    Full Text Available Simple mathematical model of vibratory gyroscopes imperfections is formulated, which includes anisotropic damping and variation of mass-stiffness parameters and their harmonics. The method of identification of parameters of the mathematical model...

  18. Configuration System for Simulation Based Design of Vibratory Bowl Feeders

    DEFF Research Database (Denmark)

    Hansson, Michael Natapon; Mathiesen, Simon; Ellekilde, Lars-Peter

    2017-01-01

    Vibratory bowl feeders are still among the most commonly used production equipment for automated part feeding, where parts are correctly oriented for further manipulation by being conveyed through a set of orienting devices. Designing vibratory bowl feeders involves selecting and sequencing a num...... the configuration task. To test the approach, the configuration system is used to find three device sequences for feeding three parts in specific orientations. The sequences are validated through simulation and real world experiments, showing good consistency....

  19. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  20. Cavitation in medicine.

    Science.gov (United States)

    Brennen, Christopher Earls

    2015-10-06

    We generally think of bubbles as benign and harmless and yet they can manifest the most remarkable range of physical effects. Some of those effects are the stuff of our everyday experience as in the tinkling of a brook or the sounds of breaking waves at the beach. But even these mundane effects are examples of the ability of bubbles to gather, focus and radiate energy (acoustic energy in the above examples). In other contexts that focusing of energy can lead to serious technological problems as when cavitation bubbles eat great holes through ships' propeller blades or cause a threat to the integrity of the spillways at the Hoover Dam. In liquid-propelled rocket engines, bubbles pose a danger to the stability of the propulsion system, and in artificial heart valves they can cause serious damage to the red blood cells. In perhaps the most extraordinary example of energy focusing, collapsing cavitation bubbles can emit not only sound, but also light with black body radiation temperatures equal to that of the sun (Brennen 1995 Cavitation and bubble dynamics). But, harnessed carefully, this almost unique ability to focus energy can also be put to remarkably constructive use. Cavitation bubbles are now used in a remarkable range of surgical and medical procedures, for example to emulsify tissue (most commonly in cataract surgery or in lithotripsy procedures for the reduction of kidney and gall stones) or to manipulate the DNA in individual cells. By creating cavitation bubbles non-invasively thereby depositing and focusing energy non-intrusively, one can generate minute incisions or target cancer cells. This paper will begin by briefly reviewing the history of cavitation phenomena and will end with a vision of the new horizons for the amazing cavitation bubble.

  1. Detecting Cavitation Pitting Without Disassembly

    Science.gov (United States)

    Barkhoudarian, S.

    1986-01-01

    Technique for detecting cavitation pitting in pumps, turbines, and other machinery uses low-level nuclear irradiation. Isotopes concentrated below surface emit gamma radiation, a portion of which is attenuated by overlying material. Where there are cavitation pits, output of gamma-ray detector fluctuates as detector is scanned near pits. Important to detect cavitation pits because nozzle, turbine blade, or other pump component weakened by cavitation could fail catastrophically and cause machine to explode.

  2. Research on the induction motor current signature for centrifugal pump at cavitation condition

    Directory of Open Access Journals (Sweden)

    Yin Luo

    2015-11-01

    Full Text Available Cavitation is a major undesirable phenomenon for centrifugal pump because it can cause hydraulic performance deterioration, pump damage by pitting and material erosion, and structural vibration and noise. Cavitation can appear within the entire range of the operating conditions; therefore, it must be prevented by all means. Sensorless monitoring technology based on motor current signature analysis is non-intrusive and economic for monitoring motor-driven equipment. Thus, this technology is suitable for centrifugal pump systems. The motor current signature for centrifugal pump load at the cavitation condition is the basis of this technology. However, systematic research is lacking on sensorless monitoring technology based on motor current signature. As a result, the tentative exploration for motor current signature at cavitation load was conducted in this study. The results show that the stator current is still a sinusoidal alternating current strictly to the law of sine. Moreover, the root mean square of the current fluctuates because of different flow regimes in the cavitation progress and decreases because vapor density is smaller than water density when cavitation is fully formed. For the stator current spectrum, the noise level, noise distribution, rotation speed, and vane pass frequency components show features in the cavitation process. These indicator indexes change according to the stage of cavitation development. Thus, the motor current signature analysis is found to be a feasible and cost-effective method for the stages of cavitation condition.

  3. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Manzi, Nicholas J [ORNL; Chitnis, Parag V [ORNL; Holt, Ray G [ORNL; Roy, Ronald A [ORNL; Cleveland, Robin O [ORNL; Riemer, Bernie [ORNL; Wendel, Mark W [ORNL

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  4. Cavitations induced by plasmas, plasmas induced by cavitations, and plasmas produced in cavitations

    Science.gov (United States)

    Sasaki, Koichi

    2015-11-01

    Cavitation bubbles are not static bubbles but have dynamics of expansion, shrinkage, and collapse. Since the collapse of a cavitation bubble is roughly an adiabatic process, the inside of the bubble at the collapse has a high temperature and a high pressure, resulting in the production of a plasma. This talk will be focused on cavitation-related plasma phenomena and the role of the cavitation bubble in the synthesis of nanoparticles. A method for inducing a cavitation bubble is laser ablation in liquid. After the disappearance of laser-produced plasma with optical emission, we have observed the formation of a cavitation bubble. We have found that the inside of the cavitation bubble is the reaction field for the synthesis of nanoparticles. The atomic and molecular species ejected from the ablation target toward the liquid are transported into the cavitation bubble, and they condense into nanoparticles inside it. It is important to note that nanoparticles are stored inside the cavitation bubble until its collapse. We have shown that the size and the structure of nanoparticles are controlled by controlling the dynamics of the cavitation bubbles. Another method for inducing cavitation bubbles is to use ultrasonic power. We have found a simple method for the efficient production of standing cavitation bubbles. The method is just inserting a punching metal plate into water irradiated by ultrasonic wave. The depth of water and the position of the punching plate should be tuned precisely. We have proposed the mechanism of the efficient production of cavitation bubbles by this method. Currently, we try to have electric discharges in cavitation bubbles with the intention of realizing nonequilibrium sonochemistry. In particular, the electric discharge in a laser-induced cavitation bubble shows interesting distortion of the bubble shape, which suggests the electrostatic characteristics of the cavitation bubble.

  5. Pulse-Inversion Subharmonic Ultrafast Active Cavitation Imaging in Tissue Using Fast Eigenspace-Based Adaptive Beamforming and Cavitation Deconvolution.

    Science.gov (United States)

    Bai, Chen; Xu, Shanshan; Duan, Junbo; Jing, Bowen; Yang, Miao; Wan, Mingxi

    2017-08-01

    Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.

  6. Cavitation effects in ultrasonic cleaning baths

    Science.gov (United States)

    Glasscock, Barbara H.

    1995-01-01

    In this project, the effect of cavitation from aqueous ultrasonic cleaning on the surfaces of metal and non-metal sample coupons was studied. After twenty cleaning cycles, the mass loss from the aluminum coupons averaged 0.22 mg/sq cm surface area and 0.014 mg/sq cm for both stainless steel and titanium. The aluminum coupons showed visual evidence of minor cavitation erosion in regions of previously existing surface irregularities. The non-metal samples showed some periods of mass gain. These effects are believed to have minor impact on hardware being cleaned, but should be evaluated in the context of specific hardware requirements. Also the ultrasonic activity in the large cleaning baths was found to be unevenly distributed as measured by damage to sheets of aluminum foil. It is therefore recommended that items being cleaned in an ultrasonic bath be moved or conveyed during the cleaning to more evenly distribute the cavitation action provide more uniform cleaning.

  7. Taming Acoustic Cavitation

    CERN Document Server

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.

  8. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.

    1963-11-15

    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  9. Cavitation bubble dynamics.

    Science.gov (United States)

    Lauterborn, W; Ohl, C D

    1997-04-01

    The dynamics of cavitation bubbles on water is investigated for bubbles produced optically and acoustically. Single bubble dynamics is studied with laser produced bubbles and high speed photography with framing rates up to 20.8 million frames per second. Examples for jet formation and shock wave emission are given. Acoustic cavitation is produced in water in the interior of piezoelectric cylinders of different sizes (up to 12 cm inner diameter). The filementary structure composed of bubbles is investigated and their light emission (sonoluminescence) studied for various driving strengths.

  10. Study on the Effect of Inlet Fluctuation on Cavitation in a Cone Flow Channel.

    Science.gov (United States)

    Hai, Liu; Shuping, Cao; Xiaohui, Luo

    2015-05-01

    A mathematical method was conducted to investigate the mechanism of formation of cavitation cloud, while the inlet stream contains a fluctuating flow. Based on the Rayleigh-Plesset equation and the static pressure distribution in a cone flow channel, parameters related to cavitation cloud are estimated, and the collapse pressure of the cavitation cloud is obtained by solving the equation of Mørch's model. Moreover, the effect of the amplitude and frequency of inlet fluctuation on cavitation is studied. Results revealed that the smaller the amplitude, the smaller the cloud and the lower the collapse pressure. And frequency of fluctuating stream was found to have a relative great effect on frequency of peak pressure but not so significant on peak collapse pressure and size of cloud. It is concluded that limiting the inlet fluctuation reduces the erosion and noise generated by cavitation collapse.

  11. CFD analysis of cloud cavitation on three tip-modified propellers with systematically varied tip geometry

    DEFF Research Database (Denmark)

    Shin, K. W.; Andersen, Poul

    2015-01-01

    The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached...... eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES...... results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used...

  12. Transient cavitation in pipelines

    NARCIS (Netherlands)

    Kranenburg, C.

    1974-01-01

    The aim of the present study is to set up a one-dimensional mathematical model, which describes the transient flow in pipelines, taking into account the influence of cavitation and free gas. The flow will be conceived of as a three-phase flow of the liquid, its vapour and non-condensible gas. The

  13. Effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions

    DEFF Research Database (Denmark)

    Laessøe, Line; Sønksen, Jens; Bagi, Per

    2003-01-01

    We examined the effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions.......We examined the effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions....

  14. Dynamics of cavitation-structure interaction

    Science.gov (United States)

    Wang, Guoyu; Wu, Qin; Huang, Biao

    2017-08-01

    Cavitation-structure interaction has become one of the major issues for most engineering applications. The present work reviews recent progress made toward developing experimental and numerical investigation for unsteady turbulent cavitating flow and cavitation-structure interaction. The goal of our overall efforts is to (1) summarize the progress made in the experimental and numerical modeling and approaches for unsteady cavitating flow and cavitation-structure interaction, (2) discuss the global multiphase structures for different cavitation regimes, with special emphasis on the unsteady development of cloud cavitation and corresponding cavitating flow-induced vibrations, with a high-speed visualization system and a structural vibration measurement system, as well as a simultaneous sampling system, (3) improve the understanding of the hydroelastic response in cavitating flows via combined physical and numerical analysis, with particular emphasis on the interaction between unsteady cavitation development and structural deformations. Issues including unsteady cavitating flow structures and cavitation-structure interaction mechanism are discussed.

  15. Analysis of the cavitating flow induced by an ultrasonic horn – Experimental investigation on the influence of actuation phase, amplitude and geometrical boundary conditions

    Directory of Open Access Journals (Sweden)

    Müller Saskia

    2014-03-01

    Full Text Available Till today, factors influencing the formation and collapse of densely distributed, interacting cavitation bubbles are only qualitatively understood. The aim of the present study is to investigate experimentally the influence of selected boundary conditions on the number and size distribution of cavitation bubbles created by an ultrasonic horn (sonotrode. Cavitation bubble clouds below the sonotrode were recorded by means of phase-locked shadowgraphy imaging. The time integrated number of cavitation bubbles was found to decrease exponentially with growing bubble radius. The number of bubbles was increased with growing actuation amplitude and gap width between the sonotrode tip and an opposing solid wall. Furthermore, it could be shown that the number of cavitation bubbles depends on the actuation phase. Future investigations will focus on establishing a statistical relation between the number and size distribution of cavitation bubbles in the near wall region and the resulting cavitation erosion on solid surfaces.

  16. A subharmonic vibratory pattern in normal vocal folds

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK; Miller, DG

    This study observes in detail an F-0/2 (sounding an octave below an original tone) subharmonic vibratory pattern produced in a normal larynx. Simultaneous electroglottographic and photoglottographic measurements reveal two different open phases within a subharmonic cycle-the first shorter with a

  17. Automation Selection and Sequencing of Traps for Vibratory Feeders

    DEFF Research Database (Denmark)

    Mathiesen, Simon; Ellekilde, Lars-Peter

    2017-01-01

    Vibratory parts feeders with mechanical orienting devices are used extensively in the assembly automation industry. Even so, the design process is based on trial-and-error approaches and is largely manual. In this paper, a methodology is presented for automatic design of this type of feeder...

  18. Cavitation onset caused by acceleration.

    Science.gov (United States)

    Pan, Zhao; Kiyama, Akihito; Tagawa, Yoshiyuki; Daily, David J; Thomson, Scott L; Hurd, Randy; Truscott, Tadd T

    2017-07-24

    Striking the top of a liquid-filled bottle can shatter the bottom. An intuitive interpretation of this event might label an impulsive force as the culprit in this fracturing phenomenon. However, high-speed photography reveals the formation and collapse of tiny bubbles near the bottom before fracture. This observation indicates that the damaging phenomenon of cavitation is at fault. Cavitation is well known for causing damage in various applications including pipes and ship propellers, making accurate prediction of cavitation onset vital in several industries. However, the conventional cavitation number as a function of velocity incorrectly predicts the cavitation onset caused by acceleration. This unexplained discrepancy leads to the derivation of an alternative dimensionless term from the equation of motion, predicting cavitation as a function of acceleration and fluid depth rather than velocity. Two independent research groups in different countries have tested this theory; separate series of experiments confirm that an alternative cavitation number, presented in this paper, defines the universal criteria for the onset of acceleration-induced cavitation.

  19. Cavitation onset caused by acceleration

    Science.gov (United States)

    Pan, Zhao; Kiyama, Akihito; Tagawa, Yoshiyuki; Daily, David J.; Thomson, Scott L.; Hurd, Randy; Truscott, Tadd T.

    2017-08-01

    Striking the top of a liquid-filled bottle can shatter the bottom. An intuitive interpretation of this event might label an impulsive force as the culprit in this fracturing phenomenon. However, high-speed photography reveals the formation and collapse of tiny bubbles near the bottom before fracture. This observation indicates that the damaging phenomenon of cavitation is at fault. Cavitation is well known for causing damage in various applications including pipes and ship propellers, making accurate prediction of cavitation onset vital in several industries. However, the conventional cavitation number as a function of velocity incorrectly predicts the cavitation onset caused by acceleration. This unexplained discrepancy leads to the derivation of an alternative dimensionless term from the equation of motion, predicting cavitation as a function of acceleration and fluid depth rather than velocity. Two independent research groups in different countries have tested this theory; separate series of experiments confirm that an alternative cavitation number, presented in this paper, defines the universal criteria for the onset of acceleration-induced cavitation.

  20. Cavitation Nuclei: Experiments and Theory

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2009-01-01

    us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....

  1. PREFACE: 9th International Symposium on Cavitation (CAV2015)

    Science.gov (United States)

    Farhat, M.; Müller, A.

    2015-12-01

    It is our pleasure and privilege to welcome all the participants of the 9th International Symposium on Cavitation (CAV2015) to Lausanne. Since its initiation in 1986 in Sendai, Japan, the CAV symposium has grown to become the world's foremost event dedicated to cavitation. Hosted by EPFL (Ecole Polytechnique Fédérale de Lausanne) and staged at the SwissTech Convention Center, CAV2015 is a unique opportunity to exchange with leading scientists and industry experts about the latest advances in theoretical modelling, numerical simulation and experimentation related to cavitation phenomena with a special emphasis on practical applications. The topics covered by CAV2015 include cavitation in ¬fluid machinery and fuel systems, bubble dynamics, cavitation erosion, advanced numerical simulation, sonochemistery, biomedicine and experimental techniques. CAV2015 will also host an exhibition of leading providers of state of the art measurement equipment, including high-speed imaging systems, non-intrusive velocimetry, pressure sensors, as well as numerical solvers. We have accepted over 190 papers, which will be presented in four parallel sessions. The proceedings will appear in the open access Journal of Physics: Conference Series (JPCS), which is part of the IOP Conference Series. All published papers are fully citable and upon publication will be free to download in perpetuity. We would like to thank all the reviewers for their great help during the selection process. We will also propose six plenary speakers to highlight cavitation issues in different fields. Finally, we would like to warmly thank our sponsors for their valuable support and the local Organizing Committee for the efforts in setting up this important event. We look forward to seeing you in Lausanne!

  2. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    Science.gov (United States)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  3. Cavitation-resistant inducer

    Science.gov (United States)

    Dunn, Charlton; Subbaraman, Maria R.

    1989-01-01

    An improvement in an inducer for a pump wherein the inducer includes a hub, a plurality of radially extending substantially helical blades and a wall member extending about and encompassing an outer periphery of the blades. The improvement comprises forming adjacent pairs of blades and the hub to provide a substantially rectangular cross-sectional flow area which cross-sectional flow area decreases from the inlet end of the inducer to a discharge end of the inducer, resulting in increased inducer efficiency improved suction performance, reduced susceptibility to cavitation, reduced susceptibility to hub separation and reduced fabrication costs.

  4. Characterization of the Bell-Shaped Vibratory Angular Rate Gyro

    Directory of Open Access Journals (Sweden)

    Junfang Fan

    2013-08-01

    Full Text Available The bell-shaped vibratory angular rate gyro (abbreviated as BVG is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.

  5. Error Model and Compensation of Bell-Shaped Vibratory Gyro

    OpenAIRE

    Zhong Su; Ning Liu; Qing Li

    2015-01-01

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error source...

  6. Size effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2006-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  7. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    Science.gov (United States)

    Leonard, Daniel J.

    Hydropower is the most proven renewable energy technology, supplying the world with 16% of its electricity. Conventional hydropower generates a vast majority of that percentage. Although a mature technology, hydroelectric generation shows great promise for expansion through new dams and plants in developing hydro countries. Moreover, in developed hydro countries, such as the United States, installing generating units in existing dams and the modern refurbishment of existing plants can greatly expand generating capabilities with little to no further impact on the environment. In addition, modern computational technology and fluid dynamics expertise has led to substantial improvements in modern turbine design and performance. Cavitation has always presented a problem in hydroturbines, causing performance breakdown, erosion, damage, vibration, and noise. While modern turbines are usually designed to be cavitation-free at their best efficiency point, due to the variable demand of the energy market it is fairly common to operate at off-design conditions. Here, cavitation and its deleterious effects are unavoidable, and hence, cavitation is a limiting factor on the design and operation of these turbines. Multiphase Computational Fluid Dynamics (CFD) has been used in recent years to model cavitating flow for a large range of problems, including turbomachinery. However, CFD of cavitating flow in hydroturbines is still in its infancy. This dissertation presents steady-periodic Reynolds-averaged Navier-Stokes simulations of a cavitating Francis-class hydroturbine at model and prototype scales. Computational results of the reduced-scale model and full-scale prototype, undergoing performance breakdown, are compared with empirical model data and prototype performance estimations based on standard industry scalings from the model data. Mesh convergence of the simulations is also displayed. Comparisons are made between the scales to display that cavitation performance breakdown

  8. Microleakage of Cavit, CavitW, CavitG and IRM by impedance spectroscopy.

    Science.gov (United States)

    Jacquot, B M; Panighi, M M; Steinmetz, P; G'Sell, C

    1996-07-01

    The aim of this study was to quantify the sealing ability of four temporary filling materials over 9 days using a new electrochemical technique. Fifty-two extracted human maxillary bicuspids were selected and prepared for the measurements. They were divided into four groups of 12 teeth each, in addition to two positive and two negative controls. After preparation of the endodontic access cavity the sealing ability was registered. After a randomization procedure one group was obturated with IRM, another group with Cavit, a third group with CavitW and the last group with CavitG. The sealability was measured just after obturation (time 0) and after days 1, 2, 3, 4, 7 and 9. The results showed that the IRM group was significantly more watertight than the different Cavit formulations. Throughout the experiment no significant difference was noticed between the Cavit and CavitW groups (P > 0.05). The CavitG group was significantly less watertight throughout the measurements (P < 0.05).

  9. Sonochemiluminescence observation and acoustic detection of cavitation induced by pulsed HIFU at a tissue-fluid interface.

    Science.gov (United States)

    Cao, Hua; Yin, Hui; Qiao, Yangzi; Zhang, Shusheng; Wan, Mingxi

    2013-11-01

    The aim of this study is to investigate the mechanism of the erosion process induced by 1.2 MHz pulsed high-intensity focused ultrasound (pulsed HIFU). By using Sonochemiluminescence (SCL) photograph, the initiation and maintenance of active cavitation were observed. In order to understand the role of both inertial cavitation and stable cavitation, a passive cavitation detection (PCD) transducer was used. Since the exposure variables of HIFU are important in the controlled ultrasound tissue erosion, the influence of pulse length (PL) and duty cycle (DC, Ton:Toff) has been examined. The results of tissue hole, SCL observation and acoustic detection revealed that the erosion was highly efficient for shorter PL. For higher DCs, the area of SCL increased with increasing PL. For lower DCs, the area of SCL increased with increasing PL from 10 to 20 μs and then kept constant. For all PLs, the intensity of SCL decreased with lower DC. For all DCs, the intensity of SCL per unit area (the ratio of SCL intensity to SCL area) also decreased with increasing PL from 10 to 80 μs, which suggested that the higher the intensity of SCL is, the higher the efficiency of tissue erosion is. At DC of 1:10, the position of the maximum pixel in SCL pictures was distant from the tissue-fluid interface with the increasing PL because of shielding effect. By the comparison of inertial cavitation dose (ICD) and the stable cavitation dose (SCD), the mechanisms associated with inertial cavitation are very likely to be the key factor of the erosion process. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    . The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model......The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years......, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid...

  11. Fracture of elastomers by cavitation

    KAUST Repository

    Hamdi, Adel

    2014-01-01

    Cavitation phenomenon is studied in rubber-like materials by combining experimental, theoretical and numerical approaches. Specific tests are carried out on a Styrene Butadiene Rubber to point out main characteristics of cavitation phenomenon. Hydrostatic depression is numerically modelled using finite element method. Numerical results are compared to Ball\\'s and Hou & Abeyaratne\\'s models with regard to cavity nucleation in the material. Both models well fit experimental observations suggesting that the cavitation nucleation in elastomers depends on the confinement degree of the specimen. Finally, critical hydrostatic pressure and critical global deformation are proved to govern cavitation nucleation in the studied material. Critical loadings are identified by comparing experimental and numerical load-displacement curves. © 2013 Elsevier Ltd.

  12. Current research in cavitating fluid films

    Science.gov (United States)

    Brewe, D. E. (Editor); Ball, J. H. (Editor); Khonsari, M. M. (Editor)

    1990-01-01

    A review of the current research of cavitation in fluid films is presented. Phenomena and experimental observations include gaseous cavitation, vapor cavitation, and gas entrainment. Cavitation in flooded, starved, and dynamically loaded journal bearings, as well as squeeze films are reviewed. Observations of cavitation damage in bearings and the possibility of cavitation between parallel plates with microasperities were discussed. The transcavity fluid transport process, meniscus motion and geometry or form of the film during rupture, and reformation were summarized. Performance effects were related to heat transfer models in the cavitated region and hysteresis influence on rotor dynamics coefficients. A number of cavitation algorithms was presented together with solution procedures using the finite difference and finite element methods. Although Newtonian fluids were assumed in most of the discussions, the effect of non-Newtonian fluids on cavitation was also discussed.

  13. Some Cavitation Properties of Liquids

    Directory of Open Access Journals (Sweden)

    K. D. Efremova

    2016-01-01

    Full Text Available Cavitation properties of liquid must be taken into consideration in the engineering design of hydraulic machines and hydro devices when there is a possibility that in their operation an absolute pressure in the liquid drops below atmospheric one, and for a certain time the liquid is in depression state. Cold boiling, which occurs at a comparatively low temperature under a reduced absolute pressure within or on the surface of the liquid is regarded as hydrostatic cavitation if the liquid is stationary or as hydrodynamic cavitation, if the liquid falls into conditions when in the flow cross-section there is a sharply increasing dynamic pressure and a dropping absolute pressure.In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure of the degassed liquid drops to the saturated vapour pressure, and the air dissolved in the liquid, leaving the intermolecular space, is converted into micro-bubbles of combined air and becomes a generator of cavitation “nuclei”. A quantitative estimate of the minimum allowable absolute pressure in a real, fully or partially degassed liquid at which a hydrostatic cavitation occurs is of practical interest.Since the pressure of saturated vapour of a liquid is, to a certain extent, related to the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including air solution in a liquid, as a solute may weaken intermolecular bonds and affect the pressure value of the saturated solvent vapour. In the experiment to carry out vacuum degassing of liquids was used a hydraulic air driven vacuum pump.The paper presents hydrostatic and hydrodynamic degassing liquid processes used in the experiment.The experimental studies of the cavitation properties of technical liquids (sea and distilled water, saturated NaCl solution, and pure glycerol and as a 49/51% solution in water, mineral oil and jet fuel enabled

  14. Doppler velocimetry in cavitating media.

    Science.gov (United States)

    Pindera, M Z; Siegel, J M; Makhijani, V B

    1997-01-01

    A numerical model has been developed to simulate propagation of ultrasonic beams in inhomogeneous moving media. The model is based on the ray theory of propagating waves, valid in the limit of high frequencies. The resulting equations depend only on local values of the velocity field and the speed of sound. In its implementation, the model assumes that the interactions of sound with the surrounding flow field are decoupled. This allows for applying the model in a post processing mode to flows computed by other means. The model was used to investigate beam behavior in unsteady cavitating flows. The study was motivated by reports of cavitation occurring in mitral bi-leaflet mechanical heart valves. The flow field and cavitation physics were simulated using a general purpose computer code, CFD-ACE. The ultrasonic beam model was then used to calculate the beam path, orientation, and frequency changes in the transient cavitating region. Results show that the presence of cavitation can fundamentally alter the beam propagation characteristics. Simple models that assume rectilinear propagation cannot, by definition, handle such flows. Cavitation incurs very large variations in the local sound speed, which in turn can induce very large distortions in the beam. This fact has strong ramifications regarding the accuracy of ultrasonic velocimetry when simple models are used to interpret Doppler data gathered under such flow conditions.

  15. Used Furan Sand Reclamation in REGMAS Vibratory Unit

    Directory of Open Access Journals (Sweden)

    Dańko J.

    2015-09-01

    Full Text Available The paper, especially dealt with problems of reclamation of used furan sand, carried out in new, vibratory sand reclamation unit REGMAS developed by researches from AGH-University of Science and Technology, Faculty of Foundry Engineering in Cracow (Poland. Functional characteristics of reclamation unit as well as the results of reclamation of used sand with furfuryl resin are discussed in the paper. The quality of reclaim was tested by means of the LOI and pH value, dust content in the reclaim and at least by the the quality of the castings produced in moulds prepared with the use of reclaimed matrix.

  16. Effect of temperature change on the sealing properties of Cavit and Cavit G.

    Science.gov (United States)

    Oppenheimer, S; Rosenberg, P A

    1979-09-01

    Sixty recently extracted intact anterior teeth were filled with Cavit G or Cavit. They were examined for dye penetration at room temperature and subjected to temperature change. Under the test conditions Cavit G and Cavit were resistant to penetration by aqueous methylene blue dye.

  17. Field Tests to Investigate the Penetration Rate of Piles Driven by Vibratory Installation

    Directory of Open Access Journals (Sweden)

    Zhaohui Qin

    2017-01-01

    Full Text Available Factors directly affecting the penetration rate of piles installed by vibratory driving technique are summarized and classified into seven aspects which are driving force, resistance, vibratory amplitude, energy consumption, speeding up at the beginning, pile plumbness keeping, and slowing down at the end, from the mechanism and engineering practice of the vibratory pile driving. In order to find out how these factors affect the penetration rate of the pile in three major actors of vibratory pile driving: (i the pile to be driven, (ii the selected driving system, and (iii the imposed soil conditions, field tests on steel sheet piles driven by vibratory driving technique in different soil conditions are conducted. The penetration rates of three different sheet pile types having up to four different lengths installed using two different vibratory driving systems are documented. Piles with different lengths and types driven with or without clutch have different penetration rates. The working parameters of vibratory hammer, such as driving force and vibratory amplitude, have great influences on the penetration rate of the pile, especially at the later stages of the sinking process. Penetration rate of piles driven in different soil conditions is uniform because of the different penetration resistance including shaft friction and toe resistance.

  18. Sonoluminescence and acoustic cavitation

    Science.gov (United States)

    Choi, Pak-Kon

    2017-07-01

    Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.

  19. Splash erosion

    NARCIS (Netherlands)

    Fernández-Raga, María; Palencia, Covadonga; Keesstra, Saskia; Jordán, Antonio; Fraile, Roberto; Angulo-Martínez, Marta; Cerda Bolinches, Artemio

    2017-01-01

    Soil erosion is a serious ecological and environmental problem, and the main cause of land degradation in many ecosystems at global scale. Detachment of soil particles by raindrop splash is the first stage in the soil erosion process. A review of the scientific literature published in

  20. Reflections on cavitation nuclei in water

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2007-01-01

    The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... pressure, the possibility of stabilization of free gas bubbles by a skin has been documented, but only within a range of bubble sizes that makes them responsible for tensile strengths up to about 1.5 bar, and values reaching almost 300 bar have been measured. However, cavitation nuclei can also be harbored...

  1. Generation and control of acoustic cavitation structure.

    Science.gov (United States)

    Bai, Lixin; Xu, Weilin; Deng, Jingjun; Li, Chao; Xu, Delong; Gao, Yandong

    2014-09-01

    The generation and control of acoustic cavitation structure are a prerequisite for application of cavitation in the field of ultrasonic sonochemistry and ultrasonic cleaning. The generation and control of several typical acoustic cavitation structures (conical bubble structure, smoker, acoustic Lichtenberg figure, tailing bubble structure, jet-induced bubble structures) in a 20-50 kHz ultrasonic field are investigated. Cavitation bubbles tend to move along the direction of pressure drop in the region in front of radiating surface, which are the premise and the foundation of some strong acoustic cavitation structure formation. The nuclei source of above-mentioned acoustic cavitation structures is analyzed. The relationship and mutual transformation of these acoustic cavitation structures are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cavitation pulse extraction and centrifugal pump analysis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong Lind Shaoran [University of Electronic Science and Technology of China, Chengdu (China); Yu, Bo; Qing, Biao [Xihua University, Chengdu (China)

    2017-03-15

    This study extracted cavitation pulses from hydrophone signals sampled in a centrifugal pump and analyzed their characteristics. The modified and simplified Empirical mode decomposition (EMD) algorithm was proposed for extracting cavitation pulses from strong background noise. Experimental results showed that EMD can effectively suppress noise and obtain clear cavitation pulses, facilitating the identification of the number of pulses associated with the degree of cavitation. The cavitation characteristics were modeled to predict the value of incipient cavitation. Then, we proposed a method for detecting the wear of the impeller surface. That is, the information on the impeller surface of the centrifugal pump, including the roughness of the impeller surface and its wear trends, were quantified based on the net positive suction head available of incipient cavitation. The findings indicate that the proposed technique is suitable for condition monitoring of the pump.

  3. The Effect of Aluminum Content on the Microstructure and Cavitation Wear of Feal Intermetallic Alloys

    Directory of Open Access Journals (Sweden)

    Jasionowski Robert

    2014-03-01

    Full Text Available Intermetallic-based alloys (so called intermetallics of the Fe-Al binary system are modern construction materials, which in recent decades have found application in many branches of the power, chemical and automotive industries. High resistance of FeAl based alloys to cavitational erosion results first of all from their high hardness in the as-cast state, large compressive stresses in the material, as well as homogeneous structure. In the present paper, the effect of aluminum content on the microstructure, texture and strain implemented upon cavitation wear of FeAl intermetallic alloys, have been analyzed by field emission gun scanning electron microscopy (FEG SEM and electron backscatter diffraction (EBSD analysis. Obtained results of structural characterization indicates that with increasing aluminium content effects of orientation randomization (weakening of //ND casting texture, grain refinement and rising of mechanical strenght (and so cavitational resistance take place.

  4. In Vivo Microbubble Cavitation Imaging

    NARCIS (Netherlands)

    Vignon, F.; Shi, W.; Liu, J.; Xie, F.; Gao, S.; Drvol, L.; Lof, J.; Everbach, C.; Porter, T.; Powers, J.

    2011-01-01

    Stroke is the second cause of death and leading cause of disabilityworldwide. Less than 5% of ischemic stroke patients receive the state-of-the art treatment of a thrombolytic drug tPA, and only about 10% of these gain additional benefit from it. Ultrasound (US)-inducedmicrobubble (MB) cavitation

  5. Cavitation inception from bubble nuclei

    Science.gov (United States)

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  6. Sonoporation from jetting cavitation bubbles

    NARCIS (Netherlands)

    Ohl, C.D.; Arora, M.; Ikink, Roy; de Jong, N.; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the

  7. Sonoporation from jetting cavitation bubbles

    NARCIS (Netherlands)

    C.-D. Ohl (Claus-Dieter); M. Arora (Manish); R. Ikink (Roy); N. de Jong (Nico); M. Versluis (Michel); M. Delius (Michael); D. Lohse (Detlef)

    2006-01-01

    textabstractThe fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads

  8. Adaptive Control of a Vibratory Angle Measuring Gyroscope

    Science.gov (United States)

    Park, Sungsu

    2010-01-01

    This paper presents an adaptive control algorithm for realizing a vibratory angle measuring gyroscope so that rotation angle can be directly measured without integration of angular rate, thus eliminating the accumulation of numerical integration errors. The proposed control algorithm uses a trajectory following approach and the reference trajectory is generated by an ideal angle measuring gyroscope driven by the estimate of angular rate and the auxiliary sinusoidal input so that the persistent excitation condition is satisfied. The developed control algorithm can compensate for all types of fabrication imperfections such as coupled damping and stiffness, and mismatched stiffness and un-equal damping term in an on-line fashion. The simulation results show the feasibility and effectiveness of the developed control algorithm that is capable of directly measuring rotation angle without the integration of angular rate. PMID:22163667

  9. Climate Change and Some Other Implications of Vibratory Existence

    Directory of Open Access Journals (Sweden)

    Glenn McLaren

    2009-11-01

    Full Text Available Modern Process Philosophy began when Alfred North Whitehead realized that existence is primarily vibratory, not points but processes. Vibrations are best understood as sound waves, or through using auditory metaphors rather than visual ones. Our Universe is more like music than matter, but how does this help us better understand it? In this paper I use the example of the large ocean current oscillators that help drive our climate systems to reveal the more effective nature of auditory approaches. Through an auditory approach, we can better understand the ways these oscillations constrain and interact with other levels of oscillations as well as how they might be destroyed by other levels. This can then lead to us extending our ethics to the conservation of these oscillations.

  10. The Numerical FEM Model of the Kinematics of the Vibratory Shot Peening Process

    Directory of Open Access Journals (Sweden)

    Stanisław Bławucki

    2017-12-01

    Full Text Available The paper presents the results of numerical calculations, with the finite element method in the ABAQUS program environment, of the vibratory shot peening process with loose peening elements. The behaviour of shot peening elements was analysed in the kinematic aspect. The impact of the initial deployment of vibratory shot peening elements on their behaviour during processing was investigated, including the displacement, velocity, acceleration and the number of collisions. The way of determining the effectiveness of the processing with the vibratory shot peening was illustrated.

  11. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    Science.gov (United States)

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Copyright © 2016. Published by Elsevier B.V.

  12. Numerical Investigation Cavitation Buckets for Hydrofoil Parametrically

    Directory of Open Access Journals (Sweden)

    Mehmet Salih KARAALİOĞLU

    2015-12-01

    Full Text Available Cavitation is a general fluid mechanics phenomenon that is appeared in system such as pumps, turbines, marine propellers and hydrofoils which induces pressure and velocity fluctuation in the fluid (Brennen, 2013. Cavitation can be defined as the formation of vapour regions due to a decrease in local pressure. Undesirable consequences which can cause a fall in the performance of a system, structural failure, production of noise and vibration, material damage, are encountered due to cavitation (Uşar, 2015. In this study, cavitation was analysed using a bucket diagram. Bucket diagram represents the cavitation behaviour of a wing, fin or propeller blade in a two dimensional sense. This diagram is plotted as a function of section (hydrofoil angle of attack (α versus section cavitation number (σ. Pressure distribution can be calculated on two dimensional geometry of hydrofoil by using BEM (Boundary Element Method and cavitation bucket diagram can be computed. The cavitation inception case and partial cavitation cases have been investigated and the results of the present BEM were successfully compared with those of given in literature in the past and each other. While a constant source-dipole panel method has been used to calculate the pressure distribution at cavitation inception case, PCPAN programme that solves the sheet type of cavity on the hydrofoil by potential based panel method, has been used to calculate pressure distribution for the cases of partial cavitation. Effects of maximum hydrofoil thickness, maximum camber and location of maximum camber on cavitation have been analyzed by means of cavitation bucklet diagrams. All results are discussed in a detailed manner.

  13. Cavitation Effect of Shock Pressure about Nuclear Power Plant Component Cleaning or Crud Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Man; Lee, Seung Won; Park, Sung Dae; Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2011-05-15

    In nuclear power plant, the problems are caused by corrosion phenomena on the pipe or fuel elements. It can cause the additional cost for plant component recycling or disassembly. Those solutions of problem are chemical method and physical method. Recently ultrasonic and laser methods for cleaning are developing. If fluid flow is attached to the high speed surface of a blade, a large number of bubbles are developed. As it reaches vapor pressure, the fluid vaporizes and forms small bubbles of gas. This is cavitation. Previous study of cavitation shows that predict the onset of cavitation within the pump blade and the degradation in the pressure rise due to the generation and transport of vapor. But cavitation erosion effect can be used for optimized corrosion cleaning. Cavitation can be created in restrict region such as static mixer and orifice. When the bubbles collapse later, they typically cause very strong local shock waves in the fluid, which may be audible and may even damage the blades. Purpose of this study is using shock pressure by micro bubble collapse for second time cleaning in the fluid region of the on product surface

  14. Cold Spraying of Cu-Al-Bronze for Cavitation Protection in Marine Environments

    Science.gov (United States)

    Krebs, S.; Gärtner, F.; Klassen, T.

    2015-01-01

    Traveling at high speeds, ships have to face the problem of rudder cavitation-erosion. At present, the problem is countered by fluid dynamically optimized rudders, synthetic, and weld-cladded coatings on steel basis. Nevertheless, docking and repair is required after certain intervals. Bulk Cu-Al-bronzes are in use at ships propellers to withstand corrosion and cavitation. Deposited as coatings with bulk-like properties, such bronzes could also enhance rudder life times. The present study investigates the coating formation by cold spraying CuAl10Fe5Ni5 bronze powders. By calculations of the impact conditions, the range of optimum spray parameters was preselected in terms of the coating quality parameter η on steel substrates with different temperatures. As-atomized and annealed powders were compared to optimize cavitation resistance of the coatings. Results provide insights about the interplay between the mechanical properties of powder and substrate for coating formation. Single particle impact morphologies visualize the deformation behavior. Coating performance was assessed by analyzing microstructures, bond strength, and cavitation resistance. These first results demonstrate that cold-sprayed bronze coatings have a high potential for ensuring a good performances in rudder protection. With further optimization, such coatings could evolve towards a competitive alternative to existing anti-cavitation procedures.

  15. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  16. Cavitation nucleation in gelatin: Experiment and mechanism.

    Science.gov (United States)

    Kang, Wonmo; Adnan, Ashfaq; O'Shaughnessy, Thomas; Bagchi, Amit

    2018-02-01

    Dynamic cavitation in soft materials is becoming increasingly relevant due to emerging medical implications such as the potential of cavitation-induced brain injury or cavitation created by therapeutic medical devices. However, the current understanding of dynamic cavitation in soft materials is still very limited, mainly due to lack of robust experimental techniques. To experimentally characterize cavitation nucleation under dynamic loading, we utilize a recently developed experimental instrument, the integrated drop tower system. This technique allows quantitative measurements of the critical acceleration (a cr ) that corresponds to cavitation nucleation while concurrently visualizing time evolution of cavitation. Our experimental results reveal that a cr increases with increasing concentration of gelatin in pure water. Interestingly, we have observed the distinctive transition from a sharp increase (pure water to 1% gelatin) to a much slower rate of increase (∼10× slower) between 1% and 7.5% gelatin. Theoretical cavitation criterion predicts the general trend of increasing a cr , but fails to explain the transition rates. As a likely mechanism, we consider concentration-dependent material properties and non-spherical cavitation nucleation sites, represented by pre-existing bubbles in gels, due to possible interplay between gelatin molecules and nucleation sites. This analysis shows that cavitation nucleation is very sensitive to the initial configuration of a bubble, i.e., a non-spherical bubble can significantly increase a cr . This conclusion matches well with the experimentally observed liquid-to-gel transition in the critical acceleration for cavitation nucleation. From a medical standpoint, understanding dynamic cavitation within soft materials, i.e., tissues, is important as there are both potential injury implications (blast-induced cavitation within the brain) as well as treatments utilizing the phenomena (lithotripsy). In this regard, the main

  17. Application of signal analysis to cavitation

    Science.gov (United States)

    Martin, C. S.; Veerabhadra Rao, P.

    1984-01-01

    The diagnostic facilities of the cross power spectrum and the coherence function have been employed to enhance the identification of not only the inception of cavitation, but also its level. Two piezoelectric pressure transducers placed in the downstream chamber of a model spool valve undergoing various levels of cavitation allowed for the use of both functions - the phase angle of the complex cross spectrum and the dimensionless coherence function - to sense clearly the difference between noise levels associated with a noncavitating jet from those once cavitation inception is attained. The cavitation noise within the chamber exhibited quite a regular character in terms of the phase difference between instruments for limited cavitation. Varying cavitation levels clearly illustrated the effect of bubble size on the attendant frequency range for which there was an extremely high coherence or nearly perfect causality.

  18. A Data Reduction Procedure for Cavitation Noise from an Oscillating Hydrofoil.

    Science.gov (United States)

    1981-07-01

    DISTRIBUTION STATEMENT (ofthe obstract enferedin Boqa-2, IT’Illfrent from Report) ._ . . ’ - / F./ r */ - -/’ 18. SUPPLUE "NTARY NOTES 19. KEY WORDS...the vapor pressure of the water - the water Y boils. Cavitation produces noise, metal erosion, loss of lift or thrust, and vibration in surrounding...oscillating hydrofoil was performed in the David W. Taylor Naval Ship Research and Development Center’s (DTNSRDC) 36 inch Variable Pressure Water Tunnel

  19. Electroejaculation versus vibratory stimulation in spinal cord injured men: sperm quality and patient preference.

    Science.gov (United States)

    Ohl, D A; Sønksen, J; Menge, A C; McCabe, M; Keller, L M

    1997-06-01

    We compared semen quality and patient preference between penile vibratory stimulation and electroejaculation in spinal cord injured men. We treated 11 spinal cord injured men with penile vibratory stimulation and electroejaculation in random order. End points examined were semen analysis, sperm functional assessment, and patient pain scores (1 to 10) and preferred procedure. Differences between the procedures were determined with the paired Student t test. There was no difference in antegrade sperm count but penile vibratory stimulation specimens had greater motility (26.0 versus 10.7%), viability (25.2 versus 9.7%) and motile sperm count (185.0 x 10(6) versus 97.0 x 10(6)). The retrograde sperm count was greater (but not significant) in electroejaculation patients. The total (antegrade plus retrograde) and motile sperm counts were not different. There was no difference in immunobead test (all negative), cervical mucus penetration or sperm penetration assay, although the percent hamster egg penetration approached significance (53.7% for penile vibratory stimulation versus 22.1% for electroejaculation, p = 0.06). There was no difference in the peak blood pressures and no complications were noted. Pain scores were significantly greater for electroejaculation compared to penile vibratory stimulation (5.2 versus 1.7, respectively). All patients preferred penile vibratory stimulation. There was a slight advantage in sperm quality and a high patient preference in favor of penile vibratory stimulation. Penile vibratory stimulation should be attempted first to induce ejaculation in spinal cord injured men, with electroejaculation reserved for failures.

  20. Sphincteric events during penile vibratory ejaculation and electroejaculation in men with spinal cord injuries.

    Science.gov (United States)

    Sønksen, J; Ohl, D A; Wedemeyer, G

    2001-02-01

    We investigate internal and external sphincter responses during penile vibratory stimulation and electroejaculation in men with spinal cord injury. Ejaculation induction with simultaneous recording of external and internal sphincter pressures was performed in 9 spinal cord injured men. Of the patients with upper motor neuron lesions 3 underwent penile vibratory stimulation and 3 underwent electroejaculation. In 3 men who did not respond to PVS, including 1 with upper motor neuron and 2 with lower motor neuron lesions, penile vibratory stimulation and subsequent electroejaculation were performed. In successful penile vibratory stimulation and electroejaculation upper motor neuron cases external sphincter pressure first reached a peak (average 180 cm. H2O) and subsequently decrease followed in 3 to 10 seconds by a peak in internal sphincter pressure (average 178 cm. H2O), which exceeded external sphincter pressure and ejaculation occurred. During electroejaculation, the pattern progressed, despite complete discontinuation of electrical stimulation. In electroejaculation, there was a trend for a more rapid return of external sphincter pressure greater than internal sphincter pressure, which may explain the electroejaculation retrograde fraction. In nonresponders external sphincter pressure never increased to more than 105 cm. H2O in response to penile vibratory stimulation and no ejaculation was induced. In nonresponders to penile vibratory stimulation, electroejaculation induced a typical sustained increase in internal sphincter pressure and external sphincter pressure but at lower peak pressures. Forceful contraction of the external sphincter followed by contraction of the internal sphincter always precedes ejaculation during electroejaculation and penile vibratory stimulation. Similarities between penile vibratory stimulation and electroejaculation suggest that the latter induces ejaculation via a complex neurological pathway rather than by simple direct end organ

  1. Contributions to some cavitation problems in turbomachinery

    OpenAIRE

    Arakeri, VH

    1999-01-01

    In the present article, three problems associated with cavitation in turbomachinery are discussed. The first one deals with the potential application of recent understanding in cavitation inception to similar problems in turbomachinery. The second considers the thermodynamic effects in developed cavitation. This has relevance to turbopump operation using fluids other than water. Old correlations to predict the above effect are summarized and a new correlation is proposed. Lastly, the possible...

  2. Modeling of Cavitating Flow through Waterjet Propulsors

    Science.gov (United States)

    2015-02-18

    OCT-11 -31-DEC-14 To) 4. TITLE AND SUBTITLE Modeling of Cavitating Flow through Waterjet Propulsors 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-12...239-18 Modeling of Cavitating Flow through Waterjet Propulsors Jules W. Lindau The Pennsylvania State University, Applied Research Laboratory, State...flow nature, waterjets are expected to maintain resistance to cavitation , are amenable to ad- vanced concepts such as thrust vectoring, should

  3. Jean-Martin Charcot and his vibratory chair for Parkinson disease.

    Science.gov (United States)

    Goetz, Christopher G

    2009-08-11

    Vibration therapy is currently used in diverse medical specialties ranging from orthopedics to urology to sports medicine. The celebrated 19th-century neurologist, J.-M. Charcot, used vibratory therapy to treat Parkinson disease (PD). This study analyzed printed writings by Charcot and other writers on vibratory therapy and accessed unpublished notes from the Salpêtrière Hospital, Paris. Charcot lectured on several occasions on vibratory therapy and its neurologic applications. He developed a vibration chair for patients with PD after he observed that patients were more comfortable and slept better after a train or carriage ride. He replicated this experience by having patients undergo daily 30-minute sessions in the automated vibratory chair (fauteuil trépidant). His junior colleague, Gilles de la Tourette, extended these observations and developed a helmet that vibrated the head on the premise that the brain responded directly to the pulsations. Although after Charcot's death vibratory therapy was not widely pursued, vibratory appliances are reemerging in 21st century medicine and can be retested using adaptations of Charcot's neurologic protocols.

  4. Vocal fold vibratory characteristics of healthy geriatric females--analysis of high-speed digital images.

    Science.gov (United States)

    Ahmad, Kartini; Yan, Yuling; Bless, Diane

    2012-11-01

    A high proportion of the geriatric population suffers from presbylaryngis and presbyphonia; however, our knowledge of vibratory patterns in this population is almost nonexistent. In this study, we investigate the vocal fold vibratory patterns of healthy elderly females to determine which features or combination of them could best describe the geriatric voices. Cross-sectional study with 20 elderly healthy females with no history of voice problems. Hilbert transformed glottal area waveforms (GAWs) from serial high-speed digital imaging of sustained phonation are used to provide quantitative measures of glottal vibratory characteristics and perturbations; open quotient, jitter, and shimmer. Nyquist plots provide interpretable patterns to portray the vibratory characteristics as clear, pressed, breathy, and atypical patterns. The GAW from most elderly speakers (50%) showed vibratory characteristics associated with a more pressed voice and higher glottal perturbation values: their Nyquist plot patterns show wide scatterings around the rim of the plot reflecting a much-reduced ability in sustaining vibratory oscillation; these were distinct differences from previously reported data on younger speakers. Qualitative examination revealed more anteriorly placed glottal gaps in the geriatric females. These findings have important implications in understanding voice production in the geriatric population and in helping to establish normal perturbation references among female speakers across age. Copyright © 2012 The Voice Foundation. All rights reserved.

  5. Semen quality of spinal cord injured men is better when obtained by vibratory stimulation versus electroejaculation.

    Science.gov (United States)

    Brackett, N L; Padron, O F; Lynne, C M

    1997-01-01

    Most spinal cord injured men require assisted ejaculation procedures to obtain semen, and the majority can achieve this result by vibratory stimulation or electroejaculation. We determined if semen obtained by vibratory stimulation differed in quality from that obtained by electroejaculation. Between subjects and within subjects designs were used. Of 77 spinal cord injured men 23 underwent vibratory stimulation only, 44 electroejaculation only and 10 both procedures. Antegrade, retrograde and total ejaculates were analyzed in each subject for total sperm count, percent motile sperm and percent sperm with rapid linear motion. With vibratory stimulation compared to electroejaculation the percent motile sperm and percent sperm with rapid linear motion were significantly greater, whereas total sperm count was similar, in the antegrade specimens and total ejaculates. This finding was true for different groups of subjects as well as within a group of the same subjects. Semen obtained by vibratory stimulation is of better quality than that obtained by electroejaculation. In medical practices that include assisted ejaculation of spinal cord injured men, we recommend obtaining a specimen by vibratory stimulation. If that method fails electroejaculation should be performed.

  6. Method of similarity for cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Espanet, L.; Tekatlian, A.; Barbier, D. [CEA/Cadarache, Dept. d' Etudes des Combustibles (DEC), 13 - Saint-Paul-lez-Durance (France); Gouin, H. [Aix-Marseille-3 Univ., 13 - Marseille (France). Laboratoire de Modelisation en Mecanique et Thermodynamique

    1998-07-01

    The knowledge of possible cavitation in subassembly nozzles of the fast reactor core implies the realization of a fluid dynamic model test. We propose a method of similarity based on the non-dimensionalization of the equation of motion for viscous capillarity fluid issued from the Cahn and Hilliard model. Taking into account the dissolved gas effect, a condition of compatibility is determined. This condition must be respected by the fluid in experiment, along with the scaling between the two similar flows. (author)

  7. Acoustic cavitation mechanism: a nonlinear model.

    Science.gov (United States)

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2012-03-01

    During acoustic cavitation process, bubbles appear when acoustic pressure reaches a threshold value in the liquid. The ultrasonic field is then submitted to the action of the bubbles. In this paper we develop a model to analyze the cavitation phenomenon in one-dimensional standing waves, based on the nonlinear code SNOW-BL. Bubbles are produced where the minimum rarefaction pressure peak exceeds the cavitation threshold. We show that cavitation bubbles appear at high amplitude and drastically affect (dissipation, dispersion, and nonlinearity) the ultrasonic field. This paper constitutes the first work that associates the nonlinear ultrasonic field to a bubble generation process. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels.

    Science.gov (United States)

    Zeqiri, Bajram; Hodnett, Mark; Carroll, Anthony J

    2006-01-01

    This paper describes investigations of the spatial distribution of cavitation activity generated within an ultrasonic cleaning vessel, undertaken using a novel cavitation sensor concept. The new sensor monitors high frequency acoustic emissions (>1 MHz) generated by micron-sized bubbles driven into acoustic cavitation by the applied acoustic field. Novel design features of the sensor, including its hollow, cylindrical shape, provide the sensor with spatial resolution, enabling it to associate the megahertz acoustic emissions produced by the cavitating bubbles with specific regions of space within the vessel. The performance of the new sensor has been tested using a 40 kHz ultrasonic cleaner employing four transducers and operating at a nominal electrical power of 140 W under controlled conditions. The results demonstrate the ability of the sensors to identify 'hot-spots' and 'cold-spots' in cavitation activity within the vessel, and show good qualitative agreement with an assessment of the spatial distribution of cavitation determined through erosion monitoring of thin sheets of aluminium foil. The implications of the studies for the development of reliable methods of quantifying the performance of cleaning vessels are discussed in detail.

  9. Vibratory device for taking ocean floor sediment cores

    Energy Technology Data Exchange (ETDEWEB)

    Edigariav, Z.P.; Kudinov, E.I.; Sukhov, V.E.

    1973-04-04

    The present invention relates to devices for taking sediment cores from the ocean floor. It consists in a vibratory device, comprising a string of pipe, a vibrator disposed on the string of pipe for sinking the pipe into the ocean floor, an arrangement for providing for periodical engagement and disengagement of the vibrator with the string of pipe, a hoist providing for periodical displacement of the vibrator, which is originally disposed on the lower portion of the string of pipe, up the string as the latter is being sunk into the ocean floor, and operatively coupled with the engaging arrangement. A piston is freely displaceable in the string of pipe and fixed relative to the ocean floor when the pipe is being sunk, to retain the ocean floor sediments in the pipe. The core of sediment is pressed against the piston under the action of hydrostatic and atmospheric pressures. A system is provided for stabilizing the device consisting of a load platform, a float, and guide cables. (6 claims)

  10. Error Model and Compensation of Bell-Shaped Vibratory Gyro.

    Science.gov (United States)

    Su, Zhong; Liu, Ning; Li, Qing

    2015-09-17

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h(1/2) to 0.7°/h(1/2) and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement.

  11. Sound signature of propeller tip vortex cavitation

    NARCIS (Netherlands)

    Pennings, P.C.; Westerweel, J.; Van Terwisga, T.J.C.

    2015-01-01

    The design of an efficient propeller is limited by the harmful effects of cavitation. The insuffcient understanding of the role of vortex cavitation in noise and vibration reduces the maximum effciency by a necessary safety margin. The aim in the present study is to directly relate propeller

  12. Interaction of cavitation bubbles on a wall

    NARCIS (Netherlands)

    Bremond, Nicolas; Bremond, N.P.; Arora, M.; Dammer, S.M.; Lohse, Detlef

    2006-01-01

    We report experimental and numerical investigations on the dynamics of the cavitation of bubbles on a solid surface and the interaction between them with the help of controlled cavitation nuclei: hemispherical bubbles are nucleated from hydrophobic microcavities that act as gas traps when the

  13. Mapping cavitation activity around dental ultrasonic tips.

    Science.gov (United States)

    Walmsley, A Damien; Lea, Simon C; Felver, Bernhard; King, David C; Price, Gareth J

    2013-05-01

    Cavitation arising within the water around the oscillating ultrasonic scaler tip is an area that may lead to advances in enhancing biofilm removal. The aim of this study is to map the occurrence of cavitation around scaler tips under loaded conditions. Two designs of piezoelectric ultrasonic scaling probes were evaluated with a scanning laser vibrometer and luminol dosimetric system under loaded (100 g/200 g) and unloaded conditions. Loads were applied to the probe tips via teeth mounted in a load-measuring apparatus. There was a positive correlation between probe displacement amplitude and cavitation production for ultrasonic probes. The position of cavitation at the tip of each probe was greater under loaded conditions than unloaded and for the longer P probe towards the tip. Whilst increasing vibration displacement amplitude of ultrasonic scalers increases the occurrence of cavitation, factors such as the length of the probe influence the amount of cavitation activity generated. The application of load affects the production of cavitation at the most clinically relevant area-the tip. Loading and the design of ultrasonic scalers lead to maximising the occurrence of the cavitation at the tip and enhance the cleaning efficiency of the scaler.

  14. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    Energy Technology Data Exchange (ETDEWEB)

    Weili, L; Jinling, L; Xingqi, L; Yuan, L, E-mail: liaoweili2004@163.co [Institute of Water Resources and Hydro-Electric Engineering, Xi' an University of Technology No.5 South Jinhua Road, Xi' an, Shaanxi, 710048 (China)

    2010-08-15

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  15. Erhversbetinget erosion?

    DEFF Research Database (Denmark)

    Dige, Irene; Gjørup, Hans; Nyvad, Bente

    2012-01-01

    Baggrund – I forbindelse med dental erosion er en grundig udredning af patienten vigtig, således at årsagen til erosionernes opståen findes, og der kan iværksættes adækvat forebyggende indsats. En sådan udredning er ikke mindst vigtig, når arbejdsmiljøet mistænkes. Patienttilfælde – En 30-årig...... arbejdsskade, men ikke anerkendt, da erosioner ikke er optaget på Arbejdsskadestyrelsens liste over erhvervssygdomme. En systematisk registrering af lignende tilfælde kunne imidlertid på sigt ændre retspraksis for fremtidige patienter med arbejdsbetinget erosion....

  16. Quantitative Frequency-Domain Passive Cavitation Imaging

    Science.gov (United States)

    Haworth, Kevin J.; Bader, Kenneth B.; Rich, Kyle T.; Holland, Christy K.; Mast, T. Douglas

    2017-01-01

    Passive cavitation detection has been an instrumental technique for measuring cavitation dynamics, elucidating concomitant bioeffects, and guiding ultrasound therapies. Recently, techniques have been developed to create images of cavitation activity to provide investigators with a more complete set of information. These techniques use arrays to record and subsequently beamform received cavitation emissions, rather than processing emissions received on a single-element transducer. In this paper, the methods for performing frequency-domain delay, sum, and integrate passive imaging are outlined. The method can be applied to any passively acquired acoustic scattering or emissions, including cavitation emissions. In order to compare data across different systems, techniques for normalizing Fourier transformed data and converting the data to the acoustic energy received by the array are described. A discussion of hardware requirements and alternative imaging approaches are additionally outlined. Examples are provided in MATLAB. PMID:27992331

  17. Vapor Cavitation in Dynamically Loaded Journal Bearings

    Science.gov (United States)

    Jacobson, B. O.; Hamrock, B. J.

    1983-01-01

    High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented.

  18. J-2X Turbopump Cavitation Diagnostics

    Science.gov (United States)

    Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane

    2010-01-01

    The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the

  19. Visualization of cavitating micro jets

    Directory of Open Access Journals (Sweden)

    Knížat Branislav

    2012-04-01

    Full Text Available The paper deals with one experimental set up integrated for research of the cavitating micro flows, which is incipient behind the micro channel or micro discharge nozzle outlet port. Experimental system is integrated from three major systems: hydraulic circuit with installed discharge nozzle (or micro channel, subsystem for data acquisition and data processing (DAQ system and vision system compound of high speed video camera and pulse light source with highfrequency repetition. First few results of experiments (parameters such as inlet pressure, downstream pressure were changed is also discussed.;

  20. Enterobacter Asburiae Pneumonia with Cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seung Woo; Heo, Jeong Nam; Park, Choong Ki [Dept. of Radiology, Hanyang University College of Medicine, Guri Hospital, Guri (Korea, Republic of); Choi, Yo Won; Jeon, Seok Chol [Dept. of Radiology, Hanyang University College of Medicine, Seoul Hospital, Seoul (Korea, Republic of)

    2013-03-15

    Enterobacter species have increasingly been identified as pathogens over the past several decades. These bacterial species have become more important because most are resistant to cephalothin and cefoxitin, and can produce extended-spectrum {beta}-lactamase. Enterobacter asburiae (E. asburiae) is a gram-negative rod of the family Enterobacteriaceae, named in 1986. Since then, there has been only one clinical report of E. asburiae pneumonia. We report a case of E. asburiae pneumonia with cavitation and compare it with the previous case.

  1. Superhigh Temperatures and Acoustic Cavitation

    CERN Document Server

    Belyaev, V B; Miller, M B; Sermyagin, A V; Topolnikov, A S

    2003-01-01

    The experimental results on thermonuclear synthesis under acoustic cavitation have been analyzed with the account of the latest data and their discussion. The analysis testifies that this avenue of research is a very promising one. The numerical calculations of the D(d, n)^{3}He reaction rate in the deuterated acetone (C_{3}D_{6}O) under the influence of ultrasound depending on T environment temperature within the range T=249-295 K have been carried out within the framework of hydrodynamic model. The results show that it is possible to improve substantially the effect/background relationship in experiments by decreasing the fluid temperature twenty-thirty degrees below zero.

  2. Effect of hydrodynamic cavitation on zooplankton: A tool for disinfection

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Anil, A.C.; Venkat, K.; Gaonkar, C.; Kolwalkar, J.; Khandeparker, L.; Desai, D.V.; Mahulkar, A.V.; Ranade, V.V.; Pandit, A.B.

    in the constriction. Where, I = cell count in intake water (pre-cavitation), D = cell count in discharge water (post-cavitation) 3. Cavitation number and its relevance to the energy delivered to the cavitating system Applying Bernoulli’s theorem at point 2 (vena...

  3. Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model.

    Directory of Open Access Journals (Sweden)

    Andrej Čokl

    Full Text Available Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls.

  4. Suppression of Cavitation Instabilities in an Inducer by J-Groove

    OpenAIRE

    Shimiya, Noriyuki; Fujii, Akira; Horiguchi, Hironori; Uchiumi, Masaharu; Kurokawa, Junichi; Tsujimoto, Yoshinobu

    2006-01-01

    The suppression of cavitation instabilities was attempted through the control of tip leakage vortex cavitation. The control was made by using shallow grooves, called J-groove, on the casing wall. With J-groove, the onset regions of the rotating cavitation and the asymmetric cavitation could be diminished. However, a cavitation surge appeared at higher cavitation numbers. From the observation of cavitation, it was found that the cavitation surge occurred when the tip leakage vortex cavitation ...

  5. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  6. An Anticipatory Model of Cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Dress, W.B., Jr.; Hylton, J.O.; Kercel, S.W.

    1999-04-05

    The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the model execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.

  7. Impact of time on ultrasonic cavitation peening via detection of surface plastic deformation.

    Science.gov (United States)

    Bai, Fushi; Saalbach, Kai-Alexander; Wang, Liang; Wang, Xiaogeng; Twiefel, Jens

    2017-12-05

    During ultrasonic cavitation peening, bubbles repeatedly form and collapse, which leads to high impact loads on the treated surface. At the initial stage of ultrasonic cavitation peening, the most obvious change is plastic deformation instead of mass loss on the treated specimen surface. Meanwhile the plastic deformation is beneficial for mechanical surface properties. As the cavitation exposure time increases, erosion and damage are inflicted on the metal surface due to the increase in the number of collapse events. In this respect, the treatment time is a key parameter to improve the specimen surface properties during this manufacturing process. However, the influence of treatment time on the surface properties has not yet been thoroughly investigated. In this paper, it is the first time to utilize the plastic deformation to evaluate the optimal treatment time at different input power. The plastic deformation can be deduced by the mass loss and the volume change on the treated specimen surface. Using plastic deformation, the modification of surface hardness and roughness are investigated at different cavitation exposure intervals and vibration amplitudes. It is found that significant improvement of the microhardness on the treated surface occurs at the end of incubation period. Higher vibration amplitudes of the horn tip lead to shorter incubation period and higher microhardness. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  9. Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators

    Directory of Open Access Journals (Sweden)

    Byoung-Kwon Ahn

    2010-03-01

    Full Text Available Recently underwater systems moving at high speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of supercavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT.

  10. The effect of penile vibratory stimulation on male fertility potential, spasticity and neurogenic detrusor overactivity in spinal cord lesioned individuals

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Læssøe, Line; Sønksen, J

    2005-01-01

    Present the possibility for treatment of male infertility, spasticity, and neurogenic detrusor overactivity in spinal cord lesioned (SCL) individuals with penile vibratory stimulation (PVS).......Present the possibility for treatment of male infertility, spasticity, and neurogenic detrusor overactivity in spinal cord lesioned (SCL) individuals with penile vibratory stimulation (PVS)....

  11. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Cavitation instabilities have been predicted for a single void in a ductile metal stressed under high triaxiality conditions. In experiments for a ceramic reinforced by metal particles a single dominant void has been observed on the fracture surface of some of the metal particles bridging a crack...... for the influence of such size-effects on cavitation instabilities are presented. When a metal contains a distribution of micro voids, and the void spacing compared to void size is not extremely large, the surrounding voids may affect the occurrence of a cavitation instability at one of the voids. This has been...

  12. Size-effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  13. Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    S. Mastilovic

    2003-06-16

    The objective of this calculation is twofold. First, to determine whether or not separation of interlocking drip shield (DS) segments occurs during vibratory ground motion. Second, if DS separation does not occur, to estimate the area of the DS for which the residual 1st principal stress exceeds a certain limit. (The area of DS plate-1 and DS plate-2 [see Attachment I] where the residual 1st principal stress exceeds a certain limit will be, for brevity, referred to as ''the damaged area'' throughout this document; also, DS plate-1 and DS plate-2 will be referred to, for brevity, as ''DS plates'' henceforth.) The stress limit used throughout this document is defined as 50 percent of yield strength of the DS plate material, Titanium Grade 7 (Ti-7) (SB-265 R52400), at temperature of 150 C. A set of 15 calculations is performed at two different annual frequencies of occurrence (annual exceedance frequency): 10{sup -6} per year (1/yr) and 10{sup -7} 1/yr . (Note: Due to computational problems only five realizations at 10{sup -7} 1/yr are presented in this document.) Additionally, one calculation is performed at the annual frequency of occurrence of 5 {center_dot} 10{sup -4} 1/yr. The scope of this document is limited to reporting whether or not the DS separation occurs. If the DS separation does not occur the scope is limited to reporting the calculation results in terms of the damaged area. All these results are evaluated for the DS plates. This calculation is intended for use in support of the Total System Performance Assessment-License Application seismicity modeling. This calculation is associated with the DS design and was performed by the Waste Package Design group. AP-3.12Q, ''Design Calculations and Analyses'' (Ref. 1) is used to perform the calculation and develop the document. The DS is classified as Quality Level 1 (Ref. 5, p. 7). Therefore, this calculation is subject to the Quality Assurance

  14. Bacterial microleakage of Cavit, IRM, and TERM.

    Science.gov (United States)

    Deveaux, E; Hildelbert, P; Neut, C; Boniface, B; Romond, C

    1992-11-01

    In this in vitro study, a model system was developed and tested to evaluate the sealing ability of temporary restorative materials used in endodontic access preparations. The materials studied, Cavit, IRM, and TERM, were tested on 40 premolars against a known bacterial species, Streptococcus sanguis. The leakage of bacterial cells was checked 4 and 8 days after initial immersion in the culture. Thermocycling was introduced on the fourth day. After 8 days the cement thicknesses were measured after the teeth had been longitudinally sectioned. Before and after thermocycling, IRM was less leakproof than Cavit (p Cavit, whereas TERM remained leakproof. The thicknesses were as follows: Cavit, 3.73 mm; IRM, 3.45 mm; and TERM, 5.49 mm. There was no statistically significant relationship between thickness and tightness.

  15. CAVITATION SOUNDS DURING CERVICOTHORACIC SPINAL MANIPULATION.

    Science.gov (United States)

    Dunning, James; Mourad, Firas; Zingoni, Andrea; Iorio, Raffaele; Perreault, Thomas; Zacharko, Noah; de Las Peñas, César Fernández; Butts, Raymond; Cleland, Joshua A

    2017-08-01

    No study has previously investigated the side, duration or number of audible cavitation sounds during high-velocity low-amplitude (HVLA) thrust manipulation to the cervicothoracic spine. The primary purpose was to determine which side of the spine cavitates during cervicothoracic junction (CTJ) HVLA thrust manipulation. Secondary aims were to calculate the average number of cavitations, the duration of cervicothoracic thrust manipulation, and the duration of a single cavitation. Quasi-experimental study. Thirty-two patients with upper trapezius myalgia received two cervicothoracic HVLA thrust manipulations targeting the right and left T1-2 articulation, respectively. Two high sampling rate accelerometers were secured bilaterally 25 mm lateral to midline of the T1-2 interspace. For each manipulation, two audio signals were extracted using Short-Time Fourier Transformation (STFT) and singularly processed via spectrogram calculation in order to evaluate the frequency content and number of instantaneous energy bursts of both signals over time for each side of the CTJ. Unilateral cavitation sounds were detected in 53 (91.4%) of 58 cervicothoracic HVLA thrust manipulations and bilateral cavitation sounds were detected in just five (8.6%) of the 58 thrust manipulations; that is, cavitation was significantly (pcavitation was significantly (pcavitations per manipulation was 4.35 (95% CI 2.88, 5.76). The mean duration of a single manipulation was 60.77 ms (95% CI 28.25, 97.42) and the mean duration of a single audible cavitation was 4.13 ms (95% CI 0.82, 7.46). In addition to single-peak and multi-peak energy bursts, spectrogram analysis also demonstrated high frequency sounds, low frequency sounds, and sounds of multiple frequencies for all 58 manipulations. Cavitation was significantly more likely to occur unilaterally, and on the side contralateral to the short-lever applicator contact, during cervicothoracic HVLA thrust manipulation. Clinicians should expect multiple

  16. CAVITATION SOUNDS DURING CERVICOTHORACIC SPINAL MANIPULATION

    Science.gov (United States)

    Mourad, Firas; Zingoni, Andrea; Iorio, Raffaele; Perreault, Thomas; Zacharko, Noah; de las Peñas, César Fernández; Butts, Raymond; Cleland, Joshua A.

    2017-01-01

    Background No study has previously investigated the side, duration or number of audible cavitation sounds during high-velocity low-amplitude (HVLA) thrust manipulation to the cervicothoracic spine. Purpose The primary purpose was to determine which side of the spine cavitates during cervicothoracic junction (CTJ) HVLA thrust manipulation. Secondary aims were to calculate the average number of cavitations, the duration of cervicothoracic thrust manipulation, and the duration of a single cavitation. Study Design Quasi-experimental study Methods Thirty-two patients with upper trapezius myalgia received two cervicothoracic HVLA thrust manipulations targeting the right and left T1-2 articulation, respectively. Two high sampling rate accelerometers were secured bilaterally 25 mm lateral to midline of the T1-2 interspace. For each manipulation, two audio signals were extracted using Short-Time Fourier Transformation (STFT) and singularly processed via spectrogram calculation in order to evaluate the frequency content and number of instantaneous energy bursts of both signals over time for each side of the CTJ. Result Unilateral cavitation sounds were detected in 53 (91.4%) of 58 cervicothoracic HVLA thrust manipulations and bilateral cavitation sounds were detected in just five (8.6%) of the 58 thrust manipulations; that is, cavitation was significantly (pmanipulation was 4.35 (95% CI 2.88, 5.76). The mean duration of a single manipulation was 60.77 ms (95% CI 28.25, 97.42) and the mean duration of a single audible cavitation was 4.13 ms (95% CI 0.82, 7.46). In addition to single-peak and multi-peak energy bursts, spectrogram analysis also demonstrated high frequency sounds, low frequency sounds, and sounds of multiple frequencies for all 58 manipulations. Discussion Cavitation was significantly more likely to occur unilaterally, and on the side contralateral to the short-lever applicator contact, during cervicothoracic HVLA thrust manipulation. Clinicians should expect

  17. Microgeometrical cavitation in oscillating slider contacts

    Science.gov (United States)

    Wietzel, U.

    1994-04-01

    This paper deals with microgeometrically-determined cavitation in oscillating slider bearings. After explaining the difference in the origin of cavitation in journal and linear bearings, the theoretical idea of a computer simulation program on the basis of a combined microhydryodynamic/solid-solid-contact approach is introduced. With the help of this program, slider surface geometry, inertia effects, lubricant properties, normal load, and lubricant film temperatures were found as parameters of microcavitation.

  18. Theoretical and experimental study of the transport of granular materials by inclined vibratory conveyors

    NARCIS (Netherlands)

    Sloot, E.M.; Sloot, E.M.; Kruyt, Nicolaas P.

    1996-01-01

    A theoretical and experimental study was made of the conveying speed with which granular materials are transported by vibratory conveyors. The basic assumption made is that the layer of granular material can be considered as a point mass. The theory incorporates rest, slide, and flight phases of the

  19. Considerations Concerning the Dynamics of Vibratory Mills Used in Powders’ Mechanical Milling Process

    Directory of Open Access Journals (Sweden)

    Radu Panaitescu-Liess

    2010-01-01

    Full Text Available Dynamic mechanical milling process in a powder mill was studied by analyzing the vibratory effects of vibration and shock phenomena on the material microstructure ground. During the milling process, there were noticed both distinct modes of ball motion: the one generated by the periodic vibration and the one produced by chaotic vibration.

  20. Comparison of Axial Capacity of Vibratory-Driven Piles to Impact-Driven Piles.

    Science.gov (United States)

    1987-09-01

    vibratory-driven process results in less compacatiori at the pile tip, thus lowering the tip capacity. Hunter and Davisson (1969), in their...Loading Tests," US Army Engineer District, Little Rock, Ark. Hunter, A. A., and Davisson , M. T. (1969). "Measurement of Pile Load Transfer," Performance

  1. Effects of vibratory pile driver noise on echolocation and vigilance in bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Branstetter, Brian K; Bowman, Victoria F; Houser, Dorian S; Tormey, Megan; Banks, Patchouly; Finneran, James J; Jenkins, Keith

    2018-01-01

    Vibratory pile drivers, used for marine construction, can produce sustained, high sound pressure levels (SPLs) in areas that overlap with dolphin habitats. Dolphins rely on echolocation for navigation, detecting predators and prey, and to coordinate group behavior. This study examined the effects of vibratory pile driver noise on dolphin sustained target detection capabilities through echolocation. Five dolphins were required to scan their enclosure and indicate the occurrences of phantom echoes during five different source levels of vibratory pile driver playback sound (no-playback control, 110, 120, 130, and 140 dB re 1 μPa). Three of the dolphins demonstrated a significant decrease in target detection performance at 140 dB playback level that was associated with an almost complete secession of echolocation activity. The performance of two dolphins was not affected. All dolphins rapidly returned to baseline levels of target detection performance by their second replication. However, an increased number of clicks was produced at the highest playback SPL. The data suggest that the decrease in vigilant behavior was due to the vibratory pile driver noise distracting the dolphins and decreasing their motivation to perform the task.

  2. ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS

    Directory of Open Access Journals (Sweden)

    T. N. Mikulik

    2011-01-01

    Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.

  3. Wave radiation from vibratory and impact pile driving in a layered acousto-elastic medium

    NARCIS (Netherlands)

    Tsouvalas, A.; Metrikine, A.

    2014-01-01

    A steel monopile is the most common foundation type of a wind turbine installed offshore and is driven into place with the help of vibratory or impact hammers. Underwater noise generated during the installation of steel monopiles has recently received considerable attention from international

  4. Assessment of Penile Vibratory Stimulation as a Management Strategy in Men with Secondary Retarded Orgasm

    Science.gov (United States)

    Nelson, Christian J.; Ahmed, Absaar; Valenzuela, Rolando; Parker, Marilyn; Mulhall, John P.

    2016-01-01

    OBJECTIVES To evaluate the effectiveness of penile vibratory stimulation for the management of retarded orgasm. Retarded orgasm, a condition characterized by difficulty achieving orgasm and ejaculation, is one of the most recalcitrant of the male sexual dysfunctions. Currently, no evidence-based treatments have been proven to ameliorate this condition. METHODS Men who had a complete inability to achieve an orgasm during sexual relations in the previous 3 months were instructed in the use of penile vibratory stimulation. The men’s responses were measured by self-report of orgasm function and using the orgasm and satisfaction domains of the International Index of Erectile Function. The responses were assessed at baseline (admission into the study) and at 3 and 6 months. RESULTS A total of 36 men met the inclusion criteria, and 72% reported the restoration of orgasm. These responders reported that orgasm during sexual relations occurred 62% of the time. A statistically and clinically significant increase occurred in the orgasm and satisfaction domains of the International Index of Erectile Function between the baseline visit and the 3-month follow-up visit. These gains were sustained at 6 months. CONCLUSIONS Penile vibratory stimulation is an effective treatment for retarded orgasm. Penile vibratory stimulation should be integrated into current cognitive-behavioral sex therapy techniques to achieve maximal effectiveness and satisfaction. PMID:17382163

  5. Using detrended fluctuation analysis (DFA) to analyze whether vibratory insoles enhance balance stability for elderly fallers.

    Science.gov (United States)

    Wang, Chien-Chih; Yang, Wen-Hung

    2012-01-01

    Falls are a common and devastating problem among elderly people. In a previous study, vibratory insoles were developed to improve postural stability for elderly fallers. To verify the effects of vibratory insoles, a two-stage experiment was conducted to collect center of pressure (COP) signals from 26 elderly fallers and 16 healthy young subjects while standing still. The DFA is used to analyze the behavior of different time-series data obtained from the trajectory of COP. Postural stability was compared by the DFA scaling exponent between a control condition (before using vibratory insoles) and a vibration condition (after using vibratory insoles). For elderly fallers, DFA scaling exponents 95% confidence interval were [1.434, 1.547] and [1.329, 1.451] under control and vibration conditions in the anteroposterior (AP) direction, respectively. The experimental results revealed that temporary stimuli of appropriate amplitude produced by vibration insoles enhanced postural stability in elderly fallers and was more obvious in the AP direction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints

    Science.gov (United States)

    Cassidy, Ian L.

    Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively

  7. Numerical and Experimental Studies of Cavitation Behavior in Water-Jet Cavitation Peening Processing

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2013-01-01

    Full Text Available Water-jet cavitation peening (WCP is a new technology for the surface modification of metallic materials. The cavitation behavior in this process involves complex and changeable physics phenomena, such as high speed, high pressure, multiple phases, phase transition, turbulence, and unstable features. Thus, the cavitation behavior and impact-pressure distribution in WCP have always been key problems in this field. Numerous factors affect the occurrence of cavitation. These factors include flow-boundary conditions, absolute pressure, flow velocity, flow viscosity, surface tension, and so on. Among these factors, pressure and vapor fraction are the most significant. Numerical simulations are performed to determine the flow-field characteristics of both inside and outside the cavitating nozzle of a submerged water jet. The factors that influence the cavitation intensity of pressure are simulated. Fujifilm pressure-sensitive paper is used to measure the distribution of impact pressure along the jet direction during the WCP process. The results show that submerged cavitation jets can induce cavitation both inside and outside a conical nozzle and a convergent-divergent nozzle when the inlet pressure is 32 MPa. Moreover, the shock wave pressure induced by the collapse of the bubble group reaches up to 300 MPa.

  8. Numerical 3D flow simulation of attached cavitation structures at ultrasonic horn tips and statistical evaluation of flow aggressiveness via load collectives

    Science.gov (United States)

    Mottyll, S.; Skoda, R.

    2015-12-01

    A compressible inviscid flow solver with barotropic cavitation model is applied to two different ultrasonic horn set-ups and compared to hydrophone, shadowgraphy as well as erosion test data. The statistical analysis of single collapse events in wall-adjacent flow regions allows the determination of the flow aggressiveness via load collectives (cumulative event rate vs collapse pressure), which show an exponential decrease in agreement to studies on hydrodynamic cavitation [1]. A post-processing projection of event rate and collapse pressure on a reference grid reduces the grid dependency significantly. In order to evaluate the erosion-sensitive areas a statistical analysis of transient wall loads is utilised. Predicted erosion sensitive areas as well as temporal pressure and vapour volume evolution are in good agreement to the experimental data.

  9. Reproductive Biology, Mating Behavior, and Vibratory Communication of the Brown-Winged Stink Bug, Edessa meditabunda (Fabr. (Heteroptera: Pentatomidae

    Directory of Open Access Journals (Sweden)

    Cleonor Cavalcante A. Silva

    2012-01-01

    Full Text Available We describe different aspects of the reproductive biology, mating behavior, and vibratory communication of the pentatomid Edessa meditabunda (Fabr.. This species shows lower copulation frequency and reproductive potential with longer sexual maturation period compared to other species of pentatomids. Females with multiple mating show increased fecundity when compared with single-mated females and both increased fecundity and reduced longevity when compared with virgin females. Courtship and mating behavior and vibratory signals are typical and similar to what was observed in other species of pentatomids, except that males started the courtship. These results constitute the first paper on biology, behavior, and vibratory communication among species of the subfamily Edessinae.

  10. Development of High Erosivity Well Scale Cleaning Tools

    Energy Technology Data Exchange (ETDEWEB)

    K. M. Kalumuck; G. L. Chahine; G. S. Frederick; P. D. Aley

    1999-07-01

    Build up of scale deposits on the walls of geothermal wells can occur rapidly due to the high dissolved solids content of geothermal fluids. Scale formation is a significant problem for both the well and for surface heat transfer equipment. Geothermal brines contain a wide variety if dissolved salts including carbonates, silicates, sulfates, and metal sulfides. One technology recently proposed for scale removal is the use of an ultrasonic device. In the present effort we apply cavitation in a more direct manner by the use of acoustically enhanced cavitating water jets which can be made to be much more efficient and aggressive than ultrasonic devices. Cavitating and self-resonating jet technologies have been proven to enhance the erosive power of liquid jets in a number of cutting, cleaning, and drilling applications. In this study we investigated two related technologies - one that employs cavitation and one that breaks the jet up into a series of slugs that produce water hammer type pressures upon impact. These technologies enable operation in both submerged and nonsubmerged conditions.

  11. Real-Time Two-Dimensional Imaging of Microbubble Cavitation

    NARCIS (Netherlands)

    Vignon, F.; Shi, W.T.; Powers, J.E.; Liu, J.; Drvol, L.; Lof, J.; Everbach, C.; Gao, S.; Xie, F.; Porter, T.

    2011-01-01

    Ultrasound cavitation of microbubble contrast agents has a potentialfor therapeutic applications, including sonothrombolysis in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (e.g. stable versus inertial forms of

  12. Cavitation Measurement during Sonic and Ultrasonic Activated Irrigation

    NARCIS (Netherlands)

    Macedo, Ricardo; Verhaagen, Bram; Rivas, David Fernandez; Versluis, Michel; Wesselink, Paul; van der Sluis, Luc

    Introduction: The aims of this study were to quantify and to visualize the possible occurrence of transient cavitation (bubble formation and implosion) during sonic and ultrasonic (UAI) activated irrigation. Methods: The amount of cavitation generated around several endodontic instruments was

  13. Drag Reducing and Cavitation Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F.

    2016-12-28

    Client, Green Building Systems (GBS), presented PNNL a coating reported to reduce drag and prevent cavitation damage on marine vessels, turbines and pumps. The composition of the coating remains proprietary but has as constituents including silicon oxides, aliphatic carbon chains, and fluorine rich particles. The coating is spray applied to surfaces. Prior GBS testing and experiments suggest reduction of both drag and cavitation on industrial scale propellers, but the underlying mechanism for these effects remains unclear. Yet, the application is compelling because even modest reductions in drag to marine vessels and cavitation to propellers and turbines present a significant economic and environmental opportunity. To discern among possible mechanisms, PNNL considered possible mechanisms with the client, executed multiple experiments, and completed one theoretical analysis (see appendix). The remainder of this report first considers image analysis to gain insight into drag reduction mechanisms and then exposes the coating to cavitation to explore its response to an intensely cavitating environment. Although further efforts may be warranted to confirm mechanisms, this report presents a first investigation into these coatings within the scope and resources of the technology assistance program (TAP).

  14. Mechanics modelling of fern cavitation catapult

    Science.gov (United States)

    Kang, Jingtian; Li, Kai; Tan, Huifeng; Wang, Changguo; Cai, Shengqiang

    2017-12-01

    Cavitation is often regarded as a failure mode in soft materials. An intriguing phenomenon has been recently discovered that fern sporangium can take advantage of drying-induced cavitation instability in annulus cells to disperse spores at an extraordinarily high acceleration. Briefly, the decrease of environmental humidity causes continuous bending of the sporangium and growth of cavities inside the annulus cells, with the elastic energy accumulated in sporangium walls. When the humidity is lower than a critical value, the cavities suddenly expand dramatically inside the cells, causing a quick release of the elastic energy stored in the annular structure. As a result, like a catapult, the sporangium snaps back and ejects the seeds at a high speed. Motivated by the observation, in this article, we study cavitation instability in a similar structure as the sporangium. To simplify the problem, in our model, the mechanics of cells in the sporangium are described by the polymer gel model, while the sporangium wall is modelled as a hyperelastic material. When the environmental humidity is lower than a critical value, through energetic analyses, we can predict the cavitation catapult phenomenon using the model. We hope that our study in this article can provide useful insights into the bio-inspired design of structures which can take advantage of cavitation instability in soft materials.

  15. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation.

    Science.gov (United States)

    Šarc, Andrej; Stepišnik-Perdih, Tadej; Petkovšek, Martin; Dular, Matevž

    2017-01-01

    Within the last years there has been a substantial increase in reports of utilization of hydrodynamic cavitation in various applications. It has came to our attention that many times the results are poorly repeatable with the main reason being that the researchers put significant emphasis on the value of the cavitation number when describing the conditions at which their device operates. In the present paper we firstly point to the fact that the cavitation number cannot be used as a single parameter that gives the cavitation condition and that large inconsistencies in the reports exist. Then we show experiments where the influences of the geometry, the flow velocity, the medium temperature and quality on the size, dynamics and aggressiveness of cavitation were assessed. Finally we show that there are significant inconsistencies in the definition of the cavitation number itself. In conclusions we propose a number of parameters, which should accompany any report on the utilization of hydrodynamic cavitation, to make it repeatable and to enable faster progress of science and technology development. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Static and Transient Cavitation Threshold Measurements for Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, F.; Taleyarkhan, R.P.

    1999-11-14

    Transient and static cavitation thresholds for mercury as a function of the cover gas (helium or air), and pressure are reported. Both static and transient cavitation onset pressure thresholds increase linearly with cover gas pressure. Additionally, the cavitation thresholds as a function of dissolved gases were also measured and are reported.

  17. Noise Caused by Cavitating Butterfly and Monovar Valves

    Science.gov (United States)

    HASSIS, H.

    1999-08-01

    An experimental study of the effects of cavitation was carried out through an analysis of cavitating Butterfly and Monovar values. Focus is particularly placed on both unsteady pressure and acoustic pressure fluctuations. In this paper, the effects of cavitation on local fluctuation pressure (turbulence), acoustic propagation (damping and sound velocity), resonance frequencies and level of noise are presented.

  18. aluminium alloy by ultrasonic cavitation peening

    Directory of Open Access Journals (Sweden)

    Janka Styková

    2017-01-01

    Full Text Available This article presents first results of the experimental investigation of the influence of the cavitation shot less peening process on the properties of stainless steel and aluminium alloy specimens. The cavitation field was generated by an ultrasonic horn submerged in water and operated by an ultrasonic generator. The temperature of the water was controlled by thermometer and adjusted by separate water cooling system. The mass loss, the mass loss rate and the modification of the surface hardness are evaluated for different cavitation exposure intervals. The mass loss was measured by micro weighing scale and the surface hardness by the micro-hardness meter. The presented results indicates the significant improvement in the surface hardness for both tested materials.

  19. Inducer Hydrodynamic Forces in a Cavitating Environment

    Science.gov (United States)

    Skelley, Stephen E.

    2004-01-01

    Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional

  20. Analogy between fluid cavitation and fracture mechanics

    Science.gov (United States)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  1. Investigation of submerged waterjet cavitation through surface property and flow information in ambient water

    Science.gov (United States)

    Kang, Can; Liu, Haixia; Zhang, Tao; Li, Qing

    2017-12-01

    To illuminate primary factors influencing the morphology of the surface impinged by submerged waterjet, experiments were performed at high jet pressures from 200 to 320 MPa. The cavitation phenomenon involved in the submerged waterjet was emphasized. Copper specimens were used as the targets enduring the impingement of high-pressure waterjets. The microhardness of the specimen was measured. Surface morphology was observed using an optical profiling microscope. Pressure fluctuations near the jet stream were acquired with miniature pressure transducers. The results show that microhardness increases with jet pressure and impingement time, and the hardening effect is restricted within a thin layer underneath the target surface. A synthetic effect is testified with the plastic deformation and cavities on the specimen surfaces. Characteristics of different cavitation erosion stages are illustrated by surface morphology. At the same jet pressure, the smallest standoff distance is not corresponding to the highest mass removal rate. Instead, there is an optimal standoff distance. With the increase of jet pressure, overall mass removal rate rises as well. Low-frequency components are predominant in the pressure spectra and the dual-peak pattern is typical. As the streamwise distance from the nozzle is enlarged, pressure amplitudes associated with cavitation bubble collapse are improved.

  2. On cavitation instabilities with interacting voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    When a single void grows in an elastic–plastic material a cavitation instability may occur, if the stress triaxiality is sufficiently high. The effect of neighbouring voids on such unstable cavity growth is studied here by comparing two different models. The first model considers a periodic array...... voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...

  3. Cavitation Inception in Immersed Jet Shear Flows

    Science.gov (United States)

    Lockett, R. D.; Ndamuso, N.; Price, R.

    2015-12-01

    Cavitation inception occurring in immersed jets was investigated in a purpose-built mechanical flow rig. The rig utilized custom-built cylindrical and conical nozzles to direct high-velocity jets of variable concentration n-octane-hexadecane mixtures into a fused silica optically accessible receiver. The fluid pressure upstream and down-stream of the nozzles were manually controlled. The study employed a variety of acrylic and metal nozzles. The results show that the critical upstream pressure to downstream pressure ratio for incipient cavitation decreases with increasing n-octane concentration for the cylindrical nozzles, and increases with increasing n-octane concentration for the conical nozzle.

  4. The Impact of Manifold-to-Orifice Turning Angle on Sharp-Edge Orifice Flow Characteristics in both Cavitation and Non-Cavitation Turbulent Flow Regimes (Preprint)

    National Research Council Canada - National Science Library

    Nurick, W. H; Ohanian, T; Talley, D. G; Strakey, P. A

    2007-01-01

    .... This paper deals with predicting the initiation of cavitation, cavitation impacts on Cc, and non-cavitation impacts on Cd from L/D of 5 sharp-edge orifices with both single angle and compound angle directional flow...

  5. IMPACT OF VIBRATORY AND ROTATIONAL SHOT PEENING ONTO SELECTED PROPERTIES OF TITANIUM ALLOY SURFACE LAYER

    Directory of Open Access Journals (Sweden)

    Kazimierz Zaleski

    2014-06-01

    Full Text Available This study presents the results of tests on impact of vibratory and rotational shot peening of the Ti6A12Mo2Cr titanium alloy onto the processed object surface roughness and surface layer microhardness. The external surfaces of ring-shaped samples were shot peened. The preceding process consisted of turning with a cubic boron nitride blade knife. Steel beads, having a diameter of 6 mm, were used as a processing medium. The variable parameters of shot peening were vibrator amplitude and shot peening time. The range of recommended technological parameters for vibratory and rotational shot peening was determined. As a result of shot peening, the surface roughness could be reduced by approximately 4 times and the surface layer could be hardened to the depth of approximately 0.4 mm.

  6. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, K.; Rubin, J. [Los Alamos National Lab., NM (United States); Thompson, M

    2001-07-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  7. Vibratory sensory testing in acute compartment syndromes: a clinical and experimental study.

    Science.gov (United States)

    Phillips, J H; Mackinnon, S E; Beatty, S E; Dellon, A L; O'Brien, J P

    1987-05-01

    Invasive and noninvasive diagnostic testing was correlated in 11 patients with acute compartmental syndromes of the forearm. The excellent correlation between diminished perception of vibration and increasing compartmental pressure suggested that 256 cycle per second (cps) vibratory stimuli may be useful clinically in determining the appropriate time for surgical intervention in the acute compartmental syndrome. In 12 adult male volunteers, elevated compartment pressures were created in the anterior tibial compartment of the leg. A decrease in perception to 256 cycle per second (cps) vibratory stimulus was the earliest sensory abnormality to occur with elevated tissue compartment pressures. Analysis of variance showed significantly that 256-cps vibration was the most reliable and earliest sensory modality to change at pressures of 35 to 40 mmHg. These clinical and experimental findings support the use of the 256-cps tuning fork as a noninvasive diagnostic test in the evaluation of the patient with suspected acute compartment syndrome.

  8. Experimental investigation of hydrodynamic cavitation through orifices of different geometries

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2017-01-01

    Full Text Available Hydrodynamic cavitation in single and multihole orifices was experimentally investigated to assess their hydraulic characteristics: loss coefficients, inception cavitation number, cavitation number for transition to supercavitation. Significant difference for singlehole and multihole orifices was observed in terms of the measured loss coefficient. It is significantly more effective to use multihole orifices, where energy dissipation is much lower.It was found that using scaling factor given by ratio of orifice thickness suggests linear behaviour of both loss coefficient and inception cavitation number. Orifices seem to be convenient choice as flow constriction devices inducing cavitation due to their simplicity.

  9. Theoretical and experimental study of the transport of granular materials by inclined vibratory conveyors

    OpenAIRE

    Sloot, E.M.; Kruyt, Nicolaas P.

    1996-01-01

    A theoretical and experimental study was made of the conveying speed with which granular materials are transported by vibratory conveyors. The basic assumption made is that the layer of granular material can be considered as a point mass. The theory incorporates rest, slide, and flight phases of the material. Although the emphasis of this study is on the effect of the inclination (and declination) of the conveyor on the conveying speed, the effects of throw number, friction coefficient and vi...

  10. Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

    Directory of Open Access Journals (Sweden)

    Hou-lin Liu

    2014-03-01

    Full Text Available The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the numerical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for declining the condensation coefficient, which is the most effective way.

  11. Review on Lithotripsy and Cavitation in Urinary Stone Therapy.

    Science.gov (United States)

    Ghorbani, Morteza; Oral, Ozlem; Ekici, Sinan; Gozuacik, Devrim; Kosar, Ali

    2016-01-01

    Cavitation is the sudden formation of vapor bubbles or voids in liquid media and occurs after rapid changes in pressure as a consequence of mechanical forces. It is mostly an undesirable phenomenon. Although the elimination of cavitation is a major topic in the study of fluid dynamics, its destructive nature could be exploited for therapeutic applications. Ultrasonic and hydrodynamic sources are two main origins for generating cavitation. The purpose of this review is to give the reader a general idea about the formation of cavitation phenomenon and existing biomedical applications of ultrasonic and hydrodynamic cavitation. Because of the high number of the studies on ultrasound cavitation in the literature, the main focus of this review is placed on the lithotripsy techniques, which have been widely used for the treatment of urinary stones. Accordingly, cavitation phenomenon and its basic concepts are presented in Section II. The significance of the ultrasound cavitation in the urinary stone treatment is discussed in Section III in detail and hydrodynamic cavitation as an important alternative for the ultrasound cavitation is included in Section IV. Finally, side effects of using both ultrasound and hydrodynamic cavitation in biomedical applications are presented in Section V.

  12. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    Science.gov (United States)

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity (PLC) versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle while frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. This article is protected by copyright. All rights reserved.

  13. Prevention of Pressure Oscillations in Modeling a Cavitating Acoustic Fluid

    Directory of Open Access Journals (Sweden)

    B. Klenow

    2010-01-01

    Full Text Available Cavitation effects play an important role in the UNDEX loading of a structure. For far-field UNDEX, the structural loading is affected by the formation of local and bulk cavitation regions, and the pressure pulses resulting from the closure of the cavitation regions. A common approach to numerically modeling cavitation in far-field underwater explosions is Cavitating Acoustic Finite Elements (CAFE and more recently Cavitating Acoustic Spectral Elements (CASE. Treatment of cavitation in this manner causes spurious pressure oscillations which must be treated by a numerical damping scheme. The focus of this paper is to investigate the severity of these oscillations on the structural response and a possible improvement to CAFE, based on the original Boris and Book Flux-Corrected Transport algorithm on structured meshes [6], to limit oscillations without the energy loss associated with the current damping schemes.

  14. A review of recent theoretical investigations on acoustic cavitation bubbles and their implications on detection of cavitation in pumps

    Science.gov (United States)

    Zhang, Y. N.

    2013-12-01

    Detection of cavitation in pumps is one of the essential topics in hydraulic machinery research and has been intensively investigated for several decades. In the literature, a technique based on analysis of acoustic signals generated by cavitation bubbles in the pumps has been proposed to detect cavitation activities especially incipient cavitation. In present paper, recent theoretical investigations by the author and his collaborators on acoustic cavitation bubbles (e.g. damping mechanisms, heat and mass transfer) together with their associated acoustical signals have been briefly reviewed to advance above technique.

  15. Film temperatures in the presence of cavitation

    Science.gov (United States)

    Elrod, Harold G.; Vijayaraghavan, D.

    1995-01-01

    Numerical algorithms are developed and implemented for the treatment of laminar lubricating-film temperatures associated with cavitated regions. The reformation front, with its film-content discontinuity and flow reversal, is given special attention. Computational economy is achieved through the use of Lobatto-point locations for flow-property determinations.

  16. Classification of lubricants according to cavitation criteria

    NARCIS (Netherlands)

    Meged, Y.; Meged, Y.; Venner, Cornelis H.; ten Napel, W.E.

    1995-01-01

    Cavitation in lubrication liquids has long been known to be detrimental to components in hydraulic systems. Damage has been detected in journal bearings, especially under severe dynamic loading, gears, squeeze film dampers and valves. These findings have led to intensive studies of metal resistance

  17. Control of Propeller Cavitation in Operational Conditions

    NARCIS (Netherlands)

    Vrijdag, A.

    2009-01-01

    Off design conditions can have a severe impact on ship propulsion system behaviour. Resistance increase for instance leads to a higher engine loading, and can also easily lead to a decrease of cavitation inception speed with respect to calm water conditions. Wakefield variations due to ship motions,

  18. Modelling cavitating flow around underwater missiles

    Directory of Open Access Journals (Sweden)

    Fabien Petitpas

    2011-12-01

    Full Text Available The diffuse interface model of Saurel et al. (2008 is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009 is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile. Performance data are then computed showing method ability to predict forces acting on the system.

  19. Mesoscale spatial variability in seawater cavitation thresholds

    Science.gov (United States)

    Mel'nikov, N. P.; Elistratov, V. P.

    2017-03-01

    The paper presents the spatial variability of cavitation thresholds and some hydrological and hydrochemical parameters of seawater in the interfrontal zone of the Pacific Subarctic Front, in the Drake Passage, and in the equatorial part of the Pacific Ocean, measured in the near-surface layer to a depth of 70 m.

  20. Relating xylem cavitation to transpiration in cotton

    Science.gov (United States)

    Acoustic emmisions (AEs) from xylem cavitation events are characteristic of transpiration processes. Even though a body of work employing AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. A few s...

  1. Measuring cavitation and its cleaning effect

    NARCIS (Netherlands)

    Verhaagen, B.; Fernandez Rivas, David

    2016-01-01

    The advantages and limitations of techniques for measuring the presence and amount of cavitation, and for quantifying the removal of contaminants, are provided. After reviewing chemical, physical, and biological studies, a universal cause for the cleaning effects of bubbles cannot yet be concluded.

  2. Flow field measurement around vortex cavitation

    NARCIS (Netherlands)

    Pennings, P.C.; Westerweel, J.; Van Terwisga, T.J.C.

    2015-01-01

    Models for the center frequency of cavitating-vortex induced pressure-fluctuations, in a flow around propellers, require knowledge of the vortex strength and vapor cavity size. For this purpose, stereoscopic particle image velocimetry (PIV) measurements were taken downstream of a fixed half-wing

  3. Mechanisms of thrombolysis acceleration by cavitation

    Science.gov (United States)

    Weiss, Hope; Selvaraj, Prashanth; Ahadi, Golnaz; Voie, Arne; Hoelscher, Thilo; Okita, Kohei; Matsumoto, Yoichiro; Szeri, Andrew

    2012-11-01

    Recent studies, in vitro and in vivo, have shown that High Intensity Focused Ultrasound (HIFU) accelerates thrombolysis, the dissolution of blood clots, for ischemic stroke. Although the mechanisms are not fully understood, cavitation is thought to play an important role in sonothrombolysis. The damage to a blood clot's fibrin fiber network from cavitation in a HIFU field is studied using two independent approaches for an embedded bubble. One method is extended to the more important scenario of a bubble outside a blood clot that collapses asymmetrically creating a jet towards the clot. There is significantly more damage potential from a bubble undergoing cavitation collapse outside the clot compared to a rapidly expanding bubble embedded within the clot structure. Also, the effects of the physical properties of skull bone when a HIFU wave propagates through it are examined by use of computer simulation. The dynamics of a test bubble placed at the focus is used in understanding of the pressure field. All other things being equal, the analysis suggests that skull thickness can alter the wave at the focus, which in turn can change the nature of cavitation bubble dynamics and the amount of energy available for clot damage. Now at MSOE.

  4. Enhancing cavitation with micromachined surfaces

    Science.gov (United States)

    Fernandez Rivas, David; Stricker, Laura; Zijlstra, Aaldert G.; Gardeniers, Han; Lohse, Detlef; Prosperetti, Andrea; Mesoscale Chemical System Group Collaboration; Physics of Fluids Group Collaboration; Department of Mechanical Engineering Collaboration

    2012-11-01

    When a silicon surface with micromachined pits submerged in a liquid is exposed to continuous ultrasound at 200 kHz, bubbles are ejected from the air filled cavities. Depending on the pressure amplitude different scenarios are observed, as the bubbles ejected from the micropits interact in complex ways with each other, and with the silicon surface. We have determined the size distribution of bubbles ejected from one, two and three pits for three different electrical power settings, and correlated them with sonochemical OH* radical production. Numerical simulations of the sonochemical conversion reaction rates were obtained using the empirical bubble size distributions and are compared with experimental results. Experimental evidence of shock wave emission from the microbubble clusters, deformed microbubble shapes, jetting and surface erosion are also presented. Financially supported through the project 07391 of the Technology Foundation STW, The Netherlands.

  5. Inertial cavitation threshold of nested microbubbles.

    Science.gov (United States)

    Wallace, N; Dicker, S; Lewin, Peter; Wrenn, S P

    2015-04-01

    Cavitation of ultrasound contrast agents (UCAs) promotes both beneficial and detrimental bioeffects in vivo (Radhakrishnan et al., 2013) [1]. The ability to determine the inertial cavitation threshold of UCA microbubbles has potential application in contrast imaging, development of therapeutic agents, and evaluation of localized effects on the body (Ammi et al., 2006) [2]. This study evaluates a novel UCA and its inertial cavitation behavior as determined by a home built cavitation detection system. Two 2.25 MHz transducers are placed at a 90° angle to one another where one transducer is driven by a high voltage pulser and the other transducer receives the signal from the oscillating microbubble. The sample chamber is placed in the overlap of the focal region of the two transducers where the microbubbles are exposed to a pulser signal consisting of 600 pulse trains per experiment at a pulse repetition frequency of 5 Hz where each train has four pulses of four cycles. The formulation being analyzed is comprised of an SF6 microbubble coated by a DSPC PEG-3000 monolayer nested within a poly-lactic acid (PLA) spherical shell. The effect of varying shell diameters and microbubble concentration on cavitation threshold profile for peak negative pressures ranging from 50 kPa to 2 MPa are presented and discussed in this paper. The nesting shell decreases inertial cavitation events from 97.96% for an un-nested microbubble to 19.09% for the same microbubbles nested within a 2.53 μm shell. As shell diameter decreases, the percentage of inertially cavitating microbubbles also decreases. For nesting formulations with average outer capsule diameters of 20.52, 14.95, 9.95, 5.55, 2.53, and 1.95 μm, the percentage of sample destroyed at 1 MPa was 51.02, 38.94, 33.25, 25.27, 19.09, and 5.37% respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Emergency wind erosion control

    Science.gov (United States)

    February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...

  7. Erosion and Errors

    NARCIS (Netherlands)

    Huisman, H.; Heeres, Glenn; Os, van Bertil; Derickx, Willem; Schoorl, J.M.

    2016-01-01

    Slope soil erosion is one of the main threats to archaeological sites. Several methods were applied to establish the erosion rates at archaeological sites. Digital elevation models (DEMs) from three different dates were used. We compared the elevations from these three models to estimate erosion. We

  8. Stability of cavitation structures in a thin liquid layer.

    Science.gov (United States)

    Wu, Pengfei; Bai, Lixin; Lin, Weijun; Yan, Jiuchun

    2017-09-01

    The inception and evolution of acoustic cavitation structures in thin liquid layers under different conditions and perturbations are investigated experimentally with high speed photography. The stability and characterization of cavitation structures are quantified by image analysis methods. It is found that cavitation structures (shape of bubble cloud and number of bubbles) are stable under unaltered experimental conditions, and the cavitation bubble cloud will return to the original structure and remain stable even in the face of large perturbations. When the experimental conditions are altered (for example, acoustic intensity, cavitation nuclei, boundary), the cavitation structures will vary correspondingly. Further analysis implies that the stability of cavitation structures is closely related to the number of bubbles in the cavitation bubble cloud. There are two mechanisms acting simultaneously in the cavitation bubble cloud evolution, one "bubble production" and the other "bubble disappearance". We propose that the two mechanisms acting together constitute the most likely explanation for the stability of cavitation structures and their transformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Treatment of cyanide containing wastewater using cavitation based approach.

    Science.gov (United States)

    Jawale, Rajashree H; Gogate, Parag R; Pandit, Aniruddha B

    2014-07-01

    Industrial wastewater streams containing high concentrations of biorefractory materials like cyanides should ideally be treated at source. In the present work, degradation of potassium ferrocyanide (K4Fe(CN)6) as a model pollutant has been investigated using cavitational reactors with possible intensification studies using different approaches. Effect of different operating parameters such as initial concentration, temperature and pH on the extent of degradation using acoustic cavitation has been investigated. For the case of hydrodynamic cavitation, flow characteristics of cavitating device (venturi) have been established initially followed by the effect of inlet pressure and pH on the extent of degradation. Under the optimized set of operating parameters, the addition of hydrogen peroxide (ratio of K4Fe(CN)6:H2O2 varied from 1:1 to 1:30 mol basis) as process intensifying approach has been investigated. The present work has conclusively established that under the set of optimized operating parameters, cavitation can be effectively used for degradation of potassium ferrocyanide. The comparative study of hydrodynamic cavitation and acoustic cavitation suggested that hydrodynamic cavitation is more energy efficient and gives higher degradation as compared to acoustic cavitation for equivalent power/energy dissipation. The present work is the first one to report comparison of cavitation based treatment schemes for degradation of cyanide containing wastewaters. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hidden bone erosions

    Directory of Open Access Journals (Sweden)

    F. Salaffi

    2011-09-01

    Full Text Available The aim of this pictorial essay was to demonstrate the diagnostic efficacy of high-resolution sonography in detecting bone erosions in a patient with rheumatoid arthritis. Standard X-Ray of the feet did not reveal clearly evident erosions. Ultrasonography was able to detect the presence of bone erosions of the metatarsal heads of both the first toes and of the V toe of the left foot. Because the appearance of bone erosions on radiographs of a patient with a recent onset arthritis indicates a poor prognosis, the possibility of demonstrating small hidden erosions at the level of the early targets of the disease is of relevant practical value.

  11. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based....... Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months...

  12. Vibratory stimulation and rectal probe electroejaculation as therapy for patients with spinal cord injury: semen parameters and pregnancy rates.

    Science.gov (United States)

    Nehra, A; Werner, M A; Bastuba, M; Title, C; Oates, R D

    1996-02-01

    The conception rate of patients with spinal cord injuries following penile vibratory stimulation and rectal probe electroejaculation in conjunction with self-insemination, intrauterine insemination or assisted reproductive technique is poorly documented. We reviewed our success rates with penile vibratory stimulation and rectal probe electroejaculation, and the pregnancy rates achieved with self-insemination, intrauterine insemination and assisted reproductive techniques. A total of 78 consecutive patients with spinal cord injuries had a complete neurological examination and was treated initially with penile vibratory stimulation. If unsuccessful, rectal probe electroejaculation was performed to obtain an ejaculate. The ejaculate was then used with self-insemination, intrauterine insemination or assisted reproductive techniques and pregnancies were monitored. Vibratory stimulation was successful in 20 of 37 patients (54%) with a cervical lesion, 14 of 26 (54%) with a lesion at or above T10 and none of 15 when the lesion was below T10. All patients except 2 who elected followup rectal probe electroejaculation had antegrade or retrograde ejaculate. Six patients (7.7%) with extremely poor semen quality were not candidates for assisted fertilization. Of 27 couples who attempted conception 17 were successful (5 self-insemination, 5 intrauterine insemination and 7 assisted reproductive techniques). Penile vibratory stimulation should be used as first line therapy in patients with lesions above T10 while rectal probe electroejaculation should be considered as a second option. Motivated patients can achieve success with self-insemination, intrauterine insemination and assisted reproductive techniques.

  13. Cavitation and non-cavitation regime for large-scale ultrasonic standing wave particle separation systems--In situ gentle cavitation threshold determination and free radical related oxidation.

    Science.gov (United States)

    Johansson, Linda; Singh, Tanoj; Leong, Thomas; Mawson, Raymond; McArthur, Sally; Manasseh, Richard; Juliano, Pablo

    2016-01-01

    We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    Science.gov (United States)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids. PMID:28555615

  15. Hull-Propeller Interaction and Its Effect on Propeller Cavitation

    DEFF Research Database (Denmark)

    Regener, Pelle Bo

    , which presumably does not reflect the differences between the propellers sufficiently. Obtaining effective wake fields using the hybrid RANS-BEM approach at model and full scale also provides the opportunity to investigate the behind-ship cavitation performance of propellers with comparably low...... computational effort. The boundary element method for propeller analysis includes a partially nonlinear cavitation model, which is able to predict partial sheet cavitation and supercavitation. The cavitation behaviour of the conventional propeller and the Kappel propeller from the earlier simulations...... a major effect on propeller cavitation, signifying the importance of using the correct inflow, i.e. the effective wake field when evaluating propeller cavitation performance....

  16. Cavitation measurement during sonic and ultrasonic activated irrigation.

    Science.gov (United States)

    Macedo, Ricardo; Verhaagen, Bram; Rivas, David Fernandez; Versluis, Michel; Wesselink, Paul; van der Sluis, Luc

    2014-04-01

    The aims of this study were to quantify and to visualize the possible occurrence of transient cavitation (bubble formation and implosion) during sonic and ultrasonic (UAI) activated irrigation. The amount of cavitation generated around several endodontic instruments was measured by sonochemiluminescence dosimetry inside 4 root canal models of human dimensions and varying complexity. Furthermore, the spatial distribution of the sonochemiluminescence in the root canal was visualized with long-exposure photography. Instrument oscillation frequency, ultrasonic power, and file taper influenced the occurrence and amount of cavitation. In UAI, cavitation was distributed between the file and the wall extending beyond the file and inside lateral canals/isthmuses. In sonic activated irrigation, no cavitation was detected. Cavitation was shown to occur in UAI at clinically relevant ultrasonic power settings in both straight and curved canals but not around sonically oscillating instruments, driven at their highest frequency. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Simulations of Steady Cavitating Flow in a Small Francis Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Laouari

    2016-01-01

    Full Text Available The turbulent flow through a small horizontal Francis turbine is solved by means of Ansys-CFX at different operating points, with the determination of the hydrodynamic performance and the best efficiency point. The flow structures at different regimes reveal a large flow eddy in the runner and a swirl in the draft tube. The use of the mixture model for the cavity/liquid two-phase flow allowed studying the influence of cavitation on the hydrodynamic performance and revealed cavitation pockets near the trailing edge of the runner and a cavitation vortex rope in the draft tube. By maintaining a constant dimensionless head and a distributor vane opening while gradually increasing the cavitation number, the output power and efficiency reached a critical point and then had begun to stabilize. The cavitation number corresponding to the safety margin of cavitation is also predicted for this hydraulic turbine.

  18. Technical note: measurement of collapse cavitation in ultrasound fields.

    Science.gov (United States)

    Digby, M; Duck, F A; Lenz, E J; Price, G J

    1995-11-01

    This note describes a method for the measurement of hydroxyl free radical concentration due to collapse acoustic cavitation in medical ultrasound fields using aqueous terephthalic acid (TA) solution. An enclosed cylindrical chamber with acoustically transparent membranes at either end was used. Control of cavitation activity was achieved by seeding the solution with polystyrene microspheres to provide cavitation centres. Insonation experiments using unseeded TA previously exposed to air gave very variable results, sometimes detecting cavitation activity and at other times detecting nothing, under the same exposure conditions. Introduction of polystyrene microsphere seeds into the TA enabled it to detect reproducibly levels of cavitation activity at least one order of magnitude higher than in unseeded solutions. An experiment using the seeded TA in a standing wave ultrasound field, set up using a brass reflecting plate, demonstrated that the presence of a standing wave inhibited the measured cavitation yield.

  19. Numerical study of ventilated cavitating flows with free surface effects

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mei Shan; Ha, Cong Tu; Park, Warn Gyu [Pusan National University, Busan (Korea, Republic of)

    2013-12-15

    Cavitating flow is usually formed on the surface of a high-speed underwater object. When the object moves near the free surface at high speed, the cavitation signature becomes a main factor to be overcome by the sensors of a military satellite. This paper studies the free surface effect on the ventilated cavitation process. The governing equations are Navier-Stokes equations based on a homogeneous mixture model. The multiphase flow solver used here relies on an implicit preconditioning scheme in curvilinear coordinates. The cavitation model used is a new cavitation model developed by Merkle et al. (2006). Computations of free surface effects were carried out with a NACA0012 hydrofoil to enable comparisons with experimental data presented in the literature. Calculations were then performed considering the ventilated cavitation process, including the effect of a noncondensable gas with free surface effect.

  20. Research on Bell-Shaped Vibratory Angular Rate Gyro’s Character of Resonator

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2013-04-01

    Full Text Available Bell-shaped vibratory angular rate gyro (abbreviated as BVG is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator’s mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG.

  1. Regulating Ultrasound Cavitation in order to Induce Reproducible Sonoporation

    Science.gov (United States)

    Mestas, J.-L.; Alberti, L.; El Maalouf, J.; Béra, J.-C.; Gilles, B.

    2010-03-01

    Sonoporation would be linked to cavitation, which generally appears to be a non reproducible and unstationary phenomenon. In order to obtain an acceptable trade-off between cell mortality and transfection, a regulated cavitation generator based on an acoustical cavitation measurement was developed and tested. The medium to be sonicated is placed in a sample tray. This tray is immersed in in degassed water and positioned above the face of a flat ultrasonic transducer (frequency: 445 kHz; intensity range: 0.08-1.09 W/cm2). This technical configuration was admitted to be conducive to standing-wave generation through reflection at the air/medium interface in the well thus enhancing the cavitation phenomenon. Laterally to the transducer, a homemade hydrophone was oriented to receive the acoustical signal from the bubbles. From this spectral signal recorded at intervals of 5 ms, a cavitation index was calculated as the mean of the cavitation spectrum integration in a logarithmic scale, and the excitation power is automatically corrected. The device generates stable and reproducible cavitation level for a wide range of cavitation setpoint from stable cavitation condition up to full-developed inertial cavitation. For the ultrasound intensity range used, the time delay of the response is lower than 200 ms. The cavitation regulation device was evaluated in terms of chemical bubble collapse effect. Hydroxyl radical production was measured on terephthalic acid solutions. In open loop, the results present a great variability whatever the excitation power. On the contrary the closed loop allows a great reproducibility. This device was implemented for study of sonodynamic effect. The regulation provides more reproducible results independent of cell medium and experimental conditions (temperature, pressure). Other applications of this regulated cavitation device concern internalization of different particles (Quantum Dot) molecules (SiRNA) or plasmids (GFP, DsRed) into different

  2. Cavitation-based hydro-fracturing simulator

    Science.gov (United States)

    Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.

    2016-11-22

    An apparatus 300 for simulating a pulsed pressure induced cavitation technique (PPCT) from a pressurized working fluid (F) provides laboratory research and development for enhanced geothermal systems (EGS), oil, and gas wells. A pump 304 is configured to deliver a pressurized working fluid (F) to a control valve 306, which produces a pulsed pressure wave in a test chamber 308. The pulsed pressure wave parameters are defined by the pump 304 pressure and control valve 306 cycle rate. When a working fluid (F) and a rock specimen 312 are included in the apparatus, the pulsed pressure wave causes cavitation to occur at the surface of the specimen 312, thus initiating an extensive network of fracturing surfaces and micro fissures, which are examined by researchers.

  3. Identification of the 3D Vibratory Motion of a Rigid Body by Accelerometer Measurements

    Directory of Open Access Journals (Sweden)

    Francesca Di Puccio

    2004-01-01

    Full Text Available The identification of the motion of a rigid body by means of linear accelerometers is a problem already investigated by many researchers, but still debated. The optimisation of the number and placement of accelerometers is also another important aspect of the problem. In this study, an experimental procedure is proposed and applied to identify the rigid-body vibratory motion of the steering wheel of a sporting car, by means of six linear accelerometers. Some numerical simulations for investigating possible errors are also presented.

  4. Fundamental understanding, prediction and validation of rotor vibratory loads in steady-level flight

    Science.gov (United States)

    Datta, Anubhav

    This work isolates the physics of aerodynamics and structural dynamics from the helicopter rotor aeromechanics problem, investigates them separately, identifies the prediction deficiencies in each, improves upon them, and couples them back together. The objective is to develop a comprehensive analysis capability for accurate and consistent prediction of rotor vibratory loads in steady level flight. The rotor vibratory loads are the dominant source of helicopter vibration. There are two critical vibration regimes for helicopters in steady level flight: (1) low speed transition and (2) high speed forward flight. The mechanism of rotor vibration at low speed transition is well understood---inter-twinning of blade tip vortices below the rotor disk. The mechanism of rotor vibration at high speed is not clear. The focus in this research is on high speed flight. The goal is to understand the key mechanisms involved and accurately model them. Measured lift, chord force, pitching moment and damper force from the UH-60A Flight Test Program are used to predict, validate and refine the rotor structural dynamics. The prediction errors originate entirely from structural modeling. Once validated, the resultant blade deformations are used to predict and validate aerodynamics. Air loads are calculated using a table look up based unsteady lifting-line model and compared with predictions from a 3-dimensional unsteady CFD model. Both Navier-Stokes and Euler predictions are studied. (Abstract shortened by UMI.) The 3D Navier-Stokes CFD analysis is then consistently coupled with a rotor comprehensive analysis to improve prediction of rotor vibratory loads at high speed. The CFD-comprehensive code coupling is achieved using a loose coupling methodology. The CFD analysis significantly improves section pitching moment prediction near the blade tip, because it captures the steady and unsteady 3D transonic effects. Accurate pitching moments drive elastic twist deformations which together

  5. Optimization of process parameters during vibratory welding technique using Taguchi's analysis

    OpenAIRE

    Singh, Pravin Kumar; Patel, D.; Prasad,S.B.

    2016-01-01

    With an aim to improve the mechanical properties of a weld joint, a new concept of vibratory setup has been designed which is capable to stir the molten weld pool before it solidifies during shielded metal arc welding (SMAW) operation. Mechanical vibration having resonance frequency of 300 Hz and amplitude of 0.5 mm was transferred to the molten weld pool of 6 mm thick mild steel butt-welded joints during the welding operation. The experimental work was conducted at various ranges of frequenc...

  6. Identification of elasticity modulus by vibratory analysis (Application to a natural composite: Aleppo pine wood

    Directory of Open Access Journals (Sweden)

    DAOUI Abdelhakim

    2018-01-01

    Full Text Available In this paper, we present a method for the determination of the elasticity modulus in the vibratory domain of materials. This approach is based on research and interpretation of the spectrum of natural frequencies resulting from natural vibrations based on the theory of elastic beams. The tests consist of classical tests of longitudinal vibrations of natural composite beams (Aleppo pine wood, long enough to observe some natural frequencies. This identification method showed a good correlation between the theoretical and experimental values, notably the evaluation of the modal parameter for the case of the resonant frequencies and the identification of the modulus of elasticity of the materials used.

  7. Penile vibratory stimulation and electroejaculation in the treatment of ejaculatory dysfunction.

    Science.gov (United States)

    Sønksen, Jens; Ohl, Dana A

    2002-12-01

    The purpose of this review is to present the current understanding of penile vibratory stimulation (PVS) and electroejaculation (EEJ) procedures and its clinical use in men with ejaculatory dysfunction. Unfortunately, the record of treating such individuals has been quite poor, but within recent years development and refinement of PVS and EEJ in men with spinal cord injury (SCI) has significantly enhanced the prospects for treatment of ejaculatory dysfunction. The majority of spinal cord injured men are not able to produce antegrade ejaculation by masturbation or sexual stimulation. However, approximately 80% of all spinal cord injured men with an intact ejaculatory reflex arc (above T10) can obtain antegrade ejaculation with PVS. Electroejaculation may be successful in obtaining ejaculate from men with all types of SCI, including men who do not have major components of the ejaculatory reflex arc. Because vibratory stimulation is very simple in use, non-invasive, it does not require anaesthesia and is preferred by the patients when compared with EEJ, PVS is recommended to be the first choice of treatment in spinal cord injured men. Furthermore, EEJ has been successfully used to induce ejaculation in men with multiple sclerosis and diabetic neuropathy. Any other conditions which affect the ejaculatory mechanism of the central and/or peripheral nervous system including surgical nerve injury may be treated successfully with EEJ. Finally, for sperm retrieval and sperm cryopreservation before intensive anticancer therapy in pubertal boys, PVS and EEJ have been successfully performed in patients who failed to obtain ejaculation by masturbation. Nearly all data concerning semen characteristics in men with ejaculatory dysfuntion originate from spinal cord injured men. Semen analyses demonstrate low sperm motility rates in the majority of spinal cord injured men. The data give evidence of a decline in spermatogenesis and motility of ejaculated spermatozoa shortly after (few

  8. Comparison of energy costs for different control laws of a vibratory robot

    Science.gov (United States)

    Golitsyna, Maria

    2017-01-01

    In the study there are introduced several control methods that maximize average velocity of the vibratory robot subject to several constraints. The robot is presented by a rigid box with a pendulum inside it. It can move forwards and backwards and there is a Coulomb friction between the box and the surface. In the paper it is not only shown the difference and advantages of proposed control laws but there is also done a comparison between efforts done by the motor that provides rotation of the pendulum for different control methods.

  9. Cavitation-Resistant Coatings for Hydropower Turbines

    Science.gov (United States)

    2011-06-01

    powders , plasma transferred arc powders , and metallizing wire Scott Ostholthoff Does not currently have any products tested to ASTM G32; though they...anti-cavitation and surface hardening coatings. Vendor Product(s) Contact Notes Powder Alloy Inc. Thermal coatings, HVOF powders , plasma spray...provide the weld rod and powder materials. Interested in our research and willing to provide support on tools. They noted new HVOF system, JP5000

  10. Are flowers vulnerable to xylem cavitation during drought?

    Science.gov (United States)

    Zhang, Feng-Ping; Brodribb, Timothy J

    2017-05-17

    Water stress is known to cause xylem cavitation in the leaves, roots and stems of plants, but little is known about the vulnerability of flowers to xylem damage during drought. This is an important gap in our understanding of how and when plants become damaged by water stress. Here we address fundamental questions about if and when flowers suffer cavitation damage, using a new technique of cavitation imaging to resolve the timing of cavitation in water-stressed flower petals compared with neighbouring leaves. Leaves and flowers from a sample of two herbaceous and two woody eudicots were exposed to a severe water stress while the spatial and temporal propagation of embolism through veins was recorded. Although in most cases water potentials inducing 50% embolism of herbaceous flower veins were more negative than neighbouring leaves, there was no significant difference between the average vulnerability of leaves and petals of herbaceous species. In both woody species, petals were more vulnerable to cavitation than leaves, in one case by more than 3 MPa. Early cavitation and subsequent damage of flowers in the two woody species would thus be expected to precede leaf damage during drought. Similar cavitation thresholds of flowers and leaves in the herb sample suggest that cavitation during water shortage in these species will occur simultaneously among aerial tissues. Species-specific differences in the cavitation thresholds of petals provide a new axis of variation that may explain contrasting flowering ecology among plant species. © 2017 The Author(s).

  11. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    Science.gov (United States)

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  12. Experimental Investigation of Cavitation Induced Feedline Instability from an Orifice

    Science.gov (United States)

    Hitt, Matthew A.; Lineberry, David M.; Ahuja, Vineet; Frederick, Robert A,

    2012-01-01

    This paper details the results of an experimental investigation into the cavitation instabilities created by a circular orifice conducted at the University of Alabama in Huntsville Propulsion Research Center. This experiment was conducted in concert with a computational simulation to serve as a reference point for the simulation. Testing was conducted using liquid nitrogen as a cryogenic propellant simulant. A 1.06 cm diameter thin orifice with a rounded inlet was tested in an approximately 1.25 kg/s flow with inlet pressures ranging from 504.1 kPa to 829.3 kPa. Pressure fluctuations generated by the orifice were measured using a high frequency pressure sensor located 0.64 tube diameters downstream of the orifice. Fast Fourier Transforms were performed on the high frequency data to determine the instability frequency. Shedding resulted in a primary frequency with a cavitation related subharmonic frequency. For this experiment, the cavitation instability ranged from 153 Hz to 275 Hz. Additionally, the strength of the cavitation occur red as a function of cavitation number. At lower cavitation numbers, the strength of the cavitation instability ranged from 2.4 % to 7 % of the inlet pressure. However, at higher cavitation numbers, the strength of the cavitation instability ranged from 0.6 % to 1 % of the inlet pressure.

  13. Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator

    DEFF Research Database (Denmark)

    Arora, M.; Ohl, C.-D.; Mørch, Knud Aage

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 and 150 mum are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases......, and subsequently the particle separates from the cavity. The cavity growth and particle detachment are modeled by considering the momentum of the particle and the displaced liquid. The analysis suggests that all particles which cause cavitation are accelerated into translatory motion, and separate from...... the cavities they themselves nucleate. Thus, in the research of cavitation nuclei the link is established between developed cavitation bubbles and their origin....

  14. Photoacoustic cavitation for theranostics: mechanism, current progress and applications

    Science.gov (United States)

    Feng, Y.; Qin, D.; Wan, M.

    2015-12-01

    As an emerging cavitation technology, photoacoustic cavitation (PAC) means the formation of bubbles in liquids using focused laser and pre-established ultrasound synchronously. Its significant advantages include the decreased threshold of each modality and the precise location of cavitation determined by the focused laser. In this paper, a brief review of PAC is presented, including the physical mechanism description, the classic experimental technology, the representative results in variety of media, and its applications in biomedical imaging and therapy. Moreover, some preliminary results of PAC in perfluoropentane (PFP) liquid and PFP droplets investigated by passive cavitation detection (PCD) in our group are also presented.

  15. Calcium Is a Major Determinant of Xylem Vulnerability to Cavitation

    Science.gov (United States)

    Herbette, Stephane; Cochard, Herve

    2010-01-01

    Xylem vulnerability to cavitation is a key parameter in the drought tolerance of trees, but little is known about the control mechanisms involved. Cavitation is thought to occur when an air bubble penetrates through a pit wall, and would hence be influenced by the wall's porosity. We first tested the role of wall-bound calcium in vulnerability to cavitation in Fagus sylvatica. Stems perfused with solutions of oxalic acid, EGTA, or sodium phosphate (NaPO4) were found to be more vulnerable to cavitation. The NaPO4-induced increase in vulnerability to cavitation was linked to calcium removal from the wall. In contrast, xylem hydraulic conductance was unaffected by the chemical treatments, demonstrating that the mechanisms controlling vulnerability to cavitation and hydraulic resistance are uncoupled. The NaPO4 solution was then perfused into stems from 13 tree species possessing highly contrasted vulnerability to cavitation. Calcium was found to be a major determinant of between-species differences in vulnerability to cavitation. This was evidenced in angiosperms as well as conifer species, thus supporting the hypothesis of a common mechanism in drought-induced cavitation. PMID:20547703

  16. Computational fluid dynamic modelling of cavitation

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  17. Modeling Unsteady Cavitation Effects and Dynamic Loads in Cryogenic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There currently are no analytical or CFD tools that can reliably predict unsteady cavitation dynamics in liquid rocket turbopumps. Cavitation effects, particularly...

  18. Structural-Acoustic Coupling Effects on the Non-Vacuum Packaging Vibratory Cylinder Gyroscope

    Science.gov (United States)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-01-01

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm. PMID:24351631

  19. Optimization of process parameters during vibratory welding technique using Taguchi's analysis

    Directory of Open Access Journals (Sweden)

    Pravin Kumar Singh

    2016-09-01

    Full Text Available With an aim to improve the mechanical properties of a weld joint, a new concept of vibratory setup has been designed which is capable to stir the molten weld pool before it solidifies during shielded metal arc welding (SMAW operation. Mechanical vibration having resonance frequency of 300 Hz and amplitude of 0.5 mm was transferred to the molten weld pool of 6 mm thick mild steel butt-welded joints during the welding operation. The experimental work was conducted at various ranges of frequencies, welding current and welding speed. Taguchi's analysis technique has been applied to optimize the process parameters; the response values for analysis are yield strength and micro-hardness. The test results showed that with the application of the vibratory treatment the values of hardness and tensile properties increased. The auxiliary vibrations induced into the weld pool resulted in increased micro-hardness of the weld metal which indicates the orientation of the crystal and refinement of grains took place. This study shows that vibration applied into the weld pool can be successfully improved the mechanical properties of welded joints. Thus this research attempt provided an alternative welding technique for grain refinement of weldments.

  20. Mechanical and Electrical Noise in Sense Channel of MEMS Vibratory Gyroscopes.

    Science.gov (United States)

    Ding, Xukai; Jia, Jia; Gao, Yang; Li, Hongsheng

    2017-10-11

    This paper presents a theoretical analysis of mechanical and electrical noise in the sense channel of micro-electromechanical systems (MEMS) vibratory gyroscopes. Closed-form expressions for the power spectral density (PSD) of the noise equivalent rate (NER) of gyroscopes in the open-loop and the force-rebalance operations are derived by using an averaged PSD model and an equivalent transfer function. The obtained expressions are verified through numerical simulations, demonstrating close agreements between the analytic and the numerical models. Based on the derived expressions for the PSD of the NER, the impacts of the modal frequency split, quality factor, and the gain of the feedback forcer, as well as the gain of the signal conditioning circuit, on the gyroscope noise characteristics are theoretically analyzed. In addition, the angle random walk (ARW) and the standard deviation of the NER are also discussed through the PSD models. Finally, the effects of the loop closing, the mode matching, and the gain of the feedback forcer on the PSD of the NER were verified via a MEMS vibratory gyroscope with a tunable modal frequency split.

  1. [Penile vibratory stimulation and electroejaculation in the treatment of ejaculatory dysfunction].

    Science.gov (United States)

    Fan, Long-chang; Liu, Ji-hong

    2005-03-01

    The fertility potential of infertile men can be enhanced to a great extent by the application of assisted reproduction techniques such as intrauterine insemination or in-vitro fertilization with or without intracytoplasmic sperm injection, but how to obtain semen from men with ejaculatory dysfunction remains a problem. The development and refinement of penile vibratory stimulation (PVS) and electroejaculation (EEJ) have significantly brightened the prospects for the treatment of ejaculatory dysfunction. Because vibratory stimulation is non-invasive and easy to perform, and needs no anaesthesia, it is preferred by most of the patients to EEJ, and recommended to be the first choice of treatment for ejaculatory dysfunction. Approximately 80% of all ejaculatory dysfunction men with an intact ejaculatory reflex arc (above T10 ) can obtain antegrade ejaculation by PVS. Any condition which affects the ejaculatory mechanism of the central and/or peripheral nervous system including surgical nerve injury may be treated successfully by EEJ. The purpose of this review is to present the current understanding of PVS and EEJ procedures and their clinical use in men with ejaculatory dysfunction.

  2. Protection from erosion following wildfire

    Science.gov (United States)

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  3. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf

    2012-10-01

    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  4. Saliva and dental erosion

    Science.gov (United States)

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  5. Erosion Negril Beach

    NARCIS (Netherlands)

    Ten Ham, D.; Henrotte, J.; Kraaijeveld, R.; Milosevic, M.; Smit, P.

    2006-01-01

    The ongoing erosion of the Negril Beach has become worse the past decade. In most places along the coast line, the beach will be gone in approximately 10 years. This will result in a major decrease of incomes that are made by the local tourist sector. To prevent the erosion this study has been

  6. Reproducible cavitation activity in water-particle suspensions

    NARCIS (Netherlands)

    Borkent, B.M.; Arora, M.; Ohl, C.D.

    2007-01-01

    The study of cavitation inception in liquids rarely yields reproducible data, unless special control is taken on the cleanliness of the experimental environment. In this paper, an experimental technique is demonstrated which allows repeatable measurements of cavitation activity in liquid-particle

  7. An objective comparison of commercially-available cavitation meters.

    Science.gov (United States)

    Sarno, Daniel; Hodnett, Mark; Wang, Lian; Zeqiri, Bajram

    2017-01-01

    With a number of cavitation meters on the market which claim to characterise fields in ultrasonic cleaning baths, this paper provides an objective comparison of a selection of these devices and establishes the extent to which their claims are met. The National Physical Laboratory's multi-frequency ultrasonic reference vessel provided the stable 21.06kHz field, above and below the inertial cavitation threshold, as a test bed for the sensor comparison. Measurements from these devices were evaluated in relation to the known acoustic pressure distribution in the cavitating vessel as a means of identifying the mode of operation of the sensors and to examine the particular indicator of cavitation activity which they deliver. Through the comparison with megahertz filtered acoustic signals generated by inertial cavitation, it was determined that the majority of the cavitation meters used in this study responded to acoustic pressure generated by the direct applied acoustic field and therefore tended to overestimate the occurrence of cavitation within the vessel, giving non-zero responses under conditions when there was known to be no inertial cavitation occurring with the reference vessel. This has implications for interpreting the data they provide in user applications. Copyright © 2016. Published by Elsevier B.V.

  8. Characterizing the cavitation development and acoustic spectrum in various liquids.

    Science.gov (United States)

    Tzanakis, I; Lebon, G S B; Eskin, D G; Pericleous, K A

    2017-01-01

    A bespoke cavitometer that measures acoustic spectrum and is capable of operating in a range of temperatures (up to 750°C) was used to study the cavitation behaviour in three transparent liquids and in molten aluminium. To relate these acoustic measurements to cavitation development, the dynamics of the cavitation bubble structures was observed in three Newtonian, optically transparent liquids with significantly different physical properties: water, ethanol, and glycerine. Each liquid was treated at 20kHz with a piezoelectric ultrasonic transducer coupled to a titanium sonotrode with a tip diameter of 40mm. Two different transducer power levels were deployed: 50% and 100%, with the maximum power corresponding to a peak-to-peak amplitude of 17μm. The cavitation structures and the flow patterns were filmed with a digital camera. To investigate the effect of distance from the ultrasound source on the cavitation intensity, acoustic emissions were measured with the cavitometer at two points: below the sonotrode and near the edge of the experimental vessel. The behaviour of the three tested liquids was very different, implying that their physical parameters played a decisive role in the establishment of the cavitation regime. Non dimensional analysis revealed that water shares the closest cavitation behaviour with liquid aluminium and can therefore be used as its physical analogue in cavitation studies; this similarity was also confirmed when comparing the measured acoustic spectra of water and liquid aluminium. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation

    NARCIS (Netherlands)

    Khatami, F.; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    2015-01-01

    For an elliptic Arndt’s hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the

  10. Suppression of Fatigue Crack Propagation of Duralumin by Cavitation Peening

    Directory of Open Access Journals (Sweden)

    Hitoshi Soyama

    2015-08-01

    Full Text Available It was demonstrated in the present paper that cavitation peening which is one of the mechanical surface modification technique can suppress fatigue crack propagation in duralumin. The impacts produced when cavitation bubble collapses can be utilised for the mechanical surface modification technique in the same way as laser peening and shot peening, which is called “cavitation peening”. Cavitation peening employing a cavitating jet in water was used to treat the specimen made of duralumin Japanese Industrial Standards JIS A2017-T3. After introducing a notch, fatigue test was conducted by a load-controlled plate bending fatigue tester, which has been originally developed. The fatigue crack propagation behavior was evaluated and the relationship between the fatigue crack propagation rate versus stress intensity factor range was obtained. From the results, the fatigue crack propagation rate was drastically reduced by cavitation peening and the fatigue life of duralumin plate was extended 4.2 times by cavitation peening. In addition, the fatigue crack propagation can be suppressed by 88% in the stable crack propagation stage by cavitation peening.

  11. The acceleration of solid particles subjected to cavitation nucleation

    DEFF Research Database (Denmark)

    Borkent, B.M.; Arora, M.; Ohl, C.-D.

    2008-01-01

    The cavity -particle dynamics at cavitation inception on the surface of spherical particles suspended in water and exposed to a strong tensile stress wave is experimentally studied with high-speed photography. Particles, which serve as nucleation sites for cavitation bubbles, are set into a fast...

  12. Dental pulp reaction to Cavit temporary filling material.

    Science.gov (United States)

    Provant, D R; Adrian, J C

    1978-02-01

    Seventy-two teeth in three Macaque fasicularis monkeys were used to evaluate pulpal response to cavit. Displacement of odontoblastic nuclei was evaluated histologically at three time periods in order to identify initial, early, and final responses. There were no statistically significant differences in pulpal response between Cavit and the zinc oxide-eugenol controls when used in accordance with the manufacturer's directions.

  13. A continuum damage relation for hydrogen attack cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Burg, M.W.D. van der; Giessen, E. van der [Delft Univ. of Technology (Netherlands). Lab. for Engineering Mechanics

    1997-07-01

    A continuum damage relation (CDR) is proposed to describe the failure process of hydrogen attack, i.e., grain boundary cavitation of steels under conditions of high temperature and high hydrogen pressure. The cavitation is caused by the chemical reaction of hydrogen with grain boundary carbides forming cavities filled with high pressure methane. The micromechanisms described are the grain boundary cavitation and the dislocation creep of the grains. The CDR is based on two extreme cavitation rate distribution modes. In the first mode, the cavitation rate along the facets is uniform, resulting in a hydrostatic dilatation while the creep deformations remain relatively small. In the second mode, cavitation proceeds predominantly on grain boundary facets transverse to the principal macroscopic stress. This part of the CDR builds on Tvergaard`s constitutive relation for intergranular creep rupture [Tvergaard, V., Acta Metallurgica, 1984, 32, 1977] where the facet cavitation is constrained by creep of the surrounding grains. The mode corresponding to the highest cavitation rate is the active mode. The two-dimensional version of the CDR is verified against detailed finite element analyses of hydrogen attack in planar polycrystalline aggregates. Finally, the generalization to a three-dimensional CDR is discussed.

  14. Pressure Propagation of Impinging Jet with Cavitation by Numerical Analysis

    Science.gov (United States)

    Kanamori, Daisei; Inoue, Fumihiro; Ohta, Yutaka

    2017-10-01

    In recent years, cavitating jet has attracted attention as an application of water jet technology. In its application, it is important to clarify the jet flow structure and the behavior of bubble cloud collapse. Therefore, in order to visualize the cavitating jet flow structure and elucidate the behavior of collapsing of cavitation bubble clouds, we conducted numerical simulations with gas-liquid two-phase media model. We validated the numerical model by comparing the numerical results with the theoretical and experimental results and had a good agreement. In the case of gas-liquid two-phase free jet, cavitation bubble clouds emit periodically and transfer at a regular speed. And some bubble clouds merge with a preceding bubble clouds. Comparing with liquid single-phase jet, the core region is maintained to the further downstream and we show the usefulness of the cavitating jet. In the case of gas-liquid two-phase impinging jet, after a cavitation bubble cloud collides with wall, it is broken by applying pressure and generates a shock wave. At this time, the impact pressure becomes maximum. Thereafter, the shock wave affects other cavitation bubble clouds and break these. The collapsed cavitation bubble cloud rebounds and collapses again near the collision wall surface.

  15. VibroCav : Hydrodynamic Vibration and Cavitation Technology

    NARCIS (Netherlands)

    Bakker, T.W.

    2012-01-01

    Vibration and cavitation can be generated in many ways and serve many useful purposes. This study describes physical aspects of useful vibration and cavitation for a broad spectrum of applications at atmospheric or elevated pressures. After a review of available devices, hydrodynamic

  16. Radiation induced cavitation: A possible phenomenon in liquid targets?

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  17. Cavitation-aided grain refinement in aluminium alloys

    NARCIS (Netherlands)

    Atamanenko, T.V.

    2010-01-01

    This thesis deals with grain refinement under the influence of ultrasonic-driven cavitation in aluminium casting processes. Three major goals of this research were: (1) to identify the mechanism of the cavitation-aided grain refinement at different stages of solidification; (2) to reveal the

  18. Study of the cavitating instability on a grooved Venturi profile

    CERN Document Server

    Danlos, Amélie; Ravelet, Florent; Coutier-Delgosha, Olivier; Bakir, Farid

    2012-01-01

    Cavitation is a limiting phenomenon in many domains of fluid mechanics. Instabilities of a partial cavity developed on an hydrofoil, a converging-diverging step or in an inter-blade channel in turbomachinery, have already been investigated and described in many previous works. The aim of this study is to evaluate a passive control method of the sheet cavity. According to operating conditions, cavitation can be described by two different regimes: an unstable regime with a cloud cavitation shedding and a stable regime with only a pulsating sheet cavity. Avoiding cloud cavitation can limit structure damages since a pulsating sheet cavity is less agressive. The surface condition of a converging-diverging step, like a Venturi-type obstacle, is here studied as a solution for a passive control of the cavitation. This study discusses the effect of an organized roughness, in the shape of longitudinal grooves, on the developed sheet cavity. Analyzes conducted with Laser Doppler Velocimetry, visualisations and pressure ...

  19. Observation of Microhollows Produced by Bubble Cloud Cavitation

    Science.gov (United States)

    Yamakoshi, Yoshiki; Miwa, Takashi

    2012-07-01

    When an ultrasonic wave with sound pressure less than the threshold level of bubble destruction irradiates microbubbles, the microbubbles aggregate by an acoustic radiation force and form bubble clouds. The cavitation of bubble clouds produces a large number of microhollows (microdips) on the flow channel wall. In this study, microhollow production by bubble cloud cavitation is evaluated using a blood vessel phantom made of N-isopropylacrylamide (NIPA) gel. Microbubble dynamics in bubble cloud cavitation is observed by a microscope with a short pulse light emitted diode (LED) light source. Microhollows produced on the flow channel wall are evaluated by a confocal laser microscope with a water immersion objective. It is observed that a mass of low-density bubbles (bubble mist) is formed by bubble cloud cavitation. The spatial correlation between the bubble mist and the microhollows shows the importance of the bubble mist in microhollow production by bubble cloud cavitation.

  20. Non-cavitating propeller noise modeling and inversion

    Science.gov (United States)

    Kim, Dongho; Lee, Keunhwa; Seong, Woojae

    2014-12-01

    Marine propeller is the dominant exciter of the hull surface above it causing high level of noise and vibration in the ship structure. Recent successful developments have led to non-cavitating propeller designs and thus present focus is the non-cavitating characteristics of propeller such as hydrodynamic noise and its induced hull excitation. In this paper, analytic source model of propeller non-cavitating noise, described by longitudinal quadrupoles and dipoles, is suggested based on the propeller hydrodynamics. To find the source unknown parameters, the multi-parameter inversion technique is adopted using the pressure data obtained from the model scale experiment and pressure field replicas calculated by boundary element method. The inversion results show that the proposed source model is appropriate in modeling non-cavitating propeller noise. The result of this study can be utilized in the prediction of propeller non-cavitating noise and hull excitation at various stages in design and analysis.

  1. AN EFFICIENT TREATMENT STRATEGY FOR HISTOTRIPSY BY REMOVING CAVITATION MEMORY

    Science.gov (United States)

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Cain, Charles A.

    2012-01-01

    Cavitation memory effects occur when remnants of cavitation bubbles (nuclei) persist in the host medium and act as seeds for subsequent events. In pulsed cavitational ultrasound therapy, or histotripsy, this effect may cause cavitation to repeatedly occur at these seeded locations within a target volume, producing inhomogeneous tissue fractionation or requiring an excess number of pulses to completely homogenize the target volume. We hypothesized that by removing the cavitation memory, i.e., the persistent nuclei, the cavitation bubbles could be induced at random locations in response to each pulse; therefore, complete disruption of a tissue volume may be achieved with fewer pulses. To test the hypothesis, the cavitation memory was passively removed by increasing the intervals between successive pulses, Δt, from 2, 10, 20, 50 and 100, to 200 ms. Histotripsy treatments were performed in red blood cell tissue phantoms and ex vivo livers using 1-MHz ultrasound pulses of 10 cycles at P−/P+ pressure of 21/59 MPa. The phantom study allowed for direct visualization of the cavitation patterns and the lesion development process in real time using high-speed photography; the ex vivo tissue study provided validation of the memory effect in real tissues. Results of the phantom study showed an exponential decrease in the correlation coefficient between cavitation patterns in successive pulses from 0.5 ± 0.1 to 0.1 ± 0.1 as Δt increased from 2–200 ms; correspondingly, the lesion was completely fractionated with significantly fewer pulses for longer Δts. In the tissue study, given the same number of therapy pulses, complete and homogeneous tissue fractionation with well-defined lesion boundaries was achieved only for Δt ≥ 100 ms. These results indicated that the removal of the cavitation memory resulted in more efficient treatments and homogeneous lesions. PMID:22402025

  2. Modal Damping Ratio and Optimal Elastic Moduli of Human Body Segments for Anthropometric Vibratory Model of Standing Subjects.

    Science.gov (United States)

    Gupta, Manoj; Gupta, T C

    2017-10-01

    The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.

  3. Retrograde root filling with amalgam and Cavit.

    Science.gov (United States)

    Finne, K; Nord, P G; Persson, G; Lennartsson, B

    1977-04-01

    In a 3-year review of 218 teeth with retrograde root filling with amalgam orCavit, the results obtained with the former proved significantly better than those obtained with the latter. The difference seemed to be due to a better obliteration of the canal by amalgam. The obliterating effect of amalgam probably eliminates the need for revision of incomplete othograde root filling, for example, in cases with a post in the root canal. Irrespective of type of filling materials, the results were less good in cases with marginal bone loss.

  4. Peripapillary intrachoroidal cavitation in pathological myopia.

    Science.gov (United States)

    Marticorena-Álvarez, P; Clement-Fernández, F; Iglesias-Ussel, L

    2014-08-01

    A 54 year old woman with pathological myopia, presented with an elevated, yellowish-white lesion at the inferior border of the myopic conus in her left eye. The optical coherence tomography (OCT) demonstrated an intrachoroidal hyporeflective space. The fluorescein angiography examination (FA) showed early hypofluorescence with delayed staining, with no leakage of contrast. Recognition of «peripapillary intrachoroidal cavitation» as an own entity associated with pathological myopia is important to avoid confusion with other possible retinal lesions which require further investigation and treatment. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  5. Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction

    Science.gov (United States)

    Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon

    2017-01-01

    Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.

  6. Synovial fluid cavitation during distraction radiography of the coxofemoral joint in dogs.

    Science.gov (United States)

    LaFond, E; Smith, G K; Gregor, T P; McKelvie, P J; Shofer, F S

    1997-05-01

    To determine risk factors for, and prevalence and short- and long-term effects of synovial fluid cavitation during distraction radiography. Multicenter prevalence survey. 6,649 purebred dogs comprising 129 breeds. Radiographs from the PennHIP (University of Pennsylvania Hip Improvement Program) Laboratory were subjectively evaluated for evidence of cavitation. Multiple logistic regression was used to determine whether sex, breed, age, weight, distraction index (DI), or examining veterinarian was associated with cavitation. Short-term effects of cavitation were assessed by comparing DI for the hip with cavitation with DI for the contralateral hip in dogs with unilateral cavitation. Long-term effects of cavitation were assessed by comparing DI before and after cavitation was detected. Cavitation was detected in 279 (4.2%) of the radiographs analyzed. Male dogs, Golden Retrievers, and heavier dogs were at a decreased risk for cavitation. Irish Wolfhounds, Irish Setters, Rhodesian Ridgebacks, and Weimaraners had an increased risk for cavitation. Age and DI were not risk factors for cavitation. Mean DI was 0.08 greater in hips with cavitation than in paired hips without cavitation. Significant differences were not detected between DI before and after cavitation, but only 7 dogs were included in this analysis. Cavitation is rare during distraction radiography and can increase measured DI. Radiographs should be routinely examined to ensure accurate reporting of DI.

  7. Erosion in America

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-23

    The US loses about five billion tons of soil a year from erosion, and scientists estimate that from 20 to 50% of world cropland suffers from excessive erosion. The effect of erosion is a loss in both land and water productivity. When combined with the problems of overpopulation, overgrazing, and deforestation, the environmental impacts are very serious. There are some signs that countries are beginning to adopt conservation tilling techniques, but even cooperative government programs in the US such as the 1983 Payment-in-Kind (PIK) program have had only partial success because of expanded production on marginal farmlands. 20 reference 5 figures.

  8. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Shankar, E-mail: shankardutta77@gmail.com; Panchal, Abha; Kumar, Manoj; Pal, Ramjay; Bhan, R. K. [Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi, India 110054 (India)

    2016-04-13

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 – 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  9. Characterization of vibratory turning in cutting zone using a pneumatic quick-stop device

    Directory of Open Access Journals (Sweden)

    Saeid Amini

    2017-04-01

    Full Text Available Shear angle and sticking length are two crucial parameters in mechanics of metal cutting. These two parameters directly influence machinability factors such as cutting forces. Thus, shear angle and sticking length were investigated in vibratory turning process by using a pneumatic quick-stop device which was designed and fabricated, in this study. After preparation of ultrasonic assisted turning set-up, experimental tests have been carried out on two types of steel: AISI-1060 and AISI 304. Accordingly, the process of chip formation in each particular cutting test was quickly stopped when deformed chip was still in contact with workpiece. As a result, it was revealed that added linear vibration leads the turning operation to be improved by increase of shear angle and decrease of sticking length. Moreover, the effect of ultrasonic vibration on cutting force and chip micro-hardness is evaluated.

  10. Interspectral combination type resonances of nonlinear conservative/nonconservative distributed parameter vibratory systems

    Science.gov (United States)

    Padovan, J.

    1985-06-01

    This paper investigates the properties/formation of combination type resonances of nonlinear conservative/nonconservative distributed parameter vibratory systems subject to external harmonic inputs containing a profusion of frequencies. Overall, this includes the evaluation of simultaneously excited harmonic, sub/superharmonics as well as combination harmonics created by interactions between external and interspectral system frequency branches. Additionally, effort is also given to handling nonconservative characteristics wherein critical damping levels may suppress specific combination harmonics. The foregoing is made possible through the development of a warped and constrained multiple time scales perturbation solution scheme. To illustrate the scheme as well as the nature and form of external and interspectral interaction, a nonlinear nonconservative version of the wave equation which is excited by complex external harmonic fields is given detailed consideration.

  11. Development of vibratory stress relief actuators based on giant magnetostrictive materials

    Science.gov (United States)

    He, Wen

    2005-12-01

    A kind of actuator, which is used in the high frequency Vibratory Stress Relief (VSR), was researched. The actuator is based on the technology of giant magnetostrictive materials. The design principle of the actuator was firstly analyzed, which consists of the analysis of giant magnetostrictive materials and a force generator. Then the design criterion of magnetostrictive actuators was deeply discussed, which includes the dimension design of magnetostrictive materials, the design of magnetic field and the design of elimination of heat. Finally, a real actuator was developed, which has been used in the high frequency VSR. The experimental results show that the developed actuator works very well. Large exciting force but small vibration amplitude will make it widely used in the VSR.

  12. Application of vibratory-percussion crusher for disintegration of supertough materials

    Science.gov (United States)

    Shishkin, E. V.; Kazakov, S. V.

    2017-10-01

    This article describes the results of theoretical and experimental studies of a vibratory-percussion crusher, which is driven from a pair of self-synchronizing vibration exciters, attached to the shell symmetrically about its vertical axis. In addition to that, crusher’s dynamic model is symmetrical and balanced. Forced oscillation laws for crusher working members and their amplitude-frequency characteristics have been inducted. Domains of existence of synchronous opposite-phase oscillations of crusher working members (crusher’s operating mode) and crusher capabilities have been identified. The results of mechanical and technological tests of a pilot crusher presented in the article show that this crusher may be viewed as an advanced machine for disintegration of supertough materials with minimum regrinding of finished products.

  13. Vibratory synchronization transmission of a cylindrical roller in a vibrating mechanical system excited by two exciters

    Science.gov (United States)

    Zhang, Xueliang; Wen, Bangchun; Zhao, Chunyu

    2017-11-01

    In present work vibratory synchronization transmission (VST) of a cylindrical roller with dry friction in a vibrating mechanical system excited by two exciters, is studied. Using the average method, the criterion of implementing synchronization of two exciters and that of ensuring VST of a roller, are achieved. The criterion of stability of the synchronous states satisfies the Routh-Hurwitz principle. The influences of the structural parameters of the system to synchronization and stability, are discussed numerically, which can be served as the theoretical foundation for engineering designs. An experiment is carried out, which approximately verify the validity of the theoretical and numerical results, as well as the feasibility of the method used. Utilizing the VST theory of a roller, some types of vibrating crushing or grinding equipments, etc., can be designed.

  14. [Particle size reduction using acoustic cavitation].

    Science.gov (United States)

    Bartos, Csilla; Ambrus, Rita; Szabóné, Révész Piroska

    2014-01-01

    Different pharmaceutical technological processes have been used for modification of the physico-chemical and biopharmaceutical properties of drugs. Changes of crystal size, distribution and morphology can open up new, alternative administration routes, e.g. intranasally and the pulmonary route, where the particle size is a determining factor. A wet grinding method based on acoustic cavitation (the collapse of bubbles or voids formed by sound waves) is a novel possibility for modification of the properties of particles. During our work this wet grinding technique was studied. The effect of this method was investigated on particle size reduction. The samples were treated with extreme sonication parameters. The effect of the concentration of the polymer was examined on the particle size reduction. Meloxicam was chosen as a model crystalline drug because of its poor aqueous solubility. The structural characterization and the morphological analysis of the dried products were carried out by DSC, XRPD and SEM. It was found that the acoustic cavitation resulted in crystalline micronized product.

  15. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    Science.gov (United States)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-02-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times

  16. Characterization of the cavitating flow in converging-diverging nozzle based on experimental investigations

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2014-03-01

    Full Text Available Cavitation phenomena occuring in converging-diverging nozzle (Venturi tube are described in the paper. A closed test circuit with possibility to control both flow rate and static pressure level were used. Loss coefficient was evaluated for different sigma numbers resulting in full „static“ characterization of the nozzle. Visualizations of the cavitation pattern development were acquired and matched with evolution of the loss coefficient. Three cavitation regimes are described: partial cavitation, fully developed cavitation, supercavitation.

  17. The effect of the aortic valve orientation on cavitation.

    Science.gov (United States)

    Johansen, Peter; Travis, Brandon R; Smerup, Morten; Decker Christensen, Thomas; Funder, Jonas; Nyboe, Camilla; Nygaard, Hans; Hasenkam, J Michael

    2016-08-01

    When implanting a mechanical aortic valve the annulus orientation is important with respect to turbulence. However, the effect on cavitation has not yet been investigated. The aim of this study was to investigate how cavitation is influenced hereof in vivo. Three pigs were included in the study. An Omnicarbon 21mm valve equipped with a rotating mechanism enabling controlled rotation of the valve was implanted in aortic position. Under stable hemodynamic conditions, measurements were performed using a hydrophone positioned at the aortic root. The valve was rotated from 0-360° in increments of 30°. From the pressure fluctuations recorded by the hydrophone the root mean square of the 50 kHz high pass filtered signal as well as the non-deterministic signal energy was calculated as indirect measures of cavitation. Various degrees of cavitation were measured but no relationship was found between either of the two cavitation measures and the valve orientation. Hemodynamics varied during the experiments for all pigs (3.9-5.7 l/min; 5.0-7.2 l/min; 3.1-7.5 l/min). Changes in cavitation quantities seemed to be caused by changes in hemodynamics rather than valve angular position. In conclusion, these results do not favor any position over another in terms of cavitation potential.

  18. Use of hydrodynamic cavitation in (waste)water treatment.

    Science.gov (United States)

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ultrasound imaging for cavitation detection during HIFU ablation in brain

    Science.gov (United States)

    Long, Tao; Amin, Viren; McClure, Scott; Roberts, Ronald; Wu, Liangshou; Heise, Matthew; Ryken, Timothy

    2007-03-01

    High intensity focused ultrasound (abbreviated as HIFU) has its potential in tumor treatment due to its non-invasive benefits. During HIFU exposure, cavitation (generation of gas bubbles) is often observed, which can be an indication of potential lesion created by HIFU power. Due to a large difference in ultrasound acoustic properties between the gas bubble and surrounding tissues, ultrasonic energy is reflected and scattered at the HIFU focus, thus indicating activity around the focal area and often interfering HIFU dosage delivery. A good understanding and control of cavitation phenomenon could potentially enhance the HIFU delivery and treatment outcomes. Quantifying the onset timing and extent of the cavitation could be potentially used for detecting HIFU effects and therapy guidance. In this paper, we study the relationships among HIFU parameters, the characteristics of cavitation quantified from ultrasound imaging, and characteristics of the final tissue lesion created by HIFU. In our study, we used 12 freshly excised pig brains in vitro for observation and analysis of cavitation activities during HIFU exposure with different HIFU parameters. Final lesions were examined by slicing the brain tissues into thin slices and 3D volume was constructed with segmentation of the lesion. HIFU parameters, cavitation activities through image processing and lesion characterization were correlated. We also present our initial understanding of the process of cavitation activities under certain HIFU parameters and control of such activities that could lead to optimal lesion

  20. Interdigital erosions: Tinea pedis?

    National Research Council Canada - National Science Library

    Orgaz-Molina, Jacinto; Orgaz-Molina, Maria Carmen; Cotugno, Marilena; Arias-Santiago, Salvador

    2012-01-01

    Interdigital erosions are frequently due to tinea pedis. However, other infectious conditions, such as candidiasis, erythrasma or bacterial infections, can generate lesions that cannot be differentiated at the clinical level...

  1. Transient pressure signals in mechanical heart valve cavitation.

    Science.gov (United States)

    Wu, Z J; Slonin, J H; Hwang, N H

    1996-01-01

    The purpose of this investigation was to establish a correlation between mechanical heart valve (MHV) cavitation and transient pressure (TP) signals at MHV closure. This correlation may suggest a possible method to detect in vivo MHV cavitation. In a pulsatile mock flow loop, a study was performed to measure TP and observe cavitation bubble inception at MHV closure under simulated physiologic ventricular and aortic pressures at heart rates of 70, 90, 120, and 140 beats/min with corresponding cardiac outputs of 5.0, 6.0, 7.5, and 8.5 L/min, respectively. The experimental study included two bileaflet MHV prostheses: 1) St. Jude Medical 31 mm and 2) Carbomedics 31 mm. High fidelity piezo-electric pressure transducers were used to measure TP immediately before and after the valve leaflet/housing impact. A stroboscopic lighting imaging technique was developed to capture cavitation bubbles on the MHV inflow surfaces at selected time delays ranging from 25 microseconds to 1 ms after the leaflet/housing impact. The TP traces measured 10 mm away from the valve leaflet tip showed a large pressure reduction peak at the leaflet/housing impact, and subsequent high frequency pressure oscillations (HPOs) while the cavitation bubbles were observed. The occurrence of cavitation bubbles and HPO bursts were found to be random on a beat by beat basis. However, the amplitude of the TP reduction, the intensity of the cavitation bubble (size and number), and the intensity of HPO were found to increase with the test heart rate. A correlation between the MHV cavitation bubbles and the HPO burst was positively established. Power spectrum analysis of the TP signals further showed that the frequency of the HPO (cavitation bubble collapse pressures) ranged from 100 to 450 kHz.

  2. Mechanical heart valve cavitation in patients with bileaflet valves.

    Science.gov (United States)

    Johansen, Peter; Andersen, Tina S; Hasenkam, J Michael; Nygaard, Hans; Paulsen, Peter K

    2014-01-01

    Today, the quality of mechanical heart valves is quite high, and implantation has become a routine clinical procedure with a low operative mortality (mechanism found to be a possible contributor to these adverse effects is cavitation. In vitro, cavitation has been directly demonstrated by visualization and indirectly in vivo by registering of high frequency pressure fluctuations (HFPF). Tilting disc valves are thought of having higher cavitation potential than bileaflet valves due to higher closing velocities. However, the thromboembolic potential seems to be the same. Further studies are therefore needed to investigate the cavitation potential of bileaflet valves in vivo. The post processing of HFPF have shown difficulties when applied on bileaflet vavles due to asynchronous closure of the two leaflets. The aim of this study was therefore to isolate the pressure signature from each leaflet closure and perform cavitation analyses on each component. Six patients were included in the study (St. Jude Medical (n=3) and CarboMedics (n=3); all aortic bileaflet mechanical heart valves). HFPFs were recorded intraoperatively through a hydrophone at the aortic root. The pressure signature relating to the first and second leaflet closure was isolated and cavitation parameters were calculated (RMS after 50 kHz highpass filtering and signal energy). Data were averaged over 30 heart cycles. For all patients both the RMS value and signal energy of the second leaflet closure were higher than for the first leaflet closure. This indicates that the second leaflet closure is most prone to cause cavitation. Therefore, quantifying cavitation based on the HFPF related to the second leaflet closure may suggest that the cavitation potential for bileaflet valves in vivo may be higher than previous studies have suggested.

  3. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system.

    Science.gov (United States)

    Desjouy, C; Fouqueray, M; Lo, C W; Muleki Seya, P; Lee, J L; Bera, J C; Chen, W S; Inserra, C

    2015-09-01

    The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.

    2005-01-01

    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  5. Experimental determination of cavitation thresholds in liquid water and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.; West, C.D. [Oak Ridge National Lab., TN (United States); Moraga, F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1998-11-01

    An overview is provided on cavitation threshold measurement experiments for water and mercury. Various aspects to be considered that affect onset determination are discussed along with design specifications developed for construction of appropriate apparatus types. Both static and transient-cavitation effects were studied using radically different apparatus designs. Preliminary data are presented for cavitation thresholds for water and mercury over a range of temperatures in static and high-frequency environments. Implications and issues related to spallation neutron source target designs and operation are discussed.

  6. Influence of the Cavitation Model on the Simulation of Cloud Cavitation on 2D Foil Section

    Directory of Open Access Journals (Sweden)

    S. Frikha

    2008-01-01

    Full Text Available For numerical simulations of cavitating flows, many physical models are currently used. One approach is the void fraction transport equation-based model including source terms for vaporization and condensation processes. Various source terms have been proposed by different researchers. However, they have been tested only in different flow configurations, which make direct comparisons between the results difficult. A comparative study, based on the expression of the source terms as a function of the pressure, is presented in the present paper. This analytical approach demonstrates a large resemblance between the models, and it also clarifies the influence of the model parameters on the vaporization and condensation terms and, therefore, on the cavity shape and behavior. Some of the models were also tested using a 2D CFD code in configurations of cavitation on two-dimensional foil sections. Void fraction distributions and frequency of the cavity oscillations were compared to existing experimental measurements. These numerical results confirm the analytical study.

  7. Penile vibratory stimulation in the recovery of urinary continence and erectile function after nerve‐sparing radical prostatectomy: a randomized, controlled trial

    National Research Council Canada - National Science Library

    Fode, Mikkel; Borre, Michael; Ohl, Dana A; Lichtbach, Jonas; Sønksen, Jens

    2014-01-01

    To examine the effect of penile vibratory stimulation (PVS) in the preservation and restoration of erectile function and urinary continence in conjunction with nerve-sparing radical prostatectomy (RP...

  8. Localization in an acoustic cavitation cloud

    CERN Document Server

    Miao, Boya

    2016-01-01

    Using a nonlinear sound wave equation for a bubbly liquid in conjunction with an equation for bubble pulsation, we predict and experimentally demonstrate the appearance of a gap in the frequency spectrum of a sound wave propagating in a cavitation cloud comprising bubbles. For bubbles with an ambient radius of 100 {\\mu}m, the calculations revealed that this gap corresponds to the phenomenon of sound wave localization. For bubbles with an ambient radius of 120 {\\mu}m, this spectral gap relates to a forbidden band of the sound wave. In the experiment, we observed the predicted gap in the frequency spectrum in soda water; however, in tap water, no spectral gap was present because the bubbles were much smaller than 100 {\\mu}m.

  9. Inverse Analysis of Cavitation Impact Phenomena on Structures

    National Research Council Canada - National Science Library

    Lambrakos, S. G; Tran, N. E

    2007-01-01

    A general methodology is presented for in situ detection of cavitation impact phenomena on structures based on inverse analysis of luminescent emissions resulting from the collapsing of bubbles onto surfaces...

  10. Mathematical Modelling of Fluid Flow in Cone and Cavitation Formation

    Directory of Open Access Journals (Sweden)

    Milada KOZUBKOVÁ

    2011-06-01

    Full Text Available Problem of cavitation is the undesirable phenomena occuring in the fluid flow in many hydraulic application (pumps, turbines, valves, etc.. Therefore this is in the focus of interest using experimental and mathematical methods. Based on cavitation modelling in Laval nozzle results and experience [1], [2], [4], following problem described as the water flow at the outlet from turbine blade wheel was solved. Primarily the problem is simplified into modelling of water flow in cone. Profiles of axial, radial and tangential velocity are defined on inlet zone. The value of pressure is defined on the outlet. Boundary conditions were defined by main investigator of the grant project – Energy Institute, Victor Kaplan’s Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. The value of air volume was insignificant. Cavitation was solved by Singhal model of cavitation.

  11. Optimization of centrifugal pump cavitation performance based on CFD

    Science.gov (United States)

    Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

  12. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...... of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres...... it is shown that regions between fibre ends may develop hydrostatic tensile stresses high enough to exceed the critical level for a cavitation instability. For cases where a void is located in such regions it is shown that unstable cavity growth develops when the void is initially much smaller than the highly...

  13. Flow Modelling for partially Cavitating Two-dimensional Hydrofoils

    DEFF Research Database (Denmark)

    Krishnaswamy, Paddy

    2001-01-01

    The present work addresses te computational analysis of partial sheet hydrofoil cavitation in two dimensions. Particular attention is given to the method of simulating the flow at the end of the cavity. A fixed-length partially cavitating panel method is used to predict the height of the re......-entrant jet, using the values of the cavitation number and the drag coefficient. The jet surface is subsequently constructed and inclued in an updated cavity shape. At the same time, a source singularity is introduced in the fluid domain to account for the mass flux through the part of the domain boundary...... represented by the re-entrant jet surface. Further iterations are performed for fixed cavitation number on the cavity with a re-entrant jet cavity termination model. This model is seen to produce good results and displays quick convergence. A validation is accomplished by conducting a parametric analysis...

  14. Analysis of Acoustic Cavitation Surge in a Rocket Engine Turbopump

    Directory of Open Access Journals (Sweden)

    Hideaki Nanri

    2010-01-01

    Full Text Available In a liquid rocket engine, cavitation in an inducer of a turbopump sometimes causes instability phenomena when the inducer is operated at low inlet pressure. Cavitation surge (auto-oscillation, one such instability phenomenon, has been discussed mainly based on an inertia model assuming incompressible flow. When this model is used, the frequency of the cavitation surge decreases continuously as the inlet pressure of the turbopump decreases. However, we obtained an interesting experimental result in which the frequency of cavitation surge varied discontinuously. Therefore, we employed one-dimensional analysis based on an acoustic model in which the fluid is assumed to be compressible. The analytical result qualitatively corresponded with the experimental result.

  15. Untreated Cavitated Dentine Lesions: Impact on Children's Quality of Life

    National Research Council Canada - National Science Library

    Leal, S.C; Bronkhorst, E.M; Fan, M; Frencken, J.E

    2012-01-01

    The aim of the present investigation was to assess the impact of dental caries prevalence and the consequences of untreated cavitated dentine lesions on quality of life of 6- and 7-year-old Brazilian children...

  16. Synergistic degradation of chitosan by impinging stream and jet cavitation.

    Science.gov (United States)

    Huang, Yongchun; Wang, Pengfei; Yuan, Yuan; Ren, Xian'e; Yang, Feng

    2015-11-01

    Chitosan degradation was investigated using a combination of jet cavitation and impinging stream. Different operating parameters such as the initial concentration (1-5 g L(-1)), initial pH (3.2-4.8), solution temperature (30, 40, 50, 60, and 70°C), inlet pressure (0.1-0.45 MPa), and treatment time (0-120 min) were optimized to achieve the maximum degradation of chitosan. After the optimization of jet cavitation parameters, chitosan degradation was carried out using venturi tubes of different structures (the fluidic generator). The efficiency of the jet cavitation degradation was improved significantly by combining with impinging stream. The structures of the degradation products were characterized by Fourier-transform infrared spectroscopy and X-ray diffraction. This study has conclusively established that a combination of jet cavitation and impinging stream can be effectively used for the complete degradation of chitosan. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Radial Shock Wave Devices Generate Cavitation.

    Science.gov (United States)

    Császár, Nikolaus B M; Angstman, Nicholas B; Milz, Stefan; Sprecher, Christoph M; Kobel, Philippe; Farhat, Mohamed; Furia, John P; Schmitz, Christoph

    2015-01-01

    Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical practice.

  18. Radial Shock Wave Devices Generate Cavitation.

    Directory of Open Access Journals (Sweden)

    Nikolaus B M Császár

    Full Text Available Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues.We used laser fiber optic probe hydrophone (FOPH measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA. To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans worms.FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device.The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices.Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical

  19. Multi-focal HIFU reduces cavitation in mild-hyperthermia.

    Science.gov (United States)

    Chaplin, Vandiver; Caskey, Charles F

    2017-01-01

    Mild-hyperthermia therapy (40-45 °C) with high-intensity focused ultrasound (HIFU) is a technique being considered in a number of different treatments such as thermally activated drug delivery, immune-stimulation, and as a chemotherapy adjuvant. Mechanical damage and loss of cell viability associated with HIFU-induced acoustic cavitation may pose a risk during these treatments or may hinder their success. Here we present a method that achieves mild heating and reduces cavitation by using a multi-focused HIFU beam. We quantify cavitation level and temperature rise in multi-focal sonications and compare it to single-focus sonications at the transducer geometric focus. Continuous wave sonications were performed with the Sonalleve V2 transducer in gel phantoms and pork at 5, 10, 20, 40, 60, 80 acoustic watts for 30 s. Cavitation activity was measured with two ultrasound (US) imaging probes, both by computing the raw channel variance and using passive acoustic mapping (PAM). Temperature rise was measured with MR thermometry at 3 T. Cavitation and heating were compared for single- and multi-focal sonication geometries. Multi-focal sonications used four points equally spaced on a ring of either 4 mm or 8 mm diameter. Single-focus sonications were not steered. Multi-focal sonication generated distinct foci that were visible in MRI thermal maps in both phantoms and pork, and visible in PAM images in phantoms only. Cavitation activity (measured by channel variance) and mean PAM image value were highly correlated (r > 0.9). In phantoms, cavitation exponentially decreased over the 30-second sonication, consistent with depletion of cavitation nuclei. In pork, sporadic spikes signaling cavitation were observed with single focusing only. In both materials, the widest beam reduced average and peak cavitation level by a factor of two or more at each power tested when compared to a single focus. The widest beam reduced peak temperature by at least 10 °C at powers above 5

  20. Modelling on cavitation in a diffuser with vortex generator

    Directory of Open Access Journals (Sweden)

    Jablonská J.

    2013-04-01

    Full Text Available Based on cavitation modelling in Laval nozzle results and experience, problem with the diffuser with vortex generator was defined. The problem describes unsteady multiphase flow of water. Different cavitation models were used when modelling in Fluent, flow condition is inlet and pressure condition is outlet. Boundary conditions were specified by Energy Institute, Victor Kaplan’s Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. Numerical modelling is compared with experiment.

  1. Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Stiller, Volker; Sperry, John S

    2002-05-01

    "Cavitation fatigue" is the increased susceptibility of a xylem conduit to cavitation as a result of its prior cavitation. It was investigated whether cavitation fatigue induced in vivo could be repaired in intact plants. Sunflowers (Helianthus annuus L.) were subjected to soil drought in the greenhouse. Native embolism and vulnerability to cavitation was measured in well-watered controls and after 5 d and 10 d of controlled drought. A dramatic cavitation fatigue was observed where droughted xylem that was refilled in the laboratory developed up to 60 PLC (percentage loss of hydraulic conductivity) at -1 MPa versus only 5.2 PLC in non-droughted controls. Rewatered plants showed the complete reversal of cavitation fatigue over 4 d. Reversal of fatigue was correlated with the refilling of embolized vessels in the intact plants (r(2)=0.91, P<0.01), suggesting that xylem transport to fatigued vessels was required for their repair. The in vivo reversal of fatigue was partially duplicated in excised stem segments by perfusing them with root exudates from droughted (DR) and well-watered (WW) plants. The DR exudate had a greater effect, and this was associated with a greater pH in the DR versus WW saps, but there was no difference in total cation concentration. Perfusions with 2 mM CaCl(2) and KCl solutions also partially reversed cavitation fatigue as opposed to no effect with deionized water, suggesting a role of ions in addition to a pH effect. It is suspected that fatigue is caused by stretching and partial disruption of linkages between cellulose microfibrils in inter-conduit pit membranes during air seeding, and that the reversal of fatigue involves restoring these linkages by ingredients in xylem sap.

  2. Vortex flow and cavitation in diesel injector nozzles

    Science.gov (United States)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection

  3. Numerical study of cavitating flow inside a flush valve

    OpenAIRE

    BAYEUL-LAINE, Annie-Claude; Simonet, Sophie; DUTHEIL, Daniel; Caignaert, Guy

    2011-01-01

    In water supply installations, noise pollution often occurs. As a basic component of a system, a flush valve may frequently be a source of noise and vibration generated by cavitation or high turbulence levels. During valve closing or valve opening, cavitation can be a problem. In order to decrease the noise and to improve the design inside a flush valve, some experimental and numerical analyses were carried out in our laboratories. These analyses led to some improvements in the de...

  4. Coherent-Phase Monitoring Of Cavitation In Turbomachines

    Science.gov (United States)

    Jong, Jen-Yi

    1996-01-01

    Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.

  5. Cavitation erosion resistance of CrMnSiN austenitic stainless steels deposited by PTA

    OpenAIRE

    Hélio Ormeu Ribeiro; Augusto José de Almeida Buschinelli; Jair Carlos Dutra; Ana Sofia Clímaco Monteiro D´Oliveira

    2010-01-01

    A erosão por cavitação deteriora componentes em serviço, tais como partes metálicas de bombas de água, válvulas e, em especial, pás de turbinas hidráulicas, sendo nesse último caso responsável por elevados prejuízos ligados tanto aos custos da manutenção direta, como sobretudo às perdas por interrupção na geração de energia elétrica. Dentre os materiais aplicados no reparo por soldagem de danos por cavitação incluem-se aços inoxidáveis tradicionais tipo AISI 308 e 309, aços inoxidáveis ao Co ...

  6. Surface tension and quasi-emulsion of cavitation bubble cloud.

    Science.gov (United States)

    Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun

    2017-03-01

    A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Promotion of Cultural Heritage in Batangas and Cavite

    Directory of Open Access Journals (Sweden)

    Dr. Dexter R. Buted

    2014-06-01

    Full Text Available – The study aimed to identify the commonly visited cultural heritage sites in Batangas and Cavite; to assess the cultural heritage sites in Batangas and Cavite in terms of physical, social and economic aspects; and to determine existing promotional patterns of Batangas and Cavite. Descriptive type of research was utilized in the study. Results showed that the most visited cultural heritage attraction in Taal, Batangas was Basilica of St. Martin de Tours while in Maragondon, Cavite the most visited was Andres Bonifacio Trial House . Blogs, Websites and Facebook are mostly used by the municipality of Taal in promoting their cultural heritage sites. While Cavite sticks to always using leaflets/flyers, brochures as their promotional materials. Cultural heritage sites in both Taal and Maragondon were perceived to have positive results in the assessments based on different aspects such as physical, social and economic aspects. The promotional materials of Taal and Maragondon are often used. A proposed plan of action was made to promote cultural attraction in Maragondon, Cavite and Taal, Batangas.

  8. Controlling the cavitation phenomenon of evolution on a butterfly valve

    Science.gov (United States)

    Baran, G.; Catana, I.; Magheti, I.; Safta, C. A.; Savu, M.

    2010-08-01

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  9. Controlling the cavitation phenomenon of evolution on a butterfly valve

    Energy Technology Data Exchange (ETDEWEB)

    Baran, G; Safta, C A [Department of Hydraulic and Hydraulic Machineries, University Politehnica of Bucharest, 313 Splaiul Independentei, Bucharest, 060042 (Romania); Catana, I [Department of Control and Computer Science, University Politehnica of Bucharest (Romania); Magheti, I; Savu, M, E-mail: baran_gheorghe@yahoo.co.u [Department of Mechanical Engineering, University Politehnica of Bucharest (Romania)

    2010-08-15

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  10. Cavitation modeling for steady-state CFD simulations

    Science.gov (United States)

    Hanimann, L.; Mangani, L.; Casartelli, E.; Widmer, M.

    2016-11-01

    Cavitation in hydraulic turbomachines is an important phenomenon to be considered for performance predictions. Correct analysis of the cavitation onset and its effect on the flow field while diminishing the pressure level need therefore to be investigated. Even if cavitation often appears as an unsteady phenomenon, the capability to compute it in a steady state formulation for the design and assessment phase in the product development process is very useful for the engineer. In the present paper the development and corresponding application of a steady state CFD solver is presented, based on the open source toolbox OpenFOAM®. In the first part a review of different cavitation models is presented. Adopting the mixture-type cavitation approach, various models are investigated and developed in a steady state CFD RANS solver. Particular attention is given to the coupling between cavitation and turbulence models as well as on the underlying numerical procedure, especially the integration in the pressure- correction step of pressure-based solvers, which plays an important role in the stability of the procedure. The performance of the proposed model is initially assessed on simple cases available in the open literature. In a second step results for different applications are presented, ranging from airfoils to pumps.

  11. Unveiling the physical mechanism behind pistol shrimp cavitation.

    Science.gov (United States)

    Koukouvinis, Phoevos; Bruecker, Christoph; Gavaises, Manolis

    2017-10-25

    Snapping shrimps use a special shaped claw to generate a cavitating high speed water jet. Cavitation formed in this way, may be used for hunting/stunning prey and communication. The present work is a novel computational effort to provide insight on the mechanisms of cavitation formation during the claw closure. The geometry of the claw used here is a simplified claw model, based on prior experimental work. Techniques, such as Immersed Boundary and Homogenous Equilibrium Model (HEM), are employed to describe the claw motion and cavitating flow field respectively. The simulation methodology has been validated against prior experimental work and is applied here for claw closure at realistic conditions. Simulations show that during claw closure, a high velocity jet forms, inducing vortex roll-up around it. If the closure speed is high enough, the intensity of the swirling motion is enough to produce strong depressurization in the vortex core, leading to the formation of a cavitation ring. The cavitation ring moves along the jet axis and, soon after its formation, collapses and rebounds, producing high pressure pulses.

  12. Cavitation studies on whole Ricinus plants by acoustic detection.

    Science.gov (United States)

    Milburn, J A

    1973-12-01

    Acoustic detection has been used to investigate the incidence of cavitation in whole potted Ricinus plants subjected to water stress by withholding water. Cavitation proceeded rather slowly and was detectable before and during wilting. Techniques which restricted water uptake more drastically such as root cooling or overlapping cuts induced more rapid "click" production and wilting; a response already described for excised leaves. When water stress was removed by rewatering, or rewarming a cooled root system, cavitation soon ceased. This response was more sluggish of over-delayed.Cavitation in aging leaves on well watered plants has also been examined. Despite the onset of senescence over many days there was no evidence that dry patches, which often develop extensively, are a consequence of water shortage induced by xylem blockage. Leaves, falling naturally by abscission in still air, were often remarkably turgid with water potentials similar to those of healthy attached leaves. Only after losing water was cavitation apparent, as usual for excised mature leaves. Sometimes more persistent leaves did cavitate in situ, just before abscission, showing that in normal leaves xylem blockage can occasionally precede leaf fall by several hours.

  13. Erosive Lichen Planus.

    Science.gov (United States)

    Mauskar, Melissa

    2017-09-01

    Lichen planus is an inflammatory mucocutaneous condition with a myriad of clinical manifestations. There are 3 forms of lichen planus that effect the vulva: papulosquamous, hypertrophic, and erosive. Erosive lichen planus can progress to vulvar scaring, vaginal stenosis, and squamous cell carcinoma; these long-term sequelae cause sexual distress, depression, and decreased quality of life for patients. Diagnosis is often delayed because of patient embarrassment or clinician misdiagnosis. Early recognition and treatment is essential to decreasing the morbidity of this condition. Multimodal treatment, along with a multidisciplinary approach, will improve outcomes and further clinical advances in studying this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Diagnostic Value of Conventional and Digital Radiography for Detection of Cavitated and Non-Cavitated Proximal Caries

    Science.gov (United States)

    Dehghani, Mahdieh; Barzegari, Rasool; Tabatabai, Hosein

    2017-01-01

    Objectives: This study aimed to assess the diagnostic value of conventional and digital radiography for detection of cavitated and non-cavitated proximal caries. Materials and Methods: Fifty extracted human premolars and molars were mounted in a silicone block. Charge-coupled device (CCD) and photostimulable phosphor plate (PSP) receptors and intra-oral films were exposed with 60 and 70 kVp with parallel technique. Two observers interpreted the radiographs twice with a two-week interval using a 5-point scale. Teeth were then serially sectioned in mesiodistal direction and evaluated under a stereomicroscope (gold standard). Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated. Results: Sensitivity of all three receptors for detection of enamel lesions was low (5.5–44.4%) but it was higher for dentin lesions (42.8–62.8%); PSP with 70 kVp and 0.03s exposure time had the highest sensitivity for enamel lesions, but the difference among receptors was not statistically significant (P>0.05). Sensitivity of all three receptors for detection of non-cavitated lesions was lower than that for cavitated lesions; PSP with 60 kVp and 0.07s exposure time had higher sensitivity and lower patient radiation dose for detection of cavitated and non-cavitated lesions, but the difference was not significant (P>0.05). Conclusions: Digital radiography using PSP receptor with 70 kVp is recommended to detect initial enamel caries. For detection of non-cavitated and cavitated dentin caries, PSP with 60 kVp is more appropriate. Change in kVp did not affect the diagnostic accuracy for detection of caries, and type of receptor was a more important factor. PMID:28828014

  15. Diagnostic Value of Conventional and Digital Radiography for Detection of Cavitated and Non-Cavitated Proximal Caries

    Directory of Open Access Journals (Sweden)

    Mahdieh Dehghani

    2017-02-01

    Full Text Available Objectives: This study aimed to assess the diagnostic value of conventional and digital radiography for detection of cavitated and non-cavitated proximal caries.Materials and Methods: Fifty extracted human premolars and molars were mounted in a silicone block. Charge-coupled device (CCD and photostimulable phosphor plate (PSP receptors and intra-oral films were exposed with 60 and 70 kVp with parallel technique. Two observers interpreted the radiographs twice with a two-week interval using a 5-point scale. Teeth were then serially sectioned in mesiodistal direction and evaluated under a stereomicroscope (gold standard. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated.Results: Sensitivity of all three receptors for detection of enamel lesions was low (5.5-44.4% but it was higher for dentin lesions (42.8-62.8%; PSP with 70 kVp and 0.03s exposure time had the highest sensitivity for enamel lesions, but the difference among receptors was not statistically significant (P>0.05. Sensitivity of all three receptors for detection of non-cavitated lesions was lower than that for cavitated lesions; PSP with 60 kVp and 0.07s exposure time had higher sensitivity and lower patient radiation dose for detection of cavitated and non-cavitated lesions, but the difference was not significant (P>0.05.Conclusions: Digital radiography using PSP receptor with 70 kVp is recommended to detect initial enamel caries. For detection of non-cavitated and cavitated dentin caries, PSP with 60 kVp is more appropriate. Change in kVp did not affect the diagnostic accuracy for detection of caries, and type of receptor was a more important factor.Keywords: Dental Caries; Diagnostic Imaging; Radiography, Dental, Digital

  16. Diagnostic Value of Conventional and Digital Radiography for Detection of Cavitated and Non-Cavitated Proximal Caries.

    Science.gov (United States)

    Dehghani, Mahdieh; Barzegari, Rasool; Tabatabai, Hosein; Ghanea, Sahar

    2017-01-01

    This study aimed to assess the diagnostic value of conventional and digital radiography for detection of cavitated and non-cavitated proximal caries. Fifty extracted human premolars and molars were mounted in a silicone block. Charge-coupled device (CCD) and photostimulable phosphor plate (PSP) receptors and intra-oral films were exposed with 60 and 70 kVp with parallel technique. Two observers interpreted the radiographs twice with a two-week interval using a 5-point scale. Teeth were then serially sectioned in mesiodistal direction and evaluated under a stereomicroscope (gold standard). Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated. Sensitivity of all three receptors for detection of enamel lesions was low (5.5-44.4%) but it was higher for dentin lesions (42.8-62.8%); PSP with 70 kVp and 0.03s exposure time had the highest sensitivity for enamel lesions, but the difference among receptors was not statistically significant (P>0.05). Sensitivity of all three receptors for detection of non-cavitated lesions was lower than that for cavitated lesions; PSP with 60 kVp and 0.07s exposure time had higher sensitivity and lower patient radiation dose for detection of cavitated and non-cavitated lesions, but the difference was not significant (P>0.05). Digital radiography using PSP receptor with 70 kVp is recommended to detect initial enamel caries. For detection of non-cavitated and cavitated dentin caries, PSP with 60 kVp is more appropriate. Change in kVp did not affect the diagnostic accuracy for detection of caries, and type of receptor was a more important factor.

  17. Vibratory stimulation from powered-toothbrush: A novel approach for orthodontic pain reduction after initial archwire placement

    Directory of Open Access Journals (Sweden)

    Pradeep Raghav

    2015-01-01

    Full Text Available Introduction: Vibratory stimulation has been reported as an effective means in reducing the orthodontic pain. The aim of this study was to evaluate the effectiveness of vibratory stimulation from powered-toothbrushes as a noninvasive and nonpharmacological method of reducing pain caused after initial archwire placement and to compare it with other common modalities of management. Materials and Methods: This clinical trial included 75 patients of age 13–25 years, scheduled for fixed mechanotherapy. Patients were divided into five groups: Control, placebo multivitamin, paracetamol, chewing-gum (Cg, and powered-toothbrush. After placement of 0.016″ Nickel Titanium initial archwire (upper/lower in each patient, the discomfort perceived at 2 h, 6 h, bedtime, 24 h, 2 days, 3 days, and 7 days were marked individually using Wong-Baker (0–5 and numeric (0–10 pain rating scales. Kruskal–Wallis test, Friedman test, unpaired t-test were used for statistical analysis. Results: Vibratory stimulation from powered-toothbrushes effectively reduced pain after initial archwire placement. It did not alter the pattern of pain perception, but significantly reduced the overall intensity of pain at each time interval. Cg was not found effective enough to be recommended as a routine treatment modality. Conclusion: Powered-toothbrushes can be recommended as a nonpharmacological and noninvasive substitute for nonsteroidal anti-inflammatory drugs for effective pain reduction in the clinical practice.

  18. Perception of Frequency, Amplitude and Azimuth of a Vibratory Dipole-Source by the Octavolateralis System of Goldfish (Carassius auratus)

    Science.gov (United States)

    Dailey, Deena D.; Braun, Christopher B.

    2011-01-01

    Goldfish (Carassius auratus) were conditioned to suppress respiration to a 40 Hz vibratory source and subsequently tested for stimulus generalization to frequency, stimulus amplitude and position (azimuth). Animals completely failed to generalize to frequencies separated by octave intervals, both lesser and greater than the CS. However they did appear to generalize weakly to an aerial loudspeaker stimulus of the same frequency (40 Hz) after conditioning with an underwater vibratory source. Animals had a gradually decreasing amount of generalization to amplitude changes, suggesting a perceptual dimension of loudness. Animals generalized largely or completely to the same underwater source presented at a range of source azimuths. When these azimuths were presented at a transect of 3 cm, some animals did show decrements in generalization, while others did not. This suggests that although azimuth may be perceived more saliently at distances closer to a dipole source, perception of position is not immediately salient in conditioned vibratory source detection. Differential responding to test stimuli located towards the head or tail suggests the presence of perceptual differences between sources that are rostral or caudal with respect to the position of the animal or perhaps the head. PMID:21574689

  19. Clinical studies of dental erosion and erosive wear

    National Research Council Canada - National Science Library

    Huysmans, M.C.D.N.J.M; Chew, H.P; Ellwood, R.P

    2011-01-01

    We define erosion as a partial demineralisation of enamel or dentine by intrinsic or extrinsic acids and erosive tooth wear as the accelerated loss of dental hard tissue through the combined effect...

  20. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.

    Science.gov (United States)

    Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae

    2017-11-18

    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  1. Two Novel Measurements for the Drive-Mode Resonant Frequency of a Micromachined Vibratory Gyroscope

    Directory of Open Access Journals (Sweden)

    Ancheng Wang

    2013-11-01

    Full Text Available To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG, one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  2. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation

    Directory of Open Access Journals (Sweden)

    Hyukjin J. Kwon

    2017-11-01

    Full Text Available Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  3. Separation of water from metal working emulsions by ultrafiltration using vibratory membranes.

    Science.gov (United States)

    Moulai-Mostefa, Nadji; Frappart, Matthieu; Akoum, Omar; Ding, Luhui; Jaffrin, Michel Y

    2010-05-15

    In this paper, we investigate the application of a vibratory shear-enhanced filtration system (VSEP) to separation of water from oil-in-water emulsions. The VSEP module consists in an annular membrane of 500 cm(2) area which oscillates azimuthally in its own plane with an amplitude depending upon frequency. Polyethersulfone (PES) membranes of 50 and 20 kDa were used. Test fluids consisted of oil-in-water emulsion at an oil concentration of 4% prepared from a concentrated cutting fluid. The critical flux for stable operation was investigated by increasing the permeate flux in steps while monitoring the transmembrane pressure (TMP). With a 50 kDa membrane the flux increased nonlinearly with TMP and reached 250 L h(-1)m(-2) at a TMP of 1500 kPa while permeate turbidity decayed from 1.8 to 0.9 NTU above 600 kPa from an initial emulsion turbidity of 21,900 NTU. With the 20 kDa membrane, the flux increased linearly with TMP until 1600 kPa, but the oil concentration in permeate became negligible (turbidity near zero NTU). Concentration tests showed that the flux decreased linearly with ln(VRR) where VRR is the volume reduction ratio while permeate turbidity increased exponentially to 25NTU above a VRR of 4. This work confirms the high performance of the VSEP for oil separation from water in metal working emulsions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events

    Science.gov (United States)

    Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin

    2017-09-01

    This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.

  5. Penile vibratory stimulation and electroejaculation before anticancer therapy in two pubertal boys.

    Science.gov (United States)

    Schmiegelow, M L; Sommer, P; Carlsen, E; Sønksen, J O; Schmiegelow, K; Müller, J R

    1998-01-01

    Because more than 70% of children with cancer become long-term survivors, more emphasis is put on reducing late effects. Cryopreservation of semen and the intracytoplasmic sperm injection technique makes it possible to obtain pregnancy with very poor sperm quality. Two new semen retrieval methods are described that are applicable in pubertal boys with a fertility potential, although not psychologically ready to produce a semen sample, who are likely to become infertile because of anticancer therapy. Two pubertal boys (aged 14 and 15 years) had a late testicular relapse of pre-B acute lymphoblastic leukemia and Hodgkin disease, stage II, respectively. In patient 1, penile vibratory stimulation (PVS) was tried under general anesthesia without success and electroejaculation (EEJ) was performed. Before alkylating chemotherapy and testicular irradiation, PVS was performed with success in patient 2. An antegrade ejaculate of 0.7 ml with 1% motile spermatozoa and an retrograde ejaculate with 1.6 x 10(6)/ml spermatozoa (5% with fair motility) was obtained from patient 1. An antegrade ejaculate of 1.5 ml with 2.5 x 10(6)/ml spermatozoa (29% with fair motility) was obtained from patient 2. PVS should be the first choice of treatment because it is noninvasive, simple, and easily applied. Because EEJ requires general anesthesia, it should be used as a second option.

  6. Penile vibratory stimulation in the treatment of post-prostatectomy incontinence

    DEFF Research Database (Denmark)

    Fode, Mikkel; Sønksen, Jens

    2015-01-01

    AIMS: To examine penile vibratory stimulation (PVS) in the treatment of post-prostatectomy urinary incontinence (UI). METHODS: Patients with post-prostatectomy UI were included in a 12-week trial. A 24-hr pad test and a 72-hr voiding diary were collected at baseline. Participants were randomized...... men were available for analyses. The difference in the change on the pad test between the groups did not reach statistical significance at 6 weeks (P = 0.13) while the change in incontinence episodes between groups approached statistical significance (P = 0.052). However, there was a median reduction...... of -33 g (P = 0.021) on the pad test and a median reduction in daily incontinence episodes of -1 (P = 0.023) in group 1 at 6 weeks. At 12 weeks, group 2 had a median decrease on the pad test of -8 g (P = 0.10) and no change in incontinence episodes. A pooled analysis showed a decline on the pad test...

  7. EROSION RATE OF RESERVOIR DEPOSIT AS REVEALED BY LABORATORY EXPERIMENT

    Directory of Open Access Journals (Sweden)

    A. S. Amar

    2012-06-01

    Full Text Available The construction of dams and reservoirs in a river can give significant impacts on its flow of water and sediment, and can cause long-term morphological changes on the river. Reservoir sedimentation can reduce a reservoir’s effective flood control volume, and in some severe cases can cause overtopping during floods. Sediment deposition against a dam can reduce its stability, and affect the operation of low-level outlet works, gates, and valves. The abrasive action of sediment particles can roughen the surface of release facilities and can cause cavitations and vibration. Sedimentation can also affect a reservoir’s water quality, and reduce its flood control, water supply, hydropower, and recreation benefits. Consequently, taking sedimentation into consideration not only in the planning and design, but also in the operation and maintenance of a dam and reservoir is important. Keywords: Erosion rate, reservoir deposit, shear stress.

  8. Clinical studies of dental erosion and erosive wear

    NARCIS (Netherlands)

    Huysmans, M.C.D.N.J.M.; Chew, H.P.; Ellwood, R.P.

    2011-01-01

    We define erosion as a partial demineralisation of enamel or dentine by intrinsic or extrinsic acids and erosive tooth wear as the accelerated loss of dental hard tissue through the combined effect of erosion and mechanical wear (abrasion and attrition) on the tooth surface. Most experts believe

  9. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2009-12-15

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  10. Controlled ultrasonic tissue erosion

    Science.gov (United States)

    Cain, Charles

    2003-04-01

    Controlled ultrasonic tissue erosion has many clinical applications, including the placement of very precise sharply defined perforations in biological interfaces and membranes with focused ultrasound. With carefully chosen acoustic parameters, tissue can be rapidly eroded away at a constant etching rate. The maximum erosion rate for minimal propagated energy is obtained by using very short high intensity pulses. The etching rate is higher with shorter pulse durations. For short pulses less than 10 cycles of the drive frequency, an optimum pulse repetition rate exists which maximizes the etching rate. Higher gas saturation in the surrounding medium reduces the etching rate and reduces the spatial sharpness of the holes produced. Most of the erosion appears to be produced in the first several cycles of the therapy pulse. For example, a series of short (about 3 cycles) focused pulses of 2100 W/cm2 (Isppa) at 788 kHz can erode a very well defined 2 mm diameter hole in a 1 mm thick sample of fresh pork atrial posterior wall in about 1 min at the optimum pulse repetition rate (about 18 kHz). Controlled ultrasonic tissue erosion may provide an effective image guided noninvasive tool in treatment of neonatal patients with hypoplastic left heart syndrome. Without the mixing of oxygenated blood across perforations placed in the atrial septum, these infants do not survive.

  11. Categorization of erosion control matting.

    Science.gov (United States)

    2012-05-29

    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  12. Modeling Unsteady Cavitation Effects and Dynamic Loads in Cryogenic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There currently are no analytical or CFD tools that can reliably predict unsteady cavitation dynamics in liquid rocket cryogenic systems. Analysis of cavitating...

  13. Research on 3D reconstruction measurement and parameter of cavitation bubble based on stereo vision

    Science.gov (United States)

    Li, Shengyong; Ai, Xiaochuan; Wu, Ronghua; Cao, Jing

    2017-02-01

    The problems caused by the cavitation bubble and caused many adverse effects on the ship propeller, hydraulic machinery and equipment. In order to research the production mechanism of cavitation bubble under different conditions, cavitation bubble zone parameter fine measurement and analysis technology is indispensable, this paper adopts a non-contact measurement method of optical autonomous construction of binocular stereo vision measurement system according to the characteristics of cavitation bubble, the texture features are not clear, transparent and difficult to obtain, 3D imaging measurement of cavitation bubble using composite dynamic lighting, and 3D reconstruction of cavitation bubble region and obtained the characteristics of more accurate parameters, test results show that the cavitation bubble characteristics of the fine technology can obtain and analyze cavitation bubble region and instability.

  14. Shock waves from nonspherical cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Tinguely, Marc; Dorsaz, Nicolas; Farhat, Mohamed

    2017-09-01

    We present detailed observations of the shock waves emitted at the collapse of single cavitation bubbles using simultaneous time-resolved shadowgraphy and hydrophone pressure measurements. The geometry of the bubbles is systematically varied from spherical to very nonspherical by decreasing their distance to a free or rigid surface or by modulating the gravity-induced pressure gradient aboard parabolic flights. The nonspherical collapse produces multiple shocks that are clearly associated with different processes, such as the jet impact and the individual collapses of the distinct bubble segments. For bubbles collapsing near a free surface, the energy and timing of each shock are measured separately as a function of the anisotropy parameter ζ , which represents the dimensionless equivalent of the Kelvin impulse. For a given source of bubble deformation (free surface, rigid surface, or gravity), the normalized shock energy depends only on ζ , irrespective of the bubble radius R0 and driving pressure Δ p . Based on this finding, we develop a predictive framework for the peak pressure and energy of shock waves from nonspherical bubble collapses. Combining statistical analysis of the experimental data with theoretical derivations, we find that the shock peak pressures can be estimated as jet impact-induced hammer pressures, expressed as ph=0.45 (ρc2Δ p ) 1 /2ζ-1 at ζ >10-3 . The same approach is found to explain the shock energy decreasing as a function of ζ-2 /3.

  15. Supersonic microjets induced by hemispherical cavitation bubbles

    Science.gov (United States)

    Gonzalez-Avila, Roberto; Song, Chaolong; Ohl, Claus-Dieter

    2014-11-01

    In recent years methods to produce fast microjets have received significant attention due to their potential to be employed in needle-free injection devices that can provide mass inoculation. In this talk we present a novel technique capable of producing jets that can reach up to 400 m/s. The jets are produced by a device that consists only of two electrodes on a plastic substrate and a tapered hole of 13 ~ 20 μm between them. A short pulse of electric current is applied to the electrodes, then a spark bridges between the electrodes creating a cavitation bubble. Liquid is accelerated through the hole during the expansion and collapse of the bubble producing two separate jets. We found that as the exit velocity of the jet increases the jets become unstable. The second jet exiting the hole, usually faster than the first jet exits as a spray. The effect of viscosity was also studied with silicone oils up to 100 cSt. Finally, we also demonstrate that the jets can penetrate into soft material, thus they have the potential to be used in a needle-free drug-delivery application.

  16. Numerical modeling of a two-dimensional aerated cavitation in a symmetrical venturi nozzle

    OpenAIRE

    Tomov, P; Khelladi, S; Ravelet, Florent; Sarraf, C; Bakir, F; Giroux, D

    2015-01-01

    National audience; Cavitation is a well-known physical phenomenon occurring in various technical applications. Its coupling with the aeration, is a recent technique, which allows the control of the overall effect of the cavitation. The aeration is achieved by introducing air bubbles into the flow. In order to reveal and explore the behaviour of air in the vicinity of the cavitation regions, the paper is oriented towards the physics of the colliding vapour phase in the presence of cavitation. ...

  17. Recent developments in cavitation mechanisms a guide for scientists and engineers

    CERN Document Server

    Washio, Seiichi

    2014-01-01

    How does cavitation start? Presently, the nucleus theory provides the answer to this fundamental question. However the idea of nuclei contains inaccuracies that cannot be rationalized. Recent Developments in Cavitation Mechanisms discusses the uncertainties surrounding the nucleus theory, and proposes another theory of cavitation mechanism. Characteristically, the new theory is based on recent discoveries of cavity generation phenomena in separating flows. This book consists of chapters that introduce topics such as unsoundness of cavitation nuclei, and phenomena of cavity generation on walls

  18. Gauging the likelihood of stable cavitation from ultrasound contrast agents

    Science.gov (United States)

    Bader, Kenneth B; Holland, Christy K

    2015-01-01

    The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form ICAV = Pr/f (where Pr is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs. PMID:23221109

  19. Numerical Calculation on Cavitation Pressure Pulsation in Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Weidong Shi

    2014-02-01

    Full Text Available In order to study the internal flow in centrifugal pump when cavitation occurs, numerical calculation of the unsteady flow field in the WP7 automobile centrifugal pump is conducted based on the Navier-Stokes equations with the RNG k – ε turbulence model and Zwart-Gerber-Belamri cavitation model. The distributions of bubble volume fraction and pressure pulsation laws in the pump are analyzed when cavitation occurs. The conclusions are as follows: the bubble volume fraction is larger on the suction side of impeller blade near the inlet edge, which is consistent with the low-pressure region distribution. Bubble volume is determined by the growth rate and collapse rate of every bubble in the bubble group. The cavitation degree changes over time with the impeller rotation and the bubble growth and collapse coexist in the impeller flow channels. The main pulsation results from the cyclic and static coupling between the impeller and the tongue, while the fluctuating amplitude is increased by the cavitation.

  20. Numerical Modeling of Unsteady Cavitating Flows around a Stationary Hydrofoil

    Directory of Open Access Journals (Sweden)

    Antoine Ducoin

    2012-01-01

    Full Text Available The objective of this paper is to evaluate the predictive capability of three popular transport equation-based cavitation models for the simulations of partial sheet cavitation and unsteady sheet/cloud cavitating flows around a stationary NACA66 hydrofoil. The 2D calculations are performed by solving the Reynolds-averaged Navier-Stokes equation using the CFD solver CFX with the k-ω SST turbulence model. The local compressibility effect is considered using a local density correction for the turbulent eddy viscosity. The calculations are validated with experiments conducted in a cavitation tunnel at the French Naval Academy. The hydrofoil has a fixed angle of attack of α=6° with a Reynolds number of Re = 750,000 at different cavitation numbers σ. Without the density modification, over-prediction of the turbulent viscosity near the cavity closure reduces the cavity length and modifies the cavity shedding characteristics. The results show that it is important to capture both the mean and fluctuating values of the hydrodynamic coefficients because (1 the high amplitude of the fluctuations is critical to capturing the extremes of the loads to ensure structural safety and (2 the need to capture the frequency of the fluctuations, to avoid unwanted noise, vibrations, and accelerated fatigue issues.

  1. Numerical analysis for cavitation flow of marine propeller

    Science.gov (United States)

    Tauviqirrahman, Mohammad; Muchammad, Ismail, Rifky; Jamari, J.

    2015-12-01

    Concerning the environmental issue and the increase of fuel price, optimizing the fuel consumption has been recently an important subject in all industries. In marine industries one of the ways to decrease the energy consumption was by reducing the presence of cavitation on marine propeller blades. This will give a higher propulsive efficiency. This paper provides an investigation into the influence of the cavitation on a hydrodynamic performance around the propeller based on numerical method. Hydrofoil representing the blade form of propeller was of particular of interest. Two types of cavitation model were investigated with respect to the accuracy of the result and the effectiveness of the method. The results include the hydrodynamic characteristics of cavitation phenomenon like lift/drag variation with respect to the cavity extent. It was found that a high accuracy and low computational time is achieved when the cavitation model of Zwart-Gerber-Belamri is used. The interesting outcome of this study is that the results can be used as a good evaluation tool for high marine propeller performance.

  2. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems.

    Science.gov (United States)

    Ferrari, A

    2017-03-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh-Plesset equation are examined.

  3. Penile vibratory stimulation in the treatment of post-prostatectomy incontinence: a randomized pilot study.

    Science.gov (United States)

    Fode, Mikkel; Sønksen, Jens

    2015-02-01

    To examine penile vibratory stimulation (PVS) in the treatment of post-prostatectomy urinary incontinence (UI). Patients with post-prostatectomy UI were included in a 12-week trial. A 24-hr pad test and a 72-hr voiding diary were collected at baseline. Participants were randomized to receive PVS for the first 6 weeks (group 1) or for the final 6 weeks (group 2) of the study. The primary outcome was the difference in leakage between groups 1 and 2 at 6 weeks as measured by changes in the pad test. The trial was registered at www.clinicaltrials.org (NCT01540656). Data from 31 men were available for analyses. The difference in the change on the pad test between the groups did not reach statistical significance at 6 weeks (P = 0.13) while the change in incontinence episodes between groups approached statistical significance (P = 0.052). However, there was a median reduction of -33 g (P = 0.021) on the pad test and a median reduction in daily incontinence episodes of -1 (P = 0.023) in group 1 at 6 weeks. At 12 weeks, group 2 had a median decrease on the pad test of -8 g (P = 0.10) and no change in incontinence episodes. A pooled analysis showed a decline on the pad test of -13.5 g (P = 0.004) after PVS. Small improvements were seen in subjective symptom scores and 58% stated to be satisfied with PVS. Self-limiting side effects were experienced by 15% of patients. PVS is feasible in the treatment of post-prostatectomy UI. Larger trials are needed to document the clinical efficacy. © 2013 Wiley Periodicals, Inc.

  4. Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    Directory of Open Access Journals (Sweden)

    Zhengyi Niu

    2010-12-01

    Full Text Available It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F beam and the other one was suspended with a clamped-clamped (C-C beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures.

  5. Effect of axial force on the performance of micromachined vibratory rate gyroscopes.

    Science.gov (United States)

    Hou, Zhanqiang; Xiao, Dingbang; Wu, Xuezhong; Dong, Peitao; Chen, Zhihua; Niu, Zhengyi; Zhang, Xu

    2011-01-01

    It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures.

  6. A randomized trial of clitoral vacuum suction versus vibratory stimulation in neurogenic female orgasmic dysfunction.

    Science.gov (United States)

    Alexander, Marcalee; Bashir, Khurram; Alexander, Craig; Marson, Lesley; Rosen, Raymond

    2017-09-09

    To examine safety and efficacy of use of a clitoral vacuum suction device (CVSD) versus vibratory stimulation (V) to treat orgasmic dysfunction in women with MS or SCI. Randomized clinical trial. Two academic medical centers. Thirty-one women including 20 with MS and 11 with SCI. A 12-week trial of the use of a CVSD versus V MAIN OUTCOME MEASURES: Female Sexual Function Inventory (FSFI) and Female Sexual Distress Scale (FSDS). 23 women (18 MS; 5 SCI) completed the study including 13/16 randomized to CVSD and 10/15 randomized to V. There was a statistically significant increase in total FSFI score (p=.011), desire (p=. 009), arousal (p=.009), lubrication (p=.008), orgasm (p=.012), and satisfaction (p=.049) and a significant decrease in distress as measured by FSDS (p=.020) in subjects using the CVSD. In subjects who used V, there was a statistically significant increase in the orgasm subscale of the FSFI (p=.028). Subjects using the CVSD maintained improvements 4 weeks after treatment. CVSD is safe and overall efficacious to treat female neurogenic sexual dysfunction related to MS and SCI. V is also safe and efficacious to female neurogenic orgasmic dysfunction; however, results were limited to the active treatment period. Due to ease of access and cost, clinicians can consider use of V for women with MS or SCI with orgasmic dysfunction. CVSD is recommended for women with multiple sexual dysfunctions or for whom V is ineffective. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Development and evaluation of a vibratory-pneumatic pomegranate arils extractor

    Directory of Open Access Journals (Sweden)

    S. M Nassiri

    2017-05-01

    Full Text Available Introduction Iran is a frontier of pomegranate fruit production in the world (with almost 40 % of the world`s production. However due to traditional processing operations is not ranked as the largest pomegranate exporter. Saveh, Neyriz and Ferdows are the top pomegranate producing cities in Iran. Pomegranate is consumed as a fresh fruit as well as processed product as food additive, paste, syrup, jelly, pectin, jam, beverage, essence, vinegar and concentrate. Aril extraction is the first and essential postharvest operation for pomegranate processing. Arils are mostly extracted manually even in large scales for fresh and processed consumption. This labor intensive operation is rational when aril quality is an important index for consumer. But whenever pomegranate juice is desired, the aril quality has no priority for consumer, and therefore arils can be extracted with less care. Sarig (1985 was the first inventor of a pomegranate aril extractor who employed air jet force to extract the arils. Later, other researchers employed the same method as well as water jet to extract fruit juice and sac. In the present study, fabrication and evaluation of vibratory aril extractor augmented with air system was conducted. Materials and Methods The study was conducted using Rabab cultivar samples which were manually harvested from an orchard in Neyriz town, Fars province. Samples were kept in refrigerator at 5 0C till experimental trials. Initial moisture content of fruit skin, arils and internal fleshes were measured by gravimetric method as 31.7±2.6 %, 61.5±1.8 % and 42.8±1.4 %, respectively and for a whole fruit was measured 45.3±11.5 % (w.b.. For conducting laboratory tests, an aril extraction unit was designed and fabricated. It comprised a steel main frame, a 746 W electric motor, drive mechanism (eccentric and shaft, sample retentive unit, air jet unit, aril tank, and an air compressor-tank assembly. Sample retentive unit was designed in such a

  8. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation

    Science.gov (United States)

    Khatami, F.; van der Weide, E.; Hoeijmakers, H.

    2015-12-01

    For an elliptic Arndt's hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the thermodynamic state of the system, precomputed multiphase thermodynamic tables containing data for the appropriate equations of state for each of the phases are used and a fast, accurate, and efficient look-up approach is employed for interpolating the data. The numerical simulations are carried out using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations for compressible flow. The URANS equations of motion are discretized using an finite volume method for unstructured grids. The numerical simulations clearly show the formation of the tip vortex cavitation in the flow about the elliptic hydrofoil.

  9. Radiographic display of carious lesions and cavitation in approximal surfaces

    DEFF Research Database (Denmark)

    Wenzel, Ann

    2014-01-01

    Abstract Background. Treatment strategies have changed with efforts on arresting carious lesions suspected to have an intact surface sparing operative treatment for cavitated lesions. Radiography is still the most recommended adjunct method in the diagnosis of clinically inaccessible approximal...... surfaces. Bitewing radiography. The major drawback of bitewing radiography for caries diagnosis is that the clinical state of the surface cannot be determined; i.e. if cavitation has developed or the demineralized surface is still intact. Based on studies of the relationship between radiographic lesion...... depth and clinical cavitation in approximal surfaces, a threshold for operative treatment decision has been suggested when a lesion is observed radiographically more than one-third into dentine. However, the results from previous studies are contradictory and the majority of studies are ∼25 years old...

  10. Numerical Study on Characteristics of 3D Cavitating Hydrofoil

    Directory of Open Access Journals (Sweden)

    Cao Wei

    2015-01-01

    Full Text Available The commercial software ANSYS CFX, APDL and Workbench are applied for modeling the hydrodynamic and structural interactions and characteristics of an elastic hydrofoil by means of a two-way FSI method. The SST (Shear Stress Transport turbulence model and the simplified Rayleigh-Plesset equations are employed for the cavitating flow simulation. Both CFX and APDL solvers are set to be transient. The fluid and solid computational domains are sequentially solved to simulate the interactions between the hydrofoil and the cavitating flow. The results show that the difference in stiffness of common metal materials has trifling effects on hydrofoil performance. But variations in cavitation number and angle of attack will dramatically affect the hydrodynamic and structural interactions and characteristics.

  11. Numerical simulation of study and unsteady sheet cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Schnerr, G.H.; Spengler, C. (Karlsruhe Univ. (T.H.) (Germany). Abt. Stroemungsmaschinen)

    1998-01-01

    The aim of the work is to provide an efficient code to simulate developed sheet cavitation including the unsteady behavior at the end of the sheet. The vapor region is calculated directly by using a 'compressible system' of equations. To simulate the liquid phase an 'incompressible system' of equations is used. The numerical method is based on an extended method of artificial compressibility which allows the simultaneous calculation of compressible and incompressible flows. To verify the code a first cavitating result of the inviscid flow around a NACA0012 hydrofoil at a Mach number M=0.1, an angle of attack [alpha]=4 , and a cavitation number [sigma]=1.0 is presented. (orig.)

  12. Numerical simulation of study and unsteady sheet cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Schnerr, G.H.; Spengler, C. [Karlsruhe Univ. (T.H.) (Germany). Abt. Stroemungsmaschinen

    1998-12-31

    The aim of the work is to provide an efficient code to simulate developed sheet cavitation including the unsteady behavior at the end of the sheet. The vapor region is calculated directly by using a `compressible system` of equations. To simulate the liquid phase an `incompressible system` of equations is used. The numerical method is based on an extended method of artificial compressibility which allows the simultaneous calculation of compressible and incompressible flows. To verify the code a first cavitating result of the inviscid flow around a NACA0012 hydrofoil at a Mach number M=0.1, an angle of attack {alpha}=4 , and a cavitation number {sigma}=1.0 is presented. (orig.)

  13. Model test and CFD calculation of a cavitating bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Necker, J; Aschenbrenner, T, E-mail: joerg.necker@voith.co [Voith Hydro Holding GmbH and Co. KG Alexanderstrasse 11, 89522 Heidenheim (Germany)

    2010-08-15

    The flow in a horizontal shaft bulb turbine is calculated as a two-phase flow with a commercial Computational Fluid Dynamics (CFD-)-code including cavitation model. The results are compared with experimental results achieved at a closed loop test rig for model turbines. On the model test rig, for a certain operating point (i.e. volume flow, net head, blade angle, guide vane opening) the pressure behind the turbine is lowered (i.e. the Thoma-coefficient {sigma} is lowered) and the efficiency of the turbine is recorded. The measured values can be depicted in a so-called {sigma}-break curve or {eta}- {sigma}-diagram. Usually, the efficiency is independent of the Thoma-coefficient up to a certain value. When lowering the Thoma-coefficient below this value the efficiency will drop rapidly. Visual observations of the different cavitation conditions complete the experiment. In analogy, several calculations are done for different Thoma-coefficients {sigma}and the corresponding hydraulic losses of the runner are evaluated quantitatively. For a low {sigma}-value showing in the experiment significant efficiency loss, the the change of volume flow in the experiment was simulated. Besides, the fraction of water vapour as an indication of the size of the cavitation cavity is analyzed qualitatively. The experimentally and the numerically obtained results are compared and show a good agreement. Especially the drop in efficiency can be calculated with satisfying accuracy. This drop in efficiency is of high practical importance since it is one criterion to determine the admissible cavitation in a bulb-turbine. The visual impression of the cavitation in the CFD-analysis is well in accordance with the observed cavitation bubbles recorded on sketches and/or photographs.

  14. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  15. Cavitation in ultrasound and shockwave therapy

    Science.gov (United States)

    Colonius, Tim

    2014-11-01

    Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.

  16. Real-time visualization of joint cavitation.

    Directory of Open Access Journals (Sweden)

    Gregory N Kawchuk

    Full Text Available Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  17. Characterization of Axial Inducer Cavitation Instabilities via High Speed Video Recordings

    Science.gov (United States)

    Arellano, Patrick; Peneda, Marinelle; Ferguson, Thomas; Zoladz, Thomas

    2011-01-01

    Sub-scale water tests were undertaken to assess the viability of utilizing high resolution, high frame-rate digital video recordings of a liquid rocket engine turbopump axial inducer to characterize cavitation instabilities. These high speed video (HSV) images of various cavitation phenomena, including higher order cavitation, rotating cavitation, alternating blade cavitation, and asymmetric cavitation, as well as non-cavitating flows for comparison, were recorded from various orientations through an acrylic tunnel using one and two cameras at digital recording rates ranging from 6,000 to 15,700 frames per second. The physical characteristics of these cavitation forms, including the mechanisms that define the cavitation frequency, were identified. Additionally, these images showed how the cavitation forms changed and transitioned from one type (tip vortex) to another (sheet cavitation) as the inducer boundary conditions (inlet pressures) were changed. Image processing techniques were developed which tracked the formation and collapse of cavitating fluid in a specified target area, both in the temporal and frequency domains, in order to characterize the cavitation instability frequency. The accuracy of the analysis techniques was found to be very dependent on target size for higher order cavitation, but much less so for the other phenomena. Tunnel-mounted piezoelectric, dynamic pressure transducers were present throughout these tests and were used as references in correlating the results obtained by image processing. Results showed good agreement between image processing and dynamic pressure spectral data. The test set-up, test program, and test results including H-Q and suction performance, dynamic environment and cavitation characterization, and image processing techniques and results will be discussed.

  18. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents

    Science.gov (United States)

    Radhakrishnan, Kirthi; Bader, Kenneth B; Haworth, Kevin J; Kopechek, Jonathan A; Raymond, Jason L; Huang, Shao-Ling; McPherson, David D; Holland, Christy K

    2014-01-01

    Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations (“sample volumes”) in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and

  19. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.

    Science.gov (United States)

    Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles

    2016-05-10

    Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature

  20. Controlled permeation of cell membrane by single bubble acoustic cavitation

    Science.gov (United States)

    Zhou, Y.; Yang, K.; Cui, J.; Ye, J. Y.; Deng, C. X.

    2011-01-01

    Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustic, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency (7.44 MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5 MHz) ultrasound pulse (duration 13.3 or 40 µs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d = 0.75. The maximum mean radius of the

  1. Computation of Cavitating Flows in a Diesel Injector

    Science.gov (United States)

    Echouchene, F.; Belmabrouk, H.

    2010-11-01

    The flow inside Diesel injectors is important because of its effect on the spray and the atomization process in the combustion chamber. Due to huge stress at the orifice entrance, cavitation occurs in high-pressure Diesel injectors. In this study, we investigate numerically the cavitating steady flow in a Diesel injector. The mixture model based on a single fluid and the standard k-e turbulence model are used to simulate the multiphase turbulent flow. The effects of some geometrical parameters on both the discharge coefficient and the vapor fraction are presented.

  2. Cavitation nuclei in water exposed to transient pressures

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2015-01-01

    A model of skin-stabilized interfacial cavitation nuclei and their response to tensile and compressive stressing is presented. The model is evaluated in relation to experimental tensile strength results for water at rest at the bottom of an open water-filled container at atmospheric pressure...... and room temperature. These results are obtained by recording the initial growth of cavities generated by a short tensile pulse applied to the bottom of the container. It is found that the cavitation nuclei shift their tensile strength depending on their pressure history. Static pressurization...

  3. 3D analyses of cavitation instabilities accounting for plastic anisotropy

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Tvergaard, Viggo

    2010-01-01

    Full three dimensional cell model analyses are carried out for a solid containing a single small void, in order to determine the critical stress levels for the occurrence of cavitation instabilities. The material models applied are elastic‐viscoplastic, with a small rate‐hardening exponent...... that the quasi‐static solution is well approximated. A special procedure is used to strongly reduce the loading rate a little before the instability occurs. It is found that plastic anisotropy has a significant effect on the level of the critical stress for cavitation instabilities....

  4. A Numerical Study of Cavitation Inception in Complex Flow Fields

    Science.gov (United States)

    2007-12-01

    Acta Acustica United with Acustica , Vol. 93, pp. 555-565, 2007. 9. “Numerical Study of Cavitation Inception Due to Vortex/Vortex Interaction in a...Chahine, G.L. “Modeling of Bubble Generated Noise in Tip Vortex Cavitation Inception,” Acta Acustica United with Acustica , Vol. 93, pp. 555-565, 2007. 1...Capture and Noise of Spheri- cal Nuclei in the Presence of the Tip Vortex of Hydrofoils and Propellers,’’ Acustica , 68, pp. 1–14. @10# Hsiao, C.-T

  5. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern......Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...

  6. Implementation of the resonant vibratory feeders control algorithm on Simatic S7-1200 from MATLAB Simulink enviroment

    Directory of Open Access Journals (Sweden)

    Mitrović Radomir B.

    2016-01-01

    Full Text Available Simulink is an important tool for modeling and simulation of process and control algorithms. It's expansion, PLC Coder, enables direct conversion of model subsystem into SCL, structured text code, which is then used by PLC IDE to create function blocks. This shortens developing time of algorithms for PLC controller. Also, this reduces possibility for a coding error. This paper describes Simulink PLC Coder and workflow for developing PID control algorithm for Siemens Simatic S7-1200 PLC. Control object used here is resonant vibratory feeder having electromagnetic drive.

  7. Penile vibratory stimulation in the recovery of urinary continence and erectile function after nerve-sparing radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Borre, Michael; Ohl, Dana A

    2014-01-01

    OBJECTIVE: To examine the effect of penile vibratory stimulation (PVS) in the preservation and restoration of erectile function and urinary continence in conjunction with nerve-sparing radical prostatectomy (RP). PATIENTS AND METHODS: The present study was conducted between July 2010 and March 2013...... and 12 months after surgery with the IIEF-5 questionnaire and questions regarding urinary bother. Patients using up to one pad daily for security reasons only were considered continent. The study was registered at http://clinicaltrials.gov/ (NCT01067261). RESULTS: Data from 68 patients were available...

  8. Cavitation performance and flow characteristic in a centrifugal pump with inlet guide vanes

    Science.gov (United States)

    Tan, L.; Zha, L.; Cao, S. L.; Wang, Y. C.; Gui, S. B.

    2015-01-01

    The influence of prewhirl regulation by inlet guide vanes (IGVs) on cavitation performance and flow characteristic in a centrifugal pump is investigated. At the impeller inlet, the streamlines are regulated by the IGVs, and the axial velocity distribution is also influenced by the IGVs. Due to the total pressure loss on the IGVs, the cavitation performance of the centrifugal pump degrades. The cavitation area in impeller with IGVs is larger than one without IGVs. The specify values of total pressure loss between the suction pipe inlet and impeller inlet for three cavitation conditions show that the IGVs will generate additional pressure loss, which is related to the IGVs angles and cavitation conditions.

  9. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.

    2009-07-01

    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  10. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials

    Science.gov (United States)

    Maxwell, Adam D.; Cain, Charles A.; Hall, Timothy L.; Fowlkes, J. Brian; Xu, Zhen

    2012-01-01

    In this article, the negative pressure values at which inertial cavitation consistently occurs in response to a single, 2-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex-vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (Pcav) for a single pulse as a function of peak negative pressure (p−) followed a sigmoid curve, with the probability approaching 1 when the pressure amplitude was sufficient. The statistical threshold (defined as Pcav = 0.5) was between p− = 26.0–30.0 MPa in all samples with a high water content, but varied between p− = 13.7 to > 36 MPa for other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p− = 28.2 MPa was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at different pressure levels and dimensions of cavitation-induced lesions in tissue. PMID:23380152

  11. Statistical characteristics of suction pressure signals for a centrifugal pump under cavitating conditions

    Science.gov (United States)

    Li, Xiaojun; Yu, Benxu; Ji, Yucheng; Lu, Jiaxin; Yuan, Shouqi

    2017-02-01

    Centrifugal pumps are often used in operating conditions where they can be susceptible to premature failure. The cavitation phenomenon is a common fault in centrifugal pumps and is associated with undesired effects. Among the numerous cavitation detection methods, the measurement of suction pressure fluctuation is one of the most used methods to detect or diagnose the degree of cavitation in a centrifugal pump. In this paper, a closed loop was established to investigate the pump cavitation phenomenon, the statistical parameters for PDF (Probability Density Function), Variance and RMS (Root Mean Square) were used to analyze the relationship between the cavitation performance and the suction pressure signals during the development of cavitation. It is found that the statistical parameters used in this research are able to capture critical cavitation condition and cavitation breakdown condition, whereas difficult for the detection of incipient cavitation in the pump. At part-load conditions, the pressure fluctuations at the impeller inlet show more complexity than the best efficiency point (BEP). Amplitude of PDF values of suction pressure increased steeply when the flow rate dropped to 40 m3/h (the design flow rate was 60 m3/h). One possible reason is that the flow structure in the impeller channel promotes an increase of the cavitation intensity when the flow rate is reduced to a certain degree. This shows that it is necessary to find the relationship between the cavitation instabilities and flow instabilities when centrifugal pumps operate under part-load flow rates.

  12. Assessment of cavitation in artificial approximal dental lesions with near-IR imaging

    Science.gov (United States)

    Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2017-02-01

    Bitewing radiography is still considered state-of-the-art diagnostic technology for assessing cavitation within approximal carious dental lesions, even though radiographs cannot resolve cavitated surfaces but instead are used to measure lesion depth in order to predict cavitation. Clinicians need new technologies capable of determining whether approximal carious lesions have become cavitated because not all lesions progress to cavitation. Assessing lesion cavitation from near-infrared (NIR) imaging methods holds great potential due to the high transparency of enamel in the NIR region from λ=1300-1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. The objective of this study was to measure the change in lesion appearance between non-cavitated and cavitated lesions in artificially generated lesions using NIR imaging modalities (two-dimensional) at λ=1300-nm and λ=1450-nm and cross-polarization optical coherence tomography (CP-OCT) (thee-dimensional) λ=1300-nm. Extracted human posterior teeth with sound proximal surfaces were chosen for this study and imaged before and after artificial lesions were made. A high speed dental hand piece was used to create artificial cavitated proximal lesions in sound samples and imaged. The cavitated artificial lesions were then filled with hydroxyapatite powder to simulate non-cavitated proximal lesions.

  13. Effect of austempering temperature on cavitation behaviour of unalloyed ADI material

    Energy Technology Data Exchange (ETDEWEB)

    Dojcinovic, Marina [University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade (Serbia); Eric, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Belgrade (Serbia); Rajnovic, Dragan; Sidjanin, Leposava [Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad (Serbia); Balos, Sebastian, E-mail: sebab@uns.ac.rs [Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad (Serbia)

    2013-08-15

    This paper provides an in-depth study and description of cavitation damage and microstructural changes in two types of unalloyed austempered ductile iron (ADI). ADI materials used were austempered at 300 and 400 °C having ausferrite microstructure with 16 and 31.4% of retained austenite, respectively. Metallographic examination was carried out to study the morphology of their cavitation-damaged surfaces. Cavitation damage was initiated at graphite nodules as well as in the interface between a graphite nodule and an ausferrite matrix. Furthermore, microcracking and ferrite/retained austenite morphology were proved to be of great importance for cavitation resistance. Mass loss rate revealed that ADI austempered at 400 °C has a higher cavitation resistance in water than ADI austempered at 300 °C. A higher amount of retained austenite in ADI austempered at 400 °C played an important role in increasing cavitation resistance. The good cavitation behaviour of ADI austempered at 400 °C was due to the matrix hardening by stress assisted phase transformation of retained austenite into martensite (SATRAM) phenomenon, as shown by X-ray diffraction analysis. - Highlights: • Cavitation rate of two ADI materials was tested. • ADI material with a lower hardness has had a lower cavitation rate. • The main reason is microstructural transformations during cavitation. • SATRAM phenomenon increases cavitation resistance.

  14. The Specialist Committee on Cavitation Induced Pressures, Final Report and Recommendations to the 23rd ITTC

    DEFF Research Database (Denmark)

    Friesch, J.; Kim, K.-H.; Andersen, Poul

    2002-01-01

    General Technical Conclusions Propeller-excited hull pressure fluctuations are strongly influenced by intermittence of sheet cavitation, the dynamics of tip vortex cavitation, and the statistical properties of the cavitation. On modern propellers, tip vortex cavitation may be even more important...... than sheet cavitation for hull pressure fluctuation. The influence of turbulence and blade surface roughness on cavitation-induced pressure fluctuations is still not quantifiable. Both experimental and numerical procedures for predicting propeller excitation need to be validated using results...... consider the influence of experimental boundary conditions: solid-boundary factors, hull vibration, and free-surface effects, before comparison with full-scale pressure levels. High-frequency excitation due to tip vortex cavitation must be considered during testing. Measurement of unsteady hull pressures...

  15. Microleakage of cavit in varnish-lined, matrix-supported endodontic access preparations.

    Science.gov (United States)

    Iqbal, M K; Saad, N A

    1998-07-01

    The effect of the application of a matrix band and the use of cavity varnish on the microleakage of Cavit in endodontic access preparations was investigated. Sixty human upper premolars were divided into six groups of ten specimens each. Access cavities with proximal extensions were prepared and filled with 1, Cavit only; 2, Cavit after application of varnish; 3, Cavit with the use of a matrix band; 4, Cavit with a matrix band and varnish; 5, incremental deposition of Cavit with the use of a matrix band and varnish; and 6, gutta percha stopping. The specimens were placed in 2% methylene blue dye, thermocycled, and evaluated for both proximal and occlusal linear leakage. The experimental group in which Cavit was incrementally deposited in varnish-lined and matrix-supported cavities exhibited significantly (p < 0.05) less proximal microleakage than those groups in which cavities were filled without the application of both a matrix band and a cavity varnish.

  16. Propeller Cavitation in Non-Uniform Flow and Correlation with the Near Pressure Field

    Directory of Open Access Journals (Sweden)

    Francisco Alves Pereira

    2016-11-01

    Full Text Available An experimental study is carried out in a cavitation tunnel on a propeller operating downstream of a non-uniform wake. The goal of this work is to establish quantitative correlations between the near pressure field and the cavitation pattern that takes place on the propeller blades. The pressure field is measured at the walls of the test section and in the near wake of the propeller and is combined with quantitative high-speed image recording of the cavitation pattern. Through harmonic analysis of the pressure data and image processing techniques that allow retrieving the cavitation extension and volume, we discuss the potential sources that generate the pressure fluctuations. Time correlations are unambiguously established between pressure peak fluctuations and cavitation collapse events, based on the Rayleigh collapse time. Finally, we design a model to predict the cavitation-induced pressure fluctuations from the derivation of the cavitation volume acceleration. A remarkable agreement is observed with the actual pressure field.

  17. Interaction between Uneven Cavity Length and Shaft Vibration at the Inception of Synchronous Rotating Cavitation

    Directory of Open Access Journals (Sweden)

    Y. Yoshida

    2008-01-01

    Full Text Available Asymmetric cavitation is known as one type of the sources of cavitation induced vibration in turbomachinery. Cavity lengths are unequal on each blade under condition of synchronous rotating cavitation, which causes synchronous shaft vibration. To investigate the relationship of the cavity length, fluid force, and shaft vibration in a cavitating inducer with three blades, we observed the unevenness of cavity length at the inception of synchronous rotating cavitation. The fluid force generated by the unevenness of the cavity length was found to grow exponentially, and the amplitude of shaft vibration was observed to increase exponentially. These experimental results indicate that the synchronous shaft vibration due to synchronous rotating cavitation is like selfexcited vibrations arising from the coupling between cavitation instability and rotordynamics.

  18. Peripapillary intrachoroidal cavitations. The Beijing eye study.

    Directory of Open Access Journals (Sweden)

    Qi Sheng You

    Full Text Available PURPOSE: To assess prevalence, size and location of peripapillary intrachoroidal cavitations (PICCs and their associations in a population-based sample. . METHODS: The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6 ± 9.8 years (range:50-93 years. A detailed ophthalmic examination included enhanced depth imaging of the choroid by spectral-domain optical coherence tomography and fundus photography. PICCs were defined as triangular thickening of the choroid with the base at the optic disc border and a distance between Bruch's membrane and sclera of ≥ 200 μm. Parapapillary large choroidal vessels were excluded. RESULTS: Out of 94 subjects with high myopia (refractive error 26.5mm in right eyes, OCT images were available for 89 (94.7% participants. A PICC was detected in 15 out of these 89 highly myopic subjects (prevalence:16.9 ± 4.0% and in none of hyperopic, emmetropic or medium myopic subgroups each consisting of 100 randomly selected subjects. Mean PICC width was 4.2 ± 2.3 hours (30° of disc circumference and mean length was 1363 ± 384 μm. PICCs were located most frequently (40% at the inferior disc border. On fundus photos, a typical yellow-orange lesion was found in 8 (53% eyes with PICCs. In binary regression analysis, presence of PICCs was significantly associated with optic disc tilting (P=0.04 and presence of posterior staphylomata (P=0.046. CONCLUSIONS: Prevalence of PICCs in the adult Chinese population was 16.9 ± 4.0% in the highly myopic group, with no PICCs detected in non-highly myopic eyes. PICCs were located most frequently at the inferior optic disc border. Only half of the PICCs detected on OCT images showed a yellow-orange lesion on fundus photos. Presence of PICC was significantly associated only with an increased optic disc tilting and presence of posterior staphylomata, while it was not associated with axial length, refractive error or other ocular or systemic parameters.

  19. Soil Erosion and Agricultural Sustainability

    National Research Council Canada - National Science Library

    David R. Montgomery

    2007-01-01

    .... The general equivalence of the latter indicates that, considered globally, hillslope soil production and erosion evolve to balance geologic and climate forcing, whereas conventional plow-based...

  20. Multiperspective analysis of erosion tolerance

    Directory of Open Access Journals (Sweden)

    Sparovek Gerd

    2003-01-01

    Full Text Available Erosion tolerance is the most multidisciplinary field of soil erosion research. Scientists have shown lack in ability to adequately analyze the huge list of variables that influence soil loss tolerance definitions. For these the perspectives of erosion made by farmers, environmentalists, society and politicians have to be considered simultaneously. Partial and biased definitions of erosion tolerance may explain not only the polemic nature of the currently suggested values but also, in part, the nonadoption of the desired levels of erosion control. To move towards a solution, considerable changes would have to occur on how this topic is investigated, especially among scientists, who would have to change methods and strategies and extend the perspective of research out of the boundaries of the physical processes and the frontiers of the academy. A more effective integration and communication with the society and farmers, to learn about their perspective of erosion and a multidisciplinary approach, integrating soil, social, economic and environmental sciences are essential for improved erosion tolerance definitions. In the opinion of the authors, soil erosion research is not moving in this direction and a better understanding of erosion tolerance is not to be expected in the near future.

  1. Numerical modelling of unsteady 2D sheet cavitation

    NARCIS (Netherlands)

    de Lange, D.F.; de Bruin, G.J.; van Wijngaarden, L.; van Wijngaarden, L.

    1996-01-01

    Unsteady 2D sheet cavitation has been calculated by a BEM. Cubics are used to represent various quantities like the potential on the wet part of the profile, the normal velocity on the sheet, the geometry of the profile and the sheet. The growing cavity sheet, the re-entrant jet and the sheet

  2. Cavitation Modeling in Euler and Navier-Stokes Codes

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.

  3. Molecular mechanism for cavitation in water under tension

    Science.gov (United States)

    Menzl, Georg; Gonzalez, Miguel A.; Geiger, Philipp; Caupin, Frédéric; Abascal, José L. F.; Dellago, Christoph

    2016-01-01

    Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh–Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with CNT based on the Kramers formalism yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a wide range of pressures. Furthermore, our theoretical predictions are in excellent agreement with cavitation rates obtained from inclusion experiments. This suggests that homogeneous nucleation is observed in inclusions, whereas only heterogeneous nucleation on impurities or defects occurs in other experiments. PMID:27803329

  4. Prediction of tip vortex cavitation for ship propellers

    NARCIS (Netherlands)

    Oprea, A.I.

    2013-01-01

    An open propeller is the conventional device providing thrust for ships. Due to its working principles, regions with low pressure are formed on its blades specifically at the leading edge and in the tip region. If this pressure is becoming lower than the vapor pressure, the cavitation phenomenon is

  5. Observation of inception of sheet cavitation from free nuclei

    Science.gov (United States)

    Tsuru, Wakana; Konishi, Takafumi; Watanabe, Satoshi; Tsuda, Shin-ichi

    2017-06-01

    Prediction of inception of sheet cavitation on solid walls has been recognized to be very difficult, since it is significantly affected by the boundary layer flow characteristics, the population of free nuclei, the nuclei held in the wall roughness, the amount of dissolved air in liquid and so on. It has not sufficiently been made clear how the inception is affected by the conditions of water qualities and background flow characteristics. In this study, high speed observation of inception of sheet cavity from free nuclei is conducted for a two-dimensional convergent- divergent nozzle flow, where the sheet cavity forms just downstream of the nozzle throat. The effects of the amount of dissolved air and the free stream velocity on the inception process of sheet cavitation is examined. In addition, the bubble nuclei density, which is well known to be important factor for cavitation inception, is passively controlled by the filter installed in the tunnel. From the observations, it is confirmed that the nuclei number density significantly affects the formation of sheet cavity rather than the other two parameters. In conditions with large nuclei number density, the sheet cavity does not form, and bubbly cavitation appears instead. In the case with small nuclei number density, the sheet cavity forms from a single flowing nucleus and develops streamwisely and spanwisely. In the conditions with medium nuclei number density, the sheet cavity also forms but is shorter/ narrower streamwisely/spanwisely, due to interaction of other nuclei flowing near the formed sheet cavity.

  6. Aspects of Flow and Cavitation Around an EHL Contact

    NARCIS (Netherlands)

    van Emden, E.; Venner, Cornelis H.; Morales-Espejel, G.E.

    2016-01-01

    This paper focuses on the flow around an elasto-hydrodynamically lubricated ball-on-disc contact. Experiments in the low velocity regime with a small amount of lubricant show two flow states. When the lubricant supply at the inlet side is sufficient, a cavitation bubble is observed at the outlet

  7. Cavitation and bubble dynamics: the Kelvin impulse and its applications.

    Science.gov (United States)

    Blake, John R; Leppinen, David M; Wang, Qianxi

    2015-10-06

    Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being 'One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…'. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a 'paradigm bubble model' for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet.

  8. Cavitation detection of butterfly valve using support vector machines

    Science.gov (United States)

    Yang, Bo-Suk; Hwang, Won-Woo; Ko, Myung-Han; Lee, Soo-Jong

    2005-10-01

    Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur, resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, monitoring of cavitation is of economic interest and is very important in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals acquired from butterfly valves in the pumping stations. And the classification success rate is compared with that of self-organizing feature map neural network (SOFM).

  9. Relating xylem cavitation to gas exchange in cotton

    Science.gov (United States)

    Acoustic emissions (AEs) from xylem cavitation events are characteristic of transpiration processes. Though a body of work using AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. The objective of...

  10. Effect of magnetite nanoparticle agglomerates on ultrasound induced inertial cavitation.

    Science.gov (United States)

    Smith, Moira J; Ho, Vincent H B; Darton, Nicholas J; Slater, Nigel K H

    2009-06-01

    High intensity focused ultrasound (HIFU) induced inertial cavitation has been shown to improve release and cellular uptake of drugs. The effects of magnetite nanoparticle agglomerates (290+/-10nm diameter), silica coated magnetite nanoparticle agglomerates (320+/-10nm diameter) and silica particles (320+/-10nm diameter) suspended in MilliQ water on the degree of inertial cavitation due to HIFU were investigated. The HIFU transducer was operated at a frequency of 1.1 MHz, 1.67 kHz pulse repetition frequency, with applied duty cycles (DC) between 0% and 5% and different peak negative focal pressures (PNFPs) applied up to 7.2 MPa. The inertial cavitation dose (ICD: time averaged root-mean-squared broadband noise amplitude in the frequency domain) was measured in the presence and absence of nanoparticles when subjected to HIFU. Magnetite nanoparticle agglomerates caused a significant increase in the ICD above 2.7 MPa PNFP compared with MilliQ water, silica coated magnetite agglomerates and silica particles. With the dramatic increase in ICD on introduction of these magnetite agglomerates, this technique could provide a method of HIFU triggered drug delivery by enhancing inertial cavitation. The superparamagnetic properties of these particles offer the possibility of magnetic targeting to the site of disease.

  11. Transfert convectif dans les cavites poreuses soumises a un champ ...

    African Journals Online (AJOL)

    un champ magnétique transversal sur la convection naturelle bidimensionnelle en milieu poreux confiné dans une cavité horizontale. Le milieu poreux, de grande extension est chauffé isothermiquement par les côtés tandis que ses parois ...

  12. Cavitated Conglomerate Mass in Silicosis Indicating Associated Tuberculosis

    Directory of Open Access Journals (Sweden)

    Pedro Martins

    2010-01-01

    Full Text Available Silicosis is the most common occupational lung disease worldwide. It leads to respiratory impairment and may have associated infections that decrease pulmonary function. We describe the case of a 55-year-old man with chronic silicosis who presented with hemoptysis and a cavitated conglomerate mass. The final diagnosis was silicotuberculosis.

  13. NONLINEAR PERTURBATION METHOD FOR CALCULATING AXISYMMETRIC CAVITATIONAL FLOWS

    Directory of Open Access Journals (Sweden)

    Vasyl Buivol

    2013-12-01

    Full Text Available A mathematical model of a cavity under the influence of perturbations of various origins is evaluated. The model is based on hydrodynamics of flows with free boundaries and the theory of small perturbations. Specific analysis is provided for cavitational flows behind cones

  14. Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces.

    Science.gov (United States)

    Belova, Valentina; Gorin, Dmitry A; Shchukin, Dmitry G; Möhwald, Helmuth

    2011-02-01

    Controlling cavitation at the solid surface is of increasing interest, as it plays a major role in many physical and chemical processes related to the modification of solid surfaces and formation of multicomponent nanoparticles. Here, we show a selective control of ultrasonic cavitation on metal surfaces with different hydrophobicity. By applying a microcontact printing technique we successfully formed hydrophobic/hydrophilic alternating well-defined microstructures on aluminium surfaces. Fabrication of patterned surfaces provides the unique opportunity to verify a model of heterogeneous nucleation of cavitation bubbles near the solid/water interface by varying the wettability of the surface, temperature and ultrasonic power. At the initial stage of sonication (up to 30 min), microjets and shock waves resulting from the collapsing bubbles preferably impact the hydrophobic surface, whereas the hydrophilic areas of the patterned Al remain unchanged. Longer sonication periods affect both surfaces. These findings confirm the expectation that higher contact angle causes a lower energy barrier, thus cavitation dominates at the hydrophobic surfaces. Experimental results are in good agreement with expectations from nucleation theory. This paper illustrates a new approach to ultrasound induced modification of solid surfaces resulting in the formation of foam-structured metal surfaces.

  15. Cavitation cluster dynamics in shock-wave lithotripsy: Part I

    NARCIS (Netherlands)

    Arora, M.; Junge, L.; Junge, L.; Ohl, C.D.

    2005-01-01

    The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30

  16. Turbulence Modeling of Cavitating Flows in Liquid Rocket Turbopumps

    NARCIS (Netherlands)

    Mani, K.V.; Cervone, A.; Hickey, J.P.

    2017-01-01

    An accurate prediction of the performance characteristics of cavitating cryogenic turbopump inducers is essential for an increased reliance on numerical simulations in the early turbopump design stages of liquid rocket engines (LRE). This work focuses on the sensitivities related to the choice of

  17. Experimental measurements of the cavitating flow after horizontal water entry

    Science.gov (United States)

    Tat Nguyen, Thang; Hai, Duong Ngoc; Quang Thai, Nguyen; Phuong, Truong Thi

    2017-10-01

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles.

  18. Use Videostrobokymography to Quantitatively Analyze the Vibratory Characteristics Before and After Conservative Medical Treatment of Vocal Fold Leukoplakia.

    Science.gov (United States)

    Gao, Xiao-Wei; Huang, Yong-Wang; Liu, Li-Yan; Ouyang, Jie

    2016-03-01

    To quantitatively analyze the vibratory characteristics of vocal folds before and after conservative treatments to evaluate the outcomes of conservative treatments for vocal fold leukoplakia using videostrobokymography (VSK). This is a prospective study. Twenty patients and 20 controls were enrolled into the study. All patients received conservative treatments for 3 weeks and received VSK examination before and 3 weeks after the treatments. All controls only received VSK examination once. Vocal fold lengths of 25%, 50%, and 75% were chosen as the line-scan positions to evaluate the vocal fold vibration. Open quotient (OQ) and asymmetry index (AI) were obtained using VSK. Significant improvements in the main symptoms including voice hoarseness were found. Videostroboscopic findings showed that the white lesions on the vocal folds almost completely disappeared in all patients, and the vocal fold flexibility returned to normal. All OQs and AIs at each line-scan position in patients before the treatments were larger than those in controls (P  0.017). VSK could quantitatively evaluate the vibratory characteristics of vocal folds before and after the treatments, and conservative treatment could improve VSK measurements to normal control values, suggesting that VSK is a tool to assess the outcomes of the conservative treatments for vocal fold leukoplakia. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  19. Modeling Unsteady Cavitation and Dynamic Loads in Turbopumps

    Science.gov (United States)

    Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald; Dash, Sanford M.

    2009-01-01

    A computational fluid dynamics (CFD) model that includes representations of effects of unsteady cavitation and associated dynamic loads has been developed to increase the accuracy of simulations of the performances of turbopumps. Although the model was originally intended to serve as a means of analyzing preliminary designs of turbopumps that supply cryogenic propellant liquids to rocket engines, the model could also be applied to turbopumping of other liquids: this can be considered to have been already demonstrated, in that the validation of the model was performed by comparing results of simulations performed by use of the model with results of sub-scale experiments in water. The need for this or a similar model arises as follows: Cavitation instabilities in a turbopump are generated as inlet pressure drops and vapor cavities grow on inducer blades, eventually becoming unsteady. The unsteady vapor cavities lead to rotation cavitation, in which the cavities detach from the blades and become part of a fluid mass that rotates relative to the inducer, thereby generating a fluctuating load. Other instabilities (e.g., surge instabilities) can couple with cavitation instabilities, thereby compounding the deleterious effects of unsteadiness on other components of the fluid-handling system of which the turbopump is a part and thereby, further, adversely affecting the mechanical integrity and safety of the system. Therefore, an ability to predict cavitation- instability-induced dynamic pressure loads on the blades, the shaft, and other pump parts would be valuable in helping to quantify safe margins of inducer operation and in contributing to understanding of design compromises. Prior CFD models do not afford this ability. Heretofore, the primary parameter used in quantifying cavitation performance of a turbopump inducer has been the critical suction specific speed at which head breakdown occurs. This parameter is a mean quantity calculated on the basis of assumed steady

  20. Erosion mechanism and erosion products in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Piazza, G.; Safronov, V. E-mail: vsafr@rico.ttk.ru; Scaffidi-Argentina, F.; Toporkov, D.; Vasenin, S.; Wuerz, H.; Zhitlukhin, A

    2002-12-01

    Plasma/material interaction was studied in disruption simulation experiments at the plasma gun facility MK-200. Graphite and carbon-fibre composites were exposed to pulsed energetic plasma under heat loads typically expected for disruptions in future tokamaks. Erosion rates, erosion mechanisms and the properties of the eroded carbon have been studied.

  1. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation.

    Science.gov (United States)

    Jin, Qiaofeng; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yeh, Chih-Kuang

    2016-09-01

    Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Bilateral and multiple cavitation sounds during upper cervical thrust manipulation

    Directory of Open Access Journals (Sweden)

    Dunning James

    2013-01-01

    Full Text Available Abstract Background The popping produced during high-velocity, low-amplitude (HVLA thrust manipulation is a common sound; however to our knowledge, no study has previously investigated the location of cavitation sounds during manipulation of the upper cervical spine. The primary purpose was to determine which side of the spine cavitates during C1-2 rotatory HVLA thrust manipulation. Secondary aims were to calculate the average number of pops, the duration of upper cervical thrust manipulation, and the duration of a single cavitation. Methods Nineteen asymptomatic participants received two upper cervical thrust manipulations targeting the right and left C1-2 articulation, respectively. Skin mounted microphones were secured bilaterally over the transverse process of C1, and sound wave signals were recorded. Identification of the side, duration, and number of popping sounds were determined by simultaneous analysis of spectrograms with audio feedback using custom software developed in Matlab. Results Bilateral popping sounds were detected in 34 (91.9% of 37 manipulations while unilateral popping sounds were detected in just 3 (8.1% manipulations; that is, cavitation was significantly (P Conclusions Cavitation was significantly more likely to occur bilaterally than unilaterally during upper cervical HVLA thrust manipulation. Most subjects produced 3–4 pops during a single rotatory HVLA thrust manipulation targeting the right or left C1-2 articulation; therefore, practitioners of spinal manipulative therapy should expect multiple popping sounds when performing upper cervical thrust manipulation to the atlanto-axial joint. Furthermore, the traditional manual therapy approach of targeting a single ipsilateral or contralateral facet joint in the upper cervical spine may not be realistic.

  3. Simulation of leading edge cavitation on bulb turbine

    Directory of Open Access Journals (Sweden)

    Thaithacha Sudsuansee

    2011-02-01

    Full Text Available Cavitation caused by phases exchange between fluids of large density difference occurs in a region where thepressure of water falls below its vapor pressure. The density of water in a water-vapor contact area decreases dramatically.As a result, the flow in this region is compressible, which affects directly turbulent dissipation structures. Leading edgecavitation is naturally time dependent. Re-entrant jet generated by liquid flow over a cavity is a main actor of cavity shedding.Simulation of unsteady leading edge cavitation flows through a 4-blade runner bulb turbine was performed. Particular attentionwas given to the phenomena of re-entrant jet, cavity shedding, and cavitation vortices in the flow over turbine blade.The Reynolds-Average Navier-Stokes equations with finite volume discretization were used. The calculations were donewith pressure-based algorithms since the flow possesses a wide range of density change and high complexity turbulence.The new formula for dilatation dissipation parameter in k- model was introduced and the turbulent Mach number wascalculated from density of mixture instead. 2-D and 3-D hydrofoils based on both numerical and experimental results accomplisheda validation. The results show that re-entrant jet, shedding of cavity, and cavitation vortices can be captured. Inaddition, this paper also calculates the cycle frequency of torque generated by the runner and vapor area evolution on theblade surface. The cycle frequency varies with cavitation number. At normal operation of this turbine ( = 1 it is found thatboth of them have a frequency of 46 Hertz.

  4. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation.

    Science.gov (United States)

    De Baerdemaeker, Niels J F; Salomón, Roberto Luis; De Roo, Linus; Steppe, Kathy

    2017-11-01

    Reassimilation of internal CO 2 via woody tissue photosynthesis has a substantial effect on tree carbon income and wood production. However, little is known about its role in xylem vulnerability to cavitation and its implications in drought-driven tree mortality. Young trees of Populus nigra were subjected to light exclusion at the branch and stem levels. After 40 d, measurements of xylem water potential, diameter variation and acoustic emission (AE) were performed in detached branches to obtain acoustic vulnerability curves to cavitation following bench-top dehydration. Acoustic vulnerability curves and derived AE 50 values (i.e. water potential at which 50% of cavitation-related acoustic emissions occur) differed significantly between light-excluded and control branches (AE 50,light-excluded  = -1.00 ± 0.13 MPa; AE 50,control  = -1.45 ± 0.09 MPa; P = 0.007) denoting higher vulnerability to cavitation in light-excluded trees. Woody tissue photosynthesis represents an alternative and immediate source of nonstructural carbohydrates (NSC) that confers lower xylem vulnerability to cavitation via sugar-mediated mechanisms. Embolism repair and xylem structural changes could not explain this observation as the amount of cumulative AE and basic wood density did not differ between treatments. We suggest that woody tissue assimilates might play a role in the synthesis of xylem surfactants for nanobubble stabilization under tension. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Rill erosion rates in burned forests

    Science.gov (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  6. Simulation of Cavitating Flows in Diesel Injectors Simulation des écoulements en cavitation dans les injecteurs diesel

    Directory of Open Access Journals (Sweden)

    Von Dirke M.

    2006-12-01

    Full Text Available With a new two fluid model it is possible to carry out three-dimensional CFD calculations of cavitating flows in hydraulic components of Diesel injection systems. As model geometries a ball valve, a sac-hole nozzle and a one-hole nozzle have been used to test the applicability of the method. Calculations of the ensemble averaged volume fraction show the distribution of cavitation zones. Force calculations were in good agreement with the experiment. With this new tool, the design of new components can be improved. Avec un nouveau modèle à deux fluides, il est possible d'effectuer des calculs tridimensionnels de mécanique des fluides numérique pour des écoulements en cavitation dans les composants hydrauliques des systèmes d'injection Diesel. Des géométries tests comprenant un clapet à bille, un nez à sac et un nez monotrou ont été utilisées pour vérifier si la méthode est applicable. Les calculs de fraction volumique moyenne montrent la distribution des zones de cavitation Des calculs d'efforts ont mis en évidence un bon accord avec l'expérience. Ce nouvel outil permet d'améliorer la conception de nouveaux composants.

  7. Mechanism for cavitation in the mechanical heart valve with an artificial heart: nuclei and viscosity dependence.

    Science.gov (United States)

    Lee, Hwansung; Taenaka, Yoshiyuki; Kitamura, Soichiro

    2005-01-01

    Until now, we have estimated cavitation for mechanical heart valves (MHV) mounted in an electrohydraulic total artificial heart (EHTAH) with tap water. However, tap water at room temperature is not a proper substitute for blood at 37 degrees C. We therefore investigated fluid characterization in studies of MHV cavitation associated with the viscosity and nuclei content of a testing fluid. We used the Medtronic Hall valve mounted in the mitral position of the EHTAH. As testing fluids, tap water, distilled water, and glycerin solution were used. The valve-closing velocity, pressure-drop measurements, and a high-speed video camera were employed to determine the cavitation intensity in MHV. Most of the cavitation bubbles were observed at the edge of the valve stop. Our analysis of the results indicates that squeeze flow is the major cause of cavitation in the Medtronic Hall valve. The cavitation intensity increased with increases in the fluid viscosity and the valve-closing velocity. Even if cavitation intensity in glycerin solution was greater, the cavitation occurrence probability was less in glycerin solution than in tap water. Our results suggest that tap water contains particles that cause an increase in the cavitation occurrence probability. We conclude that cavitation intensity is greatly affected by the nuclei concentration in the fluid and the fluid viscosity.

  8. Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method

    Science.gov (United States)

    Ezzatneshan, Eslam

    2017-11-01

    Cavitating flow through the orifice is numerically solved by implementation of the lattice Boltzmann method. The pseudo-potential single-component multiphase Shan-Chen model is used to resolve inter-particle interactions and phase change between the liquid and its vapor. The effect of surface wettability on the cavity formation and shape is studied by imposing an appropriate wall boundary condition for the contact angle between the liquid-vapor interface and the solid surface. Efficiency of the numerical approach presented is examined by computing the cavitation inception, growth, and collapse for internal cavitating flows over a sack-wall obstacle placed inside a channel and through a convergent-divergent nozzle section. The results obtained demonstrate that hydrophobic walls act as surface nuclei and contribute to the process of cavitation inception even at high cavitation numbers. In contrast, the solid wall with hydrophilic properties shows no contribution to the onset of cavitation in the geometries studied. High values for the flow velocity corresponding to low cavitation numbers are needed to observe the cavitation inception over the geometries studied with the hydrophilic solid wall. The study shows that the present computational technique based on the implementation of the lattice Boltzmann method with the Shan-Chen model employed is robust and efficient to predict the cavitation phenomena by considering surface wettability effects and also accurate enough for computing the cavitating flow properties at different conditions.

  9. Influence of Thermodynamic Effect on Blade Load in a Cavitating Inducer

    Directory of Open Access Journals (Sweden)

    Kengo Kikuta

    2010-01-01

    Full Text Available Distribution of the blade load is one of the design parameters for a cavitating inducer. For experimental investigation of the thermodynamic effect on the blade load, we conducted experiments in both cold water and liquid nitrogen. The thermodynamic effect on cavitation notably appears in this cryogenic fluid although it can be disregarded in cold water. In these experiments, the pressure rise along the blade tip was measured. In water, the pressure increased almost linearly from the leading edge to the trailing edge at higher cavitation number. After that, with a decrease of cavitation number, pressure rise occurred only near the trailing edge. On the other hand, in liquid nitrogen, the pressure distribution was similar to that in water at a higher cavitation number, even if the cavitation number as a cavitation parameter decreased. Because the cavitation growth is suppressed by the thermodynamic effect, the distribution of the blade load does not change even at lower cavitation number. By contrast, the pressure distribution in liquid nitrogen has the same tendency as that in water if the cavity length at the blade tip is taken as a cavitation indication. From these results, it was found that the shift of the blade load to the trailing edge depended on the increase of cavity length, and that the distribution of blade load was indicated only by the cavity length independent of the thermodynamic effect.

  10. Time-resolved monitoring of cavitation activity in megasonic cleaning systems.

    Science.gov (United States)

    Hauptmann, M; Brems, S; Struyf, H; Mertens, P; Heyns, M; De Gendt, S; Glorieux, C

    2012-03-01

    The occurrence of acoustic cavitation in the cleaning liquid is a crucial precondition for the performance of megasonic cleaning systems. Hence, a fundamental understanding of the impact of different parameters of the megasonic process on cavitation activity is necessary. A setup capable of synchronously measuring sonoluminescence and acoustic emission originating from acoustically active bubbles is presented. The system also includes a high-speed-stroboscopic Schlieren imaging system to directly visualize the influence of cavitation activity on the Schlieren contrast and resolvable bubbles. This allows a thorough characterization of the mutual interaction of cavitation bubbles with the sound field and with each other. Results obtained during continuous sonication of argon-saturated water at various nominal power densities indicate that acoustic cavitation occurs in a cyclic manner, during which periods of stable and inertial cavitation activity alternate. The occurrence of higher and ultraharmonics in the acoustic emission spectra is characteristic for the stable cavitation state. The inertial cavitation state is characterized by a strong attenuation of the sound field, the explosive growth of bubbles and the occurrence of broadband components in the acoustic spectra. Both states can only be sustained at sufficiently high intensities of the sound field. At lower intensities, their occurrences are limited to short, random bursts. Cleaning activity can be linked to the cavitation activity through the measurement of particle removal on standard 200 mm silicon wafers. It is found that the particle removal efficiency is reduced, when a continuous state of cavitation activity ceases to exist.

  11. Rangeland Hydrology and Erosion Model

    Science.gov (United States)

    Nearing, Mark; Pierson, Fred; Hernandez, Mariano; Al-Hamdan, Osama; Weltz, Mark; Spaeth, Ken; Wei, Haiyan; Stone, Jeff

    2013-04-01

    Soil loss rates on rangelands are considered one of the few quantitative indicators for assessing rangeland health and conservation practice effectiveness. An erosion model to predict soil loss specific for rangeland applications has been needed for many years. Most erosion models were developed from croplands where the hydrologic and erosion processes are different, largely due to much higher levels of heterogeneity in soil and plant properties at the plot scale and the consolidated nature of the soils. The Rangeland Hydrology and Erosion Model (RHEM) was designed to fill that need. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of a single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions, it adopts a new splash erosion and thin sheet-flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant communities by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. Recent work on the model is focused on representing intra-storm dynamics, using stream-power as the driver for detachment by flow, and deriving parameters for after-fire conditions.

  12. Dune erosion during storm surges

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.

    2009-01-01

    Large parts of The Netherlands are protected from flooding by a narrow strip of sandy beaches and dunes. The aim of this thesis is to extend the existing knowledge of dune erosion during storm surges as it occurs along the Dutch coast. The thesis discusses: • A large scale dune erosion experiment to

  13. Ultrahigh-Speed Dynamics of Micrometer-Scale Inertial Cavitation from NanoparticlesUltrahigh-Speed Dynamics of Micrometer-Scale Inertial Cavitation from Nanoparticles

    NARCIS (Netherlands)

    Kwan, J.J.; Lajoinie, Guillaume Pierre Rene; de Jong, N.; Stride, E.; Versluis, Michel; Coussios, C.C.

    2016-01-01

    Direct imaging of cavitation from solid nanoparticles has been a challenge due to the combined nanosized length and time scales involved. We report on high-speed microscopic imaging of inertial cavitation from gas trapped on nanoparticles with a tunable hemispherical depression (nanocups) at

  14. OPTIMIZATION OF MANUFACTURING TEHNOLOGY FOR “ECCENTRIC MASS” COMPONENT OF A NEW TYPE OF VIBRATORY COMPACTOR USING NX 7.5 SOFTWARE

    Directory of Open Access Journals (Sweden)

    Eftimie Dorin

    2013-11-01

    Full Text Available The paper presents the technological optimization process of the eccentric mass component using the NX 7.5 software. The new design of the vibratory compactor with variable amplitudes was modeled 3D. The manufacturing technology presents graphical aspects of operations during mechanical processing.

  15. Hydro-acoustic study of a butterfly valve in cavitating flow; Etude hydroacoustique d'une vanne papillon en regime cavitant

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, A.; Lauro, J.F. [Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches

    1998-07-01

    The CIRCUS code (EDF/DER) allows to determine the pipework network behaviour in case of a flow submitted to hydro-acoustic excitations, generally due to some network special devices such as pumps or valves. CIRCUS uses a data base which characterizes each network component through its transfer matrix and its hydro-acoustic source. The butterfly valve in cavitating flow is a really complex component, particularly because waves propagation speed is not constant in the cavitating zone. Numerous tests have been done on the EPOCA loop in Chatou where parameters such as valve opening, flow rate and cavitation rate were examined. Waves propagation speed in the cavitating zone as well as cavitation length were characterized. Transfer Matrix was determined and the hydro-acoustic source was localized downstream of the valve and estimated. (authors)

  16. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  17. Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone

    Science.gov (United States)

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Okada, Nagaya; Koda, Shinobu; Yasuda, Keiji

    2017-07-01

    Effect of ultrasonic cavitation on sound pressure at the fundamental, second harmonic, and first ultraharmonic frequencies was investigated from low to high ultrasonic intensities. The driving frequencies were 22, 304, and 488 kHz. Sound pressure was measured using a needle-type hydrophone and ultrasonic cavitation was estimated from the broadband integrated pressure (BIP). With increasing square root of electric power applied to a transducer, the sound pressure at the fundamental frequency linearly increased initially, dropped at approximately the electric power of cavitation inception, and afterward increased again. The sound pressure at the second harmonic frequency was detected just below the electric power of cavitation inception. The first ultraharmonic component appeared at around the electric power of cavitation inception at 304 and 488 kHz. However, at 22 kHz, the first ultraharmonic component appeared at a higher electric power than that of cavitation inception.

  18. Chemical effect of swirling jet-induced cavitation: degradation of rhodamine B in aqueous solution.

    Science.gov (United States)

    Wang, Xikui; Wang, Jingang; Guo, Peiquan; Guo, Weilin; Li, Guoliang

    2008-04-01

    The chemical effect of swirling jet-induced cavitation was investigated with the decomposing reaction of rhodamine B in aqueous solution. It was found that rhodamine B in aqueous solution can be degraded with swirling jet-induced cavitation and the degradation can be described by a pseudo-first-order kinetics. The effects of operating conditions such as pressure, temperature, initial concentration of rhodamine B, pH of water on the degradation rate of rhodamine B were discussed. It was found that the degradation rate of rhodamine B increased with increasing pressure and decreased with increasing initial concentration. It was also found that the degradation of rhodamine B was strongly dependent of temperature and pH of aqueous solution. The oxidation efficiency of swirling jet-induced cavitation for rhodamine B degradation was discussed and compared with ultrasonic cavitation. The result indicated that the swirling jet-induced cavitation is more energy efficient as compared to sonochemical cavitation.

  19. Localization of incipient tip vortex cavitation using ray based matched field inversion method

    Science.gov (United States)

    Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon

    2015-10-01

    Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.

  20. Study of unsteady cavitation flow of a pump-turbine at pump mode

    Science.gov (United States)

    Liu, J. T.; Wu, Y. L.; Liu, S. H.

    2013-12-01

    Three dimensional, unsteady, cavitating flows in a pump-turbine at pump mode were numerically studied using SST k-ω turbulence model and the mixture model. The unsteady cavitating flow and pressure fluctuations at different positions were analysed with two openings of guide vanes. Calculation results are in good agreement with experimental data. Results show that the opening of guide vanes has great effect on the cavitation phenomenon. The cavitating region gradually decreases with the increase of the relative opening, and it locates at the inlet of the suction side. The amplitude of the pressure fluctuation reduces as the cavitating region decreases. The numerical study of unsteady cavitating flow can provide a basic understanding for the improvement of stable operation of a pump-turbine.

  1. Acoustic signal characteristics of laser induced cavitation in DDFP droplet: Spectrum and time-frequency analysis.

    Science.gov (United States)

    Feng, Yi; Qin, Dui; Zhang, Jun; Ma, Chenxiang; Wan, Mingxi

    2015-01-01

    Cavitation has great application potential in microvessel damage and targeted drug delivery. Concerning cavitation, droplet vaporization has been widely investigated in vitro and in vivo with plasmonic nanoparticles. Droplets with a liquid dodecafluoropentane (DDFP) core enclosed in an albumin shell have a stable and simple structure with good characteristics of laser absorbing; thus, DDFP droplets could be an effective aim for laser-induced cavitation. The DDPF droplet was prepared and perfused in a mimic microvessel in the optical microscopic system with a passive acoustic detection module. Three patterns of laser-induced cavitation in the droplets were observed. The emitted acoustic signals showed specific spectrum components at specific time points. It was suggested that a nanosecond laser pulse could induce cavitation in DDPF droplets, and specific acoustic signals would be emitted. Analyzing its characteristics could aid in monitoring the laser-induced cavitation process in droplets, which is meaningful to theranostic application.

  2. Vegetarian children and dental erosion.

    Science.gov (United States)

    al-Dlaigan, Y H; Shaw, L; Smith, A J

    2001-05-01

    There have been recent changes in teenage lifestyle and diet. The increasing consumption of soft drinks and foods containing significant acidic components may play a role in the development of dental erosion. The aims of this investigation were firstly to assess the prevalence of vegetarian children in a cluster random sample of 14-year-old children in Birmingham, United Kingdom. Secondly, to determine the prevalence of dental erosion in these children, and thirdly, to see if there were any differences between vegetarian and non-vegetarian children in the prevalence of dental erosion and dietary intake. A cluster random sample of 418 14-year-old children (209 males and 209 females) were examined from 12 different schools in Birmingham, United Kingdom; a dietary questionnaire was completed and the levels of tooth wear were recorded using a modification of the (TWI) index. All data were analysed using SPSS with t-test and Chi-square analysis. Significance was accepted at the P children were vegetarian; 52% of them had low dental erosion and 48% moderate dental erosion. Statistically there were no significant differences between vegetarian and non-vegetarian children in the prevalence of erosion; however, there were significant differences in some food and drink consumption. It was concluded that dental erosion is common in teenage children, but there were no significant differences in prevalence between vegetarian and non-vegetarian children.

  3. Evaluation of Acoustic Cavitation in Terephthalic Acid Solutions Containing Gold Nanoparticles by the Spectrofluorometry Method

    OpenAIRE

    Ameneh Sazgarnia; Ahmad Shanei

    2012-01-01

    Background. When a liquid is irradiated with high intensity and low-frequency ultrasound, acoustic cavitation occurs. The existence of particles in a liquid provides nucleation sites for cavitation bubbles and leads to a decrease in the ultrasonic intensity threshold needed for cavitation onset. Materials and Methods. The study was designed to measure hydroxyl radicals in terephthalic acid solutions containing gold nanoparticles in a near field of a 1 MHz sonotherapy probe. The effect of ultr...

  4. Cavitation optimization for a centrifugal pump impeller by using orthogonal design of experiment

    Science.gov (United States)

    Pei, Ji; Yin, Tingyun; Yuan, Shouqi; Wang, Wenjie; Wang, Jiabin

    2017-01-01

    Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D 1, inlet incidence angle Δ β, and blade wrap angle φ are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3*3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D 1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.

  5. The Investigation of the Cavitation Phenomenon in the Laval Nozzle with Full and Partial Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    2017-04-01

    Full Text Available The article deals with the cavitation phenomenon affected by full and partial wetting of the wall. For the numerical computation of flow in the Laval nozzle the Schnerr-Sauer cavitation model was tested and was used for cavitation research of flow within the nozzle considering partial surface wetting. The coefficient of wetting for various materials was determined using experimental, theoretical and numerical methods of fluid flow due to partial surface wetting.

  6. Simulation of cavitation performance of an axial flow pump with inlet guide vanes

    OpenAIRE

    Weimin Feng; Qian Cheng; Zhiwei Guo; Zhongdong Qian

    2016-01-01

    The cavitation performance of an axial flow pump with inlet guide vanes for different flow rates is studied in this article. The effects of inlet guide vanes on pump hydraulic performance and cavitation are investigated, where the total vapor fraction of impeller zone (Ftv) is calculated to predict the critical net positive suction head, which is compared with that predicted by efficiency criterion for different flow rates. The influences of the development of cavitation on internal flow in i...

  7. Engineering applications and analysis of vibratory motion fourth order fluid film over the time dependent heated flat plate

    Science.gov (United States)

    Mohmand, Muhammad Ismail; Mamat, Mustafa Bin; Shah, Qayyum

    2017-07-01

    This article deals with the time dependent analysis of thermally conducting and Magneto-hydrodynamic (MHD) liquid film flow of a fourth order fluid past a vertical and vibratory plate. In this article have been developed for higher order complex nature fluids. The governing-equations have been modeled in the terms of nonlinear partial differential equations with the help of physical boundary circumstances. Two different analytical approaches i.e. Adomian decomposition method (ADM) and the optimal homotopy asymptotic method (OHAM), have been used for discoveryof the series clarification of the problems. Solutions obtained via two diversemethods have been compared using the graphs, tables and found an excellent contract. Variants of the embedded flow parameters in the solution have been analysed through the graphical diagrams.

  8. System and method of detecting cavitation in pumps

    Science.gov (United States)

    Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.

    2017-10-03

    A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.

  9. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Xikui; Zhang, Yong

    2009-01-15

    The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.

  10. Prevention of tissue damage by water jet during cavitation

    Science.gov (United States)

    Palanker, Daniel; Vankov, Alexander; Miller, Jason; Friedman, Menahem; Strauss, Moshe

    2003-08-01

    Cavitation bubbles accompany explosive vaporization of water following pulsed energy deposition in liquid media. Bubbles collapsing at the tip of a surgical endoprobe produce a powerful and damaging water jet propagating forward in the axial direction of the probe. We studied interaction of such jet with tissue using fast flash photography and modeled the flow dynamics using a two-dimensional Rayleigh-type hydrodynamic simulation. Maximal velocity of the jet generated at pulse energies of up to 1 mJ was about 80 m/s. The jet can produce tissue damage at a distance exceeding the radius of the cavitation bubble by a factor of 4. We demonstrate that formation of this flow and associated tissue damage can be prevented by application of the concave endoprobes that slow down the propagation of the back boundary of the bubble. Similar effect can be achieved by positioning an obstacle to the flow, such as a ring behind the tip.

  11. Variations of bubble cavitation and temperature elevation during acculysis

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2017-03-01

    High-intensity focused ultrasound (HIFU) is effective in both thermal ablations and soft-tissue fragmentation. Mechanical and thermal effects depend on the operating parameters and vary with the progress of therapy. Different types of lesions could be produced with the pulse duration of 5-30 ms, much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, bubble cavitation and temperature elevation in the focal region were measured by passive cavitation detection (PCD) and thermocouples, respectively. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Overall, it is suggested that appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.

  12. Study of laser-induced cavitation bubble in liquid nitrogen

    Science.gov (United States)

    Takahashi, Toshimasa; Hisano, Eizo; Toyada, Kazuhiro; Maeno, Kazuo

    2005-03-01

    The behavior of Vapor bubbles in cryogenic liquid is regarded as a cryogenic and phase-changing flow field, where instability of bubble surface becomes larger than those in normal temperature liquid as water or oil, since the cryogenic liquid has characteristic feature of small latent heat, surface tension, and viscosity. The cavitation phenomena in cryogenic temperature range are regarded as vacitation in the liquid of near-boiling point. The cryogenic cavitation, however, have a significant influence on solid surfaces due to their weakness in cryogenic range. In this paper, shock waves discharged from a pulse-laser induced bubble and behavior of the bubble are experimentally investigated. Pulsed YAG laser is used to produce a bubble in cryogenic liquid nitrogen, and shock waves are visualized by using a digital still camera with schlieren method.

  13. Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades

    Directory of Open Access Journals (Sweden)

    Spyros A. Kinnas

    2003-01-01

    Full Text Available Unsteady sheet cavitation is very common on marine propulsor blades. The authors summarize a lifting-surface and a surface-panel model to solve for the unsteady cavitating flow around a propeller that is subject to nonaxisymmetric inflow. The time-dependent extent and thickness of the cavity were determined by using an iterative method. The cavity detachment was determined by applying the smooth detachment criterion in an iterative manner. A nonzeroradius developed vortex cavity model was utilized at the tip of the blade, and the trailing wake geometry was determined using a fully unsteady wake-alignment process. Comparisons of predictions by the two models and measurements from several experiments are given.

  14. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial.

    Science.gov (United States)

    Gusi, Narcís; Raimundo, Armando; Leal, Alejo

    2006-11-30

    Whole-body vibration (WBV) is a new type of exercise that has been increasingly tested for the ability to prevent bone fractures and osteoporosis in frail people. There are two currently marketed vibrating plates: a) the whole plate oscillates up and down; b) reciprocating vertical displacements on the left and right side of a fulcrum, increasing the lateral accelerations. A few studies have shown recently the effectiveness of the up-and-down plate for increasing Bone Mineral Density (BMD) and balance; but the effectiveness of the reciprocating plate technique remains mainly unknown. The aim was to compare the effects of WBV using a reciprocating platform at frequencies lower than 20 Hz and a walking-based exercise programme on BMD and balance in post-menopausal women. Twenty-eight physically untrained post-menopausal women were assigned at random to a WBV group or a Walking group. Both experimental programmes consisted of 3 sessions per week for 8 months. Each vibratory session included 6 bouts of 1 min (12.6 Hz in frequency and 3 cm in amplitude with 60 degrees of knee flexion) with 1 min rest between bouts. Each walking session was 55 minutes of walking and 5 minutes of stretching. Hip and lumbar BMD (g.cm-2) were measured using dual-energy X-ray absorptiometry and balance was assessed by the blind flamingo test. ANOVA for repeated measurements was adjusted by baseline data, weight and age. After 8 months, BMD at the femoral neck in the WBV group was increased by 4.3% (P = 0.011) compared to the Walking group. In contrast, the BMD at the lumbar spine was unaltered in both groups. Balance was improved in the WBV group (29%) but not in the Walking group. The 8-month course of vibratory exercise using a reciprocating plate is feasible and is more effective than walking to improve two major determinants of bone fractures: hip BMD and balance.

  15. Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion

    Science.gov (United States)

    Greenly, Justin Michael

    The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock

  16. Sonoluminescence and sonochemiluminescence study of cavitation field in a 1.2MHz focused ultrasound

    Science.gov (United States)

    Yin, Hui; Qiao, Yangzi; Cao, Hua; Wan, Mingxi

    2017-03-01

    An intensified CCD (ICCD) and an electron-multiplying CCD (EMCCD) were employed to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2MHz HIFU field. Various sonication conditions, which are free field and focal region near a water-parenchyma interface, were studied. In addition, the differences of two shells coated UCAs were also investigated. In this study, an acoustic radiation force (ARF) counterbalance appliance was added to reduce bubble displacement. Cavitation mapping in this situation was also operated through SCL recording. SCL was also employed to measure cavitation does and map the spatial distribution of cavitation near a boundary of parenchyma.

  17. A method for real-time in vitro observation of cavitation on prosthetic heart valves.

    Science.gov (United States)

    Zapanta, C M; Liszka, E G; Lamson, T C; Stinebring, D R; Deutsch, S; Geselowitz, D B; Tarbell, J M

    1994-11-01

    A method for real-time in vitro observation of cavitation on a prosthetic heart valve has been developed. Cavitation of four blood analog fluids (distilled water, aqueous glycerin, aqueous polyacrylamide, and aqueous xanthan gum) has been documented for a Medtronic/Hall prosthetic heart valve. This method employed a Penn State Electrical Ventricular Assist Device in a mock circulatory loop that was operated in a partial filling mode associated with reduced atrial filling pressure. The observations were made on a valve that was located in the mitral position, with the cavitation occurring on the inlet side after valve closure on every cycle. Stroboscopic videography was used to document the cavity life cycle. Bubble cavitation was observed on the valve occluder face. Vortex cavitation was observed at two locations in the vicinity of the valve occluder and housing. For each fluid, cavity growth and collapse occurred in less than one millisecond, which provides strong evidence that the cavitation is vaporous rather than gaseous. The cavity duration time was found to decrease with increasing atrial pressure at constant aortic pressure and beat rate. The area of cavitation was found to decrease with increasing delay time at a constant aortic pressure, atrial pressure, and beat rate. Cavitation was found to occur in each of the fluids, with the most cavitation seen in the Newtonian fluids (distilled water and aqueous glycerin).

  18. Nominal vs. Effective Wake Fields and their Influence on Propeller Cavitation Performance

    DEFF Research Database (Denmark)

    Regener, Pelle Bo; Mirsadraee, Yasaman; Andersen, Poul

    2017-01-01

    Propeller designers often need to base their design on thenominal model scale wake distribution, because the effectivefull scale distribution is not available. The effects of suchincomplete design data on cavitation performance is examinedin this paper. The behind-ship cavitation performanceof two...... flow, with a coupling ofthe two for the interaction of ship and propeller flows. Theeffect on sheet cavitation due to the different wake distributionsis examined for a typical full-form ship. Results showconsiderable differences in cavitation extent, volume, andhull pressure pulses....

  19. Study about the influence of cavitation on the dynamic characteristics for the sliding bearing

    Science.gov (United States)

    Zhai, L. M.; Luo, Y. Y.; Wang, Z. W.

    2015-01-01

    Sliding bearings are employed to support the rotor system and limit the vibration amplitude. In high speed rotor system, cavitation often occurs in the oil film and affects the dynamic characteristics of the sliding bearing greatly. In this paper, numerical method is adopted to simulate the cavitation in the oil film with homogeneous two-phase mixture flow using Singhal-et-al cavitation model in the commercial code FLUENT-solver. Cases without cavitation model were also calculated at the same time. Many computations with different frequency ratios were conducted. Then the rotor dynamic characteristics of the sliding bearing were retrieved. The results show that the cavitation has great influences on the pressure distribution in the oil film. As the rotational speed or whirling speed of the journal increases, the cavitation will become prominent. The dynamic coefficients of the bearing such as stiffness and damping with cavitation model considered are quite different from that without cavitation. So it is worth to pay attention to and do further study about the cavitation in the sliding bearing in the high speed rotor system.

  20. Advanced Simulation Capability for Turbopump Cavitation Dynamics Guided by Experimental Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerical cavitation modeling capability is critical in the design of liquid rocket engine turbopumps, feed lines, injector manifolds and engine test facilities....

  1. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.

    Science.gov (United States)

    Badve, Mandar P; Gogate, Parag R; Pandit, Aniruddha B; Csoka, Levente

    2014-01-01

    The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10-15 min increases the tensile index of the synthesized paper sheets to about 50-55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. In vivo real-time cavitation imaging in moving organs

    Science.gov (United States)

    Arnal, B.; Baranger, J.; Demene, C.; Tanter, M.; Pernot, M.

    2017-02-01

    The stochastic nature of cavitation implies visualization of the cavitation cloud in real-time and in a discriminative manner for the safe use of focused ultrasound therapy. This visualization is sometimes possible with standard echography, but it strongly depends on the quality of the scanner, and is hindered by difficulty in discriminating from highly reflecting tissue signals in different organs. A specific approach would then permit clear validation of the cavitation position and activity. Detecting signals from a specific source with high sensitivity is a major problem in ultrasound imaging. Based on plane or diverging wave sonications, ultrafast ultrasonic imaging dramatically increases temporal resolution, and the larger amount of acquired data permits increased sensitivity in Doppler imaging. Here, we investigate a spatiotemporal singular value decomposition of ultrafast radiofrequency data to discriminate bubble clouds from tissue based on their different spatiotemporal motion and echogenicity during histotripsy. We introduce an automation to determine the parameters of this filtering. This method clearly outperforms standard temporal filtering techniques with a bubble to tissue contrast of at least 20 dB in vitro in a moving phantom and in vivo in porcine liver.

  3. Effects of bovine serum albumin on a single cavitation bubble.

    Science.gov (United States)

    Qi, Shuibao; Assouar, Badreddine; Chen, Weizhong

    2017-09-01

    The dynamics and sonoluminescence (SL) of a single cavitation bubble in bovine serum albumin (BSA) aqueous solutions have been experimentally and theoretically investigated. A phase-locked integral imaging has been used to record the bubble pulsation evolutions. The results show that, under the optimum driving condition, the endurable driving pressure, maximum radius, radius compression ratio and SL intensity of the cavitation bubble increase correspondingly with the increase of BSA concentrations within the critical micelle concentration, which indicates that the addition of BSA increases the power capability of the cavitation bubble. In addition, BSA molecules dampen the interfacial motion, and especially the rebounds of the bubble after its collapse. BSA molecules modify the dilatational viscosity and elasticity of the bubble wall. A viscoelastic interfacial rheological model that mainly emphasizes on the description of the bubble wall has been introduced and modified to theoretically explain the measured bubble dynamics. A good consensus between the experimental observation and model calculation has been achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The liquid micro-jet from laser induced cavitation bubbles.

    Science.gov (United States)

    Abboud, Jack; Oweis, Ghanem

    2007-11-01

    A vaporous cavitation bubble grows spherically in an infinite medium to a maximum radius, collapses in a spherical manner to a minimum volume, and then may rebound one or more times or disintegrate. When the bubble collapses above a solid boundary, the asymmetry of the surrounding flow field will cause the upper bubble surface to cave in, resulting in a fast liquid jet that penetrates its lower surface and continues towards the solid boundary. This fast jet formation is one perceived mechanism for cavitation damage in hydro-machinery. If a hole is intentionally drilled in the solid boundary underneath the collapsing bubble, the fast micro-jet can continue its path and be cultivated for a variety of applications such as micro surgery of soft tissue. In this study, cavitation bubbles are generated by focusing the pulsed IR beam from an Nd-YAG laser above a solid surface. The forming liquid micro-jet is investigated in the cases of blank and drilled solid boundaries.

  5. Characterization of periodic cavitation in an optical tweezer

    CERN Document Server

    Carmona-Sosa, Viridiana; Quinto-Su, Pedro A

    2015-01-01

    Microscopic vapor explosions or cavitation bubbles can be generated periodically in an optical tweezer with a microparticle that partially absorbs at the trapping laser wavelength. In this work we correlate the size of the cavitation bubbles with the cycle frequency for microparticles with a diameter of 3 $\\mu$m. We use high speed video recording to measure the maximum bubble sizes and a fast photodiode to collect the trapping laser light scattered by both the particle and the transient bubble. We find an inverse relation between maximum bubble size and cycle frequency, consistent with a longer displacement of the microbead induced by larger bubbles and hence a longer time back to the waist. More than $94 \\%$ of the measured maximum bubble radiuses are in the range between 2 and 6 $\\mu$m, while the same percentage of the measured frequencies are between 10 and 200 Hz. The width of the scattered light signal for both particle and bubble during cavitation is proportional to the predicted lifetime for a spherica...

  6. Nanobubbles, cavitation, shock waves and traumatic brain injury.

    Science.gov (United States)

    Adhikari, Upendra; Goliaei, Ardeshir; Berkowitz, Max L

    2016-12-07

    Collapse of bubbles, microscopic or nanoscopic, due to their interaction with the impinging pressure wave produces a jet of particles moving in the direction of the wave. If there is a surface nearby, the high-speed jet particles hit it, and as a result damage to the surface is produced. This cavitation effect is well known and intensely studied in case of microscopic sized bubbles. It can be quite damaging to materials, including biological tissues, but it can also be beneficial when controlled, like in case of sonoporation of biological membranes for the purpose of drug delivery. Here we consider recent simulation work performed to study collapse of nanobubbles exposed to shock waves, in order to understand the detailed mechanism of the cavitation induced damage to soft materials, such as biological membranes. We also discuss the connection of the cavitation effect with the traumatic brain injury caused by blasts. Specifically, we consider possible damage to model membranes containing lipid bilayers, bilayers with embedded ion channel proteins like the ones found in neural cells and also protein assemblies found in the tight junction of the blood brain barrier.

  7. Modèle multi-bulles pour la cavitation

    Science.gov (United States)

    Adama Maiga, Mahamadou; Buisine, Daniel

    2009-11-01

    In this study we propose new multi-bubble model for cavitation, in which, to simulate the interactions within a cloud of cavitation at the initial stage, the dynamic behaviour of two nonidentical bubbles localised in a volume of control is studied. The presence of two bubbles introduces an instability in which the exchange of volume seems an additional degree of freedom. Depending on the conditions of expansion, the small bubble can disappear or not. If the small bubble disappears, the volume of control is readjusted to introduce a new small bubble and to continue calculation in a new sequence. The model makes it possible for many small bubbles to disappear as in the appearance of cavitation, which is at the origin of certain phenomena observed in the zone of the appearance, such as emission of the noise. The model reveals especially the pressure rather like a result than a datum. The comparison of the size of the bubbles and the pressure varying in time, obtained with the model are coherent with the measurements taken by Ohl [Phys. Fluids 14 (10) (2002) 3512-3521]. To cite this article: M. Adama Maiga, D. Buisine, C. R. Mecanique 337 (2009).

  8. Fast X-ray imaging of cavitating flows

    Science.gov (United States)

    Khlifa, Ilyass; Vabre, Alexandre; Hočevar, Marko; Fezzaa, Kamel; Fuzier, Sylvie; Roussette, Olivier; Coutier-Delgosha, Olivier

    2017-11-01

    A new method based on ultra-fast X-ray imaging was developed in this work for the investigation of the dynamics and the structures of complex two-phase flows. In this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fields of each phase were, therefore, calculated using image cross-correlations. The local vapour volume fractions were also obtained, thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between them, and hence enable to improve our understanding of their behaviour. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrate, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations.

  9. Bubbly flow model for the dynamic characteristics of cavitating pumps

    Science.gov (United States)

    Brennen, C.

    1978-01-01

    The recent experimental transfer matrices obtained by Ng and Brennen (1978) for some axial flow pumps revealed some dynamic characteristics which were unaccounted for by any existing theoretical analysis; their visual observations suggested that the bubbly cavitating flow in the blade passages could be responsible for these effects. A theoretical model of the dynamic response of this bubbly blade-passage flow is described in the present paper. Void-fraction fluctuations in this flow result not only from pressure fluctuations but also because the fluctuating angle of attack causes fluctuations in the rate of production of bubbles near the leading edge. The latter causes kinematic waves which interact through the boundary conditions with the dynamic waves caused by pressure fluctuation. The resulting theoretical transfer functions which results are in good qualitative agreement with the experiments; with appropriate choices of two parameters good quantitative agreement is also obtained. The theoretical model also provides one possible explanation of the observation that the pump changes from an essentially passive dynamic element in the absence of cavitation to a progressively more active element as the extent of cavitation increases.

  10. Compost for steep slope erosion.

    Science.gov (United States)

    2008-06-01

    This study was initiated to develop guidelines for maintenance erosion control measures for steep slopes. The study focused on evaluating and monitoring KY-31 fescue germination rates using two media treatments 1) 100 percent by weight compost and 2)...

  11. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  12. Wind erosion of soils burned by wildfire

    Science.gov (United States)

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud

    2011-01-01

    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  13. Rainfall Erosivity in Southeastern Nigeria | Ezemonye | Ethiopian ...

    African Journals Online (AJOL)

    Calabar Owerri and Port-Harcourt recorded the highest erosive storms/ more months of very high erosivity index. The deterministic relationship between kinetic energy of rains and erosivity pattern observed for the different stations showed that erosive rains contribute significantly to detachment of soil materials in the study ...

  14. Effect of geometrical parameters on submerged cavitation jet discharged from profiled central-body nozzle

    Science.gov (United States)

    Yang, Minguan; Xiao, Shengnan; Kang, Can; Wang, Yuli

    2013-05-01

    The flow characteristics of cavitation jets are essential issues among relevant studies. The physical properties of the jet are largely determined by the geometrical parameters of the nozzle. The structure and cavitation jets characteristics of the angular-nozzle and the self-resonating cavitation nozzle have been extensively studied, but little research is conducted in the central-body cavitation nozzle mainly because of its hard processing and the cavitation jet effect not satisfactory. In this paper, a novel central-body nozzle (a non-plunger central-body nozzle with square outlet) is studied to solve above problems. Submerged jets discharged from the novel central-body nozzle are simulated, employing the full cavitation model. The impact of nozzle configuration on jet properties is analyzed. The analysis results indicate that when central-body relative diameter keeps constant, there is an optimal contraction degree of nozzle's outlet, which can induce intense cavitation in the jet. The central-body relative diameter also affects jet profiles. In the case of large central-body relative diameter, most of the bubbles settle in the jet core. On the contrary, a smaller relative diameter makes bubbles concentrate in the interface between the jet and its surrounding fluid. Moreover, the shorter outlet part allows the cavitation zone further extend in both the axial and racial directions. The research results further consummate the study on the central-body nozzles and the correlation between cavitation jet and the structure, and elementarily reveal the mechanism of cavitation jet produced in a non-plunger novel central-body nozzle and the effect of the structure parameters on the cavitation jet, moreover, provide the theoretical basis for the optimal design of the nozzle.

  15. FORECAST THE SOIL EROSION THROUGH THE CARTOGRAMS

    OpenAIRE

    Mădălina - Cristina Marian

    2014-01-01

    Soil erosion in Arges County affects a high percentage of agricultural land. Most agricultural lands are located on slopes undergoing erosion, excess humidity temporarily or permanently, landslides. The importance lies in the need to know theme addressed erosion, the erosive potential of the land, the causes and factors that led to the onset of erosion and its deployment at a accelerated rate and now, because the based on this knowledge to determine the effective measures to prevent and c...

  16. 液体金属中のキャビテーション壊食に及ぼす液体パラメータの影響

    OpenAIRE

    服部, 修次; 井上, 文貴; 渡士, 克己; 橋本, 貴司; HATTORI, Shuji; INOUE, Fumitaka; WATASHI, Katsumi; HASHIMOTO, Takashi

    2007-01-01

    A cavitation erosion vibratory apparatus was developed for low-temperature melting alloys. The temperature can be changed from room temperature to 150℃. The erosion tests of SUS 304 were carried out in liquid lead-bismuth metal and in deionized water. The erosion rate was parameterized in terms of a relative temperature defined as the peroentage between freezing and boiling points. At 14℃ relative temperature, the erosion rate was 10 times in lead-bismuth, and 2 to 5 times in sodium, compared...

  17. Relationship between loss of echogenicity and cavitation emissions from echogenic liposomes insonified by spectral Doppler ultrasound

    Science.gov (United States)

    Radhakrishnan, Kirthi

    Cardiovascular disease is the leading cause of death and disability in the United States and worldwide. Echogenic liposomes (ELIP) are theragonistic ultrasound contrast agents (UCAs) being developed for the early detection and treatment of cardiovascular disease. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. The stability of ELIP echogenicity was determined in vitro under physiologic conditions of total dissolved gas concentration, temperature, and hydrodynamic pressure in porcine plasma and whole blood. Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation as a function of pulse duration and pulse repetition frequency (PRF). Previous studies have also demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of ELIP as a function of pulse duration and pulse repetition frequency. Determining the relationship between cavitation thresholds and loss of echogenicity of ELIP would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. ELIP were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations and four PRFs in a static fluid and in a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a single-element passive cavitation detection (PCD) system and a passive cavitation imaging (PCI) system. Stable and inertial cavitation thresholds were ascertained. Loss of echogenicity from ELIP was assessed within regions of interest on B-mode images. Stable cavitation thresholds were found to be lower than inertial

  18. Tolerable soil erosion in Europe

    Science.gov (United States)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  19. Research on Cavitation Regions of Upstream Pumping Mechanical Seal Based on Dynamic Mesh Technique

    Directory of Open Access Journals (Sweden)

    Huilong Chen

    2014-08-01

    Full Text Available In order to study the cavitation area of the Upstream Pumping Mechanical Seal, three-dimensional microgap inner flow field of the Upstream Pumping Mechanical Seal was simulated with multiphase flow cavitation model and dynamic mesh technique based on hydrodynamic lubrication theory. Furthermore, the simulated result was compared with the experimental data. The results show that the simulated result with the Zwart-Gerber-Belamri cavitation model was much closer to the experimental data. The area of cavitation inception mainly occurred at the concave side of the spiral groove and surrounding region without spiral grooves, which was nearly covered by the inner diameter to roots of grooves; in addition, the region near the surface of the stationary ring was primary cavitation location. The area of cavitation has little relationship with the medium pressure; however, it became larger following increasing rotating speed in the range of researched operating conditions. Moreover the boundary of cavitated area was transformed from smooth to rough, which occurred in similar film thickness. When cavitation number was decreasing, which was conducive to improving the lubrication performance of sealed auxiliary, it made the sealing stability decline.

  20. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    Science.gov (United States)

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields. Copyright © 2014 Elsevier B.V. All rights reserved.