WorldWideScience

Sample records for vibrational wave packets

  1. Time-series analysis of vibrational nuclear wave packet dynamics

    Science.gov (United States)

    Thumm, Uwe; Niederhausen, Thomas; Feuerstein, Bernold

    2008-10-01

    We discuss the extent to which measured time-dependent fragment kinetic energy release (KER) spectra and calculated nuclear probability densities can reveal 1) the transition frequencies between stationary vibrational states, 2) the nodal structure of stationary vibrational states, 3) the ground-state adiabatic electronic potential curve of the molecular ion, and 4) the progression of decoherence induced by random interactions with the environment. We illustrate our discussion with numerical simulations for the time-dependent nuclear motion of vibrational wave packets in the D2^+ molecular ion caused by the ionization of its neutral D2 parent molecule with an intense pump laser pulse. Based on a harmonic time-series analysis, we suggest a general scheme for the full reconstruction, up to an overall phase factor, of the initial wave packets based on measured KER spectra, cf., Phys. Rev. A 77, 063401 (2008).

  2. Time-series analysis of vibrational nuclear wave-packet dynamics in D2+

    Science.gov (United States)

    Thumm, Uwe; Niederhausen, Thomas; Feuerstein, Bernold

    2008-06-01

    We discuss the extent to which measured time-dependent fragment kinetic energy release (KER) spectra and calculated nuclear probability densities can reveal (1) the transition frequencies between stationary vibrational states, (2) the nodal structure of stationary vibrational states, (3) the ground-state adiabatic electronic potential curve of the molecular ion, and (4) the progression of decoherence induced by random interactions with the environment. We illustrate our discussion with numerical simulations for the time-dependent nuclear motion of vibrational wave packets in the D2+ molecular ion caused by the ionization of its neutral D2 parent molecule with an intense pump laser pulse. Based on a harmonic time-series analysis, we suggest a general scheme for the full reconstruction, up to an overall phase factor, of the initial wave packets based on measured KER spectra. We apply this scheme in a numerical simulation for vibrational wave packets in D2+ molecular ions and show how this reconstruction allows the clear distinction between commonly assumed stationary vibrational state distributions of the molecular ion following the ionization of D2 .

  3. Wave packet studies of the vibrational predissociation of three and four-atom van der Waals complexes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K.

    1994-03-01

    Vibrational predissociation of XI{sub 2} and X{sub 2}I{sub 2} van der Waals complexes, with X = He and Ne, is studied with wave packets. Three-dimensional calculations are carried out on the three-atom systems. Suitable X{center_dot}{center_dot}I potential interactions are determined, and product distributions are predicted. Reduced dimension models of X{sub 2}I{sub 2}(v{prime}) {yields} 2X + I{sub 2}(v < v{prime}) are investigated. Comparison is made with available experimental results. Mechanistic issues, including the role of intramolecular vibrational relaxation resonances, are addressed.

  4. Multimode Vibrational Wave Packet Dynamics of Strong-Field-Ionized Methyl Iodide Probed by Femtosecond XUV Absorption Spectroscopy

    Science.gov (United States)

    Loh, Zhi-Heng; Wei, Zhengrong; Li, Jialin

    2017-04-01

    Studies of vibrational wave packets (VWPs) created on the neutral electronic ground-state by intense laser fields have identified R -selective depletion (RSD) as the dominant mechanism for their generation. Another mechanism that is proposed to give rise to VWPs, bond softening (BS), remains hitherto unobserved. Here, we employ femtosecond XUV absorption spectroscopy to investigate the VWP dynamics of CH3 I induced by intense laser fields. Analysis of the first-moment time traces computed about the neutral depletion region reveals both the fundamental and the hot bands of the C-I stretch mode. The initial oscillation phases of these vibrations distinguishes the contributions of RSD and BS to the generation of the VWP in the neutral species. The relative oscillation amplitudes that are associated with the two phases suggest that the C-I VWP is generated predominantly by BS. In the case of the CH3 I+ X 2E3 / 2 ion state, VWP motion along the C-I stretch mode is dominant over the CH3 umbrella mode. Moreover, the amplitudes of the VWPs are only 1 pm (C-I distance) and 1° (H-C-I bond angle). The ability to resolve such VWP dynamics points to the exquisite sensitivity of femtosecond XUV absorption spectroscopy to structural changes. This work is supported by a NTU start-up Grant, the A*Star SERC PSF (122-PSF-0011), the Ministry of Education AcRF (MOE2014-T2-2-052), and the award of a Nanyang Assistant Professorship to Z.-H.L.

  5. Vibrational Spectrum of an Excited State and Huang-Rhys Factors by Coherent Wave Packets in Time-Resolved Fluorescence Spectroscopy.

    Science.gov (United States)

    Lee, Gyeongjin; Kim, Junwoo; Kim, So Young; Kim, Dong Eon; Joo, Taiha

    2017-03-17

    Coherent nuclear wave packet motions in an electronic excited state of a molecule are measured directly by time-resolved spontaneous fluorescence spectroscopy with an unprecedented time resolution by using two-photon absorption excitation and fluorescence upconversion by noncollinear sum frequency generation. With an estimated time resolution of approximately 25 fs, wave packet motions of vibrational modes up to 1600 cm(-1) are recorded for coumarin 153 in ethanol. Two-color transient absorption at 13 fs time resolution are measured to confirm the result. Vibrational displacements between the ground and excited states and Huang-Rhys factors (HRFs) are calculated by quantum mechanical methods and are compared with the experimental results. HRFs calculated by density functional theory (DFT) and time-dependent DFT reproduce the experiment adequately. This fluorescence-based method provides a unique and direct way to obtain the vibrational spectrum of a molecule in an electronic excited state and the HRFs, as well as the dynamics of excited states, and it might provide information on the structure of an excited state through the HRFs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multifractality of quantum wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Martin, John [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liege, Bat. B15, B - 4000 Liege (Belgium); Garcia-Mata, Ignacio [Instituto de Investigaciones Fisicas de Mar del Plata, CONICET-UNMdP, Funes 3350, B7602AYL Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas, Buenos Aires (Argentina); Giraud, Olivier [LPTMS, CNRS and Universite Paris-Sud, UMR 8626, Bat. 100, 91405 Orsay (France); Georgeot, Bertrand [Universite de Toulouse, UPS, Laboratoire de Physique Theorique (IRSAMC), F-31062 Toulouse (France); CNRS, LPT (IRSAMC), F-31062 Toulouse (France)

    2013-07-01

    We study the multifractality of individual wave packets in a periodically kicked system through a combination of numerical and analytical works. We consider a version of the mathematical Ruijsenaars-Schneider model and reinterpreted it physically in order to describe the spreading with time of quantum wave packets in a system where multifractality can be tuned by varying a parameter. We compare different methods to measure the multifractality of wave packets and identify the best one. We find the multifractality to decrease with time until it reaches an asymptotic limit, which is different from the multifractality of eigenvectors but related to it, as is the rate of the decrease. Our results could guide the study of experimental situations where multifractality is present in quantum systems.

  7. Quantum-Phase Resolved Mapping of Ground-State Vibrational D2 Wave Packets via Selective Depletion in Intense Laser Pulses

    Science.gov (United States)

    Ergler, Th.; Feuerstein, B.; Rudenko, A.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2006-09-01

    Applying 7 fs pump-probe pulses (780nm, 4×1014W/cm2) we observe electronic ground-state vibrational wave packets in neutral D2 with a period of T=11.101(70)fs by following the internuclear separation (R-)dependent ionization with a sensitivity of Δ⟨R⟩≤0.02Å. The absolute phase of the wave packet’s motion provides evidence for R-dependent depletion of the ground state by nonlinear ionization, to be the dominant preparation mechanism. A phase shift of about π found between pure ionization (D2+) and dissociation (D++D) channels opens a pathway of quantum control.

  8. Tracking an electronic wave packet in the vicinity of a conical intersection

    Science.gov (United States)

    Qi, Da-Long; Duan, Hong-Guang; Sun, Zhen-Rong; Miller, R. J. Dwayne; Thorwart, Michael

    2017-08-01

    This work treats the impact of vibrational coherence on the quantum efficiency of a dissipative electronic wave packet in the vicinity of a conical intersection by monitoring the time-dependent wave packet projection onto the tuning and the coupling mode. The vibrational coherence of the wave packet is tuned by varying the strength of the dissipative vibrational coupling of the tuning and the coupling modes to their thermal baths. We observe that the most coherent wave packet yields a quantum efficiency of 93%, but with a large transfer time constant. The quantum yield is dramatically decreased to 50% for a strongly damped incoherent wave packet, but the associated transfer time of the strongly localized wave packet is short. In addition, we find for the strongly damped wave packet that the transfer occurs via tunneling of the wave packet between the potential energy surfaces before the seam of the conical intersection is reached and a direct passage takes over. Our results provide direct evidence that vibrational coherence of the electronic wave packet is a decisive factor which determines the dynamical behavior of a wave packet in the vicinity of the conical intersection.

  9. Wave packet systems on local fields

    Science.gov (United States)

    Shah, Firdous A.; Ahmad, Owais

    2017-10-01

    In this paper, we introduce the notion of wave packet systems on local fields of positive characteristic and derive some characterizations of these systems by means of two basic equations in the Fourier domain. More precisely, we establish a complete characterization of orthogonal wave packet systems in L2(K) which include the corresponding results of wavelet analysis and Gabor theory as the special cases. We shall also provide a sufficient condition of the completeness of wave packet systems on local fields of positive characteristic subject to some mild conditions. The paper concludes with the necessary and sufficient conditions for the wave packet systems to be wave packet Parseval frames for L2(K) .

  10. On the theory of wave packets

    Science.gov (United States)

    Naumov, D. V.

    2013-12-01

    In this paper we discuss some aspects of the theory of wave packets. We consider a popular noncovariant Gaussian model used in various applications and show that it predicts too slow a longitudinal dispersion rate for relativistic particles. We revise this approach by considering a covariant model of Gaussian wave packets, and examine our results by inspecting a wave packet of arbitrary form. A general formula for the time dependence of the dispersion of a wave packet of arbitrary form is found. Finally, we give a transparent interpretation of the disappearance of the wave function over time due to the dispersion—a feature often considered undesirable, but which is unavoidable for wave packets. We find, starting from simple examples, proceeding with their generalizations and finally by considering the continuity equation, that the integral over time of both the flux and probability densities are asymptotically proportional to the factor 1/| x|2 in the rest frame of the wave packet, just as in the case of an ensemble of classical particles.

  11. Dispersionless wave packets in Dirac materials

    Energy Technology Data Exchange (ETDEWEB)

    Jakubský, Vít, E-mail: jakub@ujf.cas.cz [Department of Theoretical Physics, Nuclear Physics Institute, 25068 Řež (Czech Republic); Tušek, Matěj, E-mail: tusekmat@fjfi.cvut.cz [Department of Mathematics, Czech Technical University in Prague, Trojanova 13, 120 00 Prague (Czech Republic)

    2017-03-15

    We show that a wide class of quantum systems with translational invariance can host dispersionless, soliton-like, wave packets. We focus on the setting where the effective, two-dimensional Hamiltonian acquires the form of the Dirac operator. The proposed framework for construction of the dispersionless wave packets is illustrated on silicene-like systems with topologically nontrivial effective mass. Our analytical predictions are accompanied by a numerical analysis and possible experimental realizations are discussed.

  12. Segregation of helicity in inertial wave packets

    Science.gov (United States)

    Ranjan, A.

    2017-03-01

    Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.

  13. Visualizing picometric quantum ripples of ultrafast wave-packet interference.

    Science.gov (United States)

    Katsuki, Hiroyuki; Chiba, Hisashi; Girard, Bertrand; Meier, Christoph; Ohmori, Kenji

    2006-03-17

    Interference fringes in vibrating molecules are a signature of quantum mechanics, but are often so short-lived and closely spaced that they elude visualization. We have experimentally visualized dynamical quantum interferences, which appear and disappear in less than 100 femtoseconds in the iodine molecule synchronously with the periodic crossing of two counterpropagating nuclear wave packets. The obtained images have picometer and femtosecond spatiotemporal resolution, representing a detailed picture of the quantum interference.

  14. On the localization of Rydberg wave packets

    Science.gov (United States)

    Chatterjee, Supriya; Saha, Aparna; Talukdar, Benoy

    2013-11-01

    The Husimi distribution function is used to study the phase-space localization of Rydberg wave packets produced in a quasi one-dimensional hydrogen atom by the impact of half-cycle pulses (HCPs). The wave packet in a single-kicked atom exhibits transient phase-space localization. A weak second time-delayed HCP is found to extend the time of localization provided it is applied when the wave packet is near the inner turning point of the classical electron trajectory and momentum-transfer vectors of the first and the second kicks have the same sign. Alternatively, application of a similar second HCP increases the atomic ionization probability if the momentum-transfer vectors of the two kicks have opposite directions.

  15. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  16. Molecular state reconstruction by nonlinear wave packet interferometry.

    Science.gov (United States)

    Humble, Travis S; Cina, Jeffrey A

    2004-08-06

    We show that time- and phase-resolved two-color nonlinear wave packet interferometry can be used to reconstruct the probability amplitude of an optically prepared molecular wave packet without prior knowledge of the underlying potential surface. We analyze state reconstruction in pure- and mixed-state model systems excited by shaped laser pulses and propose nonlinear wave packet interferometry as a tool for identifying optimized wave packets in coherent control experiments.

  17. Jittering wave-packet models for subsonic jet noise

    Science.gov (United States)

    Cavalieri, André V. G.; Jordan, Peter; Agarwal, Anurag; Gervais, Yves

    2011-08-01

    Three simplified wave-packet models of the coherent structures in subsonic jets are presented. The models comprise convected wave-packets with time-dependent amplitudes and spatial extents. The dependence of the radiated sound on the temporal variations of the amplitude and spatial extent of the modulations are studied separately in the first two model problems, being considered together in the third. Analytical expressions for the radiated sound pressure are obtained for the first and third models. Results show that temporally localised changes in the wave-packet can lead to radiation patterns which are directional and which comprise high-amplitude bursts; such intermittency is observed in subsonic jets at the end of the potential core, and so the models may help explain the higher noise levels and intermittent character of the sound radiated to low emission angles for subsonic jets. By means of an efficiency metric, relating the radiated acoustic power to the fluctuation energy of the source, we show that the source becomes more powerful as its temporal localisation is increased. This result extends that of Sandham et al. (Journal of Sound and Vibration 294(1) (2006) 355-361) who found similar behaviour for an infinitely extended wavy-wall. The pertinence of the model is assessed using two sets of data for a Mach 0.9 jet. One corresponds to a direct numerical simulation (DNS) of a Reynolds number 3600 turbulent jet and the other to a large eddy simulation (LES) of a Reynolds number 4×10 5 jet. Both time-averaged and time-dependent amplitudes and spatial extents are extracted from the velocity field of the numerical data. Computing the sound field generated by the wave-packet models we find for both simulations that while the wave-packet with a time-averaged envelope shows discrepancies of more than an order of magnitude with the sound field, when the wave-packet 'jitters' in a way similar to the intermittency displayed by the simulations, we obtain agreement to

  18. Gabor Wave Packet Method to Solve Plasma Wave Equations

    Energy Technology Data Exchange (ETDEWEB)

    A. Pletzer; C.K. Phillips; D.N. Smithe

    2003-06-18

    A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach.

  19. Massachusetts Bay - Internal wave packets digitized from SAR imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...

  20. Manifestations of wave packet revivals in the moments of observables

    Science.gov (United States)

    Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.

    2004-08-01

    Using a generic Hamiltonian that models wave packet propagation in a Kerr-like medium, matter wave field dynamics in Bose-Einstein condensation, etc., we show that distinctive signatures of wave packet revivals and fractional revivals are displayed by the time evolution of the expectation values of appropriate observables, enabling selective identification of different fractional revivals.

  1. Wave-packet dynamics in quantum wells

    DEFF Research Database (Denmark)

    Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.

    1995-01-01

    It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems......, this polarized pair creation is thought to be the only source of photocurrent at the early stages of photoexcitation since the bulk like transport current is inhibited by the barriers. In this work we perform a full quantum-mechanical analysis of ultrafast optical excitation in a de-biased quantum well. We take...... into account the multiple transitions that become allowed in the de field which breaks the Delta n = 0 selection rule. As a result, the carriers are created as wave packets formed by coherent superposition of several eigenstates. When the characteristic size of these wave packets (coherence length) is much...

  2. Spatiotemporal Imaging of Ultrafast Molecular Motion: Collapse and Revival of the D2+ Nuclear Wave Packet

    Science.gov (United States)

    Ergler, Th.; Rudenko, A.; Feuerstein, B.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2006-11-01

    We report on a real-time imaging of the ultrafast D2+ rovibrational nuclear wave-packet motion performed using a combination of a pump-probe setup with 7 fs laser pulses and a “reaction-microscope” spectrometer. We observe fast dephasing (collapse) of the vibrational wave packet and its subsequent revival and prove rotational excitation in ultrashort laser pulses. Channel-selective Fourier analysis of the wave packet’s long-term (˜3000fs) evolution allows us to resolve its individual constituents, revealing unique information on the mechanisms of strong-field ionization and dissociation.

  3. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  4. Wave Packet Propagation and Electric Conductivity of Nanowires

    NARCIS (Netherlands)

    Maeda, Munehiko; Saito, Keiji; Miyashita, Seiji; Raedt, Hans De

    2004-01-01

    We compute the electric conductivity of nanowires in the presence of magnetic domain walls by the method of wave packet propagation. We demonstrate that the propagation through the wire depends on the initial state used in the wave packet simulation. We propose a procedure, based on the Landauer

  5. Wave packet construction in three-dimensional quantum billiards ...

    Indian Academy of Sciences (India)

    Wave packet construction in three-dimensional quantum billiards: Visualizing the closed orbit, collapse and revival of wave packets in the cubical billiard ... billiard and these levels disappear completely or partially for a parallelepiped billiard as the symmetry breaks due to commensurate or incommensurate ratio of sides.

  6. Controlling the spreading of wave packets of a dissociating molecule

    DEFF Research Database (Denmark)

    Tiwari, Ashwani Kumar; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2007-01-01

    A first-order perturbation theoretic approach within the electric-dipole approximation is used to study the time evolution of wave packets created by linearly chirped laser pulses on a repulsive potential of Br-2. Our calculations show that negatively chirped pulses focus the wave packet in the F...

  7. Optimal laser pulse design for transferring the coherent nuclear wave packet of H$_2^+$

    OpenAIRE

    Zhang, Jun; He, Feng

    2013-01-01

    Within the Franck-Condon approximation, the single ionization of H$_2$ leaves H$_2^+$ in a coherent superposition of 19 nuclear vibrational states. We numerically design an optimal laser pulse train to transfer such a coherent nuclear wave packet to the ground vibrational state of H$_2^+$. The simulation results show that the population of the ground state after the transfer is more than 91%. Frequency analysis of the designed optimal pulse reveals that the transfer principle is mainly an ant...

  8. Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets.

    Science.gov (United States)

    Kienzler, D; Flühmann, C; Negnevitsky, V; Lo, H-Y; Marinelli, M; Nadlinger, D; Home, J P

    2016-04-08

    We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δα=15.6, corresponding to a distance of 240 nm between the two superposed wave packets.

  9. Coherent Nuclear Wave Packets in Q States by Ultrafast Internal Conversions in Free Base Tetraphenylporphyrin.

    Science.gov (United States)

    Kim, So Young; Joo, Taiha

    2015-08-06

    Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.

  10. Engineering and manipulating exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Montangero, Simone; Carr, Lincoln D.; Lusk, Mark T.

    2017-05-01

    When a semiconductor absorbs light, the resulting electron-hole superposition amounts to a uncontrolled quantum ripple that eventually degenerates into diffusion. If the conformation of these excitonic superpositions could be engineered, though, they would constitute a new means of transporting information and energy. We show that properly designed laser pulses can be used to create such excitonic wave packets. They can be formed with a prescribed speed, direction, and spectral make-up that allows them to be selectively passed, rejected, or even dissociated using superlattices. Their coherence also provides a handle for manipulation using active, external controls. Energy and information can be conveniently processed and subsequently removed at a distant site by reversing the original procedure to produce a stimulated emission. The ability to create, manage, and remove structured excitons comprises the foundation for optoexcitonic circuits with application to a wide range of quantum information, energy, and light-flow technologies. The paradigm is demonstrated using both tight-binding and time-domain density functional theory simulations.

  11. Resonance-Assisted Decay of Nondispersive Wave Packets

    OpenAIRE

    Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.

    2006-01-01

    We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.

  12. On wave-packet dynamics in a decaying quadratic potential

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1997-01-01

    We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

  13. Remark on characterization of wave front set by wave packet transform

    OpenAIRE

    Kato, Keiichi; Kobayashi, Masaharu; Ito, Shingo

    2017-01-01

    In this paper, we give characterizations of usual wave front set and wave front set in $H^s$ in terms of wave packet transform without any restriction on basic wave packet, which give complete answers of the question raised by G. B. Folland.

  14. Electron acceleration by Landau resonance with whistler mode wave packets

    Science.gov (United States)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  15. Modulation instability of wave packets propagating in inhomogeneous nonlinear fiber

    Science.gov (United States)

    Lapin, V. A.; Fotiadi, A. A.

    2017-05-01

    The formation conditions and the effective gain of frequency-modulated soliton wave packets in a non-uniform along the length of active optical fibers were investigated. For packets modulated wave propagating in the nonlinear dependence of the fibers with the dispersion of the fiber length, the power of the generated pulses can be considerably increased in comparison with the homogeneous fibers. Due to the constant growth of the spectral width of the generated pulse sequence can no longer return to the state of the modulated continuous wave. As a result, the pulse duration with some fluctuations steadily declining. The amplitude and period of these oscillations are also reduced.

  16. Exact elegant Laguerre-Gaussian vector wave packets.

    Science.gov (United States)

    Nasalski, W

    2013-03-15

    An exact closed-form representation is derived of a vector elegant Laguerre-Gaussian wave packet. Its space-time representation consists of three mutually orthogonal field components--of a common azimuthal index and different radial indices--uniquely distinguished by first three powers of the paraxial parameter. The transverse components are of tm-radial and te-azimuthal polarization and appear, under their normal incidence, to be eigenmodes of any horizontally planar, homogeneous and isotropic structure, with eigenvalues given by the reflection and transmission coefficients. In this context, the interrelations between the cross-polarization symmetries of wave packets in free space and at medium planar interfaces are discussed.

  17. Wave packet dynamics of photon-added coherent states

    Science.gov (United States)

    Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.

    2005-09-01

    We show in the framework of a tractable model that revivals and fractional revivals of wave packets afford clear signatures of the extent of departure from coherence and from Poisson statistics of an initial state of the radiation field propagating in a nonlinear medium. We establish this by considering a generic Hamiltonian which models wave packet propagation in a Kerr-like medium, and comparing the non-classical effects displayed by an initial photon-added coherent state with that of an inital ideal coherent state.

  18. Control of Wave Packet Revivals Using Geometric Phases

    Science.gov (United States)

    Seshadri, S.; Lakshmibala, S.; Balakrishnan, V.

    2000-10-01

    Wave packets in a system governed by a Hamiltonian with a generic nonlinear spectrum typically exhibit both full and fractional revivals. It is shown that, by varying the parameters in the Hamiltonian cyclically with a period T and thus inducing suitable geometric phases in the states, fractional revivals can be eliminated at the relevant times T, 2 T,... . Further, with the introduction of this time step T, the occurrence of near full revivals can be mapped onto that of Poincaré recurrences in an irrational rotation map of the circle. The distinctive recurrence statistics of the latter can thus serve as a clear signature of the dynamics of wave packet revivals.

  19. Symmetry and conservation laws in semiclassical wave packet dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu [Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, Texas 75080-3021 (United States)

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.

  20. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  1. Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with bathymetry for Massachusetts Bay. The internal wave packets were...

  2. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report ...

  3. Wave packet construction in three-dimensional quantum billiards ...

    Indian Academy of Sciences (India)

    as the symmetry breaks due to commensurate or incommensurate ratio of sides. Keywords. Three-dimensional bound systems; revivals and collapses; quantum mechanics. PACS Nos 03.65.Ge; 03.65.Yz; 42.50.Md. 1. Introduction. The study of time evolution of the unbound and bound-state wave packet illuminates.

  4. Optimal laser pulse design for transferring the coherent nuclear wave packet of H+2

    Science.gov (United States)

    Zhang, Jun; He, Guang-Qiang; He, Feng

    2014-07-01

    Within the Franck-Condon approximation, the single ionisation of H2 leaves H+2 in a coherent superposition of 19 nuclear vibrational states. We numerically design an optimal laser pulse train to transfer such a coherent nuclear wave packet to the ground vibrational state of H+2. Frequency analysis of the designed optimal pulse reveals that the transfer principle is mainly an anti-Stokes transition, i.e. the H+2 in 1sσg with excited nuclear vibrational states is first pumped to 2pσg state by the pulse at an appropriate time, and then dumped back to 1sσg with lower excited or ground vibrational states. The simulation results show that the population of the ground state after the transfer is more than 91%. To the best of our knowledge, this is the highest transition probability when the driving laser field is dozens of femtoseconds.

  5. Excitation of localized wave packet in swept-wing supersonic boundary layer

    Directory of Open Access Journals (Sweden)

    Yatskikh Aleksey

    2017-01-01

    Full Text Available The evolution of the artificial wave packet in swept-wing supersonic boundary layer was experimentally studied at M = 2. The localized disturbances were generated by a pulse glow discharge. Measurements were provided by a hot-wire anemometer. The spatial structure of the wave packet was studied. It was found that the wave packet has an asymmetric shape. In addition, the velocity of the propagation downstream of the wave packet was estimated.

  6. Cherenkov Radiation Control via Self-accelerating Wave-packets.

    Science.gov (United States)

    Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun

    2017-08-18

    Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.

  7. Time-resolved Imaging of H2 + (D2 +) Nuclear Wave Packets

    Science.gov (United States)

    Ergler, Th.; Rudenko, A.; Feuerstein, B.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    The spatio-temporal evolution of H2 + (D2 +) nuclear wave packets is mapped using time-resolved Coulomb explosion imaging. We visualize the motion of both dissociating and bound parts of the wave packet, observe its dephasing and subsequent revivals. The reconstructed probability density of the wave packet is in good agreement with earlier theoretical predictions.

  8. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  9. Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging

    Science.gov (United States)

    Ergler, Th; Rudenko, A.; Feuerstein, B.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2006-07-01

    The time evolution of H2+ (D2+) nuclear wave packets is studied exploiting a combination of coincident Coulomb explosion imaging and femtosecond pump-probe techniques. Using two 25 fs laser pulses, we map the motion of the dissociating molecular ion, observe an enhanced ionization rate at an internuclear separation of ~11 au and resolve trajectories due to the one- and two-photon Floquet channels. With two 7 fs pulses, we are able to visualize the vibrational motion of the bound part of the wave packet, which exhibits counterintuitive quantum behaviour and dephases within about 100 fs, in agreement with recent numerical simulations.

  10. Back-reaction of perturbation wave packets on gray solitons

    Science.gov (United States)

    Walczak, P. B.; Anglin, J. R.

    2012-07-01

    Within the Bogoliubov-de Gennes linearization theory of quantum or classical perturbations around a background solution to the one-dimensional nonlinear Schrödinger equation, we study the back-reaction of wave-packet perturbations on a gray-soliton background. From our recently published exact solutions, we determine that a wave packet effectively jumps ahead as it passes through a soliton, emerging with a wavelength-dependent forward translation in comparison to its motion in absence of the soliton. From this and from the full theory's exact momentum conservation, we deduce that post-Bogoliubov back-reaction must include a commensurate forward advance by the soliton itself. We quantify this effect with a simple theory, and confirm that it agrees with full numerical solution of the classical nonlinear Schrödinger equation. We briefly discuss the implications of this effect for quantum behavior of solitons in quasicondensed dilute gases at finite temperature.

  11. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    Science.gov (United States)

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  12. Observation of Accelerating Wave Packets in Curved Space

    Directory of Open Access Journals (Sweden)

    Anatoly Patsyk

    2018-01-01

    Full Text Available We present the first experimental observation of accelerating beams in curved space. More specifically, we demonstrate, experimentally and theoretically, shape-preserving accelerating beams propagating on spherical surfaces: closed-form solutions of the wave equation manifesting nongeodesic self-similar evolution. Unlike accelerating beams in flat space, these wave packets change their acceleration trajectory due to the interplay between interference effects and the space curvature, and they focus and defocus periodically due to the spatial curvature of the medium in which they propagate.

  13. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The

  14. Mapping of Coherent Nuclear Wave Packet Dynamics in D_2^+ with Ultrashort Laser Pulses

    Science.gov (United States)

    Feuerstein, Bernold; Thumm, Uwe

    2003-05-01

    Fast ionization of D2 leads to the coherent population of many vibrational states of D_2^+. Usually, only the squared absolute values of the vibrational state amplitudes, known as Franck-Condon factors, are observed since insufficient experimental time resolution averages out all coherence effects. We propose a Coulomb explosion imaging method to visualize the coherent motion of bound wave packets using ultrashort (5 fs), intense pump-probe laser pulses. With this type of experiment, decoherence times in the fs to ps range could be directly measured, providing essential information for coherent control. Supported in part by NSF (grant PHY-0071035) and Division of Chemical Sciences, Office of Basic Energy Scienes, Office of Energy Research, US DOE.

  15. Ultrafast Spectroscopy of Fano-Like Resonance between Optical Phonon and Excitons in CdSe Quantum Dots: Dependence of Coherent Vibrational Wave-Packet Dynamics on Pump Fluence

    Directory of Open Access Journals (Sweden)

    Victor Nadtochenko

    2017-11-01

    Full Text Available The main goal of the present work is to study the coherent phonon in strongly confined CdSe quantum dots (QDs under varied pump fluences. The main characteristics of coherent phonons (amplitude, frequency, phase, spectrogram of CdSe QDs under the red-edge pump of the excitonic band [1S(e-1S3/2(h] are reported. We demonstrate for the first time that the amplitude of the coherent optical longitudinal-optical (LO phonon at 6.16 THz excited in CdSe nanoparticles by a femtosecond unchirped pulse shows a non-monotone dependence on the pump fluence. This dependence exhibits the maximum at pump fluence ~0.8 mJ/cm2. At the same time, the amplitudes of the longitudinal acoustic (LA phonon mode at 0.55 THz and of the coherent wave packet of toluene at 15.6, 23.6 THz show a monotonic rise with the increase of pump fluence. The time frequency representation of an oscillating signal corresponding to LO phonons revealed by continuous wavelet transform (CWT shows a profound destructive quantum interference close to the origin of distinct (optical phonon and continuum-like (exciton quasiparticles. The CWT spectrogram demonstrates a nonlinear chirp at short time delays, where the chirp sign depends on the pump pulse fluence. The CWT spectrogram reveals an anharmonic coupling between optical and acoustic phonons.

  16. Ultrafast Spectroscopy of Fano-Like Resonance between Optical Phonon and Excitons in CdSe Quantum Dots: Dependence of Coherent Vibrational Wave-Packet Dynamics on Pump Fluence.

    Science.gov (United States)

    Nadtochenko, Victor; Denisov, Nikolay; Aybush, Arseniy; Gostev, Fedor; Shelaev, Ivan; Titov, Andrey; Umanskiy, Stanislav; Cherepanov, And Dmitry

    2017-11-04

    The main goal of the present work is to study the coherent phonon in strongly confined CdSe quantum dots (QDs) under varied pump fluences. The main characteristics of coherent phonons (amplitude, frequency, phase, spectrogram) of CdSe QDs under the red-edge pump of the excitonic band [1S(e)-1S 3/2 (h)] are reported. We demonstrate for the first time that the amplitude of the coherent optical longitudinal-optical (LO) phonon at 6.16 THz excited in CdSe nanoparticles by a femtosecond unchirped pulse shows a non-monotone dependence on the pump fluence. This dependence exhibits the maximum at pump fluence ~0.8 mJ/cm². At the same time, the amplitudes of the longitudinal acoustic (LA) phonon mode at 0.55 THz and of the coherent wave packet of toluene at 15.6, 23.6 THz show a monotonic rise with the increase of pump fluence. The time frequency representation of an oscillating signal corresponding to LO phonons revealed by continuous wavelet transform (CWT) shows a profound destructive quantum interference close to the origin of distinct (optical phonon) and continuum-like (exciton) quasiparticles. The CWT spectrogram demonstrates a nonlinear chirp at short time delays, where the chirp sign depends on the pump pulse fluence. The CWT spectrogram reveals an anharmonic coupling between optical and acoustic phonons.

  17. Qualitative dynamics of wave packets in turbulent jets

    Science.gov (United States)

    Semeraro, Onofrio; Lusseyran, François; Pastur, Luc; Jordan, Peter

    2017-09-01

    We analyze the temporal dynamics associated with axisymmetric coherent structures in a turbulent jet. It has long been established that turbulent jets comprise large-scale coherent structures, now more commonly referred to as "wave packets" [Jordan and Colonius, Annu. Rev. Fluid Mech. 45, 173 (2013), 10.1146/annurev-fluid-011212-140756]. These structures exhibit a marked spatiotemporal organization, despite turbulence, and we aim to characterize their temporal dynamics by means of nonlinear statistical tools. The analysis is based on data presented Breakey et al., in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083 (AIAA, Reston, VA, 2013), where time series of the wave-packet signatures are extracted at different streamwise locations. The experiment runs at Ma=0.6 and Re=5.7 ×105 . A thorough analysis is performed. Statistical tools are used to estimate the embedding and correlation dimensions that characterize the dynamical system. Input-output transfer functions are designed as control-oriented models; and for this special case, consistent with other recent studies, we find that linear models can reproduce much of the convective input-ouput behavior. Finally, we show how surrogate models can partially reproduce the nonlinear dynamics.

  18. Mapping of coherent and decohering nuclear wave-packet dynamics in D+2 with ultrashort laser pulses

    Science.gov (United States)

    Feuerstein, Bernold; Thumm, Uwe

    2003-06-01

    Fast ionization of D2 leads to the coherent population of many vibrational states of D+2. Usually, only the squared absolute values of the vibrational state amplitudes, known as Franck-Condon factors, are observed since insufficient experimental time resolution averages out all coherence effects. We propose a Coulomb explosion imaging method to visualize the coherent motion of bound wave packets using ultrashort (5 fs), intense pump-probe laser pulses. With this type of experiment decoherence times in the fs to ps range may become directly observable and provide essential information for coherent control.

  19. Introduction to vibrations and waves

    CERN Document Server

    Pain, H John

    2015-01-01

    Based on the successful multi-edition book "The Physics ofVibrations and Waves" by John Pain, the authors carry overthe simplicity and logic of the approach taken in the originalfirst edition with its focus on the patterns underlying andconnecting so many aspects of physical behavior, whilst bringingthe subject up-to-date so it is relevant to teaching in the21st century.The transmission of energy by wave propagation is a key conceptthat has applications in almost every branch of physics withtransmitting mediums essentially acting as a continuum of coupledoscillators. The characterization of t

  20. Simulation on the electronic wave packet cyclotron motion in a Weyl semimetal slab.

    Science.gov (United States)

    Yao, Haibo; Zhu, Mingfeng; Jiang, Liwei; Zheng, Yisong

    2017-04-20

    We perform a numerical simulation on the time evolution of an electronic wave packet in a Weyl semimetal (WSM) slab driven by a magnetic field. We find that the evolution trajectory of the wave packet depends sensitively on its initial spin state. Only with initial spin state identical to that of the Fermi arc state at the surface it localized, does the wave packet evolution demonstrate the characteristic cyclotron orbit of WSM previously predicted from a semiclassical viewpoint. By analyzing the eigen-expansion of the electronic wave packet, we find the chiral Landau levels (LLs) of the WSM slab, as ingredients of the wave packet, to be responsible for establishing the characteristic WSM cyclotron orbit. In contrast, the nonchiral LLs contribute irregular oscillations to the wave packet evolution, going against the formation of a well-defined cyclotron orbit. In addition, the tilted magnetic field does not affect the motion of the electronic wave packet along the Fermi arcs in the momentum space. It does, however, alter the evolution trajectory of the electronic wave packet in real space and spin space. Finally, the energy disalignment of the Weyl nodes results in a 3D cyclotron orbit in real space.

  1. On the fractional Fourier and continuous fractional wave packet transforms of almost periodic functions

    Directory of Open Access Journals (Sweden)

    Banu Ünalmış Uzun

    2017-06-01

    Full Text Available Abstract We state the fractional Fourier transform and the continuous fractional wave packet transform as ways for analyzing persistent signals such as almost periodic functions and strong limit power signals. We construct frame decompositions for almost periodic functions using these two transforms. Also a norm equality of this signal is given using the continuous fractional wave packet transform.

  2. On the fractional Fourier and continuous fractional wave packet transforms of almost periodic functions.

    Science.gov (United States)

    Uzun, Banu Ünalmış

    2017-01-01

    We state the fractional Fourier transform and the continuous fractional wave packet transform as ways for analyzing persistent signals such as almost periodic functions and strong limit power signals. We construct frame decompositions for almost periodic functions using these two transforms. Also a norm equality of this signal is given using the continuous fractional wave packet transform.

  3. On the fractional Fourier and continuous fractional wave packet transforms of almost periodic functions

    OpenAIRE

    Uzun, Banu ?nalm??

    2017-01-01

    We state the fractional Fourier transform and the continuous fractional wave packet transform as ways for analyzing persistent signals such as almost periodic functions and strong limit power signals. We construct frame decompositions for almost periodic functions using these two transforms. Also a norm equality of this signal is given using the continuous fractional wave packet transform.

  4. On the fractional Fourier and continuous fractional wave packet transforms of almost periodic functions

    OpenAIRE

    Banu Ünalmış Uzun

    2017-01-01

    Abstract We state the fractional Fourier transform and the continuous fractional wave packet transform as ways for analyzing persistent signals such as almost periodic functions and strong limit power signals. We construct frame decompositions for almost periodic functions using these two transforms. Also a norm equality of this signal is given using the continuous fractional wave packet transform.

  5. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    Science.gov (United States)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco

    2017-01-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules. PMID:28537270

  6. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    Science.gov (United States)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco

    2017-05-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.

  7. A quantum wave packet study of the ND + D reaction

    Science.gov (United States)

    Surucu, Seda; Tasmanoglu, Gulsen; Akpinar, Sinan

    2012-07-01

    We present the quantum scattering dynamics of the depletion reaction ND ? + D‧ ? N ? + D2 and of the exchange reaction ND ? + D‧ ? ND‧ ? + D using the real wave packet and flux methods and modified NH2 ? potential energy surface (PES). A quantum scattering dynamics calculation is used to study the initial-state-resolved reaction probabilities, integral cross section, rate constants and thermal rate constant for both channels using the centrifugal sudden (CS) approximation for non-zero total angular momentum (J) values. Integral cross sections for both reactions depend strongly on the initial rotational states. In particular, the thermal reaction rate constant for the depletion channel is in good agreement with experimental and semiclassical results.

  8. Quantum oscillations and wave packet revival in conical graphene structure

    Science.gov (United States)

    Sinha, Debabrata; Berche, Bertrand

    2016-03-01

    We present analytical expressions for the eigenstates and eigenvalues of electrons confined in a graphene monolayer in which the crystal symmetry is locally modified by replacing a hexagon by a pentagon, square or heptagon. The calculations are performed in the continuum limit approximation in the vicinity of the Dirac points, solving Dirac equation by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and find out the conditions of gapped and gapless states in the spectrum. We show that the gauge field due to a disclination lifts the orbital degeneracy originating from the existence of two valleys. The broken valley degeneracy has a clear signature on quantum oscillations and wave packet dynamics.

  9. Implications of semi-geostrophic dynamics for Rossby wave packet detection

    Science.gov (United States)

    Wirth, Volkmar; Wolf, Gabriel

    2014-05-01

    Upper troposheric Rossby wave packets have received increased attention recently, partly because of their potential role in triggering heavy weather downstream. In most studies wave packets are detected by computing the envelope of the meridional wind field using either complex demodulation or a Hilbert transform technique. The latter requires less choices to be made and appears, therefore, preferable. However, the Hilbert transform technique is fraught with a significant problem, namely a tendency which makes a single wave packet to fragment into several parts. The problem arises because Rossby wave packets feature substantial deviations from the almost plane wave paradigm - owing to the semi-geostrophic nature of the underlying dynamics. As a consequence higher harmonics are included into the reconstructed envelope. A possible way out lies in additional smoothing, e.g. by means of a filter, or resorting to complex demodulation (which implies some smoothing anyways). Another possibility lies in applying the Hilbert transform technique in semi-geostrophic coordinate space. In this presentation we first illustrate the problem using sythetic wave packets. Thereafter we investigate observed Rossby wave packets using ERA-interim data. It is shown that the technique involving the semi-geostrophic coordinate transformation often works well. However, it sometimes fails in cases when the wave packet travels on a low wave-number background flow. The reasons are discussed and examples are given.

  10. Ultrafast mapping of H{sub 2}{sup +} (D{sub 2}{sup +}) nuclear wave packets using time-resolved Coulomb explosion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ergler, Th; Rudenko, A; Feuerstein, B; Zrost, K; Schroeter, C D; Moshammer, R; Ullrich, J [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2006-07-14

    The time evolution of H{sub 2}{sup +} (D{sub 2}{sup +}) nuclear wave packets is studied exploiting a combination of coincident Coulomb explosion imaging and femtosecond pump-probe techniques. Using two 25 fs laser pulses, we map the motion of the dissociating molecular ion, observe an enhanced ionization rate at an internuclear separation of {approx}11 au and resolve trajectories due to the one- and two-photon Floquet channels. With two 7 fs pulses, we are able to visualize the vibrational motion of the bound part of the wave packet, which exhibits counterintuitive quantum behaviour and dephases within about 100 fs, in agreement with recent numerical simulations.

  11. Molecular orientation via a dynamically induced pulse-train: Wave packet dynamics of NaI in a static electric field

    DEFF Research Database (Denmark)

    Marquetand, P.; Materny, A.; Henriksen, Niels Engholm

    2004-01-01

    We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when...... the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational...

  12. Probing double Rydberg wave packets in a helium atom with fast single-cycle pulses

    Science.gov (United States)

    Wang, Xiao; Robicheaux, F.

    2017-10-01

    Fully quantum and classical calculations on a helium atom with two excited, radially localized Rydberg wave packets are performed. The differences between classical and quantum methods are compared for a wide range of principal quantum numbers to study the validity of the classical method for low-lying states. The effects of fast terahertz single-cycle pulses on an atomic system with one or two Rydberg wave packets are also studied using classical equations of motion. These results suggest that single-cycle pulses can be used as time-resolved probes to detect motion of the wave packets and to investigate autoionization properties.

  13. The pump-probe coupling of matter wave packets to remote lattice states

    DEFF Research Database (Denmark)

    Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm

    2012-01-01

    The coherent manipulation of wave packets is an important tool in many areas of physics. We demonstrate the experimental realization of quasi-free wave packets of ultra-cold atoms bound by an external harmonic trap. The wave packets are produced by modulating the intensity of an optical lattice c...... selected lattice sites at a long, controllable distance of more than 100 lattice sites from the main component. This precise control mechanism for ultra-cold atoms thus enables controlled quantum state preparation and splitting for quantum dynamics, metrology and simulation....

  14. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.

  15. The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations

    Directory of Open Access Journals (Sweden)

    S.-D. Zhang

    2000-10-01

    Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  16. Hanbury Brown–Twiss Effect with Wave Packets

    Directory of Open Access Journals (Sweden)

    Tabish Qureshi

    2017-11-01

    Full Text Available The Hanbury Brown–Twiss (HBT effect, at the quantum level, is essentially an interference of one particle with another, as opposed to interference of a particle with itself. Conventional treatments of identical particles encounter difficulties while dealing with entanglement. A recently introduced label-free approach to indistinguishable particles is described, and is used to analyze the HBT effect. Quantum wave-packets have been used to provide a better understanding of the quantum interpretation of the HBT effect. The effect is demonstrated for two independent particles governed by Bose–Einstein or Fermi–Dirac statistics. The HBT effect is also analyzed for pairs of entangled particles. Surprisingly, entanglement has almost no effect on the interference seen in the HBT effect. In the light of the results, an old quantum optics experiment is reanalyzed, and it is argued that the interference seen in that experiment is not a consequence of non-local correlations between the photons, as is commonly believed. Quanta 2017; 6: 61–69.

  17. On the fractional Fourier and continuous fractional wave packet transforms of almost periodic functions

    National Research Council Canada - National Science Library

    Banu Ünalmis Uzun

    2017-01-01

    We state the fractional Fourier transform and the continuous fractional wave packet transform as ways for analyzing persistent signals such as almost periodic functions and strong limit power signals...

  18. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert

    2017-01-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...

  19. Electronic wave packets in twice-kicked one-dimensional Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Aparna; Chatterjee, Supriya; Talukdar, B, E-mail: binoy123@bsnl.i [Department of Physics, Visva-Bharati University, Santiniketan 731235 (India)

    2010-05-01

    We study the coherent control of the shape of an electronic wave packet in a Rydberg atom kicked by two half-cycle pulses. The momentum transferred to excited electrons by the second pulse and its time delay with the first represent two parameters that can be used for shaping the wave packet. We find that rather than working with the momentum transfer, manipulation of the shape using time delay will be more effective in the applicative context. We establish that times of revival and superrevivals of a wave packet in a twice-kicked atom obey a definite law, namely {tau}=2mn{sup 2} (m is an integer and n, the principal quantum number of the electron that receives the initial kick), and are independent of the initial shape of the packet. The revival time is obtained for m=1, and all other values of m give superrevival times.

  20. Excitation of Rydberg wave packets in the tunneling regime

    Science.gov (United States)

    Piraux, B.; Mota-Furtado, F.; O'Mahony, P. F.; Galstyan, A.; Popov, Yu. V.

    2017-10-01

    In the tunneling regime for strong laser field ionization of atoms, experimental studies have shown that a substantial fraction of atoms survive the laser pulse in many Rydberg states. To explain the origin of such trapping of population into Rydberg states, two mechanisms have been proposed: the first involves ac-Stark-shifted multiphoton resonances, and the second, called frustrated tunneling ionization, leads to the recombination of tunneled electrons into Rydberg states. We use a very accurate spectral method based on complex Sturmian functions to solve the time-dependent Schrödinger equation for hydrogen in a linearly polarized infrared pulse and to calculate the tunneling probability in terms of the atomic ground-state width. We examine the probability of excitation into Rydberg states as a function of the peak intensity for various pulse durations and two wavelengths, 800 and 1800 nm, and we try to explain the results in light of the two aforementioned mechanisms. For long pulses of 800 nm wavelength, the extreme sensitivity of the trapping of population into high-lying Rydberg states to the peak intensity, the well-defined value, and parity of the angular momentum of the populated Rydberg states and the presence of Freeman resonances can be explained using a multiphotonic excitation mechanism. For strong pulses of 1800 nm wavelength, in the so-called adiabatic or quasistatic tunneling regime, the oscillations of the excitation probability as a function of intensity are in phase opposition to the ionization probability, and we observe a migration toward high values of the angular momentum with different distributions in the angular momentum at the maxima and minima of the oscillations. We also present a detailed study of how the excited-state wave packet builds up in time during the interaction of the atom with the pulse.

  1. Long-term cyclotron dynamics of relativistic wave packets: Spontaneous collapse and revival

    Science.gov (United States)

    Demikhovskii, V. Ya.; Maksimova, G. M.; Perov, A. A.; Telezhnikov, A. V.

    2012-02-01

    In this work we study the effects of collapse and revival, as well as the zitterbewegung (ZB) phenomenon, for the relativistic electron wave packets, which are a superposition of the states with quantum numbers sharply peaked around some Landau level n0 of the order of few tens. The probability densities as well as average velocities of the packet center and the average spin components were calculated analytically and their evolution is visualized. Our computations demonstrate that due to the dephasing of the states for times larger than the cyclotron period the initial wave packet (which includes the states with the positive energy only) loses the spatial localization so that the evolution can no longer be described classically. However, at the half-revival time t=TR/2 its reshaping takes place first. It is shown that the behavior of the wave packet containing the states of both energy bands (with En>0 and Ennegative energy) restores at various points of the cyclotron orbit, which makes reshaping of the initial wave packet impossible, entirely unlike the wave packet which consists of states with energies En>0 only. The obtained results can be useful for the description of electromagnetic radiation and absorption in relativistic plasma on astrophysics objects, where superhigh magnetic field has a value of the order 108-109T, as well as for interpretation of experiments with trapped ions.

  2. Dynamics of nuclear wave packets at the F center in alkali halides

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi; Suemoto, Tohru, E-mail: koyama@nuap.nagoya-u.ac.jp [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8581 (Japan)

    2011-07-15

    The F center in alkali halides is a well-known prototype of a strongly coupled localized electron-phonon system. This colour center is one of the long studied targets in the field of photophysics because it is simple but rich in variety. Steady-state spectroscopy, such as modulation spectroscopy and Raman scattering spectroscopy, has elucidated the strength of the electron-phonon coupling in the (meta-)stable state, i.e. the ground state and the relaxed excited state. Picosecond spectroscopy has improved understanding of the state mixing in the transient state. Owing to recent developments of ultrafast lasers with pulse widths shorter than oscillation periods of phonons, it has been possible to perform real-time observation of lattice vibration, and the understanding of the transient state has been remarkably expanded. In this paper, we review early and present studies on dynamics of electron-phonon coupling at the F center, especially recent real-time observations on the dynamics of nuclear wave packets in the excited state of the F center in KI, KBr, KCl and RbCl. These real-time observations reveal (i) spatial extension of the electronic wave function of a trapped electron, (ii) the difference between the coupled phonons in the ground state and the excited state, (iii) diabatic transition between the adiabatic potential energy surfaces and (iv) anharmonicity of the potential energy surface.

  3. Investigation of the photodetached electronic wave packet dynamics in a magnetic field near a surface

    Science.gov (United States)

    Chen, Zhaohang; Wang, Dehua; Cheng, Shaohao

    2017-05-01

    The electronic wave packet dynamics photodetached from H- ion in a magnetic field near an elastic surface has been studied by using the time-dependent perturbation theory combined with the semiclassical closed orbit theory for the first time. Firstly, we put forward an analytic formula for calculating the autocorrelation function of this system. Then we calculate and analyze the autocorrelation function in great detail. It is demonstrated that the quantum wave packet revival phenomenon is significant when the laser pulse width is far less than the period of the detached electron's closed orbit. As the pulse width is close to the period of the detached electron's closed orbit, the quantum wave packet revival phenomenon becomes weakened. When the laser pulse width is bigger than the period of the closed orbit of the detached electron, the adjacent revival peaks in the autocorrelation function begin to merge and the quantum revival phenomenon disappears. In addition, the magnetic field strength can also affect the autocorrelation function of this system. As the magnetic field strength is relatively small, the quantum wave packet revival phenomenon is weak. With the increase of the magnetic field strength, the number of the reviving peaks in the autocorrelation function becomes increased and the quantum wave packet revival phenomenon becomes significant. Therefore, we can control the quantum wave packet revival in the autocorrelation function of this system by changing the laser pulse width and the external magnetic field strength. This study can guide the future experimental research on the wave packet dynamics of atoms or ions in the external fields or surfaces.

  4. Nuclear wave-packet oscillations at the F center in KCl and RbCl

    Science.gov (United States)

    Koyama, Takeshi; Nakajima, Makoto; Suemoto, Tohru

    2008-10-01

    The dynamics of nuclear wave packets at the F center in KCl and RbCl at 5 K is investigated by frequency up-conversion method. Oscillation frequencies of the observed nuclear wave packets are 6.0 and 3.9 THz for KCl and RbCl. The former is attributed to LO phonon modes near the center of the Brillouin zone, while the latter to LO phonon modes near zone boundaries. These results suggest that the ratio of spatial extension of the electronic wave function in the relaxed excited state to the lattice constant is smaller in RbCl than in KCl.

  5. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    Science.gov (United States)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  6. Steering dissociation of Br2 molecules with two femtosecond pulses via wave packet interference.

    Science.gov (United States)

    Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Yan, Tian-Min; Cong, Shu-Lin

    2008-04-07

    The dissociation dynamics of Br2 molecules induced by two femtosecond pump pulses are studied based on the calculation of time-dependent quantum wave packet. Perpendicular transition from X 1Sigma g+ to A 3Pi 1u+ and 1Pi 1u+ and parallel transition from X 1Sigma g+ to B 3Pi 0u+, involving two product channels Br (2P3/2)+Br (2P3/2) and Br (2P3/2)+Br* (2P1/2), respectively, are taken into account. Two pump pulses create dissociating wave packets interfering with each other. By varying laser parameters, the interference of dissociating wave packets can be controlled, and the dissociation probabilities of Br2 molecules on the three excited states can be changed to different degrees. The branching ratio of Br*/(Br+Br*) is calculated as a function of pulse delay time and phase difference.

  7. Compatibility of localized wave packets and unrestricted single particle dynamics for cluster formation in nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A. [Tohoku Univ., Sendai (Japan). Dept. of Physics; Hudan, S.; Chbihi, A.; Frankland, J.D. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2002-03-01

    Anti-symmetrized molecular dynamics with quantum branching is generalized so as to allow finite time duration of the unrestricted coherent mean field propagation which is followed by the decoherence into wave packets. In this new model, the wave packet shrinking by the mean field propagation is respected as well as the diffusion, so that it predicts a one-body dynamics similar to that in mean field models. The shrinking effect is expected to change the diffusion property of nucleons in nuclear matter and the global one-body dynamics. The central {sup 129}Xe + Sn collisions at 50 MeV/nucleon are calculated by the models with and without shrinking, and it is shown that the inclusion of the wave packet shrinking has a large effect on the multifragmentation in a big expanding system with a moderate expansion velocity. (author)

  8. Formation of two-dimensional nonspreading atomic wave packets in the field of two standing light waves

    NARCIS (Netherlands)

    Efremov, MA; Petropavlovsky, SV; Fedorov, MV; Schleich, WP; Yakovlev, VP

    The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid

  9. Propagation of Gaussian wave packets in complex media and application to fracture characterization

    Science.gov (United States)

    Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu

    2017-08-01

    Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model

  10. A time-dependent wave packet approach to atom-diatom reactive collision probabilities - Theory and application to the H + H2(J = 0) system

    Science.gov (United States)

    Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.

    1990-01-01

    This paper describes a new approach to the study of atom-diatom reactive collisions in three dimensions employing wave packets and the time-dependent Schroedinger equation. The method uses a projection operator approach to couple the inelastic and reactive portions of the total wave function and optical potentials to circumvent the necessity of using product arrangement coordinates. Reactive transition probabilities are calculated from the state resolved flux of the wave packet as it leaves the interaction region in the direction of the reactive arrangement channel. The present approach is used to obtain such vibrationally resolved probabilities for the three-dimensional H + H2 (J = 0) hydrogen exchange reaction, using a body-fixed system of coordinates.

  11. Wave Packet Simulation of Nonadiabatic Dynamics in Highly Excited 1,3-Dibromopropane

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan

    2008-01-01

    We have conducted wave packet simulations of excited-state dynamics of 1,3-dibromopropane (DBP) with the aim of reproducing the experimental results of the gas-phase pump-probe experiment by Kotting et al. [Kotting. C.; Diau, E. W.-G.; Solling, T. L. Zewail, A. H. J. Phys. Chem. A 2001106, 7530...... of the carbon bromine bonds oil a time scale of 2.5 ps. Building the theoretical framework for the wave packet propagation around this model of the reaction dynamics, the Simulations reproduce, to a good extent, the time scales observed in the experiment. Furthermore. the Simulations provide insight into how...

  12. Control of quantum dot laser emission by coherent phonon wave packets

    Science.gov (United States)

    Wigger, D.; Czerniuk, T.; Reiter, D. E.; Bayer, M.; Kuhn, T.

    2017-10-01

    Travelling coherent phonons can be actively used to manipulate the optical properties of semiconductor nanostructures on the picosecond time scale. Phonon wave packets that interact with a quantum dot (QD) ensemble can significantly vary the output intensity of a laser, which uses the QDs as active medium. Based on a recently developed theoretical model to describe this coupled phonon-QD-photon system, we here study how the laser response on phonon wave packets depends on several parameters, for example phonon pulse properties and laser pump rate.

  13. Mixed quantum/semiclassical wave-packet dynamical method for condensed-phase molecular spectroscopy signals

    Science.gov (United States)

    Kovac, Philip A.; Cina, Jeffrey A.

    2017-12-01

    We report the successful application of a recently developed mixed quantum/semiclassical wave-packet dynamical theory to the calculation of a spectroscopic signal, the linear absorption spectrum of a realistic small-molecule chromophore in a cryogenic environment. This variational fixed vibrational basis/Gaussian bath (FVB/GB) theory avails itself of an assumed time scale separation between a few, mostly intramolecular, high-frequency nuclear motions and a larger number of slower degrees of freedom primarily associated with an extended host medium. The more rapid, large-amplitude system dynamics is treated with conventional basis-set methods, while the slower time-evolution of the weakly coupled bath is subject to a semiclassical, thawed Gaussian trial form that honors the overall vibrational ground state, and hence the initial state prepared by its Franck-Condon transfer to an excited electronic state. We test this general approach by applying it to a small, symmetric iodine-krypton cluster suggestive of molecular iodine embedded in a low-temperature matrix. Because of the relative simplicity of this model complex, we are able to compare the absorption spectrum calculated via FVB/GB dynamics using Heller's time-dependent formula with one obtained from rigorously calculated eigenenergies and Franck-Condon factors. The FVB/GB treatment proves to be accurate at approximately 15-cm -1 resolution, despite the presence of several thousand spectral lines and a sequence of various-order system-bath resonances culminating at the highest absorption frequencies in an inversion of the relative system and bath time scales.

  14. Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.

    Science.gov (United States)

    Althorpe, Stuart C

    2004-07-15

    We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics

  15. A first course in vibrations and waves

    CERN Document Server

    Samiullah, Mohammad

    2015-01-01

    This book builds on introductory physics and emphasizes understanding of vibratory motion and waves based on first principles. The book is divided into three parts. Part I contains a preliminary chapter that serves as a review of relevant ideas of mechanics and complex numbers. Part II is devoted to a detailed discussion of vibrations of mechanical systems. This part covers a simple harmonic oscillator, coupled oscillators, normal coordinates, beaded string, continuous string, standing waves, and Fourier series. Part II ends with a presentation of stationary solutions of driven finite systems. Part III is concerned with waves. Here, the emphasis is on the discussion of common aspects of all types of waves. The applications to sound, electromagnetic, and matter waves are illustrated. The book also includes examples from water waves and electromagnetic waves on a transmission line. The emphasis of the book is to bring out the similarities among various types of waves. The book includes treatment of reflection a...

  16. Time evolution of electromagnetic wave packets through superlattices: evidence for superluminal velocities.

    Science.gov (United States)

    Pereyra, Pedro; Simanjuntak, Herbert P

    2007-05-01

    We study the space-time evolution of electromagnetic wave packets through optical superlattices. We present rigorous analytical solutions describing the multiple-scattering processes of Gaussian wave packets defined in the band gap and in the resonant energy regions. Following their space-time evolution, we obtain the Maxwell equations prediction for the time spent inside the superlattice. From a close and careful observation of the reflected and transmitted parts of Gaussian packets in a photonic band gap, we conclude unambiguously that the superluminal transmission and the Hartman effect are inherent properties of the electromagnetic theory. It is also shown that the theoretical predictions for the time spent inside an optical superlattice are in good agreement with the experimental results and the phase time predictions.

  17. Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets

    Science.gov (United States)

    Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.

    2017-01-01

    We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

  18. Effects of delayed nonlinear response on wave packet dynamics in one-dimensional generalized Fibonacci chains

    Science.gov (United States)

    Zhang, Jianxin; Zhang, Zhenjun; Tong, Peiqing

    2013-07-01

    We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.

  19. Effects of delayed nonlinear response on wave packet dynamics in one-dimensional generalized Fibonacci chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)

    2013-07-15

    We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.

  20. Wave-packet dynamics of noninteracting ultracold bosons in an amplitude-modulated parabolic optical lattice

    Science.gov (United States)

    Yamakoshi, Tomotake; Watanabe, Shinichi

    2015-06-01

    The recent Aarhus experiment [Phys. Rev. A 88, 023620 (2013), 10.1103/PhysRevA.88.023620] produced wave packets by applying amplitude modulation to a trapped Bose-Einstein condensate (BEC) of 87Rb using an optical lattice. The present paper renders a theoretical account of this experimental production of wave packets and their subsequent time evolution, focusing on a one-dimensional noninteracting bosonic system as a fundamental starting point for accurate quantum analysis. Since experimental manipulation requires efficient wave-packet creation, we introduce the "single-Q Rabi model" to give a simple and reliable description of the interband transition. As a natural extension, we demonstrate enhancement of the wave-packet production by the "two-step Rabi oscillation method" using either one or two frequencies. The subsequent time evolution is affected by the intertwining of Bragg reflection and the Landau-Zener transition at each band gap, which is analyzed with the aid of a semiclassical theory [Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302].

  1. Frame properties of wave packet systes in L^2 (R^d)

    DEFF Research Database (Denmark)

    Christensen, Ole; Rahimi, Asghar

    2008-01-01

    Extending work by Hernandez, Labate and Weiss, we present a sufficent condition for a generalized shift-invariant system to be a Bessel sequence or even a frame forL(2)(R-d). In particular, this leads to a sufficient condition for a wave packet system to form a frame. On the other hand, we show...

  2. Initial Dynamics of The Norrish Type I Reaction in Acetone: Probing Wave Packet Motion

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Sølling, Theis I.; Møller, Klaus Braagaard

    2011-01-01

    The Norrish Type I reaction in the S1 (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels...

  3. Dependence of the Interferometric Sizes of Pion Generation Volume on Sizes of Their Wave Packet

    CERN Document Server

    Anikina, M K; Lukstins, Yu P

    2002-01-01

    The influence of the pion initial wave packet sizes on sizes of the elements of the pion generation volume obtained by the interference method is investigated experimentally in the central MgMg interactions at 4.3 GeV/c per nucleon.

  4. Scattered wave packet formalism for the energy-resolved reaction probability

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: chiachun@mail.utexas.edu [Institute for Theoretical Chemistry and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Wyatt, Robert E., E-mail: wyattre@mail.utexas.edu [Institute for Theoretical Chemistry and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)

    2012-01-17

    Graphical abstract: The incident, scattered, and total wave functions are obtained by solving the modified time-dependent Schroedinger equation on a reduced computational grid. Highlights: Black-Right-Pointing-Pointer Scattered wave packet formalism provides a new method for open quantum systems. Black-Right-Pointing-Pointer Number of grid points is reduced for the calculation of the reaction probability. Black-Right-Pointing-Pointer Signature of a quantum resonance can be captured. Black-Right-Pointing-Pointer Excellent results are obtained for a one-dimensional model chemical reaction. - Abstract: The scattered wave packet formalism developed for a quantum subsystem interacting with reservoirs through open boundaries is utilized to calculate the energy-resolved transmission probability. The total wave function is split into incident and scattered components. Markovian outgoing wave boundary conditions are imposed on the scattered or total wave function by the polynomial method. The wave packet correlation function approach is employed to compute the energy-resolved transmission probability for a one-dimensional potential barrier and a one-dimensional model chemical reaction exhibiting a quantum resonance. Accurate results demonstrate that this formalism can significantly reduce the number of grid points required in a dynamical calculation for the reaction probability.

  5. Vibrational dephasing in matter-wave interferometers

    Science.gov (United States)

    Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.

    2017-03-01

    Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.

  6. Frequencies of wave packets of whistler-mode chorus inside its source region: a case study

    Directory of Open Access Journals (Sweden)

    O. Santolik

    2008-06-01

    Full Text Available Whistler-mode chorus is a structured wave emission observed in the Earth's magnetosphere in a frequency range from a few hundreds of Hz to several kHz. We investigate wave packets of chorus using high-resolution measurements recorded by the WBD instrument on board the four Cluster spacecraft. A night-side chorus event observed during geomagnetically disturbed conditions is analyzed. We identify lower and upper frequencies for a large number of individual chorus wave packets inside the chorus source region. We investigate how these observations are related to the central position of the chorus source which has been previously estimated from the Poynting flux measurements. We observe typical frequency bandwidths of chorus of approximately 10% of the local electron cyclotron frequency. Observed time scales are around 0.1 s for the individual wave packets. Our results indicate a lower occurrence probability for lower frequencies in the vicinity of the central position of the source compared to measurements recorded closer to the outer boundaries of the source. This is in agreement with recent research based on the backward wave oscillator theory.

  7. Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom

    DEFF Research Database (Denmark)

    Simmermacher, Mats; Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2017-01-01

    description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover......, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom...

  8. Study of the wave packet treatment of neutrino oscillation at Daya Bay

    Energy Technology Data Exchange (ETDEWEB)

    An, F.P. [East China Univ. of Science and Technology, Shanghai (China). Inst. of Modern Physics; Balantekin, A.B. [Wisconsin Univ., Madison, WI (United States); Band, H.R. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Collaboration: Daya Bay Collaboration; and others

    2017-09-15

    The disappearance of reactor anti ν{sub e} observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ{sub rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of anti ν{sub e} acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 x 10{sup -17} < σ{sub rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10{sup -14} or similar 10{sup -11} cm) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin{sup 2}2θ{sub 13} and Δm{sup 2}{sub 32} within the plane wave model. (orig.)

  9. Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules

    DEFF Research Database (Denmark)

    Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus

    2010-01-01

    separately for each molecular charge state. Our model circumvents the solution of a multiparticle Schrödinger equation and makes it possible to extract the kinetic energy release spectrum via the Coulomb explosion channel as well as the physical origin of the different structures in the spectrum......A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics...... and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved...

  10. Entanglement of molecular-orientation, rotational and orbital degrees of freedom in multiphoton orientational wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Mainos, C; Dutier, G; Grucker, J; Perales, F; Baudon, J; Ducloy, M [Laboratoire de Physique des Lasers, Universite Paris 13 Av JB Clement, 93430 Villetaneuse (France)

    2008-02-14

    Multiphoton orientational wave packets induced by short resonant polarized laser pulses in a rotationally-frozen interacting molecule contain relevant information. The entanglement of the orbital, rotational and orientational degrees of freedom shows a strong dependence on the polarization state of the absorbed photons and the space orientation of the interacting molecule and enables one to assign the orbital state of the excited molecular electron, to measure the space orientation of the interacting molecule from the orientational recurrences, to relate the measured temporal widths to the angular momentum photon state and the coherence of the laser pulse, to obtain information on the ground rotational state, or to measure the effective temperature of an isotropic molecular assembly. The space orientation of a small number of independent molecules can be distinguished from their distinct orientational dependence in the formation of the individual orientational wave packets.

  11. Entanglement of molecular-orientation, rotational and orbital degrees of freedom in multiphoton orientational wave packets

    Science.gov (United States)

    Mainos, C.; Dutier, G.; Grucker, J.; Perales, F.; Baudon, J.; Ducloy, M.

    2008-02-01

    Multiphoton orientational wave packets induced by short resonant polarized laser pulses in a rotationally-frozen interacting molecule contain relevant information. The entanglement of the orbital, rotational and orientational degrees of freedom shows a strong dependence on the polarization state of the absorbed photons and the space orientation of the interacting molecule and enables one to assign the orbital state of the excited molecular electron, to measure the space orientation of the interacting molecule from the orientational recurrences, to relate the measured temporal widths to the angular momentum photon state and the coherence of the laser pulse, to obtain information on the ground rotational state, or to measure the effective temperature of an isotropic molecular assembly. The space orientation of a small number of independent molecules can be distinguished from their distinct orientational dependence in the formation of the individual orientational wave packets.

  12. Extraction of state-to-state reactive scattering attributes from wave packet in reactant Jacobi coordinates.

    Science.gov (United States)

    Sun, Zhigang; Guo, Hua; Zhang, Dong H

    2010-02-28

    The S-matrix for a scattering system provides the most detailed information about the dynamics. In this work, we discuss the calculation of S-matrix elements for the A+BC-->AB+C, AC+B type reaction. Two methods for extracting S-matrix elements from a single wave packet in reactant Jacobi coordinates are reviewed and compared. Both methods are capable of extracting the state-to-state attributes for both product channels from a single wave packet propagation. It is shown through the examples of H+HD, Cl+H(2), and H+HCl reactions that such reactant coordinate based methods are easy to implement, numerically efficient, and accurate. Additional efficiency can be gained by the use of a L-shaped grid with two-dimensional fast Fourier transform.

  13. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    OpenAIRE

    Pullen, M. G.; Wolter, B.; Le, A. -T.; Baudisch, M; Sclafani, M.; Pires, H.; Schr?ter, C. D.; Ullrich, J; R. Moshammer; Pfeifer, T.; Lin, C. D.; Biegert, J.

    2016-01-01

    The ability to directly follow and time resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as {\\pi}g) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction...

  14. Quantum wave packet study of Li+H2+ inelastic scattering

    Science.gov (United States)

    Bulut, Niyazi; Gogtas, Fahrettin; Akpinar, Sinan

    2005-05-01

    Time dependent quantum wave packet calculations have been carried for the astrophysically important Li+H2+ collision process. The state-to-state and state-to-all inelastic probabilities for the entitled collision have been calculated. Sharp resonance features are observed in all transition probabilities at low collision energies. J-shifting approximation has been employed to estimate the inelastic integral cross-sections.

  15. Massachusetts Bay - Internal Wave Packets Extracted from SAR Imagery Binned in 1x1 minute grid cells

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 1x1 minute latitude/longitude polygon grid cells. Statistics were...

  16. Massachusetts Bay - Internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...

  17. Theoretical and numerical studies of wave-packet propagation in tokamak plasmas

    CERN Document Server

    Lu, Z X; Cardinali, A

    2011-01-01

    Theoretical and numerical studies of wave-packet propagation are presented to analyze the time varying 2D mode structures of electrostatic fluctuations in tokamak plasmas, using general flux coordinates. Instead of solving the 2D wave equations directly, the solution of the initial value problem is used to obtain the 2D mode structure, following the propagation of wave-packets generated by a source and reconstructing the time varying field. As application, the 2D WKB method is applied to investigate the shaping effects (elongation and triangularity) of tokamak geometry on the lower hybrid wave propagation and absorbtion. Meanwhile, the Mode Structure Decomposition (MSD) method is used to handle the boundary conditions and simplify the 2D problem to two nested 1D problems. The MSD method is related to that discussed earlier by Zonca and Chen [Phys. Fluids B 5, 3668 (1993)], and reduces to the well-known "ballooning formalism" [J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40, 396 (1978)], when...

  18. Collisions of two Alfvénic wave packets in a kinetic plasma

    Science.gov (United States)

    Pezzi, O.; Servidio, S.; Valentini, F.; Parashar, T.; Malara, F.; Matthaeus, W. H.; Veltri, P.

    2016-12-01

    The problem of two colliding and counter-propagating Alfvénic wave packets has been investigated in detail since the late Seventies. In particular Moffatt [1] and Parker [2] showed that, in the framework of the incompressible magnetohydrodynamics (MHD), nonlinear interactions can develop only during the overlapping of the two packets. Here we describe a similar problem in the framework of the kinetic physics. The collision of two quasi-Alfvénic packets has been analyzed by means of MHD, Hall-MHD and kinetic simulations performed with two different hybrid codes: a PIC code [3] and a Vlasov-Maxwell code [4]. Due to the huge computational cost, only a 2D-3V phase space is allowed (two dimensions in the physical space, three dimensions in the velocity space). Preliminary results suggest that, as well as in the MHD case, the most relevant nonlinear effects occur during the overlapping of the two packets. For both the PIC and Vlasov cases, strong temperature anisotropies are present during the evolution of the wave packets. Moreover, due to the absence of numerical noise, Vlasov simulations show that the collision of the counter-propagating solitary waves produces a significant beam in the velocity distribution functions [5], which, instead, cannot be appreciated in PIC simulations. We remark that, beyond the interest of studying a well-known MHD problem in the realm of the kinetic physics, our results allows also to compare different numerical codes. [1] H.K. Moffatt, Field generation in electrically conducting fluids (Cambridge University Press, 1978). [2] E.N. Parker, Cosmical magnetic fields: their origin and their activity (Oxford University Press, 1979). [3] T.N. Parashar, M.A. Shay, P.A. Cassak and W.H. Matthaeus, Physics of Plasmas 16, 032310 (2009). [4] F. Valentini, P. Trávníček, F. Califano, P. Hellinger & A. Mangeney, Journal of Computational Physics 225, 753-770 (2007). [5] J. He, C. Tu, E. Marsch, C.H. Chen, L. Wang, Z. Pei, L. Zhang, C.S. Salem and S

  19. Steering the Electron in H2+ by Nuclear Wave Packet Dynamics

    Science.gov (United States)

    Fischer, Bettina; Kremer, Manuel; Pfeifer, Thomas; Feuerstein, Bernold; Sharma, Vandana; Thumm, Uwe; Schröter, Claus Dieter; Moshammer, Robert; Ullrich, Joachim

    2010-11-01

    By combining carrier-envelope phase (CEP) stable light fields and the traditional method of optical pump-probe spectroscopy we study electron localization in dissociating H2+ molecular ions. Localization and localizability of electrons is observed to strongly depend on the time delay between the two CEP-stable laser pulses with a characteristic periodicity corresponding to the oscillating molecular wave packet. Variation of the pump-probe delay time allows us to uncover the underlying physical mechanism for electron localization, which are two distinct sets of interfering dissociation channels that exhibit specific temporal signatures in their asymmetry response.

  20. Quantum wave packet study of S( 1D) + D 2 → SD + D reaction

    Science.gov (United States)

    Bulut, Niyazi; Gogtas, Fahrettin; Akpinar, Sinan

    2005-03-01

    S( 1D) + D 2 → SD + D reaction has been studied by using a time-dependent quantum real wave packet method. State-to-state and state-to-all reactive scattering probabilities for a broad range of energy are calculated at zero total angular momentum. The state-to-state probabilities show many sharp peaks that ascribed to reactive scattering resonances. The probabilities for J > 0 are estimated from accurately computed J = 0 probabilities by using J-shifting approximation. The integral cross-sections are calculated for a large energy range.

  1. Mapping of wave packets in direct fragmentation via pump-probe frequency integrated fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Engel, Volker; Henriksen, Niels Engholm

    2000-01-01

    We consider femtosecond excitation of a molecule to a dissociative electronic state. The quantum dynamics is recorded via delayed excitation to a higher electronic state and measurement of the total fluorescence from this state detected as a function of delay time. It is shown that the signal can...... be used to determine the probability density distribution of the outgoing wave packet describing the fragmentation. This, in particular, applies to the case of fragment detection since then the time-dependent signal directly measures the probability flux at a fixed value of the dissociation coordinate...

  2. Development of S-wave portable vibrator; S ha potable vibrator shingen no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, Y.; Matsubara, Y. [OYO Corp., Tokyo (Japan); Nijhof, V.; Brouwer, J.

    1996-05-01

    An S-wave portable vibrator to serve as a seismic source has been developed for the purpose of applying the shallow-layer reflection method to the study of the soil ground. The author, et al., who previously developed a P-wave portable vibrator has now developed an S-wave version, considering the advantage of the S-wave over the P-wave in that, for example, the S-wave velocity may be directly compared with the N-value representing ground strength and that the S-wave travels more slowly than the P-wave through sticky soil promising a higher-resolution exploration. The experimentally constructed S-wave vibrator consists of a conventional P-wave vibrator and an L-type wooden base plate combined therewith. Serving as the monitor for vibration is a conventional accelerometer without any modification. The applicability test was carried out at a location where a plank hammering test was once conducted for reflection aided exploration, and the result was compared with that of the plank hammering test. As the result, it was found that after some preliminary treatment the results of the two tests were roughly the same but that both reflected waves were a little sharper in the S-wave vibrator test than in the plank hammering test. 4 refs., 9 figs., 1 tab.

  3. Fokker-Planck electron diffusion caused by an obliquely propagating electromagnetic wave packet of narrow bandwidth

    Science.gov (United States)

    Hizanidis, Kyriakos

    1989-01-01

    The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.

  4. Quantum black hole wave packet: Average area entropy and temperature dependent width

    Directory of Open Access Journals (Sweden)

    Aharon Davidson

    2014-09-01

    Full Text Available A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekenstein's area entropy is formulated using the 〈mass2〉 average, leaving the 〈mass〉 average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy micro black hole of finite rms size, and decreases Doppler-like towards the classical limit.

  5. Wave packet motions coupled to electron transfer in reaction centers of Chloroflexus aurantiacus.

    Science.gov (United States)

    Yakovlev, Andrei G; Shkuropatova, Tatiana A; Vasilieva, Lyudmila G; Shkuropatov, Anatoli Ya; Shuvalov, Vladimir A

    2008-08-01

    Transient absorption difference spectroscopy with approximately 20 femtosecond (fs) resolution was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of Chloroflexus (C.) aurantiacus. In RCs, the composition of the B-branch chromophores is different with respect to that of purple bacterial RCs by occupying the B(B) binding site of accessory bacteriochlorophyll by bacteriopheophytin molecule (Phi(B)). It was found that the nuclear wave packet motion induced on the potential energy surface of the excited state of the primary electron donor P* by approximately 20 fs excitation leads to a coherent formation of the states P+Phi(B)(-) and P+B(A)(-) (B(A) is a bacteriochlorophyll monomer in the A-branch of cofactors). The processes were studied by measuring coherent oscillations in kinetics of the absorbance changes at 900 nm and 940 nm (P* stimulated emission), at 750 nm and 785 nm (Phi(B) absorption bands), and at 1,020-1028 nm (B(A)(-) absorption band). In RCs, the immediate bleaching of the P band at 880 nm and the appearance of the stimulated wave packet emission at 900 nm were accompanied (with a small delay of 10-20 fs) by electron transfer from P* to the B-branch with bleaching of the Phi(B) absorption band at 785 nm due to Phi(B)(-) formation. These data are consistent with recent measurements for the mutant HM182L Rb. sphaeroides RCs (Yakovlev et al., Biochim Biophys Acta 1757:369-379, 2006). Only at a delay of 120 fs was the electron transfer from P* to the A-branch observed with a development of the B(A)(-) absorption band at 1028 nm. This development was in phase with the appearance of the P* stimulated emission at 940 nm. The data on the A-branch electron transfer in C. aurantiacus RCs are consistent with those observed in native RCs of Rb. sphaeroides. The mechanism of charge separation in RCs with the modified B-branch pigment composition is discussed in terms of coupling between

  6. Nonreactive scattering of the O+ + H2: A time dependent wave packet approach

    Science.gov (United States)

    Kłos, Jacek; Bulut, Niyazi; Akpinar, Sinan

    2012-04-01

    Time dependent wave packet calculations have been performed for the O+ + H2 nonreactive scattering on the recent potential energy surface of Martinez et al. [J. Chem. Phys., 120, 4705, 2004]. Exact total reflection probabilities at the total angular momentum J = 0 and approximate ones for J > 0 have been calculated by using Centrifugal Sudden approximation. Integral cross sections over collision energy range of 0.08-0.7 eV were obtained. Time independent quantum calculations have also been performed for a comparison. Initial state-selected rate constants have been obtained by means of Capture model based on a simple and Uniform J-shifting techniques and they display an Arrhenius behavior.

  7. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.

    Science.gov (United States)

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-10-26

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.

  8. The time propagation of the stationary states of a Morse oscillator by the Gaussian wave packet method

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, G. D.

    1989-01-01

    , and a simple method is devised to identify those states, which are propagated accurately. This procedure may be used to investigate when the Gaussian wave packet method is appropriate for the simulation of a given process. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  9. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    Science.gov (United States)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  10. Quantum fluctuation of electronic wave-packet dynamics coupled with classical nuclear motions.

    Science.gov (United States)

    Amano, Michiko; Takatsuka, Kazuo

    2005-02-22

    An ab initio electronic wave-packet dynamics coupled with the simultaneous classical dynamics of nuclear motions in a molecule is studied. We first survey the dynamical equations of motion for the individual components. Reflecting the nonadiabatic dynamics that electrons can respond to nuclear motions only with a finite speed, the equations of motion for nuclei include a force arising from the kinematic (nuclear momentum) coupling from electron cloud. To materialize these quantum effects in the actual ab initio calculations, we study practical implementation of relevant electronic matrix elements that are related to the derivatives with respect to the nuclear coordinates. Applications of the present scheme are performed in terms of the configuration state functions (CSF) using the canonical molecular orbitals as basis functions without transformation to particular diabatic basis. In the CSF representation, the nonadiabatic interaction due to the kinematic coupling is anticipated to be rather small, and instead it should be well taken into account through the off-diagonal elements of the electronic Hamiltonian matrix. Therefore it is expected that the nonadiabatic dynamics based on this CSF basis neglecting the kinematic coupling may work. To verify this anticipation and to quantify the actual effects of the kinematic coupling, we compare the dynamics with and without the kinematic-coupling terms using the same CSF set. Applications up to the fifth electronically excited states in a nonadiabatic collision between H(2) and B(+) shows that the overall behaviors of these two calculations are surprisingly similar to each other in an average sense except for a fast fluctuation reflecting the electronic time scale. However, at the same time, qualitative differences in the collision events are sometimes observed. Therefore it turns out after all that the kinematic-coupling terms cannot be neglected in the CSF-basis representation. The present applications also demonstrate

  11. Dynamical properties of a particle in a wave packet: Scaling invariance and boundary crisis

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [CAMTP, Center For Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Robnik, Marko, E-mail: robnik@uni-mb.si [CAMTP, Center For Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatistica, Matematica Aplicada e Computacao, UNESP, Univ Estadual Paulista, Av. 24A, 1515-Bela Vista, 13506-900 Rio Claro, SP (Brazil)

    2011-10-15

    Highlights: > Acceleration of particles in a wave packet. > The location of the first invariant spanning curve which borders the chaotic sea. > Scaling to characterise the transition from integrability to non-integrability. > The property of area preservation is broken and attractors emerge. > After a tiny increase of the dissipation the system experience a boundary crisis. - Abstract: Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2.

  12. On the development and evolution of nonlinear ion acoustic wave packets

    Directory of Open Access Journals (Sweden)

    A. M. Hamza

    2005-09-01

    Full Text Available A simple model of ion fluctuations (ion acoustic and ion cyclotron fluctuations for example driven by an electron current which leads to intermittent fluctuations when the linear growth rate exceeds the wave packet dispersion rate is analized. The normalized fluctuation amplitude eφ0/T can be much larger than the mass ratio (me/mi level predicted by the conventional quasilinear theory or Manheimer's theory (see references in this document, and where φ0 represents the amplitude of the main peak of the ion fluctuations. Although the ion motion is linear, intermittency is produced by the strong nonlinear electron response, which causes the electron momentum input to the ion fluctuations to be spatially localized. We treat the 1-D case because it is especially simple from an intuitive and analytical point of view, but it is readily apparent and one can put forward the conjecture that the effect occurs in a three dimensional magnetized plasma. The 1-D analysis, as shown in this manuscript will clearly help identify the subtle difference between turbulence as conventionally understood and intermittency as it occurs in space and laboratory plasmas. Keywords. Meteorology and atmospheric dynamics (Turbulence – Ionosphere (Wave-particles interactions – Space plasma physics (Waves and instabilities

  13. Effect of horizontal wave barriers on ground vibration propagation.

    Science.gov (United States)

    Grau, L; Laulagnet, B

    2015-09-01

    The aim of this article is to introduce a method to mitigate ground surface vibration through a flexural plate coupled to the ground and acting as a horizontal wave barrier. Using the thin plate hypothesis, two flexural plates are coupled to the ground, the first plate being the excited plate and the second plate the horizontal wave barrier. For instance, the first plate may represent a slab track and be excited by the tramway wheels. A solution to the problem can be found using a spatial two-dimensional Fourier transform of the elastodynamics equation for the ground and a modal decomposition for the flexural plate vibration. The authors show that vibration is substantially mitigated by the horizontal wave barrier and depends on its thickness and width. When the top surface wavelength becomes smaller than twice the plate width, the horizontal wave barrier acts as a wave barrier in the frequency range of interest, i.e., from 20 Hz.

  14. Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings

    Science.gov (United States)

    Fang, Tian-Shen

    2007-01-01

    This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…

  15. Channel-resolved subcycle interferences of electron wave packets emitted from H$_2$ in two-color laser fields

    CERN Document Server

    Xie, Xinhua; Kartashov, Daniil; Zhang, Li; Baltuška, Andrius; Kitzler, Markus

    2016-01-01

    We report on the observation of subcycle interferences of electron wave packets released during the strong field ionization of H$_2$ with cycle-shaped two-color laser fields. With a reaction microscope, channel-resolved photoelectron momentum distribution are obtained for different final products originating from single ionization of H$_2$. Our results show that the subcycle interference structures of electron wave packet are very sensitive to the cycle-shape of the two-color laser field. The reason is that the ionization time within an optical cycle is determined by the cycle-shape of the laser field. The subcycle interference structures can be further used to get the subcycle dynamics of molecules during strong field interaction.

  16. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets.

    Science.gov (United States)

    Pullen, M G; Wolter, B; Le, A-T; Baudisch, M; Sclafani, M; Pires, H; Schröter, C D; Ullrich, J; Moshammer, R; Pfeifer, T; Lin, C D; Biegert, J

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as πg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O2 and C2H2 molecules, with πg and πu symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. While this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.

  17. Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength

    Science.gov (United States)

    Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver

    2017-09-01

    Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.

  18. Wave packet study of the secondary emission of negatively charged, monoatomic ions from sputtered metals

    Energy Technology Data Exchange (ETDEWEB)

    Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)

    2007-05-15

    Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.

  19. Quantum wave packet calculation of reaction probabilities, cross sections, and rate constants for the C(1D) + HD reaction

    Science.gov (United States)

    Gogtas, Fahrettin; Bulut, Niyazi; Akpinar, Sinan

    The time-dependent real wave packet method has been used to study the C(1D) + HD reaction. The state-to-state and state-to-all reactive scattering probabilities for a broad range of energies are calculated at zero total angular momentum. The probabilities for J > 0 are estimated from accurately computed J = 0 probabilities by using the J-shifting approximation. The integral cross sections for a large energy range, and thermal rate constants are calculated.

  20. Characterization of a quantum phase transition in Dirac systems by means of the wave-packet dynamics

    Directory of Open Access Journals (Sweden)

    E. Romera

    2012-12-01

    Full Text Available We study the signatures of phase transitions in the time evolution of wave-packets by analyzing two simple model systems: a graphene quantum dot model in a magnetic field and a Dirac oscillator in a magnetic field. We have characterized the phase transitions using the autocorrelation function. Our work also reveals that the description in terms of Shannon entropy of the autocorrelation function is a clear phase transition indicator.

  1. Harmonic vibrations and waves in a cylindrical helically anisotropic shell

    Science.gov (United States)

    Panfilov, I. A.; Ustinov, Yu. A.

    2012-04-01

    A Kirchhoff-Love type applied theory is used to study the specific characteristics of harmonic waves and vibrations of a helically anisotropic shell. Special attention is paid to axisymmetric and bending vibrations. In both cases, the dispersion equations are constructed and a qualitative and numerical analysis of their roots and the corresponding elementary solutions is performed. It is shown that the skew anisotropy in the axisymmetric case generates a relation between the longitudinal and torsional vibrations which is mathematically described by the amplitude coefficients of homogeneous waves. In the case of a shell with rigidly fixed end surfaces, the dependence of the first two natural frequencies on the shell length and the helical line slope α, i.e., the geometric parameter of helical anisotropy, is studied. A boundary value problem in which longitudinal vibrations are generated on one of the end surfaces and the other end is free of forces and moments is considered to analyze the degree of transformation of longitudinal vibrations into longitudinally torsional vibrations. In the case of bending vibrations, two problems for a half-infinite shell are studied as well. In the first problem, the waves are excited kinematically by generating harmonic vibrations of the shell end surface in the plane of the axial cross-section, and it is shown that the axis generally moves in some closed trajectories far from the end surface. In the second problem, the reflection of a homogeneous wave incident on the shell end is examined. It is shown that the "boundary resonance" phenomenon can arise in some cases.

  2. Massachusetts Bay - Internal Wave Packets Extracted from SAR Imagery Binned in 30x30 second latitude/longitude polygon grid cells

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 30x30 second latitude/longitude polygon grid cells. Statistics were...

  3. Exact Wave Packet Dynamics of Singlet Fission in Unsubstituted and Substituted Polyene Chains within Long-Range Interacting Models

    CERN Document Server

    Prodhan, Suryoday

    2016-01-01

    Singlet fission is a potential pathway for significant enhancement of efficiency in organic solar cells. In this article, we have studied singlet fission in a pair of polyene molecules employing exact many-body wave packet dynamics. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions and site charge-bond charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schr\\"{o}dinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, $2{}^1A$ excited singlet state leads to significant fission yield while the $1{}^1B$ state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, singlet state derived from $1{}^1B$ state also gives si...

  4. Experimental investigation of localized disturbances in the straight wing boundary layer, generated by finite surface vibrations

    Science.gov (United States)

    Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.

    2017-10-01

    Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.

  5. Topology optimization of vibration and wave propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2007-01-01

    The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....

  6. ‘Superluminal paradox’ in wave packet propagation and its quantum mechanical resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovski, D., E-mail: dgsokol15@gmail.com [Department of Physical Chemistry, University of the Basque Country, Leioa, Bizkaia (Spain); IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Akhmatskaya, E. [Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14 48009, Bilbao Bizkaia (Spain)

    2013-12-15

    We analyse in detail the reshaping mechanism leading to apparently ‘superluminal’ advancement of a wave packet traversing a classically forbidden region. In the coordinate representation, a barrier is shown to act as an effective beamsplitter, recombining envelopes of the freely propagating pulse with various spacial shifts. Causality ensures that none of the constituent envelopes are advanced with respect to free propagation, yet the resulting pulse is advanced due to a peculiar interference effect, similar to the one responsible for ‘anomalous’ values which occur in Aharonov’s ‘weak measurements’. In the momentum space, the effect is understood as a bandwidth phenomenon, where the incident pulse probes local, rather than global, analytical properties of the transmission amplitude T(p). The advancement is achieved when T(p) mimics locally an exponential behaviour, similar to the one occurring in Berry’s ‘superoscillations’. Seen in a broader quantum mechanical context, the ‘paradox’ is but a consequence of an attempt to obtain ‘which way?’ information without destroying the interference between the pathways of interest. This explains, to a large extent, the failure to adequately describe tunnelling in terms of a single ‘tunnelling time’. -- Highlights: •Apparent superluminality is described in the language of quantum measurements. •A barrier acts as a beamsplitter delaying copies of the initial pulse. •In the coordinate space the effect is similar to what occurs in ‘weak measurements’. •In the momentum space it relies on superoscillations in the transmission amplitude. •It is an interference effect, unlikely to be explained in simpler physical terms.

  7. Radiation from an electron beam in magnetized plasma: excitation of a whistler mode wave packet by interacting, higher-frequency, electrostatic-wave eigenmodes

    Science.gov (United States)

    Brenning, N.; Axnäs, I.; Koepke, M.; Raadu, M. A.; Tennfors, E.

    2017-12-01

    Infrequent, bursty, electromagnetic, whistler-mode wave packets, excited spontaneously in the laboratory by an electron beam from a hot cathode, appear transiently, each with a time duration τ around ∼1 μs. The wave packets have a center frequency f W that is broadly distributed in the range 7 MHz electrostatic (es) plasma oscillations at values of f hf, 200 MHz < f hf < 500 MHz, that are hypothesized to match eigenmode frequencies of an axially localized hf es field in a well-defined region attached to the cathode. Features of these es-eigenmodes that are studied include: the mode competition at times of transitions from one dominating es-eigenmode to another, the amplitude and spectral distribution of simultaneously occurring es-eigenmodes that do not lead to a transition, and the correlation of these features with the excitation of whistler mode waves. It is concluded that transient coupling of es-eigenmode pairs at f hf such that | {{{f}}}1,{{h}{{f}}}-{{{f}}}2,{{h}{{f}}}| = {f}{{W}}< {f}{{g}{{e}}} can explain both the transient lifetime and the frequency spectra of the whistler-mode wave packets (f W) as observed in lab. The generalization of the results to bursty whistler-mode excitation in space from electron beams, created on the high potential side of double layers, is discussed.

  8. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  9. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    Science.gov (United States)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  10. Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2014-06-21

    A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D2 reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.

  11. Wave-induced Ship Hull Vibrations in Stochastic Seaways

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Dogliani, M.

    1996-01-01

    A theoretical Study is undertaken on the determination of wave-induced loads in flexible ship hulls. The calculations are performed within the framework of a non-linear, quadratic strip theory formulated in the frequency domain. Included are non-linear effects due to changes in added mass......, hydrodynamic damping and water line breadth with sectional immersion in waves. The study is limited to continuous excitations from the waves and thus transient so-called whipping vibrations due to slamming loads are not considered.Because of the non-linearities the ship hull responses become non...... to the large separation between dominating wave frequencies and the lowest two-node frequency of the hull beam. Both extreme value predictions and fatigue damage are considered.For a fast container ship the rigid body and two-node (springing) vertical wave-induced bending moments amidship are calculated...

  12. Time-dependent wave-packet method for the complete determination of S-matrix elements for reactive molecular collisions in three dimensions

    Science.gov (United States)

    Judson, Richard S.; Kouri, Donald J.; Neuhauser, Daniel; Baer, Michael

    1990-01-01

    An alternative time-dependent wave-packet method for treating three-dimensional gas phase reactive atom-diatom collisions is presented. The method employs a nonreactive body-frame wave packet propagation procedure, made possible by judicious use of absorbing optical potentials, a novel scheme for interpolating the wave function from coordinates in one arrangement to those in another and the fact that the time-dependent Schroedinger equation is an initial-value problem. The last feature makes possible a computationally viable and accurate procedure for changing from one arrangement's coordinates to another. In addition, the method allows the determination of S-matrix elements over a wide range of energies from a single wave-packet propagation. The method is illustrated by carrying out detailed calculations of inelastic and reactive scattering in the H + H2 system using the Liu-Siegbahn-Truhlar-Horowitz potential surface.

  13. The dynamics of a quantum wave packet of a neutron and the question of extra dimensions of space-time

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, Tobias; Abele, Hartmut [Physikalisches Institut der Universitaet Heidelberg (Germany); Geltenbort, Peter; Plonka, Christian [Institut Laue-Langevin, Grenoble (France)

    2008-07-01

    The dynamics of a quantum mechanical wave packet bouncing off an insuperable potential wall in the gravitational field of the earth combines quantum theory with aspects of Newtonian mechanics at short distances. We are performing an experiment to realize such a quantum bouncing ball with ultracold neutrons in a system, in which we have measured before the lowest stationary quantum states in the earth's gravitational field. This experiment is sensitive to gravity-like forces at a length scale below 10 {mu}m, where we already place limits.

  14. Quantum wave packet study of S({sup 1}D) + D{sub 2} {yields} SD + D reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Niyazi [Department of Physics, Faculty of Science and Arts, Firat University, 23169 Elazig (Turkey); Gogtas, Fahrettin [Department of Physics, Faculty of Science and Arts, Firat University, 23169 Elazig (Turkey)]. E-mail: gogtas@quantum.firat.edu.tr; Akpinar, Sinan [Department of Physics, Faculty of Science and Arts, Firat University, 23169 Elazig (Turkey)

    2005-03-14

    S({sup 1}D) + D{sub 2} {yields} SD + D reaction has been studied by using a time-dependent quantum real wave packet method. State-to-state and state-to-all reactive scattering probabilities for a broad range of energy are calculated at zero total angular momentum. The state-to-state probabilities show many sharp peaks that ascribed to reactive scattering resonances. The probabilities for J > 0 are estimated from accurately computed J = 0 probabilities by using J-shifting approximation. The integral cross-sections are calculated for a large energy range.

  15. Real-Time Quadrature Measurement of a Single-Photon Wave Packet with Continuous Temporal-Mode Matching.

    Science.gov (United States)

    Ogawa, Hisashi; Ohdan, Hideaki; Miyata, Kazunori; Taguchi, Masahiro; Makino, Kenzo; Yonezawa, Hidehiro; Yoshikawa, Jun-Ichi; Furusawa, Akira

    2016-06-10

    Real-time controls based on quantum measurements are powerful tools for various quantum protocols. However, their experimental realization has been limited by mode mismatch between the temporal mode of quadrature measurement and that heralded by photon detection. Here, we demonstrate real-time quadrature measurement of a single-photon wave packet induced by photon detection by utilizing continuous temporal-mode matching between homodyne detection and an exponentially rising temporal mode. Single photons in exponentially rising modes are also expected to be useful resources for interactions with other quantum systems.

  16. Dissipative Bohmian mechanics within the Caldirola–Kanai framework: A trajectory analysis of wave-packet dynamics in viscid media

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Martínez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G. [Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Miret-Artés, S. [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain)

    2014-08-15

    Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.

  17. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  18. Two-dimensional Morlet wavelet transform and its application to wave recognition methodology of automatically extracting two-dimensional wave packets from lidar observations in Antarctica

    Science.gov (United States)

    Chen, Cao; Chu, Xinzhao

    2017-09-01

    Waves in the atmosphere and ocean are inherently intermittent, with amplitudes, frequencies, or wavelengths varying in time and space. Most waves exhibit wave packet-like properties, propagate at oblique angles, and are often observed in two-dimensional (2-D) datasets. These features make the wavelet transforms, especially the 2-D wavelet approach, more appealing than the traditional windowed Fourier analysis, because the former allows adaptive time-frequency window width (i.e., automatically narrowing window size at high frequencies and widening at low frequencies), while the latter uses a fixed envelope function. This study establishes the mathematical formalism of modified 1-D and 2-D Morlet wavelet transforms, ensuring that the power of the wavelet transform in the frequency/wavenumber domain is equivalent to the mean power of its counterpart in the time/space domain. Consequently, the modified wavelet transforms eliminate the bias against high-frequency/small-scale waves in the conventional wavelet methods and many existing codes. Based on the modified 2-D Morlet wavelet transform, we put forward a wave recognition methodology that automatically identifies and extracts 2-D quasi-monochromatic wave packets and then derives their wave properties including wave periods, wavelengths, phase speeds, and time/space spans. A step-by-step demonstration of this methodology is given on analyzing the lidar data taken during 28-30 June 2014 at McMurdo, Antarctica. The newly developed wave recognition methodology is then applied to two more lidar observations in May and July 2014, to analyze the recently discovered persistent gravity waves in Antarctica. The decomposed inertia-gravity wave characteristics are consistent with the conclusion in Chen et al. (2016a) that the 3-10 h waves are persistent and dominant, and exhibit lifetimes of multiple days. They have vertical wavelengths of 20-30 km, vertical phase speeds of 0.5-2 m/s, and horizontal wavelengths up to several

  19. Expansion of a quantum wave packet in a one-dimensional disordered potential in the presence of a uniform bias force

    Science.gov (United States)

    Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.

    2018-01-01

    We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.

  20. Multistable chain for ocean wave vibration energy harvesting

    Science.gov (United States)

    Harne, R. L.; Schoemaker, M. E.; Wang, K. W.

    2014-03-01

    The heaving of ocean waves is a largely untapped, renewable kinetic energy resource. Conversion of this energy into electrical power could integrate with solar technologies to provide for round-the-clock, portable, and mobile energy supplies usable in a wide variety of marine environments. However, the direct drive conversion methodology of gridintegrated wave energy converters does not efficiently scale down to smaller, portable architectures. This research develops an alternative power conversion approach to harness the extraordinarily large heaving displacements and long oscillation periods as an excitation source for an extendible vibration energy harvesting chain. Building upon related research findings and engineering insights, the proposed system joins together a series of dynamic cells through bistable interfaces. Individual impulse events are generated as the inertial mass of each cell is pulled across a region of negative stiffness to induce local snap through dynamics; the oscillating magnetic inertial mass then generates current in a coil which is connected to energy harvesting circuitry. It is shown that linking the cells into a chain transmits impulses through the system leading to cascades of vibration and enhancement of electrical energy conversion from each impulse event. This paper describes the development of the multistable chain and ways in which realistic design challenges were addressed. Numerical modeling and corresponding experiments demonstrate the response of the chain due to slow and large amplitude input motion. Lastly, experimental studies give evidence that energy conversion efficiency of the chain for wave energy conversion is much higher than using an equal number of cells without connections.

  1. Numerical study of the time evolution of a wave packet in quantum mechanics. Estudio numerico de la evolucion de un paquete de ondas en mecanica cuantica

    Energy Technology Data Exchange (ETDEWEB)

    Segura, J.; Fernandez de Cordoba, P.

    1993-01-01

    We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)

  2. Accurate quantum wave packet calculations for the F + HCl → Cl + HF reaction on the ground 1(2)A' potential energy surface.

    Science.gov (United States)

    Bulut, Niyazi; Kłos, Jacek; Alexander, Millard H

    2012-03-14

    We present converged exact quantum wave packet calculations of reaction probabilities, integral cross sections, and thermal rate coefficients for the title reaction. Calculations have been carried out on the ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged wave packet reaction probabilities at selected values of the total angular momentum up to a partial wave of J = 140 with the HCl reagent initially selected in the v = 0, j = 0-16 rovibrational states have been obtained for the collision energy range from threshold up to 0.8 eV. The present calculations confirm an important enhancement of reactivity with rotational excitation of the HCl molecule. First, accurate integral cross sections and rate constants have been calculated and compared with the available experimental data.

  3. Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs

    Science.gov (United States)

    Smilansky, Uzy; Schanz, Holger

    2018-02-01

    We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmission lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.

  4. The general time fractional wave equation for a vibrating string

    Energy Technology Data Exchange (ETDEWEB)

    Sandev, Trifce [Radiation Safety Directorate, Blv. Partizanski odredi 143, PO Box 22, 1020 Skopje (Macedonia, The Former Yugoslav Republic of); Tomovski, Zivorad, E-mail: trifce.sandev@avis.gov.m, E-mail: tomovski@iunona.pmf.ukim.edu.m [Faculty of Natural Sciences and Mathematics, Institute of Mathematics, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2010-02-05

    The solution of a general time fractional wave equation for a vibrating string is obtained in terms of the Mittag-Leffler-type functions and complete set of eigenfunctions of the Sturm-Liouville problem. The time fractional derivative used is taken in the Caputo sense, and the method of separation of variables and the Laplace transform method are used to solve the equation. Some results for special cases of the initial and boundary conditions are obtained and it is shown that the corresponding solutions of the integer order equations are special cases of those of time fractional equations. The proposed general equation may be used for modeling different processes in complex or viscoelastic media, disordered materials, etc.

  5. Vibration and wave propagation characteristics of multisegmented elastic beams

    Science.gov (United States)

    Nayfeh, Adnan H.; Hawwa, Muhammad A.

    1990-01-01

    Closed form analytical solutions are derived for the vibration and wave propagation of multisegmented elastic beams. Each segment is modeled as a Timoshenko beam with possible inclusion of material viscosity, elastic foundation and axial forces. Solutions are obtained by using transfer matrix methods. According to these methods formal solutions are first constructed which relate the deflection, slope, moment and shear force of one end of the individual segment to those of the other. By satisfying appropriate continuity conditions at segment junctions, a global 4x4 matrix results which relates the deflection, slope, moment and shear force of one end of the beam to those of the other. If any boundary conditions are subsequently invoked on the ends of the beam one gets the appropriate characteristic equation for the natural frequencies. Furthermore, by invoking appropriate periodicity conditions the dispersion relation for a periodic system is obtained. A variety of numerical examples are included.

  6. Theoretical investigations of the Au++H2 reactive scattering by the time-dependent quantum wave packet method

    Science.gov (United States)

    Lee, Wentao; He, Haixiang; Chen, Maodu

    2017-03-01

    Employing the state-to-state time-dependent quantum wave packet method, the Au++H2 reactive scattering with initial states v = 0, j = 0 and 1 were investigated. Total reaction probabilities, product state-resolved integral cross-sections (ICSs) and differential cross-sections (DCSs) were calculated up to collision energy of 4.5 eV. The numerical results show that total reaction probabilities and ICSs increase with increasing collision energies, and there is little effect to the reactive scattering processes from the rotational excitation of H2 molecule. Below collision energy of around 3.0 eV, the role of the potential well in the entrance channel is significant and the reactive scattering proceeds dominantly by an indirect process, which leads to a nearly symmetric shape of the DCSs. With collision energy higher than 4.0 eV, the reactive scattering proceeds through a direct process, which leads to a forward biased DCSs, and also a hotter rotational distributions of the products. Total ICS agrees with the results by the quasi-classical trajectories theory very well, which suggests that the quantum effects in this reactive process are not obvious. However, the agreement between the experimental total cross-section and our theoretical result is not so good. This may be due to the uncertainty of the experiment or/and the inaccuracy of the potential energy surface.

  7. Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation

    Science.gov (United States)

    Curilef, S.; Plastino, A. R.; Plastino, A.

    2013-06-01

    Tsallis maximum entropy distributions provide useful tools for the study of a wide range of scenarios in mathematics, physics, and other fields. Here we apply a Tsallis maximum entropy ansatz, the q-Gaussian, to obtain time dependent wave-packet solutions to a nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro and Tsallis (NRT) [F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Phys. Rev. Lett. 106 (2011) 140601]. The NRT nonlinear equation admits plane wave-like solutions (q-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the q-generalized thermostatistical formalism, is characterized by a parameter q and in the limit q→1 reduces to the standard, linear Schrödinger equation. The q-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known q-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the q→1 limit the q-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrödinger equation. In the present work we also show that there are other families of nonlinear Schrödinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations.

  8. Supplementary Information Table: S1 Calculated vibrational wave ...

    Indian Academy of Sciences (India)

    Administrator

    514. 511 w. 519 vvw. 6a ring o.p bend. 508. 496 s. 500 vvw. 16 b ring o.p bend. 390. 387 vvw. 16a ring o.p bend. 334. 328 vvw. 9b C-H i.p bend. 274. 267 vvw. Hydrogen bonded vibrations. 184. 171 vs. Hydrogen bonded vibrations. 112. 120 vvs. Hydrogen bonded vibrations. 64. 57 sh. Hydrogen bonded vibrations.

  9. Impulse response and spatio-temporal wave-packets: The common feature of rogue waves, tsunami, and transition to turbulence

    Science.gov (United States)

    Bhaumik, Swagata; Sengupta, Tapan K.

    2017-12-01

    Here, we present the impulse response of the canonical zero pressure gradient boundary layer from the dynamical system approach. The fundamental physical mechanism of the impulse response is in creation of a spatio-temporal wave-front (STWF) by a localized, time-impulsive wall excitation of the boundary layer. The present research is undertaken to explain the unit process of diverse phenomena in geophysical fluid flows and basic hydrodynamics. Creation of a tsunami has been attributed to localized events in the ocean-bed caused by earthquakes, landslides, or volcanic eruptions, whose manifestation is in the run up to the coast by surface waves of massive amplitude but of very finite fetch. Similarly rogue waves have often been noted; a coherent account of the same is yet to appear, although some explanations have been proposed. Our studies in both two- and three-dimensional frameworks in Sengupta and Bhaumik ["Onset of turbulence from the receptivity stage of fluid flows," Phys. Rev. Lett. 107(15), 154501 (2011)] and Bhaumik and Sengupta ["Precursor of transition to turbulence: Spatiotemporal wave front," Phys. Rev. E 89(4), 043018 (2014)] have shown that the STWF provides the central role for causing transition to turbulence by reproducing carefully conducted transition experiments. Here, we furthermore relax the condition of time behavior and use a Dirac-delta wall excitation for the impulse response. The present approach is not based on any simplification of the governing Navier-Stokes equation (NSE), which is unlike solving a nonlinear shallow water equation and/or nonlinear Schrödinger equation. The full nonlinear Navier-Stokes equation (NSE) is solved here using high accuracy dispersion relation preserving numerical schemes and using appropriate formulation of the NSE which minimizes error. The adopted numerical methods and formulation have been extensively validated with respect to various external and internal 2D and 3D flow problems. We also present

  10. Semiquantal molecular dynamics simulations of hydrogen-bond dynamics in liquid water using multi-dimensional Gaussian wave packets.

    Science.gov (United States)

    Ono, Junichi; Ando, Koji

    2012-11-07

    A semiquantal (SQ) molecular dynamics (MD) simulation method based on an extended Hamiltonian formulation has been developed using multi-dimensional thawed gaussian wave packets (WPs), and applied to an analysis of hydrogen-bond (H-bond) dynamics in liquid water. A set of Hamilton's equations of motion in an extended phase space, which includes variance-covariance matrix elements as auxiliary coordinates representing anisotropic delocalization of the WPs, is derived from the time-dependent variational principle. The present theory allows us to perform real-time and real-space SQMD simulations and analyze nuclear quantum effects on dynamics in large molecular systems in terms of anisotropic fluctuations of the WPs. Introducing the Liouville operator formalism in the extended phase space, we have also developed an explicit symplectic algorithm for the numerical integration, which can provide greater stability in the long-time SQMD simulations. The application of the present theory to H-bond dynamics in liquid water is carried out under a single-particle approximation in which the variance-covariance matrix and the corresponding canonically conjugate matrix are reduced to block-diagonal structures by neglecting the interparticle correlations. As a result, it is found that the anisotropy of the WPs is indispensable for reproducing the disordered H-bond network compared to the classical counterpart with the use of the potential model providing competing quantum effects between intra- and intermolecular zero-point fluctuations. In addition, the significant WP delocalization along the out-of-plane direction of the jumping hydrogen atom associated with the concerted breaking and forming of H-bonds has been detected in the H-bond exchange mechanism. The relevance of the dynamical WP broadening to the relaxation of H-bond number fluctuations has also been discussed. The present SQ method provides the novel framework for investigating nuclear quantum dynamics in the many

  11. The description of dense hydrogen with Wave Packet Molecular Dynamics (WPMD) simulations; Die Beschreibung von dichtem Wasserstoff mit der Methode der Wellenpaket-Molekulardynamik (WPMD)

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, B.

    2006-10-10

    In this work the wave packet molecular dynamics (WPMD) is presented and applied to dense hydrogen. In the WPMD method the electrons are described by a slater determinant of periodic Gaussian wave packets. Each single particle wave function can parametrised through 8 coordinates which can be interpreted as the position and momentum, the width and its conjugate momentum. The equation of motion for these coordinates can be derived from a time depended variational principle. Properties of the equilibrium can be ascertained by a Monte Carlo simulation. With the now completely implemented antisymmetrisation the simulation yields a fundamental different behavior for dense hydrogen compare to earlier simplified models. The results show a phase transition to metallic hydrogen with a higher density than in the molecular phase. This behavior has e.g. a large implication to the physics of giant planets. This work describes the used model and explains in particular the calculation of the energy and forces. The periodicity of the wave function leads to a description in the Fourier space. The antisymmetrisation is done by Matrix operations. Moreover the numerical implementation is described in detail to allow the further development of the code. The results provided in this work show the equation of state in the temperature range 300K - 50000K an density 10{sup 23}-10{sup 24} cm{sup -3}, according a pressure 1 GPa-1000 GPa. In a phase diagram the phase transition to metallic hydrogen can be red off. The electrical conductivity of both phases is destined. (orig.)

  12. Topological material layout in plates for vibration suppression and wave propagation control

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Laksafoss, B.; Jensen, Jakob Søndergaard

    2009-01-01

    plate theory coupled with analytical sensitivity analysis using the adjoint method and an iterative design update procedure based on a mathematical programming tool. We demonstrate the capability of the method by designing bi-material plates that, when subjected to harmonic excitation, either......We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin...... effectively suppress the overall vibration level or alternatively transport energy in predefined paths in the plates, including the realization of a ring wave device....

  13. Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave

    KAUST Repository

    Levko, Dmitry

    2017-09-08

    The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.

  14. Bohmian trajectories of Airy packets

    Energy Technology Data Exchange (ETDEWEB)

    Nassar, Antonio B., E-mail: anassar@hw.com [Science Department, Harvard-Westlake School, 3700 Coldwater Canyon, Studio City, 91604 (United States); Department of Sciences, University of California, Los Angeles, Extension Program, 10995 Le Conte Avenue, Los Angeles, CA 90024 (United States); Miret-Artés, Salvador [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)

    2014-09-15

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  15. The relationship study between texture vibrating plate dynamic wettability and elastic wave scattering

    Science.gov (United States)

    Xu, Jing; Li, Bin; Zhou, Chuanping; Xiao, Jing; Ni, Jing

    2017-07-01

    An experimental investigation of wetting behavior of liquid droplet on texture vibrating substrate and the theoretical calculations of elastic wave scattering with two holes which based on the elastodynamics, employing complex functions are investigated to study the relationship between texture vibrating plate dynamic wettability and elastic wave scattering. Experimental results show the dynamic behavior of droplet was unstable. In 0 to π/2 cycle, droplet appeared the waveform with front steep and rear gentle along the flow direction. In π/2 to π cycle, droplet appeared slightly periodic oscillation and accompanied by a certain ripple. Based on the dynamic wetting phenomenon in a single cycle, the influence of elastic wave scattering on wetting property are analyzed. Analysis has shown that the stress concentration is caused by complex elastic wave scattering. The more concentrated the stress, the more concentrated the elastic wave energy. Compared with the single hole, the variations of dynamic stress concentration factors for two holes are complex due to the influence of interaction between two holes. Droplet emerge movement is response to the local vibration. The vibration spread in elastic plate at a time of strain, this elastic force cause droplet displacement and vibration, and accompanied with energy transfer.

  16. Resonance Vibrations of the Ross Ice Shelf and Observations of Persistent Atmospheric Waves

    Science.gov (United States)

    Zabotin, N. A.; Godin, O. A.

    2016-12-01

    Recently reported lidar observations at McMurdo have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at mid- and low-latitude locations [Chen et al., JGR Space Physics, 2016]. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 hours. Here, we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vector of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity.

  17. A reactant-coordinate-based wave packet method for full-dimensional state-to-state quantum dynamics of tetra-atomic reactions: Application to both the abstraction and exchange channels in the H + H2O reaction.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-02-14

    An efficient and accurate wave packet method is proposed for the calculation of the state-to-state S-matrix elements in bimolecular reactions involving four atoms. This approach propagates an initial state specific wave packet in reactant Jacobi coordinates. The projection in product channels is carried out on projection planes, which have one less degree of freedom, by transforming both the time-dependent wave packet and final product states into a set of intermediate coordinates. This reactant-coordinate-based method is more efficient than product-coordinate-based methods because it typically requires a smaller number of basis functions or grid points and allows the determination of S-matrix elements for multiple product channels from a single propagation. This method is demonstrated in calculating the (Jtot = 0) state-to-state S-matrix elements for both the abstraction and exchange channels of the H + H2O reaction.

  18. The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases

    Science.gov (United States)

    Kremer, Gilberto M.; Kunova, Olga V.; Kustova, Elena V.; Oblapenko, George P.

    2018-01-01

    A detailed kinetic-theory model for the vibrationally state-resolved transport coefficients is developed taking into account the dependence of the collision cross section on the size of vibrationally excited molecule. Algorithms for the calculation of shear and bulk viscosity, thermal conductivity, thermal diffusion and diffusion coefficients for vibrational states are proposed. The transport coefficients are evaluated for single-component diatomic gases N2, O2, NO, H2, Cl2 in the wide range of temperature, and the effects of molecular diameters and the number of accounted states are discussed. The developed model is applied to study wave propagation in diatomic gases. For the case of initial Boltzmann distribution, the influence of vibrational excitation on the phase velocity and attenuation coefficient is found to be weak. We expect more significant effect in the case of initial thermal non-equilibrium, for instance in gases with optically pumped selected vibrational states.

  19. Resonance vibrations of the Ross Ice Shelf cause persistent atmospheric waves

    Science.gov (United States)

    Godin, Oleg; Zabotin, Nikolay

    2017-04-01

    Recently reported lidar observations have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at mid- and low-latitude locations [Chen et al., 2016]. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 hours. Here, we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vectors of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity], including frequency band, vertical wavelength range, and weak variation of the vertical wavelength with the height. The present work is a motivation for in-depth studies of coupling between vibrations of ice shelves and waves in the upper and middle atmosphere at high latitudes.

  20. Ipsi- and contralateral H-reflexes and V-waves after unilateral chronic Achilles tendon vibration.

    Science.gov (United States)

    Lapole, Thomas; Canon, Francis; Pérot, Chantal

    2013-09-01

    Chronic Achilles tendon vibration has previously shown its effectiveness in improving plantar flexor's strength and activation capacities. The present study investigated the related neural mechanisms by analyzing H-reflexes and V-waves of the soleus (SOL) and gastrocnemii (GM gastrocnemius medialis; GL gastrocnemius lateralis) muscles under maximal isometric plantar flexion. Moreover, recordings were conducted bilaterally to address potential crossed effects. 11 subjects were engaged in this study. Maximal voluntary contraction and superimposed H-reflexes and V-waves were quantified in both legs at baseline (PRE) and 2 weeks later to verify repeatability of data (CON). Then, subjects were retested after 14 days of daily unilateral Achilles tendon vibration (VIB; 1 h per day; frequency: 50 Hz). No changes were reported between PRE and CON data. In the VIB condition, there was an increase in MVC for both the vibrated (+9.1 %; p = 0.016) and non-vibrated (+10.2 %; p = 0.009) legs. The H-reflex increased by a mean 25 % in the vibrated SOL (p cross-education phenomenon with differences in neural adaptations between the vibrated leg and non-vibrated leg.

  1. Multipath packet switch using packet bundling

    DEFF Research Database (Denmark)

    Berger, Michael Stubert

    2002-01-01

    The basic concept of packet bundling is to group smaller packets into larger packets based on, e.g., quality of service or destination within the packet switch. This paper presents novel applications of bundling in packet switching. The larger packets created by bundling are utilized to extend...... switching capacity by use of parallel switch planes. During the bundling operation, packets will experience a delay that depends on the actual implementation of the bundling and scheduling scheme. Analytical results for delay bounds and buffer size requirements are presented for a specific scheduling...

  2. Calculation of vibrational excitation cross-sections in resonant ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Calculation of vibrational excitation cross-sections in resonant electron-molecule scattering using the time-dependent wave packet (TDWP) approach with application to the 2 CO- shape resonance. Raman Kumar Singh Manabendra Sarma Ankit Jain ...

  3. Modeling of wave propagation in drill strings using vibration transfer matrix methods.

    Science.gov (United States)

    Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour

    2013-09-01

    In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results.

  4. First direct evidence of a one-one correspondence of chorus wave packets and microbursts: Van Allen Probes EFW and FIREBIRD

    Science.gov (United States)

    Breneman, A. W.; Crew, A. B.; Klumpar, D. M.; Agapitov, O. V.; Wygant, J. R.; Kletzing, C.; Hospodarsky, G. B.

    2016-12-01

    Chorus waves are a major controlling factor in the loss of ring current and radiation belt electrons during active times. One form in which this loss is thought to occur is microbursts, which are observed on low altitude satellites and balloons as impulsive electron precipitation events. Past observations have shown a broad correlation in time and MLT of chorus and microbursts. In addition, nonlinear theories of chorus/electron interactions provide a possible mechanism through which this loss occurs. However, due to the small scale size of chorus wave (phase) coherence - on the order of 10-100 km across a magnetic field line - a direct comparison of chorus and microbursts requires a near perfect magnetic conjunction of an equatorial satellite traversing the chorus source and a low altitude payload capable of observing loss cone electrons. We present fortuitous simultaneous observations on Van Allen Probe A and the FIREBIRD II cubesat showing a clear one-one correspondence of chorus wave packets and microbursts. A comparison of observations to theory suggests that Landau resonance is likely the cause for the electron scattering, observed from 250 keV (the lower limit of FIREBIRD II) up to 620 keV. Our results confirm and provide insight to the idea that chorus waves cause electron microbursts, which constitute a major loss mechanism of the radiation belts.

  5. Generation of localized disturbances by surface vibrations behind the ledge in the laminar flow

    Science.gov (United States)

    Pavlenko, A. M.; Katasonov, M. M.; Kozlov, V. V.; Dovgal, A. V.

    2017-10-01

    The occurrence and development of hydrodynamic perturbations generated by low-frequency vibrations of a local section of a streamlined surface in a separated flow behind a rectangular ledge on a flat plate are investigated in the wind tunnel. The results were obtained by the hot-wire anemometry method at a low subsonic flow velocity. It is established that vibrations of the wall generate perturbations of the separation zone, which are streaky structures, and accompanying wave packets of oscillations. The separation of the laminar boundary layer promotes the growth of wave packets with subsequent turbulence of the wall flow.

  6. Mitigation of Traffic-Induced Ground Vibration by Inclined Wave Barriers

    DEFF Research Database (Denmark)

    Andersen, Lars; Augustesen, Anders Hust

    2009-01-01

    Double sheet pile walls can be used as wave barriers in order to mitigate ground vibrations from railways. The present analysis concerns the efficiency of such barriers, especially with regard to the influence of the barrier inclination and the backfill between the walls. Thus, the screening...

  7. Communication: creation of molecular vibrational motions via the rotation-vibration coupling

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm

    2015-01-01

    whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds......Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational...... motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length...

  8. Human responses to wave slamming vibration on a polar supply and research vessel.

    Science.gov (United States)

    Omer, H; Bekker, A

    2018-02-01

    A polar supply and research vessel is pre-disposed to wave slamming which has caused complaints among crew and researchers regarding interference with sleep, equipment use and research activities. The present work undertook to survey passenger claims of sleep interference, disturbed motor tasks and equipment damage as a result of wave slamming during normal operations of this vessel. The hypothesis was investigated that whole-body vibration metrics from ISO 2631-1 are potentially suitable for the prediction of human slamming complaints. Full-scale acceleration measurements were performed and wave slamming events were subsequently identified from the human weighted acceleration time histories. A daily diary survey was also conducted to gather the human response. The vibration caused by wave slamming was found to be strongly correlated with sleep disturbances and activity interference. Sleep and equipment use were found to be the most affected parameters by slamming. Daily vibration dose values were determined by accumulating the vibration as a result of slamming over 24 h periods. This metric accounted for increased magnitudes and frequency of slamming incidents and proved to be the best metric to represent human responses to slamming vibration. The greatest percentage of activities affected by slamming related to sleep regardless of daily cumulative VDV magnitude. More than 50% of the recorded responses related to sleep when the daily cumulative VDV ranged between 8.0 m/s1.75-10.0 m/s1.75. The peak vertical vibration levels recorded on the vessel reach magnitudes which are associated with sleep disturbance in environments where acoustic noise is present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Wave packet propagation study of the electron transfer in back-scattering of H sup - ions from alkali adsorbates on an Al surface

    CERN Document Server

    Sjakste, J; Gauyacq, J P

    2003-01-01

    The charge transfer between an H sup - ion and a free-electron metal surface with a single alkali adsorbate (Li and Cs) is studied with the wave packet propagation approach in the back-scattering geometry. Both the static problem for a fixed projectile-surface distance and the problem of charge transfer during a collision are considered. The three body (projectile-adsorbate-surface) aspect of the charge transfer process in this case results in an avoided crossing between the projectile and adsorbate-localized quasi-stationary states. We analyze and discuss the local effect of the adsorbate on the resonant charge transfer and the applicability of the rate equation approach.

  10. Running interfacial waves in a two-layer fluid system subject to longitudinal vibrations.

    Science.gov (United States)

    Goldobin, D S; Pimenova, A V; Kovalevskaya, K V; Lyubimov, D V; Lyubimova, T P

    2015-05-01

    We study the waves at the interface between two thin horizontal layers of immiscible fluids subject to high-frequency horizontal vibrations. Previously, the variational principle for energy functional, which can be adopted for treatment of quasistationary states of free interface in fluid dynamical systems subject to vibrations, revealed the existence of standing periodic waves and solitons in this system. However, this approach does not provide regular means for dealing with evolutionary problems: neither stability problems nor ones associated with propagating waves. In this work, we rigorously derive the evolution equations for long waves in the system, which turn out to be identical to the plus (or good) Boussinesq equation. With these equations one can find all the time-independent-profile solitary waves (standing solitons are a specific case of these propagating waves), which exist below the linear instability threshold; the standing and slow solitons are always unstable while fast solitons are stable. Depending on initial perturbations, unstable solitons either grow in an explosive manner, which means layer rupture in a finite time, or falls apart into stable solitons. The results are derived within the long-wave approximation as the linear stability analysis for the flat-interface state [D.V. Lyubimov and A.A. Cherepanov, Fluid Dynamics 21, 849 (1986)] reveals the instabilities of thin layers to be long wavelength.

  11. Extensible packet processing architecture

    Science.gov (United States)

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  12. Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles.

    Science.gov (United States)

    1983-06-01

    completely neglected, the waveform becomes a triangular wave at a propagation distance equal to the discontinuity distance (see the discussion of this...the farfield (nearfield) is defined to be distances greater (lesser) than the distance to the last maximum in the on-axis diffraction pattern. This last...frequently referred to as the region in which Fraunhofer (Fresnel) diffractlion effects occur. 106 2. Electrical filtering problems due to experimental

  13. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Directory of Open Access Journals (Sweden)

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  14. Photodissociation of water. II. Wave packet calculations for the photofragmentation of H2O and D2O in the B˜ band

    Science.gov (United States)

    van Harrevelt, Rob; van Hemert, Marc C.

    2000-04-01

    A complete three-dimensional quantum mechanical description of the photodissociation of water in the B˜ band, starting from its rotational ground state, is presented. In order to include B˜-X˜ vibronic coupling and the B˜-Ã Renner-Teller coupling, diabatic electronic states have been constructed from adiabatic electronic states and matrix elements of the electronic angular momentum operators, following the procedure developed by A. J. Dobbyn and P. J. Knowles [Mol. Phys. 91, 1107 (1997)], using the ab initio results discussed in the preceding paper. The dynamics is studied using wave packet methods, and the evolution of the time-dependent wave function is discussed in detail. Results for the H2O and D2O absorption spectra, OH(A)/OH(X) and OD(A)/OD(X) branching ratios, and rovibrational distributions of the OH and OD fragments are presented and compared with available experimental data. The present theoretical results agree at least qualitatively with the experiments. The calculations show that the absorption spectrum and the product state distributions are strongly influenced by long-lived resonances on the adiabatic B˜ state. It is also shown that molecular rotation plays an important role in the photofragmentation process, due to both the Renner-Teller B˜-X˜ mixing, and the strong effect of out-of-plane molecular rotations (K>0) on the dynamics at near linear HOH and HHO geometries.

  15. Geometric phase effects in the H+H2 reaction: quantum wave-packet calculations of integral and differential cross sections.

    Science.gov (United States)

    Juanes-Marcos, Juan Carlos; Althorpe, Stuart C

    2005-05-22

    We report quantum wave-packet calculations on the H+H(2) reaction, aimed at resolving the controversy over whether geometric phase (GP) effects can be observed in this reaction. Two sets of calculations are reported of the state-to-state reaction probabilities, and integral and differential cross sections (ICSs and DCSs). One set includes the GP using the vector potential approach of Mead and Truhlar; the other set neglects the phase. We obtain unequivocal agreement with recent results of Kendrick [J. Phys. Chem. A 107, 6739 (2003)], predicting GP effects in the state-to-state reaction probabilities, which cancel exactly on summing the partial waves to yield the ICS. Our results therefore contradict those of Kuppermann and Wu [Chem. Phys. Lett. 349 537 (2001)], which predicted pronounced GP effects in the cross sections. We also agree with Kendrick in predicting that there are no significant GP effects in the full DCS at energies below 1.8 eV, and in the partial (0

  16. The effect of surface wave propagation on neural responses to vibration in primate glabrous skin.

    Directory of Open Access Journals (Sweden)

    Louise R Manfredi

    Full Text Available Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin.

  17. Monitoring Gold Nanoparticle Growth in Situ via the Acoustic Vibrations Probed by Four-Wave Mixing.

    Science.gov (United States)

    Wu, Jian; Xiang, Dao; Gordon, Reuven

    2017-02-21

    We monitor in situ gold nanoparticle growth in aqueous solution by probing the acoustic vibrations with four-wave mixing. We observe two acoustic vibrational modes of gold nanoparticles from the nonlinear optical response: an extensional mode with longitudinal expansion and transverse contraction and a breathing mode with radial expansion and contraction. The mode frequencies, which show an inverse dependence on the nanoparticle diameter, allow one to monitor the nanoparticle size and size distribution during synthesis. The information about the nanoparticle size and size distribution calculated on the basis of the mode frequencies agrees well with the results obtained from the electron microscopy analysis, validating the four-wave mixing technique as an accurate and effective tool for in situ monitoring of colloidal growth.

  18. Vibration and pressure wave therapy for calf strains: a proposed treatment.

    Science.gov (United States)

    Saxena, Amol; St Louis, Marie; Fournier, Magali

    2013-04-01

    Calf (lower leg) strains have a variety of treatment regimens with variable outcomes and return to activity (RTA) time frames. These injuries involve disruption of portions or the entire gastrocnemius-soleus myo-tendinous complex. Conservative treatment initially consists of rest, ice, compression, elevation (RICE). Immediately following calf injury, patients can utilize cryotherapy, massage, passive range of motion, and progressive exercise. In general, Grade I through Grade III calf strains can take up to 6 weeks before the athlete can return to training. It can also involve the loss of more than 50% of muscle integrity. Recently, vibration therapy and radial pressure waves have been utilized to treat muscular strains and other myo-tendinous injuries that involve trigger points. Studies have suggested vibration therapy with rehabilitation can increase muscle strength and flexibility in patients. Segmental vibration therapy (SVT) is treatment to a more focal area. Vibration therapy (VT) is applied directly to the area of injury. VT is a mechanical stimulus that is thought to stimulate the sensory receptors, as well as decrease inflammatory cells and receptors. Therefore, VT could be a valuable tool in treating athlete effectively and decreasing their recovery time. The purpose of this paper is to give the reader baseline knowledge of VT and propose a treatment protocol for calf strains using this technology along with radial pressure waves.

  19. Formation of aerial standing wave field using ultrasonic sources consisting of multiple stripe-mode transverse vibrating plates

    Science.gov (United States)

    Naito, Koki; Asami, Takuya; Miura, Hikaru

    2015-07-01

    Intense aerial acoustic waves can be produced by an ultrasonic source consisting of a transverse vibrating plate and an external jutting driving point. Previously, we studied the dimensional parameters of vibrating plates to produce stripe-mode patterns and thereby determine the plate dimensions that generate high-quality patterns. In this research, we use four transverse vibrating plates as ultrasonic sources to produce intense standing wave fields in air. As a result, an aerial standing wave field was formed in the field surrounded by four vibrating plates. Furthermore, for a total input power of 30 W for the two ultrasonic sources, a very strong (sound pressure level, 167 dB) wave field is obtained.

  20. Combined vibration and guided wave-based approach for composite panels health assessment

    Science.gov (United States)

    Radzienski, Maciej; Cao, Maosen; Wei, Xu; Kudela, Pawel; Ostachowicz, Wieslaw

    2017-04-01

    Various non-destructive testing (NDT) methods have been developed to extract information about state of a structure. Two of them: vibration-based and guided wave-based techniques are one of the most commonly used and well developed. Both approaches can be implemented using Scanning Laser Doppler Vibrometer measurements and excitation by means of piezoelectric transducer. In this paper authors present a combined approached for NDT using successive and simultaneous measurement of both mode shapes and guided waves. Vibration-based damage detection is focused on detection of mode shape singularity, created by material discontinuity. This method utilizes wavelet transform and Teager energy operator for damage indication. Guided wave-based damage detection uses propagating elastic wave energy variation on the specimen surface as well as any changes in wave propagation pattern due to its interaction with material discontinuity as a tool for structural health assessment. Combining this two different techniques can give higher accuracy in defect detection. At the same time any additional specimen preparation are necessary, any set-up changes are required and the all the data can be registered in the same amount of time (simultaneous excitation). To confirm proposed technique a honeycomb core sandwich aluminum plate with debonding is tested. A results obtained with both techniques and combined approach are presented.

  1. Improving thermal ablation delineation with electrode vibration elastography using a bidirectional wave propagation assumption.

    Science.gov (United States)

    DeWall, Ryan J; Varghese, Tomy

    2012-01-01

    Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. © 2012 IEEE

  2. Vibrational excitation resulting from electron capture in LUMO of F 2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 1. Vibrational excitation resulting from electron capture in LUMO of F2 and HCl - A treatment using the time-dependent wave packet approach. Bhavesh K Shandilya Manabendra Sarma Satrajit Adhikari Manoj K Mishra. Volume 124 Issue 1 January 2012 ...

  3. Calculation of the state-to-state S-matrix for tetra-atomic reactions with transition-state wave packets: H₂/D₂ + OH → H/D + H₂O/HOD.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2014-10-21

    This work is concerned with the calculation of state-to-state S-matrix elements for four-atom reactions using a recently proposed method based on the quantum transition-state theory. In this approach, the S-matrix elements are computed from the thermal flux cross-correlation functions obtained in both the reactant and product arrangement channels. Since transition-state wave packets are propagated with only single arrangement channels, the bases/grids required are significantly smaller than those needed in state-to-state approaches based on a single set of scattering coordinates. Furthermore, the propagation of multiple transition-state wave packets can be carried out in parallel. This method is demonstrated for the H2/D2 + OH → H/D + H2O/HOD reactions (J = 0) and the reaction probabilities are in excellent agreement with benchmark results.

  4. Nonlinear Fourier-transform spectroscopy revealing wave-packet dynamics of D+2 with multicolor harmonic field

    Science.gov (United States)

    Nabekawa, Yasuo; Furukawa, Yusuke; Okino, Tomoya; Amani Eilanlou, A.; Yamanouchi, Kaoru; Midorikawa, Katsumi

    2014-04-01

    We report on a series of studies concerning D2 molecules irradiated by high-harmonic pulses generated from intense femtosecond laser pulses. The kinetic energy (KE) spectrum of dissociated D+ ion fragments with a scanning delay between two replica harmonic pulses exhibits specific characteristics that are completely different from a conventional interferometric autocorrelation signal. We have successfully determined and separated three distinct ionization/dissociation processes by analyzing KE-resolved interferometric fringes by Fourier transform. We call this method for analyzing the KE spectrum of ion fragments "nonlinear Fourier-transform spectroscopy (NFTS)." NFTS provides us molecular information in stationary states because it is intrinsically a frequency domain analysis. Nevertheless, we have resolved the real-time evolution of the vibrational wavepacket of D+ ions with a period of 22 fs by shortening the pulse duration of the fundamental laser pulse to 12 fs and extending the scanning delay range of two harmonic pulses to 150 fs. The probing process of the wavepacket can be described as a model with one-photon absorption of a multicolor harmonic field. We discuss a possible method of reconstructing the phase and magnitude of the wavepacket from the measured delay-KE spectrogram.

  5. Piezoelectric parametric effects on wave vibration and contact mechanics of traveling wave ultrasonic motor.

    Science.gov (United States)

    Zhang, Dongsheng; Wang, Shiyu; Xiu, Jie

    2017-11-01

    Elastic wave quality determines the operating performance of traveling wave ultrasonic motor (TWUM). The time-variant circumferential force from the shrink of piezoelectric ceramic is one of the factors that distort the elastic wave. The distorted waveshape deviates from the ideal standard sinusoidal fashion and affects the contact mechanics and driving performance. An analytical dynamic model of ring ultrasonic motor is developed. Based on this model, the piezoelectric parametric effects on the wave distortion and contact mechanics are examined. Multi-scale method is employed to obtain unstable regions and distorted wave response. The unstable region is verified by Floquét theory. Since the waveshape affects the contact mechanism, a contact model involving the distorted waveshape and normal stiffness of the contact layer is established. The contact model is solved by numerical calculation. The results verify that the deformation of the contact layer deviates from sinusoidal waveshape and the pressure distribution is changed, which influences the output characteristics directly. The surface speed within the contact region is averaged such that the rotor speed decreases for lower torque and increases for larger torque. The effects from different parametric strengths, excitation frequencies and pre-pressures on pressure distribution and torque-speed relation are compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The diffraction signatures of individual vibrational modes in polyatomic molecules

    Science.gov (United States)

    Ryu, Seol; Weber, Peter M.; Stratt, Richard M.

    2000-01-01

    Though one normally thinks of single-molecule diffraction studies as tools for eliciting molecular geometry, molecular diffraction patterns are really the Fourier transforms of complete molecular wave functions. There is thus at least the possibility of imaging the vibrational wave functions of polyatomic molecules by means of a pump-probe diffraction experiment: the pump laser could prepare a specific vibrational state and an electron or x-ray could then be diffracted off the molecule some short time later. The present paper develops the general theory of diffraction signatures for individual vibrational wave functions in polyatomic molecules and investigates the feasibility of seeing such signatures experimentally using the example of a linear triatomic molecule modeled after CS2. Although aligned molecules in specific vibrational quantum states turn out to exhibit very characteristic diffraction signatures, the signatures of the vibrational wave functions are partially washed out for the complete isotropy expected from gas phase molecules. Nonetheless, it is possible to design a diffraction experiment using a pump-dump sequence with a polarized laser beam which will select a nonisotropic sample of vibrationally excited molecules. We show that the resulting level of anisotropy should enhance the diffraction signature, helping to distinguish different vibrational components. These model calculations therefore suggest the possibility of observing the dynamics of vibrational wave packets using experimentally realizable diffraction techniques.

  7. Stress wave propagation analysis on vortex-induced vibration of marine risers

    Science.gov (United States)

    Li, Hua-jun; Wang, Chao; Liu, Fu-shun; Hu, Sau-Lon James

    2017-03-01

    To analyze the stress wave propagation associated with the vortex-induced vibration (VIV) of a marine riser, this paper employed a multi-signal complex exponential method. This method is an extension of the classical Prony's method which decomposes a complicated signal into a number of complex exponential components. Because the proposed method processes multiple signals simultaneously, it can estimate the "global" dominating frequencies (poles) shared by those signals. The complex amplitude (residues) corresponding to the estimated frequencies for those signals is also obtained in the process. As the signals were collected at different locations along the axial direction of a marine riser, the phenomena of the stress wave propagation could be analyzed through the obtained residues of those signals. The Norwegian Deepwater Program (NDP) high mode test data were utilized in the numerical studies, including data sets in both the in-line (IL) and cross-flow (CF) directions. It was found that the most dominant component in the IL direction has its stress wave propagation along the riser being dominated by a standing wave, while that in the CF direction dominated by a traveling wave.

  8. Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate.

    Science.gov (United States)

    Mordant, Nicolas; Miquel, Benjamin

    2017-10-01

    We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.

  9. Forced vibration and wave propagation in mono-coupled periodic structures

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1986-01-01

    This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... is laid on investigating resonant periodic point loading and its pronounced effect on the propagation of longitudinal waves. General mono-coupled periodic systems are first assumed to be infinite in extent; thereafter reflections caused by arbitrary end terminations of finite structures are considered...... and a general `closed form' solution is found for the forced harmonic response at element junctions. This `junction-receptance' is used to determine-discrete junction mode shapes of a finite system. Finally, the forced response of a finite structure with an internal obstruction is derived as a natural extension...

  10. Time-Dependent Quantum Wave Packet Study of the Si + OH → SiO + H Reaction: Cross Sections and Rate Constants.

    Science.gov (United States)

    Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice

    2017-03-02

    The dynamics of the Si( 3 P) + OH(X 2 Π) → SiO(X 1 Σ + ) + H( 2 S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X 2 A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.

  11. Effects of reagent rotational excitation on the H + CHD3 → H2 + CD3 reaction: A seven dimensional time-dependent wave packet study

    Science.gov (United States)

    Zhang, Zhaojun; Zhang, Dong H.

    2014-10-01

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD3 in J0 = 1, 2 rotationally excited initial states with k0 = 0 - J0 (the projection of CHD3 rotational angular momentum on its C3 axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K0) equal to k0 are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD3 with respect to the relative velocity between the reagents H and CHD3. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K0 specified cross sections for the K0 = k0 initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K0 averaging for the J0 = 1, 2 initial states with all different k0 are essentially identical to the corresponding CS and CC results for the J0 = 0 initial state, meaning that the initial rotational excitation of CHD3 up to J0 = 2, regardless of its initial k0, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J0 = 1, 2 initial states are the same as those for the J0 = 0 initial state.

  12. Pedagogical Content Knowledge (PCK Representation in Vibration and Wave Teaching for Junior High School

    Directory of Open Access Journals (Sweden)

    Endang Purwaningsih

    2015-12-01

    Full Text Available Learning materials of vibrations and waves in physics involve abstract mathematical knowledge, not easy to be understood, and frequently generate misconceptions. However, the subject is fundamental prerequisite for mastering more complicated physical concepts. On the other hand, teachers´ materials comprehension itself can affect the way teachers teaching and giving learning experience to the students. Here, we use descriptive research to figure out teacher´s pedagogical content knowledge (PCK representation during teaching and learning process of vibrations and waves for junior high school grade VIII. Four professional junior high school teachers were chosen as sample. The PCK representation was focused on the content representation (CoRe which represents teachers´ materials comprehension and their special aspects. Data collections have been done by means documentation study, ongoing classroom activities observation and interviews with the teachers as well as the students. Outcome of this research are: 1 Basic ideas/concepts expected by teachers for students to learn are not yet covering the basic concept needed to understand the concept itself, 2 Teachers are not yet mastering the teaching materials comprehensively, 3 Classroom activities/learning experiences and the method given to the students are not varied.

  13. Observation of two coupled Faraday waves in a vertically vibrating Hele-Shaw cell with one of them oscillating horizontally

    CERN Document Server

    Li, Xiaochen; Liao, Shijun

    2016-01-01

    A system of two-dimensional, two coupled Faraday interfacial waves is experimentally observed at the two interfaces of the three layers of fluids (air, pure ethanol and silicon oil) in a sealed Hele-Shaw cell with periodic vertical vibration. The upper and lower Faraday waves coexist: the upper vibrates vertically, but the crests of the lower one oscillate horizontally with unchanged wave height and a frequency equal to the half of the forcing one of the vertically vibrating basin, while the troughs of the lower one always stay in the same place (relative to the basin). Besides, they are strongly coupled: the wave height of the lower Faraday wave is either a linear function (in the case of a fixed forcing frequency) or a parabolic function (in the case of a fixed acceleration amplitude) of that of the upper, with the same wave length. In addition, the upper Faraday wave temporarily loses its smoothness at around $t=T/4$ and $t=3T/4$, where $T$ denotes the wave period, and thus has fundamental difference from ...

  14. Study on vibration characteristics and fault diagnosis method of oil-immersed flat wave reactor in Arctic area converter station

    Science.gov (United States)

    Lai, Wenqing; Wang, Yuandong; Li, Wenpeng; Sun, Guang; Qu, Guomin; Cui, Shigang; Li, Mengke; Wang, Yongqiang

    2017-10-01

    Based on long term vibration monitoring of the No.2 oil-immersed fat wave reactor in the ±500kV converter station in East Mongolia, the vibration signals in normal state and in core loose fault state were saved. Through the time-frequency analysis of the signals, the vibration characteristics of the core loose fault were obtained, and a fault diagnosis method based on the dual tree complex wavelet (DT-CWT) and support vector machine (SVM) was proposed. The vibration signals were analyzed by DT-CWT, and the energy entropy of the vibration signals were taken as the feature vector; the support vector machine was used to train and test the feature vector, and the accurate identification of the core loose fault of the flat wave reactor was realized. Through the identification of many groups of normal and core loose fault state vibration signals, the diagnostic accuracy of the result reached 97.36%. The effectiveness and accuracy of the method in the fault diagnosis of the flat wave reactor core is verified.

  15. Numerical Modelling of Building Vibrations due to Railway Traffic: Analysis of the Mitigation Capacity of a Wave Barrier

    Directory of Open Access Journals (Sweden)

    Fran Ribes-Llario

    2017-01-01

    Full Text Available Transmission of train-induced vibrations to buildings located in the vicinity of the track is one of the main negative externalities of railway transport, since both human comfort and the adequate functioning of sensitive equipment may be compromised. In this paper, a 3D FEM model is presented and validated with data from a real track stretch near Barcelona, Spain. Furthermore, a case study is analyzed as an application of the model, in order to evaluate the propagation and transmission of vibrations induced by the passage of a suburban train to a nearby 3-storey building. As a main outcome, vertical vibrations in the foundation slab are found to be maximum in the corners, while horizontal vibrations keep constant along the edges. The propagation within the building structure is also studied, concluding that vibrations invariably increase in their propagation upwards the building. Moreover, the mitigation capacity of a wave barrier acting as a source isolation is assessed by comparing vibration levels registered in several points of the building structure with and without the barrier. In this regard, the wave barrier is found to effectively reduce vibration in both the soil and the structure.

  16. Quantum dynamics through a wave packet method to study electron-hydrogen and atom-dihydrogen collisions; Dynamique quantique par une methode de paquets d'ondes. Etude des collisions electron-hydrogene et atome-dihydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, L

    2002-11-01

    The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)

  17. Packet Tracer network simulator

    CERN Document Server

    Jesin, A

    2014-01-01

    A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.

  18. Shear-horizontal vibration modes of an oblate elliptical cylinder and energy trapping in contoured acoustic wave resonators.

    Science.gov (United States)

    He, Huijing; Yang, Jiashi; Kosinski, John A

    2012-08-01

    We study shear-horizontal free vibrations of an elastic cylinder with an oblate elliptical cross section and a traction-free surface. Exact vibration modes and frequencies are obtained. The results show the existence of thickness-shear and thickness-twist modes. The energy-trapping behavior of these modes is examined. Trapped modes are found wherein the vibration energy is largely confined to the central portion of the cross section and little vibration energy is found at the edges. It is also shown that face-shear modes are not allowed in such a cylinder. The results are useful for the understanding of the energy trapping phenomenon in contoured acoustic wave resonators.

  19. Detection of the Vibration Signal from Human Vocal Folds Using a 94-GHz Millimeter-Wave Radar

    Science.gov (United States)

    Chen, Fuming; Li, Sheng; Zhang, Yang; Wang, Jianqi

    2017-01-01

    The detection of the vibration signal from human vocal folds provides essential information for studying human phonation and diagnosing voice disorders. Doppler radar technology has enabled the noncontact measurement of the human-vocal-fold vibration. However, existing systems must be placed in close proximity to the human throat and detailed information may be lost because of the low operating frequency. In this paper, a long-distance detection method, involving the use of a 94-GHz millimeter-wave radar sensor, is proposed for detecting the vibration signals from human vocal folds. An algorithm that combines empirical mode decomposition (EMD) and the auto-correlation function (ACF) method is proposed for detecting the signal. First, the EMD method is employed to suppress the noise of the radar-detected signal. Further, the ratio of the energy and entropy is used to detect voice activity in the radar-detected signal, following which, a short-time ACF is employed to extract the vibration signal of the human vocal folds from the processed signal. For validating the method and assessing the performance of the radar system, a vibration measurement sensor and microphone system are additionally employed for comparison. The experimental results obtained from the spectrograms, the vibration frequency of the vocal folds, and coherence analysis demonstrate that the proposed method can effectively detect the vibration of human vocal folds from a long detection distance. PMID:28282892

  20. Detection of the Vibration Signal from Human Vocal Folds Using a 94-GHz Millimeter-Wave Radar

    Directory of Open Access Journals (Sweden)

    Fuming Chen

    2017-03-01

    Full Text Available The detection of the vibration signal from human vocal folds provides essential information for studying human phonation and diagnosing voice disorders. Doppler radar technology has enabled the noncontact measurement of the human-vocal-fold vibration. However, existing systems must be placed in close proximity to the human throat and detailed information may be lost because of the low operating frequency. In this paper, a long-distance detection method, involving the use of a 94-GHz millimeter-wave radar sensor, is proposed for detecting the vibration signals from human vocal folds. An algorithm that combines empirical mode decomposition (EMD and the auto-correlation function (ACF method is proposed for detecting the signal. First, the EMD method is employed to suppress the noise of the radar-detected signal. Further, the ratio of the energy and entropy is used to detect voice activity in the radar-detected signal, following which, a short-time ACF is employed to extract the vibration signal of the human vocal folds from the processed signal. For validating the method and assessing the performance of the radar system, a vibration measurement sensor and microphone system are additionally employed for comparison. The experimental results obtained from the spectrograms, the vibration frequency of the vocal folds, and coherence analysis demonstrate that the proposed method can effectively detect the vibration of human vocal folds from a long detection distance.

  1. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    -dependent response to the IR fields is due to the anharmonicity of the potential. A subsequent ultraviolet laser pulse in resonance at the outer turning point of the vibrational motion can then dissociate the oscillating molecules, all with the same orientation, leading to spatial control of the photofragment......Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...

  2. Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in full symmetry approach

    CERN Document Server

    Lapierre, David; Kochanov, Roman; Kokoouline, Viatcheslav; Tyuterev, Vladimir

    2016-01-01

    Energies and lifetimes (widths) of vibrational states above the lowest dissociation limit of $^{16}$O$_3$ were determined using a previously-developed efficient approach, which combines hyperspherical coordinates and a complex absorbing potential. The calculations are based on a recently-computed potential energy surface of ozone determined with a spectroscopic accuracy [J. Chem. Phys. {\\bf 139}, 134307 (2013)]. The effect of permutational symmetry on rovibrational dynamics and the density of resonance states in O$_3$ is discussed in detail. Correspondence between quantum numbers appropriate for short- and long-range parts of wave functions of the rovibrational continuum is established. It is shown, by symmetry arguments, that the allowed purely vibrational ($J=0$) levels of $^{16}$O$_3$ and $^{18}$O$_3$, both made of bosons with zero nuclear spin, cannot dissociate on the ground state potential energy surface. Energies and wave functions of bound states of the ozone isotopologue $^{16}$O$_3$ with rotational ...

  3. Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach

    Science.gov (United States)

    Hussain, Muzamal; Naeem, M. Nawaz; Shahzad, Aamir; He, Maogang

    2017-04-01

    The vibration analysis, based on the Donnell thin shell theory, of single-walled carbon nanotubes (SWCNTs) has been investigated. The wave propagation approach in standard eigenvalue form has been employed in order to derive the characteristic frequency equation describing the natural frequencies of vibration in SWCNTs. The complex exponential functions, with the axial modal numbers that depend on the boundary conditions stated at edges of a carbon nanotube, have been used to compute the axial modal dependence. In our new investigations, the vibration frequency spectra are obtained and calculated for various physical parameters like length-to-diameter ratios for armchair and zigzag SWCNTs for different modes and in-plane rigidity and mass density per unit lateral area for armchair and zigzag SWCNTs on the vibration frequencies. The computer software MATLAB is used in order to compute these frequencies of the SWCNTs. The results obtained from wave propagation method are found to be in satisfactory agreement with that obtained through the previously known numerical molecular dynamics simulations.

  4. Free Vibration Characteristics of Cylindrical Shells Using a Wave Propagation Method

    Directory of Open Access Journals (Sweden)

    A. Ghoshal

    2001-01-01

    Full Text Available In the present paper, concept of a periodic structure is used to study the characteristics of the natural frequencies of a complete unstiffened cylindrical shell. A segment of the shell between two consecutive nodal points is chosen to be a periodic structural element. The present effort is to modify Mead and Bardell's approach to study the free vibration characteristics of unstiffened cylindrical shell. The Love-Timoshenko formulation for the strain energy is used in conjunction with Hamilton's principle to compute the natural propagation constants for two shell geometries and different circumferential nodal patterns employing Floquet's principle. The natural frequencies were obtained using Sengupta's method and were compared with those obtained from classical Arnold-Warburton's method. The results from the wave propagation method were found to compare identically with the classical methods, since both the methods lead to the exact solution of the same problem. Thus consideration of the shell segment between two consecutive nodal points as a periodic structure is validated. The variations of the phase constants at the lower bounding frequency for the first propagation band for different nodal patterns have been computed. The method is highly computationally efficient.

  5. Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs

    Science.gov (United States)

    Li, Fengming; Zhang, Chuanzeng; Liu, Chunchuan

    2017-04-01

    A novel strategy is proposed to actively tune the vibration and wave propagation properties in elastic beams. By periodically placing the piezoelectric actuator/sensor pairs along the beam axis, an active periodic beam structure which exhibits special vibration and wave propagation properties such as the frequency pass-bands and stop-bands (or band-gaps) is developed. Hamilton's principle is applied to establish the equations of motion of the sub-beam elements i.e. the unit-cells, bonded by the piezoelectric patches. A negative proportional feedback control strategy is employed to design the controllers which can provide a positive active stiffness to the beam for a positive feedback control gain, which can increase the stability of the structural system. By means of the added positive active stiffness, the periodicity or the band-gap property of the beam with periodically placed piezoelectric patches can be actively tuned. From the investigation, it is shown that better band-gap characteristics can be achieved by using the negative proportional feedback control. The band-gaps can be obviously broadened by properly increasing the control gain, and they can also be greatly enlarged by appropriately designing the structural sizes of the controllers. The control voltages applied on the piezoelectric actuators are in reasonable and controllable ranges, especially, they are very low in the band-gaps. Thus, the vibration and wave propagation behaviors of the elastic beam can be actively controlled by the periodically placed piezoelectric patches.

  6. Waveform and packet structure of lion roars

    Directory of Open Access Journals (Sweden)

    W. Baumjohann

    Full Text Available The Equator-S magnetometer is very sensitive and has a sampling rate of normally 128 Hz. The high sampling rate allows for the first time fluxgate magnetometer measurements of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dayside magnetosheath. The so-called lion roars, typically seen by the Equator-S magnetometer at the bottom of the magnetic troughs of magnetosheath mirror waves, are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.25 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5–1 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is usually smaller than 1.5°.

    Key words. Interplanetary physics (MHD waves and turbulence; plasma waves and turbulence

  7. Vibration control in forge hammers. [by shock wave damping in foundation platform

    Science.gov (United States)

    Moise, F.; Lazarescu, C.

    1974-01-01

    Special measures are discussed for calculating, designing and executing a forge hammer foundation, so that the vibrations that occur during its working will not be transmitted to neighboring machinery, workrooms and offices. These vibrations are harmful to the workers near the forge hammer.

  8. Real-time observation of vibrational revival in the fastest molecular system

    Science.gov (United States)

    Rudenko, A.; Ergler, Th.; Feuerstein, B.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2006-10-01

    After preparing a coherent vibrational wave packet in the hydrogen molecular ion by ionizing neutral H 2 molecules with a 6.5 fs, 760 nm laser pulse at 3 × 10 14 W/cm 2, we map its spatio-temporal evolution by the fragmentation induced with a second 6.5 fs laser pulse of doubled intensity. In this proof-of-principle experiment, we visualize the oscillations of this most fundamental molecular system, observe a dephasing of the vibrational wave packet and its subsequent revival. Whereas the experimental data exhibit an overall qualitative agreement with the results of a simple numerical simulation, noticeable discrepancy is found in the characteristic revival time. The most likely reasons for this disagreement originate from the simplifications used in the theoretical model, which assumes a Franck-Condon transition induced by the pump pulse with subsequent field-free propagation of the H2+ vibrational wave packet, and neglects the influence of the rotational motion.

  9. Optical Packet Switch Architectures

    Science.gov (United States)

    Singh, Rajat Kumar; Srivastava, Rajiv; Singh, Yatindra Nath

    In this article, we present the comparative analysis of various optical packet switch architectures. The comparison is done on the basis of bursty traffic arrival and the optical cost of various optical components used to build that switch. The architectures chosen for the analysis were previously proposed by us and their performance was evaluated only for the uniform random traffic arrival. Hence, this article can be considered as the cumulative and effective extension of the previous works. The computer simulations are performed to obtain the packet loss probability and average delay in presence of bursty traffic.

  10. Optical Packet Switching Demostrator

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach; Berger, Michael Stübert

    2002-01-01

    In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set-up and the m......In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set...

  11. Millimeter-wave and Submillimeter-wave Spectra of Aminoacetonitrile in the Three Lowest Vibrational Excited States

    Energy Technology Data Exchange (ETDEWEB)

    Esposti, Claudio Degli; Dore, Luca; Melosso, Mattia [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, I-40126 Bologna (Italy); Kobayashi, Kaori [Department of Physics, Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Fujita, Chiho; Ozeki, Hiroyuki, E-mail: ozeki@env.sci.toho-u.ac.jp [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510 (Japan)

    2017-06-01

    It is important to study possible precursors of amino acids such as glycine to enable future searches in interstellar space. Aminoacetonitrile (NH{sub 2}CH{sub 2}CN) is one of the most feasible molecules for this purpose. This molecule was already detected toward Sgr B2(N). Aminoacetonitrile has a few low-lying vibrational excited states, and transitions within these states may be found in space. In this study, the pure-rotational transitions in the three lowest vibrational states in the 80–450 GHz range have been assigned and analyzed. It was found to be very important to include Coriolis coupling between the two lowest vibrational fundamentals, while the third one was unperturbed. The partition function was evaluated considering these new results.

  12. Multiwavelet packets and frame packets of L2( d)

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    ized to this setting. Further, we show how to construct various orthonormal bases of. L2( d) from the multiwavelet packets. Keywords. Wavelet; wavelet packets; frame packets; dilation matrix. 1. Introduction. Consider an orthonormal wavelet of L2( ). At the jth resolution level, the orthonormal basis {ψjk : j,k ∈ } generated by ...

  13. Election '88: Teacher Packet.

    Science.gov (United States)

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Social Studies Education.

    This materials packet contains information on teaching about the electoral process and the elections of 1988, and on participation in a mock election for students whose schools would take part in the 1988 North Carolina Mock Election. Suggestions for teachers' preparations are given, including a classroom skit and a mock candidates' election…

  14. Hoover Dam Learning Packet.

    Science.gov (United States)

    Bureau of Reclamation (Dept. of Interior), Washington, DC.

    This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…

  15. An improved packet structure

    KAUST Repository

    Bader, Ahmed

    2014-05-22

    A multihop network transmits a packet including a RACH area and a hop number. The RACH area includes a list of subcarriers. A source node in the network dynamically determines the size of the RACH area. A node in the network performs an open-loop transmit power control.

  16. Vibrational Scattering Anisotropy Generated by Multichannel Quantum Interference

    Science.gov (United States)

    Miron, Catalin; Kimberg, Victor; Morin, Paul; Nicolas, Christophe; Kosugi, Nobuhiro; Gavrilyuk, Sergey; Gel'Mukhanov, Faris

    2010-08-01

    Based on angularly and vibrationally resolved electron spectroscopy measurements in acetylene, we report the first observation of anomalously strong vibrational anisotropy of resonant Auger scattering through the C 1s→π* excited state. We provide a theoretical model explaining the new phenomenon by three coexisting interference effects: (i) interference between resonant and direct photoionization channels, (ii) interference of the scattering channels through the core-excited bending states with orthogonal orientation of the molecular orbitals, (iii) scattering through two wells of the double-well bending mode potential. The interplay of nuclear and electronic motions offers in this case a new type of nuclear wave packet interferometry sensitive to the anisotropy of nuclear dynamics: whether which-path information is available or not depends on the final vibrational state serving for path selection.

  17. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    Directory of Open Access Journals (Sweden)

    Jie Hui

    2016-03-01

    Full Text Available The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.

  18. Precession of elastic waves in vibrating isotropic spheres and transversely isotropic cylinders subjected to inertial rotation

    CSIR Research Space (South Africa)

    Joubert, S

    2006-05-01

    Full Text Available and calculation of the corresponding proportionality factors. In the present paper radial and torsional vibrational modes are considered on the basis of an exact solution of 3-D equations of motion of an isotropic body in spherical coordinates. The solutions...

  19. Time-dependent wave packet theory for state-to-state differential cross sections of four-atom reactions in full dimensions: application to the HD + OH → H2O + D reaction.

    Science.gov (United States)

    Liu, Shu; Xu, Xin; Zhang, Dong H

    2012-04-14

    Time-dependent wave packet method has been developed to calculate differential cross section for four-atom reactions in full dimension, utilizing an improved version of reactant-product-decoupling scheme. Differential cross sections for the title reaction were calculated for collision energy up to 0.4 eV. It is found that the differential cross sections for the reaction are all peaked in the backward direction. The majority of H(2)O is produced in the first stretch excited state, with a large fraction of available energy for the reaction going into H(2)O internal motion. As compared in a previous report by Xiao et al. [Science 333, 440 (2011)], the differential cross section at E(c) = 0.3 eV and the differential cross section at the backward direction as a function of collision energy agree with experiment very well, indicating it is possible now to calculate complete dynamical information for some simple four-atom reactions, as have been done for three-atom reactions in the past decades.

  20. Technology Corner: Internet Packet Sniffers

    Directory of Open Access Journals (Sweden)

    Nick Flor

    2011-03-01

    Full Text Available A packet sniffer is a piece of software that allows a person to eavesdrop on computer communications over the internet.  A packet sniffer can be used as a diagnostic tool by network administrators or as a spying tool by hackers who can use it to steal passwords and other private information from computer users.  Whether you are a network administrator or information assurance specialist, it helps to have a detailed understanding of how packet sniffers work.  And one of the best ways to acquire such an understanding is to build and modify an actual packet sniffer.

  1. Evaluation of dynamic properties of soft ground using an S-wave vibrator and seismic cones. Part 2. Vs change during the vibration; S ha vibrator oyobi seismic cone wo mochiita gen`ichi jiban no doteki bussei hyoka. 2. Kashinchu no Vs no henka

    Energy Technology Data Exchange (ETDEWEB)

    Inazaki, T. [Public Works Research Institute, Tsukuba (Japan)

    1997-05-27

    With an objective to measure a behavior of the surface ground during a strong earthquake directly on the actual ground and make evaluation thereon, a proposal was made on an original location measuring and analyzing method using an S-wave vibrator and seismic cones. This system consists of an S-wave vibrator and a static cone penetrating machine, and different types of measuring cones. A large number of measuring cones are inserted initially in the object bed of the ground, and variation in the vibration generated by the vibrator is measured. This method can derive decrease in rigidity rate of the actual ground according to dynamic strain levels, or in other words, the dynamic nonlinearity. The strain levels can be controlled with a range from 10 {sup -5} to 10 {sup -3} by varying the distance from the S-wave vibrator. Furthermore, the decrease in the rigidity rate can be derived by measuring variations in the S-wave velocity by using the plank hammering method during the vibration. Field measurement is as easy as it can be completed in about half a day including preparatory works, and the data analysis is also simple. The method is superior in mobility and workability. 9 figs.

  2. Multiwavelet packets and frame packets of L2 (d)

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 111; Issue 4. Multiwavelet Packets ... To overcome this disadvantage Coifman, Meyer, and Wickerhauser constructed wavelet packets. We extend this ... Department of Mathematics, Indian Institute of Technology, Kanpur 208 016, India; Stat.-Math. Unit, Indian ...

  3. Combined whole-body vibration training and l-citrulline supplementation improves pressure wave reflection in obese postmenopausal women.

    Science.gov (United States)

    Wong, Alexei; Alvarez-Alvarado, Stacey; Jaime, Salvador J; Kinsey, Amber W; Spicer, Maria T; Madzima, Takudzwa A; Figueroa, Arturo

    2016-03-01

    Postmenopausal women have increased wave reflection (augmentation pressure (AP) and index (AIx)) and reduced muscle function that predispose them to cardiac diseases and disability. Our aim was to examine the combined and independent effects of whole-body vibration training (WBVT) and l-citrulline supplementation on aortic hemodynamics and plasma nitric oxide metabolites (NOx) in postmenopausal women. Forty-one obese postmenopausal women were randomized to 3 groups: l-citrulline, WBVT+l-citrulline and WBVT+Placebo for 8 weeks. Brachial and aortic systolic blood pressure, diastolic blood pressure, AP, AIx, AIx adjusted to 75 beats/min (AIx@75), and NOx were measured before and after 8 weeks. All groups similarly decreased (P obese postmenopausal women.

  4. Fragmentation of H+2 in strong 800-nm laser pulses: Initial-vibrational-state dependence

    Science.gov (United States)

    Feuerstein, Bernold; Thumm, Uwe

    2003-04-01

    The fragmentation of the H+2 molecular ion in 25-fs, 800-nm laser pulses in the intensity range 0.05 0.5 P W/cm2 is investigated by means of wave-packet propagation calculations. We use a collinear reduced-dimensionality model that represents both the nuclear and electronic motion by one degree of freedom including non-Born-Oppenheimer couplings. In order to reproduce accurately the properties of the “real” three-dimensional molecule, we introduce a modified “soft-core” Coulomb potential with a softening function that depends on the internuclear distance. The analysis of the calculated flux of the outgoing wave packets allows us to obtain fragmentation probabilities and kinetic-energy spectra. Our results show that the relative probabilities for dissociation and Coulomb explosion depend critically on the initial vibrational state of the molecular ion.

  5. Bringing (Century-Old) Technology into the Classroom, Part II: Teaching Vibrations and Waves, Electricity and Magnetism, and Optics with Antiques

    Science.gov (United States)

    Jewett, John W., Jr.

    2016-01-01

    This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article further discusses antiques used to teach vibrations and waves,…

  6. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  7. Vocational and Industrial Arts Packets.

    Science.gov (United States)

    Maine Audubon Society, Falmouth.

    This book is a teacher's guide to energy alternatives. It is divided into seven informational packets on the following topics: parabolic solar concentrators, solar flat plate collectors, wood as fuel, heat loss, bio-gas, wind, and water. Each packet contains background information for the teachers and learning activities for the students. The…

  8. Spatio-temporal interference of photo electron wave packets and time scale of non-adiabatic transition in high-frequency regime

    CERN Document Server

    Toyota, Koudai

    2016-01-01

    The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. {\\bf 17}, 073005~(2015)] is applied to further study a detachment dynamics of a model negative ion in one-dimension in high-frequency regime. This method is based on the Floquet approach, but the time-dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photo absorption/emission but also a non-adiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schr\\"odinger equation, and underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we further explore two more aspects of the detachment dynamics, which were not done in our previous work. First, we find out features of both a {\\it spatial} and {\\it temporal} interference of photo electron wave pack...

  9. Arch-Shaped triboelectric nanogenerator as a facile device for water-wave vibrational energy

    Science.gov (United States)

    Ko, Young Joon; Kim, Hyun Soo; Jung, Jong Hoon

    2017-11-01

    We report an arch-shaped triboelectric nanogenerator (A-TENG) as for a simple and effective water-wave energy harvesting device. The A-TENG consists of arch-shaped polyethylene terephthalate (PET) polymer film and flat Al metal electrode. Especially, the arch-shape of PET provides an inherent restoring force after the contact with Al; which significantly reduces the weight and volume of the TENG. For a mild mechanical impact of water waves with an amplitude of 5 cm and frequency of 1 Hz, the single A-TENG unit generates an open-circuit voltage of 8 V and closedcircuit current of 200 nA. In addition, two A-TENG units connected in parallel generate almost double the voltage and current. These results imply that the scaled-up A-TENG units could be used at water-breakers in coastal areas for effective harvesting of ocean wave mechanical energy.

  10. Modeling waves forced by a drop bouncing on a vibrating bath

    Science.gov (United States)

    Turton, Sam; Rosales, Ruben; Bush, John

    2017-11-01

    We study the wavefield generated by a droplet bouncing on a bath of silicon oil undergoing vertical oscillations. Such droplets may bounce indefinitely below the Faraday threshold, and in certain parameter regimes destabilize into a walking state in which they are propelled by their own wavefield. While previous theoretical models have rationalize the behavior of single droplets, difficulties have arisen in rationalizing the behavior of multi-droplet systems. We here present a refined wave model that allows us to do so. In particular, we give a detailed account of the spatio-temporal decay of the waves, in addition to the couping between the wave amplitude and modulations in the droplet's vertical dynamics. Our analytic model is compared with the results of direct numerical simulations and experiments. We gratefully acknowledge the financial support of the NSF.

  11. Effects of reagent rotational excitation on the H + CHD{sub 3} → H{sub 2} + CD{sub 3} reaction: A seven dimensional time-dependent wave packet study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhaojun; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2014-10-14

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD{sub 3} in J{sub 0} = 1, 2 rotationally excited initial states with k{sub 0} = 0 − J{sub 0} (the projection of CHD{sub 3} rotational angular momentum on its C{sub 3} axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K{sub 0}) equal to k{sub 0} are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD{sub 3} with respect to the relative velocity between the reagents H and CHD{sub 3}. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K{sub 0} specified cross sections for the K{sub 0} = k{sub 0} initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K{sub 0} averaging for the J{sub 0} = 1, 2 initial states with all different k{sub 0} are essentially identical to the corresponding CS and CC results for the J{sub 0} = 0 initial state, meaning that the initial rotational excitation of CHD{sub 3} up to J{sub 0} = 2, regardless of its initial k{sub 0}, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J{sub 0} = 1, 2 initial states are the same as those for the J{sub 0} = 0 initial state.

  12. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3+ to study reaction dynamics using coupled 3D time-dependent wave-packet approach.

    Science.gov (United States)

    Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2017-08-21

    The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H3+ system (11A', 21A', and 31A') using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D+ + H2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H3+. We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

  13. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    range that covers the EDFA window and conversion speeds of 20 Gbit/s and 40 Gbit/s are presented. Furthermore, the regenerative capability due to a nonlinear transfer function is verified at 20 Gbit/s. Following, the transmission characteristics of the IWC is analysed. The chirp measurements indicate...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... that there is a difference in the transmission properties for co- and counter propagation conversion, which is supported by transmission experiments. The combined use of SOA gates and interferometric wavelength converters illustrates the regenerative capability of the IWCs at 2.5, 10 and 20 Gbit/s by increasing the input...

  14. Random vibration analysis of train-bridge under track irregularities and traveling seismic waves using train-slab track-bridge interaction model

    Science.gov (United States)

    Zeng, Zhi-Ping; Zhao, Yan-Gang; Xu, Wen-Tao; Yu, Zhi-Wu; Chen, Ling-Kun; Lou, Ping

    2015-04-01

    The frequent use of bridges in high-speed railway lines greatly increases the probability that trains are running on bridges when earthquakes occur. This paper investigates the random vibrations of a high-speed train traversing a slab track on a continuous girder bridge subjected to track irregularities and traveling seismic waves by the pseudo-excitation method (PEM). To derive the equations of motion of the train-slab track-bridge interaction system, the multibody dynamics and finite element method models are used for the train and the track and bridge, respectively. By assuming track irregularities to be fully coherent random excitations with time lags between different wheels and seismic accelerations to be uniformly modulated, non-stationary random excitations with time lags between different foundations, the random load vectors of the equations of motion are transformed into a series of deterministic pseudo-excitations based on PEM and the wheel-rail contact relationship. A computer code is developed to obtain the time-dependent random responses of the entire system. As a case study, the random vibration characteristics of an ICE-3 high-speed train traversing a seven-span continuous girder bridge simultaneously excited by track irregularities and traveling seismic waves are analyzed. The influence of train speed and seismic wave propagation velocity on the random vibration characteristics of the bridge and train are discussed.

  15. Local structure and vibrational properties of alpha-Pu, alpha-Uand the alpha-U charge density wave

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.J.; Allen, P.G.; Blobaum, K.J.M.; Wall, W.A.; Booth, C.H.

    2004-08-10

    The local atomic environment and vibrational properties of atoms in monoclinic pure {alpha}-plutonium as well as orthorhombic pure a-uranium and its low-temperature charge-density-wave (CDW) modulation are examined by extended x-ray absorption fine structure spectroscopy (EXAFS). Pu L{sub III}-edge and U L{sub III}-edge EXAFS data measured at low temperatures verify the crystal structures of {alpha}-U and {alpha}-Pu samples previously determined by x-ray diffraction and neutron scattering. Debye-Waller factors from temperature-dependent EXAFS measurements are fit with a correlated Debye model. The observed Pu-Pu bond correlated Debye temperature of {theta}{sub cD}({alpha}-Pu) = 162 {+-} 5 K for the pure {alpha}-Pu phase agrees with our previous measurement of the correlated Debye temperature of the gallium-containing {alpha}{prime}-Pu phase in a mixed phase 1.9 at% Ga-doped {alpha}{prime}-Pu/{delta}-Pu alloy. The temperature dependence of the U-U nearest neighbor Debye-Waller factor exhibits a sharp discontinuity in slope near T{sub CDW} = 43 K, the transition temperature at which the charge-density wave (CDW) in {alpha}-U condenses from a soft phonon mode along the (100) direction. Our measurement of the CDW using EXAFS is the first observation of the structure of the CDW in polycrystalline {alpha}-U. The different temperature dependence of the Debye-Waller factor for T < T{sub CDW} can be modeled by the change in bond length distributions resulting from condensation of the charge density wave. For T > T{sub CDW}, the observed correlated Debye temperature of {theta}{sub cD}({alpha}-U) = 199 {+-} 3 K is in good agreement with other measurements of the Debye temperature for polycrystalline {alpha}-U. CDW structural models fit to the {alpha}-U EXAFS data support a squared CDW at the lowest temperatures, with a displacement amplitude of {var_epsilon} = 0.05 {+-} 0.02 {angstrom}.

  16. Atomization off thin water films generated by high-frequency substrate wave vibrations

    Science.gov (United States)

    Collins, David J.; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R.; Yeo, Leslie Y.

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  17. Influence of light-induced conical intersection on the photodissociation dynamics of D2(+) starting from individual vibrational levels.

    Science.gov (United States)

    Halász, Gábor J; Csehi, András; Vibók, Ágnes; Cederbaum, Lorenz S

    2014-12-26

    Previous works have shown that dressing of diatomic molecules by standing or by running laser waves gives rise to the appearance of so-called light-induced conical intersections (LICIs). Because of the strong nonadiabatic couplings, the existence of such LICIs may significantly change the dynamical properties of a molecular system. In our former paper (J. Phys. Chem. A 2013, 117, 8528), the photodissociation dynamics of the D(2)(+) molecule were studied in the LICI framework starting the initial vibrational nuclear wave packet from the superposition of all the vibrational states initially produced by ionizing D(2). The present work complements our previous investigation by letting the initial nuclear wave packets start from different individual vibrational levels of D(2)(+), in particular, above the energy of the LICI. The kinetic energy release spectra, the total dissociation probabilities, and the angular distributions of the photofragments are calculated and discussed. An interesting phenomenon has been found in the spectra of the photofragments. Applying the light-induced adiabatic picture supported by LICI, explanations are given for the unexpected structure of the spectra.

  18. New scheme of variable optical buffer for IP packets used in access control of HORNET

    Science.gov (United States)

    Fang, Nian; Wang, Lutang; Huang, Zhaoming

    2002-09-01

    A new scheme of variable optical buffer for IP packets is reported. It may be used in access control of HORNET (Hybrid Optoelectronic Ring NETwork), to avoid collision of added packet and the packet already on the ring and improve the loss ratio of the packets. In this scheme, a new multi-wavelength fiber loop memory technique is employed. This architecture uses the wavelength converter (WC) to specify the packets delay and wavelength conversion is accomplished by the technique of four-wave-mixing (FWM) with a semiconductor optical amplifier (SOA). The range of delay is 10 to 9990 bytes periods. First, architecture, operation principle, characteristics and applications of this scheme of variable optical buffer are introduced. Next, a new unslotted CSMA/CA MAC scheme based on the variable optical buffer is briefly introduced too. Finally, the simulation results are presented.

  19. Electroencephalography data analysis by using discrete wavelet packet transform

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Ismail, Mohd Tahir; Hasan, Mohammad Khatim; Sulaiman, Jumat; Muthuvalu, Mohana Sundaram; Janier Josefina, B.

    2015-05-01

    Electroencephalography (EEG) is the electrical activity generated by the movement of neurons in the brain. It is categorized into delta waves, theta, alpha, beta and gamma. These waves exist in a different frequency band. This paper is a continuation of our previous research. EEG data will be decomposed using Discrete Wavelet Packet Transform (DWPT). Daubechies wavelets 10 (D10) will be used as the basic functions for research purposes. From the main results, it is clear that the DWPT able to characterize the EEG signal corresponding to each wave at a specific frequency. Furthermore, the numerical results obtained better than the results using DWT. Statistical analysis support our main findings.

  20. Downlink Transmission of Short Packets

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Popovski, Petar

    2017-01-01

    the principles of frame design and show the impact of the new design in scenarios that feature short data packets, which are central to various 5G and Internet of Things applications. We~treat framing for downlink transmission in an AWGN broadcast channel with $K$ users, where the sizes of the messages...

  1. Recycling Study Guide [Resource Packet].

    Science.gov (United States)

    Wisconsin State Dept. of Natural Resources, Madison.

    This resource packet contains six documents developed by the Wisconsin Department of Natural Resources in order to help teachers infuse the environmental education topics of recycling and solid waste into social studies, art, English, health, mathematics, science, and environmental education classes. "Recycling Study Guide" contains 19…

  2. Hunger and Development [Issue Packet].

    Science.gov (United States)

    American Freedom from Hunger Foundation, Washington, DC.

    A variety of informational materials is compiled in this issue packet concentrating on hunger and development. They have been assembled to understand the issues associated with the facts of world hunger and to try to invent new forms of action and thought necessary to find the possibilities hidden in the hunger issue. Items include: (1) a fact and…

  3. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  4. Nuclear velocity perturbation theory for vibrational circular dichroism: An approach based on the exact factorization of the electron-nuclear wave function

    CERN Document Server

    Scherrer, Arne; Sebastiani, Daniel; Gross, E K U; Vuilleumier, Rodolphe

    2015-01-01

    The nuclear velocity perturbation current-density theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similarly to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strength, related to the intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.

  5. The effect of human rhythm on packet delivery

    Science.gov (United States)

    Zhou, Zhao; Huang, Zi-Gang; Yang, Lei; Xue, De-Sheng; Wang, Ying-Hai

    2010-08-01

    In communication networks such as the Internet, the relationship between packet generation rate and time is similar to a rectangle wavefunction due to the rhythm of humans. Thus, we investigate the traffic dynamics on a network with a rectangle wavepacket generation rate. It is found that the critical delivering capacity parameter βc (which separates the congested phase and the free phase) decreases significantly with the duty cycle r of the rectangle wave for package generation. And, in the congested phase, more collective generation of packets (smaller r) is helpful for decreasing the packet aggregation rate. Moreover, it is found that the congested phase can be divided into two regions, i.e., region 1 and region 2, where the distributions of queue lengths are nonlinear and linear, respectively. Also, the linear expression for the distribution of queue lengths in region 2 is obtained analytically. Our work reveals an obvious effect of the rectangle wave on the traffic dynamics and the queue length distribution in the system, which is of essential interest and may provide insights into the designing of work-rest schedules and routing strategies.

  6. In-situ testing of the liquefaction potential of soft ground using an s-wave vibrator and seismic cones. Part 1. System, concept and preliminary test result; S ha vibrator oyobi seismic cone wo mochiita gen`ichi jiban ekijoka potential no hyoka. 1. System kosei oyobi genchi yosatsu keisoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Inazaki, T. [Public Works Research Institute, Tsukuba (Japan)

    1996-05-01

    For the purpose of evaluating liquefaction in situ, it was proposed that an S-wave vibrator designed to serve as a source in a reflection exploration method be utilized as a strong vibration generating source, and measurement was conducted in this connection. Equipment used in this test included an S-wave vibrator, static cone penetration machine, and various measuring cones. A multiplicity of measuring cones had been inserted beforehand into the target layers and comparison layers, and changes upon vibrator activation were measured. On a dry bed of the Tonegawa river, a 40m{sup 2} field was set up, and 41 cone penetration tests were conducted, with the cones positioned zigzag at 5m intervals. In this way, the ground structure was disclosed from the surface to the 10m-deep level. For the measurement, 3-component cones and seismic cones were placed at prescribed depths, and fluctuations and waveforms presented by pore water pressure at each level were determined with the vibration source changing its place. It was found that the changes in the pore water pressure exposed to vibration assume characteristic patterns corresponding to the conditions of vibration application. 5 figs., 1 tab.

  7. SIMULATION OF FORWARD AND BACKWARD WAVES EVOLUTION OF FEW-CYCLE PULSES PROPAGATING IN AN OPTICAL WAVEGUIDE WITH DISPERSION AND CUBIC NONLINEARITY OF ELECTRONIC AND ELECTRONIC-VIBRATION NATURE

    Directory of Open Access Journals (Sweden)

    L. S. Konev

    2015-09-01

    Full Text Available Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.

  8. A Practical Terrestrial Packet Radio Network.

    Science.gov (United States)

    1983-11-01

    large city teleports the need for efficient distribution of satellite down- links (and uplinks) has become more pressing. RAPAC or Radio Packet...rep- resents a proposed RAPAC based DTS system that was sub- mitted by the Xerox Corporation. A central broadcasting site, in an allocated...service networks. The RAPAC form of DTS (also Cable Packet Communications System, CAPAC) is a packet radio strategy which uses microwave antennas

  9. Dynamics of energetic electrons interacting with sub-packet chorus emissions in the magnetosphere

    Science.gov (United States)

    Hiraga, R.; Omura, Y.

    2016-12-01

    The recent study has revealed RTA and URA processes, the acceleration of relativistic electrons by interaction with chorus emissions. The wave model, however, is found to require some updates based on the recent observations. We develop a new wave model compatible with the observations and study the particle motion under the influence of this new wave model. The most distinctive feature of the new model is its amplitude growth manner. The wave is excited near the equator and grows in amplitude as an absolute instability as a function of time. This amplitude growth is bounded by the optimum and threshold amplitudes. When the amplitude grows to reach the optimum amplitude, it drops down to the threshold value and repeats the growth with a saw-like shape defined as sub-packet wave. The sub-packet wave generated near the equator experiences the convective amplitude growth propagating to the higher latitude region. Since the group velocity of the wave propagation is a function of its frequency, a wave source generated and released from the equator at a certain time and a group velocity could be overtaken by another wave released at a later timing and hence a faster group velocity. In sub-packet case, this frequency value is further affected by the sub-packet amplitude wave form to make the process more complex. Into this new wave form, energetic electrons are inserted and their motions are examined. For example, a resonant electron can be entrapped by the wave, being accelerated and normally detrapped after a certain period of time, but there can be a possibility that the following sub-packet wave in a complex propagation manner coincidently entraps the electron to provide multiple accelerations. We injected a large number of electrons over a wide energy range from 10kev to 10Mev into the sub-packet wave to simulate the nonlinear dynamics of RTA and URA. The electrons motion or more precisely entrapping and detrapping processes are examined under various conditions.

  10. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity

    Science.gov (United States)

    Ahmed, Riaz; Mir, Fariha; Banerjee, Sourav

    2017-08-01

    The principal objective of this article is to categorically review and compare the state of the art vibration based energy harvesting approaches. To evaluate the contemporary methodologies with respect to their physics, average power output and operational frequencies, systematically divided and easy readable tables are presented followed by the description of the energy harvesting methods. Energy harvesting is the process of obtaining electrical energy from the surrounding vibratory mechanical systems through an energy conversion method using smart structures, like, piezoelectric, electrostatic materials. Recent advancements in low power electronic gadgets, micro electro mechanical systems, and wireless sensors have significantly increased local power demand. In order to circumvent the energy demand; to allow limitless power supply, and to avoid chemical waste from conventional batteries, low power local energy harvesters are proposed for harvesting energy from different ambient energy sources. Piezoelectric materials have received tremendous interest in energy harvesting technology due to its unique ability to capitalize the ambient vibrations to generate electric potential. Their crystalline configuration allows the material to convert mechanical strain energy into electrical potential, and vice versa. This article discusses the various approaches in vibration based energy scavenging where piezoelectric materials are employed as the energy conversion medium.

  11. A Comparative Randomised Controlled Trial of the Effects of Brain Wave Vibration Training, Iyengar Yoga, and Mindfulness on Mood, Well-Being, and Salivary Cortisol

    Directory of Open Access Journals (Sweden)

    Deborah Bowden

    2012-01-01

    Full Text Available This randomised trial compared the effects of Brain Wave Vibration (BWV training, which involves rhythmic yoga-like meditative exercises, with Iyengar yoga and Mindfulness. Iyengar provided a contrast for the physical components and mindfulness for the “mental” components of BWV. 35 healthy adults completed 10 75-minute classes of BWV, Iyengar, or Mindfulness over five weeks. Participants were assessed at pre- and postintervention for mood, sleep, mindfulness, absorption, health, memory, and salivary cortisol. Better overall mood and vitality followed both BWV and Iyengar training, while the BWV group alone had improved depression and sleep latency. Mindfulness produced a comparatively greater increase in absorption. All interventions improved stress and mindfulness, while no changes occurred in health, memory, or salivary cortisol. In conclusion, increased well-being followed training in all three practices, increased absorption was specific to Mindfulness, while BWV was unique in its benefits to depression and sleep latency, warranting further research.

  12. Semiclassical treatments for small-molecule dynamics in low-temperature crystals using fixed and adiabatic vibrational bases

    Science.gov (United States)

    Chapman, Craig T.; Cina, Jeffrey A.

    2007-09-01

    Time-resolved coherent nonlinear optical experiments on small molecules in low-temperature host crystals are exposing valuable information on quantum mechanical dynamics in condensed media. We make use of generic features of these systems to frame two simple, comprehensive theories that will enable the efficient calculations of their ultrafast spectroscopic signals and support their interpretation in terms of the underlying chemical dynamics. Without resorting to a simple harmonic analysis, both treatments rely on the identification of normal coordinates to unambiguously partition the well-structured guest-host complex into a system and a bath. Both approaches expand the overall wave function as a sum of product states between fully anharmonic vibrational basis states for the system and approximate Gaussian wave packets for the bath degrees of freedom. The theories exploit the fact that ultrafast experiments typically drive large-amplitude motion in a few intermolecular degrees of freedom of higher frequency than the crystal phonons, while these intramolecular vibrations indirectly induce smaller-amplitude—but still perhaps coherent—motion among the lattice modes. The equations of motion for the time-dependent parameters of the bath wave packets are fairly compact in a fixed vibrational basis/Gaussian bath (FVB/GB) approach. An alternative adiabatic vibrational basis/Gaussian bath (AVB/GB) treatment leads to more complicated equations of motion involving adiabatic and nonadiabatic vector potentials. Computational demands for propagation of the parameter equations of motion appear quite manageable for tens or hundreds of atoms and scale similarly with system size in the two cases. Because of the time-scale separation between intermolecular and lattice vibrations, the AVB/GB theory may in some instances require fewer vibrational basis states than the FVB/GB approach. Either framework should enable practical first-principles calculations of nonlinear optical

  13. Pictorial warnings on cigarette packets: Effectiveness and ...

    African Journals Online (AJOL)

    Placing pictorial warning messages of potential health hazards of tobacco smoking on cigarette packets is mandatory by law in Egypt. Photos of victims of heavy tobacco smoking are placed on the front and back covers of cigarette packets in an attempt to warn both users and would be users of the health risks associated ...

  14. Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach

    2006-01-01

    Hybrid electro-optical packet switches utilize optics in the backplane to switch optical packets from inputs to outputs on electronic line cards. The optical packets are traditionally considerably larger than minimum size IP packets. IP packets entering the switch must be formatted (segmented...... delay and throughput in hybrid electro-optical packet switching. Furthermore, it is investigated how large a speedup is required in order to provide 100% throughput....

  15. DPDK-based Improvement of Packet Forwarding

    Directory of Open Access Journals (Sweden)

    Bi Hao

    2016-01-01

    Full Text Available Reel-time processing of packets occupies a significant position in the field of computer network security. With theexplosive growth of the backbone link rate,which is consistent with Gilder's law, many bottlenecks of server performance leave the real-time data stream unprocessed.Thus, we proposedto take use of DPDK(Data Plan Development Kit framework to achieve an intelligent NIC packet forwarding system. During this research, we deeply analysis the forwarding process of packet in DPDK and improve its DMA mode.According to the results of experiment, the system greatly enhanced the performance of packet forwarding,and the throughput of forwarding 64-byet or random-length packets by 20Gbit NIC reaches13.3Gbps and 18.7Gbps(dual ports forwarding.

  16. Packet Guide to Routing and Switching

    CERN Document Server

    Hartpence, Bruce

    2011-01-01

    Go beyond layer 2 broadcast domains with this in-depth tour of advanced link and internetwork layer protocols, and learn how they enable you to expand to larger topologies. An ideal follow-up to Packet Guide to Core Network Protocols, this concise guide dissects several of these protocols to explain their structure and operation. This isn't a book on packet theory. Author Bruce Hartpence built topologies in a lab as he wrote this guide, and each chapter includes several packet captures. You'll learn about protocol classification, static vs. dynamic topologies, and reasons for installing a pa

  17. Wavelength conversion in optical packet switching

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Hansen, Peter Bukhave; Stubkjær, Kristian

    1998-01-01

    A detailed traffic analysis of optical packet switch design is performed. Special consideration is given to the complexity of the optical buffering and the overall switch block structure is considered in general. Wavelength converters are shown to improve the traffic performance of the switch...... blocks for both random and bursty traffic. Furthermore, the traffic performance of switch blocks with add-drop switches has been assessed in a Shufflenetwork showing the advantage of having converters at the inlets. Finally, the aspect of synchronization is discussed through a proposal to operate...... the packet switch block asynchronously, i.e. without packet alignment at the input...

  18. Determination of Fluid Density and Viscosity by Analyzing Flexural Wave Propagations on the Vibrating Micro-Cantilever.

    Science.gov (United States)

    Kim, Deokman; Hong, Seongkyeol; Jang, Jaesung; Park, Junhong

    2017-10-27

    The determination of fluid density and viscosity using most cantilever-based sensors is based on changes in resonant frequency and peak width. Here, we present a wave propagation analysis using piezoelectrically excited micro-cantilevers under distributed fluid loading. The standing wave shapes of microscale-thickness cantilevers partially immersed in liquids (water, 25% glycerol, and acetone), and nanoscale-thickness microfabricated cantilevers fully immersed in gases (air at three different pressures, carbon dioxide, and nitrogen) were investigated to identify the effects of fluid-structure interactions to thus determine the fluid properties. This measurement method was validated by comparing with the known fluid properties, which agreed well with the measurements. The relative differences for the liquids were less than 4.8% for the densities and 3.1% for the viscosities, and those for the gases were less than 6.7% for the densities and 7.3% for the viscosities, showing better agreements in liquids than in gases.

  19. Q FUNCTION AWARE OPTICAL PACKET SWITCH WITH LOW PACKET LOSS RATE

    Directory of Open Access Journals (Sweden)

    OMPAL SINGH

    2017-03-01

    Full Text Available Optical packet switching (OPS is a very promising technology for the next generation data transfer due to the very large bandwidth of the optical fiber. The success of the OPS relies heavily on design of the node architecture which supports comparatively larger buffering capacity without detiorating signal quality too much and it should provide very low packet loss probability with reasonably low average delay. In this paper, a design analysis of low complexity OPS node architecture is discussed along-with its advantages. The presented architecture support both fixed and variable length packets. The packets are stored in a single piece of fiber using the WDM technology. Physical layer analysis presented in this paper is to obtain the Q function (Bit Error Rate. Finally, the Monte Carlo simulation is done to obtain the packet loss. The average delay performance of the switch and effect of Q values on packet loss rates are discussed.

  20. Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    We study packetized predictive control, known to be robust against packet dropouts in networked systems. To obtain sparse packets for rate-limited networks, we design control packets via an ℓ0 optimization, which can be eectively solved by orthogonal matching pursuit. Our formulation ensures...

  1. Satcom access in the evolved packet core

    NARCIS (Netherlands)

    Cano, M.D.; Norp, A.H.J.; Popova, M.P.

    2012-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  2. Analyzing the nonlinear vibrational wave differential equation for the simplified model of Tower Cranes by Algebraic Method

    Science.gov (United States)

    Akbari, M. R.; Ganji, D. D.; Ahmadi, A. R.; Kachapi, Sayyid H. Hashemi

    2014-03-01

    In the current paper, a simplified model of Tower Cranes has been presented in order to investigate and analyze the nonlinear differential equation governing on the presented system in three different cases by Algebraic Method (AGM). Comparisons have been made between AGM and Numerical Solution, and these results have been indicated that this approach is very efficient and easy so it can be applied for other nonlinear equations. It is citable that there are some valuable advantages in this way of solving differential equations and also the answer of various sets of complicated differential equations can be achieved in this manner which in the other methods, so far, they have not had acceptable solutions. The simplification of the solution procedure in Algebraic Method and its application for solving a wide variety of differential equations not only in Vibrations but also in different fields of study such as fluid mechanics, chemical engineering, etc. make AGM be a powerful and useful role model for researchers in order to solve complicated nonlinear differential equations.

  3. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  4. Shear-wave velocity profile and seismic input derived from ambient vibration array measurements: the case study of downtown L'Aquila

    Science.gov (United States)

    Di Giulio, Giuseppe; Gaudiosi, Iolanda; Cara, Fabrizio; Milana, Giuliano; Tallini, Marco

    2014-08-01

    Downtown L'Aquila suffered severe damage (VIII-IX EMS98 intensity) during the 2009 April 6 Mw 6.3 earthquake. The city is settled on a top flat hill, with a shear-wave velocity profile characterized by a reversal of velocity at a depth of the order of 50-100 m, corresponding to the contact between calcareous breccia and lacustrine deposits. In the southern sector of downtown, a thin unit of superficial red soils causes a further shallow impedance contrast that may have influenced the damage distribution during the 2009 earthquake. In this paper, the main features of ambient seismic vibrations have been studied in the entire city centre by using array measurements. We deployed six 2-D arrays of seismic stations and 1-D array of vertical geophones. The 2-D arrays recorded ambient noise, whereas the 1-D array recorded signals produced by active sources. Surface-wave dispersion curves have been measured by array methods and have been inverted through a neighbourhood algorithm, jointly with the H/V ambient noise spectral ratios related to Rayleigh waves ellipticity. We obtained shear-wave velocity (Vs) profiles representative of the southern and northern sectors of downtown L'Aquila. The theoretical 1-D transfer functions for the estimated Vs profiles have been compared to the available empirical transfer functions computed from aftershock data analysis, revealing a general good agreement. Then, the Vs profiles have been used as input for a deconvolution analysis aimed at deriving the ground motion at bedrock level. The deconvolution has been performed by means of EERA and STRATA codes, two tools commonly employed in the geotechnical engineering community to perform equivalent-linear site response studies. The waveform at the bedrock level has been obtained deconvolving the 2009 main shock recorded at a strong motion station installed in downtown. Finally, this deconvolved waveform has been used as seismic input for evaluating synthetic time-histories in a strong

  5. Determination of Fluid Density and Viscosity by Analyzing Flexural Wave Propagations on the Vibrating Micro-Cantilever

    Directory of Open Access Journals (Sweden)

    Deokman Kim

    2017-10-01

    Full Text Available The determination of fluid density and viscosity using most cantilever-based sensors is based on changes in resonant frequency and peak width. Here, we present a wave propagation analysis using piezoelectrically excited micro-cantilevers under distributed fluid loading. The standing wave shapes of microscale-thickness cantilevers partially immersed in liquids (water, 25% glycerol, and acetone, and nanoscale-thickness microfabricated cantilevers fully immersed in gases (air at three different pressures, carbon dioxide, and nitrogen were investigated to identify the effects of fluid-structure interactions to thus determine the fluid properties. This measurement method was validated by comparing with the known fluid properties, which agreed well with the measurements. The relative differences for the liquids were less than 4.8% for the densities and 3.1% for the viscosities, and those for the gases were less than 6.7% for the densities and 7.3% for the viscosities, showing better agreements in liquids than in gases.

  6. Comparison of Ring-Buffer-Based Packet Capture Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Steven Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.

  7. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  8. Generating spectra from ground-state wave functions: unraveling anharmonic effects in the OH- x H2O vibrational predissociation spectrum.

    Science.gov (United States)

    McCoy, Anne B; Diken, Eric G; Johnson, Mark A

    2009-07-02

    An approach is described for calculating anharmonic spectra for polyatomic molecules using only the ground-state probability amplitude. The underlying theory is based on properties of harmonic oscillator wave functions and is tested for Morse oscillators with a range of anharmonicities. More extensive tests are performed with H(3)O(2)(-), using the potential and dipole surfaces of Bowman and co-workers [J. Am. Chem. Soc. 2004, 126, 5042]. The resulting energies are compared to earlier studies that employed the same potential surface, and the agreement is shown to be very good. The vibrational spectra are calculated for both H(3)O(2)(-) and D(3)O(2)(-). In the case of H(3)O(2)(-), comparisons are made with a previously reported experimental spectrum below 2000 cm(-1). We also report the spectrum of H(3)O(2)(-) from 2400-4500 cm(-1), which extends 500 cm(-1) above the region reported earlier, revealing several new bands. As the only fundamentals in this spectral region involve the OH stretches, the spectrum is surprisingly rich. On the basis of comparisons of the experimental and calculated spectra, assignments are proposed for several of the features in this spectral region.

  9. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  10. Feasibility of Optical Packet Switched WDM Networks without Packet Synchronisation Under Bursty Traffic Conditions

    DEFF Research Database (Denmark)

    Fjelde, Tina; Hansen, Peter Bukhave; Kloch, Allan

    1999-01-01

    We show that complex packet synchronisation may be avoided in optical packetswitched networks. Detailed traffic analysis demonstrates that packet lossratios of 1e-10 are feasible under bursty traffic conditions for a highcapacity network consisting of asynchronously operated add-drop switch nodes...

  11. Nonadiabatic quantum dynamics calculations of transition state spectroscopy of I + HI and I + DI reactions: the existence of long life vibrational bonding resonances.

    Science.gov (United States)

    Takayanagi, Toshiyuki

    2017-11-08

    We present the results of nonadiabatic quantum wave packet calculations to analyze the experimental transition state spectra for the I(2P3/2,1/2) + XI (X = H and D) hydrogen exchange reactions based on photodetachment of the IXI- anion. We developed (3 × 3) diabatic potential energy surfaces that can reasonably describe the nonadiabatic transitions induced by spin-orbit interactions. A good agreement was obtained between theory and experiment and it was found that nonadiabatic transitions play a role in the reaction dynamics. We also found that the calculated spectra showed very sharp resonance states with a vibrational bonding character, where the resonance wavefunctions are highly localized around the transition state region. Our calculated results suggest that one may experimentally detect these vibrational bonding resonances using time-domain transition state spectroscopy techniques since those states have picosecond-order lifetimes.

  12. ARQ with sequential decoding of packetized data - Queueing analysis

    Science.gov (United States)

    Shacham, N.

    1984-10-01

    The operation of a sequential decoder in a packet-switching environment is considered. Packets arrive randomly at the decoder, and a packet is stored in a buffer if the decoder is busy upon its arrival. The decoder devotes no more than a time-out period of predetermined length to the decoding of any single packet. If packet decoding is completed within that period, the packet leaves the system. Otherwise, it is retransmitted and its decoding starts anew. While a packet is retransmitted, the decoder decodes another packet that resides in its buffer. An upper bound on the maximum rate of packets that can be supported by the channel-decoder combination is derived, and the optimum time-out that maximizes that rate is determined. A discrete-time model of the decoder's queue is presented, and the average queue length and throughput are evaluated.

  13. Fair packet scheduling in Wireless Mesh Networks

    KAUST Repository

    Nawab, Faisal

    2014-02-01

    In this paper we study the interactions of TCP and IEEE 802.11 MAC in Wireless Mesh Networks (WMNs). We use a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically determine the throughput. Based on the developed model, we propose a distributed MAC protocol called Timestamp-ordered MAC (TMAC), aiming to alleviate the unfairness problem in WMNs. TMAC extends CSMA/CA by scheduling data packets based on their age. Prior to transmitting a data packet, a transmitter broadcasts a request control message appended with a timestamp to a selected list of neighbors. It can proceed with the transmission only if it receives a sufficient number of grant control messages from these neighbors. A grant message indicates that the associated data packet has the lowest timestamp of all the packets pending transmission at the local transmit queue. We demonstrate that a loose ordering of timestamps among neighboring nodes is sufficient for enforcing local fairness, subsequently leading to flow rate fairness in a multi-hop WMN. We show that TMAC can be implemented using the control frames in IEEE 802.11, and thus can be easily integrated in existing 802.11-based WMNs. Our simulation results show that TMAC achieves excellent resource allocation fairness while maintaining over 90% of maximum link capacity across a large number of topologies.

  14. On Money as a Means of Coordination between Network Packets

    OpenAIRE

    Efraimidis, Pavlos S.; Koutsiamanis, Remous-Aris

    2012-01-01

    In this work, we apply a common economic tool, namely money, to coordinate network packets. In particular, we present a network economy, called PacketEconomy, where each flow is modeled as a population of rational network packets, and these packets can self-regulate their access to network resources by mutually trading their positions in router queues. Every packet of the economy has its price, and this price determines if and when the packet will agree to buy or sell a better position. We co...

  15. Outer packet sets and feature prediction of computer virus

    Science.gov (United States)

    Zhang, Ling

    2014-10-01

    The packet sets model was proposed by Prof. Shi in 2008. A packet sets is a set pair composed of internal and outer packet sets, and it has dynamic characteristic. Using packet sets theory, this paper gives the feature prediction of computer virus based on outer packet sets. The concept of virus screening-filtering is given, furthermore, the virus screening-filtering order theorem, composite virus screening-filtering theorem and virus screening-filtering rule are presented. A prediction method of computer virus feature is given based on the results. The outer packet sets is a new tool in the research of the prediction of dynamic virus feature.

  16. New Photonic System for Optical Packet Switching

    Directory of Open Access Journals (Sweden)

    F. Rudge Barbosa

    2003-08-01

    Full Text Available Fast optical switching (ms timebase is realized by using a RF frequency tone inserted in the optical packet that carries a digital payload. By using a highly selective RF filtering for optical packet header frequency recognition, we have obtained excellent performance in optical switching function.. The RF header is detected at optical node input, and signals the node switching control, which instantly directs the packet to a prescribed output. No electronic processing of the digital payload is performed. The optical circuit is noise-free, has very low crosstalk, and is extremely selective in header frequency detection. BER measurements for payload consistently yield figures as low as 10-12 . This system is applicable to optical metropolitan and access networks, and is fully compatible with DWDM systems.

  17. Huge capacity optical packet switching and buffering.

    Science.gov (United States)

    Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya

    2011-12-12

    We demonstrate 2.56 Tbit/s/port dual-polarization DWDM/DQPSK variable-length optical packet (20 Gbit/s × 64 wavelengths × 2 polarizations) switching and buffering by using a 2×2 optical packet switch (OPS) system. The optical data plane of the OPS system was constructed of multi-connected electro-optical switches and fiber delay lines. The accumulated polarization dependent loss of each optical path in the data plane was less than 5 dB. This low-polarization-dependence OPS system enabled us to handle DWDM/DQPSK optical packets (1.28 Tbit/s/port) with time-varying polarization after transmission through 100 km fiber in the field. © 2011 Optical Society of America

  18. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Jacek Ilow

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of k information packets to construct r redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of k information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of n=k+r received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  19. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Ilow Jacek

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of information packets to construct redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  20. SIMULASI JARINGAN KOMPUTER MENGGUNAKAN CISCO PACKET TRACER

    Directory of Open Access Journals (Sweden)

    M Mufadhol

    2012-01-01

    Full Text Available Perkembangan jaringan komputer saat ini begitu pesat, monitoring jaringan komputer akan menjadi suatu hal yang sulit dan rumit. Koneksi jaringan komputer merupakan suatu hal yang mendasar dalam suatu jaringan, karena bila koneksi itu bermasalah maka semua jenis aplikasi yang dijalankan melalui jaringan komputer tidak dapat digunakan. Cisco packet tracer dapat digunakan untuk simulasi yang mencerminkan arsitektur dan juga model dari jaringan komputer pada sistem jaringan yang digunakan. Dengan menggunakan aplikasi cisco packet tracer, simulasi mengenai jaringan dapat dimanfaatkan menjadi informasi tentang keadaan koneksi komputer dalam suatu jaringan.

  1. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  2. CASSINI S INMS TELEMETRY PACKET DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Ion and Neutral Mass Spectrometer (INMS) Packet data set contains all telemetry packets as received from the instrument. One standard product data type...

  3. Peninsula Humane Society Teacher's Packet. Secondary Level.

    Science.gov (United States)

    Peninsula Humane Society, San Mateo, CA.

    Activities in this teacher's packet are designed to familiarize secondary school students with the responsibilities involved in pet ownership. Teaching plans are provided for a total of 12 lessons grouped under social studies, language arts, math, and health sciences. Activities focus on pet overpopulation, expressions of social responses in…

  4. Issues in Satellite Packet Video Communication.

    Science.gov (United States)

    1983-07-01

    i.o . .. . . _ _: .. ,: -t - .. . ..:’, • ... . . . ... . . . j.. - . ". 4 ISSUES IN SATELLITE PACKET VIDEO COMMUNICATIO \\ For the transmitter: 1. Get...No. 4469. Ma. 1981. 4. Forgie. James W., ST- A Proposed Internet Stream Protocol, M.I.T. Lincoln Laboratory, IEN 119, September 1979. 5. Jam. A. K

  5. Solid Waste Activity Packet for Teachers.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  6. Impact of Packet Sampling on Link Dimensioning

    NARCIS (Netherlands)

    Schmidt, R.D.O.; Sadre, R.; Sperotto, A.; Berg, H. van den; Pras, A.

    2015-01-01

    Link dimensioning is used by network operators to properly provision the capacity of their network links. Proposed methods for link dimensioning often require statistics, such as traffic variance, that need to be calculated from packet-level measurements. In practice, due to increasing traffic

  7. Anthropology: Smithsonian Institution Teacher's Resource Packet.

    Science.gov (United States)

    National Museum of Natural History, Washington, DC.

    This teacher's research guide for the National Museum of Natural History (Smithsonian Institution) is designed for junior and senior high school teachers to integrate anthropology into their social studies and science classes. The information in this packet consists of a list of books for teachers and students, classroom activities, and other…

  8. Denoising GPS-Based Structure Monitoring Data Using Hybrid EMD and Wavelet Packet

    Directory of Open Access Journals (Sweden)

    Lu Ke

    2017-01-01

    Full Text Available High-frequency components are often discarded for data denoising when applying pure wavelet multiscale or empirical mode decomposition (EMD based approaches. Instead, they may raise the problem of energy leakage in vibration signals. Hybrid EMD and wavelet packet (EMD-WP is proposed to denoise Global Positioning System- (GPS- based structure monitoring data. First, field observables are decomposed into a collection of intrinsic mode functions (IMFs with different characteristics. Second, high-frequency IMFs are denoised using the wavelet packet; then the monitoring data are reconstructed using the denoised IMFs together with the remaining low-frequency IMFs. Our algorithm is demonstrated on a synthetic displacement response of a 3-story frame excited by El Centro earthquake along with a set of Gaussian random white noises on different levels added. We find that the hybrid method can effectively weaken the multipath effect with low frequency and can potentially extract vibration feature. However, false modals may still exist by the rest of the noise contained in the high-frequency IMFs and when the frequency of the noise is located in the same band as that of effective vibration. Finally, real GPS observables are implemented to evaluate the efficiency of EMD-WP method in mitigating low-frequency multipath.

  9. Random linear network coding for streams with unequally sized packets

    DEFF Research Database (Denmark)

    Taghouti, Maroua; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2016-01-01

    State of the art Random Linear Network Coding (RLNC) schemes assume that data streams generate packets with equal sizes. This is an assumption that results in the highest efficiency gains for RLNC. A typical solution for managing unequal packet sizes is to zero-pad the smallest packets. However...... of packets, which are strategies that require additional signalling. Performance is evaluated using CAIDA TCP packets and 4k video traces. Our results show that our mechanisms reduce significantly the padding overhead even for small field sizes. Finally, our strategies provide a natural trade-off between...

  10. Sparse Packetized Predictive Control for Networked Control over Erasure Channels

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel E.; Østergaard, Jan

    2014-01-01

    We study feedback control over erasure channels with packet-dropouts. To achieve robustness with respect to packet-dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. To reduce the data size of packets, we propose...... to adopt sparsity-promoting optimizations, namely, l1 - l2 and l2-constrained l0 optimizations, for which efficient algorithms exist. We show how to design the tuning parameters to ensure (practical) stability of the resulting feedback control systems when the number of consecutive packet...

  11. A New Texture Synthesis Algorithm Based on Wavelet Packet Tree

    Directory of Open Access Journals (Sweden)

    Hsi Chin Hsin

    2012-01-01

    Full Text Available This paper presents an efficient texture synthesis based on wavelet packet tree (TSWPT. It has the advantage of using a multiresolution representation with a greater diversity of bases functions for the nonlinear time series applications such as fractal images. The input image is decomposed into wavelet packet coefficients, which are rearranged and organized to form hierarchical trees called wavelet packet trees. A 2-step matching, that is, coarse matching based on low-frequency wavelet packet coefficients followed by fine matching based on middle-high-frequency wavelet packet coefficients, is proposed for texture synthesis. Experimental results show that the TSWPT algorithm is preferable, especially in terms of computation time.

  12. On the Effects of Heterogeneous Packet Lengths on Network Coding

    DEFF Research Database (Denmark)

    Compta, Pol Torres; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2014-01-01

    Random linear network coding (RLNC) has been shown to provide increased throughput, security and robustness for the transmission of data through the network. Most of the analysis and the demonstrators have focused on the study of data packets with the same size (number of bytes). This constitutes...... a best case scenario as coded packets will incur little overhead to handle such packets. However, packet lengths are quite heterogeneous in real networks, which can cause a high overhead or, alternatively, a high delay in the transmission of data packets. As we show, this can have a severe effect...... on a variety of applications. This paper proposes a series of mechanisms to manage heterogeneous packet lengths and analyzes the induced overhead of those mechanisms using real packet length distributions provided by CAIDA and own measurements using video content. Our results show that an appropriate...

  13. Stochastic generation of continuous wave spectra

    DEFF Research Database (Denmark)

    Trulsen, J.; Dysthe, K. B.; Pécseli, Hans

    1983-01-01

    Wave packets of electromagnetic or Langmuir waves trapped in a well between oscillating reflectors are considered. An equation for the temporal evolution of the probability distribution for the carrier wave number is derived, and solved analytically in terms of moments in the limits of long...

  14. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  15. Multiple descriptions for packetized predictive control

    DEFF Research Database (Denmark)

    Østergaard, Jan; Quevedo, Daniel

    2016-01-01

    In this paper, we propose to use multiple descriptions (MDs) to achieve a high degree of robustness towards random packet delays and erasures in networked control systems. In particular, we consider the scenario, where a data-rate limited channel is located between the controller and the plant...... input. This forward channel also introduces random delays and dropouts. The feedback channel from the plant output to the controller is assumed noiseless. We show how to design MDs for packetized predicted control (PPC) in order to enhance the robustness. In the proposed scheme, a quantized control...... be reliably reconstructed at the plant side. For the particular case of LTI plant models and i.i.d. channels, we show that the overall system forms a Markov jump linear system. We provide conditions for mean square stability and derive upper bounds on the operational bit rate of the quantizer to guarantee...

  16. Wave Packet Based Statistical Approach to Complex-Forming Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hua [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry and Chemical Biology

    2017-12-06

    Combustion represents a key chemical process in energy consumption in modern societies and a clear and comprehensive understanding of the elemental reactions in combustion is of great importance to a number of challenging areas such as engine efficiency and environmental protection. In this award, we proposed to develop new theoretical tools to understand elemental chemical processes in combustion environments. With the support of this DOE grant, we have made significant advances in developing new and more efficient and accurate algorithms to characterize reaction dynamics.

  17. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    HO coherent states are states of minimum uncertainty: ApAـ = -h/2, and thus are most classical within the quantum framework. Output from a well stabilised laser is a coherent state. A cat-like state Φ can be considered as a superposition of two or more coherent states and is formed when an initial coherent state a is rotated ...

  18. Electron Rydberg wave packets in one-dimensional atoms

    Indian Academy of Sciences (India)

    An expression for the transition probability or form factor in one-dimensional Rydberg atom irradiated by short half-cycle pulse was constructed. In applicative contexts, our expression was found to be more useful than the corresponding result given by Landau and Lifshitz. Using the new expression for the form factor, the ...

  19. Electron Rydberg wave packets in one-dimensional atoms

    Indian Academy of Sciences (India)

    B TALUKDAR∗. Department of Physics, Visva-Bharati University, Santiniketan 731 235, India. ∗Corresponding author. E-mail: binoy123@bsnl.in. MS received 20 September 2009; revised 19 February 2010; accepted 6 April 2010. Abstract. An expression for the transition probability or form factor in one-dimensional.

  20. Understanding the spreading of a Gaussian wave packet using the ...

    Indian Academy of Sciences (India)

    solution to the subtle conceptual problems of the Copenhagen interpretation; rather he suggested to exploit the new elements of this model for realizing the quantum mechanics more deeply. This simply is the motivation for the present work. In the standard framework of quantum mechanics, Born's interpretation of the.

  1. Riemann zeta function from wave-packet dynamics

    DEFF Research Database (Denmark)

    Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

    2010-01-01

    We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... is governed by the temperature of the thermal phase state and tau is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials...

  2. Wave packet dynamics of entangled two-mode states

    Science.gov (United States)

    Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.

    2006-08-01

    We consider a model Hamiltonian describing the interaction of a single-mode radiation field with the atoms of a nonlinear medium and study the dynamics of entanglement for specific non-entangled initial states of interest: namely, those in which the field mode is initially in a Fock state, a coherent state or a photon-added coherent state. The counterparts of near-revivals and fractional revivals are shown to be clearly identifiable in the entropy of entanglement. The 'overlap fidelity' of the system is another such indicator, and its behaviour corroborates that of the entropy of entanglement in the vicinity of near-revivals. The expectation values and higher moments of suitable quadrature variables are also examined, with reference to possible squeezing and higher order squeezing. The power spectra of the time series generated by the mean photon number are presented for initial states corresponding, respectively, to a coherent state and a photon-added coherent state. When the nonlinearity in the Hamiltonian is weak, these show signatures of quasiperiodicity.

  3. Equations of motion for a relativistic wave packet

    Indian Academy of Sciences (India)

    Author Affiliations. L Kocis1 2. Julius Kruttschnitt Mineral Research Centre, The University of Queensland, Isles Road, Indooroopilly, Queensland 4068, Australia; Peranga Court Unit 4, 43 Fifth Avenue, Sandgate, Queensland 4017, Australia ...

  4. A wave packet approach with nonadiabatic interaction i

    Indian Academy of Sciences (India)

    2013-04-24

    Apr 24, 2013 ... are taken from Carrington and Kennedy [20], and Moss and Sadler [21]. The electronic transition (1sσg → 2pσu) dipole moments of H. +. 2 are given by Bates [26]. The electronic transition (GS→ES) and intrinsic (GS→GS, ES→ES) dipole moments of. HD. + are obtained also from Bates [26], using the ...

  5. Momentum mapping of continuum electron wave packet interference

    CERN Document Server

    Yang, Weifeng; Lin, Cheng; Xu, Jingwen; Sheng, Zhihao; Song, Xiaohong; Hu, Shilin; Chen, Jing

    2016-01-01

    We analyze the two-dimensional photoelectrons momentum distribution of Ar atom ionized by midinfrared laser pulses and mainly concentrate on the energy range below 2Up. By using a generalized quantum trajectory Monte Carlo (GQTMC) simulation and comparing with the numerical solution of time-dependent Schrodinger equation (TDSE), we show that in the deep tunneling regime, the rescattered electron trajectories plays unimportant role and the interplay between the intracycle and inter-cycle results in a ring-like interference pattern. The ring-like interference pattern will mask the holographic interference structure in the low longitudinal momentum region. When the nonadiabatic tunneling contributes significantly to ionization, i.e., the Keldysh parameter 1, the contribution of the rescattered electron trajectories become large, thus holographic interference pattern can be clearly observed. Our results help paving the way for gaining physical insight into ultrafast electron dynamic process with attosecond tempor...

  6. Coherent wave packet dynamics in photo-excited Nal

    OpenAIRE

    Leitner, Torsten; Buchner, Franziska; Rouzee, Arnaud; Rading, Linea; Johnsson, Per; Odelius, Michael; Karlsson, Hans O; Vrakking, Marc; Wernet, Philippe

    2013-01-01

    Time and energy resolved photoelectron distributions of photo-excited Nal are presented. A splitting in the photo-excited state suggested by calculations of the intramolecular potential energy surfaces could be confirmed experimentally for the first time.

  7. Experimental Packet Radio System Design Plan

    Science.gov (United States)

    1974-03-13

    HERBEP ♦ PftCKET ♦HEfiL’ER ♦PACKET ♦ IMP ICl=iTnR£*SEEUENCE* TD DP FrtDM ♦LENGTH ♦LENGTH ♦TYPE ♦ ♦NUMIER ♦STPTIDN ♦ ♦ IN...5 .olts and -12 volts. The electrical operating properties are listed below: 256 x 8 1024 y 16 QUIESCENT DEVICE CURRENT 55M - 440M- ACC ESS

  8. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates

    Science.gov (United States)

    Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O.

    2015-03-01

    The influence of exciton-vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein-pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton-vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton-vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton-vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton-vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system-bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be

  9. Chirped-pulse Fourier transform millimeter-wave spectroscopy of ten vibrationally excited states of i-propyl cyanide: exploring the far-infrared region.

    Science.gov (United States)

    Arenas, Benjamin E; Gruet, Sébastien; Steber, Amanda L; Giuliano, Barbara M; Schnell, Melanie

    2017-01-18

    We report here further spectroscopic investigation of the astrochemically relevant molecule i-propyl cyanide. We observed and analysed the rotational spectra of the ground state of the molecule and ten vibrationally excited states with energies between 180-500 cm(-1). For this, we used a segmented W-band spectrometer (75-110 GHz) and performed the experiments under room temperature conditions. This approach thus provides access to high-resolution, pure rotational data of vibrational modes that occur in the far-infrared fingerprint region, and that can be difficult to access with other techniques. The obtained, extensive data set will support further astronomical searches and identifications, such as in warmer regions of the interstellar space where contributions from vibrationally excited states become increasingly relevant.

  10. Wireless Module for Sensing Superficial Vibrations of Soils

    Directory of Open Access Journals (Sweden)

    Marlon R. Fulla

    2013-11-01

    Full Text Available In the present work, the feasibility of implementing the XBee technology in wireless accelerometric sensors (WAS development for sensing of elastic waves on soils surface is analyzed. The incidence of distance and obstacles between a coordinator and end-device pair in their radio link by examining the number of packets received successfully was verified. Additionally, it was investigated the influence of the transmission rate over the sampling frequency of signals associated to mechanical vibrations from a testing ground by measuring the effective sampling periods of the "A / D Conversion - Transmission" process. The data reception errors introduced by the channel attenuation and the presence of obstacles, impose severe restrictions on the maximum allowable distance between the communication modules. The transmission rate features provided by XBee technology in association with the A / D time sampling of the microcontroller, allow to carry out recordings to a maximum sampling frequency of 1 kHz , useful for real-time applications where seismic signals are into the spectral range 0 to 500 Hz. In order to increase the sampling frequency of the sensor for prospection applications with signals with bandwidths greater than 500 Hz , it was successfully tested a prototype that uses a fast external memory for storing data, which significantly improves the sampling signal allowing to retake XBee technology due to its excellent low consumption features.

  11. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  12. Noise Suppression in 94 GHz Radar-Detected Speech Based on Perceptual Wavelet Packet

    Directory of Open Access Journals (Sweden)

    Fuming Chen

    2016-07-01

    Full Text Available A millimeter wave (MMW radar sensor is employed in our laboratory to detect human speech because it provides a new non-contact speech acquisition method that is suitable for various applications. However, the speech detected by the radar sensor is often degraded by combined noise. This paper proposes a new perceptual wavelet packet method that is able to enhance the speech acquired using a 94 GHz MMW radar system by suppressing the noise. The process is as follows. First, the radar speech signal is decomposed using a perceptual wavelet packet. Then, an adaptive wavelet threshold and new modified thresholding function are employed to remove the noise from the detected speech. The results obtained from the speech spectrograms, listening tests and objective evaluation show that the new method significantly improves the performance of the detected speech.

  13. Note on the 2-component Analogue of 2-dimensional Long Wave-Short Wave Resonance Interaction System

    OpenAIRE

    Maruno, Ken-ichi; Ohta, Yasuhiro; Oikawa, Masayuki

    2008-01-01

    An integrable two-component analogue of the two-dimensional long wave-short wave resonance interaction (2c-2d-LSRI) system is studied. Wronskian solutions of 2c-2d-LSRI system are presented. A reduced case, which describes resonant interaction between an interfacial wave and two surface wave packets in a two layer fluid, is also discussed.

  14. Fast packet switch architectures for broadband integrated services digital networks

    Science.gov (United States)

    Tobagi, Fouad A.

    1990-01-01

    Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.

  15. The performance of multichannel, multihop packet radio networks

    Science.gov (United States)

    Shacham, Nachum; King, Peter J. B.

    The architecture for a packet radio network which utilizes parallel multihop multiple-access channels is proposed. Consideration is given to single and multichannel transmissions, routing in single and multichannel transmission systems, the quiescent channel, and nodes. The performance of multihop multichannel packet radio networks is evaluated; throughput and average packet progress per hop under slotted ALOHA and CSMA protocols are analyzed. It is noted that multichannel transmission provides no significant advantages over single channel transmission.

  16. Compressed Domain Packet Loss Concealment of Sinusoidally Coded Speech

    DEFF Research Database (Denmark)

    Rødbro, Christoffer A.; Christensen, Mads Græsbøll; Andersen, Søren Vang

    2003-01-01

    We consider the problem of packet loss concealment for voice over IP (VoIP). The speech signal is compressed at the transmitter using a sinusoidal coding scheme working at 8 kbit/s. At the receiver, packet loss concealment is carried out working directly on the quantized sinusoidal parameters......, based on time-scaling of the packets surrounding the missing ones. Subjective listening tests show promising results indicating the potential of sinusoidal speech coding for VoIP....

  17. Torsional vibrations of infinite composite poroelastic cylinders

    African Journals Online (AJOL)

    user

    Abstract. A study of torsional vibrations of an infinite composite poroelastic circular solid cylinder made of two different materials is made. The frequency equation of such torsional vibrations is obtained following analytical model based on Biot's theory of wave propagation in liquid saturated porous media. Each dilatation of ...

  18. A night with good vibrations

    CERN Multimedia

    2002-01-01

    Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva

  19. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  20. Monitoring and Indentification Packet in Wireless With Deep Packet Inspection Method

    Science.gov (United States)

    Fali Oklilas, Ahmad; Tasmi

    2017-04-01

    Layer 2 and Layer 3 are used to make a process of network monitoring, but with the development of applications on the network such as the p2p file sharing, VoIP, encrypted, and many applications that already use the same port, it would require a system that can classify network traffics, not only based on port number classification. This paper reports the implementation of the deep packet inspection method to analyse data packets based on the packet header and payload to be used in packet data classification. If each application can be grouped based on the application layer, then we can determine the pattern of internet users and also to perform network management of computer science department. In this study, a prototype wireless network and applications SSO were developed to detect the active user. The focus is on the ability of open DPI and nDPI in detecting the payload of an application and the results are elaborated in this paper.

  1. Wireless Avionics Packet to Support Fault Tolerance for Flight Applications

    Science.gov (United States)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2009-01-01

    In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit

  2. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  3. Time reversal in matter-wave optics

    Science.gov (United States)

    Hamamda, M.; Perales, F.; Dutier, G.; Mainos, C.; Baudon, J.; Boustimi, M.; Ducloy, M.

    2011-01-01

    The evolution of atomic wave packets experiencing so-called comoving potential pulses is examined theoretically, in the framework of the stationary-phase approximation. The negative refraction induced by this potential is a characteristic property of negative-index media, the atomic counterpart of negative-index materials of light optics. A novel process, specific of negative-index for matter waves, is evidenced, namely a narrowing of the wave packet transiently counterbalancing the natural spreading. This is the manifestation of a general property of negative-index media, i.e. a time reversal effect. It is shown that, for a statistical ensemble of wave packets leading to a moderate dispersion of the times of flight, this time reversal phenomenon should be observable.

  4. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  5. Packet throughput performance of multiservice, multirate OCDMA in elastic networks

    DEFF Research Database (Denmark)

    Raddo, Thiago R.; Sanches, Anderson L.; Tafur Monroy, Idelfonso

    2016-01-01

    In this paper, the packet throughput performance of multiservice, multirate optical code-division multiple-access (OCDMA) networks is addressed based on two distinct multirate techniques, namely multilength code and multicode. A new analytical formalism to evaluate the packet throughput performance...

  6. Accounting Clerk Guide, Test Packet--Part I.

    Science.gov (United States)

    Foster, Brian; And Others

    The test packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The test packet contains both pretests and post-tests for lessons 1 through 12. The unit is concerned with the basic accounting theory found in the accounting…

  7. 41 CFR 101-39.306 - Operator's packet.

    Science.gov (United States)

    2010-07-01

    ...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.306 Operator's packet. The GSA Interagency Fleet Management System (IFMS) will provide each... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Operator's packet. 101-39...

  8. Packet Delay Variation Analysis of the CQ Switch

    Directory of Open Access Journals (Sweden)

    I. Radusinović

    2012-06-01

    Full Text Available Packet delay variation analysis for a 32x32 crosspoint queued switch under uniform and IBP arrival traffic is presented in this paper. Different buffer sizes and several scheduling algorithms are observed: longest queue first, round robin, exhaustive round robin and frame based round robin matching. Results show that the least packet delay variation, among observed algorithms, causes round robin algorithm.

  9. Stimulated angiogenesis for fracture healing augmented by low-magnitude, high-frequency vibration in a rat model-evaluation of pulsed-wave doppler, 3-D power Doppler ultrasonography and micro-CT microangiography.

    Science.gov (United States)

    Cheung, Wing-Hoi; Sun, Ming-Hui; Zheng, Yong-Ping; Chu, Winnie Chiu-Wing; Leung, Andraay Hon-Chi; Qin, Ling; Wei, Fang-Yuan; Leung, Kwok-Sui

    2012-12-01

    This study aimed to investigate the mechanism of low-magnitude high-frequency vibration (LMHFV) treatment on angiogenesis and blood flow for enhancement of fracture healing. Nine-month-old ovariectomized (OVX) and sham-operated (Sham) rats received closed fractures creation at the femora and were randomized into LMHFV treatment (Sham-V, OVX-V) or control (Sham-C, OVX-C) groups. Pulsed-wave Doppler indicated an increase in blood flow velocity of the femoral artery at weeks 2 (OVX pair: p = 0.030) and 4 (OVX pair: p = 0.012; Sham pair: p = 0.020) post-treatment. Significantly enhanced vascular volume (VV) at the fracture site in the vibration groups was demonstrated by 3-D high-frequency power Doppler at week 2 (Sham pair: p = 0.021) and micro-computed tomography (microCT) microangiography at weeks 2 (OVX pair: p = 0.009) and 4 (OVX pair: p = 0.034), which echoed the osteogenesis findings by radiographic and microCT analysis. VV in the OVX groups was inferior to the Sham groups. However, OVX-V showed higher percentages of angiogenic enhancement than Sham-V. Despite impaired neo-angiogenesis in osteoporotic fractures, LMHFV could increase blood flow and angiogenesis in both normal and osteoporotic fractures, thus enhancing fracture healing. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. A Modular, Scalable, Extensible, and Transparent Optical Packet Buffer

    Science.gov (United States)

    Small, Benjamin A.; Shacham, Assaf; Bergman, Keren

    2007-04-01

    We introduce a novel optical packet switching buffer architecture that is composed of multiple building-block modules, allowing for a large degree of scalability. The buffer supports independent and simultaneous read and write processes without packet rejection or misordering and can be considered a fully functional packet buffer. It can easily be programmed to support two prioritization schemes: first-in first-out (FIFO) and last-in first-out (LIFO). Because the system leverages semiconductor optical amplifiers as switching elements, wideband packets can be routed transparently. The operation of the system is discussed with illustrative packet sequences, which are then verified on an actual implementation composed of conventional fiber-optic componentry.

  11. Scheduling Issues in ECOFRAME Optical Packet Switched Ring

    Directory of Open Access Journals (Sweden)

    P. Gravey

    2011-06-01

    Full Text Available In the metropolitan area, traditional SONET/SDH circuit switched rings are likely to be replaced with optical packet/burst switching technologies. In this paper we consider a slotted WDM optical packet ring operating without resource reservation mechanisms. In such rings, optical packets in transit have priority over traffic to be inserted by the node. Packets to be inserted are thus queued according to their destination, in order to avoid headof-line blocking. We focus on scheduling policies and compare several MaxWeight scheduling policies, including Oldest Packet First (OPF which emulates FIFO queueing while avoiding head-of-line blocking. We show that there is a trade-off between implementation complexity and fairness, and identify the Largest Virtual Waiting Time First (LVWTF scheduling policy as presenting both a low complexity and a good fairness performance.

  12. Poisson Packet Traffic Generation Based on Empirical Data

    Directory of Open Access Journals (Sweden)

    Andrej Kos

    2003-10-01

    Full Text Available An algorithm for generating equivalent Poisson packet traffic based on empirical traffic data is presented in this paper. Two steps are required in order to produce equivalent Poisson packet traffic. Real traffic trace is analyzed in the first step. In the second step, a new equivalent synthetic Poisson traffic is generated in such a way that the first order statistical parameters remain unchanged. New packet inter-arrival time series are produced in a random manner using negative exponential probability distribution with a known mean. New packet size series are also produced in a random manner. However, due to specified minimum and maximum packet sizes, a truncated exponential probability distribution is applied.

  13. Group velocity of cylindrical guided waves in anisotropic laminate composites.

    Science.gov (United States)

    Glushkov, Evgeny; Glushkova, Natalia; Eremin, Artem; Lammering, Rolf

    2014-01-01

    An explicit expression for the group velocity of wave packets, propagating in a laminate anisotropic composite plate in prescribed directions, is proposed. It is based on the cylindrical guided wave asymptotics derived from the path integral representation for wave fields generated in the composites by given localized sources. The expression derived is theoretically confirmed by the comparison with a known representation for the group velocity vector of a plane guided wave. Then it is experimentally validated against laser vibrometer measurements of guided wave packets generated by a piezoelectric wafer active sensor in a composite plate.

  14. Metamaterials, from electromagnetic waves to water waves, bending waves and beyond

    KAUST Repository

    Dupont, G.

    2015-08-04

    We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.

  15. Data Aggregation and Packet Bundling of Uplink Small Packets for Monitoring Applications in LTE

    DEFF Research Database (Denmark)

    Kim, Dong Min; Sørensen, René Brandborg; Mahmood, Kashif

    2017-01-01

    In cellular massive machine-type communications, a device can transmit directly to the BS or through an aggregator (intermediate node). While direct device-BS communication has recently been the focus of 5G/3GPP research and standardization efforts, the use of aggregators remains a less explored ...... of aggregators and packet bundle size. Our results show that, in general, data aggregation can benefit the uplink massive MTC in LTE by reducing the signaling overhead....

  16. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  17. On the natural small vibrations of dislocation in an isotropic medium

    Science.gov (United States)

    Bataronov, I. L.; Dezhin, V. V.

    2017-12-01

    The equation for the natural bending vibrations of an infinite dislocation is written. The long-wavelength limit is considered. The orientation dependence of the vibrational spectrum has been studied. Solutions for two cases (the bending wave velocity along the dislocation line is not equal to the speed of sound waves and the bending wave velocity along the dislocation line is close to the speed of sound waves) are obtained. Local and quasilocal branches of edge and screw dislocations vibrations are found.

  18. Ultrasound source using a rectangular vibrating plate combined with rigid walls

    Science.gov (United States)

    Sato, Ryo; Asami, Takuya; Miura, Hikaru

    2017-07-01

    Ultrasound sources that use a stripe-mode rectangular vibrating plate radiate strong ultrasound waves in the air. In this study, we investigated the design strategy for combining the vibrating plate with rigid walls and evaluated the intense ultrasound waves radiated by the sound source. First, we examined the design method for a rectangular transverse vibrating plate with both ends fixed and the vibration amplitude distribution of the vibrating plate. Second, we measured the sound pressure distribution in the formation of the standing wave field. Finally, we clarified the relationship between the input power and sound pressure of the standing wave field antinodes.

  19. A novel lost packets recovery scheme based on visual secret sharing

    Science.gov (United States)

    Lu, Kun; Shan, Hong; Li, Zhi; Niu, Zhao

    2017-08-01

    In this paper, a novel lost packets recovery scheme which encrypts the effective parts of an original packet into two shadow packets based on (2, 2)-threshold XOR-based visual Secret Sharing (VSS) is proposed. The two shadow packets used as watermarks would be embedded into two normal data packets with digital watermarking embedding technology and then sent from one sensor node to another. Each shadow packet would reveal no information of the original packet, which can improve the security of original packet delivery greatly. The two shadow packets which can be extracted from the received two normal data packets delivered from a sensor node can recover the original packet lossless based on XOR-based VSS. The Performance analysis present that the proposed scheme provides essential services as long as possible in the presence of selective forwarding attack. The proposed scheme would not increase the amount of additional traffic, namely, lower energy consumption, which is suitable for Wireless Sensor Network (WSN).

  20. Using periodicity to mitigate ground vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2015-01-01

    Introduction of trenches, barriers and wave impeding blocks on the transmission path between a source and receiver can be used for mitigation of ground vibration. However, to be effective a barrier must have a depth of about one wavelength of the waves to be mitigated. Hence, while great reductions...

  1. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  2. Electron wave collimation by conical horns : computer simulation

    NARCIS (Netherlands)

    Michielsen, K.; de Raedt, H.

    1991-01-01

    Results are presented of extensive numerical simulations of electron wave packets transmitted by horns. A detailed quantitative analysis is given of the collimation of the electron wave by horn-like devices. It is demonstrated that the electron wave collimation effect cannot be described in terms of

  3. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  4. SDRAM-based packet buffer model for high speed switches

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2011-01-01

    This article investigates the how the performance of SDRAM based packet buffering systems for high performance switches can be simulated using OPNET. In order to include the access pattern dependent performance of SDRAM modules in simulations, a custom SDRAM model is implemented in OPNET Modeller...... based on the specifications of a real-life DDR3-SDRAM chip. Based on this model the performance of different schemes for optimizing the performance of such a packet buffer can be evaluated. The purpose of this study is to find efficient schemes for memory mapping of the packet queues and I/O traffic...

  5. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet.

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Wang, Fuan; Wang, Yanan

    2017-07-01

    Automatic and accurate identification of rolling bearing fault categories, especially for the fault severities and compound faults, is a challenge in rotating machinery fault diagnosis. For this purpose, a novel method called adaptive deep belief network (DBN) with dual-tree complex wavelet packet (DTCWPT) is developed in this paper. DTCWPT is used to preprocess the vibration signals to refine the fault characteristics information, and an original feature set is designed from each frequency-band signal of DTCWPT. An adaptive DBN is constructed to improve the convergence rate and identification accuracy with multiple stacked adaptive restricted Boltzmann machines (RBMs). The proposed method is applied to the fault diagnosis of rolling bearings. The results confirm that the proposed method is more effective than the existing methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. NOISE AND VIBRATION DAMPING FOR YACHT INTERIOR

    Directory of Open Access Journals (Sweden)

    Murat Aydın

    2016-12-01

    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  7. Throughput and Delay Performance Analysis of Packet Aggregation Scheme for PRMA

    DEFF Research Database (Denmark)

    Zhang, Qi; Iversen, Villy Bæk; Fitzek, Frank H.P.

    2008-01-01

    , the system throughput depends on the size of packets and the number of consecutive packets. From the statistics of existent wireless data networks using PRMA protocol, it shows that the system throughput is quite low because of the inconsecutive small packets. In order to improve the throughput, packet...

  8. Some Results on the Wavelet Packet Decomposition of Nonstationary Processes

    Directory of Open Access Journals (Sweden)

    Sami Touati

    2002-11-01

    Full Text Available Wavelet/wavelet packet decomposition has become a very useful tool in describing nonstationary processes. Important examples of nonstationary processes encountered in practice are cyclostationary processes or almost-cyclostationary processes. In this paper, we study the statistical properties of the wavelet packet decomposition of a large class of nonstationary processes, including in particular cyclostationary and almost-cyclostationary processes. We first investigate in a general framework, the existence and some properties of the cumulants of wavelet packet coefficients. We then study more precisely the almost-cyclostationary case, and determine the asymptotic distributions of wavelet packet coefficients. Finally, we particularize some of our results in the cyclostationary case before providing some illustrative simulations.

  9. GALILEO JUPITER PLASMA RAW PACKETIZED TELEMETRY V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains instrument packet files (IPFs) from the Plasma Science experiment (PLS) onboard the Galileo spacecraft during the Jupiter orbital operations...

  10. Further Results on Extended Delivery Time for Secondary Packet Transmission

    KAUST Repository

    Usman, Muneer

    2017-07-10

    Cognitive radio transceiver can opportunistically access the underutilized spectrum resource of primary systems for new wireless services. With interweave cognitive implementation, secondary transmission may be interrupted by primary transmission. To facilitate the packet delay analysis of such secondary transmission, we study the extended delivery time of secondary packet transmission. In particular, we derive the exact distribution function of extended delivery time of a fixed-size secondary packet with non-work-preserving strategy, where interrupted packets must be repeated. We also analyze the effect of imperfect periodic sensing, i.e., the secondary user periodically senses the spectrum for availability, with a chance of missing an available channel on a certain sensing attempt. These results complement previous work on work-preserving strategy with perfect sensing. Selected numerical and simulation results are presented for verifying the mathematical formulation.

  11. [Monte Vista National Wildlife Refuge livestock grazing lawsuit : Information packet

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Packet of information from the Colorado Cattlemen's Association concerning the 1992 lawsuit filed against the Monte Vista National Wildlife Refuge. The suit was...

  12. Label-controlled optical packet routing technologies and applications

    DEFF Research Database (Denmark)

    Koonen, A.M.J.; Yan, N.; Vegas Olmos, Juan José

    2007-01-01

    An overview is given of various optical packet labeling techniques. The architecture and technologies are discussed for optical packet routing nodes using orthogonal labeling with optoelectronic label processing, and for nodes using time-serial labeling with all-optical time-serial label processing....... An example of a nearterm application is given, and a comparison of routing technologies is made regarding their cost and reliability aspects....

  13. Optical packet networks - conclusions from the IST DAVID project

    DEFF Research Database (Denmark)

    Dittmann, Lars

    2004-01-01

    This work outlines the result from the European research project DAVID working with optical packet switch solutions for both WAN and MAN. The project started July 2000 and has been completed successfully by the end of 2003.......This work outlines the result from the European research project DAVID working with optical packet switch solutions for both WAN and MAN. The project started July 2000 and has been completed successfully by the end of 2003....

  14. TCP Packet Trace Analysis. M.S. Thesis

    Science.gov (United States)

    Shepard, Timothy J.

    1991-01-01

    Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.

  15. DESIGN OF AN ARRAYED WAVEGUIDE GRATINGS BASED OPTICAL PACKET SWITCH

    Directory of Open Access Journals (Sweden)

    VAIBHAV SHUKLA

    2016-12-01

    Full Text Available Optical packet switching is considered as the future of data transfer technologyin combination with middle-aged electronics. The biggest challenge encountered in optical packet switching is the lack of optical buffers for storing the contending packets. Therefore, for the contention resolution of packets, a temporary storage in terms of fiber delay lines is used. This task is accomplished by an optical packet switch. In this paper, a design modification in the AWGR (Arrayed Waveguide Grating Router is presented for improving the switch performance. The power budget analysis of the switch is also presented to estimate the sufficient power level of the switch. The obtained results clearly reveal that the architecture presented in this paper can be operated in micro-watts in comparison to the earlier optical switch which operates in milli watts regime. Finally, simulation results are presented to obtain packet loss probability and average delay. Even at the higher load of 0.6, the switch presented in this paper provides a very low loss probability (10^6 and delay remain within 2 slots.

  16. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  17. Combining control electronics with SOA to equalize packet-to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s

    DEFF Research Database (Denmark)

    Wessing, Henrik; Lavigne, B.; Sørensen, Brian Michael

    2004-01-01

    We report on the combined effects of control electronics and a SOA as to suppress packet to packet power fluctuations. Associated to a SOA-MZI based 3R regenerator, we demonstrate a power dynamic range of 9 dB.......We report on the combined effects of control electronics and a SOA as to suppress packet to packet power fluctuations. Associated to a SOA-MZI based 3R regenerator, we demonstrate a power dynamic range of 9 dB....

  18. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2017-01-01

    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  19. Brain palpation from physiological vibrations using MRI

    OpenAIRE

    Zorgani, Ali; Souchon, Rémi; Dinh, Au-Hoang; Chapelon, Jean-Yves; Ménager, Jean-Michel; Lounis, Samir; Rouvière, Olivier; Catheline, Stefan

    2015-01-01

    It is commonly supposed that noise obscures but does not contain useful information. However, in wave physics and especially, seismology, scientists developed some tools known as “noise correlation” to extract useful information and construct images from the random vibrations of a medium. Living tissues are full of unexploited vibrations as well. In this manuscript, we show that noise correlation techniques in the brain using MRI can conduct to a tomography related to the stiffness that physi...

  20. Production, Delivery and Application of Vibration Energy in Healthcare

    Science.gov (United States)

    Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola

    2011-02-01

    In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.

  1. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  2. Adapted waveform analysis, wavelet packets, and local cosine libraries as a tool for image processing

    Science.gov (United States)

    Coifman, Ronald R.; Woog, Lionel J.

    1995-09-01

    Adapted wave form analysis, refers to a collection of FFT like adapted transform algorithms. Given an image these methods provide special matched collections of templates (orthonormal bases) enabling an efficient coding of the image. Perhaps the closest well known example of such coding method is provided by musical notation, where each segment of music is represented by a musical score made up of notes (templates) characterised by their duration, pitch, location and amplitude, our method corresponds to transcribing the music in as few notes as possible. The extension to images and video is straightforward we describe the image by collections of oscillatory patterns (paint brush strokes)of various sizes locations and amplitudes using a variety of orthogonal bases. These selected basis functions are chosen inside predefined libraries of oscillatory localized functions (trigonometric and wavelet-packets waveforms) so as to optimize the number of parameters needed to describe our object. These algorithms are of complexity N log N opening the door for a large range of applications in signal and image processing, such as compression, feature extraction denoising and enhancement. In particular we describe a class of special purpose compressions for fingerprint irnages, as well as denoising tools for texture and noise extraction. We start by relating traditional Fourier methods to wavelet, wavelet-packet based algorithms using a recent refinement of the windowed sine and cosine transforms. We will then derive an adapted local sine transform show it's relation to wavelet and wavelet-packet analysis and describe an analysis toolkit illustrating the merits of different adaptive and nonadaptive schemes.

  3. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  4. Load balancing in OCDM optical packet switched networks

    Science.gov (United States)

    Yun, Ling; Qiu, Kun; Jiang, JIhai; Li, Yanqiu

    2008-11-01

    Optical packet switching (OPS), which transfers the switching function from electrical domain to optical domain and provides the smallest switching granularity, is the most potential candidate of switching form in the future optical networks. Optical code division multiplexing (OCDM) is the mostly practical all-optical processing technology at the state of the art. The experiments of optical packet switching with optical code (OC) label have demonstrated the switching capability and advantages. But the timing of erasing and inserting label, which is similar with the bit-serial label processing, is the stringent requirement of this scheme. OCDM optical packet switching, which encodes the payload directly and removes the label when the payload is recovered at the decoder, has no stringent timing requirement. Multiple access interference (MAI) is the main factor degrading the performance of OCDM optical packet-switched networks. In this paper, the effects of MAI are studied at the end of optical label path where the packets experience multiple hops. For eliminating the end-to-end BER, the optical label paths need to be established in an optimum way and the load are required to be balanced. One load-balancing algorithm based on the end-to-end BER of OCDM path is proposed to improve the network performance.

  5. Free vibrations of circular cylindrical shells

    CERN Document Server

    Armenàkas, Anthony E; Herrmann, George

    1969-01-01

    Free Vibrations of Circular Cylindrical Shells deals with thin-walled structures that undergo dynamic loads application, thereby resulting in some vibrations. Part I discusses the treatment of problems associated with the propagation of plane harmonic waves in a hollow circular cylinder. In such search for solutions, the text employs the framework of the three-dimensional theory of elasticity. The text explains the use of tables of natural frequencies and graphs of representative mode shapes of harmonic elastic waves bounding in an infinitely long isotropic hollow cylinder. The tables are

  6. Evolution of Modulated Dispersive Electron Waves in a Plasma

    DEFF Research Database (Denmark)

    Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul

    1979-01-01

    The linear propagation of amplitude-modulated electron waves was examined in a low-density Q-machine plasma. Three effects of the strong dispersion on the modulated wave have been demonstrated: (i) a wavepacket expands along its direction of propagation, followed by a shift of the frequency through...... the wavepacket, (ii) the number of oscillations in the temporally observed packet is not identical with that in the spatially observed packet and (iii) continuously modulated waves exhibit recurrence of modulation. The experimental results agree with both a simple analysis based on the Schrodinger equation...

  7. Optimization and Assessment of Wavelet Packet Decompositions with Evolutionary Computation

    Directory of Open Access Journals (Sweden)

    Schell Thomas

    2003-01-01

    Full Text Available In image compression, the wavelet transformation is a state-of-the-art component. Recently, wavelet packet decomposition has received quite an interest. A popular approach for wavelet packet decomposition is the near-best-basis algorithm using nonadditive cost functions. In contrast to additive cost functions, the wavelet packet decomposition of the near-best-basis algorithm is only suboptimal. We apply methods from the field of evolutionary computation (EC to test the quality of the near-best-basis results. We observe a phenomenon: the results of the near-best-basis algorithm are inferior in terms of cost-function optimization but are superior in terms of rate/distortion performance compared to EC methods.

  8. On-board congestion control for satellite packet switching networks

    Science.gov (United States)

    Chu, Pong P.

    1991-01-01

    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite.

  9. Foreign Material in the Gastrointestinal Tract: Cocaine Packets

    Directory of Open Access Journals (Sweden)

    Nurten Turkel Kucukmetin

    2014-01-01

    Full Text Available Smuggling drugs by swallowing or inserting into a body cavity is not only a serious and growing international crime, but can also lead to lethal medical complications. The most common cause of death in ‘body packers', people transporting drugs by ingesting a packet into the gastrointestinal tract, is acute drug toxicity from a ruptured packet. However, more than 30 years after the initial report of body packing, there is still no definitive treatment protocol for the management of this patient group. The treatment strategy is determined according to the particular condition of the patient and the clinical experience of the treatment center. Surgical intervention is also less common now, due to both the use of improved packaging materials among smugglers and a shift towards a more conservative medical approach. Herein, we report a case of toxicity from ingested packets of cocaine that leaked and, despite surgery, resulted in exitus of the patient.

  10. Packet Header Compression for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2016-01-01

    Full Text Available Due to the extensive growth of Internet of Things (IoT, the number of wireless devices connected to the Internet is forecasted to grow to 26 billion units installed in 2020. This will challenge both the energy efficiency of wireless battery powered devices and the bandwidth of wireless networks. One solution for both challenges could be to utilize packet header compression. This paper reviews different packet compression, and especially packet header compression, methods and studies the performance of Robust Header Compression (ROHC in low speed radio networks such as XBEE, and in high speed radio networks such as LTE and WLAN. In all networks, the compressing and decompressing processing causes extra delay and power consumption, but in low speed networks, energy can still be saved due to the shorter transmission time.

  11. Wave motion in elastic solids

    CERN Document Server

    Graff, Karl F

    1991-01-01

    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  12. Advances in integrated photonic circuits for packet-switched interconnection

    Science.gov (United States)

    Williams, Kevin A.; Stabile, Ripalta

    2014-03-01

    Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.

  13. 106-17 Telemetry Standards Chapter 7 Packet Telemetry Downlink

    Science.gov (United States)

    2017-07-31

    Figure 7-22. PTFR Payload Structure .................................................................................... 7-13 Figure 7-23. Start of...Acronyms IP Internet Protocol IPv4 Internet Protocol, Version 4 IPv6 Internet Protocol, Version 6 LLP low-latency PTDP MAC media access control...o 4’b0101: PT Internet Protocol (IP) Packet o 4’b0110: PT Chapter 24 TmNSMessage Packet o 4’b0111 – 4’b1111: Reserved • Fragment (bits 17 – 16

  14. Preferred access in packet-switching radio networks

    Science.gov (United States)

    Shacham, N.

    Channel-access protocols that provide prioritized access to a common channel in a packet switching network are considered. The elements of such protocols are discussed and a specific protocol that integrates two types of packets is proposed. A probabilistic model of the protocol is presented, and its analysis yields the throughput-delay characteristics of the two classes and the interaction between them. The model is analyzed by a method similar to the one used in priority queues; this method allows consideration of each class separately, thus reducing the computational effort substantially.

  15. Speech transport in packet-radio networks with mobile nodes

    Science.gov (United States)

    Shacham, N.; Craighill, E. J.; Poggio, A. A.

    1983-12-01

    A research effort to provide speech-carrying capabilities to a data-oriented packet-switching radio network is described. The features of the network that limit its ability to carry packetized speech are discussed, and their effects on the network performance are analyzed. A new protocol, called duct routing, that enhances the network capabilities in a mobile environment is presented. That protocol makes use of repeater redundancy to compensate for loss of communication connectivity due to node mobility. A series of experiments to evaluate the network performance in carrying speech traffic, both with data and voice protocols, is described, and the results are presented and discussed.

  16. A first packet processing subdomain cluster model based on SDN

    Science.gov (United States)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    For the current controller cluster packet processing performance bottlenecks and controller downtime problems. An SDN controller is proposed to allocate the priority of each device in the SDN (Software Defined Network) network, and the domain contains several network devices and Controller, the controller is responsible for managing the network equipment within the domain, the switch performs data delivery based on the load of the controller, processing network equipment data. The experimental results show that the model can effectively solve the risk of single point failure of the controller, and can solve the performance bottleneck of the first packet processing.

  17. Analysis and implementation of packet preemption for Time Sensitive Networks

    DEFF Research Database (Denmark)

    Zhou, Zifan; Yan, Ying; Ruepp, Sarah Renée

    2017-01-01

    A standard priority-queuing system is capable of arranging packets with different traffic classes to guarantee a relatively low latency for the high priority traffic. However, in practical cases, severe delay may be caused by starting a large, low-priority frame ahead of a time-critical frame....... In this paper, interspersed express traffic is evaluated, which enables preemption of non-time-critical transmission, in particular, the preemptive queuing system allows the cut-through transmission for critical traffic and minimizes the jitter. We analyse the performance of packet preemption through a system...

  18. Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap

    Science.gov (United States)

    Cardella, Davide; Celli, Paolo; Gonella, Stefano

    2016-08-01

    In this work, we propose and test a strategy for tunable, broadband wave attenuation in electromechanical waveguides with shunted piezoelectric inclusions. Our strategy is built upon the vast pre-existing literature on vibration attenuation and bandgap generation in structures featuring periodic arrays of piezo patches, but distinguishes itself for several key features. First, we demystify the idea that periodicity is a requirement for wave attenuation and bandgap formation. We further embrace the idea of ‘organized disorder’ by tuning the circuits as to resonate at distinct neighboring frequencies. In doing so, we create a tunable ‘rainbow trap’ (Tsakmakidis et al 2007 Nature 450 397-401) capable of attenuating waves with broadband characteristics, by distilling (sequentially) seven frequencies from a traveling wavepacket. Finally, we devote considerable attention to the implications in terms of packet distortion of the spectral manipulation introduced by shunting. This work is also meant to serve as a didactic tool for those approaching the field of shunted piezoelectrics, and attempts to provide a different perspective, with abundant details, on how to successfully design an experimental setup involving resistive-inductive shunts.

  19. Analysis of radial vibrations of poroelastic circular cylindrical shells ...

    African Journals Online (AJOL)

    Waves propagating in radial direction of a poroelastic circular cylinder are termed as radial vibrations. Radial vibrations of poroelastic circular cylindrical shell of infinite extent immersed in an inviscid elastic fluid are examined employing Biot's theory. Biot's model consists of an elastic matrix permeated by a network of ...

  20. selective excitation of vibrational modes of polyatomic molecule

    Indian Academy of Sciences (India)

    Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...

  1. Synchronization, retiming and OTDM of an asynchronous 10 Gigabit Ethernet NRZ packet using a time lens for Terabit Ethernet

    DEFF Research Database (Denmark)

    Hu, Hao; Laguardia Areal, Janaina; Mulvad, Hans Christian Hansen

    2011-01-01

    An asynchronous 10G Ethernet packet is synchronized and retimed to a master clock using a time lens. The NRZ packet is converted into an RZ packet and multiplexed with a serial 1.28 Tb/s signal.......An asynchronous 10G Ethernet packet is synchronized and retimed to a master clock using a time lens. The NRZ packet is converted into an RZ packet and multiplexed with a serial 1.28 Tb/s signal....

  2. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  3. Direct-Sequence Spread-Spectrum Modulation for Utility Packet Transmission in Underwater Acoustic Communication Networks

    National Research Council Canada - National Science Library

    Duke, Peter

    2002-01-01

    ...) modulation for utility-packet transmission in Seaweb underwater wireless acoustic communications networks, Seaweb networks require robust channel-tolerant utility packets having a low probability of detection (LPD...

  4. An Experimental Exploration of the Impact of Sensor-Level Packet Loss on Network Intrusion Detection

    Science.gov (United States)

    2015-07-01

    gator010 abridged with the packet dropper using the capped-by-packets algorithm and abridged by pcapreplay ............ 16 Fig. 10 Sigmoid nonlinear...is not random but is very similiar to both the results of the capped-by-packet algorithm of the packet dropper and a sigmoid function. When we used...the PLR verses the ALR will allow us to compare the results against our results from the theoretical exploration.2 We should be able to use curve

  5. 160 Gbit/s optical packet switching using a silicon chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2012-01-01

    We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet.......We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet....

  6. Optical frame synchronizer for 10 G Ethernet packets aiming at 1 Tb/s OTDM Ethernet

    DEFF Research Database (Denmark)

    Hu, Hao; Palushani, Evarist; Laguardia Areal, Janaina

    2010-01-01

    Synchronization of 10 G Ethernet packets to a local clock was demonstrated using a phase modulator and a SMF as retiming elements. Error free performances for the synchronized packets with different lengths were achieved.......Synchronization of 10 G Ethernet packets to a local clock was demonstrated using a phase modulator and a SMF as retiming elements. Error free performances for the synchronized packets with different lengths were achieved....

  7. Hardware packet pacing using a DMA in a parallel computer

    Science.gov (United States)

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  8. Application of Cellular Automata to Detection of Malicious Network Packets

    Science.gov (United States)

    Brown, Robert L.

    2014-01-01

    A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…

  9. Marine and Coastal Resources. Global Issues Education Packet.

    Science.gov (United States)

    Holm, Amy E.

    At least 70% of the Earth is covered with water. This packet provides background information on eight areas of concern regarding marine and coastal resources. Considered are: (1) "Coastal Resources"; (2) "Mangroves"; (3) "Coral Reefs"; (4) "Ocean Resources"; (5) "Aquaculture"; (6) "Pollution"; (7) "Marine Debris"; and (8) "The Global Commons."…

  10. The Effect of Double Buffer Management in Packet Analysis of ...

    African Journals Online (AJOL)

    of file downloads between the HTTP server and clients are also varied to follow the behavior of data. The buf(er ... to accommodate. Keywords: buffer, traffic analysis, packet, HTTP, server, clients, byte, double buffer. ... Mobile Ad hoc Networks (MANETs), each node serves as a host as well as a router and uses consequently ...

  11. A CURRICULUM FOR ENGLISH, STUDENT PACKET, GRADE 12.

    Science.gov (United States)

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE LITERATURE PROGRAM OF THE GRADE 12 STUDENT PACKET OF THE NEBRASKA ENGLISH CURRICULUM CONSISTS OF A SELECTIVE SURVEY OF ENGLISH LITERATURE FROM THE RENAISSANCE TO THE 20TH CENTURY. IT BEGINS WITH A UNIT ON SHAKESPEAREAN TRAGEDY IN WHICH STUDENTS READ REVENGE TRAGEDIES--SENECA'S "THYESTES" AND KYD'S "THE SPANISH TRAGEDY"--AS…

  12. The Sphinx and the Pyramids at Giza. Educational Packet.

    Science.gov (United States)

    Gagliano, Sara; Rapport, Wendy

    This packet of materials was created to accompany the exhibit "The Sphinx and the Pyramids: 100 Years of American Archaeology at Giza" at the Semitic Museum of Harvard University. The lessons and teacher's guide focus on the following: (1) "The Mystery of the Secret Tomb" where students take on the role of an archaeologist by…

  13. Analysis Of Packets Delay In Wireless Data Networks

    Directory of Open Access Journals (Sweden)

    Krivchenkov Aleksandr

    2015-12-01

    Full Text Available The networks with wireless links for automation control applications traffic transmission when packets have small size and application payload is predictable are under consideration. Analytical model for packets delay on their propagation path through the network is proposed. Estimations for network architectures based on WiFi and Bluetooth wireless technologies are made. The specifications for physical layer 802.11 a/b/g/n and 802.15.1 are under consideration. Analytical and experimental results for delivered network bandwidth for different network architecture, traffic structure and wireless technologies were compared to validate that basic mechanisms are correctly taken into account in the model. It is shown that basic effects are taken into account and further accuracy “improvement” of the model will give not more than 5%. As a result that is important for automation control applications we have reliably received the lowest possible level for packets delay in one wireless link. For 802.11 it is of order of 0.2 ms, for 802.15.1 it is 1.25 ms and is true when application packet can be transferred by one data frame.

  14. A simple livelock-free algorithm for packet switching

    National Research Council Canada - National Science Library

    Shyamasundar, R.K

    1984-01-01

    ... as a livelock-free algorithm for packet switching is obtained using the strategy of the banker's algorithm. Furthermore, the solution obtained is interpreted for the hyper-fast banker's problem. 1. Introduction In most cases, the occurrence of network deadlock has a horrendous impact upon network users. When the deadlocks are discovered, they are frequ...

  15. "Macbeth." A Play Packet To Accompany "Elementary, My Dear Shakespeare."

    Science.gov (United States)

    Engen, Barbara; Campbell, Joy

    Intended for use by elementary school teachers as a supplement to the book, "Elementary, My Dear Shakespeare," or for use by itself to produce one Shakespeare play, this play packet contains ready-to-reproduce materials for the production of "Macbeth." Materials include: staging suggestions for scenery, props, lighting, and…

  16. INTERNET TRAFFIC AND PACKET ROUND TRIP DELAY SELF ...

    African Journals Online (AJOL)

    Long Range Dependence(LRD). In this work, it has been shown that the Internet traffic and Packet. Round Trip Delay visuaiized as a time series are statistically selfsimilar. The autocorrelation function decays reveals the data ..... satisfied by the well-known family of "Pareto. Distribution", originally introduced for modelling.

  17. Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.

    Science.gov (United States)

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  18. Solar Energy Education Packet for Elementary & Secondary Students.

    Science.gov (United States)

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  19. Scholastic Journalism Week, February 22-28, 1998. Information Packet.

    Science.gov (United States)

    Shipp, Leslie, Comp.; Shuman, Jim, Comp.

    This packet of information presents material for journalism educators to use in celebrating Scholastic Journalism Week, February 22-28, 1998. It contains a history of journalism in outline form and in newspaper article format; 13 classroom activities; 11 special activities for outside the classroom; a sample press release; a sample editorial;…

  20. Comparison of Deep Packet Inspection (DPI) Tools for Traffic Classification

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Carela-Español, Valentín; Barlet-Ros, Pere

    the researchers do not only have the full payloads, but also they are provided the information which application created the flow. Therefore, the dataset is useful for testing Deep Packet Inspection (DPI) tools, as well as statistical, and port-based classifiers. The dataset was created in a fully manual way...

  1. Designs and algorithms for packet and content inspection

    NARCIS (Netherlands)

    Sourdis, I.

    2007-01-01

    This dissertation deals with essential issues pertaining to high performance processing for network security and deep packet inspection. The proposed solutions keep pace with the increasing number and complexity of known attack descriptions providing multi-Gbps processing rates. We advocate the use

  2. Energy Crisis: Libya's and Nigeria's Role. Resource Packet.

    Science.gov (United States)

    African-American Inst., New York, NY. School Services Div.

    This resource packet contains practical suggestions and resource materials to help secondary teachers teach about Libya's and Nigeria's roles in the energy crisis. Students become acquainted with the governments and cultures of the two countries, examine their social problems, and learn how the Libyan and Nigerian governments are using money from…

  3. Green partial packet recovery in wireless sensor networks

    KAUST Repository

    Daghistani, Anas

    2015-08-18

    Partial packet recovery is well known for increasing network throughput and reducing frame retransmissions. However, partial packet recovery methods in the literature are not energy-aware and hence they are not suitable for the battery powered wireless sensor motes. We propose Green-Frag, a novel adaptive partial packet recovery mechanism that is energy friendly. It can help prolonging the battery life of wireless sensor motes that are usually resource constrained. It dynamically partitions the frame into smaller blocks to avoid dropping the whole frame due to a single bit error. Also, Green-Frag is able to tolerate high interference and save energy by varying the transmit power based on channel quality and interference pattern. We experimentally evaluate the energy efficiency as well as goodput and delay of Green-Frag using our TelosB sensor mote testbed. We find that Green-Frag reduces energy consumption by 33% on average compared to the state of the art partial packet recovery scheme in the literature in the presence of Wi-Fi interference. In the worst case, this reduction in energy consumption comes at the cost of 10% reduction in goodput. Finally, Green-Frag reduces the latency by 22% on average compared to other static frame fragmentation schemes.

  4. Time-lens based optical packet pulse compression and retiming

    DEFF Research Database (Denmark)

    Laguardia Areal, Janaina; Hu, Hao; Palushani, Evarist

    2010-01-01

    This paper presents a new optical circuit that performs both pulse compression and frame synchronization and retiming. Our design aims at directly multiplexing several 10G Ethernet data packets (frames) to a high-speed OTDM link. This scheme is optically transparent and does not require clock...

  5. Network Architecture of a Packet-switched WDM

    NARCIS (Netherlands)

    Dey, D.; Koonen, A.M.J.; Salvador, M.R.

    2000-01-01

    We propose a packet-switched WDM slotted ring network with destination release. The total bandwidth of each channel is divided into a fixed number of equal-sized slots. The nodes are equipped with fixed transmitters and tunable receivers. Control information, which is transmitted on a specific

  6. Flexural vibrations of finite composite poroelastic cylinders

    Indian Academy of Sciences (India)

    Abstract. This paper deals with the flexural vibrations of composite poroelastic solid cylinder consisting of two cylinders that are bonded end to end. Poroelastic materials of the two cylinders are different. The frequency equations for pervious and impervious surfaces are obtained in the framework of Biot's theory of wave.

  7. Longitudinal shear vibrations of composite poroelastic cylinders ...

    African Journals Online (AJOL)

    Employing Biot's theory of wave propagation in liquid saturated porous media, longitudinal shear vibrations of composite poroelastic cylinders of infinite extent are investigated. The composite poroelastic cylinder is made of two different poroelastic materials. The dilatations of liquid and solid media are zero, hence liquid ...

  8. Random access with adaptive packet aggregation in LTE/LTE-A.

    Science.gov (United States)

    Zhou, Kaijie; Nikaein, Navid

    While random access presents a promising solution for efficient uplink channel access, the preamble collision rate can significantly increase when massive number of devices simultaneously access the channel. To address this issue and improve the reliability of the random access, an adaptive packet aggregation method is proposed. With the proposed method, a device does not trigger a random access for every single packet. Instead, it starts a random access when the number of aggregated packets reaches a given threshold. This method reduces the packet collision rate at the expense of an extra latency, which is used to accumulate multiple packets into a single transmission unit. Therefore, the tradeoff between packet loss rate and channel access latency has to be carefully selected. We use semi-Markov model to derive the packet loss rate and channel access latency as functions of packet aggregation number. Hence, the optimal amount of aggregated packets can be found, which keeps the loss rate below the desired value while minimizing the access latency. We also apply for the idea of packet aggregation for power saving, where a device aggregates as many packets as possible until the latency constraint is reached. Simulations are carried out to evaluate our methods. We find that the packet loss rate and/or power consumption are significantly reduced with the proposed method.

  9. The Development of Vibration System for Applying Magnetic Resonance Elastography (MRE) to the Supraspinatus Muscle.

    Science.gov (United States)

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Kouichi; Onishi, Takaaki; Nishijo, Hisao

    2016-01-01

    Palpation is a standard clinical tool to diagnose abnormal stiffness changes in soft tissues. However, it is difficult to palpate the supraspinatus muscle because it locates under the trapezius muscle. The magnetic resonance elastography (MRE) uses harmonic mechanical excitation to quantitatively measure the stiffness (shear modulus) of both the superficial and deep tissues. The purpose of this study was to build a vibration system for applying the MRE to the supraspinatus muscle. In this study, a power amplifier and a pneumatic pressure generator were used to supply vibrations to a vibration pad. Six healthy volunteers underwent MRE. We investigated the effects of position (the head of the humerus and the trapezius muscle) of the vibration pad on the patterns of wave propagation (wave image). When the vibration pad was placed in the trapezius muscle, the wave images represented clear wave propagation. On the other hand, when the vibration pad was placed in the head of the humerus, the wave images represented unclear wave propagation. This result might be caused by wave interferences resulting from the vibrations from bones and an intramuscular tendon of the supraspinatus muscle. The mean shear modulus also was 8.12 ± 1.83 (mean ± SD) kPa, when the vibration pad was placed in the trapezius muscle. Our results demonstrated that the vibration pad should be placed in the trapezius muscle in the MRE of the supraspinatus muscle.

  10. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter

    2016-01-01

    Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively......-dimensional finite-element model. The laboratory model employs soaked mattress foam placed within a box to mimic a finite volume of soil. The dynamic properties of the soaked foam ensure wavelengths representative of ground vibration in small scale. Comparison of the results from the two models leads...

  11. Ultrashort-pulse wave-front autocorrelation.

    Science.gov (United States)

    Grunwald, R; Neumann, U; Griebner, U; Reimann, K; Steinmeyer, G; Kebbel, V

    2003-12-01

    Combined spatially resolved collinear autocorrelation and Shack-Hartmann wave-front sensing of femtosecond laser pulses is demonstrated for the first time to our knowledge. The beam is divided into multiple nondiffracting subbeams by thin-film micro-optical arrays. With hybrid refractive-reflective silica/silver microaxicons, wave-front autocorrelation is performed in oblique-angle reflection. Simultaneous two-dimensional detection of local temporal structure and wave-front tilt of propagating few-cycle wave packets is demonstrated.

  12. Negative-Index Media for Matter Waves

    Science.gov (United States)

    Perales, F.; Bocvarski, V.; Baudon, J.; Hamamda, M.; Grucker, J.; Dutier, G.; Mainos, C.; Boustimi, M.; Ducloy, M.

    2010-02-01

    One reviews the recently introduced field of matter-wave "meta-optics", i.e. the extension of optical negative-index media (NIM) to atom optics. After emphasizing the differences with light meta-optics and particularly the necessary transient character of NIM's in atom optics, we present the way of generating matter-wave NIM's and their general properties: negative refraction, atom meta-lenses. Finally their specific features are reviewed: longitudinal wave packet narrowing associated to a time-reversal effect, transient revivals of evanescent matter waves and atom reflection echoes at a potential barrier.

  13. Observational indications of downward-propagating gravity waves in middle atmosphere lidar data

    Science.gov (United States)

    Kaifler, N.; Kaifler, B.; Ehard, B.; Gisinger, S.; Dörnbrack, A.; Rapp, M.; Kivi, R.; Kozlovsky, A.; Lester, M.; Liley, B.

    2017-09-01

    Two Rayleigh lidars were employed at a southern-hemisphere mid-latitude site in New Zealand (45°S) and a northern-hemisphere high-latitude site in Finland (67°N) in order to observe gravity waves between 30 and 85 km altitude under wintertime conditions. Two-dimensional wavelet analysis is used to analyze temperature perturbations caused by gravity waves and to determine their vertical wavelengths and phase progression. In both datasets, upward phase progression waves occur frequently between 30 and 85 km altitude. Six cases of large-amplitude wave packets are selected which exhibit upward phase progression in the stratosphere and/or mesosphere. We argue that these wave packets propagate downward and we discuss possible wave generation mechanisms. Spectral analysis reveals that superpositions of two or three wave packets are common. Furthermore, their characteristics often match those of upward-propagating waves which are observed at the same time or earlier. In the dataset means, the contribution of upward phase progression waves to the potential energy density Ep is largest in the lower stratosphere above Finland. There, Ep of upward and downward phase progression waves is comparable. At 85 km one third of the potential energy carried by propagating waves is attributed to upward phase progression waves. In some cases Ep of upward phase progression waves far exceeds Ep of downward phase progression waves. The downward-propagating waves might be generated in situ in the middle atmosphere or arise from reflection of upward-propagating waves.

  14. Planetary dynamos driven by helical waves - II

    Science.gov (United States)

    Davidson, P. A.; Ranjan, A.

    2015-09-01

    In most numerical simulations of the Earth's core the dynamo resides outside the tangent cylinder and may be crudely classified as being of the α2 type. In this region the flow comprises a sea of thin columnar vortices aligned with the rotation axis, taking the form of alternating cyclones and anticyclones. The dynamo is thought to be driven by these columnar vortices within which the flow is observed to be highly helical, helicity being a crucial ingredient of planetary dynamos. As noted in Davidson, one of the mysteries of this dynamo cartoon is the origin of the helicity, which is observed to be positive in the south and negative in the north. While Ekman pumping at the mantle can induce helicity in some of the overly viscous numerical simulations, it is extremely unlikely to be a significant source within planets. In this paper we return to the suggestion of Davidson that the helicity observed in the less viscous simulations owes its existence to helical wave packets, launched in and around the equatorial plane where the buoyancy flux is observed to be strong. Here we show that such wave packets act as a potent source of planetary helicity, constituting a simple, robust mechanism that yields the correct sign for h north and south of the equator. Since such a mechanism does not rely on the presence of a mantle, it can operate within both the Earth and the gas giants. Moreover, our numerical simulations show that helical wave packets dispersing from the equator produce a random sea of thin, columnar cyclone/anticyclone pairs, very like those observed in the more strongly forced dynamo simulations. We examine the local dynamics of helical wave packets dispersing from the equatorial regions, as well as the overall nature of an α2-dynamo driven by such wave packets. Our local analysis predicts the mean emf induced by helical waves, an analysis that rests on a number of simple approximations which are consistent with our numerical experiments, while our global

  15. Field trial of 160 Gbit/s DWDM-based optical packet switching and transmission.

    Science.gov (United States)

    Furukawa, Hideaki; Wada, Naoya; Awaji, Yoshinari; Miyazaki, Tetsuya; Kong, Eddie; Chan, Peter; Man, Ray; Cincotti, Gabriella; Kitayama, Ken-ichi

    2008-07-21

    We demonstrated, for the first time, a field trial of 160 (16 lambda x 10) Gbit/s, fine granularity, DWDM-based optical packet switching and transmission by newly-developed burst-mode EDFAs and an optical packet switch prototype with multiple all-optical label processors. We achieved 64 km field transmission and switching of 160 (16 lambda x 10) Gbit/s DWDM-based optical packets encapsulating almost 10 Gbit/s IP packets with error-free operation (IP-packet-loss-rate <10(-6) and bit-error-rate <10(-9)).

  16. Towards Effective Trust-Based Packet Filtering in Collaborative Network Environments

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Kwok, Lam-For

    2017-01-01

    Overhead network packets are a big challenge for intrusion detection systems (IDSs), which may increase system burden, degrade system performance, and even cause the whole system collapse, when the number of incoming packets exceeds the maximum handling capability. To address this issue, packet...... filtration is considered as a promising solution, and our previous research efforts have proven that designing a trust-based packet filter was able to refine unwanted network packets and reduce the workload of a local IDS. With the development of Internet cooperation, collaborative intrusion detection...

  17. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.

    Science.gov (United States)

    Luo, J; Badiey, M; Karjadi, E A; Katsnelson, B; Tskhoidze, A; Lynch, J F; Moum, J N

    2008-09-01

    Fluctuations of the low frequency sound field in the presence of an internal solitary wave packet during the Shallow Water '06 experiment are analyzed. Acoustic, environmental, and on-board ship radar image data were collected simultaneously before, during, and after a strong internal solitary wave packet passed through the acoustic track. Preliminary analysis of the acoustic wave temporal intensity fluctuations agrees with previously observed phenomena and the existing theory of the horizontal refraction mechanism, which causes focusing and defocusing when the acoustic track is nearly parallel to the front of the internal waves [J. Acoust. Soc. Am., 122(2), pp. 747-760 (2007)].

  18. Induced Current Measurement of Rod Vibrations

    Science.gov (United States)

    Sawicki, Charles A.

    2003-01-01

    The longitudinal normal modes of vibration of rods are similar to the modes seen in pipes open at both ends. A maximum of particle displacement exists at both ends and an integral number (n) of half wavelengths fit into the rod length. The frequencies fn of the normal modes is given by Eq. (1), where L is the rod length and V is the wave velocity: fn = nV/2L. Many methods have been used to measure the velocity of these waves. The Kundt's tube method commonly used in student labs will not be discussed here. A simpler related method has been described by Nicklin.2 Kluk3 measured velocities in a wide range of materials using a frequency counter and microphone to study sounds produced by impacts. Several earlier methods4,5 used phonograph cartridges complete with needles to detect vibrations in excited rods. A recent interesting experiment6 used wave-induced changes in magnetization produced in an iron rod by striking one end. The travel time, measured as the impulsive wave reflects back and forth, gave the wave velocity for the iron rod. In the method described here, a small magnet is attached to the rod with epoxy, and vibrations are detected using the current induced in a few loops of wire. The experiment is simple and yields very accurate velocity values.

  19. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  20. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  1. Waves and vibrations in inhomogeneous structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    Denne afhandling omhandler bølger og vibrationer i inhomogene strukturer med speciel fokus på undersøgelse af båndgabsfænomenet og optimering af båndgabsstrukturer. Afhandlingen består af 21 artikler, hvoraf 17 er publiceret i internationale tidsskrifter og 4 er publiceret i konferenceproceedings...

  2. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  3. Dynamics of evanescent matter waves in negative-index media

    Science.gov (United States)

    Hamamda, M.; Bocvarski, V.; Perales, F.; Baudon, J.; Dutier, G.; Mainos, C.; Boustimi, M.; Ducloy, M.

    2010-11-01

    Semi-evanescent and evanescent matter waves produced by an atom wave packet impinging on a repulsive barrier can be back-refracted and reconstructed by the application of negative-index 'comoving' potential pulses. One shows that those collapses and revivals generate a matter wave confined on both sides of the barrier border ('surface matter wave') and should be observable via the retardation of atom reflection from the barrier interface. This property, joined to the possibility recently demonstrated of inducing negative refraction of atom waves, makes such potentials a matter-wave counterpart of negative-index materials or 'meta materials' well known in light optics.

  4. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulations

    CERN Document Server

    Ruban, V P

    2015-01-01

    The nonlinear dynamics of an obliquely oriented wave packet at sea surface is studied both analytically and numerically for various initial parameters of the packet, in connection with the problem of oceanic rogue waves. In the framework of Gaussian variational ansatz applied to the corresponding (1+2D) hyperbolic nonlinear Schr\\"odinger equation, a simplified Lagrangian system of differential equations is derived, which determines the evolution of coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description for the process of nonlinear spatio-temporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system is integrated in quadratures, which fact allows us to understand qualitative differences between the linear and nonlinear regimes of the focusing of wave packet. Comparison of the Gaussian model predictions with results of direct numerical simulation of fully nonlinear long-cres...

  5. Experimental and trial-based study of Resilient Packet Ring

    Science.gov (United States)

    Ramnath, Vasudha; Cheng, Heng Seng; Ngoh, Lek Heng

    2002-08-01

    An experimental study of the Resilient Packet Ring (RPR) media access control (MAC) technology that is optimized for IP traffic in the metropolitan-area-network (MAN) environment is described. The study involved the deployment and trials of a RPR testbed encompassing a public optical fiber infrastructure in which Cisco Systems' Dynamic Packet Transport (DPT) Ring Technology - a prestandard RPR implementation - was used. We focus on a number of important RPR protocol features that are vital to the future success of RPR as a MAN/wide-area-network (WAN) network technology. Related research on RPR/DPT has been done so far through simulation studies only. Standardization of RPR is currently being performed by the Institute of Electrical and Electronics Engineers (IEEE) 802.17 working group and is expected to be completed in 2003. Also, we present and discuss the experiments and tests performed to investigate the key features of RPR, along with the results obtained.

  6. Transmission Delay Modeling of Packet Communication over Digital Subscriber Line

    Directory of Open Access Journals (Sweden)

    Jiri Vodrazka

    2013-01-01

    Full Text Available Certain multimedia and voice services, such as VoIP, IPTV, etc., are significantly delay sensitive and their performance is influenced by the overall transmission delay and its variance. One of the most common solutions used in access networks are xDSL lines, especially ADSL2+ or VDSL2. Although these subscriber lines also use packet communication, there are several differences and mechanisms, which influence their resulting delay. Their delay characteristics are also dependent on the individual settings of each xDSL provider, therefore we decided to investigate this area for typical commercially available lines in Czech Republic. Based on the measured values and experiments with real ADSL2+ lines we also developed a potential modeling method, which is presented in this article as well. The parameters for packet jitter based on the generalized Pareto distribution were modeled.

  7. Future directions in packet radio architectures and protocols

    Science.gov (United States)

    Shacham, Nachum; Westcott, Jil

    1987-01-01

    The technology of packet switching over multihop, multiple-access channels has evolved to the point at which its protocols can now support internetwork operation of medium-size networks whose nodes possess some degree of mobility. As regards the needs and challenges of the future operating environment, it is clear that these can be met only by enhancing the packet radio architecture and its protocols. Several enhancements that allow the organization of large, dynamic networks that can operate over multiple channels, adapt to varying conditions, and possess self-monitoring and self-control capabilities are discussed. As these areas are examined, the attendant issues and tradeoffs are discussed; in addition, some protocols and information regarding their performance are presented.

  8. Service Time Analysis for Secondary Packet Transmission with Adaptive Modulation

    KAUST Repository

    Wang, Wen-Jing

    2017-05-12

    Cognitive radio communications can opportunistically access underutilized spectrum for emerging wireless applications. With interweave cognitive implementation, secondary user transmits only if primary user does not occupy the channel and waits for transmission otherwise. Therefore, secondary packet transmission involves both transmission time and waiting time. The resulting extended delivery time (EDT) is critical to the throughput analysis of secondary system. In this paper, we study the EDT of secondary packet transmission with adaptive modulation under interweave implementation to facilitate the delay and throughput analysis of such cognitive radio system. In particular, we propose an analytical framework to derive the probability density functions of EDT considering random-length transmission and waiting slots. We also present selected numerical results to illustrate the mathematical formulations and to verify our analytical approach.

  9. Predictive onboard flow control in packet switching satellites

    Science.gov (United States)

    Bobinsky, E. A.

    1992-01-01

    We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.

  10. Predictive onboard flow control for packet switching satellites

    Science.gov (United States)

    Bobinsky, Eric A.

    1992-01-01

    We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.

  11. Digital Image Watermarking Algorithm Based on Wavelet Packet

    OpenAIRE

    Geetha, A.; B.Vijayakumari; C.Nagavani; T.Pandiselvi

    2011-01-01

    In this paper, a method for Digital Image Watermarking based on the modification of certain subband of the wavelet packet decomposition was presented. A key is used for wavelet bases selection, watermark generation and selection of blocks for embedding the watermark bits. To efficiently embed the watermark within the images and provide the robustness for the watermark detection under attacks, watermark is embedded by quantizing the mean of the wavelet coefficient block. A method for exploitin...

  12. Effect of latency and packet loss on achievable bandwidth

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Following an incident with a slow database replication between CERN's data centers, we discovered that even a very low rate packet loss in the network can induce significant penalties to long distance single stream TCP transfers. We explore the behaviour of multiple congestion control algorithms in a controlled loss environment in order to understand what is the achievable throughput of TCP data transfers between the Meyrin and Wigner data centres.

  13. SDN architecture for optical packet and circuit integrated networks

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  14. Software For Management Of A Packet-Radio Network

    Science.gov (United States)

    Smyth, Patrick J.; Chauvin, Todd H.; Oliver, Gordon P.; Statman, Joseph I.

    1994-01-01

    Network-management software assists in planning, monitoring, and controlling resources of Datalink network. Packet-message network featuring time-division multiple access, frequency and spatial diversity, and dynamic tree-structured routing scheme. Developed for communication between central control station on ground and instrumented aircraft flying over test range. Aircraft derives navigational data from satellites of Global Positioning System, and primary function of Datalink network feeding GPS position data from participating aircraft into control center in real time.

  15. Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ascariz José M

    2011-05-01

    Full Text Available Abstract Background Glaucoma is the second-leading cause of blindness worldwide and early diagnosis is essential to its treatment. Current clinical methods based on multifocal electroretinography (mfERG essentially involve measurement of amplitudes and latencies and assume standard signal morphology. This paper presents a new method based on wavelet packet analysis of global-flash multifocal electroretinogram signals. Methods This study comprised twenty-five patients diagnosed with OAG and twenty-five control subjects. Their mfERG recordings data were used to develop the algorithm method based on wavelet packet analysis. By reconstructing the third wavelet packet contained in the fourth decomposition level (ADAA4 of the mfERG recording, it is possible to obtain a signal from which to extract a marker in the 60-80 ms time interval. Results The marker found comprises oscillatory potentials with a negative-slope basal line in the case of glaucomatous recordings and a positive-slope basal line in the case of normal signals. Application of the optimal threshold calculated in the validation cases showed that the technique proposed achieved a sensitivity of 0.81 and validation specificity of 0.73. Conclusions This new method based on mfERG analysis may be reliable enough to detect functional deficits that are not apparent using current automated perimetry tests. As new stimulation and analysis protocols develop, mfERG has the potential to become a useful tool in early detection of glaucoma-related functional deficits.

  16. Characteristics of vortex packets in a boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen; Marusic, Ivan

    2002-11-01

    Stereo PIV was used to measure all three velocity components in streamwise-spanwise (x-y) planes of a turbulent boundary layer at Re_τ = 1060. Datasets were obtained in the log layer and beyond. The vector fields in the log layer (z^+ = 92 and 150, z - wall normal direction) revealed signatures of vortex packets similar to those found by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged along the x direction. These regions also generated substantial Reynolds shear stress (-uw), sometimes as high as 40U_τ^2. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to the total -uw while occupying less than 5% of the total area in the log layer. Beyond the log layer (z^+ = 198, 530), the spatial organization into packets breaks down. Instead, large individual vortex cores and spanwise strips of positive and negative wall-normal velocity were observed. Supported by NSF (ACI-9982774, CTS-9983933).

  17. Recovery of vortex packet organization in perturbed turbulent boundary layers

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen K.

    2017-10-01

    Turbulent boundary layers with R eτ=2500 were perturbed by an array of cylinders projecting outward from the wall, and the flow organization downstream was investigated at multiple measurement heights in the logarithmic region. Two array heights were considered: H =0.2 δ , extending through the log region and H =δ , extending to the top of the boundary layer. Results from instantaneous PIV in wall-parallel planes and a vortex packet identification algorithm clearly showed a bottom-up mechanism for packet recovery downstream of the H =δ array, even though streamwise velocity statistics remained strongly perturbed. In contrast, some indications of top-down recovery were observed for the flow perturbed by the shorter H =0.2 δ (H+=500 ) array. In this case, however, packet structures closer to the wall at z+=125 remained altered beyond the end of the measurement domain 7δ downstream of the cylinders even though streamwise velocity statistics relaxed nearly to the unperturbed values.

  18. Characteristics of vortex packets in turbulent boundary layers

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2003-03-01

    Stereoscopic particle image velocimetry (PIV) was used to measure all three instantaneous components of the velocity field in streamwise spanwise planes of a turbulent boundary layer at Re[tau]=1060 (Re[theta]=2500). Datasets were obtained in the logarithmic layer and beyond. The vector fields in the log layer (z+=92 and 150) revealed signatures of vortex packets similar to those proposed by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged in the streamwise direction. These regions also generated substantial Reynolds shear stress, sometimes as high as 40 times [minus sign]uw. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to [minus sign]uw while occupying only 4% of the total area at z+=92. At z+=150, these patches occupied 4.5% of the total area while contributing 25% to [minus sign]uw. Beyond the log layer (z+=198 and 530), the spatial organization into packets is seen to break down.

  19. Modelling Packet Departure Times using a Known PDF

    Directory of Open Access Journals (Sweden)

    Stanislav Klucik

    2014-01-01

    Full Text Available This paper deals with IPTV traffic source modelling and describes a packet generator based on a known probability density function which is measured and formed from a histogram. Histogram based probability density functions destroy an amount of information, because classes used to form the histogram often cover significantly more events than one. In this work, we propose an algorithm to generate far more output states of random variable X than the input probability distribution function is made from. In this generator is assumed that all IPTV packets of the same video stream are the same length. Therefore, only packet times are generated. These times are generated using the measured normalized histogram that is converted to a cumulative distribution function which acts as a finite number of states that can be addressed. To address these states we use an ON/OFF model that is driven by an uniform random number generator in (0, 1. When a state is chosen then the resulting value is equal to a histogram class. To raise the number of possible output states of the random variable X, we propose to use an uniform random number generator that generates numbers within the range of the chosen histogram class. This second uniform random number generator assures that the number of output states is far more larger than the number of histogram classes.

  20. Efficient incremental relaying for packet transmission over fading channels

    KAUST Repository

    Fareed, Muhammad Mehboob

    2014-07-01

    In this paper, we propose a novel relaying scheme for packet transmission over fading channels, which improves the spectral efficiency of cooperative diversity systems by utilizing limited feedback from the destination. Our scheme capitalizes on the fact that relaying is only required when direct transmission suffers deep fading. We calculate the packet error rate for the proposed efficient incremental relaying (EIR) scheme with both amplify and forward and decode and forward relaying. We compare the performance of the EIR scheme with the threshold-based incremental relaying (TIR) scheme. It is shown that the efficiency of the TIR scheme is better for lower values of the threshold. However, the efficiency of the TIR scheme for higher values of threshold is outperformed by the EIR. In addition, three new threshold-based adaptive EIR are devised to further improve the efficiency of the EIR scheme. We calculate the packet error rate and the efficiency of these new schemes to provide the analytical insight. © 2014 IEEE.

  1. The performance analysis of linux networking - packet receiving

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenji; Crawford, Matt; Bowden, Mark; /Fermilab

    2006-11-01

    The computing models for High-Energy Physics experiments are becoming ever more globally distributed and grid-based, both for technical reasons (e.g., to place computational and data resources near each other and the demand) and for strategic reasons (e.g., to leverage equipment investments). To support such computing models, the network and end systems, computing and storage, face unprecedented challenges. One of the biggest challenges is to transfer scientific data sets--now in the multi-petabyte (10{sup 15} bytes) range and expected to grow to exabytes within a decade--reliably and efficiently among facilities and computation centers scattered around the world. Both the network and end systems should be able to provide the capabilities to support high bandwidth, sustained, end-to-end data transmission. Recent trends in technology are showing that although the raw transmission speeds used in networks are increasing rapidly, the rate of advancement of microprocessor technology has slowed down. Therefore, network protocol-processing overheads have risen sharply in comparison with the time spent in packet transmission, resulting in degraded throughput for networked applications. More and more, it is the network end system, instead of the network, that is responsible for degraded performance of network applications. In this paper, the Linux system's packet receive process is studied from NIC to application. We develop a mathematical model to characterize the Linux packet receiving process. Key factors that affect Linux systems network performance are analyzed.

  2. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  3. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  4. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  5. Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.

    Science.gov (United States)

    Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen

    In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function

  6. Synchronization, retiming and time-division multiplexing of an asynchronous 10 gigabit NRZ Ethernet packet to Terabit Ethernet

    DEFF Research Database (Denmark)

    Hu, Hao; Laguardia Areal, Janaina; Mulvad, Hans Christian Hansen

    2011-01-01

    An asynchronous 10 Gb/s Ethernet packet with maximum packet size of 1518 bytes is synchronized and retimed to a master clock with 200 kHz frequency offset using a time lens. The NRZ packet is simultaneously converted into an RZ packet, then further pulse compressed to a FWHM of 400 fs and finally....../s of the Ethernet packet is achieved. © 2011 Optical Society of America....

  7. Palletizing system of packets containing confectionery materials; Kashi zairyo backet paretaizu system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-29

    A palletizing system of packets containing confectionery materials was manufactured and delivered (Figure 11). The three-step loaded packets on which the confectionery materials carried out from the preceding process were put are positioned on the tip conveyor. These packets are then sequentially taken out from the upper packet and transferred to an empty pallet. The step-loaded packets are easy to shift from the position, so a special hand that allows the position shift was applied. For the step loading of packets, the special relief mechanism and push-in operation of a hook are used so that the clearance between packets does not occur. The packet dimensions are about 500 x 350 x 380 mm (W/H/D). The maximum weight is about 30 kg. A pallet is made of resin. Five packets in five steps are loaded on one pallet. The main configuration of this system is as follows: (1) Palletizer (VPR-800) x 1. (2) Controller (meirocs-G) x 1. (3) Packet catch-only hand x 1. (4) Tip conveyor x 1. (5) Safety fence. (translated by NEDO)

  8. Phase behaviour of transfer functions in vibrating systems

    DEFF Research Database (Denmark)

    Zhu, Jianyuan; Ohlrich, Mogens

    1998-01-01

    This paper investigates the applicabilities of pole-zero models and wave propagation theory in estimating the phase characteristics of vibrating systems. The measured phase spectra are compared with the estimated reverberant phase limit and wave propagation phase. The relations between transfer...... on frequency in this band, but from the transition frequency and onwards the phase increases only with the square root of frequency. This behaviour is characteristic for free propagating waves....

  9. [Measurement and analysis of hand-transmitted vibration of vibration tools in workplace for automobile casting and assembly].

    Science.gov (United States)

    Xie, X S; Qi, C; Du, X Y; Shi, W W; Zhang, M

    2016-02-20

    To investigate the features of hand-transmitted vibration of common vibration tools in the workplace for automobile casting and assembly. From September to October, 2014, measurement and spectral analysis were performed for 16 typical hand tools(including percussion drill, pneumatic wrench, grinding machine, internal grinder, and arc welding machine) in 6 workplaces for automobile casting and assembly according to ISO 5349-1-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-part 1: General requirements and ISO 5349-2-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement in the workplace. The vibration acceleration waveforms of shearing machine, arc welding machine, and pneumatic wrench were mainly impact wave and random wave, while those of internal grinder, angle grinder, percussion drill, and grinding machine were mainly long-and short-period waves. The daily exposure duration to vibration of electric wrench, pneumatic wrench, shearing machine, percussion drill, and internal grinder was about 150 minutes, while that of plasma cutting machine, angle grinder, grinding machine, bench grinder, and arc welding machine was about 400 minutes. The range of vibration total value(ahv) was as follows: pneumatic wrench 0.30~11.04 m/s(2), grinding wheel 1.61~8.97 m/s(2), internal grinder 1.46~8.70 m/s(2), percussion drill 11.10~14.50 m/s(2), and arc welding machine 0.21~2.18 m/s(2). The workers engaged in cleaning had the longest daily exposure duration to vibration, and the effective value of 8-hour energy-equivalent frequency-weighted acceleration for them[A(8)] was 8.03 m/s(2), while this value for workers engaged in assembly was 4.78 m/s(2). The frequency spectrogram with an 1/3-time frequency interval showed that grinding machine, angle grinder, and percussion drill had a high vibration acceleration, and the vibration limit curve

  10. Effect of Slot Combination and Skewed Slot on Electromagnetic Vibration of Capacitor Motor under Load

    Science.gov (United States)

    Hirotsuka, Isao; Tsuboi, Kazuo

    The capacitor motor (CRM) is widely used to drive industrial equipments and electric home appliances. Recently, the reduction in the vibration and noise of the CRM has become increasingly important from the standpoint of environmental improvement. However, the electromagnetic vibration of the CRM under load has not been analyzed sufficiently. Therefore, we have studied the electromagnetic vibration of CRM for the purpose of reducing it. In a previous paper, the relationships for a backward magnetic field, the equivalent circuit current, and the vibration of the CRM were clarified. The present paper theoretically and experimentally discusses the effect of the slot combination and skewed slot on the electromagnetic vibration of CRM under load. The primary conclusions are as follows: (1) In the case of 4-pole and 6-pole CRMs, the dominant electromagnetic vibration of CRMs was theoretically attributed to three types of electromagnetic force waves. Two types of electromagnetic force waves are generated: one wave is generated by the interaction of two forward magnetic fluxes, such as those of a three-phase squirrel-cage induction motor, and the other wave is generated under the influence of a backward magnetic flux. (2) The characteristics of dominant electromagnetic vibration depending on load and running capacitor were classified theoretically and experimentally into three types based on the characteristics of the electromagnetic force wave and equivalent circuit current. (3) The influences of magnetic saturation in dominant electromagnetic vibration were verified experimentally and their causes were clarified theoretically in relation to electromagnetic force waves.

  11. Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Weekrakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-10-23

    Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. With the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.

  12. Relay-Assisted Partial Packet Recovery with IDMA Method in CDMA Wireless Network

    CERN Document Server

    Luo, Zhifeng; Wong, Albert Kai-sun; Qiu, Shuisheng

    2010-01-01

    Automatic Repeat Request (ARQ) is an effective technique for reliable transmission of packets in wireless networks. In ARQ, however, only a few erroneous bits in a packet will cause the entire packet to be discarded at the receiver. In this case, it's wasteful to retransmit the correct bit in the received packet. The partial packet recovery only retransmits the unreliable decoded bits in order to increase the throughput of network. In addition, the cooperative transmission based on Interleave-division multiple-access (IDMA) can obtain diversity gains with multiple relays with different locations for multiple sources simultaneously. By exploring the diversity from the channel between relay and destination, we propose a relay-assisted partial packet recovery in CDMA wireless network to improve the performance of throughput. In the proposed scheme, asynchronous IDMA iterative chip-by-chip multiuser detection is utilized as a method of multiple partial recovery, which can be a complementarity in a current CDMA ne...

  13. Implementation of a Data Packet Generator Using Pattern Matching for Wearable ECG Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Yun Hong Noh

    2014-07-01

    Full Text Available In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.

  14. PROPAGATION OF CYLINDRICAL WAVES IN POROELASTIC MEDIA

    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.

    2014-12-01

    Full Text Available The paper investigates the harmonic axisymmetric wave propagation in poroelastic media. The computational formulas for the study of displacements and stresses that occur during vibrations in a wide frequency range are proposed.

  15. Multiple-input multiple-output wavelet packet modulation based software-defined radio transceiver design

    OpenAIRE

    Cribbs, Michael R.

    2015-01-01

    Approved for public release; distribution is unlimited In this thesis, a software-defined radio (SDR) transmitter and receiver is developed using GNU Radio. The designed SDR multiplexes orthogonal subcarriers using wavelet packet modulation (WPM). WPM achieves subcarrier orthogonality by employing the inverse discrete wavelet packet transform (IDWPT) for the transmitter and discrete wavelet packet transform (DWPT) for the receiver. Realization concerns for the IDWPT and DWPT are discussed ...

  16. An Experimental Exploration of the Impact of Network-Level Packet Loss on Network Intrusion Detection

    Science.gov (United States)

    2015-08-01

    packet loss is very common on the Internet. The Transmission Control Protocol ( TCP ) is specifically designed to account for general packet loss and uses...normal congestion control behavior”.4 Although generalized packet loss is not the focus of this research because it is assumed that the target and...datasets and generate and validate a general function. 10 6. References 1. Stevens WR. TCP slow start, congestion avoidance, fast retransmit, and

  17. Entropy Based Detection of DDoS Attacks in Packet Switching Network Models

    Science.gov (United States)

    Lawniczak, Anna T.; Wu, Hao; di Stefano, Bruno

    Distributed denial-of-service (DDoS) attacks are network-wide attacks that cannot be detected or stopped easily. They affect “natural” spatio-temporal packet traffic patterns, i.e. “natural distributions” of packets passing through the routers. Thus, they affect “natural” information entropy profiles, a sort of “fingerprints”, of normal packet traffic. We study if by monitoring information entropy of packet traffic through selected routers one may detect DDoS attacks or anomalous packet traffic in packet switching network (PSN) models. Our simulations show that the considered DDoS attacks of “ping” type cause shifts in information entropy profiles of packet traffic monitored even at small sets of routers and that it is easier to detect these shifts if static routing is used instead of dynamic routing. Thus, network-wide monitoring of information entropy of packet traffic at properly selected routers may provide means for detecting DDoS attacks and other anomalous packet traffics.

  18. Feature extraction for EEG-based brain-computer interfaces by wavelet packet best basis decomposition.

    Science.gov (United States)

    Yang, Bang-hua; Yan, Guo-zheng; Yan, Rong-guo; Wu, Ting

    2006-12-01

    A method based on wavelet packet best basis decomposition (WPBBD) is investigated for the purpose of extracting features of electroencephalogram signals produced during motor imagery tasks in brain-computer interfaces. The method includes the following three steps. (1) Original signals are decomposed by wavelet packet transform (WPT) and a wavelet packet library can be formed. (2) The best basis for classification is selected from the library. (3) Subband energies included in the best basis are used as effective features. Three different motor imagery tasks are discriminated using the features. The WPBBD produces a 70.3% classification accuracy, which is 4.2% higher than that of the existing wavelet packet method.

  19. Feature extraction for EEG-based brain computer interfaces by wavelet packet best basis decomposition

    Science.gov (United States)

    Yang, Bang-hua; Yan, Guo-zheng; Yan, Rong-guo; Wu, Ting

    2006-12-01

    A method based on wavelet packet best basis decomposition (WPBBD) is investigated for the purpose of extracting features of electroencephalogram signals produced during motor imagery tasks in brain-computer interfaces. The method includes the following three steps. (1) Original signals are decomposed by wavelet packet transform (WPT) and a wavelet packet library can be formed. (2) The best basis for classification is selected from the library. (3) Subband energies included in the best basis are used as effective features. Three different motor imagery tasks are discriminated using the features. The WPBBD produces a 70.3% classification accuracy, which is 4.2% higher than that of the existing wavelet packet method.

  20. The application study of wavelet packet transformation in the de-noising of dynamic EEG data.

    Science.gov (United States)

    Li, Yifeng; Zhang, Lihui; Li, Baohui; Wei, Xiaoyang; Yan, Guiding; Geng, Xichen; Jin, Zhao; Xu, Yan; Wang, Haixia; Liu, Xiaoyan; Lin, Rong; Wang, Quan

    2015-01-01

    This paper briefly describes the basic principle of wavelet packet analysis, and on this basis introduces the general principle of wavelet packet transformation for signal den-noising. The dynamic EEG data under +Gz acceleration is made a de-noising treatment by using wavelet packet transformation, and the de-noising effects with different thresholds are made a comparison. The study verifies the validity and application value of wavelet packet threshold method for the de-noising of dynamic EEG data under +Gz acceleration.

  1. [Epileptic EEG signal classification based on wavelet packet transform and multivariate multiscale entropy].

    Science.gov (United States)

    Xu, Yonghong; Li, Xingxing; Zhao, Yong

    2013-10-01

    In this paper, a new method combining wavelet packet transform and multivariate multiscale entropy for the classification of epilepsy EEG signals is introduced. Firstly, the original EEG signals are decomposed at multi-scales with the wavelet packet transform, and the wavelet packet coefficients of the required frequency bands are extracted. Secondly, the wavelet packet coefficients are processed with multivariate multiscale entropy algorithm. Finally, the EEG data are classified by support vector machines (SVM). The experimental results on the international public Bonn epilepsy EEG dataset show that the proposed method can efficiently extract epileptic features and the accuracy of classification result is satisfactory.

  2. Energy Level Performance of Packet Delivery Schemes in Wireless Sensor Networks in Shadowed Channel

    Directory of Open Access Journals (Sweden)

    Arnab NANDI

    2010-07-01

    Full Text Available This paper evaluates energy level performance of three packet delivery schemes in a Wireless Sensor Networks (WSN in shadowed channel. Three different information delivery mechanisms are investigated using regenerative relays with or without error correction capability. Energy consumption for successful delivery of a data packet for each mechanism is evaluated and compared under several conditions of node density, bit rate, transmit power etc. Energy efficiency of different retransmission schemes is evaluated. Further an optimal packet length based on energy efficiency is derived. Impact of different level of severity of shadowing on energy consumption is also investigated. Further impact of fixed and optimal packet size on energy consumption is analyzed.

  3. Design of Online Monitoring and Fault Diagnosis System for Belt Conveyors Based on Wavelet Packet Decomposition and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Belt conveyors are the equipment widely used in coal mines and other manufacturing factories, whose main components are a number of idlers. The faults of belt conveyors can directly influence the daily production. In this paper, a fault diagnosis method combining wavelet packet decomposition (WPD and support vector machine (SVM is proposed for monitoring belt conveyors with the focus on the detection of idler faults. Since the number of the idlers could be large, one acceleration sensor is applied to gather the vibration signals of several idlers in order to reduce the number of sensors. The vibration signals are decomposed with WPD, and the energy of each frequency band is extracted as the feature. Then, the features are employed to train an SVM to realize the detection of idler faults. The proposed fault diagnosis method is firstly tested on a testbed, and then an online monitoring and fault diagnosis system is designed for belt conveyors. An experiment is also carried out on a belt conveyor in service, and it is verified that the proposed system can locate the position of the faulty idlers with a limited number of sensors, which is important for operating belt conveyors in practices.

  4. Maintenance Support for DARPA SATNET Packet Communications System

    Science.gov (United States)

    1980-09-30

    modifications and the frequencies of the 2 oscillators in the modems for these earth terminals have been set to the proper values, the modems for ETAM ...and thus abort the demodulation of the full packet. This problem has been corrected and the T&M words have been turned on at ETAM . It is now necessary...fairly accurately. Figure 1 shows that ETA and Goonhilly are roughly at the same power level and TANUM is about 2 dB lower. It is also noted that ETAM

  5. Packetizing OCP Transactions in the MANGO Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Sparsø, Jens

    2006-01-01

    The scaling of CMOS technology causes a widening gap between the performance of on-chip communication and computation. This calls for a communication-centric design flow. The MANGO network-on-chip architecture enables globally asynchronous locally synchronous (GALS) system-on-chip design, while...... transactions are packetized and transmitted across the shared network, and illustrate how this affects the end-to-end performance. A high predictability of the latency of communication on shared links is shown in a MANGO-based demonstrator system...

  6. Techniques for the Detection of Faulty Packet Header Modifications

    Science.gov (United States)

    2014-03-12

    Since then, a variety of solutions employing these principles have been devel- oped [3, 37–40]. xOMB (pronounced “ zombie ”) [37] is a modular software...limited TCP probes and examining ICMP quotations from the ICMP TTL-exceeded mes- sages that come back when the packet expires. The RFC that defines the...However, with no out-of-band channel between the two end hosts and no Diffie-Hellman- like setup, coming up with such a shared secret is difficult

  7. A Time-Frequency Auditory Model Using Wavelet Packets

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1996-01-01

    A time-frequency auditory model is presented. The model uses the wavelet packet analysis as the preprocessor. The auditory filters are modelled by the rounded exponential filters, and the excitation is smoothed by a window function. By comparing time-frequency excitation patterns it is shown...... that the change in the time-frequency excitation pattern introduced when a test tone at masked threshold is added to the masker is approximately equal to 7 dB for all types of maskers. The classic detection ratio therefore overrates the detection efficiency of the auditory system....

  8. Effects of wireless packet loss in industrial process control systems.

    Science.gov (United States)

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  9. On the Packet Loss Correlation in Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Cabrera Guerrero, Juan Alberto; Roetter, Daniel Enrique Lucani

    2014-01-01

    /or multi-path routing approaches as well as network coding (NC) subgraph selection problems (routing in NC). This paper proposes simple channel models to incorporate the effect of correlation between receivers in a parametric fashion and supports them with a measurement campaign that leverages various......State-of-the-art analysis and protocols in wireless mesh networks typically assume an independent packet loss channel for each receiver of a transmission. Although this is usually transparent for single-path protocol design, this assumption may severely degrade the performance of opportunistic and...

  10. Performance Characteristics of a Kernel-Space Packet Capture Module

    Science.gov (United States)

    2010-03-01

    PF_RING protocol prevents the packets from going through the net- work stack, allowing the NIC driver to deliver the skb directly to a ring-buffer that is...protocol tap, if any are run- ning - Passing a copy of the frame to the L3 protocol handler associated with skb ->protocol - Taking care of those features...1468,5 +1502,14 @@ skb −>cloned ) ; #endif + + +# i f d e f PKAP_ENABLED + atomic_dec(&pfr−>num_ring_users ) ; +#e lse / * PKAP * / atomic_set(&pfr

  11. Wave breaking in the surf zone and deep-water in a non-hydrostatic RANS model. Part 1: Organized wave motions

    Science.gov (United States)

    Derakhti, Morteza; Kirby, James T.; Shi, Fengyan; Ma, Gangfeng

    2016-11-01

    We examine wave-breaking predictions ranging from shallow- to deep-water conditions using a non-hydrostatic σ-coordinate RANS model NHWAVE as described in Derakhti et al. (2016a), comparing results both with corresponding experiments and with the results of a volume-of-fluid (VOF)/Navier-Stokes solver (Ma et al., 2011; Derakhti and Kirby, 2014a,b). Our study includes regular and irregular depth-limited breaking waves on planar and barred beaches as well as steepness-limited unsteady breaking focused wave packets in intermediate and deep water. In Part 1 of this paper, it is shown that the model resolves organized wave motions in terms of free-surface evolution, spectral evolution, organized wave velocity evolution and wave statistics, using a few vertical σ-levels. In addition, the relative contribution of modeled physical dissipation and numerical dissipation to the integral breaking-induced wave energy loss is discussed. In steepness-limited unsteady breaking focused wave packets, the turbulence model has not been triggered, and all the dissipation is imposed indirectly by the numerical scheme. Although the total wave-breaking-induced energy dissipation is underestimated in the unsteady wave packets, the model is capable of predicting the dispersive and nonlinear properties of different wave packet components before and after the break point, as well as the overall wave height decay and the evolution of organized wave velocity field and power spectrum density over the breaking region. In Part 2 (Derakhti et al., 2016b), model reproduction of wave-breaking-induced turbulence and mean circulation is examined in detail. The same equations and numerical methods are used for the various depth regimes, and no ad-hoc treatment, such as imposing hydrostatic conditions, is involved in triggering breaking. Vertical grid resolution in all simulated cases is at least an order of magnitude coarser than that of typical VOF-based simulations.

  12. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    The objective of this thesis is to fundamentally study the influence of die surface vibration on friction under low frequency in metal forging processes. The research includes vibrating tool system design for metal forming, theoretical and experimental investigations, and finite element simulations...... on die surface vibration in forging process. After a general introduction to friction mechanisms and friction test techniques in metal forming, the application of ultrasonic vibration in metal forming, the influence of sliding velocity on friction is described. Some earlier investigations...... is undergoing vibration. In the experiments, die surface orientation, frequency and amplitude of vibration, vibrating wave form and the direction of vibration has been taken into account as the parameters which influence friction behaviour in forging process. The results reveal that friction could be reduced up...

  13. Numerical study on the mechanism of active interfacial debonding detection for rectangular CFSTs based on wavelet packet analysis with piezoceramics

    Science.gov (United States)

    Xu, Bin; Chen, Hongbing; Xia, Song

    2017-03-01

    In recent years, Piezoelectric Lead Zirconate Titanate (PZT) based active interfacial debonding defect detection approach for concrete-filled steel tubular (CFST) columns has been proposed and validated experimentally. In order to investigate the mechanism of the PZT based interfacial debonding detection approach, a multi-physics coupling finite element model (FEM) composed of surface-mounted PZT actuator, embedded PZT sensor and a rectangular CFST column is constructed to numerically simulate the stress wave propagation induced by the surface-mounted PZT actuator under different excitation signals with different frequency and amplitude. The measurements of the embedded PZT sensor in concrete core of the CFST columns with different interfacial debonding defect lengths and depths are determined numerically with transient dynamic analysis. The linearity between the PZT response and the input amplitude, the effect of different frequency and measurement distance are discussed and the stress wave fields of CFST members without and with interface debonding defects are compared. Then, the response of the embedded PZT in concrete core is analyzed with wavelet packet analysis. The root mean square deviation (RMSD) of wavelet packet energy spectrum of the PZT measurement is employed as an evaluation index for the interfacial debonding detection. The results showed that the defined index under continuous sinusoidal and sweep frequency signals changes with the interfacial defects length and depth and is capable of effectively identifying the interfacial debonding defect between the concrete core and the steel tubular. Moreover, the index under sweep frequency signal is more sensitive to the interfacial debonding. The simulation results indicate that the interfacial debonding defect leads to the changes in the propagation path, travel time and the magnitude of stress waves. The simulation results meet the findings from the previous experimental study by the authors and help

  14. Microscopic calculation of the restoring force for scissor isovector vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Bochnacki, Z.; Faessler, A.

    1986-07-01

    The restoring force for scissor isovector vibrations is calculated microscopically with the wave functions of an axially symmetric Woods-Saxon potential from a density-dependent symmetry energy. The experimental energies of the low-lying magnetic dipole states in rare-earth nuclei are well reproduced. It is found that only outer particles, which contribute to the nuclear moment of inertia, take part in this collective vibration. They are about half of the total number of nucleons.

  15. In- and outbound spreading of a free-particle s-wave

    DEFF Research Database (Denmark)

    Bialynicki-Birula, i.; Cirone, M. A.; Dahl, Jens Peder

    2002-01-01

    We show that a free quantum particle in two dimensions with zero angular momentum (s wave) in the form of a ring-shaped wave packet feels an attraction towards the center of the ring, leading first to a contraction followed by an expansion. An experiment to demonstrate this effect is also outlined....

  16. Soap film vibration: origin of the dissipation.

    Science.gov (United States)

    Acharige, Sébastien Kosgodagan; Elias, Florence; Derec, Caroline

    2014-11-07

    We investigate the complex dispersion relationship of a transverse antisymmetric wave on a horizontal soap film. Experimentally, the complex wave number k at a fixed forcing frequency is determined by measuring the vibrating amplitude of the soap film: the wavelength (linked to the real part of k) is determined by the spatial variation of the amplitude; the decay length (linked to the imaginary part of k) is determined by analyzing the resonance curves of the vibrating wave as a function of frequency. Theoretically, we compute the complex dispersion relationship taking into account the physical properties of the bulk liquid and gas phase, and of the gas-liquid interfaces. The comparison between the computation (developed to the leading order under our experimental conditions) and the experimental results confirms that the phase velocity is fixed by the interplay between surface tension, and liquid and air inertia, as reported in previous studies. Moreover, we show that the attenuation of the transverse antisymmetric wave originates from the viscous dissipation in the gas phase surrounding the liquid film. This result is an important step in understanding the propagation of an acoustic wave in liquid foam, using a bottom-up approach.

  17. Basin boundaries in asymmetric vibrations of a circular plate

    Science.gov (United States)

    Park, H. D.; Lee, W. K.

    2008-08-01

    In order to investigate further nonlinear asymmetric vibrations of a clamped circular plate under a harmonic excitation, we reexamine a primary resonance, studied by Yeo and Lee [Corrected solvability conditions for non-linear asymmetric vibrations of a circular plate, Journal of Sound and Vibration 257 (2002) 653-665] in which at most three stable steady-state responses (one standing wave and two traveling waves) are observed to exist. Further examination, however, tells that there exist at most five stable steady-state responses: one standing wave and four traveling waves. Two of the traveling waves lose their stability by Hopf bifurcation and have a sequence of period-doubling bifurcations leading to chaos. When the system has five attractors: three equilibrium solutions (one standing wave and two traveling waves) and two chaotic attractors (two modulated traveling waves), the basin boundaries of the attractors on the principal plane are obtained. Also examined is how basin boundaries of the modulated motions (quasi-periodic and chaotic motions) evolve as a system parameter varies. The basin boundaries of the modulated motions turn out to have the fractal nature.

  18. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  19. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  20. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...