WorldWideScience

Sample records for vibrationally structured luminescence

  1. DFT computations on: Crystal structure, vibrational studies and optical investigations of a luminescent self-assembled material.

    Science.gov (United States)

    Kessentini, A; Ben Ahmed, A; Dammak, T; Belhouchet, M

    2018-02-15

    The current work undertakes the growth and the physicochemical properties of a novel green-yellow luminescence semi-organic material, the 3-picolylammonium bromide abbreviated (Pico-Br). In this paper, we report the X-ray diffraction measurements which show that the crystal lattice consists of distinct 3-picolylammonium cations and free bromide anions connected via NH⋯Br and NH⋯N hydrogen bonds leading to form a two dimensional frameworks. Molecular geometry compared with its optimized counterpart shows that the quantum chemical calculations carried out with density functional method (DFT) well produce the perceived structure by X-ray resolution of the studied material. To provide further insight into the spectroscopic properties, additional characterization of this material have been performed with Raman and infrared studies at room temperature. Theoretical computations have been computed using the (DFT) method at B3LYP/LanL2DZ level of theory implemented within Gaussian 03 program to study the vibrational spectra of the investigated molecule in the ground state. Optical absorption spectrum inspected by UV-visible absorption reveals the appearance of sharp optical gap of 280nm (4.42eV) as well as a strong green photoluminescence emission at 550nm (2.25eV) is detected on the photoluminescence (PL) spectrum at room temperature. Using the TD/DFT method, HOMO-LUMO energy gap and the Mulliken atomic charges were calculated in order to get an insight into the material. Good agreement between the theoretical results and the experimental ones was predicted. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. DFT computations on: Crystal structure, vibrational studies and optical investigations of a luminescent self-assembled material

    Science.gov (United States)

    Kessentini, A.; Ben Ahmed, A.; Dammak, T.; Belhouchet, M.

    2018-02-01

    The current work undertakes the growth and the physicochemical properties of a novel green-yellow luminescence semi-organic material, the 3-picolylammonium bromide abbreviated (Pico-Br). In this paper, we report the X-ray diffraction measurements which show that the crystal lattice consists of distinct 3-picolylammonium cations and free bromide anions connected via Nsbnd H ⋯ Br and Nsbnd H ⋯ N hydrogen bonds leading to form a two dimensional frameworks. Molecular geometry compared with its optimized counterpart shows that the quantum chemical calculations carried out with density functional method (DFT) well produce the perceived structure by X-ray resolution of the studied material. To provide further insight into the spectroscopic properties, additional characterization of this material have been performed with Raman and infrared studies at room temperature. Theoretical computations have been computed using the (DFT) method at B3LYP/LanL2DZ level of theory implemented within Gaussian 03 program to study the vibrational spectra of the investigated molecule in the ground state. Optical absorption spectrum inspected by UV-visible absorption reveals the appearance of sharp optical gap of 280 nm (4.42 eV) as well as a strong green photoluminescence emission at 550 nm (2.25 eV) is detected on the photoluminescence (PL) spectrum at room temperature. Using the TD/DFT method, HOMO-LUMO energy gap and the Mulliken atomic charges were calculated in order to get an insight into the material. Good agreement between the theoretical results and the experimental ones was predicted.

  3. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    Hydrothermal synthesis, crystal structure and luminescence property of a three dimensional Sm(III) coordination polymer with. 2,5-pyridinedicarboxylic acid. KRANTHI KUMAR GANGU, ANIMA S DADHICH and. SARATCHANDRA BABU MUKKAMALA. ∗. Department of Chemistry, GITAM University, Visakhapatnam 530 045, ...

  4. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 12. Hydrothermal synthesis, crystal structure and luminescence property of a three dimensional Sm(III) coordination polymer with 2,5-pyridinedicarboxylic acid. Kranthi Kumar Gangu Anima S Dadhich Saratchandra Babu Mukkamala. Volume 127 Issue 12 ...

  5. Synthesis, crystal structure, theoretical study and luminescence ...

    Indian Academy of Sciences (India)

    Synthesis, crystal structure, theoretical study and luminescence property of a butterfly-like W/Cu/S cluster with 1,10-phenanthroline. AI-HUA CHENa,b, SU-CI MENGc,d, JIN-FANG ZHANGb,c and CHI ZHANGb,c,∗. aSchool of Chemical & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051,.

  6. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  7. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2017-01-01

    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  8. Effect of surface related organic vibrational modes in luminescent upconversion dynamics of rare earth ions doped nanoparticles.

    Science.gov (United States)

    Wang, Yu; Smolarek, Szymon; Kong, Xianggui; Buma, Wybren Jan; Brouwer, Albert Manfred; Zhang, Hong

    2010-11-01

    Physical and chemical properties of nanoparticles are known to be subject to the surface factors. For their biological/biomedical applications, typically, surface of the nanoparticles has to be modified which inevitably affects their performance. In this work we have studied the interaction between the surface related organic vibrational modes and the luminescent centers--rare earth ions--in one of the most efficient luminescence upconversion nanosystems--NaYF4. Specifically, the surface quenching centers, the surface related luminescent centers, as well as the role of shell properties, are investigated spectroscopically. Our results demonstrate that the surface related high-frequency vibrational modes can be critical to the spectral properties of the nanosystems once the surface is not well separated from the discrete luminescent centers.

  9. Monothiodibenzoylmethane: Structural and vibrational assignments

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen

    2007-01-01

    The vibrational structure of the title compound (1,3-diphenyl-3-thioxopropane-1-one, TDBM) was studied by a variety of experimental and theoretical methods. The stable ground state configuration of TDBM was investigated by IR absorption measurements in different media, by LD polarization spectros...... to an “open”, non-chelated enethiol form (t-TCC), thereby supporting the previous conclusions by Posokhov et al. No obvious indications of the contribution of other forms to the observed spectra could be found....

  10. Vibrational Stability of NLC Linac Accelerating Structure

    CERN Document Server

    Le Pimpec, F; Bowden, G B; Doyle, E; McKee, B; Seryi, Andrei; Redaelli, S; Adiga, S

    2002-01-01

    The vibration of components of the NLC linac, such as accelerating structures and girders, is being studied both experimentally and analytically. Various effects are being considered including structural resonances and vibration caused by cooling water in the accelerating structure. This paper reports the status of ongoing work.

  11. RESEARCH OF BRIDGE STRUCTURE VIBRATION CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    V.P. Babak

    2005-02-01

    Full Text Available  Bridge structure test results with using different types of dynamic force have been considered. It has been shown, that the developed technique of registering and processing vibration signals allows obtaining thin spectrum structure. The analysis of its change that is defined by the type of structure loading applied has been carried out. Key parameters of the vibration signals registered have been defined.

  12. Syntheses, structures and luminescence behaviour of some zinc(II ...

    Indian Academy of Sciences (India)

    Syntheses, structures and luminescence behaviour of some zinc(II) complexes containing acetate and tetradentate Schiff bases. ASHIS KUMAR MAJI, SUBHASIS ROY, SOMNATH CHOUBEY, RAJARSHI GHOSH∗ and. BARINDRA KUMAR GHOSH∗. Department of Chemistry, The University of Burdwan, Burdwan 713 104, ...

  13. Theory of Arched Structures Strength, Stability, Vibration

    CERN Document Server

    Karnovsky, Igor A

    2012-01-01

    Theory of Arched Structures: Strength, Stability, Vibration presents detailed procedures for analytical analysis of the strength, stability, and vibration of arched structures of different types, using exact analytical methods of classical structural analysis. The material discussed is divided into four parts. Part I covers stress and strain with a particular emphasis on analysis; Part II discusses stability and gives an in-depth analysis of elastic stability of arches and the role that matrix methods play in the stability of the arches; Part III presents a comprehensive tutorial on dynamics and free vibration of arches, and forced vibration of arches; and Part IV offers a section on special topics which contains a unique discussion of plastic analysis of arches and the optimal design of arches.

  14. Free-Vibration Analysis of Structures

    Science.gov (United States)

    Gupta, K. K.

    1984-01-01

    Unified numerical procedure for free-vibration analysis of structures developed and incorporated into EIGSOL computer program. Dynamic response analysis of primary importance in design of wide range of practical structures such as space-craft, buildings, and rotating machineries. Procedure determines natural frequencies and associated modes in structural design.

  15. Free-Vibration Analysis of Structures

    Science.gov (United States)

    Gupta, K. K.

    1985-01-01

    Improved numerical procedure more than twice as fast as previous methods. Unified numerical algorithm efficiently solves free-vibration problems of stationary or spinning structures with or without viscous or structural damping. Algorithm used to solve static problems involving multiple loads and to solve quadratic matrix eigenvalue problems associated with finite-dynamic-element structural discretization.

  16. Vibration modes and frequencies of structures

    Science.gov (United States)

    Durling, R. J.; Kvaternik, R. G.

    1980-01-01

    SUDAN, Substructuring in Direct Analysis, analyzes natural modes and frequencies of vibration of structural systems. Based on direct method of analysis that employs substructures methodology, program is used with structures that may be represented as equivalent system of beam, springs, and rigid bodies.

  17. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  18. Recent development in deciphering the structure of luminescent silver nanodots

    Science.gov (United States)

    Choi, Sungmoon; Yu, Junhua

    2017-05-01

    Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.

  19. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  20. Synthesis, crystal structure, theoretical study and luminescence ...

    Indian Academy of Sciences (India)

    phenanthroline) has been synthesized and characterized by elemental analysis, infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray single crystal analysis and fluorescent analysis. Its crystal structure is monoclinic with space group 2/ and ...

  1. Molecular structure, vibrational spectroscopic studies and natural ...

    Indian Academy of Sciences (India)

    pp. 845–860. Molecular structure, vibrational spectroscopic studies and natural bond orbital analysis of 7-amino-4-trifluoromethyl coumarin ..... [15] A Frisch, A B Nielsen and A J Holder, GAUSSIANVIEW Users Manual, Gaussian. Inc., Pittsburgh, PA (2000). [16] S Selladurai and K Subramanian, Acta Crystallogr. C48, 281 ...

  2. Smart paint sensor for monitoring structural vibrations

    Science.gov (United States)

    Al-Saffar, Y.; Aldraihem, O.; Baz, A.

    2012-04-01

    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures.

  3. Structural and luminescence study of antimony-zinc borophosphate glass doped with iron

    Science.gov (United States)

    Pang, Xie Guan; Eeu, Tien Yew; Leow, Ting Qiao; Shamsuri, Wan Nurulhuda Wan; Hussin, Rosli

    2013-05-01

    Antimony zinc borophosphate glass were prepared with the composition of 20ZnO-30B2O3-xP2O5-(50-x)Sb2O3-2Fe2O3 (0≤x≤50 mol%) using the melt quenching method. The starting materials were mixed and preheat for 30 minutes and transfer into high temperature furnace for melting. The structure of samples were measured using Fourier-Transform Infrared (FT-IR) Spectroscopy. The spectra showed that network structure in the samples are mainly based on P=O, PO2, P-O, B-O-B and B-O units. With increasing P2O5 content, the vibration of P-O tends to shift towards lower wavenumber. Meanwhile, the luminescence was studied using Photoluminescence (PL) Spectroscopy. The samples were excited at specific wavelengths (265 - 300 nm). The emission profiles were obtained to study the energy transfer process. Luminescence of violet colour from samples were also recorded to correlate with PL results.

  4. Active isolation of vibrations with adaptive structures

    Science.gov (United States)

    Guigou, C.; Fuller, C. R.; Wagstaff, P. R.

    1991-01-01

    Vibration transmission in structures is controlled by means of a technique which employs distributed arrays of piezoelectric transducers bonded to the supporting structure. Distributed PVDF piezoelectric strips are employed as error sensors, and a two-channel feedforward adaptive LMS algorithm is used for minimizing error signals and thereby controlling the structure. A harmonic force input excites a thick plate, and a receiving plate is configured with three pairs of piezoelectric actuators. Modal analyses are performed to determine the resonant frequencies of the system, and a scanning laser vibrometer is used to study the shape of the response of the receiving plate during excitation with and without the control algorithm. Efficient active isolation of the vibrations is achieved with modal suppression, and good control is noted in the on-resonance cases in which increased numbers of PVDF sensors and piezoelectric actuators are employed.

  5. Acoustically Driven Vibrations in Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-10-11

    The purpose of this investigation is to explore the interaction of acoustics and vibration in fluid-filled cylindrical structures. Our emphasis is on describing longitudinal (axial) propagation within the structure for acoustic signals that enter externally. This paper reviews the historical and theoretical treatments of the relevant phenomenon important to the propagation of these signals along pipe structures. Our specific contribution is a detailed analysis of how external acoustic signals are coupled to a free standing pipe. There have been numerous phenomena for which these analyses are applicable. They have ranged from physical property measurements, to indoor environmental noise abatement, and onto quite significant explorations of active and passive submerged structures.

  6. Active vibration control of civil structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  7. Structural Vibration Monitoring Using Cumulative Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Satoru Goto

    2013-01-01

    Full Text Available This paper describes a resonance decay estimation for structural health monitoring in the presence of nonstationary vibrations. In structural health monitoring, the structure's frequency response and resonant decay characteristics are very important for understanding how the structure changes. Cumulative spectral analysis (CSA estimates the frequency decay by using the impulse response. However, measuring the impulse response of buildings is impractical due to the need to shake the building itself. In a previous study, we reported on system damping monitoring using cumulative harmonic analysis (CHA, which is based on CSA. The current study describes scale model experiments on estimating the hidden resonance decay under non-stationary noise conditions by using CSA for structural condition monitoring.

  8. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  9. Occupant traffic estimation through structural vibration sensing

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Zhang, Pei; Noh, Hae Young

    2016-04-01

    The number of people passing through different indoor areas is useful in various smart structure applications, including occupancy-based building energy/space management, marketing research, security, etc. Existing approaches to estimate occupant traffic include vision-, sound-, and radio-based (mobile) sensing methods, which have placement limitations (e.g., requirement of line-of-sight, quiet environment, carrying a device all the time). Such limitations make these direct sensing approaches difficult to deploy and maintain. An indirect approach using geophones to measure floor vibration induced by footsteps can be utilized. However, the main challenge lies in distinguishing multiple simultaneous walkers by developing features that can effectively represent the number of mixed signals and characterize the selected features under different traffic conditions. This paper presents a method to monitor multiple persons. Once the vibration signals are obtained, features are extracted to describe the overlapping vibration signals induced by multiple footsteps, which are used for occupancy traffic estimation. In particular, we focus on analysis of the efficiency and limitations of the four selected key features when used for estimating various traffic conditions. We characterize these features with signals collected from controlled impulse load tests as well as from multiple people walking through a real-world sensing area. In our experiments, the system achieves the mean estimation error of +/-0.2 people for different occupant traffic conditions (from one to four) using k-nearest neighbor classifier.

  10. Nonlinear frequency response analysis of structural vibrations

    Science.gov (United States)

    Weeger, Oliver; Wever, Utz; Simeon, Bernd

    2014-12-01

    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

  11. Vibrational Based Inspection of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Rytter, Anders

    and Structural Engineering at the University of Aalborg since the beginning of 1992. Both projects have been supported by the Danish Technical Research Council. Further, the first mentioned project was supported by the Danish Energy Agency. Their financial support is gratefully acknowledged.......The thesis has been written in relation to two different research projects. Firstly, an offshore test programme, Integrated Experimental/Numerical Analysis of the Dynamic behavior of offshore structures, which was performed at the department of Building Technology and Structural Engineering...... at the University of Aalborg from 1988 to 1991. Secondly, a research project, In-Field Vibration Based Inspection of Civil Engineering Structures, which has been performed as a pilot project by the Consulting Engineers Rambøll, Hannemann and Højlund in cooperation with the department of Building Technology...

  12. Vibration health monitoring for tensegrity structures

    Science.gov (United States)

    Ashwear, Nasseradeen; Eriksson, Anders

    2017-02-01

    Tensegrities are assembly structures, getting their equilibrium from the interaction between tension in cables and compression in bars. During their service life, slacking in their cables and nearness to buckling in their bars need to be monitored to avoid a sudden collapse. This paper discusses how to design the tensegrities to make them feasible for vibrational health monitoring methods. Four topics are discussed; suitable finite elements formulation, pre-measurements analysis to find the locations of excitation and sensors for the interesting modes, the effects from some environmental conditions, and the pre-understanding of the effects from different slacking scenarios.

  13. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  14. Study on Structure Property of Cantilever Piezoelectric Vibration Generator

    National Research Council Canada - National Science Library

    Yan Zhen; He Qing; Liu Junfeng

    2014-01-01

      For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, influence rule of structure parameter to generating capacity of unimorph, bimorph in series...

  15. MECHANISM OF ORIGIN OF STRUCTURAL VIBRATIONS IN CONICAL ROLLER BEARINGS

    Directory of Open Access Journals (Sweden)

    V.І. Marchuk

    2014-09-01

    Full Text Available This paper investigates the mechanism of origin of structural, structural and technological defects of rollers. The technique for integrated indicator of vibration working surfaces of the rings to determine the level of life of the finished part to the operation as part of the bearing and predict the vibroacoustic characteristics of rolling bearings. It was established that technological defects cause low-frequency and high-frequency vibrations. The question about the extent to which it is necessary to strengthen the tolerances on the parameters of bearings on which vibration level is determined not errors bearing parts and their structural properties. Calculated values of the amplitudes vibroacceleration due to the rigidity of the bearing vibrations are so small that in some cases adopted precision calculations turned enough to detect such vibrations. Thus, when tested on the vibro-acoustic installations structural vibration does not play an important role.

  16. Structural and luminescence properties of Mn{sup 2+} ions doped calcium zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming Hua, E-mail: wanminghua819@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Wong, Poh Sum, E-mail: pohsumwong@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Hussin, Rosli, E-mail: roslihussin@utm.my [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Lintang, Hendrik O., E-mail: hendrik@ibnusina.utm.my [Catalytic Science and Technology (CST) Research Group, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Endud, Salasiah, E-mail: salasiah@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-05-15

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ({sup 4}T{sub 1g} → {sup 6}A{sub 1g}). • As the concentration of Mn{sup 2+} ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn{sup 2+} ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn{sup 2+} ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper {sup 4}T{sub 1g} → {sup 6}A{sub 1g} ground state of Mn{sup 2+} ions. As the concentration of Mn{sup 2+} ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of {sup 4}T{sub 1g} level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn{sup 2+} concentrations. From the emission characteristic parameters of {sup 6}A{sub 1g} (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices.

  17. Magnetic sensor for building structural vibrations.

    Science.gov (United States)

    García, Alfonso; Morón, Carlos; Tremps, Enrique

    2014-02-05

    This paper shows a new displacement-to-frequency transducer based on the variation of a coil inductance when a magnetic core is partially or completely inserted inside. This transducer is based on a Colpitts oscillator due its low manufacturing price, behavior and immunity to noise. A tank circuit with a configuration in parallel was used because it can be employed at lower frequencies and it enables it to make a direct analysis. The sensor has a dynamic range equal to the length of the coil. The cores can exchange sensors (coils with its ferromagnetic core) using the same electronic measuring system. In this way, with only an electronic circuit, the core sensor determines the measurement range. The obtained resolution is higher than 1/100,000, and the sensor also allows the measurement and knowing in real time the effect of vibration, thermal expansion, referred overload movements, etc.., that can occur in the structural elements of a building.

  18. Review of vibration effect during piling installation to adjacent structure

    Science.gov (United States)

    Rahman, Nurul Aishah Abd; Musir, Adhilla Ainun; Dahalan, Nurol Huda; Ghani, Abdul Naser Abdul; Khalil, Muhamad Kasimi Abd

    2017-12-01

    Basically, many major structures across the world such as towers, high rise building, houses and bridges utilize pile as a support material. The use of pile is important to strengthen the structures. However, this has led to another problem to the nearest surrounding structures resulted from pile driving. As part of a construction work, unavoidable pile driving activity generates a vibration towards the surrounding structures if uncontrolled may cause damage to the adjacent structure. As the current construction works are frequently located in urban areas where the distance between the nearest building structures is not far, vibration may cause damage to nearby structures. Knowing which part of the building that is mostly affected by various vibration patterns from the impact of pile driving is crucial. Thus, it is very important to predict the impact of vibration during piling installation work. This paper reviews the vibrations generated by piling activity toward surrounding structures in terms sources of vibration, impact of piling installation, pile-soil interaction, and factors affecting the vibration impact of building as well as to study the parameters involved in vibration generation during piling works.

  19. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  20. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    2000-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.

  1. Exploring the effect of remote substituents and solution structure on the luminescence of three lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tropiano, Manuel; Blackburn, Octavia A.; Tilney, James A.; Hill, Leila R. [Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA (United Kingdom); Just Sørensen, Thomas, E-mail: TJS@chem.ku.dk [Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA (United Kingdom); Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø (Denmark); Faulkner, Stephen, E-mail: stephen.faulkner@chem.ox.ac.uk [Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA (United Kingdom)

    2015-11-15

    Sensitized luminescence from trivalent lanthanide ions relies on an appropriate energy match between the sensitizer’s excited state (triplet or singlet) and the lanthanide excited state manifold, and also an efficient mechanism of energy transfer between the two. Here, the effect of remote substituents on the luminescence properties of a series of related lanthanide complexes has been investigated. The sensitized lanthanide centered emission is not invariably found to occur following excitation of all chromophores in all systems, and it is shown that only the most structurally congested of the systems investigated exhibited pronounced solvatochromism. - Highlights: • Effect of remote substituents and self-assembly on lanthanide luminescence. • Molecular structure rather than chromophore density defines lanthanide sensitization. • Kimura's and Horrocks' approach to determine lanthanide solvation is revisited. • Solvent alters sensitization pathways in multinuclear lanthanide complexes. • Increasing chromophore density may reduce lanthanide luminescence.

  2. Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes.

    Science.gov (United States)

    Chen, Bing; Peng, Dengfeng; Chen, Xian; Qiao, Xvsheng; Fan, Xianping; Wang, Feng

    2015-10-19

    Core-shell structured nanoparticles are increasingly used to host luminescent lanthanide ions but the structural integrity of these nanoparticles still lacks sufficient understanding. Herein, we present a new approach to detect the diffusion of dopant ions in core-shell nanostructures using luminescent lanthanide probes whose emission profile and luminescence lifetime are sensitive to the chemical environment. We show that dopant ions in solution-synthesized core-shell nanoparticles are firmly confined in the designed locations. However, annealing at certain temperatures (greater than circa 350 °C) promotes diffusion of the dopant ions and leads to degradation of the integrity of the nanoparticles. These insights into core-shell nanostructures should enhance our ability to understand and use lanthanide-doped luminescent nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Innovation in Active Vibration Control Strategy of Intelligent Structures

    Directory of Open Access Journals (Sweden)

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  4. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division

    1985-06-01

    Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling

  5. Vibrations in lightweight structures - Efficiency and reduction of numerical models

    OpenAIRE

    Flodén, Ola

    2014-01-01

    Multi-storey wood buildings have been increasing in popularity since a century-old ban on the construction of such buildings was lifted in 1994. Compared to conventional concrete structures, it is more difficult to build lightweight structures in such a way that noise and disturbing vibrations is avoided. To design buildings of high performance regarding sound and vibrations, it is desirable to have tools for predicting the effects of structural modifications prior to construction. The long-t...

  6. Guest driven structural transformation studies of a luminescent metal ...

    Indian Academy of Sciences (India)

    room temperature. Keywords. Metal-organic frameworks; coordination polymers; dynamic framework; crystal to crystal transformation; luminescence. 1. Introduction. Metal-Organic frameworks (MOFs) or porous coordi- nation polymers have drawn immense attention not only due its aesthetic architectures but also due to its.

  7. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  8. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  9. Vibration Response Characteristics of the Cross Tunnel Structure

    Directory of Open Access Journals (Sweden)

    Jinxing Lai

    2016-01-01

    Full Text Available It is well known that the tunnel structure will lose its function under the long-term repeated function of the vibration effect. A prime example is the Xi’an cross tunnel structure (CTS of Metro Line 2 and the Yongningmen tunnel, where the vibration response of the tunnel vehicle load and metro train load to the structure of shield tunnel was analyzed by applying the three-dimensional (3D dynamic finite element model. The effect of the train running was simulated by applying the time-history curves of vibration force of the track induced by wheel axles, using the fitted formulas for vehicle and train vibration load. The characteristics and the spreading rules of vibration response of metro tunnel structure were researched from the perspectives of acceleration, velocity, displacement, and stress. It was found that vehicle load only affects the metro tunnel within 14 m from the centre, and the influence decreases gradually from vault to spandrel, haunch, and springing. The high-speed driving effect of the train can be divided into the close period, the rising period, the stable period, the declining period, and the leaving period. The stress at haunch should be carefully considered. The research results presented for this case study provide theoretical support for the safety of vibration response of Metro Line 2 structure.

  10. Equilibrium structure and atomic vibrations of Nin clusters

    Science.gov (United States)

    Borisova, Svetlana D.; Rusina, Galina G.

    2017-12-01

    The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.

  11. Vibration Analysis of Structures with Rotation and Reflection Symmetry

    Directory of Open Access Journals (Sweden)

    Baojian Li

    1996-01-01

    Full Text Available The article applies group representation theory to the vibration analysis of structures with Cnv symmetry, and presents a new structural vibration analysis method. The eigenvalue problem of the whole structure is divided into much smaller subproblems by forming the mass and stiffness matrices of one substructure and than modifying them to form mass and stiffness matrices in each irreducible subspace, resulting in the saving of computer time and memory. The modal characteristics of structures with Cnv symmetry are derived from theoretical analysis. Computation and modal testing are used to verify the validity of the theoretical deductions.

  12. luminescence properties

    Indian Academy of Sciences (India)

    )-based phosphors which were synthesized by the conventional solid-state reaction method, their crystal structures and luminescence properties were investigated. X-ray diffraction patterns (XRD) showed that phosphors sintered at 1000 ◦C for ...

  13. Structure-borne sound structural vibrations and sound radiation at audio frequencies

    CERN Document Server

    Cremer, L; Petersson, Björn AT

    2005-01-01

    Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi

  14. Structure study and luminescence thermochromism in hexanuclear 6-methyl-2-pyridinethiolato copper(I) crystals.

    Science.gov (United States)

    Xie, Haiyan; Kinoshita, Isamu; Karasawa, Tsutomu; Kimura, Kentarou; Nishioka, Takanori; Akai, Ichiro; Kanemoto, Katsuichi

    2005-05-19

    The structure of hexanuclear 6-methyl-2-pyridinethiolato copper(I) [Cu6(6-mpyt)(6)] crystals has been studied by the X-ray diffraction analysis. These crystals show highly efficient luminescence whose color changes drastically from red to green-blue with lowering temperature from room temperature (RT) to liquid nitrogen temperature (LNT). This is a new example of luminescence thermochromism for hexanuclear copper(I) cluster compounds. Two relaxed luminescence bands appear predominantly: one (CC-band), red luminescence appearing in the lower-energy region around 1.8 eV at higher temperature, is assigned to the transition between intramolecular orbitals (MO) of a Cu cluster center (CC), and the other (CT-band), green-blue luminescence appearing at the higher energy side of 2.6 eV than the CC-band at lower temperature, is assigned to a charge transfer (CT) transition from the CC-MO to a ligand MO. Additionally, the CT band can be deconvoluted to two subbands CT(L) and CT(H). The intensities of the CC- and the CT-bands change complementarily with temperature via a thermal activation process, giving the thermochromism. All of these band shapes can be fitted by a Gaussian function, and their widths are fairly large obeying the hyperbolic cotangent law. These features reflect our system to be a strong electron-lattice coupling one. The relaxation process of the photoexcited states is discussed in terms of a configuration coordinate model.

  15. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...

  16. Effect of structural design on traffic-induced building vibrations

    DEFF Research Database (Denmark)

    Persson, Peter; Andersen, Lars Vabbersgaard; Persson, Kent

    2017-01-01

    are related to the type of construction material (if it would be a light or heavy structure), and to the slab thickness. The finite element method is employed for discretizing the building structure that is coupled to a semi-analytical model considering a layered ground. © 2017 The Authors. Published......Population growth and urbanization results in densified cities, where new buildings are being built closer to existing vibration sources such as road-, tram- and rail traffic. In addition, new transportation systems are constructed closer to existing buildings. Potential disturbing vibrations...... properties, and type and size of the building are governing factors. In the paper, a study is presented aiming at investigating the influence of various parameters of the building's structural design on vibration levels in the structure caused by ground surface loads, e.g. traffic. Parameters studied...

  17. Efficiency of Nearly Periodic Structures for Mitigation of Ground Vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Peplow, Andrew; Bucinskas, Paulius

    2017-01-01

    be introduced by periodic inclusions or changes to the ground surface geometry. However, for vibration mitigation in the context of real civil-engineering problems related to ground-borne noise from railways, for example, the excitation is not strictly harmonic and a steady state of the response is usually......Periodic structures are known to produce passbands and stopbands for propagation of vibration energy within the frequency domain. Sources vibrating harmonically at a frequency within a passband can lead to propagation of energy through propagating modes over long distances. However, sources...... vibrating at a frequency within a stopband excite only nearfields in the form of attenuating and evanescent modes, and the energy decays with distance. The decay phenomena are due to destructive interference of waves reflected and scattered by interfaces or obstacles placed periodically within or between...

  18. Evaluation of blast-induced vibration effects on structures 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-31

    Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.

  19. Synthesis, crystal structure and photo luminescent property of a 3D ...

    Indian Academy of Sciences (India)

    661–666. c Indian Academy of Sciences. Synthesis, crystal structure and photo luminescent property of a 3D metal-organic hybrid of Cd(II) constructed by two different bridging carboxylate. BISWAJIT BHATTACHARYA, RAJDIP DEY and DEBAJYOTI GHOSHAL. ∗. Department of Chemistry, Jadavpur University, Jadavpur, ...

  20. Synthesis, crystal structure and photo luminescent property of a 3D ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 3. Synthesis, crystal structure and photo luminescent property of a 3D metal-organic hybrid of Cd(II) constructed by two different bridging carboxylate. Biswajit Bhattacharya Rajdip Dey Debajyoti Ghoshal. Volume 125 Issue 3 May 2013 pp 661-666 ...

  1. Damage to surface structures due to blast vibration

    Energy Technology Data Exchange (ETDEWEB)

    P.K. Singh; M.P. Roya [Central Institute of Mining and Fuel Research, Dhanbad (India). Blasting Research Group

    2010-09-15

    This paper describes effect of blast produced ground vibration on damage potential to residential structures to determine safe levels of ground vibration for the residential structures and other buildings in mining areas. Impacts of 341 blasts detonated at two mines were monitored at the test structures and 1871 blast vibrations signatures were recorded on or near the test structures. Cosmetic cracks in a native brick-mud-cement house were detected at peak particle velocities (PPV) between 51.6 and 56.3 mm/s. The reinforced concrete and cement mortar (RCC) structure experienced cosmetic cracks at PPVs of 68.6-71.3 mm/s at the first floor, whereas at second floor it was detected at PPV levels of 71.2-72.2 mm/s. Minor damage in brick-mud-cement house was recorded at PPV levels of 81.0-89.7 mm/s. The RCC structure at first and second floors experienced minor damage at PPV levels of 104 and 98.3-118 mm/s, respectively. The brick-mud-cement house experienced major damage at PPV level of 99.6-113.0 mm/s, while major damage was recorded in RCC structure on first floor at PPV of 122 mm/s, the second floor at PPV levels of 128.9-161 mm/s. Recommended threshold limits of vibrations for the different type of structures is based on these measurements and observations.

  2. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Schiphorst, F.B.A.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  3. DESIGN OF VIBRATION AND NOISE CONTROL SYSTEM FOR FLEXIBLE STRUCTURES

    Directory of Open Access Journals (Sweden)

    В. Макаренко

    2012-04-01

    Full Text Available In the article the control system is created, which is able to reduce steady-state vibration response of thinwalled flexible structure in the wide band of low frequencies. It is supposed, that the flexible structure is subject to external harmonic force with variable frequencies, and parameters of that force are available for the usage by the control system. The control system is based on pattern search algorithm and suggestion about the dependence of signal, which is formed by the control system, from the steady-state vibration response of the flexible structure. Developed software allows to use pattern search algorithm as the control system for plate vibration in real-time. The influence on control system operation of signal delay of executive device of compensating path and transition process after the change of control signal parameters is done by the usage of the additional idle time. During idle time the control signal is supported. It has parameters that have taken place before the beginning of idle mode. Step reset option for resuming of search after the long-term steady-state vibration of flexible structure do not derange control system operation, because step change take place only after polling cycle termination. The efficiency of proposed system is illustrated experimentally on the example of clamped plate. Experimental results analysis showed the necessity of multiple compensating devices application for vibration reduction in wide frequency range.

  4. Synthesis, vibrational characteristic and luminescence properties of Er3+in HNH4ErP3O10

    Science.gov (United States)

    Chékir-Mzali, Jalila; Elgharbi, Sarra; Horchani-Naifer, Karima; Férid, Mokhtar

    2017-11-01

    Polycrystalline powders of the triphosphate of ammonium hydrogen and erbium NH4ErHP3O10 are grown by flux method. The obtained sample was characterized by X-Ray Diffraction, Infrared and Raman spectroscopies. It was found that this compound is isostructural with NH4BiHP3O10. It crystallizes in the triclinic system, with space group P-1. The spectroscopic properties have been investigated in the UV-Vis and IR region via absorption, excitation, and emission spectra at room temperature. Also, the particle size distribution was investigated and the average crystallite size of HNH4ErP3O10 was 124.08 nm. The optical band gap energy (Eg ≈ 4.24 eV) was calculated from the diffuse reflectance by using the Kubelka-Munk function and Tauc's relation. The time-resolved luminescence of 4F9/2 emission has also been studied. The decay time was shown to be exponential with a pure radiative transition and the lifetime value for the transition 4F9/2 → 4I15/2 is found equal to 15, 4 μs. The effects of the crystal structure, NH4+ and OH groups on the lifetime have been revealed. The CIE chromaticity coordinates reveal that this phosphor can be a promising Yellow-orange emitting material.

  5. Optimal Vibration Control of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Thesbjerg, Leo

    In designing large civil engineering structures, an important consideration is prospective dynamic loadings which may include earthquake ground motion, wind gusts, severe sea states and moving vehicles, rotating and reciprocating machinery and others. successful design of such structures requires...

  6. Vibration control of active structures an introduction

    CERN Document Server

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  7. Modelling flow-induced vibrations of gates in hydraulic structures

    NARCIS (Netherlands)

    Erdbrink, C.D.

    2014-01-01

    The dynamic behaviour of gates in hydraulic structures caused by passing flow poses a potential threat to flood protection. Complex interactions between the turbulent flow and the suspended gate body may induce undesired vibrations. This thesis contributes to a better understanding and prevention of

  8. Formula for Forced Vibration Analysis of Structures Using Static ...

    African Journals Online (AJOL)

    This Paper proposed and examined a formula for forced vibration analysis of structures using static factored response as equivalent dynamic response. Some methods of dynamic analysis are based on using static factored response as equivalent dynamic response thereby excluding the formulation of the equations of ...

  9. Prediction of Vibration Transmission within Periodic Bar Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2012-01-01

    The present analysis focuses on vibration transmission within semi-infinite bar structure. The bar is consisting of two different materials in a periodic manner. A periodic bar model is generated using two various methods: The Finite Element method (FEM) and a Floquet theory approach. A parameter...

  10. Effect of curvature on structures and vibrations of zigzag carbon ...

    Indian Academy of Sciences (India)

    First-principles pseudopotential-based density functional theory calculations of atomic and electronic structures, full phonon dispersions and thermal properties of zigzag single wall carbon nanotubes (SWCNTs) are presented. By determining the correlation between vibrational modes of a graphene sheet and of the ...

  11. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  12. Vibrational spectra and normal coordinate analysis on structure of ...

    Indian Academy of Sciences (India)

    journal of. December 2008 physics pp. 1291–1300. Vibrational spectra and normal coordinate analysis on structure of chlorambucil and thioguanine. S GUNASEKARAN1, S KUMARESAN2,∗, ... methoprexate are most effective in the treatment of leukemia [5–10] in children. Thioguanine interferes with the conversion of ...

  13. Numerical analysis of free vibrations of damped rotating structures

    Science.gov (United States)

    Gupta, K. K.

    1977-01-01

    This paper is concerned with the efficient numerical solution of damped and undamped free vibration problems of rotating structures. While structural discretization is achieved by the finite element method, the associated eigenproblem solution is effected by a combined Sturm sequence and inverse iteration technique that enables the computation of a few required roots only without having to compute any other. For structures of complex configurations, a modal synthesis technique is also presented, which is based on appropriate combinations of eigenproblem solution of various structural components. Such numerical procedures are general in nature, which fully exploit matrix sparsity inherent in finite element discretizations, and prove to be most efficient for the vibration analysis of any damped rotating structure, such as rotating machineries, helicopter and turbine blades, spinning space stations, among others.

  14. Passive and Active Vibration Control of Renewable Energy Structures

    DEFF Research Database (Denmark)

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed...

  15. The ABRAVIBE toolbox for teaching vibration analysis and structural dynamics

    DEFF Research Database (Denmark)

    Brandt, A.

    2013-01-01

    Vibration analysis is a subject where students often find it hard to comprehend the fundamental theory. The fact that we have, in general, almost no intuition for dynamic phenomena, means that students need to explore various dynamic phenomena in order to grasp the subject. For this reason......, a MATLAB toolbox (the ABRAVIBE toolbox) has been developed as an accompanying toolbox for the recent book "Noise and Vibration Analysis" by the author. This free, open software, published under GNU Public License, can be used with GNU Octave, if an entirely free software platform is wanted, with a few......). In this paper, an overview of the functionality is given and recommended use in teaching is discussed. It is also shown how the toolbox can be used for general vibration analysis using data from multichannel measurements. Finally, some laboratory exercises for structural dynamics teaching are discussed...

  16. A data driven control method for structure vibration suppression

    Science.gov (United States)

    Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei

    2018-02-01

    High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.

  17. Rotorcraft airframe structural optimization for combined vibration and fatigue constraints

    Science.gov (United States)

    Sareen, Ashish K.; Schrage, Daniel P.; Murthy, T. S.

    1991-01-01

    This paper addresses the application of a formal optimization technique in rotorcraft airframe structural design studies to reduce the structural weight, to lower airframe vibrations, and to enhance fatigue life of the structure. Vibration and fatigue considerations in airframe design are described. An optimization methodology based on the use of a nonlinear programming technique to size airframe structural members subjected to constraints on weight, vibration response and fatigue stresses under dynamic loads, are described. The paper focuses on the development of necessary computational tools for airframe structural optimization and describes the sensitivity analysis procedure for these types of design constraints. Further, the paper describes the optimization procedure as implemented in a computer code called DYNOPT which is a unique operational combination of several newly developed Fortran codes as well as modification of existing codes consisting of the direct matrix abstraction modules of the MSC/NASTRAN Program and CONMIN optimizer. The application of the optimization procedure is demonstrated using an elastic-line model of the Bell AH-1G helicopter airframe structure and computational results are discussed.

  18. Structural changes in high-temperature synthesis of luminescent alumina ceramics

    Science.gov (United States)

    Zvonarev, S. V.; Kortov, V. S.; Ryabinina, M. V.; Kiryakov, A. N.

    2016-08-01

    Scanning electron microscopy was used to study structural changes in luminescent alumina ceramics which was synthesized from nanopowder at high temperatures in reducing environment. An effect of synthesis parameters on size-distribution of grains, their shape and a number of pores in the samples under study was determined. It was found that in a certain temperature range grains are the same ones in the precursor nanopowder, which is associated with the emergence of nanoparticles of lower aluminum oxides.

  19. Investigation of structure and vibrational properties of cyclobutane pirimidine dimer

    Directory of Open Access Journals (Sweden)

    Petković Milena M.

    2013-01-01

    Full Text Available We performed a theoretical analysis of the structure and vibrational properties of cyclobutane pyrimidine dimer, which is the main product in a photochemical reaction involving two molecules of 1-methylthymine. Thymine is a pyrimidine base that has the highest yield of the dimerization photoproducts. Methylation in position one was chosen because in this position thymine is linked to sugar in DNA. The calculations were performed at the B3LYP/cc-pVTZ level with a Gaussian program package. All molecular geometries were optimized without symmetry constraints in vacuum and D2O. Vibrational frequencies were calculated in the harmonic approximation. It was shown that there are two stable isomers, CPD(cis-syn and CPD(trans-syn. CPD(trans-syn is more stable both in vacuum and in D2O. By dissolving these molecules in D2O, both structures become more stable, although the stabilization of the less stable isomer is more pronounced due to its larger dipole moment. Thus, the difference in stability of the two isomers in D2O is almost two times lower than in vacuum. Because of the similarity of the two isomers’ structures, the difference in their vibrational spectra is not pronounced. Within the harmonic approximation, there is only a slight difference in the C=O and C-H stretching region. The difference in the N-H stretching region is more pronounced; in the CPD(cis-syn molecule the two bonds vibrate separately, whereas in the CPD(trans-syn the two modes couple, and this coupling results in symmetric and asymmetric N-H stretching. The observation shows that a slight difference in geometry can be reflected in the shape of the infrared spectra. A more detailed analysis of the vibrational properties would involve computation of anharmonic coupling terms, which would enable a more precise determination of the peak positions.

  20. Assements of Level of Comfort on a Vibrating Structure

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2008-01-01

    The serviceability limit state of structures is subject to increasing attention. Flooring-systems may encounter vertical vibrations that may be perceived as annoying by stationary persons sitting or standing on the structure. This can happen on office floors, on grand stands etc. where humans...... in motion (for instance people walking or jumping) can bring the structure into vibration. The paper looks into human perception of decaying oscillations of floors by doing experiments with a test floor with stationary humans atop. An impulsive load is directed to the floor, and after the decay, the persons...... on the floor are asked to rate the level of discomfort on a scale from 1 to 10, and to assess the size of floor displacement (the initial amplitude of the decay). Tests are carried out with different numbers of people present on the test floor, and with different initial amplitudes of the decay. The paper...

  1. Molecular structure, vibrational spectroscopic studies and natural ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 74; Issue 5. Molecular structure ... The entropy of the title compound was also performed at HF using the hybrid functional BLYP and B3LYP with 6-31 G(d,p) as basis set levels of theory. Natural bond orbital (NBO) analysis of the title molecule is also carried out.

  2. 14th International Conference on Acoustics and Vibration of Mechanical Structures

    CERN Document Server

    Marinca, Vasile

    2018-01-01

    This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.

  3. Free vibration analysis of spinning flexible space structures

    Science.gov (United States)

    Gupta, K. K.

    1976-01-01

    Efficient computation of natural frequencies and associated free vibration modes of spinning flexible structures is required to accurately determine the nature of interaction between the flexible structure and the attitude control system, which is vital in relating control torques to attitude angles. While structural discretization is effected by the finite element method, the resulting eigenvalue problem is solved by a combined Sturm sequence and inverse iteration procedure that yields a few specified roots and associated vectors. An eigenvalue procedure, based on a simultaneous iteration technique, provides efficient computation of the first few roots and vectors; a modal synthesis procedure proves to be useful for eigenproblem solutions of unusual structures such as spacecraft.

  4. Free vibration analysis of spinning structural systems.

    Science.gov (United States)

    Gupta, K. K.

    1973-01-01

    This article presents an efficient digital computer procedure, along with the complete listing of the associated computer program, which may be conveniently utilized for the accurate solution of a wide range of practical eigenvalue problems. Important applications of the present work are envisaged in the natural frequency analysis of spinning structures discretized by the finite element technique, and in the determination of transfer functions associated with the dynamic blocks of control systems of spacecraft utilizing gas jets or reaction wheels for attitude control, as well as of spin-stabilized and dual-spin-stabilized satellites. The validity of the Sturm sequence property is first established for the related matrix formulation involving Hermitian and real symmetric, positive-definite matrices, both being usually of highly banded configuration. A numerically stable algorithm based on the Sturm sequence method is then developed which fully exploits the banded form of the associated matrices.

  5. Luminescence and Structure of ZnO Grown by Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    R. García-Gutiérrez

    2012-01-01

    Full Text Available Nanostructured ZnO was deposited on different substrates (Si, SiO2, and Au/SiO2 by an enhanced physical vapor deposition technique that presents excellent luminescent properties. This technique consists in a horizontal quartz tube reactor that uses ultra-high purity Zn and UHP oxygen as precursors. The morphology and structure of ZnO grown in this work were studied by electron microscopy and X-ray diffraction. The XRD patterns revealed the highly crystalline phase of wurtzite polycrystalline structure, with a preferred (1011 growth direction. Room temperature cathodoluminescence studies revealed two features in the luminescence properties of the ZnO obtained by this technique, first a high-intensity narrow peak centered at 390 nm (~3.2 eV corresponding to a near band-to-band emission, and secondly, a broad peak centered around 517 nm (2.4 eV, the typical green-yellow luminescence, related to an unintentionally doped ZnO.

  6. Vibrations of structurally orthotropic laminated shells under thermal power loading

    Science.gov (United States)

    Kogan, E. A.; Lopanitsyn, E. A.

    2017-05-01

    On the basis of the linearized version of equations obtained in a geometrically nonlinear statement and describing the nonaxisymmetric strain of nonshallow sandwich structure orthotropic shells under thermal power loading, the Rayleigh-Ritz method with polynomial approximation of displacements and shear strains is used to solve the problem of small free vibrations of axisymmetrically thermally preloaded freely supported three-layer conical shell. The causes of dynamical fracture of the shell under study are revealed.

  7. Origin of luminescence quenching in structures containing CdSe/ZnSe quantum dots with a few Mn2 + ions

    Science.gov (United States)

    Oreszczuk, K.; Goryca, M.; Pacuski, W.; Smoleński, T.; Nawrocki, M.; Kossacki, P.

    2017-11-01

    We present a detailed spectroscopic study of photoluminescence quenching in epitaxial structures containing CdSe/ZnSe quantum dots doped with low concentration of Mn2 + ions. Our time-resolved and time-integrated experiments reveal the origin of the quenching observed in macro-photoluminescence studies of ensembles of such dots. We show that incorporation of even a few ions to an individual dot does not quench its luminescence effectively, although some fingerprints of expected spin-dependent quenching are visible. At the same time, the presence of Mn2 + ions in the sample significantly affects the luminescence intensity of the wetting layer, resulting in a quenching of the global luminescence from studied structure. On the other hand, the luminescence decay dynamics are found to be independent of the presence of Mn2 + ions, which suggests that the observed quenching occurs for the excited excitonic states.

  8. Vibration modeling of structural fuzzy with continuous boundary

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    From experiments it is well known that the vibration response of a main structure with many attached substructures often shows more damping than structural losses in the components can account for. In practice, these substructures, which are not attached in an entirely rigid manner, behave like...... effect of the fuzzy with spatial memory is demonstrated by numerical simulations of a main beam structure with fuzzy attachments. It is shown that the introduction of spatial memory reduces the damping effect of the fuzzy and in certain cases the damping effect may even be eliminated completely....

  9. Vibrational spectroscopic and structural investigations on fullerene: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2016-05-06

    The molecular structure of fullerene (C{sub 60}) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electron affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.

  10. Minimization of the Vibration Energy of Thin-Plate Structures and the Application to the Reduction of Gearbox Vibration

    Science.gov (United States)

    Inoue, Katsumi; Krantz, Timothy L.

    1995-01-01

    While the vibration analysis of gear systems has been developed, a systematic approach to the reduction of gearbox vibration has been lacking. The technique of reducing vibration by shifting natural frequencies is proposed here for gearboxes and other thin-plate structures using the theories of finite elements, modal analysis, and optimization. A triangular shell element with 18 degrees of freedom is developed for structural and dynamic analysis. To optimize, the overall vibration energy is adopted as the objective function to be minimized at the excitation frequency by varying the design variable (element thickness) under the constraint of overall constant weight. Modal analysis is used to determine the sensitivity of the vibration energy as a function of the eigenvalues and eigenvectors. The optimum design is found by the gradient projection method and a unidimensional search procedure. By applying the computer code to design problems for beams and plates, it was verified that the proposed method is effective in reducing vibration energy. The computer code is also applied to redesign the NASA Lewis gear noise rig test gearbox housing. As one example, only the shape of the top plate is varied, and the vibration energy levels of all the surfaces are reduced, yielding an overall reduction of 1/5 compared to the initial design. As a second example, the shapes of the top and two side plates are varied to yield an overall reduction in vibration energy of 1/30.

  11. Luminescence of defects in the structural transformation of layered tin dichalcogenides

    Science.gov (United States)

    Sutter, P.; Komsa, H.-P.; Krasheninnikov, A. V.; Huang, Y.; Sutter, E.

    2017-12-01

    Layered tin sulfide semiconductors are both of fundamental interest and attractive for energy conversion applications. Sn sulfides crystallize in several stable bulk phases with different Sn:S ratios (SnS2, Sn2S3, and SnS), which can transform into phases with a lower sulfur concentration by introduction of sulfur vacancies (VS). How this complex behavior affects the optoelectronic properties remains largely unknown but is of key importance for understanding light-matter interactions in this family of layered materials. Here, we use the capability to induce VS and drive a transformation between few-layer SnS2 and SnS by electron beam irradiation, combined with in-situ cathodoluminescence spectroscopy and ab-initio calculations to probe the role of defects in the luminescence of these materials. In addition to the characteristic band-edge emission of the endpoint structures, our results show emerging luminescence features accompanying the SnS2 to SnS transformation. Comparison with calculations indicates that the most prominent emission in SnS2 with sulfur vacancies is not due to luminescence from a defect level but involves recombination of excitons bound to neutral VS in SnS2. These findings provide insight into the intrinsic and defect-related optoelectronic properties of Sn chalcogenide semiconductors.

  12. Interpretation of the effect of dielectric spacer on the ZnO/Ag structure luminescence intensity

    Science.gov (United States)

    Tarasov, A. P.; Rumyantsev, S. I.; Briskina, Ch. M.; Ryzhkov, M. V.; Markushev, V. M.; Lotin, A. A.

    2016-04-01

    For the analysis of ZnO luminescence and the influence of surface plasmon resonance (SPR) on it the simplified approach is proposed. This approach is based on the set of rate equations (SRE), which describes processes taking part in the luminescence. The SRE includes the set of parameters that describe processes determining luminescence of an investigated sample. The proposed approach gives an opportunity for modeling the dependence of radiation intensity on pumping level and to estimate the values of parameters in SRE. As a result it is possible to make conclusions about peculiarities of samples and investigated processes. A number of experimental facts can be explained using this SRE, in particular the proposed approach was applied to consideration of insulating spacer role in ZnO/Ag system. It was shown that it is possible to interpret experimental results using SRE where values of some parameters depend on the spacer thickness. The proposed approach can be applied not only to ZnO-based structures but also to other emitters.

  13. Syntheses, structures and luminescence behaviour of some zinc (II ...

    Indian Academy of Sciences (India)

    In the crystalline state, mononuclear units in 1 are engaged in weak cooperative intermolecular O-H⋯O and C-H⋯F hydrogen bonds affording a 1D chain. The individual units of 2 are packed by ⋯ and anion⋯ interactions to form a 2D sheet structure. The complexes show reasonable thermal stabilities and display ...

  14. NASTRAN nonlinear vibration analysis of beam and frame structures

    Science.gov (United States)

    Mei, C.; Rogers, J. L., Jr.

    1975-01-01

    A capability for the nonlinear vibration analysis of beam and frame structures suitable for use with NASTRAN level 15.5 is described. The nonlinearity considered is due to the presence of axial loads induced by longitudinal end restraints and lateral displacements that are large compared to the beam height. A brief discussion is included of the mathematical analysis and the geometrical stiffness matrix for a prismatic beam (BAR) element. Also included are a brief discussion of the equivalent linearization iterative process used to determine the nonlinear frequency, the required modifications to subroutines DBAR and XMPLBD of the NASTRAN code, and the appropriate vibration capability, four example problems are presented. Comparisons with existing experimental and analytical results show that excellent accuracy is achieved with NASTRAN in all cases.

  15. Numerical Analysis of Vibrations of Structures under Moving Inertial Load

    CERN Document Server

    Bajer, Czeslaw I

    2012-01-01

    Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...

  16. Synthesis, structural, photoluminescence, vibrational and DFT investigation of the bis (4-aminopyridinium) tetrachloridocuprate(II) monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kessentini, A., E-mail: kessentiniabir@gmail.com [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Belhouchet, M. [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Suñol, J.J. [Departamento De Fisica, Universita de Girona, Compus Montilivi, Girona 17071 (Spain); Abid, Y. [Laboratoire de Physique appliquée, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Mhiri, T. [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia)

    2014-05-01

    The crystals of the family of alkylammonuim tetrachloridocuprate (II), (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O, have been grown, structurally characterized and their vibrational as well as optical properties been studied. A preliminary single crystal X-ray diffraction structural analysis has revealed that the title compound belongs to the monoclinic system with space group C2/c. Its unit cell dimensions are: a=8.454 (2) Å, b=14.279 (2) Å, c=14.363 (3) Å, β=95.813 (4)°, with Z=4 and its crystal structure was determined and refined down to R{sub 1}=0.029 and wR{sub 2}=0.080. The crystal lattice is composed of discrete [CuCl{sub 4}]{sup 2−} tetrahedra surrounded by 4-aminopyridinium cations and water molecules which are interconnected by means of hydrogen bonding contacts [N–H…Cl, O–H…Cl and N–H…O]. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed. The optimized molecular structure and the vibrational spectra were calculated by the density functional theory (DFT) method using the B3LYP function. The organic–inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O perovskite and it showed characteristic absorptions of CuCl-based layered perovskite centered at 288 and 400 nm, as well as the photoluminescence peak at around 443 nm. The unaided-eye-detectable blue luminescence emission comes from the excitonic transition in the CuCl{sub 4} anions. - Highlights: • A new hybrid compound (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O was synthesized. • Vibrational properties were studied by IR and Raman spectroscopy and examined theoretically using the DFT/B3LYP/LanL2DZ level of theory. • The UV–vis spectrum shows two absorption peaks at 288 and at 400 nm. • This compound show a strong blue emission at 443 nm.

  17. Stabilizing Optical Path Length On A Vibrating Structure

    Science.gov (United States)

    Spanos, John T.; Rahman, Zahidul H.

    1995-01-01

    Prototype apparatus constructed to test feasibility of feedback control concept for stabilization of length of optical path between two points on vibrating flexible structure. In original intended application, structure is truss having dimensions of order of meters and supports optical components of stellar interferometer. Interferometry and feedback control reduce path-length disturbances. Some aspects of present feedback control concept and prototype apparatus described in "Controllable Optical Delay Line for Stellar Interferometry" (NPO-18686), and "Test Bed for Control of Optical-Path Lengths" (NPO-18487).

  18. Feasibility of structural monitoring with vibration powered sensors

    Science.gov (United States)

    Elvin, Niell G.; Lajnef, Nizar; Elvin, Alex A.

    2006-08-01

    Wireless sensors and sensor networks are beginning to be used to monitor structures. In general, the longevity, and hence the efficacy, of these sensors are severely limited by their stored power. The ability to convert abundant ambient energy into electric power would eliminate the problem of drained electrical supply, and would allow indefinite monitoring. This paper focuses on vibration in civil engineering structures as a source of ambient energy; the key question is can sufficient energy be produced from vibrations? Earthquake, wind and traffic loads are used as realistic sources of vibration. The theoretical maximum energy levels that can be extracted from these dynamic loads are computed. The same dynamic loads are applied to a piezoelectric generator; the energy is measured experimentally and computed using a mathematical model. The collected energy levels are compared to the energy requirements of various electronic subsystems in a wireless sensor. For a 5 cm3 sensor node (the volume of a typical concrete stone), it is found that only extreme events such as earthquakes can provide sufficient energy to power wireless sensors consisting of modern electronic chips. The results show that the optimal generated electrical power increases approximately linearly with increasing sensor mass. With current technology, it would be possible to self-power a sensor node with a mass between 100 and 1000 g for a bridge under traffic load. Lowering the energy consumption of electronic components is an ongoing research effort. It is likely that, as electronics becomes more efficient in the future, it will be possible to power a wireless sensor node by harvesting vibrations from a volume generator smaller than 5 cm3.

  19. Structure and luminescence of Dy{sup 3+} doped CaO–B{sub 2}O{sub 3}–SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yan; Cao, Ju

    2016-07-15

    The present work reports structure and luminescence of Dy{sup 3+} doped CaO–B{sub 2}O{sub 3}–SiO{sub 2} glasses prepared by melt quenching technique. The presence of various stretching and bending vibrations of different borate and silicate groups were identified from FTIR spectral measurements. The optical absorption and luminescence spectra were also measured, and their emission spectra exhibit two intense emission bands at around 485 nm (blue) and 577 nm (yellow) corresponds to {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions, respectively. The emission spectra were characterized through CIE 1931 color chromaticity diagram to explore its suitability for W-LED applications. Furthermore, the proper Y{sub 2}O{sub 3} could change local structure of glass, which makes the UV absorption edge shift to longer wavelength, and it's easier to transfer energy from host to Dy{sup 3+} and then enhance the emission of Dy{sup 3+}.

  20. Hydrothermal chemistry, structures, and luminescence studies of alkali hafnium fluorides.

    Science.gov (United States)

    Underwood, Christopher C; McMillen, Colin D; Chen, Hongyu; Anker, Jeffery N; Kolis, Joseph W

    2013-01-07

    This paper describes the hydrothermal chemistry of alkali hafnium fluorides, including the synthesis and structural characterization of five new alkali hafnium fluorides. Two ternary alkali hafnium fluorides are described: Li(2)HfF(6) in space group P31m with a = 4.9748(7) Å and c = 4.6449(9) Å and Na(5)Hf(2)F(13) in space group C2/m with a = 11.627(2) Å, b = 5.5159(11) Å, and c = 8.4317(17) Å. Three new alkali hafnium oxyfluorides are also described: two fluoroelpasolites, K(3)HfOF(5) and (NH(4))(3)HfOF(5), in space group Fm3m with a = 8.9766(10) and 9.4144(11) Å, respectively, and K(2)Hf(3)OF(12) in space group R3m with a = 7.6486(11) Å and c = 28.802(6) Å. Infrared (IR) spectra were obtained for the title solids to confirm the structure solutions. Comparison of these materials was made based on their structures and synthesis conditions. The formation of these species in hydrothermal fluids appears to be dependent upon both the concentration of the alkali fluoride mineralizer solution and the reaction temperature. Both X-ray and visible fluorescence studies were conducted on compounds synthesized in this study and showed that fluorescence was affected by a variety of factors, such as alkali metal size, the presence/absence of oxygen in the compound, and the coordination environment of Hf(4+).

  1. Passive vibration control: a structure-immittance approach

    Science.gov (United States)

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A.

    2017-05-01

    Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.

  2. Energy harvesting from structural vibrations of magnetic shape memory alloys

    Science.gov (United States)

    Farsangi, Mohammad Amin Askari; Cottone, Francesco; Sayyaadi, Hassan; Zakerzadeh, Mohammad Reza; Orfei, Francesco; Gammaitoni, Luca

    2017-03-01

    This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating voltage in a vibrating MSMA. In particular, 15 μW power is harvested for acceleration of 0.3 g RMS at a frequency of 19.1 Hz, which is comparable with piezoelectric energy harvesters. It is also found that the optimum bias magnetic field for maximum voltage is lower than the starting field of pseudo elastic behavior.

  3. Vibration Based Methods For Damage Detection In Structures

    Directory of Open Access Journals (Sweden)

    Manoach E.

    2016-01-01

    Full Text Available Vibration based damage detection methods are among the most popular and promising approaches for health monitoring of structures. In this work a critical review of different methods for damage detection methods of structures is presented. The theoretical bases of the most popular methods based on the changes in the modal properties of the structures are deduced. The review includes the modal displacements, the mode shape slopes, the modal curvatures and the strain energy methods. The efficiency of all these methods is compared by using a finite element analysis of intact and damaged beams. The methods are tested experimentally by using a scanning laser vibrometer to measure the modal properties of specially prepared composite beams with defects. All this methods are compared with the damage detection method based on the analysis of the Poincaré maps of the motion of the structures. Conclusions concerning the advantages and the applicability of the considered methods are deduced.

  4. Assembly and luminescence properties of lanthanide-polyoxometalates/polyethyleneimine/SiO{sub 2} particles with core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: junwang924@yahoo.com.cn; Fan, Shaohua; Zhao, Weiqian; Zhang, Hongyan

    2013-01-01

    In this paper, two lanthanide-polyoxometalate (LnW{sub 10}) complexes were bonded on the surface of the polyethyleneimine (PEI)-modified silica nanoparticles with different sizes, resulting in the formation of LnW{sub 10}/PEI/SiO{sub 2} particles. The hybrid core–shell particles were characterized by infrared, luminescent spectra, scanning electronic microscope, and transmission electronic microscope. The particles obtained exhibit the fine spherical core–shell structure and the excellent luminescence properties. The luminescence spectra studies revealed that the formation of LnW{sub 10}/PEI/SiO{sub 2} particles and the size of particle have an influence on the luminescence properties of lanthanide ions. - Highlights: ► SiO{sub 2}/polyethyleneimine (PEI) shows the chemisorption for Ln-polyoxometalates (LnW{sub 10}). ► The core-shell LnW{sub 10}/PEI/SiO{sub 2} nanoparticles with different sizes were fabricated. ► The hybrid particles exhibit the excellent luminescence properties. ► The sizes of particles affect the luminescence properties of lanthanide ions.

  5. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  6. Active Vibration Control of a Monopile Offshore Structure

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1999-01-01

    of the fluid velocity relative to the platform, and only this quantity need to be measured, which is easily performed by a flow meter fixed to the platform. The efficiency of the described closed loop control system has been verified by model tests in a wave flume in both regular and irregular wave conditions......In the Danish part of the North Sea monopile platforms with a cylindrical shaft have been used at the exploitation of marginal fields. In the paper a new principle for active vibration control of such structures is suggested. The principle is based on a control of the boundary layer flow around...

  7. Semi-decentralized Strategies in Structural Vibration Control

    Directory of Open Access Journals (Sweden)

    F. Palacios-Quiñonero

    2011-04-01

    Full Text Available In this work, the main ideas involved in the design of overlapping and multi-overlapping controllers via the Inclusion Principle are discussed and illustrated in the context of the Structural Vibration Control of tall buildings under seismic excitation. A detailed theoretical background on the Inclusion Principle and the design of overlapping controllers is provided. Overlapping and multi-overlapping LQR controllers are designed for a simplified five-story building model. Numerical simulations are conducted to asses the performance of the proposed semi-decentralized controllers with positive results.

  8. Harvesting Energy from Vibrations of the Underlying Structure

    DEFF Research Database (Denmark)

    Han, Bo; Vssilaras, S; Papadias, C.B.

    2013-01-01

    The use of wireless sensors for structural health monitoring offers several advantages such as small size, easy installation and minimal intervention on existing structures. However the most significant concern about such wireless sensors is the lifetime of the system, which depends heavily on th...... an improved Maximum Power Point Tracking technique on the conversion circuit, the proposed method is shown to maximize the conversion coefficient from kinetic energy to applicable electrical energy....... emerges as a technique that can harvest energy from the surrounding environment. Among all possible energy harvesting solutions, kinetic energy harvesting seems to be the most convenient, especially for sensors placed on structures that experience regular vibrations. Such micro-vibrations can be harmful...... on the type of power supply. No matter how energy efficient the operation of a battery operated sensor is, the energy of the battery will be exhausted at some point. In order to achieve a virtually unlimited lifetime, the sensor node should be able to recharge its battery in an easy way. Energy harvesting...

  9. Vibration control of a flexible structure with electromagnetic actuators

    DEFF Research Database (Denmark)

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  10. Control of noise and structural vibration a MATLAB-based approach

    CERN Document Server

    Mao, Qibo

    2013-01-01

    Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...

  11. Effect of Partial Crystallization on the Structural and Luminescence Properties of Er(3+)-Doped Phosphate Glasses.

    Science.gov (United States)

    Lopez-Iscoa, Pablo; Salminen, Turkka; Hakkarainen, Teemu; Petit, Laeticia; Janner, Davide; Boetti, Nadia G; Lastusaari, Mika; Pugliese, Diego; Paturi, Petriina; Milanese, Daniel

    2017-04-28

    Er-doped phosphate glass ceramics were fabricated by melt-quenching technique followed by a heat treatment. The effect of the crystallization on the structural and luminescence properties of phosphate glasses containing Al₂O₃, TiO₂, and ZnO was investigated. The morphological and structural properties of the glass ceramics were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and micro-Raman spectroscopy. Additionally, the luminescence spectra and the lifetime values were measured in order to study the influence of the crystallization on the spectroscopic properties of the glasses. The volume ratio between the crystal and the glassy phases increased along with the duration of the heat treatment. The crystallization of the glass ceramics was confirmed by the presence of sharp peaks in the XRD patterns and different crystal phases were identified depending on the glass composition. Sr(PO₃)₂ crystals were found to precipitate in all the investigated glasses. As evidenced by the spectroscopic properties, the site of the Er(3+) ions was not strongly affected by the heat treatment except for the fully crystallized glass ceramic which does not contain Al₂O₃, TiO₂, and ZnO. An increase of the lifetime was also observed after the heat treatment of this glass. Therefore, we suspect that the Er(3+) ions are incorporated in the precipitated crystals only in this glass ceramic.

  12. Structural characterization, luminescence and electrochemical properties of the Schiff base ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ceyhan, Goekhan [Chemistry Department, K. Maras Suetcue Imam University, 46100 K. Maras (Turkey); Tuemer, Mehmet, E-mail: mtumer@ksu.edu.tr [Chemistry Department, K. Maras Suetcue Imam University, 46100 K. Maras (Turkey); Koese, Muhammet; McKee, Vickie [Chemistry Department, Loughborough University, LE11 3TU Leics (United Kingdom); Akar, Seyhan [Chemistry Department, K. Maras Suetcue Imam University, 46100 K. Maras (Turkey)

    2012-11-15

    In this study, we prepared two Schiff base ligands N-(4-hydroxy phenyl)-2,4-di-methoxy benzaldimine (TS{sup 1}) and N-(4-hydroxy phenyl)-2,5-di-methoxybenzaldimine (TS{sup 2}) which were characterized by structural, spectroscopic and analytical methods. The ligands TS{sup 1} and TS{sup 2} were obtained as single crystals from ethanol solution. X-ray diffraction data for two compounds showed that the bond lengths are within the normal ranges. The electrochemical properties of the Schiff base ligands were studied in different solvents and at various scan rates. The luminescence properties of the ligands TS{sup 1} and TS{sup 2} in different solvents and at different pH values have been investigated. The results show that the ligands exhibit more efficient luminescence properties in CH{sub 3}CN and n-butanol. - Highlights: Black-Right-Pointing-Pointer Schiff base ligands were prepared and fully characterized. Black-Right-Pointing-Pointer X-ray crystal structures of Schiff base ligands were reported. Black-Right-Pointing-Pointer Electrochemical properties of Schiff base ligands were investigated. Black-Right-Pointing-Pointer Absorption and photoluminescence properties of the Schiff bases were examined.

  13. Synthesis, characterization and luminescence of europium perchlorate with MABA-Si complex and coating structure SiO2@Eu(MABA-Si) luminescence nanoparticles.

    Science.gov (United States)

    Fu, Zhi-Fang; Li, Wen-Xian; Bai, Juan; Bao, Jin-Rong; Cao, Xiao-Fang; Zheng, Yu-Shan

    2017-05-01

    This article reports a novel category of coating structure SiO 2 @Eu(MABA-Si) luminescence nanoparticles (NPs) consisting of a unique organic shell, composed of perchlorate europium(III) complex, and an inorganic core, composed of silica. The binary complex Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O was synthesized using HOOCC 6 H 4 N(CONH(CH 2 ) 3 Si(OCH 2 CH 3 ) 3 ) 2 (MABA-Si) and was used as a ligand. Furthermore, the as-prepared silica NPs were successfully coated with the -Si(OCH 2 CH 3 ) 3 group of MABA-Si to form Si-O-Si chemical bonds by means of the hydrolyzation of MABA-Si. The binary complexes were characterized by elemental analysis, molar conductivity and coordination titration analysis. The results indicated that the composition of the binary complex was Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O. Coating structure SiO 2 @Eu(MABA-Si) NPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared (IR) spectra. Based on the SEM and TEM measurements, the diameter of core-SiO 2 particles was ~400 and 600 nm, and the thickness of the cladding layer Eu(MABA-Si) was ~20 nm. In the binary complex Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O, the fluorescence spectra illustrated that the energy of the ligand MABA-Si transferred to the energy level for the excitation state of europium(III) ion. Coating structure SiO 2 @Eu(MABA-Si) NPs exhibited intense red luminescence compared with the binary complex. The fluorescence lifetime and fluorescence quantum efficiency of the binary complex and of the coating structure NPs were also calculated. The way in which the size of core-SiO 2 spheres influences the luminescence was also studied. Moreover, the luminescent mechanisms of the complex were studied and explained. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Features of vibrations of structural inhomogeneous solid media

    Science.gov (United States)

    Karimbaev, Telman; Baishagirov, Khairulla; Nurgaliyeva, Saltanat

    2017-09-01

    Homogeneous or quasi-homogeneous classic models of deformation are generally used at a mathematical de-scription of deformation composite materials (CM). These theories, however, are limited within initial conditions and do not cover the most important properties of CM: heterogeneity of inertia and elasticity of components, their interaction when deforming, etc. Among the models that complement the classical theories, it is possible to allocate the so-called theory of mixture where CM is considered as two (or more) interacting homogeneous continuum. Therefore, the model increase of motion freedom degrees of the particles of such heterogeneous medium allows each component of CM to show their inertial properties. This leads to the identification of such exclusive features as "bifurcation of fre-quencies", i.e., to description of motion on each form of normal modes at two different frequencies. In the research this phenomenon was investigated by the analysis of biquadratic equation obtained at solving the proper value problem of heterogeneous medium, and was verified by testing the normal mode of frequencies of blades made of CM. In the particular case there was received a simple calculation formula for determination of bar technical frequencies from CM on the basis of the characteristic equation of natural vibrations. In this case the numerical results for the lower forms of the vibration normal mode coincide with the experimental data for homogeneous medium. The characteristic equation contains the introduced physical parameters of the two-component theory; therefore, it describes the other forms of vibration. However, in this case the freedom of structural fluctuations of CM each component is limited to their coupling and interaction, providing continuity and shared the compound materials.

  15. Steps for Vibration Reduction of 50kg-Class Micro-Satellite Structure

    Science.gov (United States)

    Nakamura, Masato; Furukawa, Takuya; Chiba, Masakatsu; Okubo, Hiroshi; Akita, Takeshi; Sugiyama, Yoshihiko; Nakamura, Yosuke; Imamura, Hiroaki; Umehara, Nobuhito

    The paper reports several steps taken to reduce vibration responses of a 50kg-class micro-satellite structure, which is subjected to severe mechanical/vibratory environment during launching. In order to satisfy the required mechanical interface conditions, anti-vibration design of satellite structure was modified to enhance damping capacity of the structure by applying adherent aisogrid-panel, honeycomb panel, polyimid-tape-inserted connections, and damping pads. Considerable reduction of vibration responses was confirmed by vibration test of structural-thermal model.

  16. Vibration measurement on large structures by microwave remote sensing

    Science.gov (United States)

    Gentile, Carmelo

    2012-06-01

    Recent advances in radar techniques and systems have led to the development of microwave interferometers, suitable for the non-contact vibration monitoring of large structures. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are addressed and discussed. Subsequently, the results of past and recent tests of full-scale structures are presented, in order to demonstrate the reliability and accuracy of microwave remote sensing; furthermore, the simplicity of use of the radar technology is exemplified in practical cases, where the access with conventional techniques is uneasy or even hazardous, such as the stay cables of cable-stayed bridges.

  17. Free vibration analysis of coupled fluid-structure systems

    Science.gov (United States)

    Gupta, K. K.

    1982-01-01

    An efficient numerical technique for the eigenvalue solution in the free vibration analysis of compressible fluid-structure coupled systems is presented. The fluid is assumed to be compressible in nature and the incompressible problem is only a special case of the present generalized algorithm. A natural frequency analysis of the structure in the absence of any fluid is achieved by a combined Sturm sequence and inverse iteration technique that computes only the required eigenvalues and vectors. A special inverse iteration scheme is then developed for the coupled system that uses the computed eigenvalues as starting iteration values for convergence. Numerical results obtained by solving a number of standard test cases indicate the pattern of root convergence corresponding to various simplifying assumptions.

  18. Molecular and vibrational structure of thiosulfonate S-esters

    DEFF Research Database (Denmark)

    Luu, Thi Xuan Thi; Duus, Fritz; Spanget-Larsen, Jens

    2013-01-01

    /cc-pVTZ). The vibrational spectra of 2 and 3 are sensitive to the orientation of the alkyl group attached to the sulfonylic sulfur atom. Rotamers corresponding to anti and gauche conformations are thus predicted to have distinctly different vibrational transitions in the 800–400 cm–1 region. The observed vibrational...

  19. Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure

    Science.gov (United States)

    Yang, Yongchao; Nagarajaiah, Satish

    2016-06-01

    Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.

  20. Dynamical Performances of a Vibration Absorber for Continuous Structure considering Time-Delay Coupling

    Directory of Open Access Journals (Sweden)

    Xiuting Sun

    2016-01-01

    Full Text Available The nonlinear effect incurred by time delay in vibration control is investigated in this study via a vibration absorber coupled with a continuous beam structure. The stability of the vibration absorber coupled structure system with time-delay coupling is firstly studied, which provides a general guideline for the potential time delay to be introduced to the system. Then it is shown that there is a specific region for the time delay which can bring bifurcation modes to the dynamic response of the coupling system, and the vibration energy at low frequencies can be transferred or absorbed due to the bifurcation mode and the vibration in the corresponding frequency range is thus suppressed. The nonlinear mechanism of this vibration suppression incurred by the coupling time delay is discussed in detail, which provides a novel and alternative approach to the analysis, design, and control of vibration absorbers in engineering practice.

  1. Microwave Spectra, Structure, and Ring-Puckering Vibration of Octafluorocyclopentene.

    Science.gov (United States)

    Long, B E; Arsenault, Eric A; Obenchain, Daniel A; Choi, Yoon Jeong; Ocola, Esther J; Laane, Jaan; Pringle, Wallace C; Cooke, S A

    2016-11-03

    The rotational spectra of octafluorocyclopentene (C5F8) has been measured for the first time using pulsed jet Fourier transform microwave spectroscopy in a frequency range of 6 to 16 GHz. As in the molecule cyclopentene, the carbon ring is nonplanar, and inversion through the plane results in an inversion pair of ground state vibrational energy levels with an inversion splitting of 18.4 MHz. This large amplitude motion leads to the vibration-rotation coupling of energy levels. The symmetric double minimum ring-puckering potential function was calculated, resulting in a barrier of 222 cm-1. The rotational constants A0 = 962.9590(1) MHz, B0 = 885.1643(4) MHz, C0 = 616.9523(4) MHz, A1 = 962.9590(1) MHz, B1 = 885.1643(4) MHz, C1 = 616.9528(4) MHz, and two centrifugal distortion constants for each state were determined for the parent species and all 13C isotopologues. A mixed coordinate molecular structure was determined from a least-squares fit of the ground state rotational constants of the parent and each 13C isotopologue combined with the equilibrium bond lengths and angles from quantum chemical calculations.

  2. Intelligent failure-proof control system for structural vibration

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Oba, Takahiro [Keio Univ., Tokyo (Japan)

    2000-11-01

    With progress of technology in recent years, gigantism and complication such as high-rise buildings, nuclear reactors and so on have brought about new problems. Particularly, the safety and the reliability for damages in abnormal situations have become more important. Intelligent control systems which can judge whether the situation is normal or abnormal at real time and cope with these situations suitably are demanded. In this study, Cubic Neural Network (CNN) is adopted, which consists of the controllers possessing cubically some levels of information abstracting. In addition to the usual quantitative control, the qualitative control is used for the abnormal situations. And, by selecting a suitable controller, CNN can cope with the abnormal situation. In order to confirm the effectiveness of this system, the structural vibration control problems with sensory failure and elasto-plastic response are dealt with. As a result of simulations, it was demonstrated that CNN can cope with unexpected abnormal situations which are not considered in learning. (author)

  3. Smart nanocoated structure for energy harvesting at low frequency vibration

    Science.gov (United States)

    Sharma, Sudhanshu

    Increasing demands of energy which is cleaner and has an unlimited supply has led development in the field of energy harvesting. Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. With the recent surge of micro scale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources. In this research, a piezoelectric power generator composite prototype was developed to maximize the power output of the system. A lead zirconate titanate (PZT) composite structure was formed and mounted on a cantilever bar and was studied to convert vibration energy of the low range vibrations at 30 Hz--1000 Hz. To improve the performance of the PZT, different coatings were made using different percentage of Ferrofluid (FNP) and Zinc Oxide nanoparticles (ZnO) and binder resin. The optimal coating mixture constituent percentage was based on the performance of the composite structure formed by applying the coating on the PZT. The fabricated PZT power generator composite with an effective volume of 0.062 cm3 produced a maximum of 44.5 μW, or 0.717mW/cm3 at its resonant frequency of 90 Hz. The optimal coating mixture had the composition of 59.9%FNP + 40% ZnO + 1% Resin Binder. The coating utilizes the opto-magneto-electrical properties of ZnO and Magnetic properties of FNP. To further enhance the output, the magneto-electric (ME) effect was increased by subjecting the composite to magnetic field where coating acts as a magnetostrictive material. For the effective volume of 0.0062 cm 3, the composite produced a maximum of 68.5 μW, or 1.11mW/cm 3 at its resonant frequency of 90 Hz at 160 gauss. The optimal coating mixture had the composition of 59.9% FNP + 40% ZnO + 1% Resin Binder. This research also focused on improving the efficiency of solar cells by utilizing the magnetic effect along with gas plasma etching to improve the internal reflection

  4. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    Science.gov (United States)

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  5. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  6. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    Energy Technology Data Exchange (ETDEWEB)

    Si, Zhen-Xiu; Xu, Wei, E-mail: xuwei@nbu.edu.cn; Zheng, Yue-Qing, E-mail: yqzhengmc@163.com

    2016-07-15

    An uranium coordination polymer, namely [(UO{sub 2}(pydc)(H{sub 2}O)]·H{sub 2}O (1) (H{sub 2}pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O–H···O hydrogen bond interactions and π–π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as well as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed. - Graphical abstract: Complex 1 exhibits 1D chain coordination polymer in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligand. Photoluminescence studies reveal that complex 1 exhibits characteristic emissions of uranyl centers. The compound is selective to degraded dye and displays good photocatalytic activities for the degradation of MB under Hg-lamp. Display Omitted - Highlights: • Complex 1 exhibits 1D chain coordination polymer. • Complex 1 could degrade methylene blue and Rhodamine B under Hg-lamp irradiation. • Luminescent property of 1 has been studied.

  7. Active Vibration Control of a Flexible Structure Using Piezoceramic Actuators

    Directory of Open Access Journals (Sweden)

    J. Fei

    2008-03-01

    Full Text Available Considerable attention has been devoted recently to active vibration control using intelligent materials as actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods, strain rate feedback control (SRF, positive position feedback control (PPF are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF control and PPF control achieve effective vibration suppression results of steel cantilever beam.

  8. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter

    2016-01-01

    Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively......-dimensional finite-element model. The laboratory model employs soaked mattress foam placed within a box to mimic a finite volume of soil. The dynamic properties of the soaked foam ensure wavelengths representative of ground vibration in small scale. Comparison of the results from the two models leads...

  9. Advances in structural vibration control application of magneto-rheological visco-elastomer

    Directory of Open Access Journals (Sweden)

    Zuguang Ying

    2017-03-01

    Full Text Available Magneto-rheological visco-elastomer (MRVE as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random environmental excitations is required in vibration control. MRVE can supply considerably adjustable damping and stiffness for structures, and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design. Increasing researches on MRVE dynamic properties, modeling, and vibration control application are presented. Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields, vibration response characteristics improvement through harmonic parameter distribution, and optimal bounded parametric control design based on the dynamical programming principle are reviewed. Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.

  10. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  11. Structured illumination microscopy for vibrational molecular imaging (Conference Presentation)

    Science.gov (United States)

    Watanabe, Kozue; Palonpon, Almar F.; Smith, Nicholas I.; Chiu, Liang-da; Kasai, Atsushi; Hashimoto, Hitoshi; Kawata, Satoshi; Fujita, Katsumasa

    2016-09-01

    Raman microscopy is a powerful tool for analytical imaging. The wavelength shift of Raman scattering corresponds to molecular vibrational energy. Therefore, we can access rich chemical information, such as distribution, concentration, and chemical environment of sample molecules. Despite these strengths of Raman microscopy, the spatial resolution has been a limiting factor for many practical applications. In this study, we developed a large-area, high-resolution Raman microscope by utilizing structured illumination microscopy (SIM) to overcome the spatial resolution limit. A structured line-illumination (SLI) Raman microscope was constructed. The structured illumination is introduced along the line direction by the interference of two line-shaped beams. In SIM, the spatial frequency mixing between structured illumination and Raman scattering from the sample allows access to the high spatial frequency information beyond the conventional cut-off. As a result, the FWHM of 40-nm fluorescence particle images showed a clear resolution enhancement in the line direction: 366 nm in LI and 199 nm in SLI microscope. Using the developed microscope, we successfully demonstrated high-resolution Raman imaging of various kinds of specimens, such as few-layer graphene, graphite, mouse brain tissue, and polymer nanoparticles. The high resolution Raman images showed the capability to extract original spectral features from the mixed Raman spectra of a multi-component sample because of the enhanced spatial resolution, which is advantageous in observing complex spectral features. The Raman microscopy technique reported here enables us to see the detailed chemical structures of chemical, biological, and medical samples with a spatial resolution smaller than 200 nm.

  12. Another approach to vibrational analysis of stepped structures

    CSIR Research Space (South Africa)

    Fedotov, I

    2006-01-01

    Full Text Available Hz. First resonance is a pendulum mode at which the stepped bar vibrates as “rigid” pendu- lum. All other modes are “longitudinal”. Geometry of the bar was specially chosen so that vibration amplitude of the junction between the cylindrical...

  13. Modelling, structural, thermal, optical and vibrational studies of a ...

    Indian Academy of Sciences (India)

    sis of all the fundamental vibration modes using the VEDA. 4 program [21]. Scaling factors used in this study were taken from literature [22]. In order to take into account the effect of intermolecular interactions on geometrical parameters and vibrational spectroscopy, we have considered an appropriate cluster model built up ...

  14. Active structural elements within a general vibration control framework

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Isermann, R.

    2000-01-01

    High-precision machines typically suffer from small but annoying vibrations. As the most appropriate solution to a particular vibration problem is not always obvious, it may be convenient to cast the problem in a more general framework. This framework may then be used for frequency response

  15. Structural characterization of carbon nanotubes via the vibrational density of states

    NARCIS (Netherlands)

    Pool, Albert J.; Jain, Sandeep K.; Barkema, Gerard T.

    2017-01-01

    The electrical and chemical properties of carbon nanotubes vary significantly with different chirality and diameter, making the experimental determination of these structural properties important. Here, we show that the vibrational density of states (VDOS) contains information on the structure of

  16. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  17. On the role of heterolayer relaxation in luminescence response of Si/SiGe:Er structures

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikova, Ludmila; Stepikhova, Margarita; Drozdov, Yurij; Krasilnik, Zakharii [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Chalkov, Vadim; Shengurov, Vladimir [Physico-Technical Research Institute, Nizhny Novgorod State University, Gagarin Ave. 23, 603950 Nizhny Novgorod (Russian Federation)

    2011-03-15

    In this contribution we discuss the luminescence properties of Si/Si{sub 1-x}Ge{sub x}:Er/Si structures being of interest for a laser realization. The influence of the strain relaxation processes that take place in such kind of structures on their photoluminescence response at 1.54 {mu}m has been analyzed. The studies were performed for Si/Si{sub 1-x}Ge{sub x}:Er/Si structures with the different thickness of Si{sub 1-x}Ge{sub x}:Er layers, and consequently the degree of strain relaxation. It is shown that the structural defects arising in Si/Si{sub 1-x}Ge{sub x}:Er/Si structures due to the relaxation play only negligible role in their photoluminescence response. The contribution of the structural defects in the photoluminescence response at 1.54 {mu}m became apparent only in thin partially relaxed Si/Si{sub 1-x}Ge{sub x}:Er/Si structures, the photoluminescence spectra of which are represented by the broad ''defect related'' lines. Intense photoluminescence related with the optically active Er centers of different types was observed for the strained and completely relaxed Si/Si{sub 1-x}Ge{sub x}:Er/Si structures containing thick (d > 1 {mu}m) Si{sub 1-x}Ge{sub x}:Er layers. The external quantum efficiency of these structures reaches the value of 6.3 x 10{sup -5} at T =77 K. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Synthesis, structure and luminescence property of 2D lanthanide complexes with 3-fluorophthalate and oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yu-E [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Li, Xia, E-mail: xiali@mail.cnu.edu.cn [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Song, Shuang [Department of Chemistry, Capital Normal University, Beijing 100048 (China)

    2012-12-15

    Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (Ln=Sm 1, Eu 2, Tb 3 and Dy 4; fpht=3-fluorophthalate and ox=oxalate) have been synthesized and structurally characterized by single crystal X-ray diffraction. The four complexes possess similar 2D framework structures constructed from Ln-fpht double-stranded helices and ox linkages. Complexes 2 and 3 display the characteristic emission {sup 5}D{sub 0}{yields}{sup 7}F{sub J} (J=0-4) transitions of Eu(III) ion and {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=6-3) transitions of Tb(III) ion, respectively. The emission decay curves reveal a monoexponential behavior yielding the lifetime values of 0.266{+-}0.002 ms for 2 and 0.733{+-}0.002 ms for 3. The emission spectrum of 1 shows three weak bands corresponding to the characteristic emission {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} transitions of Sm(III) ion. The emission spectrum of 4 displays a broad band centered at 438 nm, which comes from the {pi}{sup Low-Asterisk }-{pi} transition of the ligand. - Graphical abstract: Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate, ox=oxalate) possess 2D structures. Sm(III), Eu(III) and Tb(III) complexes show the characteristic fluorescent emission of the Ln(III). Dy(III) complex displays ligand-based luminescent behavior. Highlights: Black-Right-Pointing-Pointer [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate; ox=oxalate) show 2D structures. Black-Right-Pointing-Pointer The 2D structures are constructed from Ln-fpht double-stranded helices and ox linkage. Black-Right-Pointing-Pointer The Sm(III), Eu(III) and Tb(III) complexes show the characteristic emission of the Ln(III) ions. Black-Right-Pointing-Pointer Dy(III) complex displays ligand-based luminescent behavior.

  19. Vibration-based localisation of structural deterioration in frame-like civil engineering structures

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2016-01-01

    to other structural systems, for instance, wind turbines—can provide reliable damage localisation in frame-like structures. The performance of the method, which is based on statistical interrogation of changes in a surrogate of the transfer matrix, is tested in a Monte Carlo setting with a numerical steel......With the existing trend of minimising material use in typical frame-like civil engineering structures, such as buildings, bridges, and offshore platforms, these structures will typically be subjected to substantial wind induced vibrations. Besides being a source of disturbance for the occupants...... frame model subjected to white noise excitation....

  20. Luminescent lanthanide complexes with 4-acetamidobenzoate: Synthesis, supramolecular assembly via hydrogen bonds, crystal structures and photoluminescence

    Science.gov (United States)

    Yin, Xia; Fan, Jun; Wang, Zhi Hong; Zheng, Sheng Run; Tan, Jing Bo; Zhang, Wei Guang

    2011-07-01

    Four new luminescent complexes, namely, [Eu(aba) 2(NO 3)(C 2H 5OH) 2] ( 1), [Eu(aba) 3(H 2O) 2]·0.5 (4, 4'-bpy)·2H 2O ( 2), [Eu 2(aba) 4(2, 2'-bpy) 2(NO 3) 2]·4H 2O ( 3) and [Tb 2(aba) 4(phen) 2(NO 3) 2]·2C 2H 5OH ( 4) were obtained by treating Ln(NO 3) 3·6H 2O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4'-bpy=4, 4'-bipyridine, 2, 2'-bpy=2, 2'-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains ( 1- 2) and dimeric structures ( 3- 4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed.

  1. Structural, magnetic and luminescent properties of lanthanide complexes with N-salicylideneglycine.

    Science.gov (United States)

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-04-28

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)₂(H₂O)₂]∙H₂O (1-6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution.

  2. Structural, Magnetic and Luminescent Properties of Lanthanide Complexes with N-Salicylideneglycine

    Directory of Open Access Journals (Sweden)

    Ján Vančo

    2015-04-01

    Full Text Available A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2- Schiff base ligand (salgly and having the general formula K[Ln(salgly2(H2O2]∙H2O (1–6, where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA, Fourier Transform Infrared Spectroscopy (FT-IR, and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID. The X-ray structure of the terbium(III complex (2, representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution.

  3. Crystal structure determination of a flavoprotein FP390 from a luminescent bacterium, Photobacterium phosphoreum.

    Science.gov (United States)

    Kita, A; Kasai, S; Miki, K

    1995-03-01

    The three-dimensional structure of a flavoprotein, FP390, purified from a luminescent bacterium, Photobacterium phosphoreum, has been determined at 3 A resolution by X-ray crystallography. Crystallographic refinements of the structural model have led to an R-factor of 0.24 for the intensity data between 6 to 3 A resolution collected with synchrotron radiation. It was found that a homodimer of the FP390 molecules related by a non-crystallographic 2-fold axis is comprised in the asymmetric unit. Two homodimers are arranged around a crystallographic 2-fold axis to form a tetrameric assembly. The monomer molecule of FP390, to which two molecules of the flavin cofactor (Q-flavin) are bound, consists of a seven-stranded parallel beta-sheet which forms a half of the beta-barrel structure and seven alpha-helices which surround one side of the beta-barrel. We suggest that the reason why the Q-flavin sample prepared from FP390 is always a mixture of two components is connected with the fact that the monomer molecules has two flavin binding sites, at the dimer interface and at the molecular surface.

  4. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration.

    Science.gov (United States)

    2010-04-01

    ... the structure to withstand transportation shock and vibration. 3280.903 Section 3280.903 Housing and... structure to withstand transportation shock and vibration. (a) The cumulative effect of highway transportation shock and vibration upon a manufactured home structure may result in incremental degradation of...

  5. Vibration based structural health monitoring of a composite T-beam

    NARCIS (Netherlands)

    Ooijevaar, T.H.; Loendersloot, Richard; Warnet, Laurent; de Boer, Andries; Akkerman, Remko

    2010-01-01

    A vibration based damage identification method is investigated experimentally for a 2.5-dimensional composite structure. The dynamic response of an intact and a locally delaminated 16-layer unidirectional carbon fibre PEKK reinforced T-beam is considered. A force–vibration set-up, including a laser

  6. Free vibration and dynamic response analysis of spinning structures

    Science.gov (United States)

    1986-01-01

    The proposed effort involved development of numerical procedures for efficient solution of free vibration problems of spinning structures. An eigenproblem solution procedure, based on a Lanczos method employing complex arithmetic, was successfully developed. This task involved formulation of the numerical procedure, FORTRAN coding of the algorithm, checking and debugging of software, and implementation of the routine in the STARS program. A graphics package for the E/S PS 300 as well as for the Tektronix terminals was successfully generated and consists of the following special capabilities: (1) a dynamic response plot for the stresses and displacements as functions of time; and (2) a menu driven command module enabling input of data on an interactive basis. Finally, the STARS analysis capability was further improved by implementing the dynamic response analysis package that provides information on nodal deformations and element stresses as a function of time. A number of test cases were run utilizing the currently developed algorithm implemented in the STARS program and such results indicate that the newly generated solution technique is significantly more efficient than other existing similar procedures.

  7. Vibrational spectra and structure of cyclopentane and its isotopomers.

    Science.gov (United States)

    Ocola, Esther J; Bauman, Leslie E; Laane, Jaan

    2011-06-23

    The infrared and Raman spectra of vapor, liquid, and solid state cyclopentane and its d(1), 1,1-d(2), 1,1,2,2,3,3-d(6), and d(10) isotopomers have been recorded and analyzed. The experimental work was complemented by ab initio and density functional theory (DFT) calculations. The computations confirm that the two conformational forms of cyclopentane are the twist (C(2)) and bent (C(s)) structures and that they differ very little in energy, less than about 10 cm(-1) (0.1 kJ/mol). The bending angle for the C(s) form is 41.5° and the dihedral angle of twisting is 43.2° for the C(2) form. A reliable and complete vibrational assignment for each of the isotopomers has been achieved for the first time, and these agree very well with the DFT (B3LYP/cc-pVTZ) computations. The ab initio CCSD/cc-pVTZ calculations predict a barrier to planarity of 1887 cm(-1), which is in excellent agreement with the experimental value of 1808 cm(-1).

  8. Neutral Luminescent Metal-Organic Frameworks: Structural Diversification, Photophysical Properties, and Sensing Applications.

    Science.gov (United States)

    Chakraborty, Gouri; Mandal, Sanjay K

    2017-12-04

    Utilizing flexible bis(tridentate)polypyridyl ligands, the two new luminescent 2D metal organic frameworks {Zn 2 (tpbn)(2,6-NDC) 2 } n (1) and {[Zn 2 (tphn)(2,6-NDC) 2 ]·4H 2 O} n (2), where tpbn = N,N',N″,N‴-tetrakis(2-pyridylmethyl)-1,4-diaminobutane, tphn = N,N',N″,N‴-tetrakis(2-pyridylmethyl)-1,6-diaminohexane, and 2,6-H 2 NDC = 2,6-naphthalenedicarboxylic acid, have been isolated in good yields under solvothermal conditions. Their solid-state molecular structures have been determined by single-crystal X-ray diffractometry. Both 1 and 2 have pentacoordinated Zn(II) centers with an N 3 O 2 environment from three nitrogen atoms of the tpbn or tphn ligand and two carboxylate oxygen atoms from two different 2,6-NDC linkers. However, the binding modes of the tridentate part of polypyridyl ligands to the Zn(II) center are different in 1 and 2-meridional (tpbn) vs facial (tphn) due to an increase (1.5 times) in the methylene chain length. Thus, the binding mode of 2,6-NDC to the Zn(II) center differs: bis(monodentate) syn-anti in 1 and bis(monodentate) syn-syn in 2. This difference in binding modes of the components has a profound effect on the conformation of the six-membered ring (metal centers are considered as the vertices in it) within the 2D framework: honeycomb vs chair form for 1 and 2, respectively. In addition to further characterization by elemental analysis and UV-vis and FT-IR spectroscopy, their framework stabilities in water and thermal properties have been studied by powder X-ray diffraction and thermogravimetric analysis, respectively. On the basis of thermodiffractometry, 1 and 2 retain their crystallinity and overall structure up to 350 and 325 °C, respectively. Their luminescent properties have been utilized to demonstrate sensing of various solvents as well as nitro-aromatic compounds in water, which correlate well with their structural differences. Through the spectral overlap, lifetime measurements, and nature of the Stern-Volmer plots

  9. An investigation on structural, vibrational and nonlinear optical ...

    Indian Academy of Sciences (India)

    The electron rich regions residing on all the oxygen atoms O1, O1W, O2, O3, and O3W represent the electronegative regions and so, these are the binding sites for electrophilic attack. The values of HOMO, LUMO and Frontier orbital energy gap are given in table 2. 3.4 Vibrational Assignments. 3.4a C-H Vibration: Generally, ...

  10. Structure, luminescence and scintillation properties of the MgWO{sub 4}-MgMoO{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailik, V B; Kraus, H [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Kapustyanyk, V; Panasyuk, M; Tsybulskyi, V [Scientific-Technical and Educational Centre of Low Temperature Studies, I Franko National University of Lviv, 50 Dragomanova Street, 79005, Lviv (Ukraine); Prots, Yu [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Street 40, 01187 Dresden (Germany); Vasylechko, L [Semiconductor Electronics Department, Lviv Polytechnic National University, 12 Bandera Street, 79013, Lviv (Ukraine)], E-mail: vmikhai@hotmail.com

    2008-09-10

    The importance of luminescent tungstates and molybdates in several technological applications motivated the study of the structural, luminescence and scintillation properties of the MgWO{sub 4}-MgMoO{sub 4} system. X-ray diffraction studies allowed the identification of three main types of structures in the pseudo-binary MgWO{sub 4}-MgMoO{sub 4} system (sanmartinite {beta}-MgMoO{sub 4}, cuprosheelite {alpha}-MgMoO{sub 4}, and wolframite MgWO{sub 4}) and the refinement of the parameters of the crystal lattice. It is found that the single-phase solid solution MgMo{sub 1-x}W{sub x}O{sub 4} with a {beta}-MgMoO{sub 4} structure is created only at x<0.10, while for a higher tungsten content a mixture of different phases is formed. The x-ray luminescence spectra of a series of samples of the MgWO{sub 4}-MgMoO{sub 4} system are measured at T = 8 K. The principal emission bands are assigned to the main structural phases as follows: {beta}-MgMoO{sub 4}, 520 nm; {alpha}-MgMoO{sub 4}, 590 nm; MgWO{sub 4} (wolframite), 480 nm. The phase composition of the sample determines the actual shape of the observed spectra. Possible relations between the crystal structure and luminescence properties of different phases are discussed in terms of a configuration coordinate model. Of all the compounds under test, MgWO{sub 4} is found to have the best scintillation response for particle excitation (0.90 {+-} 0.15 that of ZnWO{sub 4} at T = 295 K). Further, the light yield also remains high with decreasing temperature, which makes this material potentially useful for cryogenic applications.

  11. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Science.gov (United States)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  12. Crystal structures and luminescence of two cadmium-carboxylate cluster-based compounds with mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui-Fang; Lei, Qian; Wang, Yu-Ling; Yin, Shun-Gao; Liu, Qing-Yan [College of Chemistry and Chemical Engineering and Key Lab. of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal Univ., Nanchang (China)

    2017-04-04

    Reactions of Cd(NO{sub 3}){sub 2}.4H{sub 2}O with 2-quinolinecarboxylic acid (H-QLC) in the presence of 1,4-benzenedicarboxylic acid (H{sub 2}-BDC) or 1,3,5-benzenetricarboxylic acid (H-BTC) in DMF/H{sub 2}O solvent afforded two compounds, namely, [Cd(QLC)(BDC){sub 1/2}(H{sub 2}O)]{sub n} (1) and [Cd(QLC)(BTC){sub 1/3}]{sub n} (2). Both compounds are two-dimensional (2D) frameworks but feature different cadmium-carboxylate clusters as a result of the presence of the polycarboxylate ligands with different geometries and coordination preference. The dinuclear Cd{sub 2}(QLC){sub 2} units in 1 are bridged by the pairs of bridging water ligands to give a one-dimensional (1D) chain, which is further linked by the second ligand of BDC{sup 2-} to form a 2D structure. Compound 2 is constructed from unique hexanuclear macrometallacyclic Cd{sub 6}(QLC){sub 6} clusters, which are linked by the surrounding BTC{sup 3-} ligands to generate a 2D structure. Photoluminescence studies showed both compounds exhibit ligand-centered luminescent emissions with emission maxima at 405 and 401 nm, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Structural and luminescent properties of Fe3+ doped PVA capped CdTe nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravindranadh K.

    2017-07-01

    Full Text Available During recent decades, magnetic and semiconductor nanoparticles have attracted significant attention of scientists in various fields of engineering, physics, chemistry, biology and medicine. Fe3+ doped PVA capped CdTe nanoparticles were prepared by co-precipitation method and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Fe3+ ions in the host lattice and the luminescent properties of prepared sample. Powder XRD data revealed that the crystal structure belongs to a cubic system and its lattice cell parameters were evaluated. The average crystallite size was estimated to be 8 nm. The morphology of prepared samples was analyzed by using SEM and TEM investigations. Functional groups of the prepared sample were observed in FT-IR spectra. Optical absorption and EPR studies have shown that on doping, Fe3+ ions enter the host lattice in octahedral site symmetry. PL studies of Fe3+ doped PVA capped CdTe nanoparticles revealed UV and blue emission bands. CIE chromaticity coordinates were also calculated from the emission spectrum of Fe3+ doped PVA capped CdTe nanoparticles.

  14. Influence of crystalline structure on the luminescence properties of terbium orthotantalates

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Kisla P.F. [Departamento de Química, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto 35400-000, Minas Gerais (Brazil); Carmo, Alexandre P. [Instituto Federal Fluminense, Campus Cabo Frio, RJ 28909-971 (Brazil); Bell, Maria J.V. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-330, MG (Brazil); Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Departamento de Química, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto 35400-000, Minas Gerais (Brazil)

    2013-06-15

    Terbium orthotantalate powders were produced with M-fergusonite type (I2/a) and M′-fergusonite type (P2/a) structures. The samples were studied by X-ray diffraction, Raman scattering, and photoluminescence measurements (emission and decay curves). The results showed that crystalline materials were obtained with all the 18 Raman-active modes predicted by group theory calculations. Also, it was observed through photoluminescence decay curves that the Tb{sup 3+} ions occupies only one-symmetry site in both crystallographic arrangements. Photoluminescence emission curves exhibited some variation in spectral shape, peak position, and relative intensity as a consequence of their different crystalline arrangements. The dominated emission of Tb{sup 3+} ({sup 5}D{sub 4}→{sup 7}F{sub 5}) is centered with a maximum intensity at 549.2 nm (M-type) and 543.0 nm (M′-type). Fluorescence lifetimes for M-TbTaO{sub 4} and M′-TbTaO{sub 4} were determined as 33.4 μs and 1.25 ms, respectively. M′-type materials seems to be the most suitable for luminescent devices and could be a potential green luminescent material due to the strongest emission if compared with the M-fergusonite type. -- Highlights: ► Terbium orthotantalates were prepared in two different crystalline structures: I2/a and P2/a. ► XRD and Raman scattering showed that the different space groups obtained were exhibited all the 18 Raman-active modes. ► PL decay curves that the Tb{sup 3+} ions occupies only one-symmetry site in both crystallographic arrangements. ► Dominated emission of Tb{sup 3+} ({sup 5}D{sub 4}→{sup 7}F{sub 5}) is centered with a maximum intensity at 549 nm (M-type) and 543 nm (M′-type). ► Fluorescence lifetimes for M-TbTaO{sub 4} and M′-TbTaO{sub 4} were determined as 33.4 μs and 1.25 ms, respectively.

  15. Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm

    Directory of Open Access Journals (Sweden)

    Xianjun Sheng

    2016-01-01

    Full Text Available Flexible structures have been widely used in many fields due to the advantages of light quality, small damping, and strong flexibility. However, flexible structures exhibit the vibration in the process of manipulation, which reduces the pointing precision of the system and causes fatigue of the machine. So, this paper focuses on the identification method for active vibration control of flexible structure. The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique designed according to the parameters identified from the Prony algorithm. Eventually, the proposed approach is applied to the most common flexible structure, a piezoelectric cantilever beam actuated by Macro Fiber Composite (MFC. The experimental results demonstrate that the Prony algorithm is very effective and accurate on the dynamic modeling of flexible structure and input shaper could significantly reduce the vibration and improve the response speed of system.

  16. Structure of thiophene-based regioregular polymers and block copolymers and its influence on luminescence spectra

    NARCIS (Netherlands)

    van Hutten, Paul; Gill, R.E; Herrema, J.K; Hadziioannou, G

    1995-01-01

    Two approaches toward control of the luminescence wavelength of polythiophenes have been explored: (i) block copolymers in which oligothiophene blocks alternate with oligosilanylene blocks and (ii) regioregular polythiophenes in which oligothiophene sequences are delimited by n-octyl substituents

  17. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, V.P., E-mail: ssclab@ukr.net [A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine); Berezovskaya, I.V. [A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8 Kirilo i Mefodii, 79005 Lviv (Ukraine); Zadneprovski, B.I. [Central Research and Development Institute of Chemistry and Mechanics, 115487 Moscow (Russian Federation); Efryushina, N.P. [A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine)

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions have been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.

  18. Structural and luminescence properties of vapour-etched porous silicon and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aouida, S.; Saadoun, M.; Saad, K. Ben; Bessais, B. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, BP 95, 2050 Hammam- Lif (Tunisia)

    2005-06-01

    Porous silicon (PS) is usually prepared by the electrochemical anodization or the stain etching techniques. Recently, a new method consisting of exposing silicon substrates to acid vapours issued from a mixture of HNO{sub 3}/HF was employed to generate highly luminescent PS layers. The so-called HNO{sub 3}/HF vapour etching (VE) technique can be easily applied in various large area of silicon-based devices. Depending on the HNO{sub 3}/HF volume ratio, we found that VE silicon results in the formation of PS and/or a luminescent (NH{sub 4}){sub 2}SiF{sub 6} powder-like phase. FTIR spectra of VE-based PS layers formed at HNO{sub 3}/HF volume ratio ranging between 1/100-1/3 contain N-H and Si-F bonds related to NH{sub 4}{sup +} and SiF{sub 6}{sup 2-} ions in addition to the conventional SiH{sub x} species. These nitride and fluoride groups were identified to be associated to the (NH{sub 4}){sub 2}SiF{sub 6} powder-like phase which in turn contains small Si nanoparticles embedded in a SiO{sub x} matrix. The presence of such structures was explained as being the product of the VE technique itself. For vapours rich in HNO{sub 3} (HNO{sub 3}/HF volume ratio >1/4), the VE method can produce almost only the luminescent (NH{sub 4}){sub 2}SiF{sub 6} compound. The VE-based PS is essentially composed of dot-like Si particles with sizes not exceeding 5 nm and emitting a photoluminescence (PL) band around 1.93 eV. The PL band of the VE-based PS presents a shoulder at 2.09 eV, which becomes more significant after oxidation in air. This shoulder at 2.09 eV was attributed to an excitonic emission from the energy levels of the SiO{sub x} surrounding the smallest Si nanocrystallites. The PL band emission of the (NH{sub 4}){sub 2}SiF{sub 6} powder presents two peaks. The first one was attributed to Si nanocrystallites emitting at 1.98 eV. The second peak could be associated to the smallest nanocrystallites ({<=}1.5 nm). For these crystallites, excitons are trapped on the SiO{sub x

  19. Piezoelectric Tailoring with Enhanced Electromechanical Coupling for Concurrent Vibration Control of Mistuned Periodic Structures

    National Research Council Canada - National Science Library

    Wang, Kon-Well

    2006-01-01

    The objective of this research is to advance the state of the art of vibration control of mistuned periodic structures utilizing the electromechanical coupling and damping characteristics of piezoelectric networking...

  20. Vibration reduction on a nonlinear flexible structure through resonant control and disturbance estimator

    Science.gov (United States)

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    Large mechanical structures are often affected by high level vibrations due to their flexibility. These vibrations can reduce the system performances and lifetime and the use of active vibration control strategies becomes very attractive. In this paper a combination of resonant control and a disturbance estimator is proposed. This solution is able to improve the system performances during the transient motion and also to reject the disturbance forces acting on the system. Both control logics are based on a modal approach, since it allows to describe the structure dynamics considering only few degrees of freedom.

  1. Structural and luminescent properties of KY(1-x)DyxBO3 phosphors

    Science.gov (United States)

    Sowjanya, G.; Rama Moorthy, L.; Basavapoornima, Ch.; Jayasankar, C. K.

    2017-01-01

    Yttrium borate phosphors (KY(1-x)DyxBO3) doped with Dy3+ ions were synthesized by the solid-state reaction method. The structural and morphological characteristics were studied by XRD, FTIR and SEM measurements. Luminescent properties of different concentrations of KY(1-x)DyxBO3 phosphors were investigated from the excitation, emission and decay analyses. The emission spectra exhibited characteristic blue (460-500 nm) and yellow (555-610 nm) bands of Dy3+ ions which combines to give white light. The evaluated color co-ordinates (x, y) were found to lie within the white light region of CIE chromaticity diagram. All the decay curves of Dy3+ ions exhibited non-exponential nature and the experimental lifetimes for the 4F9/2 excited level were found to decrease from 0.87, 0.47, 0.35, 0.26 and 0.13 ms with the increase of Dy3+ ion concentrations from 0.05, 0.1, 0.15, 0.2 and 0.3 mol%, respectively. In order to understand the energy transfer mechanism, the decay curves were fitted to Inokutti-Hirayama model and found that the energy transfer is of dipole-dipole type. From the results of these investigations, it is concluded that the KY(1-x)DyxBO3 phosphors are more useful for white light emitting diodes.

  2. Structural and luminescence studies of Ho3+-doped zinc-aluminium-sodium-phosphate (ZANP) glasses

    Science.gov (United States)

    Brahmachary, K.; Rajesh, D.; Ratnakaram, Y. C.

    2015-06-01

    Trivalent holmium doped zinc-aluminium-sodium-phosphate (ZANP) glasses were prepared by conventional melt-quenching technique and characterized for their structural and luminescence properties. The amorphous nature, elemental analysis and thermal stability of the glasses were studied by using X-ray diffraction, energy dispersive spectrum and differential scanning calorimetry analysis, respectively. The absorption and fluorescence spectra have been recorded at room temperature. Based on the absorption spectra, the Judd-Ofelt parameters and radiative parameters such as spontaneous transition probabilities (AR), branching ratios (βR), radiative lifetimes (τR) were calculated and discussed. From the emission spectra emission peak positions (λP), effective bandwidths (Δλeff) and stimulated emission cross-sections (σP) were calculated for the observed emission transitions,5S2 (5F4→5I8) and 5F5→5I8 in all the glass samples. The stimulated emission cross-section is higher for ZANPHo10 glass matrix and so it may be useful for laser excitation.

  3. Luminescence and structural properties of ZnO thin films annealing in air

    Energy Technology Data Exchange (ETDEWEB)

    Baca, R; Martinez, J [Centro de Investigacion de Dispositivos Semiconductores, BUAP, Puebla, Pue. C.P. 72570 (Mexico); Esparza, A [Centro de Ciencias Aplicadas y Desarrollo de TecnologIa - UNAM. C.P. 04510, Mexico D.F (Mexico); Kryshtab, T [Departamento de Ciencias de Materiales, ESFM - IPN, Mexico D.F (Mexico); Juarez, G; Solache, H; Andraca, J; Pena, R, E-mail: rbaca02006@yahoo.com.mx

    2010-02-15

    All ZnO thin films deposited on (001) silicon substrates by DC reactive magnetron sputtering were annealed in air atmosphere with different times at 800deg. C. The samples were studied by X-ray diffraction technique (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements. XRD investigation showed that ZnO phase was hexagonal wurtzite structure growing along the (002) direction. The as grown ZnO films presented macrostrain and microstrain caused a shift of the line diffraction (002) and a broadening respectively. However after 1 hour annealing these strains disappear. The grain size of ZnO films increased with an increase of annealing time. The as-deposited reactive sputtering ZnO films resulted semi-insulating with poor PL response. After high temperature annealing in air, the crystallinity and the PL response considerably improved, but their semi-insulating property also increased. The PL spectra of the annealed samples showed well defined transitions close to the near-band-edge and a wide visible deep-level band emission (430-640 nm). The main interest of this work was to enhance the PL response and to identify the origin of deep-level luminescence bands. The AFM, PL and XRD results indicated that the ZnO films annealing have potential applications in optoelectronic devices.

  4. Luminescence and structural properties of ZnO thin films annealing in air

    Science.gov (United States)

    Baca, R.; Juárez, G.; Solache, H.; Andraca, J.; Martinez, J.; Esparza, A.; Kryshtab, T.; Peña, R.

    2010-02-01

    All ZnO thin films deposited on (001) silicon substrates by DC reactive magnetron sputtering were annealed in air atmosphere with different times at 800°C. The samples were studied by X-ray diffraction technique (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements. XRD investigation showed that ZnO phase was hexagonal wurtzite structure growing along the (002) direction. The as grown ZnO films presented macrostrain and microstrain caused a shift of the line diffraction (002) and a broadening respectively. However after 1 hour annealing these strains disappear. The grain size of ZnO films increased with an increase of annealing time. The as-deposited reactive sputtering ZnO films resulted semi-insulating with poor PL response. After high temperature annealing in air, the crystallinity and the PL response considerably improved, but their semi-insulating property also increased. The PL spectra of the annealed samples showed well defined transitions close to the near-band-edge and a wide visible deep-level band emission (430-640 nm). The main interest of this work was to enhance the PL response and to identify the origin of deep-level luminescence bands. The AFM, PL and XRD results indicated that the ZnO films annealing have potential applications in optoelectronic devices.

  5. Luminescent SiO2 particles: porous structure of matrix and stability of quantum dots.

    Science.gov (United States)

    Yang, Ping; Wang, Yingzi; Zhang, Lipeng

    2013-04-01

    Luminescent CdSe/Cd0.5Zn0.5S quantum dots (QDs) with narrow size distribution and high photoluminescence (PL) efficiency were fabricated via a two-step organic synthesis. The QDs were coated with a SiO2 shell by a reverse micelle route. The thickness of SiO2 shell on the QDs was adjusted for investigating the effect of the porous structure of SiO2 matrix on the stability of the QDs. When the shell thickness of SiO2 shells is less than 5 nm, the pores of SiO2 shell are type II (cylindrical pores). In contrast, the pores of SiO2 shell are type IV (one-neck-flask-shaped pores) while the shell thickness is 10 nm. The stability of SiO2-coated QDs was investigated in phosphate-buffered saline (PBS, pH - 7.4) buffer solutions using various phosphate concentrations. The QDs coated with a SiO2 shell with type IV pores revealed high stability compared with those with type II pores. This is ascribed that cylindrical pores (type II) accelerated the transfer of ions in SiO2 shells compared with type IV pores.

  6. VIBRATION OF FRAME BUILDING STRUCTURES CAUSED BY UNDERGROUND TRAINS

    Directory of Open Access Journals (Sweden)

    P. V. Аliavdin

    2011-01-01

    Full Text Available The paper contains investigations on element vibration of a real residential 9-storeyed reinforced-concrete frame building induced by train movement in the shallow subway. A design model for a problem on propagation of bending waves within the limits of the typical fragment of a skeleton is presented in the paper. The steady state vibrations of a column and reinforced-concrete slab induced by an excited force which is equivalent to the impact of the subway trains have been investigated in the paper. The problem has been solved numerically on the basis of the ANSYS FEA program. Numerical results have been compared with an approximate analytical solution and data on full-scale experiment. A prediction technique for vibration propagation in the designed buildings is offered in the paper. 

  7. Vibration analysis of structural elements using differential quadrature method

    Directory of Open Access Journals (Sweden)

    Mohamed Nassar

    2013-01-01

    Full Text Available The method of differential quadrature is employed to analyze the free vibration of a cracked cantilever beam resting on elastic foundation. The beam is made of a functionally graded material and rests on a Winkler–Pasternak foundation. The crack action is simulated by a line spring model. Also, the differential quadrature method with a geometric mapping are applied to study the free vibration of irregular plates. The obtained results agreed with the previous studies in the literature. Further, a parametric study is introduced to investigate the effects of geometric and elastic characteristics of the problem on the natural frequencies.

  8. Influence of surface functionalization on structural and photo-luminescence properties of CeF{sub 3}:Tb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Anees A., E-mail: aneesaansari@gmail.com

    2017-07-01

    Graphical abstract: We designed highly aqueous dispersible CeF{sub 3}:Tb@LaF{sub 3}@SiO{sub 2} nanoparticles. The epitaxial growth of inert LaF{sub 3} shell and further amorphous silica, respectively, enhanced their optical and luminescence properties, which is highly usable for luminescent biolabeling, and optical bio-probe etc. - Abstract: Highly luminescent and aqueous soluble CeF{sub 3}:Tb (core),CeF{sub 3}:Tb@LaF{sub 3}(core/shell) and CeF{sub 3}:Tb@LaF{sub 3}@ SiO{sub 2} (core/shell/Si) nanoparticles(NPs) with mean particle size 12 nm were prepared by co-precipitation method at low temperature. X-ray diffraction pattern verified the phase purity, high crystallinity of hexagonal structure. The TEM image and SAED pattern revealed the single phase polycrystalline nature, well-dispersed irregular shaped hexagonal structure. FTIR spectra show the characteristic infrared peaks of silica, it suggests the successful silica surface coating around the core/shell NPs. The excitation and emission intensity of core/shell NPs were remarkably increased then their counterpart core NPs. It implies that a significant amount of nonradiative transition centers existing on the surface of core NPs has been eliminated due to the formation of passivated LaF{sub 3} layer. The silica surface modification over the core/shell NPs strikingly enhanced the solubility character in an aqueous environment.

  9. Global structural condition assessment of highway bridges by ambient vibration monitoring

    Science.gov (United States)

    Feng, Maria Q.; Chen, Yangbo; Tan, Chin-An

    2005-05-01

    Structural condition assessment of highway bridges has long been relying on visual inspection, which, however, involves subjective judgment of the inspector and detects only local flaws. Local flaws might not affect the global performance of the bridge. By instrumenting bridges with accelerometers and other sensors, one is able to monitor ambient or forced vibration of the bridge and assess its global structural condition. Ambient vibration measurement outwits forced vibration measurement in that it requires no special test arrangement, such as traffic control or a heavy shaker. As a result, it can be continuously executed while the bridge is under its normal serving condition. For short-to mid-span highway bridges, ambient vibration is predominantly due to traffic excitation, inducing the bridge to vibrate mainly in vertical direction. Based on its physical nature, traffic excitation is modeled as moving loads from the passing vehicles whose arrivals and speeds are extracted from digital video. Traffic-induced vibration provides valuable information for assessing the health of super-structure, but is less sensitive to possible seismic damage in the sub-structure. During earthquakes, bridges are excited in all directions by short-duration un-stationary ground motion, and are expected to better reveal their sub-structure integrity. Therefore, traffic-induced and ground-motion-induced ambient vibration data are treated separately in this paper for different assessment objectives, because of the different characteristics and measurability of the excitation. By continuously monitoring the ambient vibration of the instrumented bridge, its global structural conditions of both super- and sub-structures can be evaluated with possible damage locations identified, which will aid local non-destructive evaluation or visual inspection to further localize and access the damage.

  10. Designing of luminescent GdPO4:Eu@LaPO4@SiO2 core/shell nanorods: Synthesis, structural and luminescence properties

    Science.gov (United States)

    Ansari, Anees A.; Labis, Joselito P.; Aslam Manthrammel, M.

    2017-09-01

    GdPO4:Eu3+ (core) and GdPO4:Eu@LaPO4 (core/shell) nanorods (NRs) were successfully prepared by urea based co-precipitation process at ambient conditions which was followed by coating with amorphous silica shell via the sol-gel chemical route. The role of surface coating on the crystal structure, crystallinity, morphology, solubility, surface chemistry and luminescence properties were well investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier Transform Infrared (FTIR), UV-Vis, and photoluminescence spectroscopy. XRD pattern revealed highly purified, well-crystalline, single phase-hexagonal-rhabdophane structure of GdPO4 crystal. The TEM micrographs exhibited highly crystalline and narrow size distributed rod-shaped GdPO4:Eu3+ nanostructures with average width 14-16 nm and typical length 190-220 nm. FTIR spectra revealed characteristic infrared absorption bands of amorphous silica. High absorbance in a visible region of silica modified core/shell/Si NRs in aqueous environment suggests the high solubility along with colloidal stability. The photoluminescence properties were remarkably enhanced after growth of undoped LaPO4 layers due to the reduction of nonradiative transition rate. The advantages of presented high emission intensity and high solubility of core/shell and core/shell/Si NRs indicated the potential applications in monitoring biological events.

  11. A fractional-order controller for vibration suppression of uncertain structures.

    Science.gov (United States)

    Aghababa, Mohammad Pourmahmood

    2013-11-01

    The problem of active control of vibration structures has attracted much attention over the past decades. A general description of the control problem of vibration systems is to design an active controller to suppress the vibrations of the system induced by external disturbances such as an earthquake. In this paper, a novel fractional-order sliding mode control is introduced to attenuate the vibrations of structures with uncertainties and disturbances. After establishing a stable fractional sliding surface, a sliding mode control law is proposed. Then, the global asymptotic stability of the closed-loop system is analytically proved using fractional Lyapunov stability theorem. Finally, the robustness and applicability of the technique are verified using two examples, including a three degree of freedom structure and a two-story shear building. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Influence of Structural Periodicity on Vibration Transmission in a Multi-Storey Wooden Building

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2013-01-01

    Noise is a nuisance to people, and buildings should therefore be designed to prevent propagation of sound and vibration in the audible frequency range as well as the range of frequencies relevant to whole-body vibrations of humans. In heavy structures made of concrete and masonry, a source...... with high energy content is required to mobilise the inertia. However, for lightweight building structures made of wood, less energy is required to produce vibrations since the mass is smaller. This leads to a high risk of sound and vibration propagation in terms of direct as well as flanking transmission...... is known to result in pass bands and stop bands regarding wave propagation. The paper focuses on analysing and quantifying the effects that a change in the structure, especially regarding the periodicity, has on the overall dynamic performance in the low to mid frequency range up to 250 Hz. The analysis...

  13. Structural, vibrational, NMR, quantum chemical, DNA binding and ...

    Indian Academy of Sciences (India)

    Smith B C 1996 In Infrared Spectral Interpretation. (Boca Raton, FL: CRC Press). 31. Green J H S, Harrison D J and Kynaston W 1971. Spectrochim. Acta A 27 2199. 32. Varsanyi G 1974 In Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives. Vols. 1 and 2. (Budapest: Adam Hilger). 33. Lutz E T G ...

  14. Effect of curvature on structures and vibrations of zigzag carbon ...

    Indian Academy of Sciences (India)

    Wintec

    By determining the correlation between vibrational modes of a graphene sheet and ... graphene lattice. Thus, each SWCNT is uniquely labeled with a pair of integers (n, m) describing its chirality. (n, n) CNTs are called as 'armchair' nanotubes and (n, 0). CNTs are ... semiconductor transitions can be induced more readily in.

  15. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  16. Structures, luminescence, and slow magnetic relaxation of eight 3D lanthanide-organic frameworks.

    Science.gov (United States)

    Fang, Ming; Li, Ji-Jing; Shi, Peng-Fei; Zhao, Bin; Cheng, Peng

    2013-05-14

    Eight three-dimensional lanthanide-organic frameworks: [Ln(BPDC)1.5(DMF)(H2O)2]·2H2O (Ln = Eu (1), Gd (2), Tb (3), Dy (4); BPDC = 4,4'-dicarboxylate-2,2'-dipyridine anion), [Ln(BPDC)(DMF)2(NO3)] (Ln = Eu (5), Gd (6), Tb (7), Dy (8)) were fabricated and structurally characterized. Compounds 1-4 are isostructural, belonging to the triclinic system with space group P1¯, while compounds 6-8 belong to the monoclinic system with space group C2/c. Structural differences between two types of compounds may be caused by different reaction conditions. Magnetic properties of 2-4 and 6-8 have been investigated and only compounds 4 and 8 display significant frequency-dependence, albeit without reaching the characteristic maxima above 2 K, implying slow magnetic relaxation behaviors in 4 and 8. After the application of a DC field, good peak shapes of AC signal were obtained and got the energy barrier for 4, ΔE/kB = 79.80 K and the pre-exponential factor τ0 = 1.28 × 10(-10) s, for 8, ΔE/kB = 38.15 K and τ0 = 2.47 × 10(-9) s. Geometrical differences in the crystal fields of Dy(3+) in 4 and 8 seem to be responsible for the large divergence of their magnetic behaviors. Luminescence analyses were performed on coordination polymers containing Eu(3+), Tb(3+), and Dy(3+), which exhibit the characteristic transitions of corresponding lanthanide ions, and give the lifetime (τ0) of 1, 3, 4, 5, 7 and 8 are 0.56 ms, 0.89 ms, 8.48 μs, 0.60 ms, 0.75 ms and 36.35 μs, respectively.

  17. Effect of nonlinearity of connecting dampers on vibration control of connected building structures

    Directory of Open Access Journals (Sweden)

    Masatoshi eKasagi

    2016-01-01

    Full Text Available The connection of two building structures with dampers is one of effective vibration control systems. In this vibration control system, both buildings have to possess different vibration properties in order to provide a higher vibration reduction performance. In addition to such condition of different vibration properties of both buildings, the connecting dampers also play an important role in the vibration control mechanism. In this paper, the effect of nonlinearity of connecting dampers on the vibration control of connected building structures is investigated in detail. A high-damping rubber damper and an oil damper with and without relief mechanism are treated. It is shown that, while the high-damping rubber damper is effective in a rather small deformation level, the linear oil damper is effective in a relatively large deformation level. It is further shown that, while the oil dampers reduce the response in the same phase as the case without dampers, the high-damping rubber dampers change the phase. The merit is that the high-damping rubber can reduce the damper deformation and keep the sufficient space between both buildings. This can mitigate the risk of building pounding.

  18. Optimization procedure to control the coupling of vibration modes in flexible space structures

    Science.gov (United States)

    Walsh, Joanne L.

    1987-01-01

    As spacecraft structural concepts increase in size and flexibility, the vibration frequencies become more closely-spaced. The identification and control of such closely-spaced frequencies present a significant challenge. To validate system identification and control methods prior to actual flight, simpler space structures will be flown. To challenge the above technologies, it will be necessary to design these structures with closely-spaced or coupled vibration modes. Thus, there exists a need to develop a systematic method to design a structure which has closely-spaced vibration frequencies. This paper describes an optimization procedure which is used to design a large flexible structure to have closely-spaced vibration frequencies. The procedure uses a general-purpose finite element analysis program for the vibration and sensitivity analyses and a general-purpose optimization program. Results are presented from two studies. The first study uses a detailed model of a large flexible structure to design a structure with one pair of closely-spaced frequencies. The second study uses a simple equivalent beam model of a large flexible structure to obtain a design with two pairs of closely-spaced frequencies.

  19. Deduction of structural information of interfacial proteins by combined vibrational spectroscopic methods.

    Science.gov (United States)

    Wang, Jie; Paszti, Zoltan; Clarke, Matthew L; Chen, Xiaoyun; Chen, Zhan

    2007-05-31

    We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.

  20. X-ray luminescence spectra of graded-gap Al xGa 1- xAs structures irradiated by alpha particle

    Science.gov (United States)

    Šilėnas, A.; Požela, J.; Požela, K.; Jucienė, V.; Dapkus, L.

    2011-12-01

    The influence of 241Am alpha particle irradiation on X-ray luminescence spectra of the graded-gap AlxGa1-xAs structures of different thicknesses is investigated. It is observed that the integral X-ray luminescence intensity of nonirradiated thin (15 μm) structure is 1.4 times less than that in the thick (32 μm) structure, and this difference increases to 3 times after 3×1010 cm-2 dose of irradiation by alpha particle. The X-ray luminescence intensity of the energy hνFgg is responsible of that large difference, because it shifts the X-ray generated carriers to the narrow-gap surface with great nonradiative surface recombination rate. The alpha particle irradiation increases nonradiative recombination rate and causes a decrease of the X-ray luminescence intensity of all spectra lines in the thin (15 μm) detector. The most significant drop in X-ray luminescence efficiency is observed from the region at narrow-gap surface after the initial stage (109 cm-2 dose) of alpha particle irradiation. In the 32 μm thick detector, the luminescence intensity of the energy hν=1.8 eV does not change up to 2×1010 cm-2 of alpha particle irradiation dose. That means the high irradiation hardness of the thick graded-gap X-ray detector with optical response.

  1. Nondestructive inspection and vibration analysis of disbonds in carbon fibre structures using laser diode shearography

    Science.gov (United States)

    Steinchen, Wolfgang; Gan, Ymin; Kupfer, Gerhard; Maeckel, Peter

    2003-05-01

    University of Kassel and isi-sys have extended the application of shearography to quantitative vibration analysis and developed a portable automatic controlled shearography system. The Vibrograph is already used for vibration measurements in industry for example of electronic boards typically in combination with laboratory shakers in harmonic excitation modes. Now a small portable piezo shaker permits local excitation of the defects such as delaminations and disbonds. Vibrating in their natural mode shapes the Vibrograph detects the location of the defects within the fiber structure.

  2. Flexible free-standing luminescent two-component fiber films with tunable hierarchical structures based on hydrogen-bonding architecture.

    Science.gov (United States)

    Yan, Dongpeng; Williams, Gareth R; Zhao, Min; Li, Changming; Fan, Guoling; Yang, Hejia

    2013-12-17

    Although the fabrication of hierarchical architectures with highly ordered functional units is of great importance for both fundamental science and practical application, the development of one-dimensional (1D) organic hierarchical micro/nanostructures based on low-molecular-weight (LMW) building blocks remains at an early stage. Herein, we report two types of micro/nanoscaled multicomponent fluorescent fiber systems with tunable hierarchical morphologies through a one-step coassembly process. With the aid of hydrogen-bonding motifs, LMW precursors (1,4-bis(5-phenyloxazol-2-yl)benzene (A) and two coassembled building blocks: 4-bromotetrafluorobenzene carboxylic acid (B) and 2,3,4,5,6-pentafluorophenol (C)) have been self-organized into fibers and flexible free-standing films, which show hierarchical micro/nanostructures as well as tunable one-/two-photon luminescence. The disassembly of the multicomponent A.B and A.C fibers occurs at high temperature, which further alters the luminescence properties of the multicomponent materials. Therefore, this work provides a facile wet chemical route for fabricating multicomponent LMW self-assembled fibers and free-standing film systems with tunable hierarchical structures and photoemission behaviors, and such self-organized systems may have potential applications in fields of two-photon luminescence and thermal sensors.

  3. Simulation of Heat Generating In a Vibrating Structure Using COMSOL Multiphysics

    Directory of Open Access Journals (Sweden)

    Ali Kamil Jebur

    2016-03-01

    Full Text Available This paper dealt with heat generating in a beam structure model subjected to small vibrations to know the viscos elastic behavior under heat and vibration. The model first computed coupled thermal – structural interaction. The results obtained from this analysis of the model treated by the finite element method to calculate amount of heat generation in the material. A transient heat transfer analysis then simulated the slow rising temperature in the beam using these heat source terms. The model has been constructed from two blocks, the first block from Aluminum while the second block made from β –Titanium. The model was constrained from one side, while the other side free, so vibrations that occur along the model. These vibrations led to heat generating, so yields that residual stresses through the model. The result obtained represented in curves which give good agreement with international published researches

  4. Vibration test on KMRR reactor structure and primary cooling system piping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-10-01

    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author).

  5. Vibration based structural health monitoring in fibre reinforced composites employing the modal strain energy method

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.

    2009-01-01

    The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.

  6. Structures and luminescent properties of new uranyl-based hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Severance, R.C.; Vaughn, S.A.; Smith, M.D.; Hans-Conrad zur, Loye [Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States)

    2011-06-15

    Six uranyl coordination compounds, UO{sub 2}(OH)(PYCA) (1), UO{sub 2}(PYCA){sub 2}(H{sub 2}O).2H{sub 2}O (2), UO{sub 2}(PIC){sub 2} (3), UO{sub 2}(H{sub 2}O){sub 2}(NIC){sub 2} (4), UO{sub 2}(OH)(HINIC)(INIC) (5), and UO{sub 2}(PYTAC){sub 2}(H{sub 2}O){sub 2} (6) were grown as single crystals via hydrothermal synthesis (PYCA - pyrazine-2-carboxylate, PIC - picolinate, NIC - nicotinate, INIC - iso-nicotinate, and PYTAC - 2-(pyridin-4-yl)thiazole-5-carboxylate) to study their optical properties. All six compounds have been identified via single crystal X-ray diffraction and fully characterized via powder X-ray diffraction, infrared spectroscopy, UV-Vis spectroscopy, and fluorescence spectroscopy. Three of the complexes, 1, 3, and 6, represent new structures, and their synthesis and structural characterization is detailed within. The structures of 2, 4, and 5 have previously been reported in the literature. Coordination polymer 1 crystallizes in the orthorhombic space group Pca21 (a = 13.5476(5) Angstroms, b = 6.6047(2) Angstroms, c = 8.3458(3) Angstroms), and forms infinite 1-D chains of corner-sharing uranium polyhedra connected into 2-D layers by bridging ligands. Coordination polymer 3 crystallizes in the monoclinic space group Cc (a = 8.4646(8) Angstroms, b = 13.0357(11) Angstroms, c = 11.8955(10) Angstroms, {beta} = 96.815(2) degrees), and forms ligand-bridged 1-D chains. Complex 6 crystallizes in the triclinic space group P-1 (a = 5.6272(7) Angstroms, b = 8.9568(10) Angstroms, c = 10.4673(12) Angstroms, {alpha} 90.508(2) degrees, {beta} = 104.194(2) degrees, {gamma} = 91.891(2) Angstroms), and consists of isolated uranyl complexes connected via hydrogen bonds. The structures and luminescent properties of UO{sub 2}(OH)(PYCA) (1), UO{sub 2}(PYCA){sub 2}(H{sub 2}O).2H{sub 2}O (2), UO{sub 2}(PIC){sub 2} (3), UO{sub 2}(H{sub 2}O){sub 2}(NIC){sub 2} (4), UO{sub 2}(OH)(HINIC)(INIC) (5), and UO{sub 2}(PYTAC){sub 2}(H{sub 2}O){sub 2} (6) are discussed. (authors)

  7. Vibrations in a Multi-Storey Lightweight Building Structure

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Kirkegaard, Poul Henning

    2013-01-01

    This paper provides a quantification of the changes in vibration level that can be expected in a lightweight multi-storey wooden building due to reduced connection stiffness or added nonstructural mass. Firstly, the impact of changes in the floor-to-wall connections is examined. Secondly, a study...... is performed regarding variations of the vibration level due to different placements of nonstructural mass inside the building. The analyses are carried out by means of a modular three-dimensional finite-element model. Each floor and wall panel is modelled in high detail, including door and window openings....... By a substructure approach, the panels are assembled to construct a global building model that allows analysis within a reasonable computation time....

  8. Surface vibrational and structural properties of polymers by HREELS

    Science.gov (United States)

    Pireaux, J. J.; Gregoire, C.; Vermeersch, M.; Thiry, P. A.; Caudano, R.

    1987-10-01

    The extremely promising applications of electron induced vibrational spectroscopy to study the surfaces of polymers and other organic materials are reviewed. It is demonstrated that this technique, which is known as HREELS: high-resolution electron-energy loss spectroscopy, is selectively surface sensitive: information on both the composition and morphology of the polymer surfaces is obtained. However, a quantitative interpretation of the data is not straightforward, as the exact interaction mechanism(s) between the probing electron and the molecular vibrations are not yet ascertained. One of the many illustrations given is the study of the incipient interface formation between a clean cured polyimide film and deposited aluminum which will demonstrate the specific completeness and capabilities of HREELS.

  9. Active vibration control of ring-stiffened cylindrical shell structure using macro fiber composite actuators.

    Science.gov (United States)

    Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2014-10-01

    Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results. Ring-stiffened cylindrical shell structure is then manufactured and modal test is conducted to verify modal analysis results. An optimal controller is designed and experimentally realized to the proposed shell structure system. Vibration control performance is experimentally evaluated in time domain and verified by simulated control results.

  10. Structural and vibrational characterization of sugar arabinitol structures employing micro-Raman spectra and DFT calculations

    Science.gov (United States)

    Hédoux, Alain; Guinet, Yannick; Carpentier, Laurent; Paccou, Laurent; Derollez, Patrick; Brandán, Silvia Antonia

    2017-06-01

    In this work, three monomeric forms of arabinitol, usually named arabitol, and their dimeric species have been structural and vibrationally studied by using the micro-Raman spectra in the solid phase accomplished with theoretical calculations based on the theory of the functional of the density (DFT). The hybrid B3LYP method was used for all the calculations together with the 6-31G* and 6-311++g** basis sets. Two different L structures with minima energies were predicted in accordance to the two polymorphic structures revealed by recent X-ray diffraction experiments. The studies by natural bond orbital (NBO) calculations reveals high stabilities of the L form as compared with the D one but the topological properties by using the atoms in molecules (AIM) suggest a higher stability of the D form due to a strong H bond interactions. The scaled mechanical force fields (SQMFF) procedure was used to perform the complete vibrational assignments for the monomeric forms and their dimer. On the other hand, the similarity in the gap values computed for the three forms of arabitol with those observed for sucrose, trehalose, maltose and lactose in gas phase at the same level of theory could partially explain the sweetening property of this alcohol. In addition, the influences of the size of the basis set on some properties were evidenced.

  11. Fuzzy Semiactive Vibration Control of Structures Using Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Xuan Bao Nguyen

    2017-01-01

    Full Text Available In this research, a novel variable stiffness vibration isolator that uses magnetorheological elastomers (MREs accompanied with a fuzzy semiactive vibration control was developed. Firstly, the viscoelastic characteristics of MREs in shear mode were clarified systematically in order to achieve a mathematical basis for the controller development. Secondly, the fuzzy semiactive vibration control with a strategy based on the Lyapunov theory and dynamic characteristic of MREs was proposed for minimizing the movement of the isolator. In the conventional semiactive algorithm, the command applied current of MRE-based isolator is set at either minimum or maximum value which causes high acceleration and jerk peaks periodically, thus leading to the degeneration of the overall system quality. However, the fuzzy semiactive algorithm presented here is able to produce the sufficient applied current and thus viscoelastic force is desirably produced. The effectiveness of the developed isolator was evaluated numerically by MATLAB simulation and experimentally in comparison with the performances of a passive system and a system with on-off type semiactive controller. The results showed that the developed controller was successful in overcoming the disadvantages of conventional on-off semiactive control.

  12. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  13. Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 3: Deterministic and random vibrations of exemplary system

    National Research Council Canada - National Science Library

    M. Podworna; M. Klasztorny

    2014-01-01

    ...) bridge/track structure/high-speed train system (BTT), developed in Part 2, advanced computer algorithms for the BTT numerical modelling and simulation as well as a computer programme to simulate vertical vibrations of BTT systems are developed...

  14. Omnidirectional luminescence enhancement of fluorescent SiC via pseudoperiodic antireflective subwavelength structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Yakimova, Rositza

    2012-01-01

    -785 nm is dramatically suppressed from 20.5% to 1.62%, and the hydrophobic surface with a large contact angle of 98° is also achieved. The angle-resolved photoluminescence study presents a considerable omnidirectional luminescence enhancement with an integral intensity enhancement of 66.3% and a fairly...

  15. Luminescence Instrumentation

    DEFF Research Database (Denmark)

    Jain, Mayank; Bøtter-Jensen, Lars

    2014-01-01

    This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference...... irradiation. It then briefly describes development of spectrometers in dating applications, and finally gives an overview of recent development in the field directly linked to novel instrumentation. Contents of Paper...

  16. A series of novel lanthanide carboxyphosphonates with a 3D framework structure: synthesis, structure, and luminescent and magnetic properties.

    Science.gov (United States)

    Chen, Kai; Dong, Da-Peng; Sun, Zhen-Gang; Jiao, Cheng-Qi; Li, Chao; Wang, Cheng-Lin; Zhu, Yan-Yu; Zhao, Yan; Zhu, Jiang; Sun, Shou-Hui; Zheng, Ming-Jing; Tian, Hui; Chu, Wei

    2012-08-28

    By introduction of 1,4-benzenedicarboxylic acid as the second organic ligand, a series of novel lanthanide carboxyphosphonates with a 3D framework structure, namely, [Ln(3)(H(2)L)(HL)(2)(bdc)(2)(H(2)O)]·7H(2)O (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8); H(3)L = H(2)O(3)PCH(2)NC(5)H(9)COOH; H(2)bdc = HOOCC(6)H(4)COOH) have been synthesized under hydrothermal conditions. Compounds are isostructural and feature a 3D framework in which Ln(III) polyhedra are interconnected by bridging {CPO(3)} tetrahedra into 2D inorganic layers parallel to the ab plane. The organic groups of H(2)L(-) are grafted on the two sides of the layer. These layers are further cross-linked by the bdc(2-) ligands from one layer to the Ln atoms from the other into a pillared-layered architecture with one-dimensional channel system along the a axis. The thermal stability of compounds has been investigated. Luminescent properties of compounds , and the magnetic properties of compound have also been studied.

  17. Silica-modified luminescent LaPO4:Eu@LaPO4@SiO2core/shell nanorods: Synthesis, structural and luminescent properties.

    Science.gov (United States)

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  19. Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses

    Science.gov (United States)

    Mei, C.

    1984-01-01

    The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.

  20. Homo- and heteropolynuclear platinum complexes stabilized by dimethylpyrazolato and alkynyl bridging ligands: synthesis, structures, and luminescence.

    Science.gov (United States)

    Forniés, Juan; Fuertes, Sara; Martín, Antonio; Sicilia, Violeta; Lalinde, Elena; Moreno, M Teresa

    2006-11-06

    This work describes the synthesis of cis-[Pt(C[triple bond]CPh)2(Hdmpz)2] (1) and its use as a precursor for the preparation of homo- and heteropolynuclear complexes. Double deprotonation of compound 1 with readily available M(I) (M = Cu, Ag, Au) or M(II) (M = Pd, Pt) species affords the discrete hexanuclear clusters [{PtM2(mu-C[triple bond]CPh)2(mu-dmpz)(2)}(2)] [M = Cu (2), Ag (3), Au (4)], in which both "Pt(C[triple bond]CPh)2(dmpz)(2)" fragments are connected by four d(10) metal centers, and are stabilized by alkynyl and dimethylpyrazolate bridging ligands, or the trinuclear complexes [Pt(mu-C[triple bond]CPh)2(mu-dmpz)(2){M(C/\\P)}2] (M = Pd (5), Pt (6); C/\\P = CH(2)-C(6)H(4)-P(o-tolyl)2-kappaC,P), respectively. The X-ray structures of complexes 1-4 and 6 are reported. The X-ray structure of the platinum-copper derivative 2 shows that all copper centers exhibit similar local geometry being linearly coordinated to a nitrogen atom and eta(2) to one alkynyl fragment. However in the related platinum-silver (3) and platinum-gold (4) derivatives the silver and gold atoms present three different coordination environments. The complexes have been studied by absorption and emission spectroscopy. The hexanuclear complexes exhibit bright luminescence in the solid state and in fluid solution (except 4 in the solid state at 298 K). Dual long-lived emission is observed, being clearly resolved in low-temperature rigid media. The low-energy emission is ascribed to MLM'CT Pt(d)/pi(C[triple bond]CPh)-->Pt(p(z))/M'(sp)/pi*(C[triple bond]CPh) modified by metal-metal interactions whereas the high-energy emission is tentatively attributed to an emissive state derived from dimethylpyrazolate-to-metal (d(10)) LM'CT transitions pi(dmpz)-->M'(d(10)).

  1. Syntheses, crystal structures, magnetic and luminescent properties of two classes of molybdenum(VI) rich quaternary lanthanide selenites.

    Science.gov (United States)

    Zhang, Su-Yun; Mao, Jiang-Gao

    2011-06-06

    Hydrothermal reactions of lanthanide(III) oxide, molybdenum oxide, and SeO(2) at 230 °C lead to five new molybdenum-rich quaternary lanthanide selenites with two types of structures, namely, H(3)Ln(4)Mo(9.5)O(32)(SeO(3))(4)(H(2)O)(2) (Ln = La, 1; Nd, 2) and Ln(2)Mo(3)O(10)(SeO(3))(2)(H(2)O) (Ln = Eu, 3; Dy, 4; Er, 5). Compounds 1 and 2 feature a complicated three-dimensional (3D) architecture constructed by the intergrowth of infinite molybdenum selenite chains of [Mo(4.75)SeO(19)](5.5-) and one-dimensional (1D) lanthanide selenite chains. The structures of 3, 4, and 5 exhibit 3D network composed of 1D [Mo(3)SeO(13)](4-) anionic chains connected by lanthanide selenite chains. The molybdenum selenite chain of [Mo(4.75)SeO(19)](5.5-) in 1 and 2 is composed of a pair of [Mo(3)SeO(13)](4-) chains as in 3, 4, and 5 interconnected by a [Mo(1.75)O(8)](5.5-) double-strand polymer via corner-sharing. The lanthanide selenite chains in both structures are similar in terms of coordination modes of selenite groups as well as the coordination environments of lanthanide(III) ions. Luminescent studies at both room temperature and 10 K indicate that compound 2 displays strong luminescence in the near-IR region and compound 3 exhibits red fluorescent emission bands with a luminescent lifetime of 0.57 ms. Magnetic properties of these compounds have been also investigated. © 2011 American Chemical Society

  2. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  3. Transverse Resonant Vibration of Non-Bearing Structures Caused by Wind

    Science.gov (United States)

    Jendzelovsky, Norbert; Antal, Roland

    2017-10-01

    Nowadays, there are increasing use of very thin, subtle and light structures in the field of building constructions. We can find such a structures as part of roofs or design facades. By using these lamellas like, non-bearing structures as a part of architectural design of buildings, it is necessary to consider wind effects on these structures. Subtle structures of this type are prone to vibration in the transverse direction of the wind flow. The fact that the vibration occurs depends on wind parameters (wind velocity, direction of an air flow) and it also depends on the properties of lamella (shape, length, mass, natural frequency, support type). The principal idea of this article is to show susceptibility of lamellae-like structures to transverse resonant vibration caused by the phenomenon called Von Karman effect. Comparison of susceptibility to transverse resonance vibration was analysed on the different shapes of lamellas loaded by different wind speed. Analysis was based on usage of empirically derived equations. Von Karman effect arise from wind flow past an object. Turbulence in the form of vortices are formed at the object and shed into the flowing stream intermittently. The potential problem is that this turbulence can induce vibrations into the lamella itself. In terms of this vibration problem, two frequencies are interesting. Von Karman shedding frequency is the frequency at which the vortices are formed and shed at the object. The vortex-shedding frequency increases with the velocity of the wind flow and decreases with the size of the object. Natural frequency of the object depends on the construction of the lamella itself. Parameters of lamella as a shape, mass, length, elasticity modulus of material and support types are directly involved in the calculation of natural frequency. Worst case scenario in the term of transverse resonant vibration occurs when the natural frequency of lamella is equal to the vortex-shedding frequency. In this case

  4. Communication: interfacial water structure revealed by ultrafast two-dimensional surface vibrational spectroscopy

    NARCIS (Netherlands)

    Zhang, Z.; Piatkowski, L.; Bakker, H.J.; Bonn, M.

    2011-01-01

    Knowledge of the interfacial water structure is essential for a basic understanding of the many environmental, technological, and biophysical systems in which aqueous interfaces appear. Using ultrafast two-dimensional surface-specific vibrational spectroscopy we show that the structure of heavy

  5. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2003-01-01

    The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous dampin...

  6. Development of flexural vibration inspection techniques to rapidly assess the structural health of rural bridge systems

    Science.gov (United States)

    Brian K. Brashaw; Robert Vatalaro; Xiping Wang; Kevin Sarvela; James P. Wacker

    2008-01-01

    Approximately 4,000 vehicle bridges in the State of Minnesota contain structural timber members. Recent research at the University of Minnesota Duluth Natural Resources Research Institute (UMD NRRI) has been conducted on vibration testing of timber bridges as a means of developing rapid in-place testing techniques for assessing the structural health of bridges. The...

  7. Structural dynamics in complex liquids studied with multidimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-08-31

    The development of new sustainable energy sources is linked to our understanding of the molecular properties of water and aqueous solutions. Energy conversion, storage, and transduction processes, particularly those that occur in biology, fuel cells, and batteries, make use of water for the purpose of moving energy in the form of charges and mediating the redox chemistry that allows this energy to be stored as and released from chemical bonds. To build our fundamental knowledge in this area, this project supports work in the Tokmakoff group to investigate the molecular dynamics of water’s hydrogen bond network, and how these dynamics influence its solutes and the mechanism of proton transport in water. To reach the goals of this grant, we developed experiments to observe molecular dynamics in water as directly as possible, using ultrafast multidimensional vibrational spectroscopy. We excite and probe broad vibrational resonances of water, molecular solutes, and protons in water. By correlating how molecules evolve from an initial excitation frequency to a final frequency, we can describe the underlying molecular dynamics. Theoretical modeling of the data with the help of computational spectroscopy coupled with molecular dynamics simulations provided the atomistic insight in these studies.

  8. DFT study of the molecular and crystal structure and vibrational analysis of cisplatin

    Science.gov (United States)

    Georgieva, I.; Trendafilova, N.; Dodoff, N.; Kovacheva, D.

    2017-04-01

    DFT and periodic-DFT (PAW-PBE method, code VASP) calculations have been performed to study the structural and vibrational characteristics of cis-diamminedichloroplatinum(II) (cisplatin) at molecular and outside molecular level. To estimate the effect of the intermolecular interactions in crystal on the structural and vibrational properties of cisplatin, three theoretical models are considered in the present study: monomer (isolated molecule), hydrogen bonded dimer and periodic solid state structures. The work focused on the role of the theoretical models for correct modeling and prediction of geometrical and vibrational parameters of cisplatin. It has been found that the elaborate three-dimensional intermolecular hydrogen bonding network in the crystalline cisplatin significantly influences the structural and vibrational pattern of cisplatin and therefore the isolated cisplatin molecule is not the correct computational model regardless of the theoretical level used. To account for the whole intermolecular hydrogen bonding network in direction of both a and c axis and for more reliable calculations of structural and vibrational parameters periodic DFT calculations were carried out in the full crystalline periodic environment with the known lattice parameters for each cisplatin polymorph phase. The model calculations performed both at molecular level and for the periodic structures of alpha and beta cisplatin polymorph forms revealed the decisive role of the extended theoretical model for reliable prediction of the structural and vibrational characteristics of cisplatin. The powder diffraction pattern and the calculated IR and Raman spectra predicted beta polymorph form of our cisplatin sample freshly synthesized for the purposes of the present study using the Dhara's method. The various rotamers realized in the polymorph forms of cisplatin were explained by the low population of the large number of rotamers in solution as well as with the high rotamer

  9. A unified solution for vibration analysis of plates with general structural stress distributions

    Directory of Open Access Journals (Sweden)

    Nian Yang

    2016-11-01

    Full Text Available Complex stress distributions often exist in ocean engineering structures. This stress influences structural vibrations. Finite Element Methods exhibit some shortcomings for solving non-uniform stress problems, such as an unclear physical interpretation, complicated operation, and large number of computations. Analytical methods research considers mainly uniform stress problems, and often, their methods cannot be applied in practical marine structures with non-uniform stress. In this paper, an analytical method is proposed to solve the vibration of plates with general stress distributions. Non-uniform stress is expressed as a special series, and the stress influence is inserted into a vibration equation that is solved through decoupling to obtain an analytical solution. This method has been verified using numerical examples and can be used in arbitrary stress distribution cases. This method requires fewer computations and it provides a clearer physical interpretation, so it has advantages in some qualitative research.

  10. Several (4,4)- and (5,6,8)-connected lanthanide-organic frameworks: structures, luminescence and magnetic properties.

    Science.gov (United States)

    Zhao, Xiao-Qing; Liu, Xu-Hui; Zhao, Bin

    2013-10-01

    A series of lanthanide-based organic frameworks with formulas of {[PrL(H2O)2]·2H2O}n () and {[Ln3L3(H2O)2]·2H2O}n (Ln = Eu (), Gd (), Tb (), Dy (), Ho (), Er (); H3L = 4-(carboxymethoxy)isophthalic acid), were hydrothermally synthesized and structurally characterized. It is the first time that 4-(carboxymethoxy)isophthalic acid is employed in producing lanthanide compounds. The seven compounds exhibit two types of structures with the decreasing radius of the lanthanide ions, representing the lanthanide contraction effect. Compound with the large Pr(3+) ion displays a 2D layered structure with a binodal (4,4)-connected topology with the Schläfli symbol of (3(3)6(3))2, whereas compounds with small Ln(3+) ions feature a 3D framework constructed from carboxyl groups with a (5,6,8)-connected topology with the Schläfli symbol of (3(2)4(4)5(4))·(3(4)4(4)5(4)6(3))·(3(4)4(8)5(6)6(9)8). The luminescence and magnetic properties were investigated, and the results indicate that the H3L ligand can sensitize the lanthanide luminescence in compounds , and and makes a contribution to the antiferromagnetic interactions in compound or the uncertain magnetic interactions in compounds . Additionally, the thermal analyses suggest the high thermal stability of compounds .

  11. Reduction of Structural Vibrations by Passive and Semiactively Controlled Friction Dampers

    Directory of Open Access Journals (Sweden)

    L. Gaul

    2014-01-01

    Full Text Available Reduction of structural vibrations is of major interest in mechanical engineering for lowering sound emission of vibrating structures, improving accuracy of machines, and increasing structure durability. Besides optimization of the mechanical design or various types of passive damping treatments, active structural vibration control concepts are efficient means to reduce unwanted vibrations. In this contribution, two different semiactive control concepts for vibration reduction are proposed that adapt to the normal force of attached friction dampers. Thereby, semiactive control concepts generally possess the advantage over active control in that the closed loop is intrinsically stable and that less energy is required for the actuation than in active control. In the chosen experimental implementation, a piezoelectric stack actuator is used to apply adjustable normal forces between a structure and an attached friction damper. Simulation and experimental results of a benchmark structure with passive and semiactively controlled friction dampers are compared for stationary narrowband excitation. For simulations of the control performance, transient simulations must be employed to predict the achieved vibration damping. It is well known that transient simulation of systems with friction and normal contact requires excessive computational power due to the nonlinear constitutive laws and the high contact stiffnesses involved. However, commercial finite-element codes do not allow simulating feedback control in a general way. As a remedy, a special simulation framework is developed which allows efficiently modeling interfaces with friction and normal contact by appropriate constitutive laws which are implemented by contact elements in a finite-element model. Furthermore, special model reduction techniques using a substructuring approach are employed for faster simulation.

  12. Development of a unified numerical procedure for free vibration analysis of structures

    Science.gov (United States)

    Gupta, K. K.

    1981-01-01

    This paper presents the details of a unified numerical algorithm and the associated computer program developed for the efficient determination of natural frequencies and modes of free vibration of structures. Both spinning and nonspinning structures with or without viscous and/or structural damping may be solved by the current procedure; in addition, the program is capable of solving static problems with multiple load cases as well as the quadratic matrix eigenproblem associated with a finite dynamic element structural discretization.

  13. An Experimental Assessment of Transverse Adaptive Fir Filters as Applied to Vibrating Structures Identification

    Directory of Open Access Journals (Sweden)

    Daniel A. Castello

    2005-01-01

    Full Text Available The present work is aimed at assessing the performance of adaptive Finite Impulse Response (FIR filters on the identification of vibrating structures. Four adaptive algorithms were used: Least Mean Squares (LMS, Normalized Least Mean Squares (NLMS, Transform-Domain Least Mean Squares (TD – LMS and Set-Membership Binormalized Data-Reusing LMS Algorithm (SM – BNDRLMS. The capability of these filters to perform the identification of vibrating structures is shown on real experiments. The first experiment consists of an aluminum cantilever beam containing piezoelectric sensors and actuators and the second one is a steel pinned-pinned beam instrumented with accelerometers and an electromechanical shaker.

  14. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution.

    Science.gov (United States)

    Adhikary, Ramkrishna; Zimmermann, Jörg; Romesberg, Floyd E

    2017-02-08

    Vibrational spectroscopy provides a direct route to the physicochemical characterization of molecules. While both IR and Raman spectroscopy have been used for decades to provide detailed characterizations of small molecules, similar studies with proteins are largely precluded due to spectral congestion. However, the vibrational spectra of proteins do include a "transparent window", between ∼1800 and ∼2500 cm-1, and progress is now being made to develop site-specifically incorporated carbon-deuterium (C-D), cyano (CN), thiocyanate (SCN), and azide (N3) "transparent window vibrational probes" that absorb within this window and report on their environment to facilitate the characterization of proteins with small molecule-like detail. This Review opens with a brief discussion of the advantages and limitations of conventional vibrational spectroscopy and then discusses the strengths and weaknesses of the different transparent window vibrational probes, methods by which they may be site-specifically incorporated into peptides and proteins, and the physicochemical properties they may be used to study, including electrostatics, stability and folding, hydrogen bonding, protonation, solvation, dynamics, and interactions with inhibitors. The use of the probes to vibrationally image proteins and other biomolecules within cells is also discussed. We then present four case studies, focused on ketosteroid isomerase, the SH3 domain, dihydrofolate reductase, and cytochrome c, where the transparent window vibrational probes have already been used to elucidate important aspects of protein structure and function. The Review concludes by highlighting the current challenges and future potential of using transparent window vibrational probes to understand the evolution and function of proteins and other biomolecules.

  15. Active Vibration Control of a Monopile Offshore Structure

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1996-01-01

    coefficient should be obtained in order to have a relatively small excitation on the cylinder. The drag coefficient can be controlled if the separation points of the boundary layers can be controlled. It is proposed to control the separation points by blowing compressed air out of the holes in the cylinder....... If the natura1 separation points of the boundary layers are rejected by blowing air out of the holes the drag coefficient will increase while it will decrease if it is possible to attach the boundary layer. The results from the experimental test have shown that it is possible to increase the drag coefficient...... with a factor 1.5-2 by blowing air out of the holes in a cylinder vibrating in a stationary water flow....

  16. Strength and Dislocation Structure Evolution of Small Metals under Vibrations

    Science.gov (United States)

    Ngan, Alfonso

    2015-03-01

    It is well-known that ultrasonic vibration can soften metals, and this phenomenon has been widely exploited in industrial applications concerning metal forming and bonding. In this work, we explore the effects of a superimposed small oscillatory load on metal plasticity, from the nano- to macro-size range, and from audible to ultrasonic frequency ranges. Macroscopic and nano-indentation were performed on aluminum, copper and molybdenum, and the results show that the simultaneous application of oscillatory stresses can lower the hardness of these samples. More interestingly, EBSD and TEM observations show that subgrain formation and reduction in dislocation density generally occurred when stress oscillations were applied. These findings point to an important knowledge gap in metal plasticity - the existing understanding of ultrasound softening in terms of the vibrations either imposing additional stress waves to augment the quasi-static applied load, or heating up the metal, whereas the metal's intrinsic deformation resistance or dislocation interactive processes are assumed unaltered by the ultrasound, is proven wrong by the present results. Furthermore, in the case of nanoindentation, the Continuous Stiffness Measurement technique for contact stiffness measurement assumes that the imposed signal-carrier oscillations do not intrinsically alter the material properties of the specimen, and again, the present results prove that this can be wrong. To understand the enhanced subgrain formation and dislocation annihilation, Discrete Dislocation Dynamics (DDD) simulations were carried out and these show that when an oscillatory stress is superimposed on a quasi-static applied stress, reversals of motion of dislocations may occur, and these allow the dislocations to revisit repeatedly suitable configurations for annihilation. DDD, however, was unable to predict the observed subgrain formation presumably because the number of dislocations that can be handled is not large

  17. Vibration analysis of hydropower house based on fluid-structure coupling numerical method

    Directory of Open Access Journals (Sweden)

    Shu-he Wei

    2010-03-01

    Full Text Available By using the shear stress transport (SST model to predict the effect of random flow motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the powerhouse and its tube water was developed. The effects of fluid-structure interaction are considered through the kinematic and dynamic conditions applied to the fluid-structure interfaces (FSI. Numerical simulation of turbulent flow through the whole flow passage of the powerhouse and concrete structure vibration analysis in the time domain were carried out with the model. Considering the effect of coupling the turbulence and the powerhouse structure, the time history response of both turbulent flows through the whole flow passage and powerhouse structure vibration were generated. Concrete structure vibration analysis shows that the displacement, velocity, and acceleration of the dynamo floor respond dramatically to pressure fluctuations in the flow passage. Furthermore, the spectrum analysis suggests that pressure fluctuation originating from the static and dynamic disturbances of hydraulic turbine blades in the flow passage is one of the most important vibration sources.

  18. Vibration Analysis and Design of a Structure Subjected to Human Walking Excitations

    Directory of Open Access Journals (Sweden)

    M. Setareh

    2010-01-01

    Full Text Available Annoying building floor vibrations have become a serious serviceability issue. This is mainly due to decrease in the system mass resulting from the use of higher strength materials; use of computer-assisted design and the Load and Resistance Factor Design Method to optimize the structure based on the strength requirements; fewer partitions and more innovative designs by architects achieving long, column free spans resulting in a reduction in the natural frequency and damping. This paper provides details of the vibration analysis and design of a novel office building. Three-dimensional computer models of the structure were created and various modifications were made to the original structure, designed based on static loads, to reduce the possible excessive floor vibrations when subjected to walking excitations. Tuned mass dampers were also designed as a back-up vibration control system. A series of dynamic tests were conducted on the building floor to identify the dynamic properties of the structure and these were then used to update the original computer model. Finally, various forcing functions representing human walks and the updated computer model of the structure were used to evaluate the accuracy of the walking excitation force models to predict the structural response. Conclusions are made on the validity of each forcing function studied here.

  19. Regarding "A new method for predicting nonlinear structural vibrations induced by ground impact loading" [Journal of Sound and Vibration, 331/9 (2012) 2129-2140

    Science.gov (United States)

    Cartmell, Matthew P.

    2016-09-01

    The Editor wishes to make the reader aware that the paper "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140, did not contain a direct citation of the fundamental and original work in this field by Dr. Mark Svinkin. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.

  20. The structure of filled skutterudites and the local vibration behavior of the filling atom

    Science.gov (United States)

    Zhou, Xiaojuan; Zong, Peng-an; Chen, Xihong; Tao, Juzhou; Lin, He

    2017-02-01

    Both of atomic pair distribution function (PDF) and extended x-ray absorption fine structure (EXAFS) experiments have been carried out on unfilled and Yb-filled skutterudites YbxCo4Sb12 (x=0, 0.15, 0.2 and 0.25) samples. The structure refinements on PDF data confirm the large amplitude vibration of Yb atom and the dependence of Yb vibration amplitude on the filling content. Temperature dependent EXAFS experiment on filled skutterudites have been carried out at Yb LⅢ-edge in order to explore the local vibration behavior of filled atom. EXAFS experiments show that the Einstein temperature of the filled atom is very low (70.9 K) which agrees with the rattling behavior.

  1. The structure of filled skutterudites and the local vibration behavior of the filling atom

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaojuan [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Dongguan Institute of Neutron Science, Dongguan 523808 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Peng-an [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen, Xihong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Tao, Juzhou, E-mail: taoj@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Dongguan Institute of Neutron Science, Dongguan 523808 (China); Lin, He, E-mail: linhe@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204 (China)

    2017-02-15

    Both of atomic pair distribution function (PDF) and extended x-ray absorption fine structure (EXAFS) experiments have been carried out on unfilled and Yb-filled skutterudites Yb{sub x}Co{sub 4}Sb{sub 12} (x=0, 0.15, 0.2 and 0.25) samples. The structure refinements on PDF data confirm the large amplitude vibration of Yb atom and the dependence of Yb vibration amplitude on the filling content. Temperature dependent EXAFS experiment on filled skutterudites have been carried out at Yb L{sub Ⅲ}-edge in order to explore the local vibration behavior of filled atom. EXAFS experiments show that the Einstein temperature of the filled atom is very low (70.9 K) which agrees with the rattling behavior.

  2. Natural Frequencies and Modal Damping Ratios Identification of Civil Structures from Ambient Vibration Data

    Directory of Open Access Journals (Sweden)

    Minh-Nghi Ta

    2006-01-01

    Full Text Available Damping is a mechanism that dissipates vibration energy in dynamic systems and plays a key role in dynamic response prediction, vibration control as well as in structural health monitoring during service. In this paper a time domain and a time-scale domain approaches are used for damping estimation of engineering structures, using ambient response data only. The use of tests under ambient vibration is increasingly popular today because they allow to measure the structural response in service. In this paper we consider two engineering structures excited by ambient forces. The first structure is the 310 m tall TV tower recently constructed in the city of Nanjing in China. The second example concerns the Jinma cable-stayed bridge that connects Guangzhou and Zhaoqing in China. It is a single tower, double row cable-stayed bridge supported by 112 stay cables. Ambient vibration of each cable is carried out using accelerometers. From output data only, the modal parameter are extracted using a subspace method and the wavelet transform method.

  3. Luminescent europium and terbium complexes of dipyridoquinoxaline and dipyridophenazine ligands as photosensitizing antennae: structures and biological perspectives.

    Science.gov (United States)

    Dasari, Srikanth; Patra, Ashis K

    2015-12-14

    The europium(III) and terbium(III) complexes, namely [Eu(dpq)(DMF)2(NO3)3] (1), [Eu(dppz)2(NO3)3] (2), [Tb(dpq)(DMF)2Cl3] (3), and [Tb(dppz)(DMF)2Cl3] (4), where dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 1 and 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz in 2 and 4) and N,N'-dimethylformamide (DMF) have been isolated, characterized from their physicochemical data, luminescence studies and their interaction with DNA, serum albumin protein and photo-induced DNA cleavage activity are studied. The X-ray crystal structures of complexes 1-4 show discrete mononuclear Ln(3+)-based structures. The Eu(3+) in [Eu(dpq)(DMF)2(NO3)3] (1) and [Eu(dppz)2(NO3)3] (2) as [Eu(dppz)2(NO3)3]·dppz (2a) adopts a ten-coordinated bicapped dodecahedron structure with a bidentate N,N-donor dpq ligand, two DMF and three NO3(-) anions in 1 and two bidentate N,N-donor dppz ligands and three NO3(-) anions in 2. Complexes 3 and 4 show a seven-coordinated mono-capped octahedron structure where Tb(3+) contains bidentate dpq/dppz ligands, two DMF and three Cl(-) anions. The complexes are highly luminescent in nature indicating efficient photo-excited energy transfer from the dpq/dppz antenna to Ln(3+) to generate long-lived emissive excited states for characteristic f → f transitions. The time-resolved luminescence spectra of complexes 1-4 show typical narrow emission bands attributed to the (5)D0 → (7)F(J) and (5)D4 → (7)F(J) f-f transitions of Eu(3+) and Tb(3+) ions respectively. The number of inner-sphere water molecules (q) was determined from luminescence lifetime measurements in H2O and D2O confirming ligand-exchange reactions with water in solution. The complexes display significant binding propensity to the CT-DNA giving binding constant values in the range of 1.0 × 10(4)-6.1 × 10(4) M(-1) in the order 2, 4 (dppz) > 1, 3 (dpq). DNA binding data suggest DNA groove binding with the partial intercalation nature of the complexes. All the complexes also show binding propensity (K(BSA)

  4. Structural and luminescence behavior of Er(3+) ions doped Barium tellurofluoroborate glasses.

    Science.gov (United States)

    Annapoorani, K; Maheshvaran, K; Arunkumar, S; Suriya Murthy, N; Marimuthu, K

    2015-01-25

    Er(3+) doped Barium tellurofluoroborate glasses (BTFBxE) with the chemical composition (30-x)TeO2+30B2O3+20BaO+20BaF+xEr2O3 (where x=0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 in wt%) were prepared following the melt quenching technique. The different vibrational modes of borates and tellurites in the prepared glasses were explored through FTIR and Raman spectra. The optical absorption spectra have been used to determine the ionic/covalent nature of the metal-ligand bond in the prepared glasses with the help of Nephelauxetic ratio (β) and bonding parameter (δ) studies. The optical band gap of direct and indirect allowed transitions were determined from Tauc's plot and the variations of band gap energy with structural arrangements were discussed. The Urbach energy values were determined and the relatively lower values of the Urbach's energy reveal the minimal degree of disorderness in the prepared glasses. The oscillator strengths (fexp and fcal) and Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were calculated with the application of JO theory and the trends of the JO intensity parameters are found to be Ω2>Ω6>Ω4 for all the prepared glasses with a minimum variation in Ω2 intensity parameter values. A bright green emission was observed from the (2)H11/2+(4)S3/2→ (4)I15/2 transition and the radiative properties such as transition probability (A), stimulated emission cross-section (σP(E)), branching ratio (βr) and radiative lifetime (τ) were calculated using the JO parameters. The suitability of the prepared glasses for the fabrication of photonic devices were also discussed and reported in the present work. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Vibration reduction in helicopters using active control of structural response (ACSR) with improved aerodynamic modeling

    Science.gov (United States)

    Cribbs, Richard Clay

    This dissertation describes the development of a coupled rotor/flexible fuselage aeroelastic response model including rotor/fuselage aerodynamic interactions. This model is used to investigate fuselage vibrations and their suppression using active control of structural response (ACSR). The fuselage, modeled by a three dimensional structural dynamic finite element model, is combined with a flexible, four-bladed, hingeless rotor. Each rotor blade is structurally modeled as an isotropic Euler-Bernoulli beam with coupled flap-lag-torsional dynamics assuming moderate deflections. A free wake model is incorporated into the aeroelastic response model and is validated against previous studies. Two and three dimensional sources model the fuselage aerodynamics. Direct aerodynamic influences of the rotor and wake on the fuselage are calculated by integrating pressures over the surface of the fuselage. The fuselage distorts the wake and influences the air velocities at the rotor which alters the aerodynamic loading. This produces fully coupled rotor/fuselage aerodynamic interactions. The influence of the aerodynamic refinements on vibrations is studied in detail. Results indicate that a free wake model and the inclusion of fuselage aerodynamic effects on the rotor and wake are necessary for vibration prediction at all forward speeds. The direct influence of rotor and wake aerodynamics on the fuselage plays a minor role in vibrations. Accelerations with the improved aerodynamic model are significantly greater than uniform inflow results. The influence of vertical separation between the rotor and fuselage on vibrations is also studied. An ACSR control algorithm is developed that preferentially reduces accelerations at selected airframe locations of importance. Vibration reduction studies are carried out using this improved control algorithm and a basic algorithm studied previously at UCLA. Both ACSR methods markedly reduce acceleration amplitudes with no impact on the rotor

  6. Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study

    DEFF Research Database (Denmark)

    Frimand, Kenneth; Bohr, Henrik; Jalkanen, Karl J.

    2000-01-01

    A detailed comparative study of structures, vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra has been carried out for the zwitterionic structure of the amino acid L-alanine. Theoretically determined structures necessary for deriving VA and VCD spectra were calculated...... at the density functional theory level using the B3LYP functional with the 6-31G* basis set. The Hessians and atomic polar tensors and atomic axial tensors were all calculated at the B3LYP/6-31G* level of theory. An important result is the method of treating solvent effects by both adding explicit water...

  7. Crystal structure and characterization of a novel luminescent 2D metal-organic framework, poly[aquaitaconatocalcium(II)] possessing an open framework structure with hydrophobic channels

    Science.gov (United States)

    Nair, Remya M.; Sudarsanakumar, M. R.; Suma, S.; Prathapachandra Kurup, M. R.

    2016-02-01

    A novel 2D metal-organic framework poly[aquaitaconatocalcium(II)] with an open framework structure has been successfully grown by single gel diffusion technique. Sodium metasilicate was used for gel preparation. The structure was determined by single crystal X-ray diffraction. The compound crystallizes in monoclinic space group P21/c with hydrophobic 1D channels. The obtained crystals were further characterized by elemental analysis, FT-IR and UV-Visible spectroscopy, powder X-ray diffraction and thermogravimetry. The luminescent property of the complex was also discussed.

  8. Free vibrations of an arbitrary structure in terms of component modes.

    Science.gov (United States)

    Dowell, E. H.

    1972-01-01

    A method for the analysis of the free vibrations of an arbitrary structure in terms of component modes is presented based upon the use of the normal, free-free modes of the components in a Rayleigh-Ritz analysis with the constraint or continuity conditions

  9. Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity

    DEFF Research Database (Denmark)

    Barron, L.D.; Blanch, E.W.; McColl, I.H.

    2003-01-01

    On account of its sensitivity to chirality Raman optical activity (ROA), which may be measured as a small difference in vibrational Raman scattering from chiral molecules in right- and left-circularly polarized incident light, is a powerful probe of structure and behaviour of biomolecules in aque...

  10. Structural, vibrational, elastic and topological properties of PaN under pressure

    DEFF Research Database (Denmark)

    Modak, P.; K. Verma, Ashok; Svane, A.

    2013-01-01

    Electronic, structural, vibrational and elastic properties of PaN have been studied both at ambient and high pressures, using first principles methods with several commonly used parameterizations of the exchange-correlation energy. The generalized gradient approximation (GGA) reproduces the ground...

  11. Structure and intermolecular vibrations of 7-azaindole-water 2:1 ...

    Indian Academy of Sciences (India)

    Structure and intermolecular vibrations of 7-azaindole-water 2:1 complex in a supersonic jet expansion: Laser-induced fluorescence spectroscopy and quantum chemistry calculation. #. MONTU K HAZRAa,b, MOITRAYEE MUKHERJEEc, V RAMANATHANa,d and. TAPAS CHAKRABORTYc,∗. aDepartment of Chemistry ...

  12. Structure and intermolecular vibrations of 7-azaindole-water 2: 1 ...

    Indian Academy of Sciences (India)

    Structure and intermolecular vibrations of 7-azaindole-water 2:1 complex in a supersonic jet expansion: Laser-induced fluorescence spectroscopy and quantum ... Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India; Department of Chemistry and Biochemistry, University of California, San ...

  13. Numerical investigation of fluid structure interaction between unsteady flow and vibrating liner in a combustion chamber

    NARCIS (Netherlands)

    Khatir, Z.; Pozarlik, Artur Krzysztof; Kok, Jacobus B.W.; Cooper, R.K.; Watterson, J.W.; Oñate, E.; Papadrakakis, M.; Schrefler, B.

    2007-01-01

    Numerical investigations of fluid structure interaction between unsteady flow and vibrating liner in a combustion chamber are undertaken. The computational study consist of two approaches. Firstly, a partioned procedure consists of coupling the LES code AVBP for combustion modelling with the FEM

  14. Anion-induced structures and luminescent properties of chiral lanthanide-organic frameworks assembled by an achiral tripodal ligand.

    Science.gov (United States)

    Yan, Xuhuan; Cai, Zhenghong; Yi, Chunli; Liu, Weisheng; Tan, Minyu; Tang, Yu

    2011-03-21

    To confirm how different anions influence sup-ramolecular self-assembly of lanthanide-organic frameworks (LnOFs) as well as their luminescent properties, a new flexible achiral tripodal ligand, 1,1,1-tris-{[(2'-benzylaminoformyl)phenoxyl]methyl}ethane (L) and the LnOFs {[EuL(NO(3))(3)]·1.5CHCl(3)}(n) and [EuL(pic)(3)](n) have been designed and assembled. In the two LnOFs, {[EuL(NO(3))(3)]·1.5CHCl(3)}(n) demonstrates an unprecedented chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6(3), vertex symbol 6·6·6) topological network, and [EuL(pic)(3)](n) confirms an unusual chiral LnOF with three-dimensional (3D) (10,3)-a (srs, SrSi(2), Schläfli symbol 10(3), vertex symbol 10(2)·10(4)·10(4)) topological framework. Also the anion-induced structures and energy transfer processes in the luminescence behavior of the two LnOFs were discussed in detail.

  15. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II–VI semiconductor phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P., E-mail: bpchandra4@yahoo.co.in [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chattisgarh (India); Jha, Piyush [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chattisgarh (India)

    2015-04-15

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II–VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II–VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  16. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors

    Science.gov (United States)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-04-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  17. Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites

    Science.gov (United States)

    Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc

    2017-10-01

    This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.

  18. Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures

    DEFF Research Database (Denmark)

    Zhang, Aihua; Peng, Mingzeng; Willatzen, Morten

    2017-01-01

    , in the framework of the 6 × 6 k·p Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields...... to elucidate the effects of the piezoelectric potential and the deformation potential on the strain-dependent luminescence. The experimentally measured photoluminescence variatio½n as a function of pressure can be qualitatively explained by the theoretical results....

  19. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  20. Theoretical studies on the molecular structure, conformational preferences, topological and vibrational analysis of allicin

    Science.gov (United States)

    Durlak, Piotr; Berski, Sławomir; Latajka, Zdzisław

    2016-01-01

    The molecular structure, conformational preferences, topological and vibrational analysis of allicin has been investigated at two different approaches. Calculations have been carried out on static (DFT and MP2) levels with an assortment of Dunning's basis sets and dynamic CPMD simulations. In this both case within the isolated molecule approximation. The results point out that at least twenty different conformers coexist on the PES as confirmed by the flexible character of this molecule. The topological analysis of ELF showed very similar nature of the Ssbnd S and Ssbnd O bonds. The infrared spectrum has been calculated, and a comparative vibrational analysis has been performed.

  1. Development of a finite dynamic element for free vibration analysis of two-dimensional structures

    Science.gov (United States)

    Gupta, K. K.

    1978-01-01

    The paper develops an efficient free-vibration analysis procedure of two-dimensional structures. This is achieved by employing a discretization technique based on a recently developed concept of finite dynamic elements, involving higher order dynamic correction terms in the associated stiffness and inertia matrices. A plane rectangular dynamic element is developed in detail. Numerical solution results of free-vibration analysis presented herein clearly indicate that these dynamic elements combined with a suitable quadratic matrix eigenproblem solution technique effect a most economical and efficient solution for such an analysis when compared with the usual finite element method.

  2. Synthesis, Crystal Structure, and Luminescence Properties of a New Calcium(II Coordination Polymer Based on L-Malic Acid

    Directory of Open Access Journals (Sweden)

    Duraisamy Senthil Raja

    2013-01-01

    Full Text Available A new calcium coordination polymer [Ca(HL-MA]n (H3L-MA = L-malic acid has been solvothermally synthesized. The structure of the newly synthesized complex has been determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, reflectance UV-Vis & IR spectra, powder X-ray diffraction (PXRD, and thermogravimetric analysis (TGA. The single crystal structure analysis showed that the complex forms three-dimensional framework. The new Ca(II complex has displayed very high thermal stability which was inferred from TGA and PXRD results. As far as the optical property of the new complex is concerned, the complex emitted its own characteristic sensitized luminescence.

  3. Performance of nonlinear mechanical, resonant-shunted piezoelectric, and electronic vibration absorbers for multi-degree-of-freedom structures

    Science.gov (United States)

    Agnes, Gregory Stephen

    Linear vibration absorbers are a valuable tool used to suppress vibrations due to harmonic excitation in structural systems. Limited evaluation of the performance of nonlinear vibration absorbers for nonlinear structures exists in the current literature. The state of the art is extended in this work to vibration absorbers in their three major physical implementations: the mechanical vibration absorber, the inductive-resistive shunted piezoelectric vibration absorber, and the electronic vibration absorber (also denoted a positive position feedback controller). A single, consistent, physically similar model capable of examining the response of all three devices is developed. The performance of vibration absorbers attached to single-degree-of-freedom structures is next examined for performance, robustness, and stability. Perturbation techniques and numerical analysis combine to yield insight into the tuning of nonlinear vibration absorbers for both linear and nonlinear structures. The results both clarify and validate the existing literature on mechanical vibration absorbers. Several new results, including an analytical expression for the suppression region's location and bandwidth and requirements for its robust performance, are derived. Nonlinear multiple-degree-of-freedom structures are next evaluated. The theory of Non-linear Normal Modes is extended to include consideration of modal damping, excitation, and small linear coupling, allowing estimation of vibration absorber performance. The dynamics of the N+1-degree-of-freedom system reduce to those of a two-degree-of-freedom system on a four-dimensional nonlinear modal manifold, thereby simplifying the analysis. Quantitative agreement is shown to require a higher order model which is recommended for future investigation. Finally, experimental investigation on both single and multi-degree-of-freedom systems is performed since few experiments on this topic are reported in the literature. The experimental results

  4. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    Directory of Open Access Journals (Sweden)

    Douglas Domingues Bueno

    2008-01-01

    Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.

  5. Synthesis, structure and Hirshfeld surface analysis, vibrational and ...

    Indian Academy of Sciences (India)

    -dimensional architecture. Hirshfeld surface analysis for visually analysing intermolecular interactions in crystal structures employing molecular surfacecontours and 2D fingerprint plots has been used to scrutinize molecular shapes.

  6. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  7. Ligand effects on the structure and vibrational properties of the thiolated Au18 cluster

    Directory of Open Access Journals (Sweden)

    Alfredo Tlahuice-Flores

    2016-10-01

    Full Text Available Most of the studies devoted to thiolated gold clusters suppose that their core and Au-S framework do not suffer from distortion independently of the protecting ligands (-SR and it is assumed as correct to simplify the ligand as SCH3. In this work is delivered a systematic study of the structure and vibrational properties (IR and Raman of the Au18(SR14 cluster. The pursued goal is to understand the dependency of the displayed vibrational properties of the thiolated Au18 cluster with the ligands type. A set of six ligands was considered during calculations of the vibrational properties based on density functional theory (DFT and in its dispersion-corrected approach (DFT-D.

  8. Vibrational spectra, theoretical calculations, and structure of 4-silaspiro(3,3)heptane.

    Science.gov (United States)

    Ocola, Esther J; Medders, Cross; Cooke, Joel M; Laane, Jaan

    2014-09-15

    Theoretical computations have been carried out for 4-silaspiro(3,3)heptane (SSH) in order to calculate its structure and vibrational spectra. SSH was found to have two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. The puckering and tilting reduce the D2d symmetry to C2. Nonetheless, the vibrational assignments can be done quite well on the basis of D2d symmetry. This is confirmed by the fact that all but the lowest E vibrations show insignificant splitting into A and B modes of C2 symmetry. However, the observed splittings of the lowest frequency modes do confirm the lower conformational symmetry. The calculated infrared and Raman spectra were compared to the experimental spectra collected for the vapor, liquid, and solid states, and the agreement is excellent. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Vibrational spectra, theoretical calculations, and structure of 4-silaspiro(3,3)heptane

    Science.gov (United States)

    Ocola, Esther J.; Medders, Cross; Cooke, Joel M.; Laane, Jaan

    2014-09-01

    Theoretical computations have been carried out for 4-silaspiro(3,3)heptane (SSH) in order to calculate its structure and vibrational spectra. SSH was found to have two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. The puckering and tilting reduce the D2d symmetry to C2. Nonetheless, the vibrational assignments can be done quite well on the basis of D2d symmetry. This is confirmed by the fact that all but the lowest E vibrations show insignificant splitting into A and B modes of C2 symmetry. However, the observed splittings of the lowest frequency modes do confirm the lower conformational symmetry. The calculated infrared and Raman spectra were compared to the experimental spectra collected for the vapor, liquid, and solid states, and the agreement is excellent.

  10. Uncertainty and Variation of Vibration in Lightweight Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens

    2012-01-01

    Multi-family dwellings and offices build from lightweight materials are becoming a cost efficient and environmentally friendly alternative to traditional heavy structures.......Multi-family dwellings and offices build from lightweight materials are becoming a cost efficient and environmentally friendly alternative to traditional heavy structures....

  11. APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties.

    Science.gov (United States)

    Lechevallier, Séverine; Hammer, Peter; Caiut, José M A; Mazeres, Serge; Mauricot, Robert; Verelst, Marc; Dexpert, Hervé; Ribeiro, Sidney J L; Dexpert-Ghys, Jeannette

    2012-02-28

    Europium-doped lanthanide oxide RE(2)O(3):Eu(3+) (RE = Y or Gd) luminescent beads, with a spherical shape and a diameter of 150 ± 15 nm, have been modified by reaction with 3-aminopropyltriethoxysilane (APTES), in order to introduce reactive amine groups at their surfaces. The direct silanation has resulted in the formation of a nanometric layer at the surface of the beads, with an optimum grafting rate of 0.055 ± 0.005 mol APTES/mol RE(2)O(3). Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopies confirmed the condensation of an organosilane layer, made of cross-linked -O-Si-O-Si- and of groups -O-Si-R (with R = (CH(2))(3)NH(2) or O-Et). Titration of the accessible amine groups has been performed by simultaneously measuring the luminescence of grafted fluorescein isothiocyanate and that of core particles: there are about 2.3 × 10(4) (2.8 × 10(4)) -NH(2) per Y(2)O(3):Eu(3+) (Gd(2)O(3):Eu(3+)) bead. The isoelectronic point was shifted by one pH unit after APTES modification. The surface modification by APTES at least preserved (for Gd(2)O(3):Eu(3+)) or improved (for Y(2)O(3):Eu(3+)) the red emission of the beads. © 2012 American Chemical Society

  12. Extension of vibrational power flow techniques to two-dimensional structures

    Science.gov (United States)

    Cuschieri, Joseph M.

    1988-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  13. Analytical and Experimental Random Vibration of Nonlinear Aeroelastic Structures.

    Science.gov (United States)

    1987-01-28

    dinamics . Sijthoff- Hilton, H H. and Feigen. M. Minimum weight analysis based on structural Noordhoff Co, Netherlands. reliability. J Aerospace Sc, 27...AEROELASTIC STRUCTURES January 28, 1987 ELECT Tpp. AIM" 0OV 7PTCE OF 9r(’TF1CP RESCH JAMi) NOTI-CE OF wIM 1 T AL TO D .TAC’ ..hirte;h-tz’ l rer)t ’(V...freedom aeroelastic structural model in the neighborhood of combination internal resonance condition. The Fokker:Planck equation approach is used to

  14. Sintering temperature and atmosphere modulated evolution of structure and luminescence of 2CaO-P2O5-B2O3

    DEFF Research Database (Denmark)

    Zhu, C. F.; Wang, J.; Ren, X. R.

    2014-01-01

    Europium doped 2CaO-P2O5-B2O3 phosphors prepared via high temperature solid state reactions are reported. The evolution of luminescence and structure of the phosphors induced by variation of sintering temperature and atmosphere is investigated using photoluminescence spectra and X-ray diffraction...

  15. Mononuclear mercury(II) complexes containing bipyridine derivatives and thiocyanate ligands: Synthesis, characterization, crystal structure determination, and luminescent properties

    Science.gov (United States)

    Amani, Vahid; Alizadeh, Robabeh; Alavije, Hanieh Soleimani; Heydari, Samira Fadaei; Abafat, Marzieh

    2017-08-01

    A series of mercury(II) complexes, [Hg(Nsbnd N)(SCN)2] (Nsbnd N is 4,4‧-dimethyl-2,2‧-bipyridine in 1, 5,5‧-dimethyl-2,2‧-bipyridine in 2, 6,6‧-dimethyl-2,2‧-bipyridine in 3 and 6-methyl-2,2‧-bipyridine in 4), were prepared from the reactions of Hg(SCN)2 with mentioned ligands in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurement by methanol diffusion into a DMSO solution. The four complexes were thoroughly characterized by spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), elemental analysis (CHNS) and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the mercury(II) cation is four-coordinated in a distorted tetrahedral configuration by two S atoms from two thiocyanate anions and two N atoms from one chelating 2,2‧-bipyridine derivative ligand. Also, in these complexes intermolecular interactions, for example Csbnd H⋯N hydrogen bonds (in 1-4), Csbnd H⋯S hydrogen bonds (in 1, 2 and 4), π … π interactions (in 2-4), Hg⋯N interactions (in 2) and S⋯S interactions (in 4), are effective in the stabilization of the crystal structures and the formation of the 3D supramolecular complexes. Furthermore, the luminescence spectra of the title complexes show that the intensity of their emission bands are stronger than the emission bands for the free bipyridine derivative ligands.

  16. Structural, thermal behaviour and vibrational study of a new mixed ...

    Indian Academy of Sciences (India)

    These anions show a 4° rotation around the fourfold axis against the cubic arrangement of the K2PtCI6 type structure. The monovalent cations (Cs+/NH 4 + ) are located between the octahedra ensuring the stability of the structure by ionic and hydrogen bonding contacts: Cs…Cl/Br and N-H … … Cl/Br. A DTA/TGA ...

  17. Out-of-plane free vibration analysis of a cable-arch structure

    Science.gov (United States)

    Kang, H. J.; Zhao, Y. Y.; Zhu, H. P.

    2013-02-01

    Cable-arch structure has been widely used in many long-span structures such as cable roofs and cable-stayed arch bridges, but its dynamics is still not well understood. In this paper, the out-of-plane dynamic behavior of a cable-arch structure is investigated. The equations governing the out-of-plane free vibration of the structure are derived using d'Alembert's principle. A transfer matrix method is used to solve the governing equations and determine the frequencies of the out-of-plane vibration. The theories are then used to study two specific cases: free vibration of a model cable-arch and simulation of an arch erection process. The effects of some key parameters of cable and arch, such as tension of cable and radius, open-angle and shape of arch, are examined. The results indicate that in-plane and spatial cables can largely improve the out-of-plane dynamic behavior of arch structures, which are further verified by analyzing the out-of-plane buckling of cable-arch structures. The present work should be valuable and significant not only for the fundamental research but also engineering design of roofs and bridges.

  18. Recentering Shape Memory Alloy Passive Damper for Structural Vibration Control

    Directory of Open Access Journals (Sweden)

    Hui Qian

    2013-01-01

    Full Text Available This paper presents a preliminary study on the evaluation of an innovative energy dissipation system with shape memory alloys (SMAs for structural seismic protection. A recentering shape memory alloy damper (RSMAD, in which superelastic nitinol wires are utilized as energy dissipation components, is proposed. Improved constitutive equations based on Graesser and Cozzarelli model are proposed for superelastic nitinol wires used in the damper. Cyclic tensile-compressive tests on the damper with various prestrain under different loading frequencies and displacement amplitudes were conducted. The results show that the hysteretic behaviors of the damper can be modified to best fit the needs for passive structural control applications by adjusting the pretension of the nitinol wires, and the damper performance is not sensitive to frequencies greater than 0.5 Hz. To assess the effectiveness of the dampers for structural seismic protection, nonlinear time history analysis on a ten-story steel frame with and without the dampers subjected to representative earthquake ground motions was performed. The simulation results indicate that superelastic SMA dampers are effective in mitigating the structural response of building structures subjected to strong earthquakes.

  19. Luminescence behavior and Raman characterization of jade from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Tuncer Arslanlar, Y. [Physics Department, Faculty of Arts and Sciences, Celal Bayar University, 45140 Muradiye-Manisa (Turkey); Garcia-Guinea, J. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Kibar, R.; Cetin, A.; Ayvacikli, M. [Physics Department, Faculty of Arts and Sciences, Celal Bayar University, 45140 Muradiye-Manisa (Turkey); Can, N., E-mail: cannurdogan@yahoo.com [Physics Department, Faculty of Arts and Sciences, Celal Bayar University, 45140 Muradiye-Manisa (Turkey)

    2011-09-15

    Results are presented for the cathodoluminescence (CL), radioluminescence (RL) and thermoluminescence (TL) of jade from Turkey. Jade samples show broad band luminescence from green to red, which, using lifetime-resolved CL, reveals seven overlapping emissions, of which two are dominant. Green emission obtained using spatially resolved CL was associated with Mn{sup 2+} and emission bands centered near at 480 and 530 nm were attributed to {sup 3}P{sub 0}-{sup 3}H{sub 4} and {sup 1}D{sub 2}-{sup 3}H{sub 4} transitions of Pr{sup 3+}, respectively. Different shifts of the peak-wavelengths for 326 and 565 nm were observed with varying jade compositions. The incorporation of the larger K ion causes non-linear variations of the cell dimensions and therefore changes in the Fe---O band distance. We suggest that stress of the jade structure can be linked to the luminescence emission at 326 nm. Raman spectra have also been recorded in order to provide an unequivocal identification of the type of jade. The mechanism for the luminescence of the jade is considered. - Highlights: >Jade spectrum displays numerous broad bands at room and low temperatures. >Different luminescence centers contribute to the overall signal. >The Raman spectra and associated vibrational assignments are reported for jadeite. >The TL sensitivity varies depending on the treatment of the samples.

  20. Fluid-structure finite-element vibrational analysis

    Science.gov (United States)

    Feng, G. C.; Kiefling, L.

    1974-01-01

    A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.

  1. Structural and Vibrational Study on Monomer and Dimer Forms and Water Clusters of Acetazolamide

    Directory of Open Access Journals (Sweden)

    Aysen E. Ozel

    2013-01-01

    Full Text Available Experimental IR and Raman spectra of solid acetazolamide have been analysed by computing the molecular structures and vibrational spectra of monomer and dimer forms and water clusters of acetazolamide. The possible stable conformers of free acetazolamide molecule in the ground state were obtained by scanning the potential energy surface through the dihedral angles, D1 (1S-2C-6S-9N, D2 (4N-5C-12N-14C, and D3 (5C-12N-14C-16C. The final geometry parameters for the obtained stable conformers were determined by means of geometry optimization, carried out at DFT/B3LYP/6-31G++(d,p theory level. Afterwards the possible dimer forms of the molecule and acetazolamide-H2O clusters were formed and their energetically preferred conformations were investigated using the same method and the same level of theory. The effect of BSSE on the structure and energy of acetazolamide dimer has been investigated. The assignment of the vibrational modes was performed based on the potential energy distribution of the vibrational modes, calculated by using GAR2PED program. The experimental vibrational wavenumbers of solid acetazolamide are found to be in better agreement with the calculated wavenumbers of dimer form of acetazolamide than those of its monomeric form. NBO analysis has been performed on both monomer and dimer geometries.

  2. The influence of synthesis methods on the morpho - structural and luminescent characteristics of rare earth silicate phosphors

    Science.gov (United States)

    Muresan, L. E.; Cadis, A. I.; Perhaita, I.; Oprea, B. F.; Silipas, D. T.

    2013-11-01

    Cerium activated yttrium silicate (Y2SiO5:Ce) phosphors were prepared by two different wet-chemical synthesis routes namely: simultaneous addition of reagents (SimAd) and solution combustion (SC) using yttriumcerium nitrate and urea as starting materials. TEOS or SiO2 fume were used as Si sources. A comparative study regarding the morpho-structural and luminescent properties of Y2SiO5:Ce phosphors is presented. The influence of the silicon source, same as the firing temperature on the samples characteristics were discussed. TG-SDTA, FT-IR, SEM, XRD and photoluminescence investigations were used to characterize the precursors and the corresponding phosphors.

  3. Luminescence materials for pH and oxygen sensing in microbial cells - structures, optical properties, and biological applications.

    Science.gov (United States)

    Zou, Xianshao; Pan, Tingting; Chen, Lei; Tian, Yanqing; Zhang, Weiwen

    2017-09-01

    Luminescence including fluorescence and phosphorescence sensors have been demonstrated to be important for studying cell metabolism, and diagnosing diseases and cancer. Various design principles have been employed for the development of sensors in different formats, such as organic molecules, polymers, polymeric hydrogels, and nanoparticles. The integration of the sensing with fluorescence imaging provides valuable tools for biomedical research and applications at not only bulk-cell level but also at single-cell level. In this article, we critically reviewed recent progresses on pH, oxygen, and dual pH and oxygen sensors specifically for their application in microbial cells. In addition, we focused not only on sensor materials with different chemical structures, but also on design and applications of sensors for better understanding cellular metabolism of microbial cells. Finally, we also provided an outlook for future materials design and key challenges in reaching broad applications in microbial cells.

  4. Influence of bearing support structures on shaft vibration of large hydraulic pump/turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, C.A.; Greenplate, B.S. [Voith, Hydro, Inc., Pennsylvania, PA (United States); Waddell, A.M. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1995-12-31

    Start-up transient loads from pump/turbine impellers can cause excessive vibration problems in the shaft system. If the radial guide bearing supports are structurally soft or loose, or if the bearings are worn, the resulting radial shaft movement causes abnormal wear. The wear normally occurs at the impeller sealing surfaces, main shaft seals, motor/generator components, piping, brackets, foundation connections, etc. This paper explores the critical factors causing shaft system vibration problems at the Tennessee Valley Authority`s Raccoon Mountain Pumped Storage Plant, as well as the unique modifications which were implemented to strengthen and improve the units. The solution involved extensive three-dimensional finite element structural and thermal transient analyses of the original and re-designed turbine shoe bearing, bearing housings, and support structures. The conclusion compares the calculated and measured shaft system response to transient loads of the original and modified system.

  5. Structural Health Monitoring Using Wireless Technologies: An Ambient Vibration Test on the Adolphe Bridge, Luxembourg City

    Directory of Open Access Journals (Sweden)

    Adrien Oth

    2012-01-01

    Full Text Available Major threats to bridges primarily consist of the aging of the structural elements, earthquake-induced shaking and standing waves generated by windstorms. The necessity of information on the state of health of structures in real-time, allowing for timely warnings in the case of damaging events, requires structural health monitoring (SHM systems that allow the risks of these threats to be mitigated. Here we present the results of a short-duration experiment carried out with low-cost wireless instruments for monitoring the vibration characteristics and dynamic properties of a strategic civil infrastructure, the Adolphe Bridge in Luxembourg City. The Adolphe Bridge is a masonry arch construction dating from 1903 and will undergo major renovation works in the upcoming years. Our experiment shows that a network of these wireless sensing units is well suited to monitor the vibration characteristics of such a historical arch bridge and hence represents a low-cost and efficient solution for SHM.

  6. A structural and vibrational study of the chromyl chlorosulfate, fluorosulfate, and nitrate compounds

    CERN Document Server

    Brandán, Silvia A

    2014-01-01

    A Structural and Vibrational Study of the Chromyl Chlorosulfate, Fluorosulfate and Nitrate Compounds presents important studies related to the structural and vibrational properties on the chromyl compounds based on Ab-initio calculations. The synthesis and the study of such properties are of chemical importance because the stereo-chemistries and reactivities of these compounds are strongly dependent on the coordination modes that adopt the different ligands linked to the chromyl group. In this book, the geometries of all stable structures in gas phase for chromyl chlorosulfate, fluorosulfate, and nitrate are optimized by using Density functional Theory (DFT). Then, the complete assignments of all observed bands in the infrared and Raman spectra are performed combining DFT calculations with Pulay´s Scaled Quantum Mechanics Force Field (SQMFF) methodology and taking into account the type of coordination adopted by the chlorosulfate, fluorosulfate and nitrate ligands as monodentate and bidentate. Moreover, the ...

  7. Molecular and vibrational structure of 2,2'-dihydroxybenzophenone

    DEFF Research Database (Denmark)

    Birklund Andersen, Kristine; Langgård, M.; Spanget-Larsen, Jens

    1999-01-01

    2,2'-dihydroxybenzophenone (DHBP) contains similar bifold intramolecular H-bonding as the psoriatic drug anthralin, but because of steric interference the phenolic rings are twisted in a propeller-like manner, resulting in a molecular structure of C2 symmetry. In contrast to the case of C2v...

  8. An active vibration control method of bridge structures by the ...

    African Journals Online (AJOL)

    With the on-growing construction of transport and communication structures in rural and urban zones due to economic requirements, and with occurrence of seismic events in past years in particular in Cameroon, one of the purposes of the present work is to display the feasibility and advantages of applying active tendon ...

  9. Complex modes and frequencies in damped structural vibrations

    DEFF Research Database (Denmark)

    Krenk, Steen

    2004-01-01

    It is demonstrated that the state space formulation of the equation of motion of damped structural elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping operators are self-adjoint, and that this is typically the case in the absence of gyroscopic force...

  10. Synthesis, structure and Hirshfeld surface analysis, vibrational and ...

    Indian Academy of Sciences (India)

    The water molecule is placed between the layers formed by organic cations along the b axis. Net- work hydrogen-bonding and π–π interactions lead to the formation of a three-dimensional architecture. Hirshfeld surface analysis for visually analysing intermolecular interactions in crystal structures employing molecular sur-.

  11. Influence of the precursors in the morphology, structure, vibrational order and optical gap of nano structured Zn O

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, J. F.; Londono C, A.; Jurado L, F. F.; Romero S, J. D., E-mail: jfjurado@unal.edu.co [Universidad Nacional de Colombia, Laboratorio de Propiedades Termicas Dielectricas de Compositos, A. A. 127, Manizales (Colombia)

    2014-07-01

    The synthesis of Zn O by reaction in solid state from two precursor salts (zinc acetate and zinc sulfate), presented significant differences concerning morphology, structure, vibrational order and optical gap. As well as covering in the size of the compounds, a homogeneous distribution of nanoparticles of 21±3 nm and micro stars of 1.03±0.19 μm respectively. The Zn O showed a structural phase with a vibrational state of the hexagonal type (wurtzite). The variation in the morphology due to the precursor is attributed to the disorder within of lattice, which contributes to vibrational changes and is correlated to the degrees of freedom of molecules. Measurements of UV-Vis of nanoparticles displayed a band gap (E{sub g}) lower than the one reported for the bulk material. The structural characterization of the compounds was carried out by using a X-ray Bruker D8 Advance diffractometer. The vibrational order was assessed throughout micro-Raman with a monochromatic radiation source of 473 nm). (Author)

  12. Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    Science.gov (United States)

    Gotsis, Pascal K.; Guptill, James D.

    1994-01-01

    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.

  13. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

    DEFF Research Database (Denmark)

    Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng

    2016-01-01

    and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity...

  14. Metal-organic frameworks for luminescence thermometry.

    Science.gov (United States)

    Cui, Yuanjing; Zhu, Fengliang; Chen, Banglin; Qian, Guodong

    2015-05-01

    Metal-organic frameworks (MOFs) hold great promise for developing various types of luminescent sensors due to their remarkable structural diversity and tunable luminescence properties. In the last few years, utilizing luminescent MOFs to explore temperature sensing has gained intense attention. In this feature article, after the general description of luminescence thermometry, we have summarized the recent progress made in luminescent MOF thermometers, with particular emphasis on the dual-emitting MOFs that effectively illustrate the self-referencing temperature measurement based on the intensity ratios of two separate transitions.

  15. Earthquake Vibration Control of Structures using Tuned Liquid Dampers: Experimental Studies

    Directory of Open Access Journals (Sweden)

    Pradipta Banerji

    2010-12-01

    Full Text Available Earlier studies have shown conclusively that a Tuned Liquid Damper (TLD is effective for controlling vibrations in structures subjected to narrow-banded wind excitations. A recent numerical study has shown that if the design parameters of a TLD are properly set, this device could also be very effective for controlling structural vibration to broad-banded earthquake excitations. Here the results of a reasonably comprehensive set of experiments are presented to investigate the overall effectiveness of TLDs and the specific effect of TLD parameters (depth and mass ratios for earthquake vibration control of structures. Effects of various earthquake ground motions parameters such as amplitude, frequency content, duration of excitation etc. are also evaluated. It is shown that there is good agreement between the numerical simulation and experimental results. This experimental study conclusively shows that a properly designed TLD reduces structural response to broad-band earthquake excitations. It is also observed that effectiveness of TLD increases with increase in mass ratio, depth ratio and amplitude of ground motion.

  16. Structure, isomerism, and vibrational assignment of aluminumtrifluoroacetylacetonate. An experimental and theoretical study

    Science.gov (United States)

    Afzali, R.; Vakili, M.; Boluri, E.; Tayyari, S. F.; Nekoei, A.-R.; Hakimi-Tabar, M.; Darugar, V.

    2018-02-01

    An interpretation of the experimental IR and Raman spectra of Aluminum (III) trifluoroacetylacetonate (Al(TFAA)3) complex, which were synthesized by us, is first reported here. The charge distribution, isomerism, strength of metal‑oxygen binding and vibrational spectral properties for this complex structure were theoretically investigated through population analysis, geometry optimization and harmonic frequency calculations, performed at B3LYP/6-311G* level of theory. In the population analysis, two different approaches reffered to as ;Atoms in molecules (AIM);, and ;Natural Bond Orbital (NBO); were used. According to the calculation resuls, the energy difference between the cis and trans isomers of Al(TFAA)3 is very small and indicates that both isomers coexist in the sample in comparable proportions. Comparison of the calculated frequency and intensity data with the observed IR and Raman spectra of the complex has supported this conclusion. On the other hand, comparison of the structural and vibrational spectral data of Al(TFAA)3, which were experimentally measured and calculated at B3LYP/6-311G* level, with the corresponding data of Aluminum acetylacetonate (Al(AA)3) has revealed the effects of CF3 substitution on the structural and vibrational spectral data associated with the CH3 groups in the complex structure.

  17. 2-Bromohydroquinone: structures, vibrational assignments and RHF, B- and B3-based density functional calculations.

    Science.gov (United States)

    Ramoji, Anuradha; Yenagi, Jayashree; Tonannavar, J

    2008-03-01

    Vibrational spectral measurements, namely, infrared (4000-400 cm(-1)) and Raman (3500-50 cm(-1)) spectra have been made for 2-Bromohydroquinone. Optimized geometrical structures, harmonic vibrational frequencies and intensities have been computed by the ab initio (RHF), B-based (BLYP, BP86) and B3-based (B3P86, B3LYP, B3PW91) density functional methods using 6-31G(d) basis set. A complete assignment of the observed spectra has been proposed. Coupling of vibrations has been determined by calculating potential energy distributions (PEDs) at BP86/6-31G(d) level of theory. In the computed equilibrium geometries by all the levels, the bond lengths and bond angles show changes in the neighborhood of Bromine. Similarly, the vibrational spectra exhibit some marked spectral features unlike in hydroquinone and phenol. On the other hand, the infrared spectrum shows a clear evidence of O-H...O bonding near 3200 cm(-1) as in hydroquinone. Evaluation of the theoretical methods demonstrates that all the levels but the RHF have reproduced frequencies fairly accurately in the 2000-500 cm(-1); below 500 cm(-1) the RHF has performed reasonably well.

  18. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol

    Science.gov (United States)

    Moorthi, P. P.; Gunasekaran, S.; Swaminathan, S.; Ramkumaar, G. R.

    2015-02-01

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule.

  19. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    Science.gov (United States)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  20. Crystal structure and luminescence of complexes of Eu(III) and Tb(III) with furan-2,5-dicarboxylate

    NARCIS (Netherlands)

    Akerboom, S.; Fu, W.T.; Lutz, M.|info:eu-repo/dai/nl/304828971; Bouwman, E.

    2012-01-01

    Four new Ln(III) complexes (Ln = Eu, Tb) with furan-2,5-dicarboxylic acid (H2FDA) as a ligand have been synthesized and characterized in the solid state. Luminescence studies indicate that the compounds exhibit line-like luminescence characteristic of the lanthanide centre upon excitation in the

  1. Ultrafast vibrational and structural dynamics of the proton in liquid water.

    Science.gov (United States)

    Woutersen, Sander; Bakker, Huib J

    2006-04-07

    The dynamical behavior of excess protons in liquid water is investigated using femtosecond vibrational pump-probe spectroscopy. By resonantly exciting the O-H+-stretching mode of the H9O4(+) (Eigen) hydration structure of the proton and probing the subsequent absorption change over a broad frequency range, the dynamics of the proton is observed in real time. The lifetime of the protonic stretching mode is found to be approximately 120 fs, shorter than for any other vibration in liquid water. We also observe the interconversion between the H9O4(+) (Eigen) and H5O2(+) (Zundel) hydration structures of the proton. This interconversion, which constitutes an essential step of proton transport in water, is found to occur on an extremely fast (< 100 fs) time scale.

  2. Acceleration response spectrum for prediction of structural vibration due to individual bouncing

    Science.gov (United States)

    Chen, Jun; Wang, Lei; Racic, Vitomir; Lou, Jiayue

    2016-08-01

    This study is designed to develop an acceleration response spectrum that can be used in vibration serviceability assessment of civil engineering structures, such as floors and grandstands those are dynamically excited by individual bouncing. The spectrum is derived from numerical simulations and statistical analysis of acceleration responses of a single degree of freedom system with variable natural frequency and damping under a large number of experimentally measured individual bouncing loads. Its mathematical representation is fit for fast yet reliable application in design practice and is comprised of three equations that describe three distinct frequency regions observed in the actual data: the first resonant plateau (2-3.5 Hz), the second resonant plateau (4-7 Hz) and a descension region (7-15 Hz). Finally, this paper verifies the proposed response spectrum approach to predict structural vibration by direct comparison against numerical simulations and experimental results.

  3. Vibration-based structural health monitoring of the aircraft large component

    Science.gov (United States)

    Pavelko, V.; Kuznetsov, S.; Nevsky, A.; Marinbah, M.

    2017-10-01

    In the presented paper there are investigated the basic problems of the local system of SHM of large scale aircraft component. Vibration-based damage detection is accepted as a basic condition, and main attention focused to a low-cost solution that would be attractive for practice. The conditions of small damage detection in the full scale structural component at low-frequency excitation were defined in analytical study and modal FEA. In experimental study the dynamic test of the helicopter Mi-8 tail beam was performed at harmonic excitation with frequency close to first natural frequency of the beam. The index of correlation coefficient deviation (CCD) was used for extraction of the features due to embedded pseudo-damage. It is shown that the problem of vibration-based detection of a small damage in the large scale structure at low-frequency excitation can be solved successfully.

  4. Component mode synthesis and large deflection vibration of complex structures. Volume 2: Single-mode large deflection vibrations of beams and plates using finite element method

    Science.gov (United States)

    Mei, Chuh

    1987-01-01

    A finite element method is presented for the large amplitude vibrations of complex structures that can be modelled with beam and rectangular plate elements subjected to harmonic excitation. Both inplane deformation and inertia are considered in the formulation. Derivation of the harmonic force and nonlinear stiffness matrices for a beam and a rectangular plate element are presented. Solution procedures and convergence characteristics of the finite element method are described. Nonlinear response to uniform and concentrated harmonic loadings and improved nonlinear free vibration results are presented for beams and rectangular plates of various boundary conditions.

  5. Preparation, and Luminescence Properties of SiO2@Sm(MABA-Siphen Core-Shell Structure Nanometer Composite

    Directory of Open Access Journals (Sweden)

    Feng Li-Na

    2018-01-01

    Full Text Available A novel ternary samarium complex was prepared using HOOCC6H4N(CONH(CH23Si- (OCH2CH332 (MABA-Si as first ligand, and phen as second ligand. The corresponding SiO2@Sm(MABA-Siphen core-shell structure nanometer composite was synthesized as well, and the silica spheres was the core, and the ternary samarium complex was the shell layer. The ternary samarium complex has been characterized by element analysis, molar conductivity and IR spectra. The results show that the chemical formula of the complex is Sm(MABA-Si(phen2(ClO43·2H2O. The fluorescent spectra illustrat that the luminescence properties of the samarium complex are superior. The core-shell structure of SiO2@Sm(MABA-Siphen nanometer composite is characterized by SEM, TEM and IR spectra. The SiO2@Sm(MABA-Siphen core-shell structure composites exhibit stronger emission intensity than the ternary samarium complex. The fluorescence lifetime of the complex and core-shell structure composite is measured as well.

  6. Improved orthogonality check for measured modes. [from ground vibration testing of structures

    Science.gov (United States)

    Berman, A.

    1980-01-01

    A method is proposed for performing an orthogonality check for normal modes derived from ground vibration testing. The method utilizes partitioned mass and stiffness matrices for a linear undamped representation of a structure. The normalization of the modes by the proposed method inherently includes the effects of significant displacements which were not measured; and the method may allow the use of fewer measurement points than would be necessary with the conventional method.

  7. Ab-initio study of structural, vibrational and optical properties of solid oxidizers

    Energy Technology Data Exchange (ETDEWEB)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in

    2016-09-15

    We report the structural, elastic and vibrational properties of five ionic-molecular solid oxidizers MNO{sub 3} (M = Li, Na, K) and MClO{sub 3} (M = Na, K). By treating long range electron-correlation effects, dispersion corrected method leads to more accurate predictions of structural properties and phase stability of KNO{sub 3} polymorphs. The obtained elastic moduli show soft nature of these materials and are consistent with Ultrasonic Pulse Echo measurements. We made a complete assignment of vibrational modes which are in good accord with available experimental results. From calculated IR and Raman spectra, it is found that the vibrational frequencies show a red-shift from Li → Na → K (Na → K) and N → Cl for nitrates (chlorates) due to increase in mass of metal and non-metal atoms, respectively. The calculated electronic structure using recently developed Tran-Blaha modified Becke-Johnson potential show that the materials are wide band gap insulators with predominant ionic bonding between M{sup +} (metal) and NO{sub 3}{sup −}/ClO{sub 3}{sup −} ions and covalent bonding (N−O and Cl−O) within nitrate and chlorate anionic group. From the calculated optical spectra, we observe that electric-dipole transitions are due to nitrate/chlorate group below 20 eV and cationic transitions occur above 20 eV. The calculated reflectivity spectra are consistent with the available experimental measurements. - Highlights: • Ground state properties with inclusion of dispersion correction method. • Elastic constants and mechanical properties. • Vibrational spectra and their complete assignment. • Raman and IR spectra. • Electronic structure and optical properties using TB-mBJ potential.

  8. Review on structural damage assessment via transmissibility with vibration based measurements

    Science.gov (United States)

    Zhou, Yun-Lai; Hongyou, Cao; Zhen, Ni; Abdel Wahab, Magd

    2017-05-01

    In this study, transmissibility based damage assessment techniques with vibration measurement are reviewed with highlighting the recent advancements since damage might induce severe changes and cause huge economic losses in both civil and mechanical engineering structures. In recent years, transmissibility underwent booming and divergent application for damage assessment both in experimental model and engineering application, and this review provides a fundamental understanding for transmissibility based damage assessment by summarizing those research outputs, which can serve as useful reference for further investigations.

  9. The Shock Vibration Bulletin. Part 4. Structural Dynamics and Modal Test and Analysis

    Science.gov (United States)

    1987-01-01

    Feb. 1971. 17 16. B. Bresler, and A. C. Scordelis , ’Shear Strength of Reinforced Concrete Beams-,Series 100, Issue 13, Structure and Material Research...their adequacy. Dynamic analyses, choice of failure thresholds of failure are even harder to theories , and an accurate dynamic model are estimate...without experimental evidence. shown to be crucial in fulfilling the 29 71 L requirements. Vibration testing data are theories of failure have to be

  10. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Trendafilova, I, E-mail: Irina.Trendafilova@strath.ac.uk [Department of Mechanical Engineering, University of Strathclyde, 75 Montrose street, Glasgow, G1 1XJ (United Kingdom)

    2011-07-19

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  11. Structural, electronic, vibrational and optical properties of Bin clusters

    Science.gov (United States)

    Liang, Dan; Shen, Wanting; Zhang, Chunfang; Lu, Pengfei; Wang, Shumin

    2017-10-01

    The neutral, anionic and cationic bismuth clusters with the size n up to 14 are investigated by using B3LYP functional within the regime of density functional theory and the LAN2DZ basis set. By analysis of the geometries of the Bin (n = 2-14) clusters, where cationic and anionic bismuth clusters are largely similar to those of neutral ones, a periodic effect by adding units with one to four atoms into smaller cluster to form larger cluster is drawn for the stable structures of bismuth clusters. An even-odd alteration is shown for the properties of the clusters, such as the calculated binding energies and dissociation energies, as well as frontier orbital energies, electron affinities, ionization energies. All the properties indicate that the Bi4 cluster is the most possible existence in bismuth-containing materials, which supports the most recent experiment. The orbital compositions, infrared and Raman activities and the ultraviolet absorption of the most possible tetramer bismuth cluster are given in detail to reveal the periodic tendency of adding bismuth atoms and the stability of tetramer bismuth cluster.

  12. Structure, Vibrational Spectra and Ring Puckering Barrier of Cyclobutane

    Energy Technology Data Exchange (ETDEWEB)

    Xantheas, Sotiris S.; Blake, Thomas A.

    2006-09-02

    We present the results of high level ab initio calculations on the structure and puckering barrier of cyclobutane in an effort to establish the minimum theoretical requirements needed for their accurate description. Our best computed value for the puckering angle is 29.68o. Furthermore we found that accurate estimates for the barrier between the minimum (D2d) and transition state (D4h) configurations require both higher levels of electron correlation [MP4, CCSD(T)] and basis sets of quadruple-z quality or larger. By performing CCSD(T) calculations with basis sets as large as cc-pV5Z we obtained a complete basis set (CBS) estimate of 498 cm-1 for the puckering barrier. Our estimate for the barrier is within 10 cm-1 to the value proposed originally, but it lies ~50 cm-1 higher than the one obtained more recently, therefore revisiting the analysis of the experimental data might be warranted. The results of the current study can serve as a guide for calculations on the substituted four member ring compounds. To this end we present a method for estimating the barrier height at higher levels of electron correlation [MP4, CCSD(T)] from the MP2 results.

  13. Coupled vibrations of a structure and fluid excited by pressure shocks. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arros, J.

    1979-12-01

    The dynamic behavior of an axisymmetric boiling water reactor suppression pool structure and the embedded water under the excitation of the pressure waves from collapsing steam bubbles was studied with a finite element model. The structure was analyzed with thin shell elements. The fluid volume is divided into isoparametric quadrilateral toroidal elements with pressure as the nodal parameter. A water source element was utilized to model the pressure shock excitation. Nonaxisymmetric pressure loads and vibration modes were expressed as a Fourier series in the circumferential coordinate. The system of equations for the structure and fluid was integrated in time using the central difference scheme.

  14. Solution of quadratic matrix equations for free vibration analysis of structures.

    Science.gov (United States)

    Gupta, K. K.

    1973-01-01

    An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.

  15. First principles investigation of the structure, elasticity, and vibrational property of the serpentine minerals. (Invited)

    Science.gov (United States)

    Tsuchiya, J.; Tsuchiya, T.

    2013-12-01

    Serpentine is formed by reaction between peridotite and water which is released from hydrous mineral in subducting slab under pressure. Partially serpentinized peridotite may be a significant reservoir for water in the subducted cold slab and is considered to play an important role in subduction zone processes such as generation of arc magmatism. Precise determination of structure, vibrational and elastic properties of serpentine become the basis for understanding the transporting processes of water into deep Earth interior. Here we investigate by first principles calculation, the detailed structures, vibrational and elastic properties of lizardite, chlorite, and antigorite which are major hydrous minerals in the serpentinized peridotite. We found a very sudden softening of the elastic constants at high pressure condition. This anomaly is associated with a slight change in the compressibility of the c axis which corresponds to the layer normal direction. The calculated OH stretching frequencies also increase suddenly associated with the anomaly and these vibrational behaviors are consistent with the previous Raman measurements. Since other hydrous phyllosilicates such as clay minerals, and mica have similar crystal structures to these hydrous minerals, these anomalous softening is also expected in these minerals under pressure. Research supported in part by special coordination funds for promoting science and technology (Supporting Young Researchers with Fixed-term Appointments) and Grants-In-Aid for Scientific Research from the Japan Society for the Promotion of Science (Nos. 21740380, 20103005, and 24740357).

  16. Y2O3:Bi nanophosphor: Solution combustion synthesis, structure, and luminescence

    Science.gov (United States)

    Jacobsohn, L. G.; Blair, M. W.; Tornga, S. C.; Brown, L. O.; Bennett, B. L.; Muenchausen, R. E.

    2008-12-01

    Photoluminescence (PL), radioluminescence (RL), and thermoluminescence (TL) investigation of Y2O3:Bi nanophosphors prepared by solution combustion synthesis using urea, glycine, and hexamethylenetetramine (HMT) as fuels was carried out. The as-prepared nanopowders have increasing crystallinity and average crystallite sizes for urea, glycine, and HMT, respectively. Luminescence is composed of two emission bands centered at 408 and 505 nm due to two nonequivalent Bi3+ sites with symmetry S6 and C2, respectively. The occupancy of these sites depends on the synthesis conditions, in agreement with theoretical predictions. Annealing at 1000 °C for 1 h improves PL and RL efficiency due to enhanced crystallinity of the nanopowders and activation of recombination centers (Bi3+ ions). No shift in the PL peak position was observed as a function of average crystallite size. The concentration quenching was experimentally determined to have a maximum emission of around 3 mol % of the dopant. TL spectra present several peaks between 50 and 300 °C, and the total TL signal is correlated with the heat of combustion of the fuel and thus crystallinity increases. Most likely, increases in RL and TL are also due to the increase in the concentration of recombination centers.

  17. Effect of structure, size and copper doping on the luminescence properties of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Ch. Satya [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Mishra, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Patel, Dinesh K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, 9190401 (Israel); Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    Highlights: • Blue and green emission intensity form ZnS is sensitive to crystallographic form. • For ZnS nanoparticles, emission characteristics are not affected by copper doping. • Cu solubility poor in ZnS nanoparticles compared to corresponding bulk. - Abstract: Luminescence properties of wurtzite and cubic forms of bulk ZnS have been investigated in detail and compared with that of ZnS nanoparticles. Blue emission observed in both hexagonal and cubic forms of undoped bulk ZnS is explained based on electron–hole recombination involving electron in conduction band and hole trapped in Zn{sup 2+} vacancies where as green emission arises due to electron hole recombination from Zn{sup 2+} and S{sup 2−} vacancies. Conversion of wurtzite form to cubic form is associated with relative increase in intensity of green emission due to increased defect concentration brought about by high temperature heat treatment. Copper doping in ZnS, initially leads to formation of both Cu{sub Zn} and Cu{sub i} (interstitial copper) centers, and latter to mainly Cu{sub Zn} centers as revealed by variation in relative intensities of blue and green emission from the samples.

  18. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan

    2017-05-01

    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  19. Hydrothermal synthesis, crystal structures, and luminescent properties of a series of new lanthanide oxalatophosphonates with a layer architecture.

    Science.gov (United States)

    Zhu, Yan-Yu; Sun, Zhen-Gang; Tong, Fei; Liu, Zhong-Min; Huang, Cui-Ying; Wang, Wei-Nan; Jiao, Cheng-Qi; Wang, Cheng-Lin; Li, Chao; Chen, Kai

    2011-05-28

    Eleven new lanthanide oxalatophosphonate hybrids with a 2D layered structures, namely, [Ln(H(3)L)(C(2)O(4))]·2H(2)O (Ln = La-Dy, Er and Y, H(4)L = C(6)H(5)CH(2)N(CH(2)PO(3)H(2))(2)), have been synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction, X-ray powder diffraction, infrared spectroscopy, elemental analysis and thermogravimetric analysis. Compounds 1-11 are isomorphous and they exhibit a 2D framework structure. Two {LnO(8)} polyhedra and four {CPO(3)} tetrahedra are interconnected into a unit via corner-sharing, and the so-built units are bridged by the oxalate anions into a layer. The result of connections in this manner is the formation of a 24-atom window. The thermal stabilities and guest desorption-sorption properties of compounds 1-11 have been investigated. The luminescent properties of compounds 5, 6, 8 and 9 have also been studied.

  20. Synthesis, crystal structure, and luminescent properties of two coordination polymers based on 1,4-phenylenediacetic acid

    Science.gov (United States)

    Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei

    2017-06-01

    Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.

  1. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  2. A procedure obtaining stiffnesses and masses of a structure from vibration modes and substructure static test data

    Science.gov (United States)

    Edighoffer, H. H.

    1979-01-01

    A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.

  3. A new fuzzy sliding mode controller for vibration control systems using integrated-structure smart dampers

    Science.gov (United States)

    Dzung Nguyen, Sy; Kim, Wanho; Park, Jhinha; Choi, Seung-Bok

    2017-04-01

    Vibration control systems using smart dampers (SmDs) such as magnetorheological and electrorheological dampers (MRD and ERD), which are classified as the integrated structure-SmD control systems (ISSmDCSs), have been actively researched and widely used. This work proposes a new controller for a class of ISSmDCSs in which high accuracy of SmD models as well as increment of control ability to deal with uncertainty and time delay are to be expected. In order to achieve this goal, two formualtion steps are required; a non-parametric SmD model based on an adaptive neuro-fuzzy inference system (ANFIS) and a novel fuzzy sliding mode controller (FSMC) which can weaken the model error of the ISSmDCSs and hence provide enhanced vibration control performances. As for the formulation of the proposed controller, first, an ANFIS controller is desgned to identify SmDs using the improved control algorithm named improved establishing neuro-fuzzy system (establishing neuro-fuzzy system). Second, a new control law for the FSMC is designed via Lyapunov stability analysis. An application to a semi-active MRD vehicle suspension system is then undertaken to illustrate and evaluate the effectiveness of the proposed control method. It is demonstrated through an experimental realization that the FSMC proposed in this work shows superior vibration control performance of the vehicle suspension compared to other surveyed controller which have similar structures to the FSMC, such as fuzzy logic and sliding mode control.

  4. Ab initio structural and vibrational properties of GaAs diamondoids and nanocrystals

    Directory of Open Access Journals (Sweden)

    Mudar Ahmed Abdulsattar

    2014-12-01

    Full Text Available Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm-1 compared to experimental 0.035 eV (285.2 cm-1. Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å. Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.

  5. Modeling of structures and calculation of IR vibrational spectra of N,N-dimethylformamide dimers by density functional theory

    Science.gov (United States)

    Shundalau, M. B.; Chybirai, P. S.; Komyak, A. I.; Zazhogin, A. P.; Ksenofontov, M. A.; Umreiko, D. S.

    2011-07-01

    We present results of ab initio and DFT calculations of the structure and IR vibrational spectra of the monomer and dimers of N,N-dimethylformamide (DMF). The calculations were carried out in the B3LYP/cc-pVDZ approximation with subsequent force-field scaling. The calculated characteristics of the vibrational spectra of DMF show satisfactory agreement with experimental values, allowing them to be used in spectral and structural analysis.

  6. Theoretical structural and vibrational study of 5-trifluoromethyluracil. A comparison with uracil

    Energy Technology Data Exchange (ETDEWEB)

    Rudyk, Roxana; Ramos, María E.; Checa, María A.; Brandán, Silvia A. [Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471,(4000), San Miguel de Tucumán, Tucum and #x00E1 (Argentina); Chamorro, Eduardo E. [Facultad de Ciencias Exactas, Universidad Andrés Bello, Avda. República 275, 8370146, Santiago (Chile)

    2014-10-06

    In the present work, a comparative study on the structural and vibrational properties of the 5-trifluoromethyluracil (TFMU) derivative with those corresponding to uracil in gas and aqueous solution phases was performed combining the available H{sup 1}-NMR, C{sup 13}-NMR, F{sup 19}-NMR and FTIR spectra with Density Functional Theory (DFT) calculations. Three stable conformers were theoretically determined in both media by using the hybrid B3LYP/6-31G* method. The solvent effects were simulated by means of the self-consistent reaction field (SCRF) method employing the integral equation formalism variant (IEFPCM). Complete assignments of the vibrational spectra in both phases were performed combining the internal coordinates analysis and the DFT calculations with the Scaled Quantum Mechanics Force Field (SQMFF) methodology. The atomic charges, bond orders, solvation energies, dipole moments, molecular electrostatic potentials and force constants parameters were calculated for the three conformers of TFMU in gas phase and aqueous solution.

  7. Estimations of non-linearities in structural vibrations of string musical instruments

    CERN Document Server

    Ege, Kerem; Boutillon, Xavier

    2012-01-01

    Under the excitation of strings, the wooden structure of string instruments is generally assumed to undergo linear vibrations. As an alternative to the direct measurement of the distortion rate at several vibration levels and frequencies, we characterise weak non-linearities by a signal-model approach based on cascade of Hammerstein models. In this approach, in a chain of two non-linear systems, two measurements are sufficient to estimate the non-linear contribution of the second (sub-)system which cannot be directly linearly driven, as a function of the exciting frequency. The experiment consists in exciting the instrument acoustically. The linear and non-linear contributions to the response of (a) the loudspeaker coupled to the room, (b) the instrument can be separated. Some methodological issues will be discussed. Findings pertaining to several instruments - one piano, two guitars, one violin - will be presented.

  8. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  9. Analysis of vibrational, structural, and electronic properties of rivastigmine by density functional theory

    Science.gov (United States)

    Prasad, O.; Sinha, L.; Misra, N.; Narayan, V.; Kumar, N.; Kumar, A.

    2010-09-01

    The present work deals with the structural, electronic, and vibrational analysis of rivastigmine. Rivastigmine, an antidementia medicament, is credited with significant therapeutic effects on the cognitive, functional, and behavioural problems that are commonly associated with Alzheimer’s dementia. For rivastigmine, a number of minimum energy conformations are possible. The geometry of twelve possible conformers has been analyzed and the most stable conformer was further optimized at a higher basis set. The electronic properties and vibrational frequencies were then calculated using a density functional theory at the B3LYP level with the 6-311+G(d, p) basis set. The different molecular surfaces have also been drawn to understand the activity of the molecule. A narrower frontier orbital energy gap in rivastigmine makes it softer and more reactive than water and dimethylfuran. The calculated value of the dipole moment is 2.58 debye.

  10. Quantum chemical studies on structural, vibrational, nonlinear optical properties and chemical reactivity of indigo carmine dye

    Science.gov (United States)

    El-Mansy, M. A. M.

    2017-08-01

    Structural and vibrational spectroscopic studies were performed on indigo carmine (IC) isomers using FT-IR spectral analysis along with DFT/B3LYP method utilizing Gaussian 09 software. GaussView 5 program has been employed to perform a detailed interpretation of vibrational spectra. Simulation of infrared spectra has led to an excellent overall agreement with the observed spectral patterns. Mulliken population analyses on atomic charges, MEP, HOMO-LUMO, NLO, first order hyperpolarizability and thermodynamic properties have been examined by (DFT/B3LYP) method with the SDD basis set level. Density of state spectra (DOS) were calculated using GaussSum 3 at the same level of theory. Molecular modeling approved that DOS Spectra are the most significant tools for differentiating between two IC isomers so far. Moreover, The IC isomers (cis-isomer) have shown an extended applicability for manufacturing both NLO and photovoltaic devices such as solar cells.

  11. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols

    Science.gov (United States)

    Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela

    2018-01-01

    Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.

  12. Resonant diffusion of normal alkanes in zeolites: Effect of the zeolite structure and alkane molecule vibrations

    CERN Document Server

    Tsekov, R

    2015-01-01

    Diffusion of normal alkanes in one-dimensional zeolites is theoretically studied on the basis of the stochastic equation formalism. The calculated diffusion coefficient accounts for the vibrations of the diffusing molecule and zeolite framework, molecule-zeolite interaction, and specific structure of the zeolite. It is shown that when the interaction potential is predominantly determined by the zeolite pore structure, the diffusion coefficient varies periodically with the number of carbon atoms of the alkane molecule, a phenomenon called resonant diffusion. A criterion for observable resonance is obtained from the balance between the interaction potentials of the molecule due to the atomic and pore structures of the zeolite. It shows that the diffusion is not resonant in zeolites without pore structure, such as ZSM-12. Moreover, even in zeolites with developed pore structure no resonant dependence of the diffusion constant can be detected if the pore structure energy barriers are not at least three times high...

  13. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  14. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN; Xu, Bing; Wang, Bao-Cheng; Xie, Juan; Yuan, Fei; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2014-08-15

    Five zinc(II) metal–organic frameworks, [Zn{sub 3}(344-pytpy){sub 2}Cl{sub 6}]{sub n}·n(H{sub 2}O) (1), [Zn(344-pytpy)(ox)]{sub n} (2), [Zn{sub 2}(344-pytpy)(bdc){sub 2}]{sub n}·1.5n(H{sub 2}O) (3), [Zn{sub 2}(344-pytpy){sub 2} (sfdb){sub 2}]{sub n}·1.5n(H{sub 2}O) (4) and [Zn{sub 3}(344-pytpy){sub 2}(btc){sub 2}]{sub n}·2n(H{sub 2}O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H{sub 2}ox=oxalic acid, H{sub 2}bdc=1,4-benzenedi-carboxylic acid, H{sub 2}sfdb=4,4′-sulfonyldibenzoic acid and H{sub 3}btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn{sup II} centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6{sup 6}. Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8{sup 2})(4.8{sup 5})(8{sup 3}). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4{sup 4}.6{sup 2}). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8{sup 2}){sub 2}(6{sup 2}.8{sup 2}.10.12)(6{sup 2}.8{sup 3}.10){sub 2}(6{sup 2}.8){sub 2}. The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and

  15. Influence of Europium Ion on Structural, Mechanical and Luminescence Behavior of Tellurite Nanoglass

    Science.gov (United States)

    Sazali, E. S.; Sahar, M. R.; Ghoshal, S. K.

    2013-04-01

    Understanding the mechanism of enhanced luminescence of rare earth doped glasses in the presence of nanocrystallites and growth kineics is fundamentally important for optical devices. Tellurite nanoglasses of composition (80-x) TeO2 - 5 Na2O - 15 MgO - (x) Eu2O3, over the concentration region of 0 to 2.5 mol% are prepared using conventional melt-quenching technique. The nanocrystalline particles are obtained by heating the as-cast glass at temperature 15-20°C above the glass crystallization temperature (Tc). The sizes of nanocrystallites are estimated from the X-Ray Diffraction (XRD) pattern using the Scherrer equation having average diameter ~68.7 nm. SEM studies revealed the nanocrystal glass morphology associated with the existence of crystalline phase. The glass density is determined by Precisa Densitometer and the hardness by the Vickers micro-hardness method. The density of tellurite nano-glass is found to be in the range of 5.2413 to 5.4933 g cm-3 while the Vickers microhardness varies from 2.77 to 2.93 GPa depending on the dopant concentration. The photoluminescence (PL) spectra exhibits five peaks around 568 nm, 600 nm, 628 nm, 664 nm and 712 nm assigned to 5D0 → 7F0, 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 transitions respectively. Interestingly, the FWHM and the inverse quality factor of the heat-treated glass are found to decrease with increasing concentration of Eu3+ dopants. Our observation may contribute towards the development of solid state lasers.

  16. Multi-state analysis of the OCS ultraviolet absorption including vibrational structure

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht; Johnson, Matthew Stanley; McBane, G.C.

    2012-01-01

    The first absorption band of OCS (carbonyl sulfide) is analyzed using potential energy surfaces and transition dipole moment functions of the lowest four singlet and the lowest four triplet states. Excitation of the 2 (1)A' state is predominant except at very low photon energies. It is shown that...... that the vibrational structures in the center of the band are due to excitation of the 2 (3)A'' triplet state, whereas the structures at very low energies are caused by bending excitation in the potential wells of states 2 (1)A' and 1 (1)A''....

  17. Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment

    Science.gov (United States)

    Davis, Mark; Ridnour, Andrew; Brethen, Mark

    2011-01-01

    The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight

  18. The Luminescent Properties and Atomic Structures of As-Grown and Annealed Nanostructured Silicon Rich Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    N. D. Espinosa-Torres

    2016-01-01

    Full Text Available Not long ago, we developed a theoretical model to describe a set of chemical reactions that can potentially occur during the process of obtaining Silicon Rich Oxide (SRO films, an off stoichiometry material, notwithstanding the technique used to grow such films. In order to elucidate the physical chemistry properties of such material, we suggested the chemical reactions that occur during the process of growing of SRO films in particular for the case of the Low Pressure Chemical Vapor Deposition (LPCVD technique in the aforementioned model. The present paper represents a step further with respect to the previous (published work, since it is dedicated to the calculation by Density Functional Theory (DFT of the optical and electronic properties of the as-grown and annealed SRO structures theoretically predicted on the basis of the previous work. In this work, we suggest and evaluate either some types of molecules or resulting nanostructures and we predict theoretically, by applying the DFT, the contribution that they may have to the phenomenon of luminescence (PL, which is experimentally measured in SRO films. We evaluated the optical and electronic properties of both the as-grown and the annealed structures.

  19. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Ramos, Pablo [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Silva, Pedro S. Pereira, E-mail: psidonio@pollux.fis.uc.pt [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Chamorro-Posada, Pedro [Higher Technical School of Telecommunications Engineering, Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén 15, 47011 Valladolid (Spain); Silva, Manuela Ramos [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Milne, Bruce F. [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Nogueira, Fernando [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Martín-Gil, Jesús [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2015-06-15

    A novel erbium(III) complex with acetylacetone (Hacac) and bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, bath) ligands, formulated as [Er(acac){sub 3}(bath)], has been characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, absorption and emission spectroscopies. In the theoretical part of this study, semi-empirical quantum chemistry methods using AM1, PM3, PM6 and PM7 models have been employed to predict the structure of the complex, calculate the geometric and crystallographic parameters, and make comparisons with spectroscopic data using INDO/S-CI calculations. Real-time time-dependent density-functional theory (TDDFT) has also been used to calculate the optical absorption spectrum of the complex in the gas phase. - Highlights: • Synthesis and structure of a new erbium(III) β-diketonate complex. • TDDFT used for the first time to calculate the optical absorption spectrum. • Complex show strong near-infrared luminescence at 1.53 µm due to antenna effect.

  20. Metal-Free Multicomponent Tandem Polymerizations of Alkynes, Amines, and Formaldehyde toward Structure- and Sequence-Controlled Luminescent Polyheterocycles.

    Science.gov (United States)

    Wei, Bo; Li, Weizhang; Zhao, Zujin; Qin, Anjun; Hu, Rongrong; Tang, Ben Zhong

    2017-04-03

    Sequence-controlled polymers, including biopolymers such as DNA, RNA, and proteins, have attracted much attention recently because of their sequence-dependent functionalities. The development of an efficient synthetic approach for non-natural sequence-controlled polymers is hence of great importance. Multicomponent polymerizations (MCPs) as a powerful and popular synthetic approach for functional polymers with great structural diversity have been demonstrated to be a promising tool for the synthesis of sequence-controlled polymers. In this work, we developed a facile metal-free one-pot multicomponent tandem polymerization (MCTP) of activated internal alkynes, aromatic diamines, and formaldehyde to successfully synthesize structural-regulated and sequence-controlled polyheterocycles with high molecular weights (up to 69 800 g/mol) in high yields (up to 99%). Through such MCTP, polymers with the in situ generated multisubstituted tetrahydropyrimidines or dihydropyrrolones in the backbone and inherent luminescence can be easily obtained with high atom economy and environmental benefit, which is inaccessible by other synthetic approaches.

  1. Influence of surface functionalization on structural and photo-luminescence properties of CeF3:Tb nanoparticles

    Science.gov (United States)

    Ansari, Anees A.

    2017-07-01

    Highly luminescent and aqueous soluble CeF3:Tb (core),CeF3:Tb@LaF3(core/shell) and CeF3:Tb@LaF3@ SiO2 (core/shell/Si) nanoparticles(NPs) with mean particle size 12 nm were prepared by co-precipitation method at low temperature. X-ray diffraction pattern verified the phase purity, high crystallinity of hexagonal structure. The TEM image and SAED pattern revealed the single phase polycrystalline nature, well-dispersed irregular shaped hexagonal structure. FTIR spectra show the characteristic infrared peaks of silica, it suggests the successful silica surface coating around the core/shell NPs. The excitation and emission intensity of core/shell NPs were remarkably increased then their counterpart core NPs. It implies that a significant amount of nonradiative transition centers existing on the surface of core NPs has been eliminated due to the formation of passivated LaF3 layer. The silica surface modification over the core/shell NPs strikingly enhanced the solubility character in an aqueous environment.

  2. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations.

    Science.gov (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H; Losilla, Sergio A; Christiansen, Ove

    2018-01-14

    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  3. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations

    Science.gov (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove

    2018-01-01

    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  4. Crystal structure and luminescence of a europium coordination polymer {[Eu( m-MOBA) 3·2H 2O]1/2(4,4'-bpy)} ∞

    Science.gov (United States)

    Li, X.; Zheng, X.; Jin, L.; Lu, S.; Qin, W.

    2000-02-01

    The structure of the complex [Eu( m-MOBA) 3·2H 2O]1/2(4,4'-bpy) ( m-MOBA: m-methoxybenzoate, 4,4'-bpy: 4,4'-bipyridine) was determined by single crystal X-ray diffraction. The bonding around each europium consists of two oxygen atoms of the chelated carboxyl group, two oxygen atoms of two water molecules and four oxygen atoms of the bidentate bridging carboxylate groups, forming an infinite polymeric chain structure. The luminescence behaviour of Eu 3+ in {[Eu( m-MOBA) 3·2H 2O]1/2(4,4'-bpy)} ∞ was observed at 77 K. The emission spectra of 5D 1→ 7F J ( J=1-3) and 5D 0→ 7F J ( J=0-4) transitions were recorded. The complex displays intense luminescence which may be related to the m-MOBA ligand and the polymeric coordination.

  5. Design of three-element dynamic vibration absorber for damped linear structures

    Science.gov (United States)

    Anh, N. D.; Nguyen, N. X.; Hoa, L. T.

    2013-09-01

    The standard type of dynamic vibration absorber (DVA) called the Voigt DVA is a classical model and has long been investigated. In the paper, we will consider an optimization problem of another model of DVA that is called three-element type DVA for damped primary structures. Unlike the standard absorber configuration, the three-element DVA contains two spring elements in which one is connected to a dashpot in series and the other is placed in parallel. There have been some studies on the design of the three-element DVA for undamped primary structures. Those studies have shown that the three-element DVA produces better performance than the Voigt DVA does. When damping is present at the primary system, to the best knowledge of the authors, there has been no study on the three-element dynamic vibration absorber. This work presents a simple approach to determine the approximate analytical solutions for the H∞ optimization of the three-element DVA attached to the damped primary structure. The main idea of the study is based on the criteria of the equivalent linearization method in order to replace approximately the original damped structure by an equivalent undamped one. Then the approximate analytical solution of the DVA's parameters is given by using known results for the undamped structure obtained. The comparisons have been done to verify the effectiveness of the obtained results.

  6. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    Science.gov (United States)

    Keiderling, Timothy A

    2017-10-04

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  7. Structure-borne sound and vibration from building-mounted wind turbines

    Science.gov (United States)

    Moorhouse, Andy; Elliott, Andy; Eastwick, Graham; Evans, Tomos; Ryan, Andy; von Hunerbein, Sabine; le Bescond, Valentin; Waddington, David

    2011-07-01

    Noise continues to be a significant factor in the development of wind energy resources. In the case of building-mounted wind turbines (BMWTs), in addition to the usual airborne sound there is the potential for occupants to be affected by structure-borne sound and vibration transmitted through the building structure. Usual methods for prediction and evaluation of noise from large and small WTs are not applicable to noise of this type. This letter describes an investigation aiming to derive a methodology for prediction of structure-borne sound and vibration inside attached dwellings. Jointly funded by three UK government departments, the work was motivated by a desire to stimulate renewable energy generation by the removal of planning restrictions where possible. A method for characterizing BMWTs as sources of structure-borne sound was first developed during a field survey of two small wind turbines under variable wind conditions. The 'source strength' was established as a function of rotor speed although a general relationship to wind speed could not be established. The influence of turbulence was also investigated. The prediction methodology, which also accounts for the sound transmission properties of the mast and supporting building, was verified in a field survey of existing installations. Significant differences in behavior and subjective character were noted between the airborne and structure-borne noise from BMWTs.

  8. Multiple tuned mass damper based vibration mitigation of offshore wind turbine considering soil-structure interaction

    Science.gov (United States)

    Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie

    2017-08-01

    The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.

  9. Forced vibration and wave propagation in mono-coupled periodic structures

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1986-01-01

    This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... is laid on investigating resonant periodic point loading and its pronounced effect on the propagation of longitudinal waves. General mono-coupled periodic systems are first assumed to be infinite in extent; thereafter reflections caused by arbitrary end terminations of finite structures are considered...... and a general `closed form' solution is found for the forced harmonic response at element junctions. This `junction-receptance' is used to determine-discrete junction mode shapes of a finite system. Finally, the forced response of a finite structure with an internal obstruction is derived as a natural extension...

  10. Vibrational self-trapping in beta-sheet structures observed with femtosecond nonlinear infrared spectroscopy.

    Science.gov (United States)

    Bodis, Pavol; Schwartz, Erik; Koepf, Matthieu; Cornelissen, Jeroen J L M; Rowan, Alan E; Nolte, Roeland J M; Woutersen, Sander

    2009-09-28

    Self-trapping of NH-stretch vibrational excitations in synthetic beta-sheet helices is observed using femtosecond infrared pump-probe spectroscopy. In a dialanine-based beta-sheet helix, the transient-absorption change upon exciting the NH-stretch mode exhibits a negative absorption change at the fundamental frequency and two positive peaks at lower frequencies. These two induced-absorption peaks are characteristic for a state in which the vibrational excitation is self-trapped on essentially a single NH-group in the hydrogen-bonded NH...OC chain, forming a small (Holstein) vibrational polaron. By engineering the structure of the polymer we can disrupt the hydrogen-bonded NH...OC chain, allowing us to eliminate the self-trapping, as is confirmed from the NH-stretch pump-probe response. We also investigate a trialanine-based beta-sheet helix, where each side chain participates in two NH...OC chains with different hydrogen-bond lengths. The chain with short hydrogen bonds shows the same self-trapping behavior as the dialanine-based beta-sheet helix, whereas in the chain with long hydrogen bonds the self-trapping is too weak to be observable.

  11. Analytical Model of Underground Train Induced Vibrations on Nearby Building Structures in Cameroon: Assessment and Prediction

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2013-11-01

    Full Text Available The purpose of this research paper was to assess and predict the effect of vibrations induced by an underground railway on nearby-existing buildings prior to the construction of projected new railway lines of the National Railway Master Plan of Cameroon and after upgrading of the railway conceded to CAMRAIL linking the two most densely populated cities of Cameroon: Douala and Yaoundé. With the source-transmitter-receiver mathematical model as the train-soil-structure interaction model, taking into account sub-model parameters such as type of the train-railway system, typical geotechnical conditions of the ground and the sensitivity of the nearby buildings, the analysis is carried out over the entire system using the dynamic finite element method in the time domain. This subdivision of the model is a powerful tool that allows to consider different alternatives of sub-models with different characteristics, and thus to determine any critical excessive vibration impact. Based on semi-empirical analytical results obtained from presented models, the present work assesses and predicts characteristics of traffic-induced vibrations as a function of time duration, intensity and vehicle speed, as well as their influence on buildings at different levels.

  12. Zinc oxide nanoparticles with incorporated silver: Structural, morphological, optical and vibrational properties

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Edgar, E-mail: edemova@ing.uchile.cl [Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile); Rojas-Michea, Carolina, E-mail: rojasmichea@gmail.com [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile); Gracia, Francisco, E-mail: Fgracia@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Fuenzalida, Víctor, E-mail: vfuenzal@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Zárate, Ramón A., E-mail: rzarate@ucn.cl [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile)

    2015-08-30

    Graphical abstract: Local vibrational modes of ZnO:Ag nanoparticles. - Highlights: • Formation of Ag biphases is observed when the Ag content increases. • The SPR property has been monitored in the UV–visible regime. • PL emission of ZnO:Ag nanoparticles are associated to structural defects. • A new local vibrational mode induced by Ag content were observed in the Raman spectra. - Abstract: Zinc oxide nanoparticles with different amounts of incorporated silver (ZnO:Ag; 0.6, 3, 6, and 9 at.% Ag) have been successfully synthesized by a simple sol gel method. The effect of Ag content on the properties of ZnO nanoparticles have been studied by various characterization techniques. The results from X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS) suggest that elemental silver is present as a second phase. The UV–visible absorption and photoluminescence (PL) properties of the samples were also studied. PL data at room temperature reveals a strong blue emission. In addition, Raman spectroscopy results indicate a very strong A{sub 1}(LO) mode resulting from oxygen vacancies and zinc interstitials. A new local vibrational mode (LVM) at 480 cm{sup −1} induced by silver can also be observed in the Raman spectra, suggesting silver incorporation into the ZnO lattice compensating the Zn vacancies, which is consistent with the XRD results.

  13. Comparative studies on molecular structure, vibrational spectra and hyperpolarizabilies of NLO chromophore Ethyl 4-Dimethylaminobenzoate

    Science.gov (United States)

    Amalanathan, M.; Jasmine, G. Femina; Roy, S. Dawn Dharma

    2017-08-01

    The molecular structure, vibrational spectra and polarizabilities of Ethyl 4-Dimethylaminobenzoate (EDAB) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set and compared with some other levels. A detailed interpretation of the IR and Raman spectra of EDBA have been reported and analyzed. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (TED) using VEDA software. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, and frontier molecular orbitals energy, was performed using DFT approach. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The natural and Mulliken charge also calculated and compared with different level of calculation. The dipole moment, polarizability and first, second order hyperpolarizabilities of the title molecule were calculated and compared with the experimental values. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The NLO activity of molecule was confirmed by SHG analysis.

  14. [Structure and luminescence properties of ZnO films prepared by RF magnetron sputtering].

    Science.gov (United States)

    Xu, Xiao-li; Ma, Shu-yi; Chen, Yan; Zhang, Guo-heng; Sun, Xiao-jing; Wei, Jin-jun

    2008-09-01

    ZnO thin films with c-axis preferred orientation were prepared on glass substrates by radio frequency co-reactive magnetron sputtering technique, and the effect of the substrate temperature on the microstructure and the luminescence properties of the ZnO thin films was studied by X-ray diffractometry (XRD), scanning probe microscopy(SPM)and fluorescence spectrophotometer. The XRD patterns of the four ZnO samples prepared at different substrate temperatures were measured by XRD. figure which embodied the relation of full wave at half maximum (FWHM) and grain size of the four samples as a function of substrate temperatures was given out, too. It was concluded that the crystallization of the samples was promoted by appropriate substrate temperatures, the results consist with the AFM microscopic photos of the two samples. In addition, the photoluminescence (PL) spectra of the four samples were measured at room temperature. Violet peak located at about 400 nm, blue peak located at 446 nm and green peak located at about 502 nm were observed from the PL spectra of the four samples. With the rise of the growth temperature, the intensity of the violet peak and the blue peak increased sharply, and the intensity of green peak increased at the same time. It was concluded that the violet peak may correspond to the exciton emission, the blue peak was mainly attributed to the interstitial Zinc (Zn(i)) and the green emission peak must be related to the deep level defects of oxygen (Vo) in the crystal of ZnO films. Absorption property of the samples were researched by UV spectrophotometer, and the absorption spectrum of the film deposited at 150 degrees C and the (alpha h nu)2 versus h nu of the ZnO thin film were given. From the absorption spectrum, it could be observed that the spectroscopic data in UV region showed split peak and shoulder peak. With analysis of the absorption spectrum of the sample deposited at 150 degrees C, it was proved that our analysis of the

  15. Evaluation of seatback vibration based on ISO 2631-1 (1997) standard method: The influence of vehicle seat structural resonance.

    Science.gov (United States)

    Ittianuwat, R; Fard, M; Kato, K

    2017-01-01

    Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.

  16. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Swaminathan, S; Ramkumaar, G R

    2015-02-25

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Structural and optical effects induced by gamma irradiation on NdPO{sub 4}: X-ray diffraction, spectroscopic and luminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Sadhasivam, S.; Rajesh, N.P., E-mail: rajeshnp@hotmail.com

    2016-02-15

    Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM and EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.

  18. A comparative study of structural patterns and luminescent properties of silver-DAFO complexes with carborane- versus "classical"-diphosphanes.

    Science.gov (United States)

    Crespo, Olga; Gimeno, M Concepción; Laguna, Antonio; Marriott, Rosie; Sáez-Rocher, José M; Villacampa, M Dolores

    2014-08-28

    New complexes with the DAFO (4,5-diazafluoren-9-one) ligand of stoichiometry [Ag(DAFO)(P-P)]OTf [P-P = dppe, 1,2-bis(diphenylphosphane)ethane; dppp, 1,3-bis(diphenylphosphane)propane; dppph, ortho-bis(diphenylphosphane)benzene; dppcc, 1,2-bis(diphenylphosphane)-1,2-dicarba-closo-dodecaborane; dipcc, 1,2-bis(diisopropylphosphane)-1,2-dicarba-nido-dodecaborane], [Ag(DAFO)(P-P*)] [P-P* = dppnc, 7,8-bis(diphenylphosphane)-7,8-dicarba-nido-undecaborate(-1); dipnc, 7,8-bis(diisopropylphosphane)-7,8-dicarba-closo-undecaborate(-1)] and [Ag(DAFO)(OTf)L] [L = PPh3; dpccMe, 1-diphenylphosphane-2-methyl-1,2-dicarba-closo-dodecaborane] are reported. The structures of the complexes depend on the skeleton of the diphosphane. Most of these compounds are luminescent and their emissions seem to have originated from IL (DAFO) transitions, modified upon coordination to silver.

  19. Exploring Polaronic, Excitonic Structures and Luminescence in Cs4PbBr6/CsPbBr3.

    Science.gov (United States)

    Kang, Byungkyun; Biswas, Koushik

    2018-02-15

    Among the important family of halide perovskites, one particular case of all-inorganic, 0-D Cs 4 PbBr 6 and 3-D CsPbBr 3 -based nanostructures and thin films is witnessing intense activity due to ultrafast luminescence with high quantum yield. To understand their emissive behavior, we use hybrid density functional calculations to first compare the ground-state electronic structure of the two prospective compounds. The dispersive band edges of CsPbBr 3 do not support self-trapped carriers, which agrees with reports of weak exciton binding energy and high photocurrent. The larger gap 0-D material Cs 4 PbBr 6 , however, reveals polaronic and excitonic features. We show that those lattice-coupled carriers are likely responsible for observed ultraviolet emission around ∼375 nm, reported in bulk Cs 4 PbBr 6 and Cs 4 PbBr 6 /CsPbBr 3 composites. Ionization potential calculations and estimates of type-I band alignment support the notion of quantum confinement leading to fast, green emission from CsPbBr 3 nanostructures embedded in Cs 4 PbBr 6 .

  20. Structural and luminescence studies of Ho{sup 3+}-doped zinc-aluminium-sodium-phosphate (ZANP) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Brahmachary, K.; Rajesh, D.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati-517502 (India)

    2015-06-24

    Trivalent holmium doped zinc-aluminium-sodium-phosphate (ZANP) glasses were prepared by conventional melt-quenching technique and characterized for their structural and luminescence properties. The amorphous nature, elemental analysis and thermal stability of the glasses were studied by using X-ray diffraction, energy dispersive spectrum and differential scanning calorimetry analysis, respectively. The absorption and fluorescence spectra have been recorded at room temperature. Based on the absorption spectra, the Judd-Ofelt parameters and radiative parameters such as spontaneous transition probabilities (A{sub R}), branching ratios (β{sub R}), radiative lifetimes (τ{sub R}) were calculated and discussed. From the emission spectra emission peak positions (λ{sub P}), effective bandwidths (Δλ{sub eff}) and stimulated emission cross-sections (σ{sub P}) were calculated for the observed emission transitions,{sup 5}S{sub 2} ({sup 5}F{sub 4}→{sup 5}I{sub 8}) and {sup 5}F{sub 5}→{sup 5}I{sub 8} in all the glass samples. The stimulated emission cross-section is higher for ZANPHo10 glass matrix and so it may be useful for laser excitation.

  1. Synthesis, structure and luminescent properties of Cu(I)-cyanide frameworks based on bent dipyridyl-oxadiazole ligands

    Science.gov (United States)

    Wang, Hui; Li, Ming-Xing; Shao, Min; Wang, Zhao-Xi

    2008-10-01

    Hydrothermal reaction of CuCN with 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (3-bpo) affords a wave-like infinite chain coordination polymer [Cu 2(CN) 2(3-bpo)] n ( 1). Replacement of 3-bpo by its isomer 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (4-bpo) could yields polymer [Cu(CN)(4-bpo)] n ( 2). In the complex 1, the bent 3-bpo ligand adopts bidentate chelating mode binds with the Cu(I)-cyanide chain to form 16-membered macrocyclic structure. The complex 2 exhibits a layered metal-organic framework, in which exo-bidentate 4-bpo ligand connects the Cu(I)-cyanide chains to form 2-D rectangle grid. Both of these Cu(I) complexes are thermal stable under 200 °C and release 3-bpo or 4-bpo ligand in 200-360 °C. Luminescent study reveals that 1 has green-light emission, while 2 has blue-light emission.

  2. Synthesis, crystal structures, luminescence and catalytic properties of two d¹⁰ metal coordination polymers constructed from mixed ligands.

    Science.gov (United States)

    Wang, Xiao-xiao; Zhang, Ming-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-03-15

    Two new coordination polymers [Cd(bmb)(hmph)]n (1), {[Ag(bmb)]·H2btc}n (2) (bmb=1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2hmph=homophthalic acid, H3btc=1,3,5-benzenetetracarboxylic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA, XRPD and elemental analysis. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 6(6) topology. Complex 2 shows a 1D helix chain structure connected by L1 ligands, which is finally extended into a rarely 2D 4L2 supramolecular network via C-H⋯O hydrogen bond interactions. In addition, the luminescence and catalytic properties of the two complexes for the degradation of the methyl orange azo dye in a Fenton-like process were presented. The degradation efficiency of the methyl orange azo dye for 1 and 2 are 56% and 96%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Method and apparatus for conducting structural health monitoring in a cryogenic, high vibration environment

    Science.gov (United States)

    Qing, Xinlin (Inventor); Beard, Shawn J. (Inventor); Li, Irene (Inventor)

    2013-01-01

    Sensors affixed to various such structures, where the sensors can withstand, remain affixed, and operate while undergoing both cryogenic temperatures and high vibrations. In particular, piezoelectric single crystal transducers are utilized, and these sensors are coupled to the structure via a low temperature, heat cured epoxy. This allows the transducers to monitor the structure while the engine is operating, even despite the harsh operating conditions. Aspects of the invention thus allow for real time monitoring and analysis of structures that operate in conditions that previously did not permit such analysis. A further aspect of the invention relates to use of piezoelectric single crystal transducers. In particular, use of such transducers allows the same elements to be used as both sensors and actuators.

  4. Luminescent metal-organic frameworks.

    Science.gov (United States)

    Allendorf, M D; Bauer, C A; Bhakta, R K; Houk, R J T

    2009-05-01

    Metal-organic frameworks (MOFs) display a wide range of luminescent behaviors resulting from the multifaceted nature of their structure. In this critical review we discuss the origins of MOF luminosity, which include the linker, the coordinated metal ions, antenna effects, excimer and exciplex formation, and guest molecules. The literature describing these effects is comprehensively surveyed, including a categorization of each report according to the type of luminescence observed. Finally, we discuss potential applications of luminescent MOFs. This review will be of interest to researchers and synthetic chemists attempting to design luminescent MOFs, and those engaged in the extension of MOFs to applications such as chemical, biological, and radiation detection, medical imaging, and electro-optical devices (141 references).

  5. Development and applications of two computational procedures for determining the vibration modes of structural systems. [aircraft structures - aerospaceplanes

    Science.gov (United States)

    Kvaternik, R. G.

    1975-01-01

    Two computational procedures for analyzing complex structural systems for their natural modes and frequencies of vibration are presented. Both procedures are based on a substructures methodology and both employ the finite-element stiffness method to model the constituent substructures. The first procedure is a direct method based on solving the eigenvalue problem associated with a finite-element representation of the complete structure. The second procedure is a component-mode synthesis scheme in which the vibration modes of the complete structure are synthesized from modes of substructures into which the structure is divided. The analytical basis of the methods contains a combination of features which enhance the generality of the procedures. The computational procedures exhibit a unique utilitarian character with respect to the versatility, computational convenience, and ease of computer implementation. The computational procedures were implemented in two special-purpose computer programs. The results of the application of these programs to several structural configurations are shown and comparisons are made with experiment.

  6. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    Science.gov (United States)

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-03-11

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.

  7. Uncertainty modeling in vibration, control and fuzzy analysis of structural systems

    CERN Document Server

    Halder, Achintya; Ayyub, Bilal M

    1997-01-01

    This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy

  8. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    OpenAIRE

    Franchetti Paolo; Frizzarin Michele; Leonardi Andrea; Zeni Fabio

    2015-01-01

    A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention ...

  9. On a finite dynamic element method for free vibration analysis of structures

    Science.gov (United States)

    Gupta, K. K.

    1976-01-01

    This paper explores the concept of finite dynamic elements involving higher order dynamic correction terms in the associated stiffness and mass matrices. Such matrices are then developed for a rectangular prestressed membrane element. Next, efficient analysis techniques for the eigenproblem solution of the resulting quadratic matrix equations are described in detail. These are followed by suitable numerical examples which indicate that employment of such dynamic elements in conjunction with an efficient quadratic matric solution technique will result in a most significant economy in the free vibration analysis of structures.

  10. Development of a block Lanczos algorithm for free vibration analysis of spinning structures

    Science.gov (United States)

    Gupta, K. K.; Lawson, C. L.

    1988-01-01

    This paper is concerned with the development of an efficient eigenproblem solution algorithm and an associated computer program for the economical solution of the free vibration problem of complex practical spinning structural systems. Thus, a detailed description of a newly developed block Lanczos procedure is presented in this paper that employs only real numbers in all relevant computations and also fully exploits sparsity of associated matrices. The procedure is capable of computing multiple roots and proves to be most efficient compared to other existing similar techniques.

  11. Comment on plate modal wavenumber transforms in Sound and structural vibration [Academic Press (1987, 2007)] (L).

    Science.gov (United States)

    Shepherd, Micah R; Hambric, Stephen A

    2012-10-01

    The wavenumber transform for rectangular, simply supported, isotropic thin plates has been rederived to correct a technical error found in the text Sound and Structural Vibration (Academic Press, 1985/2007) by Fahy/Fahy and Gardonio. The text states that the modal wavenumber corresponds to the peak of the wavenumber spectrum. While this is approximately true for higher-order modes, it does not hold for lower-order modes due to coupling between positive and negative wavenumber energy. The modal wavenumber is shown to be related to the zeros in the wavenumber spectrum by an integer multiple of 2π normalized by the plate length.

  12. Structure detection in a libration vibration spectrum of water molecules by methods of nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Babenko, V A; Sychev, Andrei A [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-09-30

    In exciting water possessing an enhanced optical strength by the radiation of a YAG : Nd{sup 3+} laser with 20-ps pulses, nonlinear scattering of light was detected in the frequency range of the optical second harmonic. A relationship was established of the signal of the nonlinear scattering with a stimulated Raman scattering (SRS) of the laser radiation in water. Near the SRS threshold, the structure was observed in the spectrum of nonlinear scattering, which is related to intermolecular libration vibrations of water molecules. (laser applications and other topics in quantum electronics)

  13. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  14. Experimental and theoretical study of the vibrational spectra of oligoureas: helical versus β-sheet-type secondary structures.

    Science.gov (United States)

    Cavagnat, Dominique; Claudon, Paul; Fischer, Lucile; Guichard, Gilles; Desbat, Bernard

    2011-04-21

    Ab initio calculations of two oligoureas stabilized in helix and sheet organization have been performed. The hydrogen bond distances were found to be almost the same for both structures. The vibrational assignment of the two oligourea structures and the direction of the transition moment of each vibration have been determined. From these results, and using the experimental isotropic optical index determined for one oligourea, we have established the anisotropic infrared optical files for the two structures. Interestingly, most urea absorptions vibrate in only one principal direction. Also, the shift of the carbonyl band is weaker and inverse to what was reported for corresponding protein secondary structures. Finally, simulations of the Polarization Modulation Infrared Reflection Absorption Spectroscopy (PMIRRAS) and Attenuated Reflection Spectroscopy (ATR) infrared spectra demonstrate the possibility to determine the orientation of the oligoureas in thin or ultrathin films, even if in some cases it may be difficult to unambiguously assign their secondary structure.

  15. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals

    Science.gov (United States)

    Qiao, Bo; Song, Pengjie; Cao, Jingyue; Zhao, Suling; Shen, Zhaohui; Gao, Di; Liang, Zhiqin; Xu, Zheng; Song, Dandan; Xu, Xurong

    2017-11-01

    Lead halide perovskite materials are thriving in optoelectronic applications due to their excellent properties, while their instability due to the fact that they are easily hydrolyzed is still a bottleneck for their potential application. In this work, water-resistant, monodispersed and stably luminescent cesium lead bromine perovskite nanocrystals coated with CsPb2Br5 were obtained using a modified non-stoichiometric solution-phase method. CsPb2Br5 2D layers were coated on the surface of CsPbBr3 nanocrystals and formed a core-shell-like structure in the synthetic processes. The stability of the luminescence of the CsPbBr3 nanocrystals in water and ethanol atmosphere was greatly enhanced by the photoluminescence-inactive CsPb2Br5 coating with a wide bandgap. The water-stable enhanced nanocrystals are suitable for long-term stable optoelectronic applications in the atmosphere.

  16. The molecular structure and vibrational, 1H and 13C NMR spectra of lidocaine hydrochloride monohydrate

    Science.gov (United States)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2016-01-01

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G∗∗ calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The 1H and 13C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21 ppm, respectively.

  17. Anomaly detection for a vibrating structure: A subspace identification/tracking approach.

    Science.gov (United States)

    Candy, J V; Franco, S N; Ruggiero, E L; Emmons, M C; Lopez, I M; Stoops, L M

    2017-08-01

    Mechanical devices operating in noisy environments lead to low signal-to-noise ratios creating a challenging signal processing problem to monitor the vibrational signature of the device in real-time. To detect/classify a particular type of device from noisy vibration data, it is necessary to identify signatures that make it unique. Resonant (modal) frequencies emitted offer a signature characterizing its operation. The monitoring of structural modes to determine the condition of a device under investigation is essential, especially if it is a critical entity of an operational system. The development of a model-based scheme capable of the on-line tracking of structural modal frequencies by applying both system identification methods to extract a modal model and state estimation methods to track their evolution is discussed along with the development of an on-line monitor capable of detecting anomalies in real-time. An application of this approach to an unknown structural device is discussed illustrating the approach and evaluating its performance.

  18. Structural, Electronic, Magnetic, and Vibrational Properties of Graphene and Silicene: A First-Principles Perspective

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-11-01

    This thesis covers the structural, electronic, magnetic, and vibrational properties of graphene and silicene. In Chapter I, we will start with an introduction to graphene and silicene. In Chapter II, we will briefly discuss about the methodology (i. e. density functional theory)In Chapter III, we will introduce band gap opening in graphene either by introducing defects/doping or by creating superlattices with h-BN substrate. In Chapter IV, we will focus on the structural and electronic properties of K and Ge-intercalated graphene on SiC(0001). In addition, the enhancement of the superconducting transition temperature in Li-decorated graphene supported by h-BN substrate will be discussed. In Chapter V, we will discuss the vibrational properties of free-standing silicene. In addition, superlattices of silicene with h-BN as well as the phase transition in silicene by applying an external electric field will be discussed. The electronic and magnetic properties transition metal decorated silicene will be discussed, in particular the realization of the quantum anomalous Hall effect will be addressed. Furthermore, the structural, electronic, and magnetic properties of Mn decorated silicene supported by h-BN substrate will be discussed. The conclusion is included in Chapters VI. Finally, we will end with references and a list of publications for this thesis.

  19. Phase influence of combined rotational and transverse vibrations on the structural response

    Science.gov (United States)

    Habtour, Ed; Sridharan, Raman; Dasgupta, Abhijit; Robeson, Mark; Vantadori, Sabrina

    2018-02-01

    The planar dynamic response of a cantilever metallic beam structure under combined harmonic base excitations (consisting of in-plane transverse and rotation about the out-of-plane transverse axis) was investigated experimentally. The important effect of the phase angle between the two simultaneous biaxial excitations on the beam tip displacement was demonstrated. The experiments were performed using a unique six degree-of-freedom (6-DoF) electrodynamic shaker with high control accuracy. The results showed that the beam tip displacement at the first flexural mode was amplified when the phase angle between the rotational and translational base excitations was increased. The beam nonlinear stiffness, on the other hand, simultaneously: (i) decreased due to fatigue damage accumulation, and (ii) increased due to an increase in the phase angle. The results were compared to the uniaxial excitation technique, where the principle of superposition was applied (mathematical addition of the structural response for each uniaxial excitation). The principle of superposition was shown to overestimate the structural response for low phase angles. Thus, the application of the superposition vibration testing as a substitute for multiaxial vibration testing may lead to over-conservatism and erroneous dynamic and reliability predictions.

  20. Vibration Analysis of a Framework Structure by Generalized Transfer Stiffness Coefficient Method

    Science.gov (United States)

    Bonkobara, Yasuhiro; Kondou, Takahiro; Ayabe, Takashi; Choi, Myung-Soo

    A generalized transfer stiffness coefficient method using graph theory is developed in order to improve the applicability of the transfer stiffness coefficient method. In the new method, an analytical model is expressed by a weighted signal-flow graph, and the graph is contracted according to the series and parallel contraction rules. The computational complexity and the memory requirement for the contraction process are both minimized by choosing the optimal contraction route. In addition, it is possible to develop a data-driving program that is applicable to various structures without updating the source program. An algorithm based on the present method is formulated for the in-plane longitudinal and flexural coupled free and forced vibration analyses of a two-dimensional framework structure. Furthermore, an overview for applying the method to a three-dimensional framework structure is briefly presented. The validity of the present algorithm is confirmed by the results of numerical computations.

  1. Structural, electronic and vibrational properties of lanthanide monophosphide at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)

    2016-05-06

    A first-principles plane wave self-consistent method with the ultra-soft-pseudopotential scheme in the framework of the density functional theory (DFT) is performed to study structural, electronic and vibrational properties of LaP for Rock-salt (NaCl/Bl) and Cesium-chloride (CsCl/B2) phases. The instability of Rock-salt (NaCl/Bl) phases around the transition is discussed. Conclusions based on electronic energy band structure, density of state, phonon dispersion and phonon density of states in both phases are outlined. The calculated results are consistence and confirm the successful applicability of quasi-harmonic phonon theory for structural instability studies for the alloys.

  2. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design

    Science.gov (United States)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations

  3. Synthesis, crystal structures, luminescent and magnetic properties of homodinuclear lanthanide complexes with a flexible tripodal carboxylate ligand.

    Science.gov (United States)

    Zhang, Ai-Jiang; Wang, Ya-Wen; Dou, Wei; Dong, Ming; Zhang, Yan-Ling; Tang, Yu; Liu, Wei-Sheng; Peng, Yu

    2011-03-28

    Six new homodinuclear lanthanide(III) complexes with a flexible tripodal carboxylate ligand (H(3)L), of formulae [Ln(2)L(2)(DMF)(4)]·4DMF (Ln = La (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), DMF = N, N-Dimethylformamide) have been synthesized. Among them, 1, 2, 3, 4, 6 were characterized by single-crystal X-ray diffraction, which crystallized in the monoclinic space group P2(1)/n with a = 13.309(2) Å, b = 27.404(4) Å, c = 16.686(3) Å, β = 105.115(2) and V = 5875.2(17) Å(3) for 1, a = 13.3016(5) Å, b = 27.1952(12) Å, c = 16.6339(7) Å, β = 105.030(2) and V = 5811.3(4) Å(3) for 2, a = 13.2797(10) Å, b = 27.072(2) Å, c = 16.6564(13) Å, β = 104.9390(10) and V = 5785.7(8) Å(3) for 3, a = 13.2855(3) Å, b = 27.0074(6) Å, c = 16.6357(3) Å, β = 104.9790(10) and V = 5766.2(2) Å(3) for 4, a = 13.2837(5) Å, b = 26.9105(10) Å, c = 16.6066(6) Å, β = 104.917(2) and V = 5736.3(4) Å(3) for 6. The crystal structures reveal that these complexes are isostructural, and molecules are connected from 0D to 3D supramolecular structures by hydrogen bonds. All of them were characterized by elemental analysis, IR spectroscopy, XRD and TGA. Unusually, non-luminescent Tb(III) complex was obtained. The photophysical property of the Eu(III) complex and the magnetic property of Gd(III) complex are investigated and discussed in detail.

  4. Nanoscopic Insights into InGaN/GaN Core-Shell Nanorods: Structure, Composition, and Luminescence.

    Science.gov (United States)

    Müller, Marcus; Veit, Peter; Krause, Florian F; Schimpke, Tilman; Metzner, Sebastian; Bertram, Frank; Mehrtens, Thorsten; Müller-Caspary, Knut; Avramescu, Adrian; Strassburg, Martin; Rosenauer, Andreas; Christen, Jürgen

    2016-09-14

    Nitride-based three-dimensional core-shell nanorods (NRs) are promising candidates for the achievement of highly efficient optoelectronic devices. For a detailed understanding of the complex core-shell layer structure of InGaN/GaN NRs, a systematic determination and correlation of the structural, compositional, and optical properties on a nanometer-scale is essential. In particular, the combination of low-temperature cathodoluminescence (CL) spectroscopy directly performed in a scanning transmission electron microscope (STEM), and quantitative high-angle annular dark field imaging enables a comprehensive study of the nanoscopic attributes of the individual shell layers. The investigated InGaN/GaN core-shell NRs, which were grown by metal-organic vapor-phase epitaxy using selective-area growth exhibit an exceptionally low density of extended defects. Using highly spatially resolved CL mapping of single NRs performed in cross-section, we give a direct insight into the optical properties of the individual core-shell layers. Most interesting, we observe a red shift of the InGaN single quantum well from 410 to 471 nm along the nonpolar side wall. Quantitative STEM analysis of the active region reveals an increasing thickness of the single quantum well (SQW) from 6 to 13 nm, accompanied by a slight increase of the indium concentration along the nonpolar side wall from 11% to 13%. Both effects, the increased quantum-well thickness and the higher indium incorporation, are responsible for the observed energetic shift of the InGaN SQW luminescence. Furthermore, compositional mappings of the InGaN quantum well reveal the formation of locally indium rich regions with several nanometers in size, leading to potential fluctuations in the InGaN SQW energy landscape. This is directly evidenced by nanometer-scale resolved CL mappings that show strong localization effects of the excitonic SQW emission.

  5. Vibration Control of Structures using Vibro-Impact Nonlinear Energy Sinks

    Directory of Open Access Journals (Sweden)

    M. Ahmadi

    2016-09-01

    Full Text Available Using Vibro-Impact Nonlinear Energy Sinks (VI NESs is one of the novel strategies to control structural vibrations and mitigate their seismic response. In this system, a mass is tuned on the structure floor, so that it has a specific distance from an inelastic constraint connected to the floor mass. In case of structure stimulation, the displaced VI NES mass collides with the  inelastic constraint and upon impacts, energy is dissipated. In the present work, VI NES is studied when its parameters, including clearance and stiffness ratio, are simultaneously optimized. Harmony search as a recent meta-heuristic algorithm is efficiently specialized and utilized for the aforementioned continuous optimization problem. The optimized attached VI NES is thus shown to be capable of interacting with the primary structure over a wide range of frequencies. The resulting controlled response is then investigated, in a variety of low and medium rise steel moment frames, via nonlinear dynamic time history analyses. Capability of the VI NES to dissipate siesmic input energy of earthquakes and their capabilitiy in reducing response of srtructures effectively, through vibro-impacts between the energy sink’s mass and the floor mass, is discussed by extracting several performance indices and the corresponding Fourier spectra. Results of the numerical simulations done on some structural model examples reveal that the optimized VI NES has caused successive redistribution of energy from low-frequency high-amplitude vibration modes to high-frequency low-amplitude modes, bringing about the desired attenuation of the structural responses.

  6. Closed-Loop Input Shaping Control of Vibration in Flexible Structures via Adaptive Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Ming-Chang Pai

    2012-01-01

    Full Text Available Input shaping technique is widely used in reducing or eliminating residual vibration of flexible structures. The exact elimination of the residual vibration via input shaping technique depends on the amplitudes and instants of impulse application. However, systems always have parameter uncertainties which can lead to performance degradation. In this paper, a closed-loop input shaping control scheme is developed for uncertain flexible structures. The algorithm is based on input shaping control and adaptive sliding mode control. The proposed scheme does not need a priori knowledge of upper bounds on the norm of the uncertainties, but estimates them by using the adaptation technique. This scheme guarantees closed-loop system stability, and yields good performance and robustness in the presence of parameter uncertainties and external disturbances as well. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed closed-loop input shaping control scheme.

  7. A Framework for Occupancy Tracking in a Building via Structural Dynamics Sensing of Footstep Vibrations

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Poston

    2017-11-01

    Full Text Available Counting the number of occupants in building areas over time—occupancy tracking—provides valuable information for responding to emergencies, optimizing thermal conditions or managing personnel. This capability is distinct from tracking individual building occupants as they move within a building, has lower complexity than conventional tracking algorithms require, and avoids privacy concerns that tracking individuals may pose. The approach proposed here is a novel combination of data analytics applied to measurements from a building’s structural dynamics sensors (e.g., accelerometers or geophones. Specifically, measurements of footstep-generated structural waves provide evidence of occupancy in a building area. These footstep vibrations can be distinguished from other vibrations, and, once identified, the footsteps can be located. These locations, in turn, form the starting point of estimating occupancy in an area. In order to provide a meaningful occupancy count, however, it is first necessary to associate discrete footsteps with individuals. The proposed framework incorporates a tractable algorithm for this association task. The proposed algorithms operate online, updating occupancy count over time as new footsteps are detected. Experiments with measurements from a public building illustrate the operation of the proposed framework. This approach offers an advantage over others based on conventional technologies by avoiding the cost of a separate sensor system devoted to occupancy tracking.

  8. Analysis of subsystem randomness effects on the mid-frequency vibrations of built-up structures

    Science.gov (United States)

    Ji, Lin; Huang, Zhenyu

    2013-06-01

    The paper concerns the analysis of subsystem randomness effects on the mid-frequency vibration responses of built-up systems. The system model considered, in the first instance, is a long-wavelength finite element (FE) subsystem connected with a short-wavelength statistical energy analysis (SEA) subsystem via discrete couplings. The randomness effects of the SEA subsystem on both the displacement response of the FE subsystem and the energy response of the SEA subsystem are then investigated under the frame of the hybrid FE/SEA theory [P. Shorter, R. Langley, Vibro-acoustic analysis of complex systems, Journal of Sound and Vibration, 288 (2005) 669-700]. It is found that the subsystem randomness effects may be well indicated by a dimensionless parameter α, which is a function of the number of coupling points, the dynamic mismatch between the FE and SEA subsystems and the modal overlap factor of the SEA subsystem. The smaller the value of α is, the more insignificant the randomness effects are. As a result, a so-called "α-criterion" is derived which states that, if a built-up structure satisfies the condition of α≪1, the randomness effects of the SEA subsystem can be neglected. In this case, the SEA subsystem can be simply treated as an infinite (or semi-infinite as appropriate) structure regardless of its mode count being sufficiently high or not. Numerical examples are presented to illustrate the validity of the present theory.

  9. Structure of the ethylammonium nitrate surface: an X-ray reflectivity and vibrational sum frequency spectroscopy study.

    Science.gov (United States)

    Niga, Petru; Wakeham, Deborah; Nelson, Andrew; Warr, Gregory G; Rutland, Mark; Atkin, Rob

    2010-06-01

    X-ray reflectivity and vibrational sum frequency spectroscopy are used to probe the structure of the ethylammonium nitrate (EAN)-air interface. X-ray reflectivity reveals that the EAN-air interface is structured and consists of alternating nonpolar and charged layers that extend 31 A into the bulk. Vibrational sum frequency spectroscopy reveals interfacial cations have their ethyl moieties oriented toward air, with the CH(3) C(3) axis positioned approximately 36.5 degrees from interface normal. This structure is invariant between 15 and 51 degrees C. On account of its molecular symmetry, the orientation of the nitrate anion cannot be determined with certainty.

  10. Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dian; Rao, Xingtang; Yu, Jiancan; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn; Yang, Yu; Qian, Guodong, E-mail: gdqian@zju.edu.cn

    2015-10-15

    Design and synthesis of a series of isostructural lanthanide metal-organic frameworks (LnMOFs) serving as phosphors by coordinate the H{sub 2}TIPA (5-(1H-tetrazol-5-yl)isophthalic acid) ligands and lanthanide ions is reported. The color of the luminescence can be tuned by adjusting the relative concentration of the lanthanide ions in the host framework GdTIPA, and near-pure-white light emission can be achieved. - Graphical abstract: Lanthanide metal-organic frameworks (LnMOFs) with tunable luminescence were synthesized using an azole-containing carboxylic acid as ligand. - Highlights: • A series of isostructural LnMOFs serving as phosphor is reported. • We model the GdTIPA: Tb{sup 3+}, Eu{sup 3+} which can tune color and emit white light. • The scheme and mechanism of luminescent LnMOFs are also presented and discussed.

  11. Structural, luminescence, thermodynamic and theoretical studies on mononuclear complexes of Eu(III) with pyridine monocarboxylate-N-oxides in aqueous solution

    Science.gov (United States)

    Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.

    2018-02-01

    The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.

  12. Effects of TiO2 crystal structure on the luminescence quenching of [Ru(bpy)2(dppz)]2 +-intercalated into DNA

    Science.gov (United States)

    Chen, Linlin; Wang, Yi; Huang, Minggao; Li, Xiaodan; Zhu, Licai; Li, Hong

    2017-06-01

    The intercalation of [Ru(bpy)2(dppz)]2 + labeled as Ru(II) (bpy = 2,2‧-bipyridine and dppz = dipyrido[3,2,-a:2‧,3‧-c]phenazine) into herring sperm DNA leads to the formation of emissive Ru(II)-DNA dyads, which can be quenched by TiO2 nanoparticles (NPs) and sol-gel silica matrices at heterogeneous interfaces. The calcinations temperature exhibits a remarkable influence on the luminescence quenching of the Ru(II)-DNA dyads by TiO2 NPs. With increasing calcinations temperature in the range from 200 to 850 °C, the anatase-to-rutile TiO2 crystal structure transformation increases the average particle size and hydrodynamic diameter of TiO2 and DNA@TiO2. The anatase TiO2 has the stronger ability to unbind the Ru(II)-DNA dyads than the rutile TiO2 at room temperature. The TiO2 NPs and sol-gel silica matrices can quench the luminescence of the Ru(II) complex intercalated into DNA by selectively capturing the negatively DNA and positively charged Ru(II) complex to unbind the dyads, respectively. This present results provide new insights into the luminescence quenching and competitive binding of dye-labeled DNA dyads by inorganic NPs.

  13. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  14. Influence of surface coating on structural, morphological and optical properties of upconversion-luminescent LaF3:Yb/Er nanoparticles

    Science.gov (United States)

    Ansari, Anees A.; Yadav, Ranvijay; Rai, S. B.

    2016-07-01

    LaF3:Yb/Er (core), LaF3:Yb/Er@LaF3 (core/shell) and LaF3:Yb/Er@LaF3@SiO2 (core/shell/SiO2) nanoparticles were synthesized using citric-acid-based complexation process. X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, optical absorption, band-gap energy ( E g), Fourier transform infrared and upconversion emission spectroscopy were employed to investigate the structural, morphological and optical properties of the synthesized core and core/shell/SiO2 nanoparticles. These core/shell/SiO2 nanoparticles can be well dispersed in aqueous solvents to form clear colloidal solution. The optical band-gap energy was decreased after shell formation due to increase in the crystalline size. The growth of an inactive and porous silica layers simultaneously on the surface of luminescent core-nanoparticles resulting an increase in average crystalline size of the nanoparticles. As-prepared inert shell-coated core/shell nanoparticles show intensive upconversion-luminescence as compared to the seed-core and silica-surface-modified core/shell/SiO2 nanoparticles because luminescent ions (Yb3+ and Er3+) ions located at the particle surface were protected from the non-radiative decay arising from surface dangling bonds and capping agent. However, our study revealed that there was only a slight reduction in upconversion efficiency for the silica-modified core/shell nanoparticles, indicating that upconversion properties of the upconversion nanoparticles are largely preserved in the core/shell/SiO2 nanoparticles. Absorption and upconversion-luminescence properties were examined for future application in the development of optical devices as well as optical bioprobes.

  15. Nonlinear behavior of structural and luminescent properties in Gd(NbxTa1-x)O4 mixed crystals

    Science.gov (United States)

    Voloshyna, Olesia; Sidletskiy, Oleg; Spassky, Dmitry; Gerasymov, Iaroslav; Romet, Ivo; Belsky, Andrey

    2018-02-01

    Ceramic samples of gadolinium tantalo-niobate mixed crystals were obtained by the solid-state technique. The dependence of luminescence properties on the Nb/Ta ratio in the Gd(NbxTa1-x)O4 system is studied in the 5-450 K temperature range, including thermostimulated luminescence curves in the series of solid solutions. The relation of nonlinear behavior of light output with x variation to non-homogeneous distribution of Nb and Ta in solid solutions is discussed.

  16. A close inspection and vibration sensing aerial robot for steel structures with an EPM-based landing device

    Science.gov (United States)

    Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako

    2017-04-01

    This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.

  17. Vibration transmission through periodic structures using a mobility power flow approach

    Science.gov (United States)

    Cuschieri, J. M.

    1990-01-01

    The transmission of vibrational power (time averaged) through multiple coupled (periodic) structures is examined. The analysis is performed in the frequency domain and the coupling between the sub-elements of the periodic structure is expressed in terms of structural mobility functions for the junction points and between the junction points of the sub-elements. Equal length spans between stiffeners or supports of the periodic structure are considered. Through the use of the mobility power flow approach, the influence of sub-element and junction parameters, including damping at the joints, can be investigated. The results from the analysis can be in the form of either structural intensity or alternatively structural power content for each of the sub-elements. The examples discussed are for a thin, perfectly periodic beam with a finite number of spans with different types of stiffeners and/or supports between the spans. The excitation of the structure is by a point load located midway along the first span.

  18. Space structure vibration modes: How many exist? Which ones are important?

    Science.gov (United States)

    Hughes, P. C.

    1984-01-01

    This report attempts to shed some light on the two issues raised in the title, namely, how many vibration modes does a real structure have, and which of these modes are important? The surprise-free answers to these two questions are, respectively, an infinite number and the first several modes. The author argues that the absurd subspace (all but the first billion modes) is not a strength of continuum modeling, but, in fact, a weakness. Partial differential equations are not real structures, only mathematical models. This note also explains (1) that the PDE model and the finite element model are, in fact, the same model, the latter being a numerical method for dealing with the former, (2) that modes may be selected on dynamical grounds other than frequency alone, and (3) that long slender rods are useful as primitive cases but dangerous to extrapolate from.

  19. Exchanging conformations of a hydroformylation catalyst structurally characterized using two-dimensional vibrational spectroscopy.

    Science.gov (United States)

    Panman, Matthijs R; Vos, Jannie; Bocokić, Vladica; Bellini, Rosalba; de Bruin, Bas; Reek, Joost H N; Woutersen, Sander

    2013-12-16

    Catalytic transition-metal complexes often occur in several conformations that exchange rapidly (structures are difficult to characterize with conventional methods. Here, we determine specific bond angles in the two rapidly exchanging solution conformations of the hydroformylation catalyst (xantphos)Rh(CO)2H using two-dimensional vibrational spectroscopy, a method that can be applied to any catalyst provided that the exchange between its conformers occurs on a time scale of a few picoseconds or slower. We find that, in one of the conformations, the OC-Rh-CO angle deviates significantly from the canonical value in a trigonal-bipyramidal structure. On the basis of complementary density functional calculations, we ascribe this effect to attractive van der Waals interaction between the CO and the xantphos ligand.

  20. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    Science.gov (United States)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  1. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Ying [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China); Liu, Wei [Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China)

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  2. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Directory of Open Access Journals (Sweden)

    Pengwei Li

    2015-04-01

    Full Text Available As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  3. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  4. A series of 3D metal organic frameworks based on [24-MC-6] metallacrown clusters: structure, magnetic and luminescence properties.

    Science.gov (United States)

    Wang, Kai; Zou, Hua-Hong; Chen, Zi-Lu; Zhang, Zhong; Sun, Wei-Yin; Liang, Fu-Pei

    2014-09-14

    Four isostructural metal organic frameworks (MOFs), namely [Co6(HipO)6]·6H2O (1), [Mn6(HipO)6]·6H2O (2), [Cd6(HipO)6]·6H2O (3) and [Zn6(HipO)6]·7H2O (4) (H3ipO = 2-hydroxyisophthalic acid), were synthesized and structurally characterized. They have a 3D (4,6)-connected framework based on [24-MC-6] metallacrown clusters ([24-MC-6]-based MOFs). The arrangements of the 24-MC-6 metallacrown SBUs show a regular change indicated by the orientation of their symmetry axes, resulting in a special dense packing mode different from other [24-MC-6]-based MOFs. The analysis of SQUID measurements reveal that compound 1 displays the dominant antiferromagnetic exchanges in 300-10 K between the adjacent Co(II) ions and a ferromagnetic-like behavior at lower temperatures, whereas compound 2 shows an antiferromagnetic interaction between the adjacent Mn(II) ions. Compound 1 exhibits a magnetocaloric effect (MCE) with the resulting entropy change (-ΔS(m)) of 15.20 J kg(-1) K(-1) for ΔH = 50 kG at 6 K, which is the highest value among the cobalt-based MOFs with MCE reported so far. The luminescence properties of compounds 3 and 4 were studied, both of them exhibit photoluminescence in the solid state at room temperature which can be ascribed to intraligand π→π* transitions.

  5. Synthesis, spectral and luminescence study, crystal structure determination and DFT calculation of binuclear palladium(II) complexes

    Science.gov (United States)

    Seyfi, S.; Alizadeh, R.; Darvish Ganji, M.; Amani, V.

    2018-02-01

    Binuclear palladium(II) complexes with metal-metal (d8-d8) bonding interaction were synthesized by reactions of the 1-methyl-1H-1,2,3,4-tetrazole-5-thiol (Hmtzt) or a mixture of Hmtzt and 1,3-propanediamine (1,3-pda) ligands. Complex [Pd2(μ-mtzt)4]·2CH3CN (1) was synthesized by the reaction of Pd(OAc)2 with Hmtzt dissolved in acetonitrile and complex [Pd2(μ-mtzt)2(mtzt)2(1,3-pda)] (2) was synthesized by reaction of a mixture of Hmtzt and 1,3-propanediamine (dissolved in methanol) with PdCl2 (dissolved in acetonitrile) and were identified through elemental analysis, IR, UV-Vis, 1H NMR, luminescence spectroscopy as well as single-crystal X-ray diffraction method. A single-crystal of complex 1 shows that two Pd(II) centers are linked together by four bridging tetrazole ligands providing a paddle wheel-like arrangement. Also a crystal structure of complex 2 shows that this complex possesses a symmetric structure in which one Pd atom is tetra-coordinated by four sulfur atoms to forms PdS4 and other Pd atom is tetra-coordinated by four nitrogen to forms PdN4 coordination sphere. Density functional theory (DFT) was performed in this study for the Hmtzt ligand and binuclear palladium(II) complexes (1) and (2). The DFT calculation shows PdII-PdII bond lengths of 2.831 and 3.086 Å in complex 1 and 2, respectively which are close to the observed bond lengths of 2.802(11) and 3.0911(17) Å from single-crystal X-ray structure. The optimized geometry of the complexes is shown good agreement by X-ray data. Structural properties and molecular descriptors including bond lengths, bond angles, chemical hardness, dipole moment, HOMO-LUMO energy levels, electron transfer were analyzed. The IR spectroscopy was performed using VEDA4 software and UV-Vis spectra were analyzed using time-dependent density functional theory (TD-DFT) method. The theoretical and experimental data were also compared with each other.

  6. Synthesis, structures of four coordination compounds constructed from o-methacrylamidobenzoic acid and their relationship between structure and solid state luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong-Xia; Ma, Yong; Zhou, Feng; Wu, Bing [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry, Chemical Engineering and Materials Science, Soochow University(DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Key Laboratory of Energy-Saving And Environmental Protection Materials Test and Technical Service Center of Jiangsu Province, Soochow University (DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Xu, Qing-Feng, E-mail: xuqingfeng@suda.edu.cn [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry, Chemical Engineering and Materials Science, Soochow University(DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Key Laboratory of Energy-Saving And Environmental Protection Materials Test and Technical Service Center of Jiangsu Province, Soochow University (DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Lu, Jian-Mei, E-mail: lujm@suda.edu.cn [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry, Chemical Engineering and Materials Science, Soochow University(DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Key Laboratory of Energy-Saving And Environmental Protection Materials Test and Technical Service Center of Jiangsu Province, Soochow University (DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Ge, Jian-Feng [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry, Chemical Engineering and Materials Science, Soochow University(DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Key Laboratory of Energy-Saving And Environmental Protection Materials Test and Technical Service Center of Jiangsu Province, Soochow University (DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China)

    2013-07-15

    Four new coordination compounds, namely, Zn(o-MAABA){sub 2}(Phen) (1), [Cd(o-MAABA){sub 2}·2H{sub 2}O]{sub 2} (2), ([Pb{sub 2}Cl{sub 2}(o-MAABA){sub 2}(Phen){sub 4}])·2H{sub 2}O (3·2H{sub 2}O), [Pb(NO{sub 3})(o-MAABA)(Phen)]{sub n} (4), where o-MAABA=o-methacrylamidobenzoic acid and phen=1, 10-phenanthroline, have been synthesized. All compounds were fully confirmed by FT-IR, elemental analysis and TGA analysis. Their structures were determined by single crystal X-ray diffraction, in which compound 1 shows a mononuclear structure, compounds 2 and 3 have binuclear structures and compound 4 shows an infinite chain. In 2 and 4, the adjacent chains are extended into a 3D supramolecular architecture via π–π interactions. Solid-state room temperature luminescence spectra revealed that emission bands of compound 1 were located at 524 nm (λ{sub ex}=352 nm) and compound 4 at 479 and 584 nm (λ{sub ex}=390 nm) assigned to the excimer formation. The emission at 454 nm (λ{sub ex}=340 nm) of compound 2 was mainly ascribed to the Ligand–Metal Charge Transfer (LMCT). - Graphical abstract: Four coordination compounds constructed by o-methacrylamidobenzoic, phenanthroline and metal ions are reported. The photoluminescent properties is studied, which is affected by the molecular stacking and LMCT.

  7. An inverse method for the identification of a distributed random excitation acting on a vibrating structure. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Granger, S.; Perotin, L. [Electricite de France (EDF), 78 - Chatou (France)

    1997-12-31

    Maintaining the PWR components under reliable operating conditions requires a complex design to prevent various damaging processes, including fatigue and wear problems due to flow-induced vibration. In many practical situations, it is difficult, if not impossible, to perform direct measurements or calculations of the external forces acting on vibrating structures. Instead, vibrational responses can often be conveniently measured. This paper presents an inverse method for estimating a distributed random excitation from the measurement of the structural response at a number of discrete points. This paper is devoted to the presentation of the theoretical development. The force identification method is based on a modal model for the structure and a spatial orthonormal decomposition of the excitation field. The estimation of the Fourier coefficients of this orthonormal expansion is presented. As this problem turns out to be ill-posed, a regularization process is introduced. The minimization problem associated to this process is then formulated and its solutions is developed. (author) 17 refs.

  8. Setup for Micro Photo- and Electro-Luminescence of Optoelectronic Device Structures

    OpenAIRE

    Sun, Yuxuan

    2015-01-01

    Photoluminescence (PL) is an optical emission induced by photon absorption in a material where electrons are excited from the ground state to excited states, then relax to the lowest excited states and recombine radiatively. The PL emission provides vital information on bandgap energy, material purity and crystal quality. In this project, a PL characterization system, also capable of electroluminescence (EL) measurements, was designed and assem- bled to measure optoelectronic device structure...

  9. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphospine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Xu, Shan; Wang, Xin; Li, Yue-Xue; Jin, Qiong-Hua [Department of Chemistry, Capital Normal University, Beijing (China); Liu, Min [The College of Materials Science and Engineering, Beijing University of Technology (China); Xin, Xiu-Lan [School of Food and Chemical Engineering, Beijing Technology and Business University (China)

    2017-07-03

    Seven lanthanide complexes [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}] (1-3) (OPPh{sub 3} = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}) (4), [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}]{sub 2} (5-7) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh{sub 3} ligand in the air. These complexes were characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1-4 are mononuclear complexes formed by OPPh{sub 3} ligands and nitrates. The asymmetric units of complexes 5-7 consist of two crystallographic-separate molecules. Complex 1 is self-assembled to construct a 2D layer-structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain-like structure that was assembled by OPPh{sub 3} ligands and nitrate ions through C-H..O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb{sup 3+} (λ{sub em} = 480, 574 nm) and Eu{sup 3+} (λ{sub em} = 552, 593, 619, 668 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property.

    Science.gov (United States)

    Zheng, Yuanhui; Chen, Chongqi; Zhan, Yingying; Lin, Xingyi; Zheng, Qi; Wei, Kemei; Zhu, Jiefang; Zhu, Yingjie

    2007-08-06

    Low-dimensional ZnO nanocrystals with controlled size, aspect ratio, and oxygen defects (e.g., type and concentration) are successfully prepared through simple solvothermal and thermal treatment methods. The structure of the as-synthesized samples is characterized by XRD, N2 physical adsorption, TEM, and IR and XPS spectra. The results show that the aspect ratio and size of the as-synthesized ZnO nanocrystals increase with increasing [OH-]/[Zn2+]; the morphology evolves from nanorod to nanoparticle with an increase in the annealing temperature; the BET surface areas of the corresponding samples decrease during these processes, respectively; and different oxygen defects, which are likely to be oxygen vacancy (Vo**) and interstitial oxygen (Oi''), are formed in our experiments accordingly. With evolution of the structure, IR absorption bands and visible photoluminescence emission peaks of the synthesized ZnO nanocrystals shift and split, which is ascribed to the change of oxygen defects. In addition, it is found that the photocatalytic activity of the synthesized ZnO nanocrystals is mainly dependent on the type and concentration of oxygen defects. The relationship of structure-property and the possible photocatalytic mechanism are discussed in detail.

  11. Effect of the structure on luminescent characteristics of SRO-based light emitting capacitors

    Science.gov (United States)

    Palacios-Huerta, L.; Cabañas-Tay, S. A.; Luna-López, J. A.; Aceves-Mijares, M.; Coyopol, A.; Morales-Sánchez, A.

    2015-10-01

    In this paper, we study the structural, optical and electro-optical properties of silicon rich oxide (SRO) films, with 6.2 (SRO30) and 7.3 at.% (SRO20) of silicon excess thermally annealed at different temperatures and used as an active layer in light emitting capacitors (LECs). A typical photoluminescence (PL) red-shift is observed as the silicon content and annealing temperature are increased. Nevertheless, when SRO30 films are used in LECs, a resistance switching (RS) behavior from a high current state (HCS) to a low conduction state (LCS) is observed, enhancing the intense blue electroluminescence (EL). This RS produces a long spectral blue-shift (˜227 nm) between the EL and PL band, and it is related to structural defects created by a high current flow through preferential conductive paths breaking off Si-Si bonds from very small silicon nanoparticles (Si-nps) (Eδ (Si ↑ Si ≡ Si) centers). LECs with SRO20 films do not present the RS behavior and only exhibit a slight shift between PL and EL, both in red spectra. The carrier transport in these LEC devices is analyzed as being trap assisted tunnelling and Poole-Frenkel through a quasi ‘continuum’ of defect traps and quantum dots for the conduction mechanism in SRO30 and SRO20 films, respectively. The results prove the feasibility of obtaining light emitting devices by using simple panel structures with Si-nps embedded in the dielectric layer.

  12. Mode shape combination in a two-dimensional vibration energy harvester through mass loading structural modification

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan; Kumar, Prashant [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar; Abdelmoula, Hichem [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Adler, Jan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Institute of Dynamics and Vibration Research (IDS), Leibniz Universität, Hannover 30167 (Germany); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-07-18

    Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.

  13. Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method

    Directory of Open Access Journals (Sweden)

    GAO Honglin

    2017-08-01

    Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.

  14. Molecular, vibrational and electronic structure of 4-bromo-2-halogenobenzaldehydes: Halogen and solvent effects

    Science.gov (United States)

    Fernández, David; Parlak, Cemal; Bilge, Metin; Kaya, Mehmet Fatih; Tursun, Mahir; Keşan, Gürkan; Rhyman, Lydia; Ramasami, Ponnadurai; Şenyel, Mustafa

    2017-09-01

    The halogen and solvent effects on the structure of 4-bromo-2-halogenobenzaldehydes [C7H4BrXO; X = F (BFB), Cl (BCB) or Br (BBB)] were investigated by the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The B3LYP functional and HF and MP2 levels of theory were used with the 6-311+G(3df,p) or aug-cc-pVDZ basis sets. Computations were focused on the cis and trans conformers of the investigated compounds in the gas phase and solutions of 18 different polar or non-polar organic solvents. The computed frequencies of the C=O stretching vibration of the compounds were correlated with some empirical solvent parameters such as the Kirkwood-Bauer-Magat (KBM) equation, solvent acceptor number (AN), Swain parameters and linear solvation energy relationships (LSERs). The electronic properties of the compounds were also examined. The present work explores the effects of the medium and halogen on the conformation, geometrical parameters, dipole moment, ν(C=O) vibration, UV data, frontier orbitals and density-of-states diagram of the compounds. The findings of this research can be useful for studies on benzaldehydes.

  15. Optical Fourier transform based in-plane vibration characterization for MEMS comb structure.

    Science.gov (United States)

    Gao, Yongfeng; Cao, Liangcai; You, Zheng; Zhao, Jiahao; Zhang, Zichen; Yang, Jianzhong

    2013-02-25

    On-line and on-wafer characterizations of mechanical properties of Micro-Electro-Mechanical-System (MEMS) with efficiency are very important to the mass production of MEMS foundry in the near future. However, challenges still remain. In this paper, we present an in-plane vibration characterizing method for MEMS comb using optical Fourier transform (OFT). In the experiment, the intensity distribution at the focal plane was captured to characterize the displacement of the vibrator in the MEMS comb structure. A typical MEMS comb was tested to verify the principle. The shape and the movement of MEMS comb was imitated and tested to calibrate the measurement by using a spatial light modulator (SLM). The relative standard deviations (RSD) of the measured displacements were better than 5%, where the RSD is defined as the ratio of the standard deviation to the mean. It is convinced that the presented method is feasible for on-line and on-wafer characterizations for MEMS with great convenience, high efficiency and low cost.

  16. A disk-pivot structure micro piezoelectric actuator using vibration mode B11.

    Science.gov (United States)

    Chu, Xiangcheng; Ma, Long; Li, Longtu

    2006-12-22

    Micro piezoelectric actuator using vibration mode B(11) (B(mn), where m is the number of nodal circles, n is the nodal diameters) is designed. Different from conventional wobble-type ultrasonic motor using piezoelectric rod or cylinder, piezoelectric disc is used to excite wobble modes and metal cylinder stator is used to amplify the transverse displacement, metal rod rotor is actuated to rotate. The outer diameter of the actuator is 14mm. There are features such as low drive voltage, micromation, and convenient control of wobble state by modifying the structure of stator, etc. Finite element analysis (FEA) of the stator has been made. It is found that the resonant frequency of vibration mode B(11) is 49.03kHz, which is measured at 45.7kHz by the laser vibrometer and impedance analyzer. The rotation speed has been measured, which could be as high as 10,071rpm under an alternating current 100V. Such piezoelectric actuator can be optimized and adjusted to fit practical conditions. It can be applied in the fields of precise instrument, bioengineering and other micro actuator system.

  17. Structural Health Monitoring of Precast Concrete Box Girders Using Selected Vibration-Based Damage Detection Methods

    Directory of Open Access Journals (Sweden)

    Zhengjie Zhou

    2010-01-01

    Full Text Available Precast, prestressed concrete box girders are commonly used as superstructure components for short and medium span bridges. Their configuration and typical side-by-side placement make large portions of these elements inaccessible for visual inspection or the application of nondestructive testing techniques. This paper demonstrates that vibration-based damage detection (VBDD is an effective alternative for monitoring their structural health. A box girder removed from a dismantled bridge was used to evaluate the ability of five different VBDD algorithms to detect and localize low levels of spalling damage, with a focus on using a small number of sensors and only the fundamental mode of vibration. All methods were capable of detecting and localizing damage to a region within approximately 1.6 times the longitudinal spacing between as few as six uniformly distributed accelerometers. Strain gauges configured to measure curvature were also effective, but tended to be susceptible to large errors in near support damage cases. Finite element analyses demonstrated that increasing the number of sensor locations leads to a proportional increase in localization accuracy, while the use of additional modes provides little advantage and can sometimes lead to a deterioration in the performance of the VBDD techniques.

  18. Vibration Analysis and Models of Adjacent Structures Controlled by Magnetorheological Dampers

    Directory of Open Access Journals (Sweden)

    Michela Basili

    2017-01-01

    Full Text Available This paper deals with the vibration analysis of adjacent structures controlled by a magnetorheological (MR damper and with the discussion of a numerical procedure for identification and definition of a reliable finite element model. The paper describes an extensive experimental campaign investigating the dynamic response, through shaking table tests, of a tridimensional four-story structure and a two-story structure connected by an MR device. Several base excitations and intensity levels are considered. The structures were tested in nonconnected and connected configuration, with the MR damper operating in passive or semiactive mode. Moreover, the paper illustrates a procedure for the structural identification and the definition of a reliable numerical model valid for adjacent structures connected by MR dampers. The procedure is applied in the original nonconnected configuration, which represents a linear system, and then in the connected configuration, which represents a nonlinear system due to the MR damper. In the end, the updated finite element model is reliable and suitable for all the considered configurations and the mass, damping, and stiffness matrices are derived. The experimental and numerical responses are compared and the results confirm the effectiveness of the identification procedure and the validation of the finite element model.

  19. Non-stationary random vibration analysis of structures under multiple correlated normal random excitations

    Science.gov (United States)

    Li, Yanbin; Mulani, Sameer B.; Kapania, Rakesh K.; Fei, Qingguo; Wu, Shaoqing

    2017-07-01

    An algorithm that integrates Karhunen-Loeve expansion (KLE) and the finite element method (FEM) is proposed to perform non-stationary random vibration analysis of structures under excitations, represented by multiple random processes that are correlated in both time and spatial domains. In KLE, the auto-covariance functions of random excitations are discretized using orthogonal basis functions. The KLE for multiple correlated random excitations relies on expansions in terms of correlated sets of random variables reflecting the cross-covariance of the random processes. During the response calculations, the eigenfunctions of KLE used to represent excitations are applied as forcing functions to the structure. The proposed algorithm is applied to a 2DOF system, a 2D cantilever beam and a 3D aircraft wing under both stationary and non-stationary correlated random excitations. Two methods are adopted to obtain the structural responses: a) the modal method and b) the direct method. Both the methods provide the statistics of the dynamic response with sufficient accuracy. The structural responses under the same type of correlated random excitations are bounded by the response obtained by perfectly correlated and uncorrelated random excitations. The structural response increases with a decrease in the correlation length and with an increase in the correlation magnitude. The proposed methodology can be applied for the analysis of any complex structure under any type of random excitation.

  20. Structure and Dynamics of Urea/Water Mixtures Investigated by Vibrational Spectroscopy and Molecular Dynamics Simulation

    Science.gov (United States)

    Carr, J. K.; Buchanan, L. E.; Schmidt, J. R.; Zanni, M. T.; Skinner, J. L.

    2013-01-01

    Urea/water is an archetypical “biological” mixture, and is especially well known for its relevance to protein thermodynamics, as urea acts as a protein denaturant at high concentration. This behavior has given rise to an extended debate concerning urea’s influence on water structure. Based on a variety of methods and of definitions of water structure, urea has been variously described as a structure-breaker, a structure-maker, or as remarkably neutral towards water. Because of its sensitivity to microscopic structure and dynamics, vibrational spectroscopy can help resolve these debates. We report experimental and theoretical spectroscopic results for the OD stretch of HOD/H2O/urea mixtures (linear IR, 2DIR, and pump-probe anisotropy decay) and for the CO stretch of urea-D4/D2O mixtures (linear IR only). Theoretical results are obtained using existing approaches for water, and a modification of a frequency map developed for acetamide. All absorption spectra are remarkably insensitive to urea concentration, consistent with the idea that urea only very weakly perturbs water structure. Both this work and experiments by Rezus and Bakker, however, show that water’s rotational dynamics are slowed down by urea. Analysis of the simulations casts doubt on the suggestion that urea immobilizes particular doubly hydrogen bonded water molecules. PMID:23841646

  1. Diverse lanthanide coordination polymers tuned by the flexibility of ligands and the lanthanide contraction effect: syntheses, structures and luminescence.

    Science.gov (United States)

    Zhou, Xiaoyan; Guo, Yanling; Shi, Zhaohua; Song, Xueqin; Tang, Xiaoliang; Hu, Xiong; Zhu, Zhentong; Li, Pengxuan; Liu, Weisheng

    2012-02-14

    Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2 : 3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.

  2. Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Ayvacikli, M. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Canimoglu, A. [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Muresan, L.E., E-mail: laura_muresan2003@yahoo.com [Babes Bolyai University, Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania); Barbu Tudoran, L. [Babes Bolyai University, Electronic Microscopy Centre, Clinicilor 37, 400006 Cluj Napoca (Romania); Garcia Guinea, J. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karabulut, Y. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jorge, A. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karali, T. [Ege University, Institute of Nuclear Sciences, 35100 Bornova, İzmir (Turkey); Can, N., E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jazan University, Physics Department, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-05-05

    Herein, we primarily focus on luminescence spectrum measurements of various types of green emitting yttrium aluminate phosphors modified with gallium (Y{sub 3}Al{sub 5-x}Ga{sub x}O{sub 12}) synthesised by solid state reaction. The luminescent emission of samples depends on sample temperature and excitation radiation such as incident X-ray, electron and laser beam. Here, we measured radioluminescence (RL), cathodoluminescence (CL), photoluminescence (PL) along with XRD in order to clarify relationship between lattice defects and the spectral luminescence emissions. The RL and CL spectra of YAG:Ce exhibit an emission band ranging from 300 to 450 nm related to Y{sub Al} antisite defects. The broad emission band of garnet phosphors is shifted from 526 nm to 498 nm with increasing of Ga{sup 3+} content, while full width at half maximum (FWHM) of the band tends to be greater than the width of unmodified YAG:Ce garnet. Deconvolution of the spectrum reveals that three emission bands centred at 139, 234 and 294 °C occur in aluminate host garnets. - Highlights: • We present preparation of YAG:Ce{sup 3+}, Ga{sup 3+} phosphors by a solid state reaction method. • The shape and size of phosphor particles were investigated. • The luminescence properties were studied by different excitation sources.

  3. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  4. Luminescent macrocyclic lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N [Berkeley, CA; Corneillie, Todd M [Campbell, CA; Xu, Jide [Berkeley, CA

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  5. A direct pedestrian-structure interaction model to characterize the human induced vibrations on slender footbridges

    Directory of Open Access Journals (Sweden)

    Jiménez-Alonso, J. F.

    2014-12-01

    Full Text Available Although the scientific community had knowledge of the human induced vibration problems in structures since the end of the 19th century, it was not until the occurrence of the vibration phenomenon happened in the Millennium Bridge (London, 2000 that the importance of the problem revealed and a higher level of attention devoted. Despite the large advances achieved in the determination of the human-structure interaction force, one of the main deficiencies of the existing models is the exclusion of the effect of changes in the footbridge dynamic properties due to the presence of pedestrians. In this paper, the formulation of a human-structure interaction model, addresses these limitations, is carried out and its reliability is verified from previously published experimental results.Aunque la comunidad científica tenía conocimiento de los problemas vibratorios inducidos por peatones en estructuras desde finales del siglo xix, no fue hasta la ocurrencia de los eventos vibratorios acontecidos en la pasarela del Milenio (Londres, 2000, cuando la importancia del problema se puso de manifiesto y se le comenzó a dedicar un mayor nivel de atención. A pesar de los grandes avances alcanzados en la caracterización de la fuerza de interacción peatón-estructura una de las principales deficiencias de los modelos existentes es la exclusión del cambio en las propiedades dinámicas de la pasarela por la presencia de peatones. En este artículo, se presenta la formulación de un modelo de interacción peatón-estructura que intenta dar respuesta a dichas limitaciones, y su validación a partir de resultados experimentales previamente publicados por otros autores.

  6. A piezoelectric brace for passive suppression of structural vibration and energy harvesting

    Science.gov (United States)

    Yang, Chuang-Sheng Walter; Lai, Yong-An; Kim, Jin-Yeon

    2017-08-01

    Power outage after an earthquake would cause an additional chaos to the existing aftermath, greatly aggravating the situation if the outage lasts for an extended period. This research aims at developing an innovative piezoelectric brace, which provides both passive energy-dissipating and energy-harvesting capabilities—a passive suppression of structural vibrations and conversion of vibration energy into reusable electricity. The piezoelectric brace has compression modules that exert compressive loads on the piezoelectric material regardless if the brace is in compression or in tension. The compression module consists of a piezoelectric stack and rubber pads. The rubber pads are used to limit the maximum strain in the piezoelectric material below the allowable operational strain. The electro-mechanical equations of motion are derived for a 1-story and a 3-story frame model with the piezoelectric braces. To evaluate the structural behavior and the energy harvesting performance, numerical simulations are executed for the two model buildings (in downtown Los Angeles) that are equipped with the piezoelectric braces. The effects of design parameters including the geometry of the piezoelectric stack and rubber pads and the electric resistance in the electro-mechanical conversion circuit on the performance are investigated. The numerical results indicate that the piezoelectric braces passively dissipate energy through inclined oval-shaped hysteretic loops. The harvested energy is up to approximately 40% of the input energy. The structural displacements are significantly reduced, as compared to the original frames without the piezoelectric braces. Finally, a design procedure for a frame with the proposed passive piezoelectric braces is also presented.

  7. Synthesis, structures, and luminescent and magnetic properties of Ln-Ag heterometal-organic frameworks.

    Science.gov (United States)

    Zhao, Xiao-Qing; Zhao, Bin; Wei, Shi; Cheng, Peng

    2009-12-07

    A series of Ln-Ag heterometal-organic frameworks based on 4-hydroxylpyridine-2,6-dicarboxylic acid (H(3)CAM) with formulas {LaAg(2)(CAM)(HCAM)(H(2)O)(2)}(n) (1), {LnAg(HCAM)(2)(H(2)O)(3)}(n) (Ln = Pr, 2; Nd, 3; Sm, 4; Eu, 5), and {LnAg(3)(CAM)(2)(H(2)O)}(n) (Ln = Gd, 6; Tb, 7; Dy, 8; Tm, 9; Yb, 10), have been synthesized with the hydrothermal reaction of Ln(OH)(3), Ag(2)O, and H(3)CAM at 160 degrees C. The single-crystal X-ray diffraction analyses reveal that three kinds of structures are exclusively governed by the size of lanthanide ions and the progression of structures is mainly ascribed to the lanthanide contraction effect. Compound 1 consists of a 3D network with an alpha-polonium-like Ag(+)-homometallic net and helical La(3+) chain. Compounds 2-5 display a 2D honeycomb-like structure with 18-membered Ln(3)Ag(3)O(12) motifs, and compounds 6-10 can be described as a sandwich-like 3D framework built of a 3D Ag(+)-homometallic net and 2D Ln(3+)-4(4) layer. In 4 (Sm), 5 (Eu), 7 (Tb), and 8 (Dy) samples, the efficient energy transfer from CAM to Ln(III) ions was observed, which results in the typical intense emissions of corresponding Ln(III) ions in the visible region, and the strongest emissions are (4)G(5/2) --> (6)H(7/2) (602 nm), (5)D(0) --> (7)F(2) (614 nm), (5)D(4) --> (7)F(5) (548 nm), and (4)F(9/2) --> (6)H(13/2) (576 nm) transitions. Variable-temperature magnetic susceptibility measurements of 6-10 show that the ferromagnetic interaction between gadolinium(III) ions appears in 6, whereas the mu(eff) values of 7-10 smoothly decrease on cooling. For the orbital contribution of Ln(III) ions, it is very difficult to determine the intrinsic magnetic interactions between Ln(III) ions.

  8. First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres

    Science.gov (United States)

    Alkauskas, Audrius; Buckley, Bob B.; Awschalom, David D.; Van de Walle, Chris G.

    2014-07-01

    In this work we present theoretical calculations and analysis of the vibronic structure of the spin-triplet optical transition in diamond nitrogen-vacancy (NV) centres. The electronic structure of the defect is described using accurate first-principles methods based on hybrid functionals. We devise a computational methodology to determine the coupling between electrons and phonons during an optical transition in the dilute limit. As a result, our approach yields a smooth spectral function of electron-phonon coupling and includes both quasi-localized and bulk phonons on equal footings. The luminescence lineshape is determined via the generating function approach. We obtain a highly accurate description of the luminescence band, including all key parameters such as the Huang-Rhys factor, the Debye-Waller factor, and the frequency of the dominant phonon mode. More importantly, our work provides insight into the vibrational structure of NV centres, in particular the role of local modes and vibrational resonances. In particular, we find that the pronounced mode at 65 meV is a vibrational resonance, and we quantify localization properties of this mode. These excellent results for the benchmark diamond (NV) centre provide confidence that the procedure can be applied to other defects, including alternative systems that are being considered for applications in quantum information processing.

  9. Structural and luminescence properties of samarium doped lead alumino borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Kaur, Simranpreet; Singh, D. P.; Kaur, Puneet

    2017-11-01

    The study reports the effect of samarium concentration on the physical, structural and spectroscopic characteristics of samarium doped lead alumino borate glasses having composition 20PbO-(10-x)Al2O3-70B2O3-xSm2O3; x = 0.1, 0.5, 1.0 and 2.0 mol %. The glasses were fabricated by conventional melt-quenching technique and then characterized by XRD, FTIR, optical absorption and fluorescence spectra. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. FTIR spectra indicate the presence of BO3, BO4, AlO6 and a few other structural groups. Various physical properties such as density, molar volume, refractive index, rare earth ion concentration, boron-boron distance and polarizability etc. were determined using conventional methods and standard formulae. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The value of Ω2 was found to be highest for glass with 1 mol% Sm2O3 and attributed to the asymmetry of the ligand field at the rare earth ion site and the rare earth oxygen (Sm-O) covalency. The calculated intensity parameters and fluorescence spectra were further used to predict the radiative transition probability (A), radiative lifetime (τR), branching ratio (βR), peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σ) for the characteristic 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions of the Sm3+ ion. Concentration quenching was observed for 2 mol% concentration of Sm2O3 and ascribed to energy transfer through various cross-relaxation channels between Sm3+ ions. Reasonably high values of branching ratios and stimulated emission cross-section for the prepared glasses points towards their utility in the development of visible lasers emitting in the reddish-orange spectral region. However, the glass with 1 mol% Sm2O3 was found to show better radiative properties.

  10. Correlating structural, magnetic, and luminescence properties with the cation distribution of Co{sub 0.5}Zn{sub 0.5+x}Fe{sub 2–x}O{sub 4} nanoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, Adel Maher, E-mail: a_m_wahba@yahoo.co.uk [Department of Engineering Physics and Mathematics, Faculty of Engineering, Tanta University (Egypt); Mohamed, Mohamed Bakr [Ain shams University, Faculty of Science, Physics Department, Cairo (Egypt); Imam, N.G. [Experimental Physics Department, Nuclear Research Center, Atomic Energy Authority, 13759 Cairo (Egypt)

    2016-06-15

    Structural, magnetic, and luminescence properties have been investigated for Co{sub 0.5}Zn{sub 0.5+x}Fe{sub 2−x}O{sub 4} nanoferrite (0.0≤x≤0.4, with a step increment of 0.1) prepared by citrate autocombustion method. X-ray diffraction (XRD) patterns and Fourier-transform infrared (FTIR) spectra proved the formation of a pure cubic spinel phase for all AP samples. Although the ionic radius of Zn{sup 2+} is larger than that of either Fe{sup 3+} or Co{sup 2+}, Rietveld analysis showed that the lattice parameter mostly decreases with increasing Zn substitution. The crystallite size of AP samples decreases gradually with increasing Zn substitution from 16 to 10 nm, which is confirmed with high-resolution (HRTEM) micrographs. Magnetic parameters such as saturation magnetization, coercivity, and remanent field obtained from vibrating sample magnetometry (VSM) revealed a strong dependence on the cation distribution being proposed according to the experimental data of XRD, FTIR, and VSM. The cation distribution indicated that introduced nonstoichiometry is compensated by oxidizing Co{sup 2+} into Co{sup 3+}, which explains the trend of the lattice parameter with increasing x. The distribution of Fe{sup 3+} ions between octahedral and tetrahedral sites was further confirmed by photoluminescence (PL) emission spectra. - Highlights: • Co{sub 0.5}Zn{sub 0.5+x}Fe{sub 2−x}O{sub 4} nanoferrites have been prepared by citrate-precursor method. • XRD peaks and IR bands confirmed pure spinel structure for all samples. • Structural, magnetic, and optical properties depend on the cation distribution. • A cation distribution was proposed based on the experimental data.

  11. Different conjugated system Zn(ii) Schiff base complexes: supramolecular structure, luminescent properties, and applications in the PMMA-doped hybrid materials.

    Science.gov (United States)

    Dong, Yu-Wei; Fan, Rui-Qing; Chen, Wei; Zhang, Hui-Jie; Song, Yang; Du, Xi; Wang, Ping; Wei, Li-Guo; Yang, Yu-Lin

    2017-01-24

    A series of Zn(ii) complexes with different conjugated systems, [ZnL1Cl2]2 (Zn1), [ZnL2Cl2] (Zn2), [Zn(L3)2]·(ClO4)2 (Zn3), [Zn2L4Cl4] (Zn4), and [ZnL5Cl2] (Zn5), were synthesized and subsequently characterized via single crystal X-ray diffraction, (1)H and (13)C NMR, FT-IR, elemental analyses, melting point, and PXRD. The X-ray diffraction analyses revealed that the supramolecular frameworks of complexes Zn1-Zn5 are constructed by C-HO/Cl hydrogen bonds and ππ interactions. Complexes Zn1-Zn3 feature 3D 6-connected {4(12)·6(3)} topological structures, whereas complex Zn4 exhibits a 3D 7-connected supramolecular framework with a {4(17)·6(4)} topological structure. However, complex Zn5 shows one-dimensional "wave-like" chains. Based on these varied structures, the emission maximum wavelengths of complexes Zn1-Zn5 can be tuned in a wide range of 461-592 nm due to the red shift direction of λem caused by different conjugated systems and their electron donating abilities. Complex Zn3 shows a strong luminescence in the solid state and in the acetonitrile solution. Therefore, a series of Zn3-poly(methylmethacrylate) (Zn3-PMMA) hybrid materials were obtained by controlling the concentration of complex Zn3 in poly(methylmethacrylate) (PMMA). At an optimal concentration of 4%, the doped polymer film of Zn3-PMMA displays strong green luminescence emissions that are 19-fold in the luminescence intensities and 98 °C higher in the thermal stability temperature compared to the Zn3 film.

  12. Correlation of finite-element structural dynamic analysis with measured free vibration characteristics for a full-scale helicopter fuselage

    Science.gov (United States)

    Kenigsberg, I. J.; Dean, M. W.; Malatino, R.

    1974-01-01

    The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.

  13. Syntheses, crystal structures and luminescent properties of new lanthanide(III) organoarsonates.

    Science.gov (United States)

    Qian, Xiang-Ying; Zhang, Jian-Han; Zhou, Tian-Hua; Mao, Jiang-Gao

    2012-01-28

    The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.

  14. Applications of structural and spectroscopic techniques to the experimental and theoretical study of new luminescent materials

    CERN Document Server

    Navarro Ahumada, G A

    2001-01-01

    momentum:DELTA J = 6 is observed for this system. A declining cascade that can reasonably explain the unsuspected related spectral intensity, in the order of 10-9, is presented and suggested although a value was predicted for the electric dipolar force of lesser than 4 orders of magnitude what was observed. This problem is discussed and a mechanism is proposed for spectral intensities associated with two emissions characterized by DELTA J = 4 (electric hexadecapole) and DELTA J = 2 (electric cuadrupole). The laboratory tests made, include synthesis by solid state reactions of Dy sup 3 sup + and Ho sup 3 sup + , type elpasolites, structural characterization using the x-ray diffraction, neutron diffraction and diffuse neutron scattering techniques, and Raman and electronic spectroscopic characterization. Results are presented for cubic systems with Cr sup 3 sup + (3d sup 3 ) and Mo sup 3 sup + (4d sup 3 ) ions, since these are privileged from a spectroscopic point of view and except for the hexacyano ion of Cr(...

  15. Synthesis, crystal structure and luminescent properties of a new samarium-fluorescein metal-organic framework

    Science.gov (United States)

    Thomas, Jesty; Ambili, K. S.

    2015-10-01

    A new metal-organic framework with empirical formula C43H30NO12Sm was solvothermally synthesized using SmCl3, fluorescein and N, N-Dimethyl formamide (DMF) and characterized by single crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, UV-Visible spectroscopy, scanning electron microscopy, optical microscopy, photoluminescence spectroscopy, CHN elemental analysis and thermogravimetric analysis. Single crystal X-ray diffraction revealed that the crystal structure belongs to the triclinic system, P-1 space group with a = 12.113 (6) Å, b = 12.1734 (7) Å, c = 13.2760(8) Å, α = 67.930(3)⁰, β = 87.779(3)⁰, γ = 77.603(3)⁰ and V = 1769.71 (17) Å3. The photoluminescence spectrum showed emission peaks at 550 nm, 600 nm and 647 nm due to the characteristic transitions 4G5/2 to 6H5/2, 4G5/2 to 6H7/2 and 4G5/2 to 6H9/2 respectively, when excited at 398 nm.

  16. Structural and spectroscopic investigation of new luminescent hybrid materials based on calix[4]arene-tetracarboxylate and Ln3+ ions (Ln = Gd, Tb or Eu)

    Science.gov (United States)

    Viana, R. S.; Oliveira, C. A. F.; Chojnacki, J.; Barros, B. S.; Alves-Jr, S.; Kulesza, J.

    2017-07-01

    Lanthanide-calixarene hybrid materials are of particular interest due to the combination of the interesting properties of the ligand cavity-like structure and the luminescent features of lanthanides. The aim of this study was to synthesize and investigate the photophysical properties of Eu3+, Tb3+ and Gd3+ hybrids based on calix[4]arene-tetracarboxylate. The preparation of two structurally different Tb3+ compounds (calix-TA-SC-Tb and calix-TA-Tb) was dictated by the ligand to metal molar ratio and the synthesis time. Analysis of calix-TA-SC-Tb monocrystals revealed the formation of a mononuclear complex of C2 symmetry containing Tb3+ coordinated by four calixarene ionized groups and formate anion encapsulated within the upper cavity. Syntheses of other hybrids failed in producing high-quality crystals and the structures could not be solved. The solid-state luminescent properties of hybrids were evaluated, and the structure/property relationship was investigated. Based on the emission and excitation spectra, the energy diagrams for calix-TA-Eu, calix-TA-Tb and calix-TA-Gd were proposed.

  17. Simplified Procedure For The Free Vibration Analysis Of Rectangular Plate Structures With Holes And Stiffeners

    Directory of Open Access Journals (Sweden)

    Cho Dae Seung

    2015-04-01

    Full Text Available Thin and thick plates, plates with holes, stiffened panels and stiffened panels with holes are primary structural members in almost all fields of engineering: civil, mechanical, aerospace, naval, ocean etc. In this paper, a simple and efficient procedure for the free vibration analysis of such elements is presented. It is based on the assumed mode method and can handle different plate thickness, various shapes and sizes of holes, different framing sizes and types as well as different combinations of boundary conditions. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange’s equations. Mindlin theory is applied for a plate and Timoshenko beam theory for stiffeners. The applicability of the method in the design procedure is illustrated with several numerical examples obtained by the in-house developed code VAPS. Very good agreement with standard commercial finite element software is achieved.

  18. Vibration-based structural health monitoring using output-only measurements under changing environment

    Science.gov (United States)

    Deraemaeker, A.; Reynders, E.; De Roeck, G.; Kullaa, J.

    2008-01-01

    This paper deals with the problem of damage detection using output-only vibration measurements under changing environmental conditions. Two types of features are extracted from the measurements: eigenproperties of the structure using an automated stochastic subspace identification procedure and peak indicators computed on the Fourier transform of modal filters. The effects of environment are treated using factor analysis and damage is detected using statistical process control with the multivariate Shewhart- T control charts. A numerical example of a bridge subject to environmental changes and damage is presented. The sensitivity of the damage detection procedure to noise on the measurements, environment and damage is studied. An estimation of the computational time needed to extract the different features is given, and a table is provided to summarize the advantages and drawbacks of each of the features studied.

  19. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    Science.gov (United States)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  20. Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication.

    Science.gov (United States)

    Eberhard, M J B; Lang, D; Metscher, B; Pass, G; Picker, M D; Wolf, H

    2010-07-01

    Individuals of the insect order Mantophasmatodea use species-specific substrate vibration signals for mate recognition and location. In insects, substrate vibration is detected by mechanoreceptors in the legs, the scolopidial organs. In this study we give a first detailed overview of the structure, sensory sensitivity, and function of the leg scolopidial organs in two species of Mantophasmatodea and discuss their significance for vibrational communication. The structure and number of the organs are documented using light microscopy, SEM, and x-ray microtomography. Five scolopidial organs were found in each leg of male and female Mantophasmatodea: a femoral chordotonal organ, subgenual organ, tibial distal organ, tibio-tarsal scolopidial organ, and tarso-pretarsal scolopidial organ. The femoral chordotonal organ, consisting of two separate scoloparia, corresponds anatomically to the organ of a stonefly (Nemoura variegata) while the subgenual organ complex resembles the very sensitive organs of the cockroach Periplatena americana (Blattodea). Extracellular recordings from the leg nerve revealed that the leg scolopidial organs of Mantophasmatodea are very sensitive vibration receptors, especially for low-frequency vibrations. The dominant frequencies of the vibratory communication signals of Mantophasmatodea, acquired from an individual drumming on eight different substrates, fall in the frequency range where the scolopidial organs are most sensitive. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    Science.gov (United States)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  2. Research on Spillover Effects for Vibration Control of Piezoelectric Smart Structures by ANSYS

    Directory of Open Access Journals (Sweden)

    Xingjian Dong

    2014-01-01

    Full Text Available To control vibration of a piezoelectric smart structure, a controller is usually designed based on a reduced order model (ROM of the system. When such a ROM based controller operates in closed loop with the actual structure, spillover phenomenon occurs because the unmodeled dynamics, which are not included in ROM, will be excited. In this paper, a new approach aiming at investigating spillover effects in ANSYS software is presented. By using the ANSYS parametric design language (APDL, the ROM based controller is integrated into finite element model to provide an accurate representation of what will happen when the controller is connected to the real plant. Therefore, the issues of spillover effects can be addressed in the closed loop simulation. Numerical examples are presented for investigating spillover effects of a cantilever piezoelectric plate subjected to various types of loading. The importance of considering spillover effects in closed loop simulation of piezoelectric smart structures is demonstrated. Moreover, the present study may provide an efficient method especially beneficial for preliminary design of piezoelectric smart structure to evaluate the performance of candidate control laws in finite element environment considering spillover effects.

  3. Molecular structure, interatomic interactions and vibrational analysis of 1,4-diazabicyclo[3.2.1]octane parent ring system

    Science.gov (United States)

    Britvin, Sergey N.; Rumyantsev, Andrey M.; Zobnina, Anastasia E.; Padkina, Marina V.

    2017-02-01

    Molecular structure of 1,4-diazabicyclo[3.2.1]octane, a parent ring of TAN1251 family of alkaloids, is herein characterized for the first time in comparison with the structure of nortropane (8-azabicyclo[3.2.1]octane), the parent framework of tropane ring system. The methods of study involve X-ray structural analysis, DFT geometry optimizations with infrared frequency calculations followed by natural bond orbital (NBO) analysis, and vibrational analysis of infrared spectrum.

  4. Discussion of "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140

    Science.gov (United States)

    Svinkin, Mark R.

    2016-12-01

    The authors suggested a hybrid method for modeling the time history of structural vibrations triggered by impact dynamic loads from construction equipment and blasting, and they stated, "In this work, a hybrid method has been proposed to calculate the theoretical seismograms of structural vibrations. The word "hybrid" denotes a combination of field measurements and computer simulations. Then, based on nonlinear system theory, a novel method is proposed to predict the signal induced by impact loading".

  5. Synthesis, crystal structures and luminescent properties of zinc(II) metal-organic frameworks constructed from terpyridyl derivative ligand

    Science.gov (United States)

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming; Xu, Bing; Wang, Bao-Cheng; Xie, Juan; Yuan, Fei; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2014-08-01

    Five zinc(II) metal-organic frameworks, [Zn3(344-pytpy)2Cl6]n·n(H2O) (1), [Zn(344-pytpy)(ox)]n (2), [Zn2(344-pytpy)(bdc)2]n·1.5n(H2O) (3), [Zn2(344-pytpy)2 (sfdb)2]n·1.5n(H2O) (4) and [Zn3(344-pytpy)2(btc)2]n·2n(H2O) (5), (344-pytpy=4‧-(3-pyridyl)-4,2‧:6‧,4″-terpyridine, H2ox=oxalic acid, H2bdc=1,4-benzenedi-carboxylic acid, H2sfdb=4,4‧-sulfonyldibenzoic acid and H3btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three ZnII centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 66. Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.82)(4.85)(83). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (44.62). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.82)2(62.82.10.12)(62.83.10)2(62.8)2. The luminescence properties of 1-5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C.

  6. Vibration based structural health monitoring and the modal strain energy damage index algorithm applied to a composite T-beam

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; de Boer, Andries; Akkerman, Remko; Vasques, C.M.A.; Dias Rodrigues, J.

    2011-01-01

    A Finite Element based numerical model for a vibration based damage identification method for a 2.5D composite structure is discussed in this chapter. The linear dynamic response of an intact and a locally delaminated 16-layer unidirectional carbon fibre PEKK reinforced T-beam is analysed. A

  7. Full Article: Stoichiometry, Vibrational Modes and Structure of Molten Nb2O5-K2S2O7 Mixtures

    DEFF Research Database (Denmark)

    Boghosian, S.; Borup, F.; Berg, Rolf W.

    1998-01-01

    The dissolution reaction of Nb205 in pure molten K2S207 has been studied and high temperature Raman spectroscopy has been used for determining the vibrational and structural properties of the Nb(V) complex(es) formed according to the reaction Nb205 + n S207(2-) -> complex. By means of a recently ...

  8. Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand

    Science.gov (United States)

    Zhao, Dian; Rao, Xingtang; Yu, Jiancan; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-10-01

    Design and synthesis of a series of isostructural lanthanide metal-organic frameworks (LnMOFs) serving as phosphors by coordinate the H2TIPA (5-(1H-tetrazol-5-yl)isophthalic acid) ligands and lanthanide ions is reported. The color of the luminescence can be tuned by adjusting the relative concentration of the lanthanide ions in the host framework GdTIPA, and near-pure-white light emission can be achieved.

  9. Note: Arbitrary periodical mechanical vibrations can be realized in the resonant state based on multiple tuning fork structure.

    Science.gov (United States)

    He, Liangguo; Pan, Chengliang; Wang, Hongbo; Feng, Zhihua

    2013-09-01

    We develop a novel approach to match harmonics and vibration modes based on the mechanism of multiple tuning fork structure (MTFS), through which it is promising to realize arbitrary periodical vibrations in the resonant state. A prototype three-layer MTFS with first three harmonics is presented to verify the feasibility of the proposed principle. The matching process and experimental results confirm the unique advantages of MTFS, as discussed in the theoretical analysis. Typical periodical motions, including sawtooth, square, half-wave rectified, and full-wave rectified waveforms, are achieved by the syntheses of resonant harmonics.

  10. Application of the Recursive Finite Element Approach on 2D Periodic Structures under Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Reem Yassine

    2016-12-01

    Full Text Available The frequency response function is a quantitative measure used in structural analysis and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of substructures, also called cells, must be considered, which will lead to a high amount of computational time. In this paper, the recursive method, a finite element method, is used for computing the frequency response function, independent of the number of cells with much lesser time costs. The fundamental principle is eliminating the internal degrees of freedom that are at the interface between a cell and its succeeding one. The method is applied solely for free (no load nodes. Based on the boundary and interior degrees of freedom, the global dynamic stiffness matrix is computed by means of products and inverses resulting with a dimension the same as that for one cell. The recursive method is demonstrated on periodic structures (cranes and buildings under harmonic vibrations. The method yielded a satisfying time decrease with a maximum time ratio of 1 18 and a percentage difference of 19%, in comparison with the conventional finite element method. Close values were attained at low and very high frequencies; the analysis is supported for two types of materials (steel and plastic. The method maintained its efficiency with a high number of forces, excluding the case when all of the nodes are under loads.

  11. A simple method for enhanced vibration-based structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Guechaichia, A; Trendafilova, I, E-mail: abdelhamid.guechaichia@strath.ac.uk [Department of Mechanical Engineering University of Strathclyde, James Weir Building, 75 Montrose street, Glasgow, G1 IXJ (United Kingdom)

    2011-07-19

    This study suggests a novel method for structural vibration-based health monitoring for beams which only utilises the first natural frequency of the beam in order to detect and localise a defect. The method is based on the application of a static force in different positions along the beam. It is shown that the application of a static force on a damaged beam induces stresses at the defect which in turn cause changes in the structural natural frequencies. A very simple procedure for damage detection is suggested which uses a static force applied in just one point, in the middle of the beam. Localisation is made using two additional application points of the static force. Damage is modelled as a small notch through the whole width of the beam. The method is demonstrated and validated numerically, using a finite element model of the beam, and experimentally for a simply supported beam. Our results show that the frequency variation with the change of the force application point can be used to detect and in the same time localize very precisely even a very small defect. The method can be extended for health monitoring of other more complicated structures.

  12. 3D lanthanide metal-organic frameworks constructed from 2,6-naphthalenedicarboxylate ligand: synthesis, structure, luminescence and dye adsorption

    Science.gov (United States)

    Zhu, Yajing; Wang, Li; Chen, Xiaodong; Wang, Pengcheng; Fan, Yong; Zhang, Ping

    2017-07-01

    A series of novel isostructural 3D lanthanide metal-organic frameworks {[Ln2(NDC)3(H2O)4]·(DMF)4}n (Ln=Eu(1), Gd(2), Tb(3), Er(4), Yb(5), Dy(6), Y(7), Lu(8), H2NDC =2,6-Naphthalenedicarboxylic acid, DMF=N,N-dimethylformamide) with a rhombic channel along the b axis and high thermal stabilities, have been successfully synthesized under solvothermal conditions. The network can be described as 2, 4, 5-connected net with Schäfli symbol of (42.62.82)2(42.63.85)2(6). Luminescent studies illustrate that 1, 2, 7 and 8 exhibit strong luminescent emitting of the corresponding Ln(III) centers in the visible range, while 5 shows near-infrared range (NIR) luminescence. Further studies of 1 and 2A (activated product of 2) show that 1 displays good stability in different solvents and excellent fluorescence sensing for organic solvent small molecules and 2A ([Gd2(NDC)3(H2O)4]n) exhibits good adsorption capacity for organic dyes in water, especially for crystal violet.

  13. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  14. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  15. Synthesis, structural characterization and luminescent properties of a novel europium ternary complex Eu(2-A-4-CBA){sub 3}phen

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongjie, E-mail: cyj200507@aliyun.com; Wu, Shengnan; Xing, Zhenfang; Cao, Shuang; Geng, Xiujuan; Yang, Ying; Xiao, Linjiu

    2015-11-15

    The preparation of a novel europium ternary complex with the formula of Eu(2-A-4-CBA){sub 3}phen (where, 2-A-4-CBA = 2-amino-4-chlorobenzoic acid, phen = 1,10-phenanthroline) under solvothermal condition is described. The composition and structure of the resulting complex were investigated by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy. The complex is polycrystalline, and the morphology is clean and regular as revealed by scanning electron microscope (SEM). The luminescent and thermal properties of the complex were researched by fluorescence spectroscopy and thermogravimetric analysis, respectively. Of importance here is that, the room-temperature luminescence spectra of the complex show strong characteristic emission of the corresponding Eu{sup 3+}, which is attributed to the energy transfer from ligands to Eu{sup 3+} via an Antenna effect. It is also found that the complex exhibits pure red light and high color purity. In addition, the complex does not decompose until 300 °C, so it exhibits good thermal stability. - Highlights: • A novel Eu(III) complex was synthesized by solvothermal synthesis method. • The structure and properties of complex were studied. • The complex can emits pure red light and has a high color purity. • The complex does not decompose until 300 °C and it has a good thermal stability.

  16. Investigation on the vibrational and structural properties of a self-structured bridged silsesquioxane.

    Science.gov (United States)

    Creff, Gaëlle; Arrachart, Guilhem; Hermet, Patrick; Wadepohl, Hubert; Almairac, Robert; Maurin, David; Sauvajol, Jean-Louis; Carcel, Carole; Moreau, Joël J E; Dieudonné, Philippe; Man, Michel Wong Chi; Bantignies, Jean-Louis

    2012-04-28

    The crystalline structure of ureidopyrimidinone-based silane (UPY) has been determined. The local and long range order structuring of the bridged silsesquioxane (MUPY) resulting from the sol-gel hydrolysis-condensation of the former precursor has been investigated by MFTIR (Mid Fourier Transform InfraRed) combined with DFT (Density Functional Theory) and XRD (X-ray diffraction) studies. These studies showed that a long range structuring exists within the organic fragments with the transcription of the DDAA (Donor-Donor-Acceptor-Acceptor) H-bonding array from UPY to MUPY whereas a disordered siloxane network was revealed in the hybrid material. This journal is © the Owner Societies 2012

  17. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine

    DEFF Research Database (Denmark)

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this pr......Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose...... of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally...

  18. Vibration based structural health monitoring of composite skin-stiffener structures

    NARCIS (Netherlands)

    Ooijevaar, T.H.

    2014-01-01

    Composite materials combine a high strength and stiffness with a relatively low density. These materials can, however, exhibit complex types of damage, like transverse cracks and delaminations. These damage scenarios can severely influence the structural performance of a component. Periodic

  19. Quantum chemical and experimental studies on the structure and vibrational spectra of an alkaloid-Corlumine

    Science.gov (United States)

    Mishra, Rashmi; Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2014-01-01

    The study concentrates on an important natural product, phthalide isoquinoline alkaloid Corlumine (COR) [(6R)-6-[(1S)-1,2,3,4-Tetrahydro-6,7-dimethoxy-2-methylisoquinolin-1-yl] furo [3,4-e]-1,3-benzodioxol-8(6H)-one] well known to exhibit spasmolytic and GABA antagonist activity. It was fully characterized by a variety of experimental methods including vibrational spectroscopy (IR and Raman), thermal analysis (DSC), UV and SEM. For a better interpretation and analysis of the results quantum chemical calculations employing DFT were also performed. TD-DFT was employed to elucidate electronic properties for both gaseous and solvent environment using IEF-PCM model. Graphical representation of HOMO and LUMO would provide a valuable insight into the nature of reactivity and some of the structural and physical properties of the title molecule. The structure-activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug-receptor interactions. Stability of the molecule arising from hyper conjugative interactions, charge delocalisation has been analyzed using natural bond orbital (NBO) analysis. Computation of thermodynamical properties would help to have a deep insight into the molecule for further applications.

  20. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    Directory of Open Access Journals (Sweden)

    Franchetti Paolo

    2015-01-01

    Full Text Available A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention of rehabilitation of the bridge led to a reinforcement of the existing hinges with the coupling of new metallic devices: new tongue and groove hinges were applied, that by one side allow the horizontal displacements and rotation, by the other side strongly reduce the relative vertical displacements of the two parts of the bridge. A dynamic test campaign was set up in order to assess the effectiveness of the intervention. The principal dynamic parameters were calculated and analysed with respect to the intervention that was realized. The tests clearly showed the effectiveness of the intervention, and helped the designer to have a better understanding of the structural behaviour of the bridge.

  1. Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate.

    Science.gov (United States)

    Mordant, Nicolas; Miquel, Benjamin

    2017-10-01

    We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.

  2. Molecular structure, vibrational, HOMO-LUMO, MEP and NBO analysis of hafnium selenite

    Science.gov (United States)

    Yankova, Rumyana; Genieva, Svetlana; Dimitrova, Ginka

    2017-08-01

    In hydrothermal condition hafnium selenite with estimated chemical composition Hf(SeO3)2·n(H2O) was obtained and characterized by powder X-Ray diffraction, IR spectroscopy and thermogravimetrical analysis. The composition of the obtained crystalline phase was established as dihydrate of tetraaqua complex of the hafnium selenite [Hf(SeO3)2(H2O)4]·2H2O. The results of the thermogravimetrical analysis are shown that the two hydrated water molecules are released in the temperature interval 80-110°C, while the four coordinated water molecules - at 210-300°C. By DFT method, with Becke's three parameter exchange-functional combined with gradient-corrected correlation functional of Lee, Yang and Parr and 6-31G(d), 6-311 + G(d,p) basis sets and LANL2DZ for Hf atom were calculated the molecular structure, vibrational frequencies and thermodynamic properties of the structure. The UV-Vis spectra and electronic properties are presented. The energy and oscillator strength calculated by time-dependent density functional theory corresponds well with the experimental ones. Molecular electrostatic potential (MEP) was performed. Mulliken population analysis on atomic charges was also calculated. The stability and intramolecular interactions are interpreted by NBO analysis.

  3. A Lanczos eigenvalue method on a parallel computer. [for large complex space structure free vibration analysis

    Science.gov (United States)

    Bostic, Susan W.; Fulton, Robert E.

    1987-01-01

    Eigenvalue analyses of complex structures is a computationally intensive task which can benefit significantly from new and impending parallel computers. This study reports on a parallel computer implementation of the Lanczos method for free vibration analysis. The approach used here subdivides the major Lanczos calculation tasks into subtasks and introduces parallelism down to the subtask levels such as matrix decomposition and forward/backward substitution. The method was implemented on a commercial parallel computer and results were obtained for a long flexible space structure. While parallel computing efficiency is problem and computer dependent, the efficiency for the Lanczos method was good for a moderate number of processors for the test problem. The greatest reduction in time was realized for the decomposition of the stiffness matrix, a calculation which took 70 percent of the time in the sequential program and which took 25 percent of the time on eight processors. For a sample calculation of the twenty lowest frequencies of a 486 degree of freedom problem, the total sequential computing time was reduced by almost a factor of ten using 16 processors.

  4. Formation and vibrational structure of Si nano-clusters in ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [Universidad Autonoma del Estado de Hidalgo, Hidalgo (Mexico); Pal, U. [Universidad Autonoma de Puebla, Puebla (Mexico); Koshizaki, N.; Sasaki, T. [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    2001-02-01

    We have studied the formation and vibrational structure of Si nano-clusters in ZnO matrix prepared by radio-frequency (r.f.) co-sputtering, and characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and Infrared (IR) spectroscopy techniques. The composite films of Si/ZnO were grown o quartz substrates by co-sputtering of Si and ZnO targets. TEM images show a homogeneous distribution of clusters in the matrix with average size varied from 3.7 nm to 34 nm depending on the temperature of annealing. IR absorption measurements revealed the bands correspond to the modes of vibrations of Si{sub 3} in its triangular geometrical structure. By analysing the IR absorption and XPS spectra we found that the nano-clusters consist of a Si{sub 3} core and a SiO{sub x} cap layer. With the increase of annealing temperature, the vibrational states of Si changed from the triplet {sup 3}B1(C2{sub v}) and {sup 3}A'{sub 2}(D{sub 3h}) states to its singlet ground state {sup 1}A{sub 1}(C2{sub v}) and the oxidation state of Si in SiO{sub x} increased. The evolution of the local atomic structure of the Si nano-clusters with the variation of Si content in the film and with the variation of the temperature of annealing are discussed. [Spanish] Se estudia la formacion y estructura vibracional de nano-cumulos de Si en matriz de ZnO preparados por la tecnica de radio-frecuencia (r.f.) co-sputtering, y caracterizados por Microscopia Electronica de Transmision (TEM), Espectroscopia Fotoelectronica de rayos X (XPS) y Espectroscopia de Infrarrojo (IR). Las peliculas compositas de Si/ZnO fueron crecidas sobre sustratos de cuarzo mediante el co-sputtering de blancos de Si y ZnO. Las imagenes de TEM mostraron una distribucion homogenea de cumulos en la matriz con un tamano promedio de 3.7 nm a 34 nm dependiendo de la temperatura de tratamiento. Las mediciones de IR relevaron las bandas correspondientes a los modos de vibracion de Si{sub 3} en su estructura

  5. High pressure structural, elastic and vibrational properties of green energetic oxidizer ammonium dinitramide

    Science.gov (United States)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2016-08-01

    Ammonium DiNitramide (ADN) is one of the most promising green energetic oxidizers for future rocket propellant formulations. In the present work, we report a detailed theoretical study on structural, elastic, and vibrational properties of the emerging oxidizer under hydrostatic compression using various dispersion correction methods to capture weak intermolecular (van der Waals and hydrogen bonding) interactions. The calculated ground state lattice parameters, axial compressibilities, and equation of state are in good accord with the available experimental results. Strength of intermolecular interactions has been correlated using the calculated compressibility curves and elastic moduli. Apart from this, we also observe discontinuities in the structural parameters and elastic constants as a function of pressure. Pictorial representation and quantification of intermolecular interactions are described by the 3D Hirshfeld surfaces and 2D finger print maps. In addition, the computed infra-red (IR) spectra at ambient pressure reveal that ADN is found to have more hygroscopic nature over Ammonium Perchlorate (AP) due to the presence of strong hydrogen bonding. Pressure dependent IR spectra show blue- and red-shift of bending and stretching frequencies which leads to weakening and strengthening of the hydrogen bonding below and above 5 GPa, respectively. The abrupt changes in the calculated structural, mechanical, and IR spectra suggest that ADN might undergo a first order structural transformation to a high pressure phase around 5-6 GPa. From the predicted detonation properties, ADN is found to have high and low performance characteristics (DCJ = 8.09 km/s and PCJ = 25.54 GPa) when compared with ammonium based energetic oxidizers (DCJ = 6.50 km/s and PCJ = 17.64 GPa for AP, DCJ = 7.28 km/s and PCJ = 18.71 GPa for ammonium nitrate) and well-known secondary explosives for which DCJ = ˜8-10 km/s and PCJ = ˜30-50 GPa, respectively.

  6. Synthesis, Structures and Luminescence Properties of Metal-Organic Frameworks Based on Lithium-Lanthanide and Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammed S. M. Abdelbaky

    2016-03-01

    Full Text Available Metal-organic frameworks assembled from Ln(III, Li(I and rigid dicarboxylate ligand, formulated as [LiLn(BDC2(H2O·2(H2O] (MS1-6,7a and [LiTb(BDC2] (MS7b (Ln = Tb, Dy, Ho, Er, Yb, Y0.96Eu0.04, Y0.93Tb0.07, and H2BDC = terephthalic acid, were obtained under hydrothermal conditions. The isostructural MS1-6 crystallize in monoclinic P21/c space group. While, in the case of Tb3+ a mixture of at least two phases was obtained, the former one (MS7a and a new monoclinic C2/c phase (MS7b. All compounds have been studied by single-crystal and powder X-ray diffraction, thermal analyses (TGA, vibrational spectroscopy (FTIR, and scanning electron microscopy (SEM-EDX. The structures of MS1-6 and MS7a are built up of inorganic-organic hybrid chains. These chains constructed from unusual four-membered rings, are formed by edge- and vertex-shared {LnO8} and {LiO4} polyhedra through oxygen atoms O3 (vertex and O6-O7 (edge. Each chain is cross-linked to six neighboring chains through six terephthalate bridges. While, the structure of MS7b is constructed from double inorganic chains, and each chain is, in turn, related symmetrically to the adjacent one through the c glide plane. These chains are formed by infinitely alternating {LiO4} and {TbO8} polyhedra through (O2-O3 edges to create Tb–O–Li connectivity along the c-axis. Both MS1-6,7a and MS7b structures possess a 3D framework with 1D trigonal channels running along the a and c axes, containing water molecules and anhydrous, respectively. Topological studies revealed that MS1-6 and MS7a have a new 2-nodal 3,10-c net, while MS7b generates a 3D net with unusual β-Sn topology. The photoluminescence properties Eu- and Tb-doped compounds (MS5-6 are also investigated, exhibiting strong red and green light emissions, respectively, which are attributed to the efficient energy transfer process from the BDC ligand to Eu3+ and Tb3+.

  7. Elucidating the Structure of Chiral Molecules by using Amplified Vibrational Circular Dichroism: From Theory to Experimental Realization.

    Science.gov (United States)

    Domingos, Sérgio R; Hartl, František; Buma, Wybren Jan; Woutersen, Sander

    2015-11-16

    Recent experimental observations of enhanced vibrational circular dichroism (VCD) in molecular systems with low-lying electronically excited states suggest interesting new applications of VCD spectroscopy. The theory describing VCD enhancement through vibronic coupling schemes was derived by Nafie in 1983, but only recently experimental evidence of VCD amplification has demonstrated the extent to which this effect can be exploited as a structure elucidation tool to probe local structure. In this Concept paper, we give an overview of the physics behind vibrational circular dichroism, in particular the equations governing the VCD amplification effect, and review the latest experimental developments with a prospective view on the application of amplified VCD to locally probe biomolecular structure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Al/Ga substitution on the structural and luminescence properties of Y3(Al1-xGax)5O12: Ce3+ phosphors

    Science.gov (United States)

    Fu, Sheng; Tan, Jin; Bai, Xin; Yang, Shanjie; You, Lei; Du, Zhengkang

    2018-01-01

    As candidates for display and lighting materials, a series of gallium-substituted cerium-doped yttrium aluminum garnet (Y3(GaxAl1-x)5O12: Ce3+) phosphors were synthesized by high temperature solid-state reaction. The phases, morphology, luminescence spectra and thermal stability of the phosphors were investigated. The volatilization of Ga2O3 induces the constituents out of stoichiometric ratio and different impurities in the system. The excitation and emission spectra occur red shift (339 nm - 351 nm) and blue shift (465 nm - 437 nm), and blue shift (541 nm - 517 nm), respectively. The spectra have no further blue shift and the luminescence intensity decrease with x over 0.4. Combining crystal structure with PL spectrum, the distortion of dodecahedron and crystal field splitting of 5d level of Ce3+ are influenced by Ga3+ in octahedral coordination polyhedron rather than tetrahedron. The crystalline perfection and Ga3+ occupying the tetrahedron induce less garnet phase formation, more impurities and the 5d level located in the conductive bands, thus accounting for the x = 0.4 turning points of the PL and PLE intensity. Based on the thermal quenching and CIE, the Y3(GaxAl1-x)5O12: Ce3+0.06 phosphors have great potential for use on the w-LED.

  9. Effect of lithium halide on glass network structure and upconversion luminescence in Er3+ co-doped oxyfluoride glass ceramics containing NaGdF4 nanocrystals

    Science.gov (United States)

    Ren, Peng; Yang, Yong; Zhou, Dacheng; Li, Zhencai; Qiu, Jianbei

    2017-10-01

    LiR(R = Br, Cl, F) co-doped oxyfluoride glass ceramics containing NaGdF4 nanocrystals were prepared. The effect on glass network structure by dopants was investigated through the Raman spectra. The crystallization temperature and integrity of the glass network structure was gradually reduced by introducing halogen ions. The types and distribution of nanocrystals were determined by X-ray diffraction and transmission electron microscope. The size of nanocrystals were shown in column type distribution map. The mean size of nanocrystals was bigger from SABr to SAF. The upconversion luminescence of Er3+ in SABr, SACl and SAF were study. The intensity ratio of red and green light was reduced in glass ceramics when the content from LiBr turn to LiF.

  10. Structural, optical and luminescence properties of Dy3+ doped bismuth phosphate glasses: Insights from 31P MAS NMR, absorption and photoluminescence

    Science.gov (United States)

    Damodaraiah, S.; Prasad, V. Reddy; Ratnakaram, Y. C.

    2017-05-01

    An investigation was carried out to observe structural and optical properties of 0.5 mol% Dy3+ doped different compositions of bismuth phosphate glasses (5, 10, 15 and 20 mol% Bi2O3). The structural characterization was accomplished by X-ray diffraction (XRD), 31P magic angle spin nuclear magnetic resonance (MAS NMR) spectroscopy. The optical properties were studied using absorption and photo luminescence (PL) spectroscopy. Judd-Ofelt intensity parameters Ωλ (λ=2, 4 and 6) were evaluated from absorption spectra. From photoluminescence spectra, experimental branching ratios (βexp) and stimulated emission cross-sections (σP) were calculated. The decay profiles for 4F9/2 level were recorded and were fit exponential. The obtained results show the prepared Dy3+ doped bismuth phosphate glasses might be useful as good optical material for yellow emission.

  11. Synthesis, electronic structure and luminescent properties of a new red-emitting phosphor GdBiW2O9:Eu3+

    Science.gov (United States)

    Xie, Zhi; Zhou, Weiwei; Zhao, Wang; Zhang, Hao; Hu, Qichang; Xu, Xuee

    2017-10-01

    Red phosphor of GdBiW2O9:Eu3+ was prepared by solid-state reaction method. The phase purity and structure of the samples were characterized by XRD. The electronic structures of GdBiW2O9 host were estimated by DFT calculation. The PLE and PL spectra were also investigated. The optimal luminescent properties of GdBiW2O9:Eu3+ phosphors were obtained at 900 °C with 40 mol% of Eu3+ concentration. The phosphors can be excited efficiently by 396 nm NUV light and emit intense red light peaking at 618 nm. The results indicate GdBiW2O9:Eu3+ can act as a potential red-emitting phosphor for LEDs application.

  12. Influence of dynamic soil-structure interaction on building response to ground vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2014-01-01

    must be used. In this regard it is often assumed that a no significant back coupling from the building to the ground exists. Thus, a model with free-field vibrations from the ground provides input at the base of the building model. The aim of the present paper is to examine whether—and to which extent......Vibration from traffic and pile driving are an increasing problem in densely populated areas. To assess vibration levels in new or existing buildings near construction sites, roads or railways in the design phase, valid models for prediction of wave transmission via the ground and into a building...

  13. Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhu-Qing, E-mail: zqgao2008@163.com [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Li, Hong-Jin [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, Qing-Hua [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Kirillov, Alexander M. [Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisbon (Portugal)

    2016-09-15

    Four new crystalline solids, namely [Co{sub 2}(µ{sub 2}-5-Clnic){sub 2}(µ{sub 3}-5-Clnic){sub 2}(µ{sub 2}-H{sub 2}O)]{sub n} (1), [Co(5-Clnic){sub 2}(H{sub 2}O){sub 4}]·2(5-ClnicH) (2), [Pb(µ{sub 2}-5-Clnic){sub 2}(phen)]{sub n} (3), and [Cd(5-Clnic){sub 2}(phen){sub 2}]·3H{sub 2}O (4) were generated by hydrothermal self-assembly methods from the corresponding metal(II) chlorides, 5-chloronicotinic acid (5-ClnicH) as a principal building block, and 1,10-phenanthroline (phen) as an ancillary ligand (optional). All the products 1–4 were characterized by IR spectroscopy, elemental analysis, thermogravimetric (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Their structures range from an intricate 3D metal-organic network 1 with the 3,6T7 topology to a ladder-like 1D coordination polymer 3 with the 2C1 topology, whereas compounds 2 and 4 are the discrete 0D monomers. The structures of 2 and 4 are further extended (0D→2D or 0D→3D) by hydrogen bonds, generating supramolecular networks with the 3,8L18 and ins topologies, respectively. Synthetic aspects, structural features, thermal stability, magnetic (for 1) and luminescent (for 3 and 4) properties were also investigated and discussed. - Graphical abstract: A new series of crystalline solids was self-assembled and fully characterized; their structural, topological, luminescent and magnetic features were investigated. Display Omitted.

  14. Ambient vibration monitoring of slender structures by microwave interferometer remote sensing

    Science.gov (United States)

    Gikas, Vassilis

    2012-11-01

    This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided.

  15. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    Energy Technology Data Exchange (ETDEWEB)

    Monteseguro, V. [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto de Materiales y Nanotecnología. Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain)

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  16. Crystal growth, crystal structure, vibrational spectroscopy, linear and nonlinear optical properties of guanidinium phosphates

    Science.gov (United States)

    Němec, Ivan; Matulková, Irena; Held, Peter; Kroupa, Jan; Němec, Petr; Li, Dongxu; Bohatý, Ladislav; Becker, Petra

    2017-07-01

    Of the three guanidinium phosphates GuH2PO4 (space group P21/c), Gu2HPO4·H2O (space group P 4 bar 21 c) and Gu3PO4· 3/2 H2O (space group Cc) crystal structures and a vibrational spectroscopy study are presented. Large single crystals of GuH2PO4 and Gu2HPO4·H2O are grown. Refractive indices and their dispersion in the wavelength range 365 nm - 1083 nm are determined and used for the analysis of phase matching conditions for collinear SHG in the case of the non-centrosymmetric crystals of Gu2HPO4·H2O. The crystals are not phase-matchable within their transmission range. Both independent components of the SHG tensor of Gu2HPO4·H2O, determined by the Maker fringe method, are given, with d14 = 0.23 pm/V and d36 = 0.22 pm/V. In addition, the thermal stability and the anisotropy of thermal expansion of GuH2PO4 and Gu2HPO4·H2O is reported.

  17. Structure and Absolute Configuration of Nyasol and Hinokiresinol via Synthesis and Vibrational Circular Dichroism Spectroscopy

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2005-01-01

    The absolute configuration of the norlignan (+)-nyasol was determined to be S by comparison of the experimental vibrational circular dichroism data with first-principle calculations taking into account the eight lowest energy conformations. The established absolute configuration of (+)-nyasol...

  18. The Comparative Study of Vibration Control of Flexible Structure Using Smart Materials

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2010-01-01

    Full Text Available Considerable attention has been devoted to active vibration control using intelligent materials as PZT actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods: optimal PID control, strain rate feedback control (SRF, and positive position feedback control (PPF are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF and PPF controls have better performance in suppressing the vibration of cantilever steel beam than the optimal PID control.

  19. Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm

    National Research Council Canada - National Science Library

    Sheng, Xianjun; Kong, Yuanli; Zhang, Fengyun; Yang, Rui

    2016-01-01

    .... The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique...

  20. Effect of pile-driving induced vibrations on nearby structures and other assets.

    Science.gov (United States)

    2013-11-01

    The work described here represents an attempt to understand the mechanisms of energy : transfer from steel H-piles driven with diesel hammers to the surrounding soil and the energy : attenuation through the soil by measuring ground motion vibrations ...

  1. Energy Dissipation from Vibrating Floor Slabs due to Human-Structure Interaction

    Directory of Open Access Journals (Sweden)

    James M.W. Brownjohn

    2001-01-01

    Full Text Available Lightweight pre-cast flooring systems using post-tensioning to increase strength but not stiffness are increasingly popular, and vibration serviceability problems tend to govern design of such floors where human occupants are increasingly concerned with vibrations. At the same time as inducing response, stationary human observers can also participate in the response as mitigating influence and it is clear that a human behaves as a highly effective damper, even when seated.

  2. A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems.

    Science.gov (United States)

    Petrenko, Taras; Rauhut, Guntram

    2017-03-28

    Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.

  3. The Effect of Atom Vacancy Defect on the Vibrational Behavior of Single-Walled Carbon Nanotubes: A Structural Mechanics Approach

    Directory of Open Access Journals (Sweden)

    S. K. Georgantzinos

    2014-04-01

    Full Text Available An atomistic structural mechanics method, which is based on the exclusive use of spring elements, is developed in order to study the effect of imperfections due to atom vacancy on the vibrational characteristics of single-walled carbon nanotubes (SWCNTs. The developed elements simulate the relative translations and rotations between atoms as well as the mass of the atoms. In this way, molecular mechanics theory can be applied directly because the atomic bonds are modeled by using exclusively physical variables such as bond stretching. The method is validated for its predictability comparing with vibration results found in the open literature for pristine nanotubes. Then, it is used for the vibration analysis of defective nanotubes. Imperfections such as one-atom vacancy, two-atom vacancy, and one carbon hexagonal cell vacancy are investigated. Their effect on vibrational behavior is explored for different defect positions, nanotube diameters, and support conditions. According to the obtained results, the fundamental frequency is decreased as the size of imperfection increases, and the percentage reduction in fundamental frequency due to the atomic vacancy defect is more affected for a single-clamped SWCNT than for a double-clamped one.

  4. A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems

    Science.gov (United States)

    Petrenko, Taras; Rauhut, Guntram

    2017-03-01

    Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.

  5. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  6. Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence.

    Science.gov (United States)

    Deng, Zhao-Peng; Kang, Wei; Huo, Li-Hua; Zhao, Hui; Gao, Shan

    2010-07-21

    The first example of rare-earth organic frameworks with 3-aminopyrazine-2-carboxylic acid (Hapca) was synthesized under hydrothermal conditions and characterized by elemental analysis, IR, PL, TG, powder and single-crystal X-ray diffraction. These ten complexes exhibit three different structure types with decreasing lanthanide radii: [La(apca)(3)](n) () for type I, {[Ln(apca)(ox)(H(2)O)(2)].H(2)O}(n) (Ln = Pr (2), Nd (3), ox = oxalate) for type II, and [Ln(2)(apca)(4)(OH)(2)(H(2)O)(2)](n) (Ln = Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Y (10)) for type III. The structure of type I consists of 1D "snowflake" chains along a-axis, which are further interconnected by hydrogen bonds to produce a 3D sra net topology containing infinite (-C-O-La-)(n) rod-shaped SBU. Type II has 2D Ln-apca-ox 4(4)-net, in which a planar udud water tetramers (H(2)O)(4) are formed by coordinated and free water molecules. Type III also comprises of 2D 4(4)-layer network constructed from Ln-apca-OH. The structure diversity is mainly caused by the variation of coordinated ligand and lanthanide contraction effect. Remarkably, the oxalate in type II was in situ synthesized from 3-aminopyrazine-2-carboxylic acid through an oxidation-hydrolysis reaction. The luminescent investigations reveal that complex exhibits strong blue emission and complex exhibits characteristic luminescence of Eu(3+).

  7. Crystal growth, structure, infrared spectroscopy, and luminescent properties of rare-earth gallium borates RGa3(BO3)4, R = Nd, Sm-Er, Y

    Science.gov (United States)

    Borovikova, Elena Yu.; Boldyrev, Kirill N.; Aksenov, Sergey M.; Dobretsova, Elena A.; Kurazhkovskaya, Victoria S.; Leonyuk, Nikolay I.; Savon, Alexander E.; Deyneko, Dina V.; Ksenofontov, Dmitry A.

    2015-11-01

    Crystals of the rare-earth gallium borates RGa3(BO3)4, where R = Nd, Sm-Er, or Y, were grown by the flux method. The crystal structures of RGa3(BO3)4 (R = Eu, Ho) were studied on the basis of single-crystal X-ray diffraction measurements. The hexagonal unit-cell parameters are a = 9.4657(1) Å, c = 7.4667(1) Å and a = 9.4394(2) Å, c = 7.4322(1) Å for EuGa3(BO3)4 and HoGa3(BO3)4, respectively, space group R32. Structure model was determined by "charge flipping" method and refined to R = 1.93% [EuGa3(BO3)4] and R = 1.89% [HoGa3(BO3)4] in anisotropic approximation. All grown gallium borates were investigated by infrared (IR) spectroscopy technique in a middle and far IR region. IR spectra of rare-earth gallium borates correspond to a pure rhombohedral (R32) polytype structure. Small inclusions of a monoclinic phase were detected only in Eu and Nd compounds. Luminescence of Eu and Ho gallium borates was studied at room temperature. The measured decay times for the most intensive emission lines of EuGa3(BO3)4 (∼614 nm) and HoGa3(BO3)4 (434 nm) are 940 μs and 140 μs, respectively. The scheme of crystal-field energy levels of Eu3+ in EuGa3(BO3)4 was built on the basis of the temperature-dependent optical transmission measurements combined with the luminescence data. The measured UV absorption edge for RGa3(BO3)4 is at about 300 nm.

  8. Report on design and technical standard planning of vibration controlling structure on the buildings, in the Tokai Reprocessing Facility, Power Reactor and Nuclear Fuel Development Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, Shuji; Shinohara, Takaharu; Yamazaki, Toshihiko; Nakayama, Kazuhiko [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Kondo, Toshinari; Hosoya, Hisashi

    1997-10-01

    The Tokai reprocessing facility buildings are constituted by a lower foundation, vibration controlling layers, and upper structure. At the vibration controlling layer, a laminated rubber aiming support of the building load and extension of the eigenfrequency and a damper aiming absorption of earthquake energy are provided. Of course, the facility buildings are directly supported at the arenaceous shale (Taga Layer) of the Miocene in the Neogene confirmed to the stablest ground, as well the buildings with high vibration resistant importance in Japan. This report shows that when the vibration controlling structure is adopted for the reprocessing facility buildings where such high vibration resistance is required, reduction of input acceleration for equipments and pipings can be achieved and the earthquake resistant safety can also be maintained with sufficient tolerance and reliability. (G.K.)

  9. Abstract: Stoichiometry, Vibrational Modes and Structures of Molten Nb2O5-K2S2O7 Mixtures

    DEFF Research Database (Denmark)

    Boghosian, S.; Borup, F.; Berg, Rolf W.

    1998-01-01

    High temperature Raman spectroscopy is used tostudy the vibrational modes and structures of the Nb205-K2S207(0 stoichiometry are performed...... in order to characterise the complex(es) formed. The determination of stoichiometry is done following a general procedure which is based on a simple formalism correlating measurements of relative Raman band intensities with the stoichiometry of solutes in molten salt solvents....

  10. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  11. Experimentally validated structural vibration frequencies’ prediction from frictional temperature signatures using numerical simulation: A case of laced cantilever beam-like structures

    Directory of Open Access Journals (Sweden)

    Stephen M Talai

    2016-12-01

    Full Text Available This article pertains to the prediction of structural vibration frequencies from frictional temperature evolution through numerical simulation. To achieve this, a finite element analysis was carried on AISI 304 steel cantilever beam-like structures coupled with a lacing wire using the commercial software ABAQUS/CAE. The coupled temperature–displacement transient analysis simulated the frictional thermal generation. Furthermore, an experimental analysis was carried out with infrared cameras capturing the interfacial thermal images while the beams were subjected to forced excitation, thus validating the finite element analysis results. The analysed vibration frequencies using a MATLAB fast Fourier transform algorithm confirmed the validity of its prediction from the frictional temperature time domain waveform. This finding has a great significance to the mechanical and aerospace engineering communities for the effective structural health monitoring of dynamic structures online using infrared thermography, thus reducing the downtime and maintenance cost, leading to increased efficiency.

  12. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    Science.gov (United States)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  13. Structure and luminescence properties of single crystal scintillator (Gd0.9Lu0.1)2Si2O7:0.1%Ce

    Science.gov (United States)

    Feng, He; Xu, WuSheng; Zhang, Zhijun; Xu, Zhan; Wan, Huanhuan; Zhao, Jingtai

    2017-12-01

    A novel mixed crystal scintillator of (Gd0.9Lu0.1)2Si2O7:0.1%Ce (Lu-GPS:Ce) was grown by floating zone method. The structure of as grown sample was determined through XRD to be triclinic. Its photoluminescence (PL) and scintillation properties, were evaluated in this paper. The PL properties were studied through Vacuum ultra-violet (VUV) excitation, emission and PL decay results. Scintillation properties were investigated through X-ray excited luminescence (XEL), scintillation decay curves and pulse spectrum under γ-ray excitation. The absolute light yield of as grown Lu-GPS:Ce sample is 16,600 ph/MeV. It is found that non-radiative energy transfer from Gd3+ to Ce3+ occurs, leading slow component in the PL and scintillation process.

  14. Copper(I) halide complexes of 2,2,5,5-tetramethyl-imidazolidine-4-thione: Synthesis, structures, luminescence, thermal stability and interaction with DNA.

    Science.gov (United States)

    Anastasiadou, D; Psomas, G; Lalia-Kantouri, M; Hatzidimitriou, A G; Aslanidis, P

    2016-11-01

    Five neutral mononuclear copper(I) halide complexes containing 2,2,5,5-tetramethylimidazolidine-4-thione (tmimdtH) and triphenylphosphane (PPh3) or tri-o-tolylphosphane (totp) have been prepared and structurally characterized by X-ray single-crystal analysis. The complexes containing PPh3 adopt the usual distorted tetrahedral geometry, while the presence of the bulkier totp forces the formation of three-coordinated trigonal planar species. The interaction of the compounds with calf-thymus DNA was monitored directly via UV-vis spectroscopy, DNA-viscosity measurements and indirectly via its competition with ethidium bromide for DNA studied by fluorescence emission spectroscopy. Intercalation was revealed as the most possible mode of binding. Furthermore, luminescent properties and thermal stabilities of the complexes were investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy.

    Science.gov (United States)

    He, Fei; Feng, Lili; Yang, Piaoping; Liu, Bin; Gai, Shili; Yang, Guixin; Dai, Yunlu; Lin, Jun

    2016-10-01

    Upon near-infrared (NIR) light irradiation, the Nd(3+) doping derived down-conversion luminescence (DCL) in NIR region and thermal effect are extremely fascinating in bio-imaging and photothermal therapy (PTT) fields. However, the concentration quenching induced opposite changing trend of the two properties makes it difficult to get desired DCL and thermal effect together in one single particle. In this study, we firstly designed a unique NaGdF4:0.3%Nd@NaGdF4@NaGdF4:10%Yb/1%Er@NaGdF4:10%Yb @NaNdF4:10%Yb multiple core-shell structure. Here the inert two layers (NaGdF4 and NaGdF4:10%Yb) can substantially eliminate the quenching effects, thus achieving markedly enhanced NIR-to-NIR DCL, NIR-to-Vis up-conversion luminescence (UCL), and thermal effect under a single 808 nm light excitation simultaneously. The UCL excites the attached photosensitive drug (Au25 nanoclusters) to generate singlet oxygen ((1)O2) for photodynamic therapy (PDT), while DCL with strong NIR emission serves as probe for sensitive deep-tissue imaging. The in vitro and in vivo experimental results demonstrate the excellent cancer inhibition efficacy of this platform due to a synergistic effect arising from the combined PTT and PDT. Furthermore, multimodal imaging including fluorescence imaging (FI), photothermal imaging (PTI), and photoacoustic imaging (PAI) has been obtained, which is used to monitor the drug delivery process, internal structure of tumor and photo-therapeutic process, thus achieving the target of imaging-guided cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis, crystal structures, luminescence properties of two metal coordination polymers derived from 5-substituted isophthalate and flexible bis (triazole) ligands

    Science.gov (United States)

    Ming, Chun-lun; Wang, Li-na; Hecke, Kristof Van; Cui, Guang-hua

    2014-08-01

    Two new metal complexes, [Ni(btx)(nip)(H2O)]n (1), {[Cd(btx)(mip)(H2O)]·H2O}n (2) (btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, H2nip = 5-nitroisophthalic acid, H2mip = 5-methyisophthalic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA and elemental analysis. Complex 1 features a 3D metal-organic framework with three-fold interpenetrating CdSO4-type topology. Complex 2 exhibits a 2D network with square grid units, which is further extended into a rare 3,5T1 three-dimensional supramolecular network via three modes of classical Osbnd H⋯O hydrogen bonds. In addition, luminescence properties of 1 and 2 have also been investigated in the solid state.

  17. Comparisons of the Structure of Water at Neat Oil/Water and Air/Water Interfaces as Determined by Vibrational Sum Frequency Generation

    National Research Council Canada - National Science Library

    Gragson, D

    1997-01-01

    We have employed vibrational sum frequency generation (VSFG) to investigate the structure of water at neat oil/water and air/water interfaces through the OH stretching modes of the interfacial water molecules...

  18. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  19. Anion-dependent formation of four coordination polymers based on N,N‧-di(3-pyridine) oxamide (DPOM): Crystal structures and luminescence

    Science.gov (United States)

    Deng, Ji-Hua; Wen, Ya-Qiong; Luo, Xu-Zhong; Zhong, Di-Chang

    2017-09-01

    Presented in this article are the anion-tuning formation, crystal structures and luminescent properties of four coordination polymers of N,N‧-di(3-pyridine) oxamide (DPOM), including two one-dimensional (1D) chain/ladder polymers, [Ni(DPOM)(H2O)4]SO4·2H2O (1) and [Cd4(DPOM)6(NO3)8] (2), as well as two 3D coordination polymers, [Zn2(DPOM)(H2O)4(SO4)2] (3) and [Cd2(DPOM)(H2O)4(SO4)2] (4). The results of single crystal X-ray diffraction analyses indicate that in these coordination polymers, DPOM ligand serves as a bridge, connecting metal ions by both terminal pyridine N atoms. 1 is a 1D chain structure formed by the bridge of DPOM. 2 is a 1D ladder-like structure featuring Cd(NO3)2 structural units bridged by DPOM ligands. Both 3 and 4 are 3D pillar-layer structures with the 2D inorganic layer ZnSO4/CdSO4 pillared by DPOM ligands. The results of photoluminescent measurements illustrate that upon excitation, 2-4 can emit fluorescence in 408, 416, and 422 nm in the solid state, respectively.

  20. Structural, quantum chemical, vibrational and thermal studies of a hydrogen bonded zwitterionic co-crystal (nicotinic acid: pyrogallol)

    Science.gov (United States)

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.

    2017-02-01

    In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.

  1. Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsukasa, Takashi [Chalk River Labs., Ontario (Canada); Matsuyanagi, Kenichi [Kyoto Univ. (Japan); Mizutori, Shoujirou [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.

  2. Vibrational spectroscopic studies on fibrinogen adsorption at polystyrene/protein solution interfaces: hydrophobic side chain and secondary structure changes.

    Science.gov (United States)

    Wang, Jie; Chen, Xiaoyun; Clarke, Matthew L; Chen, Zhan

    2006-03-16

    Structural changes of fibrinogen after adsorption to polystyrene (PS) were examined at the PS/protein solution interface in situ using sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Different behaviors of hydrophobic side chains and secondary structures of adsorbed fibrinogen molecules have been observed. Our results indicate that upon adsorption, the hydrophobic PS surface induces fast structural changes of fibrinogen molecules by aligning some hydrophobic side chains in fibrinogen so that they face to the surface. Such structural changes of fibrinogen hydrophobic side chains are local changes and do not immediately induce significant changes of the protein secondary structures. Our research also shows that the interactions between adsorbed fibrinogen and the PS surface can induce significant changes of protein secondary structures or global conformations which occur on a much longer time scale.

  3. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  4. Structure, Vibrational Spectra, and Unimolecular Dissociation of Gaseous 1-Fluoro-1-phenethyl Cations

    NARCIS (Netherlands)

    Oomens, J.; Kraka, E.; Nguyen, M. K.; Morton, T. H.

    2008-01-01

    The multiple CF bond character of PhCFMe+ ions has been examined by means of theory, vibrational spectroscopy of the gaseous ions, and unimolecular decomposition chemistry. Atoms in Molecules analysis of DFF wave functions gives a CF bond order of n = 1.25 (as compared with n = 1.38 for Me2CF+,

  5. Advances in nonlinear vibration analysis of structures. Part-I. Beams

    Indian Academy of Sciences (India)

    Unknown

    Sathyamoorthy (1973) developed modal equations for the nonlinear vibrations of beams, plates, rings and shells ... three symmetric matrices – linear matrix K, nonlinear matrices N1 and N2, and also expressed equilibrium ... system level and the use of different connotations for ω, adopted by many earlier formulations (Mei ...

  6. Acoustic determination of cracks in welded joints. [by resonant structural vibration measurements

    Science.gov (United States)

    Baltanoiu, M.; Criciotoiu, E.

    1974-01-01

    The acoustic analysis method permits detection of any cracks that might take place and their manner of propagation. The study deals with the cracks produced in experiments to determine the welding technology for a welded gray cast iron workpiece by using piezoelectric transducers to determine vibration acceleration.

  7. Fatigue damage from random vibration pulse process of tubular structural elements subject to wind

    DEFF Research Database (Denmark)

    Christensen, Claus F.; Ditlevsen, Ove Dalager

    1997-01-01

    In a wide range of the Reynolds number an elastically suspended circular cylinder surrounded by a homogeneous wind velocity field will generate vortex shedding of a frequency that by and large is proportional to the far field wind velocity. However, if the cylinder is free to vibrate, resonance w...

  8. Molecular structure, vibrational spectral analysis, NBO, HOMO-LUMO and conformational studies of ninhydrin

    Science.gov (United States)

    Arivazhagan, M.; Anitha Rexalin, D.

    2013-03-01

    The FT-IR and FT-Raman vibrational spectra of ninhydrin have been recorded in the range 4000-400 cm-1and 3600-50 cm-1, respectively. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state are calculated using ab initio HF and density functional B3LYP methods with 6-311++G(d,p) basis set combination. In order to find the most optimized geometry, the energy calculations are carried out for various possible conformers. Keto and enol forms of ninhydrin are also studied. The condensed summary of the principal NBOs shows the occupancy, orbital energy and the qualitative pattern of delocalization interactions of ninhydrin. The calculated HOMO-LUMO energies reveal that charge transfer occurs within the molecule. The predicted first hyperpolarizability also shows that the ninhydrin molecule have good optical quality and nonlinear optical (NLO) behavior. With the help of specific scaling procedures, the observed vibrational wave numbers in FT-IR and FT-Raman spectra are analyzed and assigned to different normal modes of the molecule.

  9. Fluid-Structure Interaction in Combustion System of a Gas Turbine—Effect of Liner Vibrations

    NARCIS (Netherlands)

    Pozarlik, Artur Krzysztof; Kok, Jacobus B.W.

    2014-01-01

    Prediction of mutual interaction between flow, combustion, acoustic, and vibration phenomena occurring in a combustion chamber is crucial for the reliable operation of any combustion device. In this paper, this is studied with application to the combustion chamber of a gas turbine. Very dangerous

  10. Numerical Study of Structural Vibration Induced by Combustion Noise - One Way Interaction

    NARCIS (Netherlands)

    Pozarlik, Artur Krzysztof; Kok, Jacobus B.W.

    2007-01-01

    The turbulent flame in the lean combustion regime in a gas turbine combustor generates significant thermo-acoustic noise. The thermo-acoustic noise induces liner vibrations that may lead to fatigue damage of the combustion system. This phenomenon is investigated in the project FLUISTCOM using both

  11. 2-Chloro- and 2-bromo-3-pyridinecarboxaldehydes: structures, rotamers, fermi resonance and vibration modes.

    Science.gov (United States)

    Yenagi, Jayashree; Shettar, Anita; Tonannavar, J

    2011-09-01

    FT-Infrared (4000-400 cm(-1)) and NIR-FT-Raman (4000-50 cm(-1)) spectral measurements have been made for 2-chloro- and 2-bromo-3-pyridinecarboxaldehydes. A DFT vibration analysis at B3LYP/6-311++G (d,p) level, valence force-fields and vibrational mode calculations have been performed. Aided by very good agreement between observed and computed vibration spectra, a complete assignment of fundamental vibration modes to the observed absorptions and Raman bands has been proposed. Orientations of the aldehydic group have produced two oblate asymmetric rotamers for each molecule, ON-trans and ON-cis: the ON-trans rotamer being more stable than cis by 3.42 kcal mol(-1) for 2-chloro-3-pyridinecarboxaldehyde and 3.68 kcal mol(-1) for 2-bromo-3-pyridinecarboxaldehyde. High potential energy barrier ca 14 kcal/mol, induced by steric hindrance, restricts rotamers' population to ON-trans only. It is observed that, in the presence of bromine, C-H stretching modes are pronounced; a missing characteristic ring mode in chlorine's presence shows at 1557 cm(-1); the characteristic ring mode at 1051 cm(-1) is diminished; a mixed mode near 707 cm(-1) is enhanced. Further, an observed doublet near 1696-1666 cm(-1) in both IR and Raman spectra is explained on the basis of Fermi resonance between aldehydic carbonyl stretching at 1696 cm(-1) and a combination mode of ring stretch near 1059 cm(-1) and deformation vibration, 625 cm(-1). A strong Raman aldehydic torsional mode at 62 cm(-1) is interpreted to correspond to the dominant ON-trans over cis rotamers population. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Vibrational study, first hyperpolarizability and HOMO-LUMO analyses on the structure of 2-hydroxy-6-nitro toluene

    Science.gov (United States)

    Arivazhagan, M.; Thilagavathi, G.

    2012-06-01

    Vibrational spectral measurements, namely, FT-infrared (4000-400 cm-1) and FT-Raman (3500-50 cm-1) spectra have been made for 2-hydroxy-6-nitrotoluene (HNT) and assigned to different normal modes of the molecule. Quantum chemical calculations of energies, geometrical structure, harmonic vibrational frequencies intensities and vibrational wavenumbers of HNT were carried out by ab initio HF and density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. The differences between the observed and scaled wave number values of most of the fundamentals are very small. The values of the total dipole moment (μ) and first hyperpolarizability (β) of the investigated molecule were computed by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set quantum mechanical calculations. The calculated results also show that the HNT molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of HNT is also reported based on total energy distribution (TED). The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The results of the calculations were applied to simulated infrared and Raman spectra of the title compound which showed excellent agreement with the observed spectra.

  13. Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol

    Science.gov (United States)

    Jha, Omkant; Yadav, T. K.; Yadav, R. A.

    2018-01-01

    Structural and vibrational studies for the most stable conformer of dopamine {4-(2-Aminoethyl) benzene-1, 2-diol} have been carried out at the DFT/B3LYP/6-311 ++G** level using the Gaussian 09 software. The IR and Raman spectra have been recorded and analyzed in light of the computed vibrational parameters using the DFT and the PEDs computed with the help of the GAR2PED software. Some of the fundamentals have considerably changed frequencies in going from benzene to dopamine. Except the rocking and wagging modes of the NH2 group the other four modes are pure group modes. The rocking and wagging modes of the NH2 group show mixing with the other modes. The two Osbnd H stretching vibrations are highly localized modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO study suggests the existence of charge transfer within the molecule and the energy gap supports the pharmacological active property of the dopamine molecule. The NBO analysis has been carried out to understand the proper and improper hydrogen bonding.

  14. Study of molecular structure, anharmonic vibrational dynamic and electronic properties of sulindac using spectroscopic techniques integrated with quantum chemical calculations

    Science.gov (United States)

    Faizan, Mohd; Alam, Mohammad Jane; Ahmad, Shabbir

    2017-11-01

    In the present investigation, spectroscopic techniques (FTIR, FT-Raman and UV-Vis) and quantum chemical calculations are employed for exploring vibrational and electronic spectra of sulindac compound. The calculations are performed on most stable conformer of the sulindac molecule using density functional theory (DFT). Anharmonic corrections are made to frequencies using vibrational second-order perturbation theory (VPT2). The effect of intermolecular interactions on the vibrational dynamics has been analyzed using dimeric structure of sulindac molecule. Hirshfeld surface analysis and 2D fingerprint plots are utilized to investigate the nature of interaction present in the crystal system. To account for electronic spectra in different solvents, an integral equation formalism of polarizable continuum model (IEFPCM) at TD-DFT/B3LYP/6-31G(d,p) level of theory has been employed. An excellent agreement between the theoretical and experimental data over the entire spectral region is observed. In addition, natural bond orbital (NBO) analysis, frontier molecular orbitals, nonlinear optical properties (NLO) and molecular electrostatic potential (MEP) analysis are also reported.

  15. Vapor-phase Raman spectra, theoretical calculations, and the vibrational and structural properties of cis- and trans-stilbene.

    Science.gov (United States)

    Egawa, Toru; Shinashi, Kiyoaki; Ueda, Toyotoshi; Ocola, Esther J; Chiang, Whe-Yi; Laane, Jaan

    2014-02-13

    The vapor-phase Raman spectra of cis- and trans-stilbene have been collected at high temperatures and assigned. The low-frequency skeletal modes were of special interest. The molecular structures and vibrational frequencies of both molecules have also been obtained using MP2/cc-pVTZ and B3LYP/cc-pVTZ calculations, respectively. The two-dimensional potential map for the internal rotations around the two Cphenyl-C(═C) bonds of cis-stilbene was generated by using a series of B3LYP/cc-pVTZ calculations. It was confirmed that the molecule has only one conformer with C2 symmetry. The energy level calculation with a two-dimensional Hamiltonian was carried out, and the probability distribution for each level was obtained. The calculation revealed that the "gearing" internal rotation in which the two phenyl rings rotate with opposite directions has a vibrational frequency of 26 cm(-1), whereas that of the "antigearing" internal rotation in which the phenyl rings rotate with the same direction is about 52 cm(-1). In the low vibrational energy region the probability distribution for the gearing internal rotation is similar to that of a one-dimensional harmonic oscillator, and in the higher region the motion behaves like that of a free rotor.

  16. Application of an Instrumental and Computational Approach for Improving the Vibration Behavior of Structural Panels Using a Lightweight Multilayer Composite

    Directory of Open Access Journals (Sweden)

    Alberto Sánchez

    2014-03-01

    Full Text Available This work presents a hybrid (experimental-computational application for improving the vibration behavior of structural components using a lightweight multilayer composite. The vibration behavior of a flat steel plate has been improved by the gluing of a lightweight composite formed by a core of polyurethane foam and two paper mats placed on its faces. This composite enables the natural frequencies to be increased and the modal density of the plate to be reduced, moving about the natural frequencies of the plate out of excitation range, thereby improving the vibration behavior of the plate. A specific experimental model for measuring the Operating Deflection Shape (ODS has been developed, which enables an evaluation of the goodness of the natural frequencies obtained with the computational model simulated by the finite element method (FEM. The model of composite + flat steel plate determined by FEM was used to conduct parametric study, and the most influential factors for 1st, 2nd and 3rd mode were identified using a multifactor analysis of variance (Multifactor-ANOVA. The presented results can be easily particularized for other cases, as it may be used in cycles of continuous improvement as well as in the product development at the material, piece, and complete-system levels.

  17. Structural stability, vibrational, and bonding properties of potassium 1, 1'-dinitroamino-5, 5'-bistetrazolate: An emerging green primary explosive

    Science.gov (United States)

    Yedukondalu, N.; Vaitheeswaran, G.

    2015-08-01

    Potassium 1,1'-dinitroamino-5,5'-bistetrazolate (K2DNABT) is a nitrogen rich (50.3% by weight, K2C2N12O4) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K2DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (btoxic lead azide and harder than the most sensitive cyanuric triazide. A complete assignment of all the vibrational modes has been made and compared with the available experimental results. The calculated zone center IR and Raman frequencies show a blue-shift which leads to a hardening of the lattice upon compression. In addition, we have also calculated the electronic structure and absorption spectra using recently developed Tran Blaha-modified Becke Johnson potential. It is found that K2DNABT is a direct band gap insulator with a band gap of 3.87 eV and the top of the valence band is mainly dominated by 2p-states of oxygen and nitrogen atoms. K2DNABT exhibits mixed ionic (between potassium and tetrazolate ions) and covalent character within tetrazolate molecule. The presence of ionic bonding suggests that the investigated compound is relatively stable and insensitive than covalent primaries. From the calculated absorption spectra, the material is found to decompose under ultra-violet light irradiation.

  18. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    Science.gov (United States)

    Feng, Xun; Liu, Lang; Wang, Li-Ya; Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong; Ng, Seik-Weng

    2013-10-01

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln2(Hdpp)2(dpp)2]nLn=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H2dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1-5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln2(Hdpp)2]4+ basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions.

  19. Growth Mechanism and Luminescent Properties of Amorphous SiOx Structures via Phase Equilibrium in Binary System.

    Science.gov (United States)

    Jin, Changhyun; Hwang, Seon Jae; Cho, Myeong Soo; Choi, Sun-Woo; Na, Han Gil; Park, Suyoung; Park, Sungsik; Noh, Youngwook; Jeong, Hakyung; Lee, Dongjin

    2016-08-01

    Balloon whisk-like and flower-like SiOx tubes with well-dispersed Sn and joining countless SiOx loops together induce intense luminescence characteristics in substrate materials. Our synthetic technique called "direct substrate growth" is based on pre-contamination of the surroundings without the intended catalyst and source powders. The kind of supporting material and pressure of the inlet gases determine a series of differently functionalized tube loops, i.e., the number, length, thickness, and cylindrical profile. SiOx tube loops commonly twist and split to best suppress the total energy. Photoluminescence and confocal laser measurements based on quantum confinement effect of the embedded Sn nanoparticles in the SiOx tube found substantially intense emissions throughout the visible range. These new concepts related to the synthetic approach, pre-pollution, transitional morphology, and permeable nanoparticles should facilitate progress in nanoscience with regard to tuning the dimensions of micro-/nanostructure preparations and the functionalization of customized applications.

  20. Synthesis and characterization of structural and luminescence properties of blue — green BaAlxOy:Eu2+ phosphor by solution — combustion method

    Science.gov (United States)

    Dejene, Francis; Kebede, Mesfin

    2012-08-01

    Europium-doped barium aluminate (BaAlxOy:Eu2+) phosphors were obtained at low temperatures (500°C) using the solution — combustion of corresponding metal nitrate-urea solution mixtures. The particle size and morphology and the structural and luminescent properties of the synthesized phosphors were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Electron diffraction spectroscopy (EDS) and photoluminescence (PL). It was found that the change in Ba: Al molar ratios showed greatly influence not only on the particle size and morphology, but also on their PL spectra and crystalline structure. The structure of BaAlxOy nanophosphors changes from a hexagonal Ba2Al10O17 phase for samples with 6:100 molar ratios to a hexagonal BaAl2O4 one with an increase in Ba content. The peak of the emission band occurs at a longer wavelength (around 615 nm) with a decrease in Ba concentration but displays a broad blue-green emission band composed from two emissions with the maximum at 495 and 530nm coming from Eu2+ in two sites for increasing Ba content. The blue-green emission is probably due to the influence of 5d electron states of Eu2+ in the crystal field because of atomic size variation causing crystal defects while the red emission is due to f - f transitions. These findings clearly demonstrate the possibility of fine tuning the colour emission.