WorldWideScience

Sample records for vibrational spectroscopy researchers

  1. 2012 Gordon Research Conference on Vibrational Spectroscopy - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Franz [Northwestern Univ., Evanston, IL (United States)

    2012-08-10

    The Vibrational Spectroscopy conference brings together experimentalists and theoreticians working at the frontiers of modern vibrational spectroscopy, with a special emphasis on spectroscopies that probe the structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear, and multidimensional spectroscopies. The conference highlights both the application of these techniques in chemistry, materials, biology, the environment, and medicine as well as the development of theoretical models that enable one to connect spectroscopic signatures to underlying molecular motions including chemical reaction dynamics. The conference goal is to advance the field of vibrational spectroscopy by bringing together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules, nanomaterials, and environmental systems.

  2. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  3. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  4. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  5. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  6. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  7. Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...

    Indian Academy of Sciences (India)

    ... Pramana – Journal of Physics; Volume 74; Issue 1. Vibrational spectroscopy of –/ – stretching vibrations of copper tetramesityl porphyrin: An algebraic approach. Srinivasa Rao Karumuri Joydeep Choudhury Nirmal Kumar Sarkar Ramendu Bhattacharjee. Research Articles Volume 74 Issue 1 January 2010 pp ...

  8. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  9. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Saman Hosseinpour

    2017-04-01

    Full Text Available Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm.

  10. Characterization of pollen by vibrational spectroscopy.

    Science.gov (United States)

    Zimmermann, Boris

    2010-12-01

    Classification, discrimination, and biochemical assignment of vibrational spectra of pollen samples belonging to 43 different species of the order Pinales has been made using three different vibrational techniques. The comparative study of transmission (KBr pellet) and attenuated total reflection (ATR) Fourier transform infrared (FT-IR) and FT-Raman spectroscopies was based on substantial variability of pollen grain size, shape, and relative biochemical composition. Depending on the penetration depth of the probe light, vibrational techniques acquire predominant information either on pollen grain walls (FT-Raman and ATR-FT-IR) or intracellular material (transmission FT-IR). Compared with the other two methods, transmission FT-IR obtains more comprehensive information and as a result achieves superior spectral identification and discrimination of pollen. The results strongly indicate that biochemical similarities of pollen grains belonging to the same plant genus or family lead to similar features in corresponding vibrational spectra. The exploitation of that property in aerobiological monitoring was demonstrated by simple and rapid pollen identification based on relatively small spectral libraries, with the same (or better) taxonomic resolution as that provided by optical microscopy. Therefore, the clear correlation between vibrational spectra and pollen grain morphology, biochemistry, and taxonomy is obtained, while successful pollen identification illustrates the practicability of such an approach in environmental studies.

  11. Vibrational spectroscopy in diagnosis and screening

    CERN Document Server

    Severcan, F

    2012-01-01

    In recent years there has been a tremendous growth in the use of vibrational spectroscopic methods for diagnosis and screening. These applications range from diagnosis of disease states in humans, such as cancer, to rapid identification and screening of microorganisms. The growth in such types of studies has been possible thanks to advances in instrumentation and associated computational and mathematical tools for data processing and analysis. This volume of Advances in Biomedical Spectroscopy contains chapters from leading experts who discuss the latest advances in the application of Fourier

  12. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  13. Chemometrics applied to vibrational spectroscopy: overview, challenges and pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, D.M.

    1996-10-01

    Chemometric multivariate calibration methods are rapidly impacting quantitative infrared spectroscopy in many positive ways. The combination of vibrational spectroscopy and chemometrics has been used by industry for quality control and process monitoring. The growth of these methods has been phenomenal in the past decade. Yet, as with any new technology, there are growing pains. The methods are so powerful at finding correlations in the data, that when used without great care they can readily yield results that are not valid for the analysis of future unknown samples. In this paper, the power of the multivariate calibration methods is discussed while pointing out common pitfalls and some remaining challenges that may slow the implementation of chemometrics in research and industry.

  14. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  15. Spectroscopy of Vibrational States in Diatomic Iodine Molecules

    Science.gov (United States)

    Mulholland, Mary; Harrill, Charles H.; Smith, R. Seth

    2015-04-01

    This project is focused on understanding the vibrational structure of iodine, which is a homonuclear diatomic molecule. A 20 mW, 532 nm cw diode laser was used to selectively excite neutral iodine molecules to a higher energy electronic state. By performing spectroscopy on the transitions from this state to a lower energy electronic state, the data only showed those vibrational bands which connect the two electronic states. Since a number of vibrational levels are populated in the higher energy electronic state, the transitions to all of the allowed vibrational levels in the lower energy electronic state provided sufficient data to determine the vibrational structures of both states. Emission spectra were collected with an Ocean Optics USB4000 Compact CCD Spectrometer. The spectrometer had a range of 500 - 770 nm with a resolution of approximately 0.5 nm and was sensitive enough to resolve the vibrational states in diatomic iodine molecules. The results were compared to a simple harmonic oscillator model.

  16. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    Science.gov (United States)

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.

  17. Liquid Space Lubricants Examined by Vibrational Micro-Spectroscopy

    Science.gov (United States)

    Street, Kenneth W., Jr.

    2008-01-01

    Considerable effort has been expended to develop liquid lubricants for satellites and space exploration vehicles. These lubricants must often perform under a range of harsh conditions such as vacuum, radiation, and temperature extremes while in orbit or in transit and in extremely dusty environments at destinations such as the Moon and Mars. Historically, oil development was guided by terrestrial application, which did not provide adequate space lubricants. Novel fluids such as the perfluorinated polyethers provided some relief but are far from ideal. With each new fluid proposed to solve one problem, other problems have arisen. Much of the work performed at the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in elucidating the mechanisms by which chemical degradation of space oils occur has been done by vibrational micro-spectroscopic techniques such as infrared and Raman, which this review details. Presented are fundamental lubrication studies as well as actual case studies in which vibrational spectroscopy has led to millions of dollars in savings and potentially prevented loss of mission.

  18. Spectroscopie de vibration infrarouge du silicium amorphe ...

    African Journals Online (AJOL)

    Ce travail porte sur l'étude des configurations des liaisons Si-H des couches minces du silicium amorphe hydrogéné évaporé (a-Si:H) préparées dans un bâti ultra-vide (UHV). L'hydrogène atomique est obtenu à l'aide d'un plasma dans un tube à décharge dirigé vers le porte-substrat. Les fréquences de vibrations et la ...

  19. Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique

    Science.gov (United States)

    Wu, Zongfang; Płucienik, Agata; Feiten, Felix E.; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim

    2017-09-01

    Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V2O3(0 0 0 1 ) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.

  20. Vibrational spectroscopy and imaging: applications for tissue engineering.

    Science.gov (United States)

    Querido, William; Falcon, Jessica M; Kandel, Shital; Pleshko, Nancy

    2017-10-23

    Tissue engineering (TE) approaches strive to regenerate or replace an organ or tissue. The successful development and subsequent integration of a TE construct is contingent on a series of in vitro and in vivo events that result in an optimal construct for implantation. Current widely used methods for evaluation of constructs are incapable of providing an accurate compositional assessment without destruction of the construct. In this review, we discuss the contributions of vibrational spectroscopic assessment for evaluation of tissue engineered construct composition, both during development and post-implantation. Fourier transform infrared (FTIR) spectroscopy in the mid and near-infrared range, as well as Raman spectroscopy, are intrinsically label free, can be non-destructive, and provide specific information on the chemical composition of tissues. Overall, we examine the contribution that vibrational spectroscopy via fiber optics and imaging have to tissue engineering approaches.

  1. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  2. Drug–excipient interactions in ketoprofen: A vibrational spectroscopy study

    OpenAIRE

    Carvalho, L. A. E. Batista de; Marques, M. Paula M.; Tomkinson, John

    2006-01-01

    Ketoprofen (3-benzoyl-alpha-methylbenzeneacetic acid) is a widely used nonsteroidal anti-inflammatory drug (NSAID), always administered in the form of drug-excipient physical mixtures (PMs). The occurrence of possible interactions between ketoprofen and two commonly used excipients - lactose (LAC) and polyvinylpyrrolidone (PVP) - was evaluated, through vibrational spectroscopy techniques [both Raman and Inelastic Neutron Scattering (INS)]. Spectral evidence of drug:excipient close contacts, w...

  3. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    Directory of Open Access Journals (Sweden)

    Souhir Boujday

    2015-08-01

    Full Text Available In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR, (phase-modulated InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS, and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS. Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.

  4. Nanomechanical Infrared Spectroscopy with Vibrating Filters for Pharmaceutical Analysis

    DEFF Research Database (Denmark)

    Kurek, Maksymilian; Carnoy, Matthias; Larsen, Peter Emil

    2017-01-01

    Standard infrared spectroscopy techniques are well-developed and widely used. However, they typically require milligrams of sample and can involve time-consuming sample preparation. A promising alternative is represented by nanomechanical infrared spectroscopy (NAM-IR) based on the photothermal r...... perform a chemical and morphological analysis on roughly 100 pg of sample. With an absolute estimated sensitivity of 109±15 fg, the presented method is suitable for ultrasensitive vibrational spectroscopy....... response of a nanomechanical resonator, which enables the chemical analysis of picograms of analyte directly from a liquid solution in only a few minutes. Herein, we present NAM-IR using perforated membranes (filters). The method was tested with the pharmaceutical compound indomethacin to successfully...

  5. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  6. Time-resolved vibrational spectroscopy of a molecular shuttle.

    Science.gov (United States)

    Panman, Matthijs R; Bodis, Pavol; Shaw, Danny J; Bakker, Bert H; Newton, Arthur C; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Woutersen, Sander

    2012-02-14

    Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid-IR spectrum. Using ab initio calculations on specific parts of the rotaxane, and by comparing the transient spectra of the normal rotaxane with that of the N-deuterated version, we can assign the observed vibrational modes of each species occurring during the shuttling cycle in an unambiguous way. The complete time- and frequency-dependent data set is analyzed using singular value decomposition (SVD). Using a kinetic model to describe the time-dependent concentrations of the transient species, we derive the absorption spectra associated with each stage in the operation cycle of the molecular shuttle, including the recombination of the charged species.

  7. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    Science.gov (United States)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  8. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification

    Science.gov (United States)

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z.; Clemmer, David E.; Rizzo, Thomas R.

    2017-10-01

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. [Figure not available: see fulltext.

  9. Structural dynamics in complex liquids studied with multidimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-08-31

    The development of new sustainable energy sources is linked to our understanding of the molecular properties of water and aqueous solutions. Energy conversion, storage, and transduction processes, particularly those that occur in biology, fuel cells, and batteries, make use of water for the purpose of moving energy in the form of charges and mediating the redox chemistry that allows this energy to be stored as and released from chemical bonds. To build our fundamental knowledge in this area, this project supports work in the Tokmakoff group to investigate the molecular dynamics of water’s hydrogen bond network, and how these dynamics influence its solutes and the mechanism of proton transport in water. To reach the goals of this grant, we developed experiments to observe molecular dynamics in water as directly as possible, using ultrafast multidimensional vibrational spectroscopy. We excite and probe broad vibrational resonances of water, molecular solutes, and protons in water. By correlating how molecules evolve from an initial excitation frequency to a final frequency, we can describe the underlying molecular dynamics. Theoretical modeling of the data with the help of computational spectroscopy coupled with molecular dynamics simulations provided the atomistic insight in these studies.

  10. Succesful teaching of experimental vibration research

    NARCIS (Netherlands)

    Wolbert, Bert; van der Hoogt, Peter; Lok, Zacharias A.J.; de Boer, Andries

    For more than 20 years, master students have been offered a practical training on experimental vibration research by the Structural Dynamics & Acoustics Section of the University of Twente. The basic theoretical knowledge, necessary to attend this practical training, is provided for the Master part

  11. Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Libing; Fu, Li; Wang, Hong-fei; Yang, Bin

    2017-03-14

    Significant questions remain with respect to the structure and polymorphs of cellulose. These include the cellulose surface layers and the bulk crystalline core as well as the conformational differences. The Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with the conventional SFG-VS (non-TIR) can help to resolve these questions by selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous; while the surface layers of Iβ cellulose are crystalline but with different structural and spectroscopic signatures than that of its crystalline core. This work demonstrates the capacity of TIR and Non-TIR SFG-VS tools in selectively studying the structures and polymorphs of cellulose. In addition, these results also suggest that the assignments of major vibrational peaks for cellulose need to be further determined.

  12. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

    OpenAIRE

    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun

    2017-01-01

    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  13. Application of fluorescent and vibration spectroscopy for septic serum human albumin structure deformation during pathology

    Science.gov (United States)

    Zyubin, A.; Konstantinova, E.; Slezhkin, V.; Matveeva, K.; Samusev, I.; Bryukhanov, V.

    2017-12-01

    In this paper we perform results of conformational analysis of septic human serum albumin (HSA) carried out by Raman spectroscopy (RS), infrared (IR) spectroscopy and fluorescent spectroscopy. The main vibrational groups were identified and analyzed for septic HSA and its health control. Comparison between Raman and IR results were done. Fluorescent spectral changes of Trp-214 group were analyzed. Application of Raman, IR spectroscopy, fluorescent spectroscopy for conformational changes study of HSA during pathology were shown.

  14. An approach to compatible multiple nonlinear vibrational spectroscopy measurements using a commercial sum frequency generation system.

    Science.gov (United States)

    Ye, Shuji; Wei, Feng

    2011-06-21

    In this paper, we designed a compatible multiple nonlinear vibrational spectroscopy system that can be used for recording infrared-visible sum frequency generation vibrational spectra (SFG) and infrared-infrared-visible three-pump-field four-wave-mixing (IIV-TPF-FWM) spectra using a commercial EKSPLA SFG system. This is the first time IIV-TPF-FWM signals were obtained using picosecond laser pulses. We have applied this compatible system to study the surface and vibrational structures of riboflavin molecules (also known as vitamin B2). The SFG spectra of eight polarization combinations have non-vanishing signals. The signals with incoming s-polarized IR are relatively weaker than the signals with incoming p-polarized IR. Under the double resonant conditions, the SFG signals of the conjugated tricyclic ring are greatly enhanced. For the IIV-TPF-FWM spectra with incoming p-polarized IR, only the sspp and pppp polarization combinations have non-vanishing signals. The IIV-TPF-FWM spectra show a very strong peak at 1585 cm(-1) that is mainly dominated by the N(5)-C(4a) stretch. The method developed in this study will be helpful for researchers, either using a home-built or commercial (EKSPLA) SFG system, to obtain independent and complementary measurements for SFG spectroscopy and more detailed structural information of interfacial molecules.

  15. Vibrational Inelastic Electron Tunneling Spectroscopy of Surface Adsorbed Single Molecules at Sub-Kelvin Temperature

    OpenAIRE

    Jiang, Chi-Lun

    2015-01-01

    With a 600mk homebuilt UHV STM system, we studied molecular vibration at the solid surface with inelastic electron tunneling spectroscopy (IETS) of Acetylene single molecules adsorbed on Cu(100) surface and revealed five new vibrational modes that were previously inaccessible to STM-IETS at 8K temperature. The identification of vibrational IETS features with normalized conductance change (Δσ/σ) as low as 0.24% was demonstrated. Facilitated by the high energy resolution, we also revealed the a...

  16. Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...

    Indian Academy of Sciences (India)

    operator which conveniently describes stretching vibrations of biomolecules. For a copper tetramesityl porphyrin molecule, the higher excited vibrational levels are calculated by applying the U(2) algebraic approach. Keywords. Lie algebraic techniques; vibrational spectra; copper tetramesityl porphyrin. PACS Nos 31.65.

  17. MR spectroscopy in clinical research

    DEFF Research Database (Denmark)

    Henriksen, O

    1994-01-01

    MR spectroscopy (MRS) offers unique possibilities for non-invasive evaluation of biochemistry in vivo. During recent years there has been a growing body of evidence from clinical research studies on human beings using 31P and 1H MRS. The results indicate that it is possible to evaluate phosphorous...... for non-invasive follow-up of treatment. Taken together, the evidence obtained so far certainly shows some trends for clinical applications of MRS. Methods are now available for the clinical research necessary for establishing routine clinical MRS examinations....

  18. Symmetry-broken effects on electron momentum spectroscopy caused by adiabatic vibration

    Science.gov (United States)

    Zhu, Yinghao; Ma, Xiaoguang; Lou, Wenhua; Wang, Meishan; Yang, Chuanlu

    2017-11-01

    The vibronic coupling effect is usually studied by invoking the breakdown of Born-Oppenheimer approximation. The present study shows that the symmetry-broken effect induced by nuclei vibrations can also lead strong impact on the electronic states under the framework of Born-Oppenheimer approximation. This adiabatic-invoking vibrational effect on electron momentum spectroscopy of ethylene (C2H4), ethane (C2H6) and methanol (CH3OH) was studied with quantum mechanical method. The results show that electron momentum spectroscopy of localized electrons, especially core electrons in axial symmetric geometry molecules can be affected unusually and strongly by several asymmetric vibrational modes.

  19. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    Directory of Open Access Journals (Sweden)

    Dan Lis

    2014-11-01

    Full Text Available Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS. They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA and surface-enhanced Raman scattering (SERS techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis.

  20. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  1. MR spectroscopy in clinical research

    DEFF Research Database (Denmark)

    Henriksen, O

    1994-01-01

    MR spectroscopy (MRS) offers unique possibilities for non-invasive evaluation of biochemistry in vivo. During recent years there has been a growing body of evidence from clinical research studies on human beings using 31P and 1H MRS. The results indicate that it is possible to evaluate phosphorous...... for non-invasive follow-up of treatment. Taken together, the evidence obtained so far certainly shows some trends for clinical applications of MRS. Methods are now available for the clinical research necessary for establishing routine clinical MRS examinations....... energy metabolism, loss of neurones, and lactate production in a large number of brain diseases. Furthermore, 31P and 1H MRS may be particularly clinically useful in evaluation of various disorders in skeletal muscle. In the heart 31P MRS seems at the moment the most suitable for evaluation of global...

  2. RESEARCH OF BRIDGE STRUCTURE VIBRATION CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    V.P. Babak

    2005-02-01

    Full Text Available  Bridge structure test results with using different types of dynamic force have been considered. It has been shown, that the developed technique of registering and processing vibration signals allows obtaining thin spectrum structure. The analysis of its change that is defined by the type of structure loading applied has been carried out. Key parameters of the vibration signals registered have been defined.

  3. Photochromism of Composite Organometallic Nanostructures Based on Diarylethenes. II. Vibrational Spectroscopy and Quantum Chemistry Studies

    Science.gov (United States)

    Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.

    2017-11-01

    The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.

  4. Theory of single molecule vibrational spectroscopy and microscopy.

    Science.gov (United States)

    Lorente, N; Persson, M

    2000-10-02

    We have carried out a density functional study of vibrationally inelastic tunneling in the scanning tunneling microscope of acetylene on copper. Our approach is based on a many-body generalization of the Tersoff-Hamann theory. We explain why only the carbon-hydrogen stretch modes are observed in terms of inelastic and elastic contributions to the tunneling conductance. The inelastic tunneling is found to be efficient and highly localized in space without any resonant interaction and to be governed by a vibration-induced change in tunneling amplitude.

  5. Single-molecule vibrational spectroscopy of water molecules using an LT-STM

    Science.gov (United States)

    Matsumoto, Chikako; Kim, Yousoo; Motobayashi, Kenta; Kawai, Maki

    2006-03-01

    Single-molecule vibrational spectroscopy has attracted considerable attention as a powerful tool for nanoscale chemistry. The adsorption of water molecules on metal surfaces plays an important role in understanding many phenomena in nature, such as heterogeneous catalysis and corrosion, etc. The structure of water at low coverage has been investigated on a variety of transition-metal surfaces with various techniques. But the microscopic understanding of the adsorption feature of single water molecules is still unclear. We report molecular scale study of adsorption behaviors of water molecules on Pt (111) surface at 4.7 K by use of single-molecule vibrational spectroscopy with the scanning tunneling microscopy (STM). The Pt (111) surface was dosed with a small amount of water molecules (cherry blossom', which can be explained by one of the water molecules rotating around the other. Inelastic electron tunneling spectroscopy using the STM was utilized to determine vibrational modes of individual water dimers.

  6. Hydrogen Bonding and Vibrational Spectroscopy: A Theoretical Study

    Science.gov (United States)

    Chaban, Galina M.

    2005-01-01

    Effects of hydrogen bonding on vibrational spectra are studied for several hydrogen-bonded complexes, in which hydrogen bonding ranges from weak (25 kcal/mol). The systems studied include complexes of inorganic acids and salts with water and ammonia, as well as complexes of several organic molecules (nitriles and amino acids) with water. Since anharmonic effects are very strong in hydrogen-bonded systems, anharmonic vibrational frequencies and infrared intensities are computed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. The most common spectral effects induced by hydrogen bonding are red shifts of stretching vibrational frequencies ranging from approx.200/cm to over 2000/cm and significant increases of infrared intensities for those bonds that participate in hydrogen bonding. However, some systems (e.g. nitrile-water complexes) exhibit shifts in the opposite direction (to the blue) upon formation of hydrogen bonds.

  7. Prediction of Milk Quality Parameters Using Vibrational Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae

    Vibrational spectroscopic techniques are widely used throughout all stages of food production. The analysis of raw materials, real-time process control, and end-product quality evaluation are all crucial steps in food production. In order to increase production throughput there is a need for speed...

  8. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  9. Minimizing the effects of pile driving vibrations : research spotlight.

    Science.gov (United States)

    2013-11-01

    Engineers must take care that the vibrations from pile driving : operations during bridge construction do not damage underground : utilities or cause settlement in the foundations of nearby structures. : In this project, researchers developed a simpl...

  10. Vibrational circular dichroism spectroscopy of a spin-triplet bis-(biuretato) cobaltate(III) coordination compound with low-lying electronic transitions

    DEFF Research Database (Denmark)

    Johannessen, Christian; Thulstrup, Peter W.

    2007-01-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt...

  11. Research on Vibration Isolation Systems Used in Laser and Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Justinas Kuncė

    2012-12-01

    Full Text Available The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article.Article in Lithuanian

  12. Adsorption-induced symmetry reduction of metal-phthalocyanines studied by vibrational spectroscopy

    Science.gov (United States)

    Sforzini, J.; Bocquet, F. C.; Tautz, F. S.

    2017-10-01

    We investigate the vibrational properties of Pt- and Pd-phthalocyanine (PtPc and PdPc) molecules on Ag(111) with high-resolution electron energy loss spectroscopy (HREELS). In the monolayer regime, both molecules exhibit long-range order. The vibrational spectra prove a flat adsorption geometry. The redshift of specific vibrational modes suggests a moderate interaction of the molecules with the substrate. The presence of asymmetric vibrational peaks indicates an interfacial dynamical charge transfer (IDCT). The molecular orbital that is involved in IDCT is the former Eg lowest unoccupied molecular orbital (LUMO) of the molecules that becomes partially occupied upon adsorption. A group-theoretical analysis of the IDCT modes, based on calculated vibrational frequencies and line shape fits, provides proof for the reduction of the symmetry of the molecule-substrate complex from fourfold D4 h to C2 v(σv) , Cs(σv) , or C2 and the ensuing lifting of the degeneracy of the former LUMO of the molecule. The vibration-based analysis of orbital degeneracies, as carried out here for PtPc/Ag(111) and PdPc/Ag(111), is particularly useful whenever the presence of multiple molecular in-plane orientations at the interface makes the analysis of orbital degeneracies with angle-resolved photoemission spectroscopy difficult.

  13. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  14. Vibrational spectroscopy modeling of a drug in molecular solvents and enzymes

    Science.gov (United States)

    Devereux, Christian J.; Fulfer, Kristen D.; Zhang, Xiaoliu; Kuroda, Daniel G.

    2017-09-01

    Modeling of drugs in enzymes is of immensurable value to many areas of science. We present a theoretical study on the vibrational spectroscopy of Rilpivirine, a HIV reverse transcriptase inhibitor, in conventional solvents and in clinically relevant enzymes. The study is based on vibrational spectroscopy modeling of the drug using molecular dynamics simulations, DFT frequency maps, and theory. The modeling of the infrared lineshape shows good agreement with experimental data for the drug in molecular solvents where the local environment motions define the vibrational band lineshape. On the other hand, the theoretical description of the drug in the different enzymes does not match previous experimental findings indicating that the utilized methodology might not apply to heterogeneous environments. Our findings show that the lack of reproducibility might be associated with the development of the frequency map which does not contain all of the possible interactions observed in such systems.

  15. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  16. Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picher, Matthieu; Mazzucco, Stefano [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 (United States); Blankenship, Steve [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Sharma, Renu, E-mail: renu.sharma@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States)

    2015-03-15

    Here, we present a measurement platform for collecting multiple types of spectroscopy data during high-resolution environmental transmission electron microscopy observations of dynamic processes. Such coupled measurements are made possible by a broadband, high-efficiency, free-space optical system. The critical element of the system is a parabolic mirror, inserted using an independent hollow rod and placed below the sample holder which can focus a light on the sample and/or collect the optical response. We demonstrate the versatility of this optical setup by using it to combine in situ atomic-scale electron microscopy observations with Raman spectroscopy. The Raman data is also used to measure the local temperature of the observed sample area. Other applications include, but are not limited to: cathodo- and photoluminescence spectroscopy, and use of the laser as a local, high-rate heating source. - Highlights: • Broadband, high-efficiency design adaptable to other electron microscopes. • Raman spectroscopy integrated with environmental transmission electron microscopy. • Raman spectra peak frequency shifts enable measurement of local sample temperature. • Multiple types of optical spectroscopy enabled, e.g. cathodoluminescence.

  17. Communication: interfacial water structure revealed by ultrafast two-dimensional surface vibrational spectroscopy

    NARCIS (Netherlands)

    Zhang, Z.; Piatkowski, L.; Bakker, H.J.; Bonn, M.

    2011-01-01

    Knowledge of the interfacial water structure is essential for a basic understanding of the many environmental, technological, and biophysical systems in which aqueous interfaces appear. Using ultrafast two-dimensional surface-specific vibrational spectroscopy we show that the structure of heavy

  18. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    CERN Document Server

    Karhu, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, $\

  19. Combining surface sensitive vibrational spectroscopy and fluorescence microscopy to study biological interfaces

    Science.gov (United States)

    Zhang, Chi; Jasensky, Joshua; Wu, Jing; Chen, Zhan

    2014-03-01

    A multimodal system combining surface sensitive sum frequency generation (SFG) vibrational spectroscopy and total-internal reflection fluorescence (TIRF) microscopy for surface and interface study was developed. Interfacial molecular structural information can be detected using SFG spectroscopy while interfacial fluorescence signal can be visualized using TIRF microscopy from the same sample. As a proof of concept experiment, SFG spectra of fluorescent polystyrene (PS) beads with different surface coverage were correlated with TIRF signal observed. Results showed that SFG signals from the ordered surfactant methyl groups were detected from the substrate surface, while signals from PS phenyl groups on the beads were not seen. Additionally, a lipid monolayer labeled using lipid-associated dye was deposited on a silica substrate and studied in different environments. The contact with water of this lipid monolayer caused SFG signal to disappear, indicating a possible lipid molecular disorder and the formation of lipid bilayers or liposomes in water. TIRF was able to visualize the presence of lipid molecules on the substrate, showing that the lipids were not removed from the substrate surface by water. The integration of the two surface sensitive techniques can simultaneously visualize interfacial molecular dynamics and characterize interfacial molecular structures in situ, which is important and is expected to find extensive applications in biological interface related research.

  20. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper...

  1. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......, weak intramolecular hydrogen bonds in methyl lactate, allyl carbinol and methallyl carbinol have been identified and characterized. The effect of substitution of two hydrogen atoms on one of the methylene groups with either methyl groups or tri uoromethyl groups on the intramolecular...

  2. Reactivity, vibrational spectroscopy, internal rotation and thermochemical aspects of methylarsine

    Science.gov (United States)

    Viana, Rommel B.

    2017-01-01

    The aim of this investigation was to perform a characterization of the spectroscopic and thermodynamic properties of methylarsine (CH3AsH2). Post-Hartree-Fock, 29 DFT methods and eight different composite methodologies were employed in these analyses. A comparison between harmonic and anharmonic frequency accuracies in reproducing the observable frequencies was performed here. In addition, the CH3AsH2 → CH2AsH3 isomerization barrier energy was estimated in 100 kcal mol- 1, whereas the H2-release routes barrier heights were in the 45-107 kcal mol- 1 range. A rate constant of 10- 66 s- 1 was predicted regarding the isomerization route, while the CH2AsH3 hydrogen elimination mechanism is faster than the methylarsine one. The transition state structure of the CH3AsH2 internal rotational barrier energy varied between 1.0 and 1.4 kcal mol- 1. For the CH2AsH3 internal rotation the estimated barrier heights varied 0.6-2.5 kcal mol- 1. The adiabatic ionization energy and the heat of formation each structure was also calculated here. Table S2 Mean absolute error (MAE, in cm- 1) based in the harmonic frequencies calculated for each method in the prediction of the methylarsine experimental vibrational modes. Table S3 Calculated harmonic (ν, in cm- 1) and anharmonic (ω, in cm- 1) vibrational frequencies in reproducing the methylarsine observed frequencies using the cc-pVTZ basis sets. Table S4. Calculated harmonic (ZPVEHARM, in kcal mol- 1) and anharmonic (ZPVEANHARM, in kcal mol- 1) methylarsine zero-point vibrational energy values (ZPVE) and the difference (ΔZPVE) between both values. Table S5. Arsenic-Carbon bond order indexes for each molecule. Table S6 Properties at As-C bond critical points (BCPs) as electronic charge density [ρ(r)] and its Laplacian [∇2ρ(r)], total energy density [H(r)], ellipticity (ε) and the relationship between local potential energy and local energy density [V(r)/G(r)]. Table S7 Carbon [q(C)] and arsenic [q(As)] atomic charge distribution

  3. Theoretical methods for small-molecule ro-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lodi, Lorenzo; Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.u [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom)

    2010-07-14

    The solution of the first principle equations of quantum mechanics provides an increasingly accurate and predictive approach for solving problems involving atoms and small molecules. A general introduction to the methods used for the ab initio calculation of rotational-vibrational spectra of small molecules is presented, with a strong focus on triatomic systems. The use of multi-reference electronic structure methods to compute molecular potential-energy and dipole-moment surfaces is discussed. Issues related to the construction of such surfaces and the inclusion of corrections due to relativistic and non-Born-Oppenheimer effects are reviewed. The derivation of exact, internal-coordinate nuclear-motion-effective Hamiltonians and their solution using a discrete-variable representation are discussed. Sample results for the water molecules are used throughout the tutorial to illustrate the theoretical and numerical issues in such calculations. (phd tutorial)

  4. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Paulo B. [Univ. of California, Berkeley, CA (United States)

    1998-12-14

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayer are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayer at Iiquidhapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the confirmational order of surfactant monolayers.

  5. Vibrational spectroscopy and density functional theory study of ninhydrin

    Science.gov (United States)

    Li, Ran; Sui, Huimin; Liu, Peipie; Chen, Lei; Cheng, Jianbo; Zhao, Bing

    2015-02-01

    In this paper, ninhydrin was designed as a model molecule for theoretical and experimental studies of the molecule structure. Density functional theory (DFT) calculations have been performed to predict the IR and Raman spectra for the molecule. In addition, Fourier transform infrared (FTIR) and Raman spectra of the compound have been obtained experimentally. Based on the modeling results obtained at the B3LYP/6-311++G** level, all FTIR and Raman bands of the compound obtained experimentally were assigned. Our calculated vibrational frequencies are in good agreement with the experimental values. The molecular electrostatic potential surface calculation was performed and the result suggested that the ninhydrin had two potential hydrogen bond donors and four potential hydrogen bond acceptors. HOMO-LUMO gap was also obtained theoretically at B3LYP/6-311++G** level.

  6. Ultrafast vibrational population transfer dynamics in 2-acetylcyclopentanone studied by 2D IR spectroscopy.

    Science.gov (United States)

    Park, Sungnam; Ji, Minbiao

    2011-03-14

    2-Acetylcyclopentanone (2-ACP), which is a β-dicarbonyl compound, undergoes keto-enol isomerization, and its enol tautomers are stabilized by a cyclic intramolecular hydrogen bond. 2-ACP (keto form) has symmetric and asymmetric vibrational modes of the two carbonyl groups at 1748 and 1715 cm(-1) , respectively, which are well separated from the carbonyl modes of its enol tautomers in the FTIR spectrum. We have investigated 2-ACP dissolved in carbon tetrachloride by 2D IR spectroscopy and IR pump-probe spectroscopy. Vibrational population transfer dynamics between the two carbonyl modes were observed by 2D IR spectroscopy. To extract the population exchange dynamics (i.e., the down- and uphill population transfer rate constants), we used the normalized volumes of the cross-peaks with respect to the diagonal peaks at the same emission frequency and the survival and conditional probability functions. As expected, the downhill population transfer time constant (3.2 ps) was measured to be smaller than the uphill population transfer time constant (3.8 ps). In addition, the vibrational population relaxation dynamics of the two carbonyl modes were observed to be the same within the experimental error and were found to be much slower than vibrational population transfer between two carbonyl modes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy.

    Science.gov (United States)

    Oliver, Thomas A A; Lewis, Nicholas H C; Fleming, Graham R

    2014-07-15

    Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics.

  8. Efficient Vibrational Energy Transfer through Covalent Bond in Indigo Carmine Revealed by Nonlinear IR Spectroscopy.

    Science.gov (United States)

    He, Xuemei; Yu, Pengyun; Zhao, Juan; Wang, Jianping

    2017-10-12

    Ultrafast vibrational relaxation and structural dynamics of indigo carmine in dimethyl sulfoxide were examined using femtosecond pump-probe infrared and two-dimensional infrared (2D IR) spectroscopies. Using the intramolecularly hydrogen-bonded C═O and delocalized C═C stretching modes as infrared probes, local structural and dynamical variations of this blue dye molecule were observed. Energy relaxation of the vibrationally excited C═O stretching mode was found to occur through covalent bond to the delocalized aromatic vibrational modes on the time scale of a few picoseconds or less. Vibrational quantum beating was observed in magic-angle pump-probe, anisotropy, and 2D IR cross-peak dynamics, showing an oscillation period of ca. 1010 fs, which corresponds to the energy difference between the C═O and C═C transition frequency (33 cm-1). This confirms a resonant vibrational energy transfer happened between the two vibrators. However, a more efficient energy-accepting mode of the excited C═O stretching was believed to be a nearby combination and/or overtone mode that is more tightly connected to the C═O species. On the structural aspect, dynamical-time-dependent 2D IR spectra reveal an insignificant inhomogeneous contribution to time-correlation relaxation for both the C═O and C═C stretching modes, which is in agreement with the generally believed structural rigidity of such conjugated molecules.

  9. Vibrational spectroscopy and DFT calculations of flavonoid derriobtusone A

    Science.gov (United States)

    Marques, A. N. L.; Mendes Filho, J.; Freire, P. T. C.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Leite, R. V.; Braz-Filho, R.; Gusmão, G. O. M.; Nogueira, C. E. S.; Teixeira, A. M. R.

    2017-02-01

    Flavonoids are secondary metabolites of plants which perform various functions. One subclass of flavonoid is auronol that can present immunostimulating activity. In this work Fourier-Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) and Fourier-Transform Raman (FT-Raman) spectra of an auronol, derriobtusone A (C18H12O4), were obtained at room temperature. Theoretical calculations using Density Functional Theory (DFT) were performed in order to assign the normal modes and to interpret the spectra of the derriobtusone A molecule. The FTIR-ATR and FT-Raman spectra of the crystal, were recorded at room temperature in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, respectively. The normal modes of vibrations were obtained using Density Functional Theory with B3LYP functional and 6-31G+ (d,p) basis set. The calculated frequencies are in good agreement with those obtained experimentally. Detailed assignments of the normal modes present in both the Fourier-Transform infrared and the Fourier-Transform Raman spectra of the crystal are given.

  10. Olive fruit growth and ripening as seen by vibrational spectroscopy.

    Science.gov (United States)

    López-Sánchez, Macarena; Ayora-Cañada, María José; Molina-Díaz, Antonio

    2010-01-13

    The aim of this work was to examine the potential of ATR-FTIR and Raman spectroscopies to evaluate changes happening during the development and maturation of olive fruit. To do this, the spectra of the different parts of the olive (skin, flesh and stone) have been measured at different stages of development. The evolution of different spectral bands has been related to the content of olive constituents like triglycerides, water, carotenoids and phenolic compounds. Oil accumulation can be followed using both FTIR and Raman spectroscopy. The increase in bands at 1746 cm(-1) (ATR-FTIR) and 1440 cm(-1) (Raman) correlates well with the oil content in the fruit determined using the standard Soxhlet extraction method. In the case of overripe olives ATR-FTIR does not provide a representative spectrum of the olive flesh due to the accumulation of water on the surface of the ATR crystal. The increase of the content in carotenoids and phenolic compounds during olive growing and their decrease during the ripening phase can be successfully monitored by means of the Raman bands at 1525 and 1605 cm(-1), respectively.

  11. Electron-Induced Vibrational Spectroscopy. A New and Unique Tool To Unravel the Molecular Structure of Polymer Surfaces

    NARCIS (Netherlands)

    Pireaux, J.J.; Gregoire, Ch.; Caudano, R.; Rei Vilar, M.; Brinkhuis, R.; Schouten, A.J.

    1991-01-01

    Among the surface-sensitive spectroscopies used to characterize clean and surface-modified polymers, one technique has rather recently emerged as a very promising complementary tool. High-resolution electron energy loss spectroscopy, or electron-induced vibrational spectroscopy, has potentially all

  12. Prevention, clinical, and pathophysiological research on vibration syndrome.

    Science.gov (United States)

    Yamada, S; Sakakibara, H; Harada, N; Matsumoto, T

    1993-11-01

    In the 1950s, introduction of portable power tools into the production process of many industries began on a large scale around the world and resulted in many cases of occupational vibration syndrome after the 1960s. There was an urgent need to undertake preventive steps, medical assessment and therapy throughout the world. At the end of 1964, our investigation began in Japanese national forests, and then in mining and stone quarries. Our research and efforts resulted in a comprehensive system for prevention of vibration syndrome in the Japanese national forest industry. It has presented a good model of prevention for other industries in Japan. Clinical and pathophysiological research on vibration syndrome in the 1960s and 1970s clarified disturbances of the peripheral circulatory, nervous, and musculoskeletal systems. From the mid-1970s, neurophysiological, neurochemical, and clinical research on vibration syndrome in relation to the autonomic nervous system developed. Our studies contributed to the advancement of research in this field. More in-depth study is needed to determine the role of the autonomic nervous system in vibration syndrome.

  13. Vibrational Inelastic Electron Tunneling Spectroscopy of Single Acetylene Molecules Adsorbed on Copper (100) Surface

    OpenAIRE

    Jiang, Chi-Lun

    2015-01-01

    With a 600mk homebuilt UHV STM system, we studied molecular vibration at the solid surface with inelastic electron tunneling spectroscopy (IETS) of Acetylene single molecules adsorbed on Cu(100) surface. The identification of vibrational IETS features with normalized conductance change (Δσ/σ) as low as 0.24% in dI2/d2V spectra was demonstrated. Five vibrational modes with energy level at 117.70meV (Δσ/σ =0.42%), 84.07meV (Δσ/σ =0.24%), 58.46meV (Δσ/σ =1.18%), 34.80meV (Δσ/σ =0.65% ) and 22.1...

  14. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  15. Vibrational Properties of a Monolayer Silicene Sheet Studied by Tip-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Sheng, Shaoxiang; Wu, Jiang-bin; Cong, Xin; Li, Wenbin; Gou, Jian; Zhong, Qing; Cheng, Peng; Tan, Ping-heng; Chen, Lan; Wu, Kehui

    2017-11-01

    Combining ultrahigh sensitivity, spatial resolution, and the capability to resolve chemical information, tip-enhanced Raman spectroscopy (TERS) is a powerful tool to study molecules or nanoscale objects. Here we show that TERS can also be a powerful tool in studying two-dimensional materials. We have achieved a 109 Raman signal enhancement and a 0.5 nm spatial resolution using monolayer silicene on Ag(111) as a prototypical 2D material system. Because of the selective enhancement on Raman modes with vertical vibrational components in TERS, our experiment provides direct evidence of the origination of Raman modes in silicene. Furthermore, the ultrahigh sensitivity of TERS allows us to identify different vibrational properties of silicene phases, which differ only in the bucking direction of the Si-Si bonds. Local vibrational features from defects and domain boundaries in silicene can also be identified.

  16. Process Analytical Techniques Based on In-Line Vibrational Spectroscopy and their Industrial Applications

    Directory of Open Access Journals (Sweden)

    Jednačak, T.

    2013-03-01

    Full Text Available Process analytical techniques (PAT involve the monitoring and control of physical and chemical processes as well as the identification of important process parameters in order to obtain the products with desired properties. PAT have been applied in various industrial process phases to ensure better process understanding, quality by optimal design and determination of process disturbances in time. In-line vibrational spectroscopic techniques are one of the major process analytical techniques used today. The most frequently used in-line vibrational spectroscopic techniques are near infrared spectroscopy (NIR, attenuated total reflectance middle infrared spectroscopy (ATR-MIR and Raman spectroscopy (Table 1, Figs. 1 and 2. They provide in situ real-time monitoring of the production processes by using different types of in-line probes (Figs. 3–5 which reduce exposure to hazardous materials and contamination, sample degradation or equilibrium perturbations in the reaction system. Due to the aforementioned advantages, in-line vibrational spectroscopic techniques have been successfully applied for different industrial pur- poses. The analysis of characteristic vibrational bands in in-line infrared and Raman spectra enable the monitoring of different processes such as crystallization, dissolution, polimorphic transitions and chemical reactions (Scheme 1, Figs. 6 and 7. The obtained data are, due to their complexity, very often further processed by multivariate data analysis methods (Fig. 9, such as principal components analysis (PCA and partial least squares (PLS. The basic principles of PCA and PLS are shown in Fig. 8. A number of different in-line vibrational spectroscopic techniques as well as multivariate data analysis methods have been developed recently, but in this article only the most important and most frequently used techniques are described.   KUI – 7/2013 Received April 10, 2012 Accepted July 18, 2012

  17. Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines.

    Science.gov (United States)

    Bodis, Pavol; Panman, Matthijs R; Bakker, Bert H; Mateo-Alonso, Aurelio; Prato, Maurizio; Buma, Wybren Jan; Brouwer, Albert M; Kay, Euan R; Leigh, David A; Woutersen, Sander

    2009-09-15

    It has recently become possible to synthesize mechanical devices the size of a single molecule. Although it is tempting to regard such molecular machines as nanoscale versions of their macroscopic analogs, many notions from macroscopic mechanics no longer apply at a molecular level. For instance, the concept of viscous friction is meaningless for a molecular machine because the size of the solvent molecules that cause the friction is comparable to that of the machine itself. Furthermore, in many cases, the interactions between a molecular machine and its surroundings are comparable to the force driving the machine. As a result, a certain amount of intrinsic randomness exists in the motion of molecular machines, and the details of their mechanics are largely unknown. For a detailed understanding of the mechanical behavior of molecular machines, experiments that probe their motion on an ultrafast time scale, such as two-dimensional (2D) vibrational spectroscopy, are essential. This method uses coupling between vibrational modes in a molecule to investigate the molecular conformation. The coupling shows up as off-diagonal peaks in a 2D graph of the vibrational response of the molecule, analogous to the spin coupling observed in multidimensional NMR spectroscopy. Both spin coupling and vibrational coupling are sensitive probes of the molecular conformation, but 2D vibrational spectroscopy shows orders of magnitude better time resolution than NMR. In this Account, we use 2D vibrational spectroscopy to study molecular machines based on rotaxanes. These devices consist of a linear thread and a macrocycle that is noncovalently locked onto the thread. In the rotaxanes we study, the macrocycle and the thread both contain CO and NH groups. By determining the coupling between the stretching modes of these goups from the cross peaks in the 2D spectrum, we directly and quantitatively probe the relative position and orientation of the macrocycle and the thread for both a small

  18. Vibrational Spectroscopy of Laser Cooled CaH

    Science.gov (United States)

    2015-10-28

    designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle... research group and showed great patience and understanding over the course of my graduate career. Not only did Dr. Brown produce a conducive work...1.1 Diatomics in interstellar and precision measurements . . . . . . . . . 2 1.2 Diatomics and fundamental physics

  19. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yisong [University of California, Department of Applied Science (United States); Brecht, Eric [Montana State University, Department of Chemistry and Biochemistry (United States); Aznavour, Kristen [University of Southern California, Department of Chemistry (United States); Nix, Jay C. [Lawrence Berkeley National Laboratory, Physical Biosciences Division (United States); Xiao, Yuming; Wang, Hongxin [University of California, Department of Applied Science (United States); George, Simon J. [Lawrence Berkeley National Laboratory, Physical Biosciences Division (United States); Bau, Robert [University of Southern California, Department of Chemistry (United States); Keable, Stephen; Peters, John W. [Montana State University, Department of Chemistry and Biochemistry (United States); Adams, Michael W. W. [University of Georgia, Department of Biochemistry and Molecular Biology (United States); Jenney, Francis E. Jr. [Georgia Campus, Philadelphia College of Osteopathic Medicine (United States); Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong [Argonne National Laboratory, Advanced Photon Source (United States); Yoda, Yoshitaka [JASRI (Japan); Cramer, Stephen P., E-mail: spcramer@lbl.gov [University of California, Department of Applied Science (United States)

    2013-12-15

    We have applied {sup 57}Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  20. VSI@ESS: Case study for a vibrational spectroscopy instrument at the european spallation source

    Directory of Open Access Journals (Sweden)

    Zoppi Marco

    2015-01-01

    Full Text Available Neutron Vibrational Spectroscopy is a well-established experimental technique where elementary excitations at relatively high frequency are detected via inelastic neutron scattering. This technique attracts a high interest in a large fraction of the scientific community in the fields of chemistry, materials science, physics, and biology, since one of its main applications exploits the large incoherent scattering cross section of the proton with respect to all the other elements, whose dynamics can be spectroscopically detected, even if dissolved in very low concentration in materials composed of much heavier atoms. We have proposed a feasibility study for a Vibrational Spectroscopy Instrument (VSI at the European Spallation Source ESS. Here, we will summarize the preliminary design calculations and the corresponding McStas simulation results for a possible ToF, Inverted Geometry, VSI beamline.

  1. Synthesis, conductivity, and vibrational spectroscopy of tetraphenylphosphonium bis(trifluoromethanesulfonyl)imide

    Science.gov (United States)

    Haddad, Boumediene; Paolone, Annalisa; Villemin, Didier; Taqiyeddine, Moumene; Belarbi, El-habib; Bresson, Serge; Rahmouni, Mustapha; Dhumal, Nilesh R.; Kim, Hyung J.; Kiefer, Johannes

    2017-10-01

    The reaction of lithium bis(trifluoromethanesulfonyl)imide with tetraphenylphosphonium bromide in water leads to the formation of tetraphenylphosphonium bis(trifluoromethanesulfonyl)imide ([PPh4+][(CF3SO2)2N-]). The obtained compound was identified by means of 1H, 13C, 19F and 31P NMR spectroscopy. Although it has a structure similar to ionic liquids, it exhibits a melting point above 100 °C. Besides describing the synthesis, a detailed characterization of its conductivity and vibrational spectroscopic properties is presented. For the latter, FT-Raman and FTIR/ATR spectroscopies are used in the wavenumber range from 150 to 3500 cm-1 and from 600 to 3500 cm-1, respectively. Density functional theory calculations reveal a minor influence of the interionic interactions on the vibrational structure. Consequently, the computational vibrational spectra of the isolated ions show a good agreement with the experimental data. A detailed vibrational assignment is presented. Furthermore, the conductivity data indicate a solid-solid phase transition about 130 K below the melting point.

  2. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  3. Vibrational spectroscopy studies of formalin-fixed cervix tissues.

    Science.gov (United States)

    Krishna, C M; Sockalingum, G D; Vadhiraja, B M; Maheedhar, K; Rao, A C K; Rao, L; Venteo, L; Pluot, M; Fernandes, D J; Vidyasagar, M S; Kartha, V B; Manfait, M

    2007-02-15

    Optical histopathology is fast emerging as a potential tool in cancer diagnosis. Fresh tissues in saline are ideal samples for optical histopathology. However, evaluation of suitability of ex vivo handled tissues is necessitated because of severe constraints in sample procurement, handling, and other associated problems with fresh tissues. Among these methods, formalin-fixed samples are shown to be suitable for optical histopathology. However, it is necessary to further evaluate this method from the point of view discriminating tissues with minute biochemical variations. A pilot Raman and Fourier transform infrared (FTIR) microspectroscopic studies of formalin-fixed tissues normal, malignant, and after-2-fractions of radiotherapy from the same malignant cervix subjects were carried out, with an aim to explore the feasibility of discriminating these tissues, especially the tissues after-2-fractions of radiotherapy from other two groups. Raman and FTIR spectra exhibit large differences for normal and malignant tissues and subtle differences are seen between malignant and after-2-fractions of radiotherapy tissues. Spectral data were analyzed by principal component analysis (PCA) and it provided good discrimination of normal and malignant tissues. PCA of data of three tissues, normal, malignant, and 2-fractions after radiotherapy, gave two clusters corresponding to normal and malignant + after-2-fractions of radiotherapy tissues. A second step of PCA was required to achieve discrimination between malignant and after-2-fractions of radiotherapy tissues. Hence, this study not only further supports the use of formalin-fixed tissues in optical histopathology, especially from Raman spectroscopy point of view, it also indicates feasibility of discriminating tissues with minute biochemical differences such as malignant and after-2-fractions of radiotherapy. 2006 Wiley Periodicals, Inc.

  4. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates

    Science.gov (United States)

    Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O.

    2015-03-01

    The influence of exciton-vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein-pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton-vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton-vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton-vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton-vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system-bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be

  5. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James Francis [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  6. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Science.gov (United States)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  7. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

    Science.gov (United States)

    Karhu, J; Nauta, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-06-28

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits.

  8. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    absorption (VA) spectroscopy can be used as a useful tool in medical diagnostics that provides in principle additional information and detail to that which can be obtained/provided from conventional histological studies, and more conventional mass spectroscopic and NMR techniques. The use of high level......In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...... and differences in these cells lines utilizing FTIR spectroscopy. We have used the chemometrical and statistical method principal component analysis (PCA) to investigate the spectral differences. We have been able to identify certain bands in the spectra which are so-called biomarkers for two types of cell lines...

  9. Vibrational Spectroscopy of He-O_2H^+ and O_2H^+

    Science.gov (United States)

    Kohguchi, Hiroshi; Yamada, Koichi MT; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2017-06-01

    The elusive protonated oxygen, O_2H^+, has been characterized by vibrational action spectroscopy in a cryogenic 22-pole ion trap. On the one hand, the vibrational bands of the tagged He-O_2H^+ have been investigated, using a table-top OPO system for the known OH-stretch^a, whereas the FELIX^b light source has been used to detect the hitherto unknown low-frequency O-O-H bend and O-O stretch. On the other hand, the untagged O_2H^+ has been detected for the first time by high-resolution rovibrational spectroscopy via its ν_1 OH-stretch motion. 38 ro-vibrational fine structure transitions with partly resolved hyperfine satellites were measured (56 resolved lines in total). Spectroscopic parameters were determined by a fit to an asymmetric rotor model with a ^3A'' electronic ground state. The band center is at 3016.73 \\wn, which is in good agreement with experimental^a and ab initio^{c,d} predictions. Based on the spectroscopic parameters, the rotational spectrum is predicted, but not detected yet. ^a S. A. Nizkorodov et al., Chem. Phys. Lett., 278, 26, 1997 ^b D. Oepts et al., Infrared Phys. Technol., 36, 297, 1995 ^c S. L. W. Weaver et al., Astrophys. J., 697, 601, 2009 ^d X. Huang and T. J. Lee, J. Chem. Phys., 129, 044312, 2008

  10. Absolute Configuration of 3-METHYLCYCLOHEXANONE by Chiral Tag Rotational Spectroscopy and Vibrational Circular Dichroism

    Science.gov (United States)

    Evangelisti, Luca; Holdren, Martin S.; Mayer, Kevin J.; Smart, Taylor; West, Channing; Pate, Brooks

    2017-06-01

    The absolute configuration of 3-methylcyclohexanone was established by chiral tag rotational spectroscopy measurements using 3-butyn-2-ol as the tag partner. This molecule was chosen because it is a benchmark measurement for vibrational circular dichroism (VCD). A comparison of the analysis approaches of chiral tag rotational spectroscopy and VCD will be presented. One important issue in chiral analysis by both methods is the conformational flexibility of the molecule being analyzed. The analysis of conformational composition of samples will be illustrated. In this case, the high spectral resolution of molecular rotational spectroscopy and potential for spectral simplification by conformational cooling in the pulsed jet expansion are advantages for chiral tag spectroscopy. The computational chemistry requirements for the two methods will also be discussed. In this case, the need to perform conformer searches for weakly bound complexes and to perform reasonably high level quantum chemistry geometry optimizations on these complexes makes the computational time requirements less favorable for chiral tag rotational spectroscopy. Finally, the issue of reliability of the determination of the absolute configuration will be considered. In this case, rotational spectroscopy offers a "gold standard" analysis method through the determination of the ^{13}C-subsitution structure of the complex between 3-methylcyclohexanone and an enantiopure sample of the 3-butyn-2-ol tag.

  11. Accurate Lineshapes from Sub-1 cm-1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mifflin, Amanda L.; Velarde Ruiz Esparza, Luis A.; Ho, Junming; Psciuk, Brian; Negre, Christian; Ebben, Carlena J.; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin; Thomson, Regan; Batista, Victor; Wang, Hongfei; Geiger, Franz M.

    2015-02-26

    Room temperature sub-wavenumber high-resolution broadband sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene reveal ten peaks in the C–H stretching region. The spectral resolution exceeds that of Fourier transform infrared, femtosecond stimulated Raman, and traditional BB-SFG and scanning SFG spectroscopy of the same molecule. Experiment and simulation show the spectral lineshapes to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 psec are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations, while phase-resolved spectra yield orientation information for them. We propose the new spectroscopy as an attractive alternative to time-resolved vibrational spectroscopy or heterodyne-detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules.

  12. New solid forms of efavirenz: Synthesis, vibrational spectroscopy and quantum chemical calculations

    Science.gov (United States)

    Marques, Marcelo M.; Rezende, Carlos A.; Lima, Gabriel C.; Marques, Andressa C. S.; Prado, Lívia D.; Leal, Kátia Z.; Rocha, Helvécio V. A.; Ferreira, Gláucio B.; Resende, Jackson A. L. C.

    2017-06-01

    Efavirenz,(S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one, is an anti HIV agent from the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. This paper describes the synthesis of two new solvatomorphs of efavirenz (EFV). The results through XRPD and DSC/TG indicate that the new forms undergo a solvent loss over the days, and then return to the original polymorph. Structural and spectral characteristics of EFV were studied by vibrational spectroscopy and quantum chemical methods. Density functional theory (DFT) calculations for the potential energy curve, optimized geometries and vibrational spectra were carried out using 6-311 + G** basis sets and CAM-B3LYP functional, solid state calculations were also performed using DFT-XGGA (PBE-D3) exchange-correlation functional with the option of mixtures of Gaussian and plane waves method (GPW). Based on these results, the paper discussed the correlation between the vibrational modes and the crystalline structure of the most stable form of EFV. A complete analysis of the experimental infrared and Raman spectra was reported on the basis of the wavenumbers of the vibrational bands and the potential energy distribution.

  13. Ab-initio molecular dynamics and vibrational Raman spectroscopy investigations of quartz polymorph at high temperature

    Science.gov (United States)

    Sediki, Hayet; Simon, Patrick; Hadjadj, Aomar; Krallafa, Abdelghani M.

    2017-09-01

    Quartz has found a wide range of applications over the past years. In the present work, the temperature dependence of microcrystalline quartz is investigated with Raman spectroscopy and DFT-based molecular dynamics simulations. We aimed to determine the structure at short and medium range distances as a function of the increasing temperature. The dynamics and the structural changes are analysed in terms of time-dependent properties, and the vibrational analysis obtained from calculated dipole trajectory and vibrational density of states (VDOS). The computed data is compared to Raman and infrared spectroscopic measurements. The approach is of a particularly great interest when we focus on the structural behaviour, and the dynamical disorder observed and characterised through geometric and thermodynamic data. The calculations confirm that the infrared and Raman signature as a function of temperature provide a sensitive analysis of the structural behaviour of quartz.

  14. Vibrational spectroscopy: a tool being developed for the noninvasive monitoring of wound healing

    Science.gov (United States)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    Wound care and management accounted for over 1.8 million hospital discharges in 2009. The complex nature of wound physiology involves hundreds of overlapping processes that we have only begun to understand over the past three decades. The management of wounds remains a significant challenge for inexperienced clinicians. The ensuing inflammatory response ultimately dictates the pace of wound healing and tissue regeneration. Consequently, the eventual timing of wound closure or definitive coverage is often subjective. Some wounds fail to close, or dehisce, despite the use and application of novel wound-specific treatment modalities. An understanding of the molecular environment of acute and chronic wounds throughout the wound-healing process can provide valuable insight into the mechanisms associated with the patient's outcome. Pathologic alterations of wounds are accompanied by fundamental changes in the molecular environment that can be analyzed by vibrational spectroscopy. Vibrational spectroscopy, specifically Raman and Fourier transform infrared spectroscopy, offers the capability to accurately detect and identify the various molecules that compose the extracellular matrix during wound healing in their native state. The identified changes might provide the objective markers of wound healing, which can then be integrated with clinical characteristics to guide the management of wounds.

  15. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Kim, Heejae; Kim, Seongheun; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O-D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O-D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O-D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O-D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O-D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O-D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O-D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O-D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O-D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O-D stretch mode is shown to be important and the asymmetric line shapes of the O-D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  16. Infrared spectroscopy and microscopy in cancer research and diagnosis

    Science.gov (United States)

    Bellisola, Giuseppe; Sorio, Claudio

    2012-01-01

    Since the middle of 20th century infrared (IR) spectroscopy coupled to microscopy (IR microspectroscopy) has been recognized as a non destructive, label free, highly sensitive and specific analytical method with many potential useful applications in different fields of biomedical research and in particular cancer research and diagnosis. Although many technological improvements have been made to facilitate biomedical applications of this powerful analytical technique, it has not yet properly come into the scientific background of many potential end users. Therefore, to achieve those fundamental objectives an interdisciplinary approach is needed with basic scientists, spectroscopists, biologists and clinicians who must effectively communicate and understand each other's requirements and challenges. In this review we aim at illustrating some principles of Fourier transform (FT) Infrared (IR) vibrational spectroscopy and microscopy (microFT-IR) as a useful method to interrogate molecules in specimen by mid-IR radiation. Penetrating into basics of molecular vibrations might help us to understand whether, when and how complementary information obtained by microFT-IR could become useful in our research and/or diagnostic activities. MicroFT-IR techniques allowing to acquire information about the molecular composition and structure of a sample within a micrometric scale in a matter of seconds will be illustrated as well as some limitations will be discussed. How biochemical, structural, and dynamical information about the systems can be obtained by bench top microFT-IR instrumentation will be also presented together with some methods to treat and interpret IR spectral data and applicative examples. The mid-IR absorbance spectrum is one of the most information-rich and concise way to represent the whole “… omics” of a cell and, as such, fits all the characteristics for the development of a clinically useful biomarker. PMID:22206042

  17. Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide

    DEFF Research Database (Denmark)

    Dolgov, Leonid; Fesenko, Olena; Kavelin, Vladyslav

    2017-01-01

    Triangular gold microprisms and spherical silica nanoparticles with attached gold nano-islands were examined as an active nanostructures for the surface enhanced Raman and infrared spectroscopy. These particles were probed for the detection of pyridostigmine bromide as a safe analog of military...... compound sarin. Raman and infrared spectral bands of the pyridostigmine bromide were measured. Detailed correlation of obtained spectral bands with specific vibrations in pyridostigmine bromide was done. Silica nanoparticles with attached gold nano-islands showed more essential enhancement of the Raman...

  18. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy

    Science.gov (United States)

    Du, S. Q.; Li, H.; Xie, L.; Chen, L.; Peng, Y.; Zhu, Y. M.; Li, H.; Dong, P.; Wang, J. T.

    2012-04-01

    By using terahertz time-domain spectroscopy, the absorption spectra of seven anti-diabetic pills have been investigated. For gliquidone, glipizide, gliclazide, and glimepiride, an obvious resonance peak is found at 1.37 THz. Furthermore, to overcome the limit of density functional theory that can analyze the normal mode frequencies of the ground state of organic material, we also present a method that relies on pharmacophore recognition, from which we can obtain the resonance peak at 1.37 THz can be attributed to the vibration of sulfonylurea group. The results indicate that the veracity of density functional theory can be increased by combining pharmacophore recognition.

  19. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  20. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  1. Middle ear vibrations with SMA prosthesis. Experimental research

    Directory of Open Access Journals (Sweden)

    Rusinek Rafal

    2018-01-01

    Full Text Available The paper focuses on experimental research of a middle ear prosthesis made of shape memory alloy. The prosthesis provides better adjustment to individual patient than classical prosthesis. The shape memory prosthesis is implemented to a fresh temporal bone and vibrations of the round window are recorded by means of the Laser Doppler Vibrometer. Finally, the results are presented in the form of transfer function and compared to the intact and damaged middle ear.

  2. Vibrational self-trapping in beta-sheet structures observed with femtosecond nonlinear infrared spectroscopy.

    Science.gov (United States)

    Bodis, Pavol; Schwartz, Erik; Koepf, Matthieu; Cornelissen, Jeroen J L M; Rowan, Alan E; Nolte, Roeland J M; Woutersen, Sander

    2009-09-28

    Self-trapping of NH-stretch vibrational excitations in synthetic beta-sheet helices is observed using femtosecond infrared pump-probe spectroscopy. In a dialanine-based beta-sheet helix, the transient-absorption change upon exciting the NH-stretch mode exhibits a negative absorption change at the fundamental frequency and two positive peaks at lower frequencies. These two induced-absorption peaks are characteristic for a state in which the vibrational excitation is self-trapped on essentially a single NH-group in the hydrogen-bonded NH...OC chain, forming a small (Holstein) vibrational polaron. By engineering the structure of the polymer we can disrupt the hydrogen-bonded NH...OC chain, allowing us to eliminate the self-trapping, as is confirmed from the NH-stretch pump-probe response. We also investigate a trialanine-based beta-sheet helix, where each side chain participates in two NH...OC chains with different hydrogen-bond lengths. The chain with short hydrogen bonds shows the same self-trapping behavior as the dialanine-based beta-sheet helix, whereas in the chain with long hydrogen bonds the self-trapping is too weak to be observable.

  3. Time evolution of vibrational temperatures in a CO2 glow discharge measured with infrared absorption spectroscopy

    Science.gov (United States)

    Klarenaar, B. L. M.; Engeln, R.; van den Bekerom, D. C. M.; van de Sanden, M. C. M.; Morillo-Candas, A. S.; Guaitella, O.

    2017-11-01

    Vibrational temperatures of CO2 are studied in a pulsed glow discharge by means of time-resolved in situ Fourier transform infrared spectroscopy, with a 10 μs temporal resolution. A method to analyze the infrared transmittance through vibrationally excited CO2 is presented and validated on a previously published CO2 spectrum, showing good agreement between fit and data. The discharge under study is pulsed with a typical duty cycle of 5–10 ms on–off, at 50 mA and 6.7 mbar. A rapid increase of the temperature of the asymmetric stretch vibration (T 3) is observed at the start of the pulse, reaching 1050 K, which is an elevation of 550 K above the rotational temperature ({T}{{rot}}) of 500 K. After the plasma pulse, the characteristic relaxation time of T 3 to {T}{{rot}} strongly depends on the rotational temperature. By adjusting the duty cycle, the rotational temperature directly after the discharge is varied from 530 to 860 K, resulting in relaxation times between 0.4 and 0.1 ms. Equivalently, as the gas heats up during the plasma pulse, the elevation of T 3 above {T}{{rot}} decreases strongly.

  4. Liicg - a New Method for Rotational and Ro-Vibrational Spectroscopy at 4K

    Science.gov (United States)

    Kluge, Lars; Stoffels, Alexander; Bruenken, Sandra; Asvany, Oskar; Schlemmer, Stephan

    2014-06-01

    Since many years low temperature ion trapping techniques are successfully used in our laboratories in combination with sensitive action spectroscopy schemes (Laser Induced Reactions) to measure high resolution ro-vibrational and rotational spectra of gas-phase molecular ions. Here we present a further development of a LIR method first introduced for recording rotationally resolved electronic spectra of N2+. This new method, called LIICG (Light Induced Inhibition of Complex Growth), makes use of state specific He-attachment rates to stored cold molecular ions. We have recently demonstrated its applicability to rotational and ro-vibrational spectroscopy of C3H+ and CH5+. The measurements were performed in recently completed 4K 22-pole ion trap instruments. Ionic species are produced in a storage ion source and are mass selected before they enter the trap. For spectroscopy normally a few thousand ions are stored at 4K together with He at high number densities (around 1014 cm-3). Under these conditions He attaches to the ions via ternary collision processes. As we will show, this attachement process is hindered by exciting a rotational or ro-vibrational transition, likely because the attachment rates for He are slower for higher rotational or ro-vibrational levels. So by exciting the bare ion the number of ion- He complexes at equilibrium is reduced. In this way the spectrum of the bare ion can be recorded by counting the number of ion-He complexes as a function of frequency. To test the new method we chose well known rotational ground state transitions of CO+, HCO+ and CD+. In particular CD+ appeared to be a good candidate for understanding the new method in detail, due to its strong LIICG signal and its simple rotational spectrum. In this contribution we will explain the LIICG scheme and its underlying kinetics using the example of CD+. We will show effects of different experimental conditions on the signal (e.g. He number density, temperature, radiation power…) to

  5. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  6. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  7. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models.

    Science.gov (United States)

    Pan, Xiaoliang; Schwartz, Steven D

    2016-07-14

    Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. Recent isotope-edited IR spectroscopy suggests that conformational heterogeneity exists within the Michaelis complex of LDH, and this heterogeneity affects the propensity toward the on-enzyme chemical step for each Michaelis substate. By combining molecular dynamics simulations with Markov and hidden Markov models, we obtained a detailed kinetic network of the substates of the Michaelis complex of LDH. The ensemble-average electric fields exerted onto the vibrational probe were calculated to provide a direct comparison with the vibrational spectroscopy. Structural features of the Michaelis substates were also analyzed on atomistic scales. Our work not only clearly demonstrates the conformational heterogeneity in the Michaelis complex of LDH and its coupling to the reactivities of the substates, but it also suggests a methodology to simultaneously resolve kinetics and structures on atomistic scales, which can be directly compared with the vibrational spectroscopy.

  8. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  9. Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric Aerosol Particles: Subdiffraction Limit Vibrational Spectroscopy and Morphological Analysis.

    Science.gov (United States)

    Bondy, Amy L; Kirpes, Rachel M; Merzel, Rachel L; Pratt, Kerri A; Banaszak Holl, Mark M; Ault, Andrew P

    2017-09-05

    Chemical analysis of atmospheric aerosols is an analytical challenge, as aerosol particles are complex chemical mixtures that can contain hundreds to thousands of species in attoliter volumes at the most abundant sizes in the atmosphere (∼100 nm). These particles have global impacts on climate and health, but there are few methods available that combine imaging and the detailed molecular information from vibrational spectroscopy for individual particles <500 nm. Herein, we show the first application of atomic force microscopy with infrared spectroscopy (AFM-IR) to detect trace organic and inorganic species and probe intraparticle chemical variation in individual particles down to 150 nm. By detecting photothermal expansion at frequencies where particle species absorb IR photons from a tunable laser, AFM-IR can study particles smaller than the optical diffraction limit. Combining strengths of AFM (ambient pressure, height, morphology, and phase measurements) with photothermal IR spectroscopy, the potential of AFM-IR is shown for a diverse set of single-component particles, liquid-liquid phase separated particles (core-shell morphology), and ambient atmospheric particles. The spectra from atmospheric model systems (ammonium sulfate, sodium nitrate, succinic acid, and sucrose) had clearly identifiable features that correlate with absorption frequencies for infrared-active modes. Additionally, molecular information was obtained with <100 nm spatial resolution for phase separated particles with a ∼150 nm shell and 300 nm core. The subdiffraction limit capability of AFM-IR has the potential to advance understanding of particle impacts on climate and health by improving analytical capabilities to study water uptake, heterogeneous reactivity, and viscosity.

  10. The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng

    Directory of Open Access Journals (Sweden)

    Maxleene Sandasi

    2016-04-01

    Full Text Available The name “ginseng” is collectively used to describe several plant species, including Panax ginseng (Asian/Oriental ginseng, P. quinquefolius (American ginseng, P. pseudoginseng (Pseudoginseng and Eleutherococcus senticosus (Siberian ginseng, each with different applications in traditional medicine practices. The use of a generic name may lead to the interchangeable use or substitution of raw materials which poses quality control challenges. Quality control methods such as vibrational spectroscopy-based techniques are here proposed as fast, non-destructive methods for the distinction of four ginseng species and the identification of raw materials in commercial ginseng products. Certified ginseng reference material and commercial products were analysed using hyperspectral imaging (HSI, mid-infrared (MIR and near-infrared (NIR spectroscopy. Principal component analysis (PCA and (orthogonal partial least squares discriminant analysis models (OPLS-DA were developed using multivariate analysis software. UHPLC-MS was used to analyse methanol extracts of the reference raw materials and commercial products. The holistic analysis of ginseng raw materials revealed distinct chemical differences using HSI, MIR and NIR. For all methods, Eleutherococcus senticosus displayed the greatest variation from the three Panax species that displayed closer chemical similarity. Good discrimination models with high R2X and Q2 cum vales were developed. These models predicted that the majority of products contained either /P. ginseng or P. quinquefolius. Vibrational spectroscopy and HSI techniques in tandem with multivariate data analysis tools provide useful alternative methods in the authentication of ginseng raw materials and commercial products in a fast, easy, cost-effective and non-destructive manner.

  11. Structure of the ethylammonium nitrate surface: an X-ray reflectivity and vibrational sum frequency spectroscopy study.

    Science.gov (United States)

    Niga, Petru; Wakeham, Deborah; Nelson, Andrew; Warr, Gregory G; Rutland, Mark; Atkin, Rob

    2010-06-01

    X-ray reflectivity and vibrational sum frequency spectroscopy are used to probe the structure of the ethylammonium nitrate (EAN)-air interface. X-ray reflectivity reveals that the EAN-air interface is structured and consists of alternating nonpolar and charged layers that extend 31 A into the bulk. Vibrational sum frequency spectroscopy reveals interfacial cations have their ethyl moieties oriented toward air, with the CH(3) C(3) axis positioned approximately 36.5 degrees from interface normal. This structure is invariant between 15 and 51 degrees C. On account of its molecular symmetry, the orientation of the nitrate anion cannot be determined with certainty.

  12. Materials research by electron momentum spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Canney, S.A.; Fang, Z.; Guo, X.; McCarthy, I.E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Kheifets, A.S.; Vos, M.; Weigold, E. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences and Engineering, Atomic and Molecular Physcis Laboratories

    1998-06-01

    Electron momentum spectroscopy (EMS), also known as (e,2e) spectroscopy is a relatively new technique for the research of materials. It directly determines the electronic structure of materials using binary electron-electron collisions. The measured intensity is proportional to the energy-momentum density, i.e. the modulus square of the wave function in momentum space. This intensity is simply the probability of finding an electron in the material with a particular combination of binding-energy and momentum. In contrast to photoemission measurements, EMS is able to resolve real momentum (rather than crystal-momentum) and the measured intensity is easily related to the electronic structure itself. The measured and calculated momentum densities of graphite, aluminium and amorphous silicon films are presented. 7 refs., 3 figs.

  13. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.

    Science.gov (United States)

    Cozzolino, Daniel

    2015-03-30

    Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. © 2014 Society of Chemical Industry.

  14. Combined electron microscopy and vibrational spectroscopy study of corroded Magnox sludge from a legacy spent nuclear fuel storage pond

    Energy Technology Data Exchange (ETDEWEB)

    Gregson, Colin R., E-mail: colin.r.gregson@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom); Goddard, David T., E-mail: dave.t.goddard@nnl.co.uk [National Nuclear Laboratory, Preston Laboratory, Springfields, Salwick, Preston PR4 0XJ (United Kingdom); Sarsfield, Mark J., E-mail: mark.j.sarsfield@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom)

    2011-05-01

    Graphical abstract: Spent Magnox fuel corroding in-situ in storage ponds forms sludges comprised of brucite and other Mg based phases with uranium oxide particles. Display Omitted Research highlights: > Caracterization study of highly radioactive corroded Magnox sludges. > Unique data from samples of actual corroded nuclear fuel. > Combined electron microscopy and vibrational spectroscopy study. > Analysis of particles from legacy spent fuel storage pond at Sellafield. > Supports major UK decommissioning and nuclear clean up challenge. - Abstract: Samples of filtered particulates and sludges, formed from corroding magnesium alloy clad uranium metal ('Magnox') fuel elements, collected from one of the legacy nuclear fuel storage ponds located at Sellafield (UK) were investigated by Environmental Scanning Electron Microscopy with Energy Dispersive X-Ray analysis (ESEM/EDX), micro-Raman spectroscopy and Fourier transform infra-red spectroscopy (FT-IR). ESEM imaging confirmed the dominant morphology to be clusters of interlocking platelets typical of brucite (Mg(OH){sub 2}). EDX analysis was suggestive of some conversion to the related phase, hydrotalcite (Mg{sub 6}Al{sub 2}(CO{sub 3})(OH){sub 16}.4H{sub 2}O), due to elevated levels of Al associated with Mg. Other apparent morphologies were less commonly observed including flaky sheets, consistent with earlier stages of Magnox alloy corrosion. In a few specific cases, rods were also observed suggestive of some conversion to Mg-hydroxycarbonate phases. Discrete phases rich in U were also identified. Fluorescence in the Raman spectroscopy also indicated surface coatings of organic macromolecules and iron sulphide on hematite containing particles, attributed to microbial activity within the open air pond. Some specific differences in the solid phases between pond areas with differing conditions were apparent.

  15. Excitonic, vibrational, and van der Waals interactions in electron energy loss spectroscopy.

    Science.gov (United States)

    Mizoguchi, T; Miyata, T; Olovsson, W

    2017-09-01

    The pioneer, Ondrej L. Krivanek, and his collaborators have opened up many frontiers for the electron energy loss spectroscopy (EELS), and they have demonstrated new potentials of the EELS method for investigating materials. Here, inspired by those achievements, we show further potentials of EELS based on the results of theoretical calculations, that is excitonic and van der Waals (vdW) interactions, as well as vibrational information of materials. Concerning the excitonic interactions, we highlight the importance of the two-particle calculation to reproduce the low energy-loss near-edge structure (ELNES), the Na-L 2,3 edge of NaI and the Li-K edge of LiCl and LiFePO 4 . Furthermore, an unusually strong excitonic interaction at the O-K edge of perovskite oxides, SrTiO 3 and LaAlO 3 , is shown. The effect of the vdW interaction in the ELNES is also investigated, and we observe that the magnitude of the vdW effect is approximately 0.1eV in the case of the ELNES from a solid and liquid, whereas its effect is almost negligible in the case of the ELNES from the gaseous phase owing to the long inter-molecular distance. In addition to the "static" information, the influence of the "dynamic" behavior of atoms in materials to EELS is also investigated. We show that measurements of the infrared spectrum are possible by using a modern monochromator system. Furthermore, an estimation of the atomic vibration in core-loss ELNES is also presented. We show the acquisition of vibrational information using the ELNES of liquid methanol and acetic acid, solid Al 2 O 3 , and oxygen gas. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy.

    Science.gov (United States)

    Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L

    2015-01-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLoS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins

    Science.gov (United States)

    Noda, Isao

    2017-12-01

    A tutorial is provided for the generalized two-dimensional correlation spectroscopy (2DCOS), which is applicable to the vibrational spectroscopic study of proteins and related systems. In 2DCOS, similarity or dissimilarity among variations of spectroscopic intensities, which are induced by applying an external perturbation to the sample, is examined by constructing correlation spectra defined by two independent spectral variable axes. By spreading congested or overlapped peaks along the second dimension, apparent spectral resolution is enhanced and interpretation of complex spectra becomes simplified. A set of simple rules for the intensities and signs of correlation peaks is used to extract insightful information. Simulated IR spectra for a model protein are used to demonstrate the specific utility of 2DCOS. Additional tools useful in the 2DCOS analysis of proteins, such as data segmentation assisted with moving-window analysis, 2D codistribution analysis, Pareto scaling, and null-space projection are also discussed.

  18. Exchanging conformations of a hydroformylation catalyst structurally characterized using two-dimensional vibrational spectroscopy.

    Science.gov (United States)

    Panman, Matthijs R; Vos, Jannie; Bocokić, Vladica; Bellini, Rosalba; de Bruin, Bas; Reek, Joost H N; Woutersen, Sander

    2013-12-16

    Catalytic transition-metal complexes often occur in several conformations that exchange rapidly (vibrational spectroscopy, a method that can be applied to any catalyst provided that the exchange between its conformers occurs on a time scale of a few picoseconds or slower. We find that, in one of the conformations, the OC-Rh-CO angle deviates significantly from the canonical value in a trigonal-bipyramidal structure. On the basis of complementary density functional calculations, we ascribe this effect to attractive van der Waals interaction between the CO and the xantphos ligand.

  19. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ren-Hui, E-mail: zrh@iccas.ac.cn; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Wei, Wen-Mei [Department of Chemistry, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032 (China)

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.

  20. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Univ. of California, Berkeley, CA (United States); Frei, Heinz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States)

    2017-02-22

    Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. In conclusion, combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.

  1. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates

    Science.gov (United States)

    Zhang, Miao; Frei, Heinz

    2017-05-01

    Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.

  2. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-08-01

    Full Text Available Bi4Te3, as one of the phases of the binary Bi–Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  3. Sum Frequency Generation Vibrational Spectroscopy of Pyridine Hydrogenation on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2008-02-22

    Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C{sub 5}H{sub 5}NH{sup +}) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C{sub 5}H{sub 5}NH{sup +} cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed on the Pt nanoparticle monolayer during pyridine hydrogenation.

  4. Photo-vibrational spectroscopy using quantum cascade laser and laser Doppler vibrometer

    Science.gov (United States)

    Liu, Huan; Hu, Qi; Xie, Jiecheng; Fu, Yu

    2017-06-01

    Photoacoustic/photothermal spectroscopy is an established technique for detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity sensor coupled with a lock-in amplifier, limiting the technique to applications in a controllable laboratory environment. Hence, this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment in short and long standoff distances demonstrated that the LDV is a capable sensor for chemical detection in an open environment.

  5. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  6. Electronic and vibrational spectroscopy of intermediates in methane-to-methanol conversion by CoO+

    Science.gov (United States)

    Altinay, Gokhan; Kocak, Abdulkadir; Silva Daluz, Jennifer; Metz, Ricardo B.

    2011-08-01

    At room temperature, cobalt oxide cations directly convert methane to methanol with high selectivity but very low efficiency. Two potential intermediates of this reaction, the [HO-Co-CH3]+ insertion intermediate and [H2O-Co=CH2]+ aquo-carbene complex are produced in a laser ablation source and characterized by electronic and vibrational spectroscopy. Reaction of laser-ablated cobalt cations with different organic precursors seeded in a carrier gas produces the intermediates, which subsequently expand into vacuum and cool. Ions are extracted into a time-of-flight mass spectrometer and spectra are measured via photofragment spectroscopy. Photodissociation of [HO-Co-CH3]+ in the visible and via infrared multiple photon dissociation (IRMPD) makes only Co+ + CH3OH, while photodissociation of [H2O-Co=CH2]+ produces CoCH2+ + H2O. The electronic spectrum of [HO-Co-CH3]+ shows progressions in the excited state Co-C stretch (335 cm-1) and O-Co-C bend (90 cm-1); the IRMPD spectrum gives νOH = 3630 cm-1. The [HO-Co-CH3]+(Ar) complex has been synthesized and its vibrational spectrum measured in the O-H stretching region. The resulting spectrum is sharper than that obtained via IRMPD and gives νOH = 3642 cm-1. Also, an improved potential energy surface for the reaction of CoO+ with methane has been developed using single point energies calculated by the CBS-QB3 method for reactants, intermediates, transition states and products.

  7. Ultrafast dynamics in iron tetracarbonyl olefin complexes investigated with two-dimensional vibrational spectroscopy.

    Science.gov (United States)

    Panman, Matthijs R; Newton, Arthur C; Vos, Jannie; van den Bosch, Bart; Bocokić, Vladica; Reek, Joost N H; Woutersen, Sander

    2013-01-28

    The dynamics of iron tetracarbonyl olefin complexes has been investigated using two-dimensional infrared (2D-IR) spectroscopy. Cross peaks between all CO-stretching bands show that the CO-stretch modes are coupled, and from the cross-peak anisotropies we can confirm previous assignments of the absorption bands. From the pump-probe delay dependence of the diagonal peaks in the 2D-IR spectrum we obtain a correlation time of ∼3 ps for the spectral fluctuations of the CO-stretch modes. We observe a multi-exponential pump-probe delay dependence of the cross-peak intensities, with rate constants ranging from 0.1 ps(-1) to 0.6 ps(-1). To determine whether this delay dependence originates from fluxionality of the complex or from intramolecular vibrational relaxation (IVR), we modulate the free-energy barrier of fluxional rearrangement by varying the pi-backbonding capacities of the olefin ligand in two iron tetracarbonyl olefin complexes: Fe(CO)(4)(cinnamic acid) and Fe(CO)(4)(dimethyl fumarate). Since the pi-backbonding strongly influences the rate of fluxionality, comparing the dynamics in the two complexes allows us to determine to what extent the observed dynamics is caused by fluxionality. We conclude that on the time scale of our experiments (up to 100 ps) the cross-peak dynamics in the iron complexes is determined by intramolecular vibrational energy relaxation. Hence, in contrast to previously investigated irontricarbonyl and ironpentacarbonyl complexes, iron tetracarbonyl olefin complexes exhibit no fluxionality on the picosecond time scale.

  8. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  9. A study of the eigenvectors of the low-frequency vibrational modes in crystalline adenosine via high pressure Raman spectroscopy.

    Science.gov (United States)

    Lee, Scott A; Pinnick, David A; Anderson, A

    2014-12-01

    High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine will have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is found to be a diagnostic probe of the nature of the eigenvector of the vibrational modes. Stretching modes which are predominantly internal to the molecule have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular interest is paid to the low-frequency (≤150 cm(-1)) modes. Based on the pressure dependence of its logarithmic derivative, a mode near 49 cm(-1) is identified as internal mode. The other modes below 400 cm(-1) have pressure dependences of their logarithmic derivatives consistent with being either (1) modes which are mainly external, meaning that the molecules of the unit cell vibrate against each other in translational or librational motions (or linear combinations thereof), or (2) torsional or bending modes involving a large number of atoms, mainly within a molecule. The modes above 400 cm(-1) all have pressure dependences of their logarithmic derivatives consistent with being mainly internal modes.

  10. A study of the eigenvectors of the vibrational modes in crystalline cytidine via high-pressure Raman spectroscopy.

    Science.gov (United States)

    Lee, Scott A; Pinnick, David A; Anderson, A

    2015-01-01

    Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline cytidine at 295 K and high pressures by evaluating the logarithmic derivative of the vibrational frequency ω with respect to pressure P: [Formula: see text]. Crystalline samples of molecular materials have strong intramolecular bonds and weak intermolecular bonds. This hierarchy of bonding strengths causes the vibrational optical modes localized within a molecular unit ("internal" modes) to be relatively high in frequency while the modes in which the molecular units vibrate against each other ("external" modes) have relatively low frequencies. The value of the logarithmic derivative is a useful diagnostic probe of the nature of the eigenvector of the vibrational modes because stretching modes (which are predominantly internal to the molecule) have low logarithmic derivatives while external modes have higher logarithmic derivatives. In crystalline cytidine, the modes at 85.8, 101.4, and 110.6 cm(-1) are external in which the molecules of the unit cell vibrate against each other in either translational or librational motions (or some linear combination thereof). All of the modes above 320 cm(-1) are predominantly internal stretching modes. The remaining modes below 320 cm(-1) include external modes and internal modes, mostly involving either torsional or bending motions of groups of atoms within a molecule.

  11. Vinylphosphine-borane: synthesis, gas phase infrared spectroscopy, and quantum chemical vibrational calculations.

    Science.gov (United States)

    Khater, Brahim; Guillemin, Jean-Claude; Benidar, Abdessamad; Bégué, Didier; Pouchan, Claude

    2008-12-14

    Both experimental and theoretical investigations are reported on the infrared spectrum of vinylphosphine-borane (CH(2)=CHPH(2) x BH(3)), a donor-acceptor complex. The gas phase infrared spectra (3500-600 cm(-1)) have been recorded at 0.5 cm(-1) resolution. This first primary alpha,beta-unsaturated phosphine-borane synthesized up to now is kinetically very unstable in the gas phase and decomposes rapidly into two fragments: the free vinylphosphine CH(2)=CHPH(2) and the monoborane BH(3) which dimerizes to form the more stable diborane B(2)H(6). Spectra of free CH(2)=CHPH(2) and B(2)H(6) compounds were also recorded to assign some vibration modes of the complex in very dense spectral regions. The analysis was completed by carrying out quantum mechanical calculations by density functional theory method at the B3LYP/6-31+G(**) level. Anharmonic frequencies and infrared intensities of the two predicted gauche and syn conformers of the vinylphosphine-borane complex were calculated in the 3500-100 cm(-1) region with the use of a variational approach, implemented in the P_ANHAR_V1.2 code. Because of the relatively weak interaction between the vinylphosphine and the monoborane, the vibrations of the complex can easily be subdivided into modes localized in the CH(2)=CHPH(2) and BH(3) moieties and into "intermolecular" modes. Localized modes are unambiguously correlated with the modes of the isolated monomers. Therefore, they are described in terms of the monomer vibrations, and the complexation shifts are defined as Delta nu = nu(complex) - nu(monomer) to make the effect of the complexation precise on each localized mode. In this objective, anharmonic frequencies and infrared intensities of the BH(3) monomer and the stable gauche and syn conformers of the free vinylphosphine were obtained at the same level of theory. In the gas phase, only the syn form of the complex was observed and assigned. All theoretically predicted frequencies and complexation shifts in magnitude and

  12. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  13. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy

    NARCIS (Netherlands)

    Zhang, Z.; Piatkowski, L.; Bakker, H.J.; Bonn, M.

    2011-01-01

    Water is very different from liquids of similar molecular weight, and one of its unique properties is the very efficient transfer of vibrational energy between molecules, which arises as a result of strong dipole-dipole interactions between the O-H oscillators. Although we have a sound understanding

  14. Researches Concerning to Minimize Vibrations when Processing Normal Lathe

    Directory of Open Access Journals (Sweden)

    Lenuța Cîndea

    2015-09-01

    Full Text Available In the cutting process, vibration is inevitable appearance, and in situations where the amplitude exceeds the limits of precision dimensional and shape of the surfaces generated vibrator phenomenon is detrimental.Field vibration is an issue of increasingly developed, so the futures will a better understanding of them and their use even in other sectors.The paper developed experimental measurement of vibrations at the lathe machining normal. The scheme described kinematical machine tool, cutting tool, cutting conditions, presenting experimental facility for measuring vibration occurring at turning. Experimental results have followed measurement of amplitude, which occurs during interior turning the knife without silencer incorporated. The tests were performed continuously for different speed, feed and depth of cut.

  15. Quantum control spectroscopy of vibrational modes: Comparison of control scenarios for ground and excited states in {beta}-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, Juergen; Buckup, Tiago [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany); Motzkus, Marcus [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany)], E-mail: motzkus@staff.uni-marburg.de

    2008-06-23

    Quantum control spectroscopy (QCS) is used as a tool to study, address selectively and enhance vibrational wavepacket motion in large solvated molecules. By contrasting the application of Fourier-limited and phase-modulated excitation on different electronic states, the interplay between the controllability of vibrational coherence and electronic resonance is revealed. We contrast control on electronic ground and excited state by introducing an additional pump beam prior to a DFWM-sequence (Pump-DFWM). Via phase modulation of this initial pump pulse, coherent control is extended to structural evolution on the vibrationally hot ground state (hot-S{sub 0}) and lowest lying excited state (S{sub 1}) of {beta}-carotene. In an open loop setup, the control scenarios for these different electronic states are compared in their effectiveness and mechanism.

  16. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    Science.gov (United States)

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of Acetylene 12C2D2

    Science.gov (United States)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Two hundred and fifty-one 12C2D2 transitions have been measured in the 0.2-1.6 THz region of its ν5-ν4 difference band and 202 of them were observed for the first time. The accuracy of these measurements is estimated to be ranging from 50 kHz to 100 kHz. The 12C2D2 molecules were generated under room temperature by passing 120-150 mTorr D2O vapor through calcium carbide (CaC2) powder. A multistate analysis was carried out for the bending vibrational modes ν4 and ν5 of 12C2D2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2D2 by adding the new measurements to the old data set, which had only 10 lines with microwave measurement precision. New frequency and intensity predictions have been made based on the obtained molecular parameters. The more precise measurements and new predictions reported here will support the analyses of astronomical observations by the future high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA, which will work in the terahertz spectral region.

  18. Localised vibrational mode spectroscopy studies of self-interstitial clusters in neutron irradiated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Londos, C. A.; Antonaras, G. [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece); Chroneos, A. [Materials Engineering, The Open University, Milton Keynes MK7 6AA (United Kingdom); Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2013-07-28

    The evolution of self-interstitial clusters in silicon (Si), produced by fast neutron irradiation of silicon crystals followed by anneals up to 750 °C, is investigated using localised vibrational mode spectroscopy. A band at 582 cm{sup −1} appears after irradiation and is stable up to 550 °C was attributed to small self-interstitial clusters (I{sub n}, n ≤ 4), with the most probable candidate the I{sub 4} structure. Two bands at 713 and 758 cm{sup −1} arising in the spectra upon annealing of the 582 cm{sup −1} band and surviving up to ∼750 °C were correlated with larger interstitial clusters (I{sub n}, 5 ≤ n ≤ 8), with the most probable candidate the I{sub 8} structure or/and with chainlike defects which are precursors of the (311) extended defects. The results illustrate the presence of different interstitial clusters I{sub n}, at the various temperature intervals of the material, in the course of an isochronal anneal sequence. As the annealing temperature increases, they evolve from first-order structures with a small number of self-interstitials (I{sub n}, n ≤ 4) for the temperatures 50 < T < 550 °C, to second order structures (I{sub n}, 5 ≤ n ≤ 8) with a larger number of interstitials, for the temperatures 550 < T < 750 °C.

  19. The chemistry of ethylene and hydrogen on Pt(111) monitored with surface vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, P.; Shen, Y.R.; Somorjai, G.A. [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Both the hydrogenation and dehydrogenation of ethylene have been studied using infrared-visible sum frequency generation (SFG), a surface vibrational spectroscopy, on the Pt(111) single crystal surface in the v(CH) range. It was found that the dehydrogenation of ethylene to ethylidyne proceeds through an ethylidene (or ethyl) intermediate. The same intermediate was also found to be present in the conversion of both surface vinyl groups and acetylene to ethylidyne. The hydrogenation of ethylene to ethane was examined in situ using SFG over 10 orders of magnitude in pressure. It was found that di-sigma bonded ethylene was readily hydrogenated in UHV at low temperature. Further, di-sigma bonded ethylene was the only species beside ethylidyne found to be present on the Pt(111) surface under conditions of a few Torr of both ethylene and hydrogen at 300K. The surface concentration of di-sigma bonded ethylene on Pt(111) was about 5% of a monolayer under the high pressure conditions.

  20. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    Science.gov (United States)

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  1. Crystal growth, crystal structure, vibrational spectroscopy, linear and nonlinear optical properties of guanidinium phosphates

    Science.gov (United States)

    Němec, Ivan; Matulková, Irena; Held, Peter; Kroupa, Jan; Němec, Petr; Li, Dongxu; Bohatý, Ladislav; Becker, Petra

    2017-07-01

    Of the three guanidinium phosphates GuH2PO4 (space group P21/c), Gu2HPO4·H2O (space group P 4 bar 21 c) and Gu3PO4· 3/2 H2O (space group Cc) crystal structures and a vibrational spectroscopy study are presented. Large single crystals of GuH2PO4 and Gu2HPO4·H2O are grown. Refractive indices and their dispersion in the wavelength range 365 nm - 1083 nm are determined and used for the analysis of phase matching conditions for collinear SHG in the case of the non-centrosymmetric crystals of Gu2HPO4·H2O. The crystals are not phase-matchable within their transmission range. Both independent components of the SHG tensor of Gu2HPO4·H2O, determined by the Maker fringe method, are given, with d14 = 0.23 pm/V and d36 = 0.22 pm/V. In addition, the thermal stability and the anisotropy of thermal expansion of GuH2PO4 and Gu2HPO4·H2O is reported.

  2. An experimental and theoretical study of the synthesis and vibrational spectroscopy of triacetone triperoxide (TATP)

    Science.gov (United States)

    Pacheco-Londono, Leonardo C.; Pena, Alvaro J.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.; Mina, Nairmen; Garcia, Rafael; Chamberlain, R. Thomas; Lareau, Richard T.

    2004-09-01

    Non nitrogen containing, organic peroxides explosives Triacetone triperoxide and diacetone diperoxide have been prepared in the laboratory in order to study various aspects of their synthesis and their experimental and theoretical spectroscopic characteristics. By using different proportions of acetone/hydrogen peroxide (Ac/H2O2), sulfuric, hydrochloric and methanosulfuric acids as catalyzers, it was possible to obtain both compounds in a rapid and simple form. Raman, IR spectroscopy, and GC-MS were used in order to determine the precursors, intermediates and final analytes. Experiments and theoretical studies using density functional theory (DFT) have been used in the elucidation step of the mechanism of the synthesis of the so called "transparent" explosives. The B3LYP functional with the 6-31G** basis set was used to carry out the electronic structure calculation of the intermediates and internal rotations and vibrations of TATP. Raman spectra of solid TATP and FTIR spectra of gas TATP, were recorded in order to assign the experimental spectra. Although full agreement with experiment was not obtained, spectral features of the main TATP bands were assigned.

  3. Structure and Dynamics of Urea/Water Mixtures Investigated by Vibrational Spectroscopy and Molecular Dynamics Simulation

    Science.gov (United States)

    Carr, J. K.; Buchanan, L. E.; Schmidt, J. R.; Zanni, M. T.; Skinner, J. L.

    2013-01-01

    Urea/water is an archetypical “biological” mixture, and is especially well known for its relevance to protein thermodynamics, as urea acts as a protein denaturant at high concentration. This behavior has given rise to an extended debate concerning urea’s influence on water structure. Based on a variety of methods and of definitions of water structure, urea has been variously described as a structure-breaker, a structure-maker, or as remarkably neutral towards water. Because of its sensitivity to microscopic structure and dynamics, vibrational spectroscopy can help resolve these debates. We report experimental and theoretical spectroscopic results for the OD stretch of HOD/H2O/urea mixtures (linear IR, 2DIR, and pump-probe anisotropy decay) and for the CO stretch of urea-D4/D2O mixtures (linear IR only). Theoretical results are obtained using existing approaches for water, and a modification of a frequency map developed for acetamide. All absorption spectra are remarkably insensitive to urea concentration, consistent with the idea that urea only very weakly perturbs water structure. Both this work and experiments by Rezus and Bakker, however, show that water’s rotational dynamics are slowed down by urea. Analysis of the simulations casts doubt on the suggestion that urea immobilizes particular doubly hydrogen bonded water molecules. PMID:23841646

  4. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe.

    Science.gov (United States)

    Gaynor, James D; Courtney, Trevor L; Balasubramanian, Madhumitha; Khalil, Munira

    2016-06-15

    The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles.

  5. Study of calcification formation and disease diagnostics utilising advanced vibrational spectroscopy

    Science.gov (United States)

    Kerssens, Marleen Maartje

    The accurate and safe diagnosis of breast cancer is a significant societal issue, with annual disease incidence of 48,000 women and around 370 men in the UK. Early diagnosis of the disease allows more conservative treatments and better patient outcomes. Microcalcifications in breast tissue are an important indicator for breast cancers, and often the only sign of their presence. Several studies have suggested that the type of calcification formed may act as a marker for malignancy and its presence may be of biological significance. In this work, breast calcifications are studied with FTIR, synchrotron FTIR, ATR FTIR, and Raman mapping to explore their disease specific composition. From a comparison between vibrational spectroscopy and routine staining procedures it becomes clear that calcium builds up prior to calcification formation. Raman and FTIR indicate the same size for calcifications and are in agreement with routine staining techniques. From the synchrotron FTIR measurements it can be proven that amide is present in the centre of the calcifications and the intensity of the bands depends on the pathology. Special attention is paid to the type of carbonate substitution in the calcifications relating to different pathology grades. In contrast to mammography, Raman spectroscopy has the capability to distinguish calcifications based on their chemical composition. The ultimate goal is to turn the acquired knowledge from the mapping studies into a clinical tool based on deep Raman spectroscopy. Deep Raman techniques have a considerable potential to reduce large numbers of normal biopsies, reduce the time delay between screening and diagnosis and therefore diminish patient anxiety. In order to achieve this, a deep Raman system is designed and after evaluation of its performance tested on buried calcification standards in porcine soft tissue and human mammary tissue. It is shown that, when the calcification is probed through tissue, the strong 960 cm-1 phosphate band

  6. Experimental Research on the Influence of Vibration on Knee Mobility

    Directory of Open Access Journals (Sweden)

    Radu Panaitescu-Liess

    2013-09-01

    Full Text Available Besides hand - arm system, the vibration can enter in the human body through the feet, too. In these case - when the subject was in a standing position and the vibrations have a vertical component - longer exposures may cause disease of joints, lower extremity and serious disorders of the cerebral blood vessels, internal organs and circulatory system. This paper focused on the influence of vibration on knee mobility. We used a MediTouch system which consists of a motion capture device (an ergonomic leg brace and a dedicated software.

  7. Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy.

    Science.gov (United States)

    Öztürk, Zafer; Filez, Matthias; Weckhuysen, Bert M

    2017-08-10

    The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters -metal/linker ratio, temperature, and metal type- on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level.

    Science.gov (United States)

    Harz, M; Rösch, P; Popp, J

    2009-02-01

    Rapid microbial detection and identification with a high grade of sensitivity and selectivity is a great and challenging issue in many fields, primarily in clinical diagnosis, pharmaceutical, or food processing technology. The tedious and time-consuming processes of current microbiological approaches call for faster ideally on-line identification techniques. The vibrational spectroscopic techniques IR absorption and Raman spectroscopy are noninvasive methods yielding molecular fingerprint information; thus, allowing for a fast and reliable analysis of complex biological systems such as bacterial or yeast cells. In this short review, we discuss recent vibrational spectroscopic advances in microbial identification of yeast and bacterial cells for bulk environment and single-cell analysis. IR absorption spectroscopy enables a bulk analysis whereas micro-Raman-spectroscopy with excitation in the near infrared or visible range has the potential for the analysis of single bacterial and yeast cells. The inherently weak Raman signal can be increased up to several orders of magnitude by applying Raman signal enhancement methods such as UV-resonance Raman spectroscopy with excitation in the deep UV region, surface enhanced Raman scattering, or tip-enhanced Raman scattering. Copyright 2008 International Society for Advancement of Cytometry

  9. Vibrational spectroscopy of reduced ReI complexes of 1,10-phenanthroline and substituted analogues.

    Science.gov (United States)

    Howell, Sarah L; Gordon, Keith C

    2006-04-13

    IR spectroscopy in concert with DFT calculations and resonance Raman spectroelectrochemistry has been used to identify the molecular orbital nature of the singly occupied molecular orbital (SOMO) in reduced [Re(CO)(3)Cl(L)] and [Re(CO)(3)(4-Mepy)(L)](+) complexes, where L = 1,10-phenanthroline and its 4,7-diphenyl- and 3,4,7,8-tetramethyl-substituted analogues. The SOMO of each reduced species considered was found to be of b(1) symmetry, rather than the close lying orbital of a(2) symmetry (within a C(2)(v)() symmetry description of the phenanthroline moiety). This was deduced in a number of ways. First, the average carbonyl band force constants (Deltak(av) = k(av){reduced complex} - k(av){parent complex}) range from -57 to -41 N m(-1) for the series of compounds studied. The value of Deltak(av) relates to the extent of orbital overlap between the ligand MO and the metal dpi MO. These values are consistent with population of a b(1) MO because the wave function amplitude at the chelating nitrogens for this MO is significantly greater than that for a(2) MO. Second, calculations on singly reduced [Re(CO)(3)(4-Mepy)(phen)](+) and [Re(CO)(3)(4-Mepy)(tem)](+) predict population of a b(2) SOMO. The spectra predicted for these species are in close agreement with the vibrational spectroscopic data; for the IR data the shifts in the CO bands are predicted to 6 cm(-1) and the mean absolute deviation between calculated and measured Raman bands was found to be 10 cm(-1).

  10. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NARCIS (Netherlands)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsala, M.; Hoekstra, S.; Halonen, L.

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to

  11. Infrared vibration-rotation spectra of the ClO radical using tunable diode laser spectroscopy. [ozone destruction in stratosphere

    Science.gov (United States)

    Rogowski, R. S.; Bair, C. H.; Wade, W. R.; Hoell, J. M.; Copeland, G. E.

    1978-01-01

    Tunable diode laser spectroscopy is used to measure the infrared vibration-rotation spectra of the ClO radical. The radical is generated in a flow system where a Cl2-He mixture passes through a microwave discharge to dissociate the Cl2. An O3-O2 mixture from an ozone generator is injected into the system downstream of the microwave discharge where O3 combines with Cl to form ClO. By adjusting the gas flow rates to yield an excess of Cl atoms, all the ozone is combined. ClO concentration is measured with UV absorption at 2577 and 2772 A and a deuterium lamp as a continuous source. Total cell pressure is 5.5 torr. The diode laser spectrometer is calibrated with ammonia lines as a reference where possible. The frequency of vibration-rotation lines is expressed as a function of rotational quantum number, fundamental vibrational frequency, and the rotational constants of the upper and lower vibrational states.

  12. Research of rotating machinery vibration parameters - Shaft speed relationship

    Science.gov (United States)

    Kostyukov, V. N.; Kostyukov, A. V.; Zaytsev, A. V.; Teterin, A. O.

    2017-08-01

    The paper considers the relationship between the parameters of the vibration arising in rotating machinery during operation and the shaft speed. The goal of this paper is to determine the dependence of the vibration parameters on the shaft speed for solving applied engineering problems. To properly evaluate the technical condition of bearing assemblies, we should take into account the pattern of the rotating machinery vibration parameters-shaft speed relationship, which will allow creating new diagnostic features, the totality of which will ensure an increased reliability of diagnosis. We took the check for a correlation between the factor and resultative feature parameters as the correlation analysis method. A high pair linear correlation between the diagnostic features (acceleration, velocity, displacement) and the shaft speed was determined on the basis of the check for correlation between the vibration parameters and the shaft speed, and also the linear correlation coefficients can be used to solve the applied engineering problems of diagnosing the bearing assemblies of the rotating machinery.

  13. Application of vibrational spectroscopy in the in vitro studies of carbon fiber-polylactic acid composite degradation.

    Science.gov (United States)

    Blazewicz, Marta; Gajewska, Maria Chomyszyn; Paluszkiewicz, Czeslawa

    1999-05-01

    Vibrational spectroscopy was used for assessment of new material for stomatology, for guided tissue regeneration (GTR) techniqe.Implants applied in the healing of periodontal defects using GTR technique have to meet stringent requirements concerning their chemical as well physical properties.At present the implants prepared from two layers membranes differing in porosity in their outer and inner layers are studied clinically. Composite plates prepared by us consist of three layers: polylactic acid film, carbon fibres coated with polylactic acid and carbon fabric.Vibrational spectroscopic studies of the material; polylactic acid- carbon fiber have made it possible to analyse chemical reactions occurring between the polymer and carbon surface. Analysis of the IR spectra of samples treated in Ringer solution allowed to describe the phenomena resulting from the composite degradation. It was shown that material biostability is related to the presence of carbon fibers.

  14. Fructose-water-dimethylsulfoxide interactions by vibrational spectroscopy and molecular dynamics simulations.

    Science.gov (United States)

    Nikolakis, Vladimiros; Mushrif, Samir H; Herbert, Bryon; Booksh, Karl S; Vlachos, Dionisios G

    2012-09-13

    The solvation of fructose in dimethyl sulfoxide (DMSO) and DMSO-H(2)O (or DMSO-D(2)O) mixtures was investigated using vibrational spectroscopy (Raman, ATR/FTIR) and molecular dynamics (MD) simulations. The analysis of the fructose hydroxyl hydrogen-DMSO oxygen radial distribution function showed that the coordination number of DMSO around the furanose form of fructose is ~3.5. This number is smaller than the number of hydroxyl groups of fructose because one DMSO molecule is shared between two hydroxyl groups and because intramolecular hydrogen bonds are formed. In the case of fructose-DMSO mixtures, a red shift of the Raman S═O asymmetric stretch is observed, which indicates that fructose breaks the DMSO clusters through strong hydrogen bonding between the hydrogen atoms of its hydroxyl groups and the oxygen atom of DMSO. The Raman scattering cross sections of the DMSO S═O stretch when a DMSO molecule interacts with another DMSO molecule, a fructose molecule, or a water molecule were estimated from the spectra of the binary mixtures using the coordination numbers from MD simulations. It was also possible to use these values together with the MD-estimated coordination numbers to satisfactorily predict the effect of the water fraction on the Raman scattering intensity of the S═O stretching band in ternary mixtures. MD simulations also showed that, with increasing water content, the DMSO orientation around fructose changed, with the sulfur atom moving away from the carbohydrate. The deconvolution of the fructose IR OH stretching region revealed that the hydroxyls of fructose can be separated into two groups that participate in hydrogen bonds of different strengths. MD simulations showed that the three hydroxyls of the fructose ring form stronger hydrogen bonds with the solvent than the remaining hydroxyls, providing an explanation for the experimental observations. Finally, analysis of ATR/FTIR spectra revealed that, with increasing water content, the average

  15. Formation and function of chromate conversion coating on aircraft aluminum alloy probed by vibrational spectroscopy

    Science.gov (United States)

    Xia, Lin

    2000-10-01

    A Chromate Conversion Coating (CCC) is currently one of the most effective methods for protecting aluminum alloys from corrosion. Its unique "self-healing" property has been proved to be critical in corrosion prevention. During the formation process, CrVI, is "stored" in the CCC films. Under in-field conditions, most of the CrVI can leach out and diffuse to local defects, and stop corrosion. However, the involvement of highly toxic CrVI makes CCC system environmentally hazardous. In order to find less-toxic alternatives, the formation and protection mechanisms of CCC must be understood. Formation and function of CCC film are the focus of this study, and vibrational spectroscopy was chosen due to its superior structural sensitivity. First, the structure of CCC film was characterized. The structural similarity between CCC film and a synthetic Cr-mixed-oxide was found, and certain tests were conducted on the bulk synthetic powder which were not feasible on the thin film. All of the structural studies indicated that CCC film is mainly a CrIII-hydroxide gel layer, which adsorbs CrVI-oxy species through CrIII-O-Cr VI chemical bonds. Further analysis revealed the reversible Cr III-CrVI adsorption-desorption equilibrium, and a mathematical model ("Langmuir" model) was established to explain the Cr VI storage-release mechanism quantitatively. In addition, the function of Fe(CN)63-, an additive in the coating solution, was studied. The results indicate that Fe(CN)63- mediates the slow reaction between Al and CrVI, and the mediation mechanism can be illustrated as below: FeCN 3- 6+Al=FeCN 4-6+Al3+ ↑ FeCN 4- 6+CrVI=FeCN 3-6+CrIII In general, the formation of CCC is mediated by Fe(CN)63-, thus Al reduces CrVI quickly and generates CrIII-hydroxide on the alloy surface. The nascent CrIII-hydroxide is chemically active enough to form chemical bonds with CrVI from the solution, through Cr III-O-CrVI bonding. Such CrIII-O-Cr VI structure can form and break up reversibly according

  16. Structure and Absolute Configuration of Nyasol and Hinokiresinol via Synthesis and Vibrational Circular Dichroism Spectroscopy

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2005-01-01

    The absolute configuration of the norlignan (+)-nyasol was determined to be S by comparison of the experimental vibrational circular dichroism data with first-principle calculations taking into account the eight lowest energy conformations. The established absolute configuration of (+)-nyasol...

  17. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...

  18. Infrared Spectroscopy of CO Ro-vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    OpenAIRE

    Shirahata, Mai; Nakagawa, Takao; Usuda, Tomonori; Goto, Miwa; Suto, Hiroshi; Geballe, T. R.

    2012-01-01

    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ~ 270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (~ 700 K) component, which is highly redshifted (+100 km s-1), is also dete...

  19. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  20. Researches Regarding the Effect of Nitinol Vibration Damper Applied to Infrastructures

    Directory of Open Access Journals (Sweden)

    Daniel Amariei

    2009-10-01

    Full Text Available Many of the performed researches all around the world aim to develop advanced technologies in order to enhance the performances of the infrastructure systems, different from the actual ones, fact which involves multidisciplinary research (IT, sensoring, electronics, smart materials and others, aiming to assist engineers in realizing full benefits of structural health monitoring. The paper presents a preliminary feasibility study of a system that can be used for damping of structural vibrations. Thus, shape memory alloys (SMA components can affect through two mechanisms the structure’s vibrations. The stresses from a SMA element that realize phase transformations, as a result of vibrations, have an effect on the frequency-amplitude characteristics. In addition, a dissipation of energy due to hysteresis in a SMA element can reduce the natural frequency and affect forced vibrations.

  1. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    Energy Technology Data Exchange (ETDEWEB)

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-08-28

    Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  2. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  3. Vibrational spectroscopy of triacetone triperoxide (TATP): Anharmonic fundamentals, overtones and combination bands

    Science.gov (United States)

    Brauer, Brina; Dubnikova, Faina; Zeiri, Yehuda; Kosloff, Ronnie; Gerber, R. Benny

    2008-12-01

    The vibrational spectrum of triacetone triperoxide (TATP) is studied by the correlation-corrected vibrational self-consistent field (CC-VSCF) method which incorporates anharmonic effects. Fundamental, overtone, and combination band frequencies are obtained by using a potential based on the PM3 method and yielding the same harmonic frequencies as DFT/cc-pVDZ calculations. Fundamentals and overtones are also studied with anharmonic single-mode (without coupling) DFT/cc-pVDZ calculations. Average deviations from experiment are similar for all methods: 2.1-2.5%. Groups of degenerate vibrations form regions of numerous combination bands with low intensity: the 5600-5800 cm -1 region contains ca. 70 overtones and combinations of CH stretches. Anharmonic interactions are analyzed.

  4. Orientations of nonlocal vibrational modes from combined experimental and theoretical sum frequency spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chase, Hilary M.; Chen, Shunli; Fu, Li; Upshur, Mary Alice; Rudshteyn, Benjamin; Thomson, Regan J.; Wang, Hong-Fei; Batista, Victor S.; Geiger, Franz M.

    2017-09-01

    Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.

  5. Vibrational cooling dynamics of a [FeFe]-hydrogenase mimic probed by time-resolved infrared spectroscopy.

    Science.gov (United States)

    Caplins, Benjamin W; Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2014-12-11

    Picosecond time-resolved infrared spectroscopy (TRIR) was performed for the first time on a dithiolate bridged binuclear iron(I) hexacarbonyl complex ([Fe₂(μ-bdt)(CO)₆], bdt = benzene-1,2-dithiolate) which is a structural mimic of the active site of the [FeFe]-hydrogenase enzyme. As these model active sites are increasingly being studied for their potential in photocatalytic systems for hydrogen production, understanding their excited and ground state dynamics is critical. In n-heptane, absorption of 400 nm light causes carbonyl loss with low quantum yield (<10%), while the majority (ca. 90%) of the parent complex is regenerated with biexponential kinetics (τ₁ = 21 ps and τ₂ = 134 ps). In order to understand the mechanism of picosecond bleach recovery, a series of UV-pump TRIR experiments were performed in different solvents. The long time decay (τ₂) of the transient spectra is seen to change substantially as a function of solvent, from 95 ps in THF to 262 ps in CCl₄. Broadband IR-pump TRIR experiments were performed for comparison. The measured vibrational lifetimes (T₁(avg)) of the carbonyl stretches were found to be in excellent correspondence to the observed τ₂ decays in the UV-pump experiments, signifying that vibrationally excited carbonyl stretches are responsible for the observed longtime decays. The fast spectral evolution (τ₁) was determined to be due to vibrational cooling of low frequency modes anharmonically coupled to the carbonyl stretches that were excited after electronic internal conversion. The results show that cooling of both low and high frequency vibrational modes on the electronic ground state give rise to the observed picosecond TRIR transient spectra of this compound, without the need to invoke electronically excited states.

  6. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there has been significant progress in the development of methodology and instrumentation in the SFG-VS toolbox that has significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are to be discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  7. Evidence for cooperative vibrational relaxation of the NH-, OH-, and OD-stretching modes in hydrogen-bonded liquids using infrared pump-probe spectroscopy.

    Science.gov (United States)

    Shaw, D J; Panman, M R; Woutersen, S

    2009-11-27

    Vibrational energy relaxation of the NH-, OH-, and OD-stretching modes in hydrogen-bonded liquids has been investigated by means of infrared pump-probe spectroscopy. The relaxation rates have been determined both in neat liquids and in isotopic mixtures with systematically varied isotope fractions. In all liquids, the vibrational relaxation rate increases as the isotope fraction is increased and reaches a maximum in the neat liquid. The dependence of the relaxation rate on the isotope fraction suggests a relaxation channel in which the vibrational energy is partitioned between accepting modes of two neighboring molecules.

  8. Application of impedance spectroscopy to SOFC research

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, G.; Mason, T.O. [Northwestern Univ., Evanston, IL (United States); Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  9. Vibrational spectroscopy of SnBr4 and CCl4 using Lie algebraic ...

    Indian Academy of Sciences (India)

    U(4) algebra. The U(4) model takes the rotation and the vibration into account simultaneously but becomes complex when the number of atoms in the molecules becomes larger than four. After 1981, there is a rapid progress in this field. Iachello et al [3,4] have proposed U(4) algebra to calculate the stretching and bending vi ...

  10. Damping heat coefficient - Theoretical and experimental research on a vibrating beam

    Science.gov (United States)

    Mihalec, Marko; Javh, Jaka; Cianetti, Filippo; Moretti, Michele; Rossi, Gianluca; Slavič, Janko; Boltežar, Miha

    2017-07-01

    Vibrating systems dissipate their vibrational energy through different mechanisms, commonly referred to as damping. Damping converts the vibrational energy into other forms, such as heat and sound radiation. Heating of the material is often assumed to be one of the biggest drains of energy; however, the measurable temperature increase is at the level of milli Kelvin and hard to measure. This research introduces a damping heat coefficient, the coefficient of total dissipated energy that is converted into heat. Using this coefficient, the expected temperature change of a beam is theoretically related to its damping ratio. In addition, the damping heat coefficient is determined experimentally by measuring the temperature increase of a vibrating beam. Based on modal damping, it is shown that different amounts of energy are dissipated at different parts of the structure. The numerical heat model was experimentally confirmed.

  11. Research on vibration signal of engine based on subband energy method

    Science.gov (United States)

    Wu, Chunmei; Cui, Feng; Zhao, Yong; Fu, Baohong; Ma, Junchi; Yang, Guihua

    2017-04-01

    Based on the research of DA462 type engine cylinder and cylinder head vibration signal of the surface, the signal measured in the time domain and frequency domain are analyzed in detail, draw the following conclusions: the analysis of vibration signal of the subband energy method is applied to the engine, the concentration response of each of the motivation band can clearly be seen. Through the analysis we can see that the combustion excitation frequency response from 0k to 1K, the vibration influence on the body piston lateral impact force is mainly concentrated in 2K˜5K frequency range of Hz, valve opening and closing the excitation response frequency is mainly concentrated in the 3K˜4K range of Hz, and thus locating the valve clearance fault. This method is simple, accurate and practical for the post processing and analysis of vibration signals.

  12. Research on vibration characteristics of gun barrel based on contact model

    Science.gov (United States)

    Zhao, Yang; Zhou, Qizheng; Yue, Pengfei

    2017-04-01

    In order to study vibration characteristics of the gun barrel under the action of moving projectile, the gun barrel is simplified to cross sectional cantilever beam such as Euler. Considering contact conditions of inertia effect and projectile with the gun barrel, the equation of lateral vibration of the gun barrel is established under the projectile-gun coupling effect; the modal analysis method is used to give the analytic solutions of equation series. The effect of the motion parameters the projectile on the vibration of gun barrel is discussed, and characteristics of vibration of gun barrel are further studied under two conditions of repeating and projectile with mass eccentricity. The research results show that reasonable control of the acceleration of the projectile in the gun bore, and reduction of projectile mass eccentricity can help reduce the muzzle vibration at the gun firing. The research results can provide reference for overall design of the gun, and the modeling and analysis method used in the paper can be promoted for the solution of vibration of other related projects under the moving excitation.

  13. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Douberly, Gary Elliott [Univ. of Georgia, Athens, GA (United States)

    2017-11-16

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systems important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.

  14. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira, E-mail: mkhalil@chem.washington.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  15. Full characterization of vibrational coherence in a porphyrin chromophore by two-dimensional electronic spectroscopy

    OpenAIRE

    Valduga de Almeida Camargo, Franco; Anderson, Harry; Meech, Steve; Heisler, Ismael

    2015-01-01

    In this work we present experimental and calculated two-dimensional electronic spectra for a 5,15-bisalkynyl porphyrin chromophore. The lowest energy electronic Qy transition couples mainly to a single 380 cm–1 vibrational mode. The two-dimensional electronic spectra reveal diagonal and cross peaks which oscillate as a function of population time. We analyze both the amplitude and phase distribution of this main vibronic transition as a function of excitation and detection frequencies. Even t...

  16. The Fourteenth International Meeting on Time-Resolved Vibrational Spectroscopy (TRVS XIV)

    Science.gov (United States)

    2010-02-03

    Sponsored by Infrared Systems Development and Infrared Associates Sunday, May 10, 2009      7:30 AM Breakfast 8:50 AM Opening ...solutes 10:20 AM C Artem A Bakulin Wayne Liang Thomas la Cour Do hydrophobic groups stabilize the water structure?. , , Jansen Douwe A Wiersma Huib... opening of a beta turn thioxopeptide 13 Joshua Lessing, Jongjin Kim, Kevin Jones, Ziad Ganim, and Andrei Tokmakoff, MIT Two dimensional vibrational

  17. Extremely slow intramolecular vibrational redistribution: Direct observation by time-resolved raman spectroscopy in trifluoropropyne

    Science.gov (United States)

    Malinovsky, A. L.; Makarov, A. A.; Ryabov, E. A.

    2011-04-01

    We have studied the dynamics of intramolecular vibrational redistribution (IVR) from the initially excited mode v1 ≈ 3330 cm-1 (acetylene-type H-C bond) in H-C≡C-CF3 molecules in the gaseous phase by means of anti-Stokes spontaneous Raman scattering. The time constant of this process is estimated as 2.3 ns—this is the slowest IVR time reported so far for the room-temperature gases. It is suggested that so long IVR time with respect to the other propyne derivatives can be explained by a larger defect, in this case, of the Fermi resonance of v1 with v2 + 2v7—the most probable doorway state leading to IVR from v1 to the bath of all vibrational-rotational states with the close energies. In addition, it is shown that the observed dynamics is in agreement with a theoretical model assuming strong vibrational-rotational mixing.

  18. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy.

    Science.gov (United States)

    Ding, Bei; Jasensky, Joshua; Li, Yaoxin; Chen, Zhan

    2016-06-21

    Understanding molecular structures of interfacial peptides and proteins impacts many research fields by guiding the advancement of biocompatible materials, new and improved marine antifouling coatings, ultrasensitive and highly specific biosensors and biochips, therapies for diseases related to protein amyloid formation, and knowledge on mechanisms for various membrane proteins and their interactions with ligands. Developing methods for measuring such unique systems, as well as elucidating the structure and function relationship of such biomolecules, has been the goal of our lab at the University of Michigan. We have made substantial progress to develop sum frequency generation (SFG) vibrational spectroscopy into a powerful technique to study interfacial peptides and proteins, which lays a foundation to obtain unique and valuable insights when using SFG to probe various biologically relevant systems at the solid/liquid interface in situ in real time. One highlighting feature of this Account is the demonstration of the power of combining SFG with other techniques and methods such as ATR-FTIR, surface engineering, MD simulation, liquid crystal sensing, and isotope labeling in order to study peptides and proteins at interfaces. It is necessary to emphasize that SFG plays a major role in these studies, while other techniques and methods are supplemental. The central role of SFG is to provide critical information on interfacial peptide and protein structure (e.g., conformation and orientation) in order to elucidate how surface engineering (e.g., to vary the structure) can ultimately affect surface function (e.g., to optimize the activity). This Account focuses on the most significant recent progress in research on interfacial peptides and proteins carried out by our group including (1) the development of SFG analysis methods to determine orientations of regular as well as disrupted secondary structures, and the successful demonstration and application of an isotope

  19. To Avoid Chasing Incorrect Chemical Structures of Chiral Compounds: Raman Optical Activity and Vibrational Circular Dichroism Spectroscopies.

    Science.gov (United States)

    Polavarapu, Prasad L; Covington, Cody L; Raghavan, Vijay

    2017-09-20

    A chemical structure (CS) identifies the connectivities between atoms, and the nature of those connections, for a given elemental composition. For chiral molecules, in addition to the identification of CS, the identification of the correct absolute configuration (AC) is also needed. Several chiral natural products are known whose CSs were initially misidentified and later corrected, and these errors were often discovered during the total synthesis of natural products. In this work, we present a new and convenient approach that can be used with Raman optical activity (ROA) and vibrational circular dichroism (VCD) spectroscopies, to distinguish between the correct and incorrect CSs of chiral compounds. This approach involves analyzing the spectral similarity overlap between experimental spectra and those predicted with advanced quantum chemical theories. Significant labor needed for establishing the correct CSs via chemical syntheses of chiral natural products can thus be avoided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Two-Dimensional Electronic-Vibrational Spectroscopy of Chlorophyll a and b

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nicholas H. C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kavli Energy Nanoscience Institute at Berkeley, CA (United States); Fleming, Graham R. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kavli Energy Nanoscience Institute at Berkeley, CA (United States)

    2016-03-03

    Presented are two-dimensional electronic-vibrational (2DEV) spectra of isolated chlorophyll a and b in deuterated ethanol. We excite the Q-band electronic transitions and measure the effects on the carbonyl and C=C double-bond stretch region of the infrared spectrum. With the aid of density functional theory calculations, we provide assignments for the major features of the spectrum. We show how the 2DEV spectra can be used to readily distinguish different solvation states of the chlorophyll, with features corresponding to the minority pentacoordinate magnesium (Mg) species being resolved along each dimension of the 2DEV spectra from the dominant hexacoordinate Mg species. These assignments represent a crucial first step toward the application of 2DEV spectroscopy to chlorophyll-containing pigment-protein complexes.

  1. Vibrational and electronic spectroscopy of the retro-carotenoid rhodoxanthin in avian plumage, solid-state films, and solution.

    Science.gov (United States)

    Berg, Christopher J; LaFountain, Amy M; Prum, Richard O; Frank, Harry A; Tauber, Michael J

    2013-11-15

    Rhodoxanthin is one of few retro-carotenoids in nature. These chromophores are defined by a pattern of single and double bond alternation that is reversed relative to most carotenoids. Rhodoxanthin is found in the plumage of several families of birds, including fruit doves (Ptilinopus, Columbidae) and the red cotingas (Phoenicircus, Cotingidae). The coloration associated with the rhodoxanthin-containing plumage of these fruit dove and cotinga species ranges from brilliant red to magenta or purple. In the present study, rhodoxanthin is characterized in situ by UV-Vis reflectance and resonance Raman spectroscopy to gain insights into the mechanisms of color-tuning. The spectra are compared with those of the isolated pigment in solution and in thin solid films. Key vibrational signatures are identified for three isomers of rhodoxanthin, primarily in the fingerprint region. Electronic structure (DFT) calculations are employed to describe the normal modes of vibration, and determine characteristic modes of retro-carotenoids. These results are discussed in the context of various mechanisms that change the electronic absorption, including structural distortion of the chromophore or enhanced delocalization of π-electrons in the ground-state. From the spectroscopic evidence, we suggest that the shift in absorption is likely a consequence of perturbations that primarily affect the excited state of the chromophore. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. N-H stretching modes around 3300 wavenumber from peptide backbones observed by chiral sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Fu, Li; Wang, Zhuguang; Yan, Elsa C Y

    2014-09-01

    We present a detailed analysis of the molecular origin of the chiral sum frequency generation (SFG) signals of proteins and peptides at interfaces in the N-H stretching vibrational region. The N-H stretching can be a probe for investigating structural and functional properties of proteins, but remains technically difficult to analyze due to the overlapping with the O-H stretching of water molecules. Chiral SFG spectroscopy offers unique tools to study the N-H stretching from proteins at interfaces without interference from the water background. However, the molecular origin of the N-H stretching signals of proteins is still unclear. This work provides a justification of the origin of chiral N-H signals by analyzing the vibrational frequencies, examining chiral SFG theory, studying proton (hydrogen/deuterium) exchange kinetics, and performing optical control experiments. The results demonstrate that the chiral N-H stretching signals at ~3300 cm(-1) originate from the amide group of the protein backbones. This chiral N-H stretching signal offers an in situ, real-time, and background-free probe for interrogating the protein structures and dynamics at interfaces at the molecular level. © 2014 Wiley Periodicals, Inc.

  3. Molecular gels in the gas phase? Gelator-gelator and gelator-solvent interactions probed by vibrational spectroscopy.

    Science.gov (United States)

    Lozada-Garcia, Rolando; Mu, Dan; Plazanet, Marie; Çarçabal, Pierre

    2016-08-10

    Benzylidene glucose (BzGlc) is a member of the benzylidene glycoside family. These molecules have the ability to form molecular physical gels. These materials are formed when gelator molecules create a non-covalently bound frame where solvent molecules are trapped. Since the gel formation process and its properties are determined by the subtle balance between non-covalent forces, it is difficult to anticipate them. Quantitative and qualitative understanding of the gelator-gelator and gelator-solvent interactions is needed to better control these materials for important potential applications. We have used gas phase vibrational spectroscopy and theoretical chemistry to study the conformational choices of BzGlc, its dimer and the complexes it forms with water or toluene. To interpret the vibrational spectra we have used the dispersion corrected functional B97D which we have calibrated for the calculation of OH stretching frequencies. Even at the most basic molecular level, it is possible to interrogate a large range of non-covalent interactions ranging from OH → OH hydrogen bonding, to OH → π, and CH → π, all being at the center of gel properties at the macroscopic level.

  4. Multimode Vibrational Wave Packet Dynamics of Strong-Field-Ionized Methyl Iodide Probed by Femtosecond XUV Absorption Spectroscopy

    Science.gov (United States)

    Loh, Zhi-Heng; Wei, Zhengrong; Li, Jialin

    2017-04-01

    Studies of vibrational wave packets (VWPs) created on the neutral electronic ground-state by intense laser fields have identified R -selective depletion (RSD) as the dominant mechanism for their generation. Another mechanism that is proposed to give rise to VWPs, bond softening (BS), remains hitherto unobserved. Here, we employ femtosecond XUV absorption spectroscopy to investigate the VWP dynamics of CH3 I induced by intense laser fields. Analysis of the first-moment time traces computed about the neutral depletion region reveals both the fundamental and the hot bands of the C-I stretch mode. The initial oscillation phases of these vibrations distinguishes the contributions of RSD and BS to the generation of the VWP in the neutral species. The relative oscillation amplitudes that are associated with the two phases suggest that the C-I VWP is generated predominantly by BS. In the case of the CH3 I+ X 2E3 / 2 ion state, VWP motion along the C-I stretch mode is dominant over the CH3 umbrella mode. Moreover, the amplitudes of the VWPs are only 1 pm (C-I distance) and 1° (H-C-I bond angle). The ability to resolve such VWP dynamics points to the exquisite sensitivity of femtosecond XUV absorption spectroscopy to structural changes. This work is supported by a NTU start-up Grant, the A*Star SERC PSF (122-PSF-0011), the Ministry of Education AcRF (MOE2014-T2-2-052), and the award of a Nanyang Assistant Professorship to Z.-H.L.

  5. From Vibrational Spectroscopy to Force Fields and Structures of Saccharides: New Computational Algorithms and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pincu, Madeleine [Univ. of California, Irvine, CA (United States); Gerber, Robert Benny [Univ. of California, Irvine, CA (United States). Dept. of Chemistry

    2013-07-17

    This work was undertaken with the main objective to investigate basic reactions that take place in relatively simple saccharides (mono-saccharides and cellobiose - the building block of cellulose) , in isolation and in cluster with few water molecules or with (gas-phase) clusters of few waters and ionic compounds (salt, isolated ions like H+ or OH-). Within the context of this work, different potentials were investigated; among them, were the PM3 semi empirical potential, DFT/BLYP and a new hybrid potential constructed from MP2 for the harmonic part and from adjusted Hartree-Fock anharmonic interactions (VSCF-PT2). These potentials were evaluated by comparison with experimental data from published sources and from several collaborating groups. The findings show excellent agreement between experiments and predictions with the hybrid VSCF-PT2 potential and very good agreement with predictions obtained from dynamics with dispersion corrected DFT/BLYP potential. Investigation of hydration of cellobiose, was another topic of interest. Guided by a hydration motif demonstrated by our experimental collaborators (team of Prof J.P. Simons), we demonstrated large energetic and structural differences between the two species of cellobiose: cis and trans. The later, which is dominant in solid and liquid phases, is higher in energy in the gas-phase and compared to pure water, it does not disturb as much the network of H bonds. In contrast, the cis species exhibits asymmetric hydration in cluster with up to 25 waters, indicating that it has surfactant properties. Another highlight of this research effort was the successful first time spectrometric and spectroscopic study of a gas-phase protonated sugar derivative (alpha-D-Galactopyranoside) and its interpretation by Ab Initio molecular dynamics (AIMD) simulations. The findings demonstrate the formation of a motif in which a proton bridges between two Oxygen atoms (belonging to OH groups) at the sugar; The

  6. Molecular images and vibrational spectroscopy of sorbic acid with the scanning tunneling microscope

    Science.gov (United States)

    Smith, Douglas P. E.; Kirk, Michael D.; Quate, Calvin F.

    1987-06-01

    Images of sorbic acid molecules absorbed onto graphite have been taken with a scanning tunneling microscope (STM) operating in liquid helium. Molecular clusters were clearly observed, as was the atomic structure of the graphite substrate. The molecules were seen to diffuse across the substrate at a rate of about 1 Å/min. When dI/dV vs V was measured with the STM probe directly over a sorbic acid molecule, a well-defined spectrum of peaks was obtained whose energies corresponded to the vibrational resonances of the molecule. Large changes in the spectra occurred if the tip was moved a lateral distance of 5 Å.

  7. Human responses to wave slamming vibration on a polar supply and research vessel.

    Science.gov (United States)

    Omer, H; Bekker, A

    2018-02-01

    A polar supply and research vessel is pre-disposed to wave slamming which has caused complaints among crew and researchers regarding interference with sleep, equipment use and research activities. The present work undertook to survey passenger claims of sleep interference, disturbed motor tasks and equipment damage as a result of wave slamming during normal operations of this vessel. The hypothesis was investigated that whole-body vibration metrics from ISO 2631-1 are potentially suitable for the prediction of human slamming complaints. Full-scale acceleration measurements were performed and wave slamming events were subsequently identified from the human weighted acceleration time histories. A daily diary survey was also conducted to gather the human response. The vibration caused by wave slamming was found to be strongly correlated with sleep disturbances and activity interference. Sleep and equipment use were found to be the most affected parameters by slamming. Daily vibration dose values were determined by accumulating the vibration as a result of slamming over 24 h periods. This metric accounted for increased magnitudes and frequency of slamming incidents and proved to be the best metric to represent human responses to slamming vibration. The greatest percentage of activities affected by slamming related to sleep regardless of daily cumulative VDV magnitude. More than 50% of the recorded responses related to sleep when the daily cumulative VDV ranged between 8.0 m/s1.75-10.0 m/s1.75. The peak vertical vibration levels recorded on the vessel reach magnitudes which are associated with sleep disturbance in environments where acoustic noise is present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ultrafast dynamics in iron tetracarbonyl olefin complexes investigated with two-dimensional vibrational spectroscopy

    NARCIS (Netherlands)

    Panman, M.R.; Newton, A.C.; Vos, J.; van den Bosch, B.; Bocokić, V.; Reek, J.N.H.; Woutersen, S.

    2013-01-01

    The dynamics of iron tetracarbonyl olefin complexes has been investigated using two-dimensional infrared (2D-IR) spectroscopy. Cross peaks between all CO-stretching bands show that the CO-stretch modes are coupled, and from the cross-peak anisotropies we can confirm previous assignments of the

  9. Screening Pinus taeda (loblolly pine) families for physical and mechanical properties using vibrational spectroscopy

    Science.gov (United States)

    Gifty E. Acquah; Brian K. Via; Lori G. Eckhardt

    2016-01-01

    In a bid to control the loblolly pine decline complex, stakeholders are using the selection and deployment of genetically superior families that are disease tolerant. It is vital that we do not compromise other important properties while breeding for disease tolerance. In this preliminary study, near infrared spectroscopy was utilized in conjunction with data collected...

  10. Experimental Research of Vibration Transmission in Wooden Junctions with a View Towards Statistics

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2012-01-01

    for these variations can lead to lowered production costs. Ongoing research is concerned with the transmission of vibration through wooden junctions found in lightweight building structures. In the literature numerous results of different experiments performed on simple junctions can be found. However, these results...

  11. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  12. Intermolecular vibrational modes and H-bond interactions in crystalline urea investigated by terahertz spectroscopy and theoretical calculation

    Science.gov (United States)

    Zhao, Yonghong; Li, Zhi; Liu, Jianjun; Hu, Cong; Zhang, Huo; Qin, Binyi; Wu, Yifang

    2018-01-01

    The characteristic absorption spectra of crystalline urea in 0.6-1.8 THz region have been measured by terahertz time-domain spectroscopy at room temperature experimentally. Five broad absorption peaks were observed at 0.69, 1.08, 1.27, 1.47 and 1.64 THz respectively. Moreover, density functional theory (DFT) calculation has been performed for the isolated urea molecule, and there is no infrared intensity in the region below 1.8 THz. This means that single molecule calculations are failure to predict the experimental spectra of urea crystals. To simulate these spectra, calculations on a cluster of seven urea molecules using M06-2X and B3LYP-D3 are performed, and we found that M06-2X perform better. The observed THz vibrational modes are assigned to bending and torsional modes related to the intermolecular H-bond interactions with the help of potential energy distribution (PED) method. Using the reduced-density-gradient (RDG) analysis, the positions and types of intermolecular H-bond interactions in urea crystals are visualized. Therefore, we can confirm that terahertz spectroscopy can be used as an effective means to detect intermolecular H-bond interactions in molecular crystals.

  13. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    Science.gov (United States)

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-05

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings.

  14. Vibrational spectroscopy and analysis of pseudo-tetrahedral complexes with metal imido bonds.

    Science.gov (United States)

    Mehn, Mark P; Brown, Steven D; Jenkins, David M; Peters, Jonas C; Que, Lawrence

    2006-09-04

    A number of assignments have been previously posited for the metal-nitrogen stretch (nu(M-NR)), the N-R stretch (nu(MN-R)), and possible ligand deformation modes associated with terminally bound imides. Here we examine mononuclear iron(III) and cobalt(III) imido complexes of the monoanionic tridentate ligand [PhBP3] ([PhBP3] = [PhB(CH2PPh2)3]-) to clarify the vibrational features for these trivalent metal imides. We report the structures of [PhBP3]FeNtBu and [PhBP3]CoNtBu. Pseudo-tetrahedral metal imides of these types exhibit short bond lengths (ca. 1.65 A) and nearly linear angles about the M-N-C linkages, indicative of multiple bond character. Furthermore, these compounds give rise to intense, low-energy visible absorptions. Both the position and the intensity of the optical bands in the [PhBP3]MNR complexes depend on whether the substituent is an alkyl or aryl group. Excitation into the low-energy bands of [PhBP3]FeNtBu gives rise to two Raman features at 1104 and 1233 cm(-1), both of which are sensitive to 15N and 2H labeling. The isotope labeling suggests the 1104 cm(-1) mode has the greatest Fe-N stretching character, while the 1233 cm(-1) mode is affected to a lesser extent by (15)N substitution. The spectra of the deuterium-labeled imides further support this assertion. The data demonstrate that the observed peaks are not simple diatomic stretching modes but are extensively coupled to the vibrations of the ancillary organic group. Therefore, describing these complexes as simple diatomic or even triatomic oscillators is an oversimplification. Analogous studies of the corresponding cobalt(III) complex lead to a similar set of isotopically sensitive resonances at 1103 and 1238 cm(-1), corroborating the assignments made in the iron imides. Very minimal changes in the vibrational frequencies are observed upon replacement of cobalt(III) for iron(III), suggesting similar force constants for the two compounds. This is consistent with the previously proposed

  15. X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Hendrik [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation of IR spectra of Mn compounds in different oxidation states. The design, based on an attenuated total reflection device, permits the study of a wide spectral range: 16,700 (600 nm) - 225

  16. A Coupling Vibration Test Bench and the Simulation Research of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Weihua Ma

    2015-01-01

    Full Text Available To study the characteristics of the coupling vibration between a maglev vehicle and its track beam system and to improve the performance of the levitation system, a new type of vibration test bench was developed. Take a single maglev frame as the study object; simulation of the coupling vibration of the maglev vehicle, levitation system, and track beam were achieved. In addition, all types of real track irregularity excitations can be simulated using hydraulic actuators of the test bench. To expand the research scope, a simulation model was developed that can conduct the simulation research synergistically with the test bench. Based on a dynamics model of the test bench, the dynamics simulation method determined the influence on the levitation control performance of three factors: the track beam support stiffness, the track beam mass, and the track irregularity. The vibration resonance phenomenon of the vehicle/track system was reproduced by the dynamics simulation, and a portion of the simulation results were validated by the test results. By combining the test bench and the dynamics model, experiments can be guided by the simulation results, and the experimental results can validate the dynamics simulation results.

  17. Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state.

    Science.gov (United States)

    Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken

    2014-03-03

    This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.

  18. Sodiated Sugar Structures: Cryogenic Ion Vibrational Spectroscopy of Na^+(GLUCOSE) Adducts

    Science.gov (United States)

    Voss, Jonathan; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2017-06-01

    The recent discovery that ionic liquids help facilitate the dissolution of cellulose has renewed interest in understanding how ionic species interact with carbohydrates. Here we present infrared spectra in the 2800 - 3800 \\wn range of gas-phase mass-selected Na^+(Glucose) adducts. These adducts are further probed with IR-dip spectroscopy to yield conformer specific spectra of at least seven unique species. The relative abundances of conformers show that gas-phase interconversion barriers are sufficiently high to preserve the solution-phase populations. Additionally, our results demonstrate that mM concentrations of NaCl do not strongly perturb the anomeric ratio of glucose in solution.

  19. Full characterization of vibrational coherence in a porphyrin chromophore by two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Camargo, Franco V A; Anderson, Harry L; Meech, Stephen R; Heisler, Ismael A

    2015-01-08

    In this work we present experimental and calculated two-dimensional electronic spectra for a 5,15-bisalkynyl porphyrin chromophore. The lowest energy electronic Qy transition couples mainly to a single 380 cm(-1) vibrational mode. The two-dimensional electronic spectra reveal diagonal and cross peaks which oscillate as a function of population time. We analyze both the amplitude and phase distribution of this main vibronic transition as a function of excitation and detection frequencies. Even though Feynman diagrams provide a good indication of where the amplitude of the oscillating components are located in the excitation-detection plane, other factors also affect this distribution. Specifically, the oscillation corresponding to each Feynman diagram is expected to have a phase that is a function of excitation and detection frequencies. Therefore, the overall phase of the experimentally observed oscillation will reflect this phase dependence. Another consequence is that the overall oscillation amplitude can show interference patterns resulting from overlapping contributions from neighboring Feynman diagrams. These observations are consistently reproduced through simulations based on third order perturbation theory coupled to a spectral density described by a Brownian oscillator model.

  20. Final Technical Report Structural Dynamics in Complex Liquids Studied with Multidimensional Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Univ. of Chicago, IL (United States); Fiechtner, Gregory J. [Univ. of Chicago, IL (United States)

    2015-12-10

    This grant supported work in the Tokmakoff lab at the University of Chicago aimed at understanding the fundamental properties of water at a molecular level, and how water participates in proton transport in aqueous media. The physical properties of water and aqueous solutions are inextricably linked with efforts to develop new sustainable energy sources. Energy conversion, storage, and transduction processes, particularly those that occur in biology and soft matter, make use of water for the purpose of storing and moving charge. Water’s unique physical and chemical properties depend on the ability of water molecules to participate in up to four hydrogen bonds, and the rapid fluctuations and ultrafast energy dissipation of its hydrogenbonded networks. Our work during the grant period led to advances in four areas: (1) the generation of short pulses of broadband infrared light (BBIR) for use in time-resolved twodimensional spectroscopy (2D IR), (2) the investigation of the spectroscopy and transport of excess protons in water, (3) the study of aqueous hydroxide to describe the interaction of the ion and water and the dynamics of proton transfer, and (4) the coupled motion of water and its hydrogen-bonding solutes.

  1. Detection of molecular changes induced by antibiotics in Escherichia coli using vibrational spectroscopy

    Science.gov (United States)

    Xuan Nguyen, N. T.; Sarter, Samira; Hai Nguyen, N.; Daniel, Philippe

    2017-08-01

    This study aimed to test Raman (400-1800 cm- 1) and Infra-red (1900-500 cm- 1) spectroscopies followed by statistical analysis (principal component analysis) to detect molecular changes induced by antibiotics (ampicillin, cefotaxime - cell wall synthesis inhibitors, tetracycline - protein synthesis inhibitor, ciprofloxacin - DNA synthesis inhibitor) against Escherichia coli TOP10. In case of ampicillin and cefotaxime, a decrease in protein bands in both Raman (1240, 1660 cm- 1), and IR spectra (1230, 1530, 1630 cm- 1), and an increase in carbohydrate bands (1150, 1020 cm- 1) in IR spectra were observed. Tetracycline addition caused an increase in nucleic acid bands (775, 1478, 1578 cm- 1), a sharp decrease in phenylalanine (995 cm- 1) in Raman spectra and the amide I and amide II bands (1630, 1530 cm- 1) in IR spectra, an increase in DNA in both Raman (1083 cm- 1) and IR spectra (1080 cm- 1). Regarding ciprofloxacin, an increase in nucleic acids (775, 1478, 1578 cm- 1) in Raman spectra and in protein bands (1230, 1520, 1630 cm- 1), in DNA (1080 cm- 1) in IR spectra were detected. Clear discrimination of antibiotic-treated samples compared to the control was recorded, showing that Raman and IR spectroscopies, coupled to principal component analysis for data, could be used to detect molecular modifications in bacteria exposed to different classes of antibiotics. These findings contribute to the understanding of the mechanisms of action of antibiotics in bacteria.

  2. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kweskin, Sasha Joseph [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  3. High Resolution Vibrational Spectroscopy at the Atomic Scale: CO on Au(110) and Cu(100), and C2H2 on Cu(100)

    Science.gov (United States)

    Xu, Chen; Jiang, Chilun; Zhang, Yanning; Wu, Ruqian; Ho, Wilson

    2012-11-01

    STM-IETS has been regarded as the ultimate tool to identify and characterize single molecules adsorbed on solid surfaces with atomic spatial resolution. With the improvement of the energy resolution obtained at ˜600 mK, STM-IETS is able to reveal subtle interactions between the molecule and its environment which was previously not possible at higher temperatures. Here we demonstrate the capability of sub-Kelvin STM on detecting the influence of the tip as well as the anisotropy of the reconstructed Au(110) surface on the low energy hindered vibrational motions of single adsorbed CO molecule. In the case of acetylene, more vibrational modes are resolved due to the enhanced spectral resolution. Single molecule vibrational spectroscopy with atomic scale spatial resolution opens new possibilities to probe molecular interactions with high spectral resolution.

  4. Identification and Partial Structural Characterization of Mass Isolated Valsartan and Its Metabolite with Messenger Tagging Vibrational Spectroscopy

    Science.gov (United States)

    Gorlova, Olga; Colvin, Sean M.; Brathwaite, Antonio; Menges, Fabian S.; Craig, Stephanie M.; Miller, Scott J.; Johnson, Mark A.

    2017-08-01

    Recent advances in the coupling of vibrational spectroscopy with mass spectrometry create new opportunities for the structural characterization of metabolites with great sensitivity. Previous studies have demonstrated this scheme on 300 K ions using very high power free electron lasers in the fingerprint region of the infrared. Here we extend the scope of this approach to a single investigator scale as well as extend the spectral range to include the OH stretching fundamentals. This is accomplished by detecting the IR absorptions in a linear action regime by photodissociation of weakly bound N2 molecules, which are attached to the target ions in a cryogenically cooled, rf ion trap. We consider the specific case of the widely used drug Valsartan and two isomeric forms of its metabolite. Advantages and challenges of the cold ion approach are discussed, including disentangling the role of conformers and the strategic choices involved in the selection of the charging mechanism that optimize spectral differentiation among candidate structural isomers. In this case, the Na+ complexes are observed to yield sharp resonances in the high frequency NH and OH stretching regions, which can be used to easily differentiate between two isomers of the metabolite. [Figure not available: see fulltext.

  5. pH dependence of the conformation of small peptides investigated with two-dimensional vibrational spectroscopy.

    Science.gov (United States)

    Huerta-Viga, Adriana; Shaw, Daniel J; Woutersen, Sander

    2010-11-25

    We investigate how the conformation of small peptides is influenced by the presence or absence of charge on the C-terminus and on the side groups. To this purpose, the conformations of two tripeptides, with acidic and basic side groups, is determined at several pD values using two-dimensional infrared (2DIR) spectroscopy. The investigated pD values are chosen relative to the C-terminal and side-chain pK(a) values in such a way that the C-terminus and side groups are in well-defined protonation states. The measurements are analyzed quantitatively using an excitonic model for the Amide I' mode. From the vibrational coupling and the angle between the Amide I' transition dipoles obtained in this way, the dihedral angles (φ,ψ) of the central C(α) atom are determined. Interestingly, our measurements show that the backbone structure of the peptides is remarkably stable against changing the charges of both the side groups and the C-terminal carboxylate groups. This is probably a consequence of effective screening of the Coulomb interactions between the charged groups by the water molecules between them. We also find that the (φ,ψ) confidence regions obtained from 2DIR measurements can have highly irregular shapes as a consequence of the nonlinear relation between the dihedral angles and the experimentally determined Amide I' coupling and transition-dipole angle.

  6. Infrared Spectroscopy of CO Ro-Vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    Science.gov (United States)

    Shirahata, Mai; Nakagawa, Takao; Usuda, Tomonori; Goto, Miwa; Suto, Hiroshi; Geballe, Thomas R.

    2013-02-01

    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J ≤ 17). The velocity profiles reveal three distinct components, the strongest and broadest (Δυ > 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ˜270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (˜700 K) component, which is highly redshifted (+100 km s-1), is also detected, in addition to a cold (˜20 K) component centered at the systemic velocity of the galaxy. On the assumption of local thermodynamic equilibrium, the column density of CO in the 270 K component is NCO ˜4.5 × 1018 cm-2, which in fully molecular gas corresponds to an H2 column density of NH2 ˜ 2.5 × 1022 cm-2. The thermal excitation of CO up to the observed high rotational levels requires a density greater than nc (H2) > 2 × 107cm-3, implying that the thickness of the warm absorbing layer is extremely small (Δd warm components, as well as their temperatures, indicate that they originate in molecular clouds near the central engine of the AGN.

  7. Alteration of biomacromolecule in corn by steam flaking in relation to biodegradation kinetics in ruminant, revealed with vibrational molecular spectroscopy.

    Science.gov (United States)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2017-10-12

    Large scale of steam flaked corn has been used in dairy ration to maintain high milk production level. This study aimed to determine effects of steam flaking on processing-induced intrinsic molecular structure changes that were associated with rumen degradation kinetics and nutrients supply. The advanced vibrational molecular spectroscopy was applied to reveal the processing-induced intrinsic structure changes on a molecular basis. The rumen degradation kinetics and nutrient supply were determined using in situ approach in ruminant livestock system. Raw corn grain (RC) and steam flaked corn grain (SFC) were obtained from two different processing plants. The results showed that (1) Compared to RC, SFC had greater truly digestible non-fiber carbohydrate [tdNFC: 86.8 versus 78.0% dry matter (DM)], but lower truly digestible crude protein [tdCP: 7.7 versus 9.0% DM]. (2) The steam flaking increased (PMolecular absorbance intensities of most carbohydrate biopolymers were greater in SFC (Pmolecular spectral intensities were lower (Pmolecular structure and nutrient interactive study showed that carbohydrate spectral intensities were positively (Pmolecular structure changes had an interactive relationship with rumen degradation kinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Vibrational properties of epitaxial Bi{sub 4}Te{sub 3} films as studied by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China); Song, Yuxin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se; Gong, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Lu, Pengfei [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wang, Shumin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-08-15

    Bi{sub 4}Te{sub 3}, as one of the phases of the binary Bi–Te system, shares many similarities with Bi{sub 2}Te{sub 3}, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi{sub 4}Te{sub 3} films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi{sub 4}Te{sub 3} films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi{sub 4}Te{sub 3} films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi{sub 4}Te{sub 3} films, it is found that the Raman-active phonon oscillations in Bi{sub 4}Te{sub 3} films exhibit the vibrational properties of those in both Bi and Bi{sub 2}Te{sub 3} films.

  9. Vibrational spectroscopy and microscopic imaging: novel approaches for comparing barrier physical properties in native and human skin equivalents

    Science.gov (United States)

    Yu, Guo; Zhang, Guojin; Flach, Carol R.; Mendelsohn, Richard

    2013-06-01

    Vibrational spectroscopy and imaging have been used to compare barrier properties in human skin, porcine skin, and two human skin equivalents, Epiderm 200X with an enhanced barrier and Epiderm 200 with a normal barrier. Three structural characterizations were performed. First, chain packing and conformational order were compared in isolated human stratum corneum (SC), isolated porcine SC, and in the Epiderm 200X surface layers. The infrared (IR) spectrum of isolated human SC revealed a large proportion of orthorhombically packed lipid chains at physiological temperatures along with a thermotropic phase transition to a state with hexagonally packed chains. In contrast, the lipid phase at physiological temperatures in both porcine SC and in Epiderm 200X, although dominated by conformationally ordered chains, lacked significant levels of orthorhombic subcell packing. Second, confocal Raman imaging of cholesterol bands showed extensive formation of cholesterol-enriched pockets within the human skin equivalents (HSEs). Finally, IR imaging tracked lipid barrier dimensions as well as the spatial disposition of ordered lipids in human SC and Epiderm 200X. These approaches provide a useful set of experiments for exploring structural differences between excised human skin and HSEs, which in turn may provide a rationale for the functional differences observed among these preparations.

  10. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  11. Analysis of functional organic molecules at noble metal surfaces by means of vibrational spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Leyssner, Felix

    2011-10-24

    The goal of this work is to optimize the efficiency of photoinduced molecular switching processes on surfaces via controlled variations of the adsorption and electronic properties of the switch. We investigated the influence of external stimuli, i.e. photons and thermal activation, on surface bound molecular switches undergoing trans/cis-isomerizations and ring-opening/closing-reactions, respectively. High resolution electron energy loss spectroscopy (HREELS) and sum-frequency generation (SFG) spectroscopy have been used as the main tools to investigate the adsorption behavior and the molecular switching properties. Two basic concepts of coupling the molecular switch to the surface have been studied: (i) physisorbed or weakly chemisorbed systems deposited on noble metal surfaces under UHV conditions and (ii) molecular switches bound covalently via anchor groups. In the HREELS study following concept (i), we investigated the adsorption geometry and isomerization behavior of various molecular switches on metal substrates which are able to undergo a photoinduced trans/cis-isomerization in solution. We investigated three isoelectronic molecules on Au where we systematically changed the photochemically active group from the diazo-group in an azobenzene-derivative (on Cu(111)) to the imine-group, and the vinylene-group, respectively. Finding the photoisomerization quenched for all systems we observed considerable differences in their thermal isomerization behavior. Comparable we find the photoinduced ring-opening/closing-reaction of spiropyran quenched on Au(111) but a thermally induced ring-opening reaction resulting in the open form being strongly stabilized by the metal. SFG spectroscopy is employed to investigate the reversible, photoinduced trans/cis-isomerization of an azobenzene-functionalized self-assembled monolayer (SAM) on gold using a tripodal linker system. In consequence of the decoupling provided by the tripodal linker, the switching behavior of the

  12. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  13. The vibrational structure of (E,E’)-1,4-diphenyl-1,3-butadiene. Linear dichroism FTIR spectroscopy and quantum chemical calculations

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Møller, Søren; Spanget-Larsen, Jens

    2006-01-01

    The title compound (DPB) was investigated by FTIR spectroscopy in liquid solutions and by FTIR linear dichroism (LD) measurements on samples aligned in stretched polyethylene. The LD data provided experimental assignments of molecular transition moment directions and vibrational symmetries for more...... of a nearly complete assignment of the IR active fundamentals of DPB, involving reassignment of a number of transitions. In addition, previously published Raman spectra of DPB were well predicted by the B3LYP/cc-pVTZ calculations....

  14. Vibrational sum frequency spectroscopy studies at solid/liquid interfaces : Influence of the experimental geometry in the spectral shape and enhancement

    OpenAIRE

    Liljeblad, Jonathan F.D.; Tyrode, Eric

    2012-01-01

    The influence of the experimental geometry, specifically the angles of incidence (AOI) of the exciting beams, on the enhancement of the vibrational sum frequency spectroscopy (VSFS) spectra has been systematically investigated, particularly when approaching total internal reflection (TIR) conditions. Theoretical simulations of the spectral intensity as a function of the AOI and infrared wavelength at three different polarization combinations were critically compared to experimental data obtai...

  15. Transient two-dimensional vibrational spectroscopy of an operating molecular machine.

    Science.gov (United States)

    Panman, Matthijs R; van Dijk, Chris N; Huerta-Viga, Adriana; Sanders, Hans J; Bakker, Bert H; Leigh, David A; Brouwer, Albert M; Buma, Wybren Jan; Woutersen, Sander

    2017-12-20

    Synthetic molecular machines are promising building blocks for future nanoscopic devices. However, the details of their mechanical behaviour are in many cases still largely unknown. A deeper understanding of mechanics at the molecular level is essential for the design and construction of complex nanodevices. Here, we show that transient two-dimensional infrared (T2DIR) spectroscopy makes it possible to monitor the conformational changes of a translational molecular machine during its operation. Translation of a macrocyclic ring from one station to another on a molecular thread is initiated by a UV pulse. The arrival of the shuttling macrocycle at the final station is visible from a newly appearing cross peak between these two moieties. To eliminate spectral congestion in the T2DIR spectra, we use a subtraction method applicable to many other complex molecular systems. The T2DIR spectra indicate that the macrocycle adopts a boat-like conformation at the final station, which contrasts with the chair-like conformation at the initial station.

  16. Vibrational spectroscopy via the Caldeira-Leggett model with anharmonic system potentials.

    Science.gov (United States)

    Gottwald, Fabian; Ivanov, Sergei D; Kühn, Oliver

    2016-04-28

    The Caldeira-Leggett (CL) model, which describes a system bi-linearly coupled to a harmonic bath, has enjoyed popularity in condensed phase spectroscopy owing to its utmost simplicity. However, the applicability of the model to cases with anharmonic system potentials, as it is required for the description of realistic systems in solution, is questionable due to the presence of the invertibility problem [F. Gottwald et al., J. Phys. Chem. Lett. 6, 2722 (2015)] unless the system itself resembles the CL model form. This might well be the case at surfaces or in the solid regime, which we here confirm for a particular example of an iodine molecule in the atomic argon environment under high pressure. For this purpose we extend the recently proposed Fourier method for parameterizing linear generalized Langevin dynamics [F. Gottwald et al., J. Chem. Phys. 142, 244110 (2015)] to the non-linear case based on the CL model and perform an extensive error analysis. In order to judge on the applicability of this model in advance, we give practical empirical criteria and discuss the effect of the potential renormalization term. The obtained results provide evidence that the CL model can be used for describing a potentially broad class of systems.

  17. Vibrational spectroscopy via the Caldeira-Leggett model with anharmonic system potentials

    CERN Document Server

    Gottwald, Fabian; Kühn, Oliver

    2016-01-01

    The Caldeira-Leggett (CL) model, which describes a system bi-linearly coupled to a harmonic bath, has enjoyed popularity in condensed phase spectroscopy owing to its utmost simplicity. However, the applicability of the model to cases with anharmonic system potentials, as it is required for the description of realistic systems in solution, is questionable due to the presence of the invertibility problem [J. Phys. Chem. Lett., \\textbf{6}, 2722 (2015)] unless the system itself resembles the CL model form. This might well be the case at surfaces or in the solid regime, which we here confirm for a particular example of an iodine molecule in the atomic argon environment under high pressure. For this purpose we extend the recently proposed Fourier method for parameterizing linear generalized Langevin dynamics[J. Chem. Phys., \\textbf{142}, 244110 (2015)] to the non-linear case based on the CL model and perform an extensive error analysis. In order to judge on the applicability of this model in advance, we give handy ...

  18. Complementary Vibrational Spectroscopy Investigations of Iron and Iron-Bearing Minerals (Invited)

    Science.gov (United States)

    Murphy, C. A.; Antonangeli, D.; Fiquet, G.; Fei, Y.; Alatas, A.; Dera, P. K.

    2013-12-01

    The high-pressure elastic and thermodynamic properties of iron have been extensively studied because iron is thought to be the main constituent in Earth's core, along with ~5 to 10 wt% nickel and some light elements. In particular, nuclear resonant inelastic x-ray scattering (NRIXS) is an isotope-selective technique that has been used to investigate the vibrational properties of 57Fe at high-pressure via its measured phonon density of states (DOS) [e.g., 1]. For example, the low-energy region of a material's phonon DOS is proportional to its Debye sound velocity (vD), which reflects an average of its compressional (vP) and shear (vS) sound velocities, weighted more heavily towards vS [2]. In order to separate the compressional and shear components of vD, one often relies on established equations of state (EOS) which, in the case of iron, diverge above 100 GPa [e.g., 3; 4]. In turn, such uncertainties are propagated into iron's sound velocities--particularly vP--at pressures approaching those of Earth's core. Here we demonstrate how the combination of NRIXS and high-energy resolution inelastic x-ray scattering (HERIX) data allows for the determination of both vP and vS, independent of an EOS. In particular, we used NRIXS and HERIX to probe the total phonon DOS and points along the longitudinal acoustic phonon branch, respectively, of pure iron loaded into similarly prepared diamond anvil cells, up to a pressure of 171 GPa at 300 K [1; 5]. Experiments were performed at the Advanced Photon Source and European Synchrotron Radiation Facility, where sample volumes (densities) were also measured with in-situ x-ray diffraction. Using established NRIXS and HERIX fitting procedures, we determined iron's density-dependent vD and vP, respectively, accounting for mass effects in the former parameter using a harmonic oscillator model. The combination of these datasets [1; 5] provides a new tight constraint on the density-dependent compressional and shear sound velocities of iron

  19. Syntheses, crystal structures, NMR spectroscopy, and vibrational spectroscopy of Sr(PO{sub 3}F).H{sub 2}O and Sr(PO{sub 3}F)

    Energy Technology Data Exchange (ETDEWEB)

    Jantz, Stephan G.; Hoeppe, Henning A. [Lehrstuhl fuer Festkoerperchemie, Institut fuer Physik, Universitaet Augsburg (Germany); Wuellen, Leo van; Fischer, Andreas [Lehrstuhl fuer Chemische Physik und Materialwissenschaften, Institut fuer Physik, Universitaet Augsburg (Germany); Libowitzky, Eugen [Institute for Mineralogy and Crystallography, Faculty of Geosciences, Geography and Astronomy, University of Vienna (Austria); Baran, Enrique J. [Centro de Quimica Inorganica (CEQUINOR/CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (Argentina); Weil, Matthias [Institute for Chemical Technologies and Analytics, Division Structural Chemistry, Vienna University of Technology (Austria)

    2016-03-15

    Single crystals of Sr(PO{sub 3}F).H{sub 2}O {P2_1/c, Z = 4, a = 7.4844(2) Aa, b = 7.0793(2) Aa, c = 8.4265(2) Aa, β = 108.696(1) , V = 422.91(2) Aa"3, 2391 F_o"2, 70 parameters, R_1[F"2 > 2σ(F"2)] = 0.036; wR_2(F"2 all) = 0.049, S = 1.054} were grown from an aqueous solution by a metathesis reaction. The structure comprises [SrO{sub 8}] polyhedra and PO{sub 3}F tetrahedra that form a layered arrangement parallel to (100). The topotactic dehydration of this phase proceeds between 80 and 140 C to afford Sr(PO{sub 3}F). The monazite-type crystal structure of Sr(PO{sub 3}F) was elucidated from the X-ray powder data by simulated annealing [P2{sub 1}/c, Z = 4, a = 6.71689(9) Aa, b = 7.11774(11) Aa, c = 8.66997(13) Aa, β = 128.0063(7) , V = 326.605(8) Aa{sup 3}, R{sub p} = 0.010, R{sub wp} = 0.015, R{sub F} = 0.030]. During dehydration, the structure of Sr(PO{sub 3}F) .H{sub 2}O collapses along [100] from a layered arrangement into a framework structure, accompanied by a change of the coordination number of the Sr{sup 2+} ions from eight to nine. The magic-angle spinning (MAS) NMR and vibrational spectroscopy data of both phases are discussed. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Research on cutting vibration characteristics of face-milling involute gear

    Directory of Open Access Journals (Sweden)

    Chengzhe JIN

    2017-10-01

    Full Text Available Traditional machining methods, such as gear hobbing, gear shaping and gear milling, etc, are commonly used for cutting machining of gear tooth profile, which cannot meet huge machining demand of gears to a certain extent. This article proposes to utilize a face-milling machining method in involute gear machining, which can be used to reduce production cost effectively. Cutting vibration generated during cutting machining has a direct effect on the machining accuracy and machined surface quality of workpiece. Therefore, it is desiderated to perform in-depth research regarding this issue. ADAMS software was used to establish a rigid-flexible coupling virtual prototyping model of face-milling gear milling system and a cutting vibration system model. Cutting vibration analysis was performed for face-milling gear by adopting quick sine frequency sweep method, so that the frequency response characteristics of workpiece in three directions X, Y and Z and space were acquired. The research results will provide reference and theoretical foundation for actual application of face-milling gear machining technology.

  1. Vibration-rotation alchemy in acetylene (12C2H2), at low vibrational excitation: From high resolution spectroscopy to fast intramolecular dynamics

    OpenAIRE

    Perry, David; Miller, Anthony; AMYAY, Badr; Fayt, André; Herman, Michel

    2010-01-01

    Abstract The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), with up to 8,600 cm-1 of vibrational energy This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision (B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thievin, B. Rowe, and R. Georges, J. Chem. Phys. 131 (2009) 114301-11431...

  2. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    Science.gov (United States)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  3. Alteration of biomacromolecule in corn by steam flaking in relation to biodegradation kinetics in ruminant, revealed with vibrational molecular spectroscopy

    Science.gov (United States)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-02-01

    Large scale of steam flaked corn has been used in dairy ration to maintain high milk production level. This study aimed to determine effects of steam flaking on processing-induced intrinsic molecular structure changes that were associated with rumen degradation kinetics and nutrients supply. The advanced vibrational molecular spectroscopy was applied to reveal the processing-induced intrinsic structure changes on a molecular basis. The rumen degradation kinetics and nutrient supply were determined using in situ approach in ruminant livestock system. Raw corn grain (RC) and steam flaked corn grain (SFC) were obtained from two different processing plants. The results showed that (1) Compared to RC, SFC had greater truly digestible non-fiber carbohydrate [tdNFC: 86.8 versus 78.0% dry matter (DM)], but lower truly digestible crude protein [tdCP: 7.7 versus 9.0% DM]. (2) The steam flaking increased (P < 0.01) rumen degradable DM (RDDM) and starch (RDSt), but decreased (P < 0.01) rumen degradable protein (RDP). (3) Molecular absorbance intensities of most carbohydrate biopolymers were greater in SFC (P < 0.01), but protein amides associated molecular spectral intensities were lower (P < 0.01) in SFC. (4). The molecular structure and nutrient interactive study showed that carbohydrate spectral intensities were positively (P < 0.10) associated with RDDM and RDSt and protein amide spectral intensities were positively (P < 0.10) associated with RDP. This results indicated that the steam flaking induced molecular structure changes had an interactive relationship with rumen degradation kinetics.

  4. Crystal structure, Hirshfeld surface analysis, vibrational, thermal behavior and UV spectroscopy of (2,6-diaminopyridinium) dihydrogen arsenate

    Science.gov (United States)

    Bouaziz, Emna; Ben Hassen, Chawki; Chniba-Boudjada, Nassira; Daoud, Abdelaziz; Mhiri, Tahar; Boujelbene, Mohamed

    2017-10-01

    A new organic dihydrogenomonoarsenate (C5H8N3)H2AsO4 was synthesized by slow evaporation method at room temperature and characterized by X-ray single crystal diffraction. This compound crystallizes in the monoclinic system with the centro-symmetric space group P21/n. Unit cell parameters are a = 10.124 (5)Ǻ, b = 6.648 (5)Ǻ, c = 13.900 (5)Ǻ, β = 105.532° with Z = 4. The crystal structure was solved and refined to R = 0.038 with 2001 independent reflections. Hirshfeld surfaces analysis were used to visualize the fidelity of the crystal structure which has been determined by X-ray data collection on single crystals (C5H8N3)H2AsO4. Due the strong hydrogen Osbnd H⋯O bond network connecting the H2AsO4 groups, the anionic arrangement must be described as infinite (H2AsO4)nn-of dimers chains spreading, in a zig zag fashion, parallel to the b direction. The organic groups (C5H8N3)+ are anchored between adjacent polyanions through multiple hydrogen bonds Nsbnd H⋯O. The thermal decomposition of precursors studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), indicate the existence of two mass loss regions correspond to degradation of the title compound. The existence of vibrational modes correspond to the organic and inorganic groups are identified by the infrared and Raman spectroscopy in the frequency ranges 500-4000 and 25-4000 cm-1, respectively.

  5. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  6. Research on dynamic creep strain and settlement prediction under the subway vibration loading.

    Science.gov (United States)

    Luo, Junhui; Miao, Linchang

    2016-01-01

    This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.

  7. Experimental and Analytical Research on Resonance Phenomena of Vibrating Head with MRE Regulating Element

    Science.gov (United States)

    Miedzińska, D.; Gieleta, R.; Osiński, J.

    2015-02-01

    A vibratory pile hammer (VPH) is a mechanical device used to drive steel piles as well as tube piles into soil to provide foundation support for buildings or other structures. In order to increase the stability and the efficiency of the VPH work in the over-resonance frequency, a new VPH construction was developed at the Military University of Technology. The new VPH contains a system of counter-rotating eccentric weights, powered by hydraulic motors, and designed in such a way that horizontal vibrations cancel out, while vertical vibrations are transmitted into the pile. This system is suspended in the static parts by the adaptive variable stiffness pillows based on a smart material, magnetorheological elastomer (MRE), whose rheological and mechanical properties can be reversibly and rapidly controlled by an external magnetic field. The work presented in the paper is a part of the modified VPH construction design process. It concerns the experimental research on the vibrations during the piling process and the analytical analyses of the gained signal. The results will be applied in the VPH control system.

  8. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    Science.gov (United States)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  9. Vibrational mapping of sinonasal lesions by Fourier transform infrared imaging spectroscopy

    Science.gov (United States)

    Giorgini, Elisabetta; Sabbatini, Simona; Conti, Carla; Rubini, Corrado; Rocchetti, Romina; Re, Massimo; Vaccari, Lisa; Mitri, Elisa; Librando, Vito

    2015-12-01

    Fourier transform infrared imaging (FTIRI) is a powerful tool for analyzing biochemical changes in tumoral tissues. The head and neck region is characterized by a great variety of lesions, with different degrees of malignancy, which are often difficult to diagnose. Schneiderian papillomas are sinonasal benign neoplasms arising from the Schneiderian mucosa; they can evolve into malignant tumoral lesions (squamous cell carcinoma). In addition, they can sometimes be confused with the more common inflammatory polyps. Therefore, an early and definitive diagnosis of this pathology is mandatory. Progressing in our research on the study of oral cavity lesions, 15 sections consisting of inflammatory sinonasal polyps, benign Schneiderian papillomas, and sinonasal undifferentiated carcinomas were analyzed using FTIRI. To allow a rigorous description of these pathologies and to gain objective diagnosis, the epithelial layer and the adjacent connective tissue of each section were separately investigated by following a multivariate analysis approach. According to the nature of the lesion, interesting modifications were detected in the average spectra of the different tissue components, above all in the lipid and protein patterns. Specific band-area ratios acting as spectral markers of the different pathologies were also highlighted.

  10. Experimental Research on 2 : 1 Parametric Vibration of Stay Cable Model under Support Excitation

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    2016-01-01

    Full Text Available For 2 : 1 parametric vibration problem of stay cable under support excitation, a sliding support only in the vertical moving is designed to simulate the bridge stay cable’s vibration test model. Meanwhile, using numerical simulation of cable free vibration and dynamic characteristic test analysis, the experimental research under various conditions is implemented in the actual cable-stayed bridge as the research object, which is compared with the corresponding numerical simulation results. According to the analysis results, it shows that as the vibration test model has 2 : 1 parametric vibration under the support excitation the results of maximum cable displacement from experimental analysis and numerical simulation are basically consistent which revealed that the parametric vibration of stay cable exists and is easy to occur. Additionally, when the bridge bearing excitation frequency is similar to the 2 : 1 frequency ratio, small excitation can indeed lead to the sharp “beat” vibration of cable; therefore it is very necessary to limit the amplitude of support excitation to prevent the occurrence of a large main parametric resonance.

  11. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  12. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.

    2015-01-01

    on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3......This paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed......LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated...

  13. Theoretical Investigation of C-H Vibrational Spectroscopy. 1. Modeling of Methyl and Methylene Groups of Ethanol with Different Conformers.

    Science.gov (United States)

    Wang, Lin; Ishiyama, Tatsuya; Morita, Akihiro

    2017-09-14

    A flexible and polarizable molecular model of ethanol is developed to extend our investigation of thermodynamic, structural, and vibrational properties of the liquid and interface. A molecular dynamics (MD) simulation with the present model confirmed that this model well reproduces a number of properties of liquid ethanol, including density, heat of vaporization, surface tension, molecular dipole moment, and trans/gauche ratio. In particular, the present model can describe vibrational IR, Raman, and sum frequency generation (SFG) spectra of ethanol and partially deuterated analogues with reliable accuracy. The improved accuracy is largely attributed to proper modeling of the conformational dependence and the intramolecular couplings including Fermi resonance in C-H vibrations. Precise dependence of torsional motions is found to be critical in representing vibrational spectra of the C-H bending. This model allows for further vibrational analysis of complicated alkyl groups widely observed in various organic molecules with MD simulation.

  14. Vibrational spectroscopy investigation using ab initio and DFT vibrational analysis of 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine-4-oxide

    Science.gov (United States)

    Prasath, M.; Muthu, S.; Arun Balaji, R.

    2013-09-01

    The FT-IR and FT-Raman spectrum of 7-chloro-2-methylamino-5-phenyl-3H-1, 4-benzodiazepine-4-oxide (7CMP4BO) has been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The optimized geometry, Thermodynamic properties, NBO, Molecular Electrostatic Potentials, PES, frequency and intensity of the vibrational bands of 7CMP4BO were obtained by the ab initio HF and density functional theory (DFT), B3LYP/6-31G (d,p) basis set. The molecule orbital contributions were studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The linear polarizability (α) and the first order hyperpolarizability (β) values of the investigated molecule have been computed using DFT quantum mechanical calculations. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically calculated values.

  15. Research on high-speed railway's vibration analysis checking based on intelligent mobile terminal

    Science.gov (United States)

    Li, Peigang; Xie, Shulin; Zhao, Xuefeng

    2017-04-01

    Recently, the development of high-speed railway meets the requirement of society booming and it has gradually become the first choice for long-length journey. Since ensuring the safety and stable operation are of great importance to high-speed trains owing to its unique features, vibration analysis checking is one of main means to be adopted. Due to the popularization of Smartphone, in this research, a novel public-participating method to achieve high-speed railway's vibration analysis checking based on smartphone and an inspection application of high-speed railway line built in the intelligent mobile terminal were proposed. Utilizing the accelerometer, gyroscope, GPS and other high-performance sensors which were integrated in smartphone, the application can obtain multiple parameters like acceleration, angle, etc and pinpoint the location. Therefore, through analyzing the acceleration data in time domain and frequency domain using fast Fourier transform, the research compared much of data from monitoring tests under different measure conditions and measuring points. Furthermore, an idea of establishing a system about analysis checking was outlined in paper. It has been validated that the smartphone-based high-speed railway line inspection system is reliable and feasible on the high-speed railway lines. And it has more advantages, such as convenience, low cost and being widely used. Obviously, the research has important practical significance and broad application prospects.

  16. Solid-state transformation of the pseudopolymorphic forms of codeine phosphate hemihydrate and codeine phosphate sesquihydrate monitored by vibrational spectroscopy and thermal analysis

    Science.gov (United States)

    Petruševski, Gjorgji; Ugarkovic, Sonja; Makreski, Petre

    2011-05-01

    The results from the first study on the pseudopolymorphism and solid-state transformations of codeine phosphate hemihydrate and codeine phosphate sesquihydrate are presented. The vibrational (infrared and Raman) spectra for both studied forms have revealed differences indicating that vibrational spectroscopy could discriminate between pseudopolymorphic forms of these compounds. Coupling the obtained spectroscopic data and the results from the thermoanalytical techniques (TGA/DSC) afforded interpretation of the undergoing solid-state transformations that occur when the compounds are being exposed at increased humidity and/or temperature. It was observed that, at room temperature, the hemihydrate and the sesquihydrate forms are the only sufficiently stable pseudopolymorphs of codeine phosphate explaining their intense pharmaceutical application.

  17. Nonadiabatic quantum dynamics calculations of transition state spectroscopy of I + HI and I + DI reactions: the existence of long life vibrational bonding resonances.

    Science.gov (United States)

    Takayanagi, Toshiyuki

    2017-11-08

    We present the results of nonadiabatic quantum wave packet calculations to analyze the experimental transition state spectra for the I(2P3/2,1/2) + XI (X = H and D) hydrogen exchange reactions based on photodetachment of the IXI- anion. We developed (3 × 3) diabatic potential energy surfaces that can reasonably describe the nonadiabatic transitions induced by spin-orbit interactions. A good agreement was obtained between theory and experiment and it was found that nonadiabatic transitions play a role in the reaction dynamics. We also found that the calculated spectra showed very sharp resonance states with a vibrational bonding character, where the resonance wavefunctions are highly localized around the transition state region. Our calculated results suggest that one may experimentally detect these vibrational bonding resonances using time-domain transition state spectroscopy techniques since those states have picosecond-order lifetimes.

  18. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.

    2003-01-01

    in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic......The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  19. An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-visible and NMR spectroscopies

    Science.gov (United States)

    Chain, Fernando; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César Atilio Nazareno; Fortuna, Mario Antonio; Brandán, Silvia Antonia

    2014-05-01

    An experimental and theoretical investigation of cnicin is presented, combining the use of infrared, Raman, NMR and UV-visible spectroscopies with density functional theory (DFT) that employs hybrid B3LYP exchange correlation functional and a 6-31G∗ basis set. The molecular electrostatic potentials, atomic charges, bond orders, stabilization energies, topological properties and energy gap are presented by performing NBO, AIM and HOMO-LUMO calculations at the same level of theory as cnicin. A complete vibrational compound assignment was performed by employing internal coordinate analysis and a scaled quantum mechanical force field (SQMFF) methodology. Comparisons between the theoretical and experimental vibrational and ultraviolet-visible spectra show a strong concordance. The geometrical parameters and NBO studies suggest a probable negative Cotton effect for cnicin, which can be attributed to the π → π∗ transition for an α,β-unsaturated γ-lactone, as reported in the literature.

  20. Support Effects in Catalysis Studied by in-situ Sum Frequency Generation Vibrational Spectroscopy and in-situ X-Ray Spectroscopies

    Science.gov (United States)

    Kennedy, Griffin John

    Kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst. In order to establish a paradigm for metal-support interactions using colloidally synthesized Pt nanoparticles the ability of the organic capping agent to inhibit reactivity and interaction with the support must first be assessed. Pt nanoparticles capped by poly(vinylpyrrolidone) (PVP), and those from which the PVP is removed by UV light exposure, are investigated for two reactions, the hydrogenation of ethylene and the oxidation of methanol. It is shown that prior to PVP removal the particles are moderately active for both reactions. Following removal, the activity for the two reactions diverges, the ethylene hydrogenation rate increases 10-fold, while the methanol oxidation rate decreases 3-fold. To better understand this effect the capping agent prior to, and the residual carbon remaining after UV treatment are probed by sum frequency generation vibrational spectroscopy. Prior to removal no major differences are observed when the particles are exposed to alternating H2 and O2 environments. When the PVP is removed, carbonaceous fragments remain on the surface that dynamically restructure in H2 and O2. These fragments create a tightly bound shell in an oxygen environment and a porous coating of hydrogenated carbon in the hydrogen environment. Reaction rate measurements of thermally cleaned PVP and oleic acid capped particles show this effect to be independent of cleaning method or capping agent. In all this demonstrates the ability of the capping agent to mediate nanoparticle catalysis

  1. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nicholas H. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dong, Hui [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliver, Thomas A. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-28

    Two dimensional electronic spectroscopy has proven to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  2. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  3. Interfacial Infrared Vibrational Spectroscopy.

    Science.gov (United States)

    1986-07-30

    aqueous sulphuric acid has been used as the electrolyte, bands in the 900 to 1250 cmŕ region are often observed, and these can be assigned to...high angles of incidence. Fig. 2 shows that Ep is maximized for angles of incidence near 80. For aqueous acid solutions the largest angle of incidence...from a change in dielectric function of the electrode producing a difference in reflectivity of the electrode at the two potentials defining the

  4. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  5. Analytical research of vibration and far-field acoustic radiation of cylindrical shell immersed at finite depth

    Directory of Open Access Journals (Sweden)

    GUO Wenjie

    2017-08-01

    Full Text Available Aiming at the current lack of analytical research concerning the cylindrical shell-flow field coupling vibration and sound radiation system under the influence of a free surface, this paper proposes an analytical method which solves the vibration response and far-field acoustic radiation of a finite cylindrical shell immersed at a finite depth. Based on the image method and Graf addition theorem, the analytical expression of the fluid velocity potential can be obtained, then combined with the energy functional of the variation method to deduce the shell-liquid coupling vibration equation, which can in turn solve the forced vibration response. The research shows that, compared with an infinite fluid, a free surface can increase at the same order of resonance frequency; but as the depth of immersion gradually increases, the mean square vibration velocity tends to become the same as that in an infinite fluid. Compared with numerical results from Nastran software, this shows that the present method is accurate and reliable, and has such advantages as a simple method and a small amount of calculation. The far-field radiated pressure can be obtained by the vibration response using the Fourier transformation and stationary phase method. The results indicate that the directivity and volatility of the far-field acoustic pressure of a cylindrical shell is similar to that of an acoustical dipole due to the free surface. However, the far-field acoustic pressure is very different from the vibration characteristics, and will not tend to an infinite fluid as the submerging depth increases. Compared with the numerical method, the method in this paper is simpler and has a higher computational efficiency. It enables the far-field acoustic radiation of an underwater cylindrical shell to be predicted quickly under the influence of external incentives and the free surface, providing guiding significance for acoustic research into the half space structure vibration

  6. Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach

    Science.gov (United States)

    Jalkanen, K. J.; Jürgensen, V. Würtz; Claussen, A.; Rahim, A.; Jensen, G. M.; Wade, R. C.; Nardi, F.; Jung, C.; Degtyarenko, I. M.; Nieminen, R. M.; Herrmann, F.; Knapp-Mohammady, M.; Niehaus, T. A.; Frimand, K.; Suhai, S.

    We report on our work with vibrational absorption, vibrational circular dichroism, Raman scattering, Raman optical activity, and surface-enhanced Raman spectroscopy to study protein and DNA structure, hydration, and the binding of ligands, drugs, pesticides, or herbicides via a combined theoretical and experimental approach. The systems we have studied systematically are the amino acids (L-alanine, L-tryptophan, and L-histidine), peptides (N-4271 acetyl L-alanine N?-methyl amide, N-acetyl L-tryptophan N?-methyl amide, N-acetyl L-histidine N?-methyl amide, L-alanyl L-alanine, tri-L-serine, N-acetyl L-alanine L-proline L-tyrosine N?-methyl amide, Leu-enkephalin, cyclo-(gly-L-pro)3, N-acetyl (L-alanine)n N?-methyl amide), 3-methyl indole, and a variety of small molecules (dichlobenil and 2,6-dochlorobenzamide) of relevance to the protein systems under study. We have used molecular mechanics, the SCC-DFTB, SCC-DFTB+disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties of these molecules in their various environments. The application of these spectroscopies to biophysical and environmental assays is expanding, and therefore a thorough understanding of the phenomenon from a rigorous theoretical basis is required. In addition, we give some exciting and new preliminary results which allow us to extend our methods to even larger and more complex systems. The work presented here is the current state of the art to this ever and fast changing field of theoretical spectroscopic interpretation and use of VA, VCD, Raman, ROA, EA, and ECD spectroscopies.

  7. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  8. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 850 and 1020 cm-1

    Science.gov (United States)

    McKellar, A. R. W.; Billinghurst, B. E.; Xu, Li-Hong; Lees, R. M.

    2015-11-01

    Using spectra obtained at the Canadian Light Source synchrotron radiation facility, a previously unobserved out-of-plane vibration of trans-acrolein (propenal) is reliably assigned for the first time. Its origin is at 1002.01 cm-1, which is about 20 cm-1 higher than usually quoted in the past. This mode is thus labelled as v14, leaving the label v15 for the known vibration at 992.66 cm-1. Weak combination bands 171182 ← 182, 171131 ← 131, 121182 ← 181, and 171182 ← 181 are studied for the first time, and assignments in the known v11, v16, and v15 fundamental bands are also extended. The seven excited vibrations involved in these bands are analyzed, together with five more unobserved vibrations in the same region (850-1020 cm-1), in a large 12-state simultaneous fit which accounts for most of the many observed perturbations in the spectra.

  9. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  10. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  11. Research on a Composite Power-Superimposed Ultrasonic Vibrator for Wire Drawing

    Directory of Open Access Journals (Sweden)

    Shen Liu

    2016-01-01

    Full Text Available Vibration power and amplitude are essential factors in ultrasonic drawing processes, especially for difficult-to-draw materials like titanium and its alloys. This paper presents a new composite power-superimposed ultrasonic vibrator for wire drawing which was driven by three separate ultrasonic transducers. The transducers were uniformly distributed around the circular cross section of the vibrator, with their axes along the radial direction and pointing to the center. The vibrator can concentrate the vibrational energy of multiple transducers and transform the radial vibration into a longitudinal vibrator because of the Poisson effect and therefore output larger vibration power and amplitude. In the paper, the four-terminal network method was used to establish the vibration equations of the vibrator. The FE model was established in ANSYS to investigate its characteristics under various excitation conditions. A prototype was manufactured and measurements were performed to verify the validation of FEA results. The results matched well with the theoretical results. It was found that the composite vibrator achieved an amplitude of about 40 μm when driven by square wave signals with 120° in phase difference, which implies a potential way of applying ultrasonic vibration to the processing of difficult-to-draw materials.

  12. Vibrational spectroscopy of the G...C base pair: Experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings

    Czech Academy of Sciences Publication Activity Database

    Brauer, B.; Gerber, R. B.; Kabeláč, Martin; Hobza, Pavel; Bakker, J. M.; Abo-Riziq, A.; Vries de, M. S.

    2005-01-01

    Roč. 109, - (2005), s. 6974-6984 ISSN 1089-5639 Grant - others:NSF(US) CHE-0244341 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids bases * vibrational spectrum * frequencies anharmonicity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.898, year: 2005

  13. Research and design of underwater flow-induced vibration energy harvester based on Karman vortex street

    Science.gov (United States)

    Yao, Gang; Wang, Hai; Yang, Chunlai; Wen, Li

    2017-03-01

    With the increasing development of wireless sensor network (WSN), power supply for WSN nodes had attracted increasing attention, and the energy harvesting system based on Karman vortex street has been widely used in underwater WSN. But the research of the influences of affecting factors towards the energy harvesting system is yet to be completed. So, in this paper, an underwater flow-induced vibration energy harvesting system based on Karman vortex street was proposed and tested. The influence of bluff body geometry and flow velocity towards the performance of the energy harvesting has been researched. The results showed that the output voltage increased as the diameter of bluff body and the water velocity increase. The power generation efficiency was the best when the shape of bluff body was circular.

  14. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    Science.gov (United States)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-03-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations <= 50 mg m-3, providing a new method for vibration controlling of ESP.

  15. Research and development of energy harvesting from vibrations and human motions (Conference Presentation)

    Science.gov (United States)

    Liao, Wei-Hsin

    2017-04-01

    Most of the ambient energy, which was regarded useless in the past, now is under the spotlight. With the rapid developments on low power electronics, future personal mobile devices and remote sensing systems might become self-powered by scavenging energy in different forms from their surroundings. Kinetic energy is one of the promising energy forms in our living environment, e.g., human motions and vibrations. We have proposed an energy flow to clarify the functions of piezoelectric energy harvesting, dissipation, and their effects on the structural damping of vibrating structures. Impedance modeling and analysis were performed. We have designed an improved self-powered switching interface for piezoelectric energy harvesting circuits. With electromagnetic transduction, we also proposed a knee-mounted energy harvester that could convert the mechanical power from knee joints into electricity during walking. On the other hand, we have developed magnetorheological (MR) fluid devices with multiple functions, including rotary actuators and linear dampers. Multifunctional rotary actuator was designed to integrate motor/generator part and MR fluids into a single device. The actuator could function as motor, generator, clutch and brake, with compact size and good energy efficiency. In addition, novel self-sensing MR dampers with power generation, so as to integrate the dynamic sensing, controllable damping and power generation functions, were developed and investigated. Prototypes were fabricated and tested. The developed actuators were promising for various applications. In this paper, related research in energy harvesting done at The Chinese University of Hong Kong and key results will be presented.

  16. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  17. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    Directory of Open Access Journals (Sweden)

    Zhou Yiheng

    2017-01-01

    Full Text Available Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major structural parameters are analysed by finite element method, which is conductive to the design and optimization of the tubular horizontal-gap passive magnetic levitation vibration isolator. The force characteristics of different topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are compared and evaluated from the aspect of force density, force ripple and manufacturability. In comparison with conventional passive magnetic levitation vibration isolators, the proposed tubular horizontal-gap passive magnetic levitation vibration isolator shows advantage in higher force density.

  18. Imaging spectroscopy of the missing REMPI bands of methyl radicals: Final touches on all vibrational frequencies of the 3p Rydberg states.

    Science.gov (United States)

    Pan, Huilin; Liu, Kopin

    2018-01-07

    (2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them-including partially and fully deuterated isotopologs-four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands-CHD2(611), CH2D(311), CH2D(511), and CH2D(611)-are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.

  19. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  20. Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS

    Directory of Open Access Journals (Sweden)

    Cîntă-Pînzaru Simona

    2012-07-01

    Full Text Available Abstract Background Aiming to obtain the highest triterpene content in the extraction products, nine bark samples from the forest abundant flora of Apuseni Mountains, Romania were Raman spectroscopically evaluated. Three different natural extracts from Betula pendula Roth birch bark have been obtained and characterized using Fourier transform vibrational spectra. Results This study shows that principal components of the birch tree extract can be rapidly recognized and differentiated based on their vibrational fingerprint band shape and intensity. The vibrational spectroscopy results are supported by the GC-MS data. Based on IR and Raman analysis, one can conclude that all the extracts, independent on the solvent(s used, revealed dominant betulin species, followed by lupeol. Conclusions Since Raman measurements could also be performed on fresh plant material, we demonstrated the possibility to apply the present results for the prediction of the highest triterpene content in bark species, for the selection of harvesting time or individual genotypes directly in the field, with appropriate portable Raman equipment.

  1. Vibrational Spectrum of an Excited State and Huang-Rhys Factors by Coherent Wave Packets in Time-Resolved Fluorescence Spectroscopy.

    Science.gov (United States)

    Lee, Gyeongjin; Kim, Junwoo; Kim, So Young; Kim, Dong Eon; Joo, Taiha

    2017-03-17

    Coherent nuclear wave packet motions in an electronic excited state of a molecule are measured directly by time-resolved spontaneous fluorescence spectroscopy with an unprecedented time resolution by using two-photon absorption excitation and fluorescence upconversion by noncollinear sum frequency generation. With an estimated time resolution of approximately 25 fs, wave packet motions of vibrational modes up to 1600 cm(-1) are recorded for coumarin 153 in ethanol. Two-color transient absorption at 13 fs time resolution are measured to confirm the result. Vibrational displacements between the ground and excited states and Huang-Rhys factors (HRFs) are calculated by quantum mechanical methods and are compared with the experimental results. HRFs calculated by density functional theory (DFT) and time-dependent DFT reproduce the experiment adequately. This fluorescence-based method provides a unique and direct way to obtain the vibrational spectrum of a molecule in an electronic excited state and the HRFs, as well as the dynamics of excited states, and it might provide information on the structure of an excited state through the HRFs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  3. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  4. Oriented single-crystal nuclear resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)]: quantitative assessment of the trans effect of NO.

    Science.gov (United States)

    Lehnert, Nicolai; Sage, J Timothy; Silvernail, Nathan; Scheidt, W Robert; Alp, E Ercan; Sturhahn, Wolfgang; Zhao, Jiyong

    2010-08-02

    This paper presents oriented single-crystal Nuclear Resonance Vibrational Spectroscopy (NRVS) data for the six-coordinate (6C) ferrous heme-nitrosyl model complex [(57)Fe(TPP)(MI)(NO)] (1; TPP(2-) = tetraphenylporphyrin dianion; MI = 1-methylimidazole). The availability of these data enables for the first time the detailed simulation of the complete NRVS data, including the porphyrin-based vibrations, of a 6C ferrous heme-nitrosyl, using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Importantly, the Fe-NO stretch is split by interaction with a porphyrin-based vibration into two features, observed at 437 and 472 cm(-1). The 437 cm(-1) feature is strongly out-of-plane (oop) polarized and shows a (15)N(18)O isotope shift of 8 cm(-1) and is therefore assigned to nu(Fe-NO). The admixture of Fe-N-O bending character is small. Main contributions to the Fe-N-O bend are observed in the 520-580 cm(-1) region, distributed over a number of in-plane (ip) polarized porphyrin-based vibrations. The main component, assigned to delta(ip)(Fe-N-O), is identified with the feature at 563 cm(-1). The Fe-N-O bend also shows strong mixing with the Fe-NO stretching internal coordinate, as evidenced by the oop NRVS intensity in the 520-580 cm(-1) region. Very accurate normal mode descriptions of nu(Fe-NO) and delta(ip)(Fe-N-O) have been obtained in this study. These results contradict previous interpretations of the vibrational spectra of 6C ferrous heme-nitrosyls where the higher energy feature at approximately 550 cm(-1) had usually been associated with nu(Fe-NO). Furthermore, these results provide key insight into NO binding to ferrous heme active sites in globins and other heme proteins, in particular with respect to (a) the effect of hydrogen bonding to the coordinated NO and (b) changes in heme dynamics upon NO coordination. [Fe(TPP)(MI)(NO)] constitutes an excellent model system for ferrous NO adducts of myoglobin (Mb) mutants where the distal histidine (His64

  5. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    OpenAIRE

    Zhou Yiheng; Kou Baoquan; Yang Xiaobao; Luo Jun; Zhang He

    2017-01-01

    Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major ...

  6. Simulation of vibrational energy transfer in two-dimensional infrared spectroscopy of amide I and amide II modes in solution

    NARCIS (Netherlands)

    Bloem, Robbert; Dijkstra, Arend G.; Jansen, Thomas La Cour; Knoester, Jasper

    2008-01-01

    Population transfer between vibrational eigenstates is important for many phenomena in chemistry. In solution, this transfer is induced by fluctuations in molecular conformation as well as in the surrounding solvent. We develop a joint electrostatic density functional theory map that allows us to

  7. Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Tominaga, Keisuke, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013 (Japan); Hayashi, Michitoshi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp; Wang, Houng-Wei [Center for Condensed Matter Sciences, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan (China); Kambara, Ohki; Sasaki, Tetsuo [Research Institute of Electronics, Shizuoka University, 3-5-1 Jyohoku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Nishizawa, Jun-ichi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Jun-ichi Nishizawa Memorial Research Center, Tohoku University, 519-1176 Aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan)

    2014-05-07

    The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.

  8. Rotational Dependence of Intramolecular Dynamics in Acetylene at Low Vibrational Excitation as Deduced from High Resolution Spectroscopy

    Science.gov (United States)

    Perry, David S.; Miller, Anthony; Amyay, B.; Fayt, A.; Herman, M.

    2010-06-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), X1Σg+ with up to 8,600 wn of vibrational energy. This comparison is based on the extensive knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities for intramolecular vibrational redistribution (IVR) are first investigated for the ν4+ν5 and ν3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φd, the IVR lifetime τIVR, and the recurrence time τrec. For the two bright states ν3+2ν4 and 7ν4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7ν4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states. B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys., 131, 114301 (2009).

  9. Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and CH stretching vibrations.

    Science.gov (United States)

    Mihály, Judith; Deák, Róbert; Szigyártó, Imola Csilla; Bóta, Attila; Beke-Somfai, Tamás; Varga, Zoltán

    2017-03-01

    Extracellular vesicles isolated by differential centrifugation from Jurkat T-cell line were investigated by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Amide and CH stretching band intensity ratios calculated from IR bands, characteristic of protein and lipid components, proved to be distinctive for the different extracellular vesicle subpopulations. This proposed 'spectroscopic protein-to-lipid ratio', combined with the outlined spectrum-analysis protocol is valid also for low sample concentrations (0.15-0.05mg/ml total protein content) and can carry information about the presence of other non-vesicular formations such as aggregated proteins, lipoproteins and immune complexes. Detailed analysis of IR data reveals compositional changes of extracellular vesicles subpopulations: second derivative spectra suggest changes in protein composition from parent cell towards exosomes favoring proteins with β-turns and unordered motifs at the expense of intermolecular β-sheet structures. The IR-based protein-to-lipid assessment protocol was tested also for red blood cell derived microvesicles for which similar values were obtained. The potential applicability of this technique for fast and efficient characterization of vesicular components is high as the investigated samples require no further preparations and all the different molecular species can be determined in the same sample. The results indicate that ATR-FTIR measurements provide a simple and reproducible method for the screening of extracellular vesicle preparations. It is hoped that this sophisticated technique will have further impact in extracellular vesicle research. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  11. EPR spectroscopy as a tool in homogeneous catalysis research

    NARCIS (Netherlands)

    Goswami, M.; Chirila, A.; Rebreyend, C.; de Bruin, B.

    2015-01-01

    In the context of homogeneous catalysis, open-shell systems are often quite challenging to characterize. Nuclear magnetic resonance (NMR) spectroscopy is the most frequently applied tool to characterize organometallic compounds, but NMR spectra are usually broad, difficult to interpret and often

  12. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  13. Structural characterization, vibrational spectroscopy accomplished with DFT calculation, thermal and dielectric behaviors in a new organic-inorganic tertrapropylammonium aquapentachlorostannate dihydrate compound

    Energy Technology Data Exchange (ETDEWEB)

    Hajlaoui, Sondes, E-mail: hajlaouisondes@yahoo.fr [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Chaabane, Iskandar [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Lhoste, Jérôme; Bulou, Alain [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085, Le Mans, Cedex 9 (France); Guidara, Kamel [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia)

    2016-09-15

    In this work a novel compound tertrapropylammonium aquapentachlorostannate dihydrate was synthesized and characterized by; single crystal X-ray diffraction, vibrational spectroscopy, differential scanning calorimetric and dielectric measurement. The crystal structure refinement at room temperature reveled that this later belongs to the monoclinic compound with P121/c1 space group with the following unit cell parameters a = 8.2699(3) Å, b = 12.4665(4) Å, c = 22.3341(7) Å and β = 92.94(0)°. The crystal arrangement can be described by stacked organic-inorganic layers in the c direction with two independent water molecules placed between each two layers. The detailed interpretations of the vibrational properties of the studied compound were performed using density functional theory (DFT) with the B3LYP/LanL2DZ basis set, and has enabled us to make the detailed assignments by comparative study of the experimental and calculated Raman and IR spectra. The differential scanning calorimetry (DSC) measurement disclosed two anomalies in the temperature range 356–376 (T{sub 1}) K and at 393 K (T{sub 2}) characterized by the dehydration of the sample and probably a reconstruction of a new structure after T{sub 2} transition. The temperature dependences of dielectric permittivity show a relaxation process around T{sub 2} anomaly indicating the occurrence of the disorder at high temperature. The dependence of the exponent m(T) on temperature, extracted from the straight lines of log(ε″) with log (ω), suggests that the correlated barrier hopping is the appropriate model for the conduction mechanism. - Highlights: • The single-crystal X-ray diffraction has been performed. • The assignments of the vibration modes based on DFT were reported and discussed. • Differential scanning calorimetric reveals the presence of two endothermic peaks. • The electric permittivity was studied using the impedance measurements. • The CBH is the appropriate model for the conduction

  14. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang

    2017-08-01

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.

  15. Amine Chemistry at Aqueous Interfaces: The Study of Organic Amines in Neutralizing Acidic Gases at an Air/Water Surface Using Vibrational Sum Frequency Spectroscopy

    Science.gov (United States)

    McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.

    2014-12-01

    Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.

  16. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M; Prates, Luciana L; Yu, Peiqiang

    2017-08-05

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Interpenetrating polymer network membranes for fuel cells: infrared vibrational spectroscopy; Membranes baseadas dm redes polimericas interpenetrantes para celulas a combustivel: estudo por espectroscopia vibracional no infravermelho

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro, RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, proton conductive membranes based on IPN matrices doped with H{sub 3}PO{sub 4} were developed. The characterization by infrared vibrational spectroscopy evidenced the polymerization of DGEBA and the immobilization of PEI chains, originating a structure containing basic sites suitable for proton coordination and conduction. The FTIR characterization evidenced the polymerization of DGEBA in the presence of PEI thus forming Semi-IPN membranes which, after doped with H{sub 3}PO{sub 4}, exhibited conductivity values of 10{sup -4} W{sup -1}cm{sup -1} at room temperature and 10{sup -3} {omega}{sup -1}cm{sup -1} at 80 degree C, as well as a dependency of conductivity with temperature following the Arrhenius model. The activation energy values (14,33 and 12,96 kJ.mol{sup -1}) indicated a proton conduction mechanism predominantly vehicular in the matrices studied under 100% relative humidity. (author)

  18. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles

    KAUST Repository

    Aliaga, Cesar

    2011-04-28

    Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanoparticles of 7 nm average size, synthesized by colloidal methods and cleaned by ultraviolet light and ozone treatment. Reactions carried out at atmospheric pressure in the temperature range of 20-120 °C produced dihydro and tetrahydro species, as well as ring-opening products (alcohols) and ring-cracking products, showing high selectivity toward ring opening throughout the entire temperature range. The aromatic rings (MF and DMF) adsorbed parallel to the nanoparticle surface. Results yield insight into various surface reaction intermediates and the reason for the significantly lower selectivity for ring cracking in DMF hydrogenation compared to MF hydrogenation. © 2011 American Chemical Society.

  19. Proton conducting system (ImH2)2SeO4·2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO4·2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  20. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail: H.G.M.Edwards@bradford.ac.uk; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)

    2008-07-14

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  1. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  2. New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Functional Theory Calculations, and Vibrational Spectroscopy.

    Science.gov (United States)

    Wang, Shaofeng; Ma, Xu; Zhang, Guoqing; Jia, Yongfeng; Hatada, Keisuke

    2016-11-15

    Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO4)x(H2AsO4)1-x(OH)y·zH2O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO4 tetrahedra and FeO6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.

  3. The Multi一physics Research on I ron一Core Vibration Noise of Power Reactor

    Directory of Open Access Journals (Sweden)

    LI U Ja

    2017-02-01

    Full Text Available On the basis of theoretical research releted to the magnetostriction and maxwell’.s equations,the fi- nite element coupling in the transient electromagnetic field coupling,structure and sound field coupling has been developed In thts paper by using the flnlte element sOftWare CO}IS01., Whleh establish a serles three-phase COT’e re- actor model, to analyzing the power frequency magnetic field distribution,core magnetostrictive displacement,max- well force displacement and sound pressure level of the three-phase series core reactor under the power frequency working state. According to transient magnetic field distribution in the simulation of the reactor,the magnetic flux density distribution inside the reactor and the vibration displacement distribution are calculated,the acoustic field distribution is measured alao. It is shown that physical field simulation results and measured data are basically in consisent by experiment,it is proved multi-physics coupling is an effective method for forecast of noise.

  4. Research of the incubation and hybridization instrument with vibration for nanoparticles.

    Science.gov (United States)

    Liu, Zheng; Deng, Yan; Li, Qihua; Liu, Bin; Xia, Yun; Du, Yuhang; He, Nongyue

    2012-11-01

    Nanoparticles are the largest and most widely used nanomaterial in biomedical research nowadays, which are always used in solution. However, traditional techniques, such as hybridization oven are not appropriate for the incubation and hybridization of nanoparticles. Thus designing and developing an effective method and instrument for hybridization of nanoparticles is very essential to solve these present problems. This paper introduced and successfully designed a hybridization instrument, including insulated and closed chamber, temperature control system, motion control system input and output control system. The instrument can not only control temperature precisely to meet various requirements for chemical and biological molecule's incubation and hybridization on nanomaterials, but also make liquid flow slowly and shake according to a certain frequency for mixing to improve hybridization efficiency significantly. The control algorithm of temperature applied PID and fuzzy-PID, the accuracy is improved and stable. Vibration is the most obvious and advantageous feature of the instrument. Furthermore the core control system was improved whose core is C8051F060 MCU and designed into panel.

  5. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of ^{12}C_2H_2 and ^{12}C_2D_2

    Science.gov (United States)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Symmetric molecules have no permanent dipole moment and are undetectable by rotational spectroscopy. Their interstellar observations have previously been limited to mid-infrared vibration-rotation spectroscopy. Although relatively weak, vibrational difference bands provide a means for detection of non polar molecules by terahertz techniques with microwave precision. Herschel, SOFIA, and ALMA have the potential to identify a number of difference bands of light symmetric species, e.g., C_2H_2, CH_4 and C_3. This paper reports the results of the laboratory study on ^{12}C_2H_2 and ^{12}C_2D_2. The symmetric isotopomers of acetylene have two bending modes, the trans bending ν_4 (^1{π}_g), and the cis bending ν_5 (^1{π}_u). For ^{12}C_2H_2, the two bending modes occur at 612 and 729 cm^{-1}, respectively. For ^{12}C_2D_2, the two bending modes occur at 511 and 538 cm^{-1}. The ν_5-ν_4 difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 117 cm^{-1} (3500 GHz) for ^{12}C_2H_2 and 27 cm^{-1} (900 GHz) for ^{12}C_2D_2. Two hundred and fifty-one ^{12}C_2D_2 transitions, which are from ν_5-ν_4, (ν_5+ν_4)-2ν_4 and 2ν_5-(ν_5+ν_4) bands, have been measured in the 0.2-1.6 THz region, and 202 of them were observed for the first time. The precision of these measurements is estimated to be from 50 kHz to 100 kHz. A multistate analysis was carried out for the bending vibrational modes ν_4 and ν_5 of ^{12}C_2D_2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for ^{12}C_2D_2 by adding the new measurements to the old data set which had only 10 lines with microwave measurement precision. The experiments on ^{12}C_2H_2 are in progress and ten P branch lines have been observed. We will present the ^{12}C_2H_2 results to date.

  6. Active vibrations and noise control for turboprop application research program activities

    Science.gov (United States)

    Paonessa, A.; Concilio, A.; Lecce, Leonardo V.

    1992-01-01

    The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.

  7. Microelemental and mineral compositions of pathogenic biomineral concrements: SRXFA, X-ray powder diffraction and vibrational spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, T.N. [Institute of Geology and Mineralogy, SB RAS, Pr. Akad. Koptyuga, 3, 630090 Novosibirsk (Russian Federation)], E-mail: moroz@uiggm.nsc.ru; Palchik, N.A.; Dar' in, A.V. [Institute of Geology and Mineralogy, SB RAS, Pr. Akad. Koptyuga, 3, 630090 Novosibirsk (Russian Federation)

    2009-05-11

    X-ray fluorescence analysis using synchrotron radiation (SRXRF), X-ray powder diffraction, infrared and Raman spectroscopy had been applied for determination of microelemental and mineral composition of the kidney stones, gallstones and salivalities from natives of Novosibirsk and Novosibirsk region, Russia. The relationship between mineral, organic and microelemental composition of pathogenic calcilus was shown.

  8. Experimental and numerical characterization of a mid-infrared plasmonic perfect absorber for dual-band enhanced vibrational spectroscopy

    Science.gov (United States)

    Aslan, Erdem; Aslan, Ekin; Turkmen, Mustafa; Saracoglu, Omer Galip

    2017-11-01

    Plasmonic perfect absorbers (PPAs) have promising properties to be utilized in molecular sensing and spectroscopy applications such as surface enhanced infrared absorption (SEIRA) and surface enhanced Raman spectroscopy (SERS). In order to employ these properties and demonstrate the great potential of PPAs, investigation and demonstration of PPA designs and their sensing applications are highly needed. In this context, we present the design, optical characterization, experimental realization and dual-band sensing application of a subwavelength PPA array for infrared detection and surface enhanced spectroscopy applications. We analyze the PPA to investigate the absorption spectra and the fine-tuning mechanism through the parameter sweep simulations and experiments. In order to understand the absorption mechanism, we investigate the charge and current density distribution maps with electric and magnetic field enhancement effects. Additionally, we demonstrate the potential usage and reliability of the proposed PPA by presenting the experimental results of the dual-band detection of a conformal polymethyl methacrylate layer with nanometer-scale thickness atop the PPA. According to the experimental and simulation results of this study, the proposed PPA can be utilized in multiband molecular detection and high sensitive spectroscopy applications.

  9. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  10. Water Orientation at Ceramide/Water Interfaces Studied by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulation

    KAUST Repository

    Adhikari, Aniruddha

    2016-10-10

    Lipid/water interaction is essential for many biological processes. The water structure at the nonionic lipid interface remains little known, and there is no scope of a priori prediction of water orientation at nonionic interfaces, either. Here, we report our study combining advanced nonlinear spectroscopy and molecular dynamics simulation on the water orientation at the ceramide/water interface. We measured χ spectrum in the OH stretch region of ceramide/isotopically diluted water interface using heterodyne-detected vibrational sum-frequency generation spectroscopy and found that the interfacial water prefers an overall hydrogen-up orientation. Molecular dynamics simulation indicates that this preferred hydrogen-up orientation of water is determined by a delicate balance between hydrogen-up and hydrogen-down orientation induced by lipid-water and intralipid hydrogen bonds. This mechanism also suggests that water orientation at neutral lipid interfaces depends highly on the chemical structure of the lipid headgroup, in contrast to the charged lipid interfaces where the net water orientation is determined solely by the charge of the lipid headgroup.

  11. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, Saskia [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  12. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  13. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations.

    Science.gov (United States)

    Singh, Harshita; Singh, Swapnil; Srivastava, Anubha; Tandon, Poonam; Bharti, Purnima; Kumar, Sudhir; Maurya, Rakesh

    2014-01-01

    Daidzein (C15H10O4) is a type of isoflavone. It was isolated from Butea monosperma that belongs to the Fabaceae family. Soybeans and soy products are the abundant source of daidzein. It is the subject of investigation for many reasons, as it has got wide applications, such as anti-tumor, anti-estrogen, weak pro-estrogen and anti-cancer activities. In the present study, a complete vibrational assignment is provided for the observed IR and Raman spectra of daidzein. Electronic properties have been analyzed using TD-DFT method for both gaseous and solvent phase. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of daidzein have been determined using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and a good correlation was found between observed and calculated values. The double well potential energy curve of the molecule about three bonds, has been plotted, as obtained from DFT/6-31G basis. The HOMO-LUMO energy gap of possible conformers has been calculated for comparing their chemical activity. Global reactivity descriptors have been calculated for predicting the chemical reactivity and the stability of chemical systems. Electrostatic potential surface has been plotted for predicting the structure activity relationship. NBO analysis has also been performed to study the stability of the molecule. NLO study reveals the nonlinear properties of the molecule. 1H and 13C NMR spectra have also been studied. Finally, the calculated results were used to simulate infrared and Raman spectra of the title compound which showed a good agreement with the observed spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Study of conformational stability, structural, electronic and charge transfer properties of cladrin using vibrational spectroscopy and DFT calculations.

    Science.gov (United States)

    Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh

    2014-11-11

    In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast.

    Science.gov (United States)

    Totachawattana, Atcha; Liu, Hui; Mertiri, Alket; Hong, Mi K; Erramilli, Shyamsunder; Sander, Michelle Y

    2016-01-01

    We report on a mid-infrared photothermal spectroscopy system with a near-infrared fiber probe laser and a tunable quantum cascade pump laser. Photothermal spectra of a 6 μm-thick 4-octyl-4'-cyanobiphenyl liquid crystal sample are measured with a signal-to-baseline contrast above 103. As both the peak photothermal signal and the corresponding baseline increase linearly with probe power, the signal-to-baseline contrast converges to an asymptotic limit for a given pump power. This limit is independent of the probe power and characterizes the best contrast achievable for the system. This enables sensitive quantitative spectral characterization of linear infrared absorption features directly from photothermal spectroscopy measurements.

  16. Concorde noise-induced building vibrations: International Airport Dulles. [studies by Langley Research Center

    Science.gov (United States)

    Mayes, W. H.; Scholl, H. F.; Stephens, D. G.; Holliday, B. G.; Deloach, R.; Finley, T. D.; Holmes, H. K.; Lewis, R. B.; Lynch, J. W.

    1977-01-01

    A series of studies were conducted to assess the noise-induced building vibrations associated with Concorde operations. The vibration levels of windows, walls, and floors were measured along with the associated noise levels of Concorde, subsonic aircraft and some nonaircraft events. Test sites included Sully Plantation which is adjacent to Dulles International Airport and three residential homes located in Montgomery County, Maryland. The measured vibration response levels due to Concorde operations were found to be: (1) higher than the levels due to other aircraft, (2) less than the levels due to certain household events which involve direct impulsive loading such as door and window closing, (3) less than criteria levels for building damage, and (4) comparable to levels which are perceptible to people.

  17. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe; Fan, Shangchun [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Zhao, Xiaomeng [Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of medical Sciences and Peking Union Medical College, Tianjin 300192 (China)

    2015-10-15

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  18. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gracias, David Hugo [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  19. Vibrational spectroscopy characterization of low level laser therapy on mammary culture cells: a micro-FTIR study

    Science.gov (United States)

    Magrini, Taciana D.; Villa dos Santos, Nathalia; Pecora Milazzotto, Marcella; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2011-03-01

    Low level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably go from the photobiostimulation/photobioinibition at cellular level to the molecular level. The detailed mechanism underlying this effect is still obscure. This work is dedicated to quantify some relevant aspects of LLLT related to molecular and cellular variations. This goal was attached by exposing malignant breast cells (MCF7) to spatially filtered light of a He-Ne laser (633 nm) with 28.8 mJ/cm2 of fluency. The cell viability was evaluated by microscopic observation using Trypan Blue viability test. The vibrational spectra of each experimental group (micro- FTIR technique) were used to identify the relevant biochemical alterations occurred due the process. The red light had influence over RNA, phosphate and serine/threonine/tyrosine bands. Light effects on cell number or viability were not detected. However, the irradiation had direct influence on metabolic activity of cells.

  20. DFT approach to (benzylthio)acetic acid: Conformational search, molecular (monomer and dimer) structure, vibrational spectroscopy and some electronic properties

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna

    2018-01-01

    The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.

  1. Conformational analysis and vibrational spectroscopy of a paracetamol analogous: 2-Bromo-N-(2-hydroxy-5-methylphenyl)-2-methylpropanamide

    Science.gov (United States)

    Viana, Rommel B.; Quintero, David E.; Viana, Anderson B.; Moreno-Fuquen, Rodolfo

    2017-11-01

    We conducted an experimental and quantum chemical investigation of the electronic properties and vibrational mode couplings of a structure analogous to a paracetamol (acetaminophen): 2-Bromo-N-(2-hydroxy-5-methylphenyl)-2-methylpropanamide. The spectroscopic and electronic properties were carried out with the PBE1PBE functional, and G3MP2 was used to predict the heat of formation. Among the E/Z stereoisomers, we showed that the energy gap ranged from 3 to 10 kcal mol-1; the relative stability among the regioisomers (involving the different positions of the methyl and hydroxyl groups) exhibited energy differences lower than 5 kcal mol-1. A topological analysis using the Quantum Theory of Atoms in Molecules (QTAIM) was performed to determine the intramolecular hydrogen bonds that govern the configuration changes, and the Natural Bond Orbital method was used to estimate the interplay between the steric and electrostatic interactions that stabilized each isomer. It was also estimated the influence of the population methodology in to predict the atomic charge distribution for the title compound.

  2. Research on signal demodulation technology of Mach-Zehnder optical fiber sensor vibration system

    Science.gov (United States)

    Liu, Juncheng; Cheng, Pengshen; Hu, Tong

    2017-08-01

    Mach-Zehnder (M-Z) interferometer is frequently used in optical fiber vibration system. And signal demodulation technology plays an important role in the signal processing of M-Z optical fiber vibration system. In order to accurately get the phase information of the vibration signals, the signal demodulation technique based on M-Z interference principle is studied. In this paper, by analyzing the principles of 3 × 3 fiber coupler homodyne demodulation method and phase-generating carrier (PGC) technology, the advantages and disadvantages of the two demodulation methods for different vibration signal are presented. Then the method of judging signal strength is proposed. The correlation between the demodulation effects and strength of the perturbation signals is analyzed. Finally, the simulation experiments are carried out to compare the demodulation effects of the two demodulation methods, the results demonstrate that PGC demodulation technology has great advantages in weak signals, and the 3 × 3 fiber coupler is more suitable for strong signals.

  3. Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol-dimethylamine complex.

    Science.gov (United States)

    Du, Lin; Mackeprang, Kasper; Kjaergaard, Henrik G

    2013-07-07

    We have measured gas phase vibrational spectra of the bimolecular complex formed between methanol (MeOH) and dimethylamine (DMA) up to about 9800 cm(-1). In addition to the strong fundamental OH-stretching transition we have also detected the weak second overtone NH-stretching transition. The spectra of the complex are obtained by spectral subtraction of the monomer spectra from spectra recorded for the mixture. For comparison, we also measured the fundamental OH-stretching transition in the bimolecular complex between MeOH and trimethylamine (TMA). The enthalpies of hydrogen bond formation (ΔH) for the MeOH-DMA and MeOH-TMA complexes have been determined by measurements of the fundamental OH-stretching transition in the temperature range from 298 to 358 K. The enthalpy of formation is found to be -35.8 ± 3.9 and -38.2 ± 3.3 kJ mol(-1) for MeOH-DMA and MeOH-TMA, respectively, in the 298 to 358 K region. The equilibrium constant (Kp) for the formation of the MeOH-DMA complex has been determined from the measured and calculated transition intensities of the OH-stretching fundamental transition and the NH-stretching second overtone transition. The transition intensities were calculated using an anharmonic oscillator local mode model with dipole moment and potential energy curves calculated using explicitly correlated coupled cluster methods. The equilibrium constant for formation of the MeOH-DMA complex was determined to be 0.2 ± 0.1 atm(-1), corresponding to a ΔG value of about 4.0 kJ mol(-1).

  4. Vibrational spectroscopy and electrophoresis as a "golden means" in monitoring of polysaccharides in medical plant and gels

    Science.gov (United States)

    Pielesz, A.

    In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants.

  5. The use of Mössbauer spectroscopy in environmental research

    Science.gov (United States)

    Waanders, F. B.; Silva, Luis F. O.; Saikia, Binoy K.

    2017-11-01

    will occur if sent to the waste dump. Mössbauer spectroscopy was used to identify the Fe-species and the results were augmented by High Resolution-Transmission Electron microscopy (HR-TEM), Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS, X-Ray Diffraction (XRD) and ICP-EOS results.

  6. Using vibrational infrared biomolecular spectroscopy to detect heat-induced changes of molecular structure in relation to nutrient availability of prairie whole oat grains on a molecular basis.

    Science.gov (United States)

    Rahman, M D Mostafizar; Theodoridou, Katerina; Yu, Peiqiang

    2016-01-01

    To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year. The oat grains were kept as raw (control) or heated in an air-draft oven (dry roasting: DO) at 120 °C for 60 min and under microwave irradiation (MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy. The results showed that rumen degradability of dry matter, protein and starch was significantly lower (P grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.

  7. Surface structures of an amphiphilic tri-block copolymer in air and in water probed using sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Kristalyn, Cornelius B; Lu, Xiaolin; Weinman, Craig J; Ober, Christopher K; Kramer, Edward J; Chen, Zhan

    2010-07-06

    Sum frequency generation (SFG) vibrational spectroscopy has been applied to investigate surface structures of an amphiphilic surface-active block copolymer (SABC) film deposited on a CaF(2) substrate, in air and in water in situ. Developed as a surface-active component of an antifouling coating for marine applications, this amphiphilic triblock copolymer contains both hydrophobic fluorinated alkyl groups as well as hydrophilic ethoxy groups. It was found that surface structures of the copolymer film in air and in water cannot be probed directly using the SFG experimental geometry we adopted because SFG signals can be contributed from the polymer/air (or polymer/water) interface as well as the buried polymer/CaF(2) substrate interface. Using polymer films with varied thicknesses, structural information about the polymer surfaces in air and in water can be deduced from the detected SFG signals. With SFG, surface restructuring of this polymer has been observed in water, especially the methyl and methylene groups change orientations upon contact with water. However, the hydrophobic fluoroalkyl group was present on the surface in both air and water, and we believe that it was held near the surface in water by its neighboring ethoxy groups.

  8. Infrared spectroscopy and Density Functional Theory of crystalline β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β CL-20) in the region of its C-H stretching vibrations

    Science.gov (United States)

    Behler, K. D.; Pesce-Rodriguez, R.; Cabalo, J.; Sausa, R.

    2013-10-01

    Molecular vibrational spectroscopy provides a useful tool for material characterization and model verification. We examine the CH stretching fundamental and overtones of energetic material β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β-CL-20) by Raman spectroscopy, Fourier Transform Infrared Spectroscopy, and Laser Photoacoustic Overtone Spectroscopy, and utilize Density Functional Theory to calculate the C-H bond energy of β-CL-20 in a crystal. The spectra reveal four intense and distinct features, whose analysis yields C-H stretching fundamental frequencies and anharmonicity values that range from 3137 to 3170 cm-1 and 53.8 to 58.8 cm-1, respectively. From these data, we estimate an average value of 42,700 cm-1 (5.29 eV) for the C-H bond energy, a value that agrees with our quantum mechanical calculations.

  9. Vibrational spectroscopy and analytical electron microscopy studies of Fe-V-O and In-V-O thin films

    CERN Document Server

    Vuk, A S; Drazic, G; Colomban, P

    2002-01-01

    Orthovanadate (M sup 3 sup + VO sub 4; M= Fe, In) and vanadate (Fe sub 2 V sub 4 O sub 1 sub 3) thin films were prepared using sol-gel synthesis and dip coating deposition. Using analytical electron microscopy (AEM), the chemical composition and the degree of crystallization of the phases present in the thin Fe-V-O films were investigated. TEM samples were prepared in both orientations: parallel (plan view) and perpendicular (cross section) to the substrate. In the first stages of crystallization, when the particle sizes were in the nanometer range, the classical identification of phases using electron diffraction was not possible. Instead of measuring d values, experimentally selected area electron diffraction (SAED) patterns were compared to calculated (simulated) patterns in order to determine the phase composition. The problems of evaluating the ratio of amorphous and crystalline phases in thin films are reported. Results of TEM and XRD as well as IR and Raman spectroscopy showed that the films made at lo...

  10. Direct probing of photoinduced electron transfer in a self-assembled biomimetic [2Fe2S]-hydrogenase complex using ultrafast vibrational spectroscopy.

    Science.gov (United States)

    Li, Ping; Amirjalayer, Saeed; Hartl, František; Lutz, Martin; de Bruin, Bas; Becker, René; Woutersen, Sander; Reek, Joost N H

    2014-05-19

    A pyridyl-functionalized diiron dithiolate complex, [μ-(4-pyCH2-NMI-S2)Fe2(CO)6] (3, py = pyridine (ligand), NMI = naphthalene monoimide) was synthesized and fully characterized. In the presence of zinc tetraphenylporphyrin (ZnTPP), a self-assembled 3·ZnTPP complex was readily formed in CH2Cl2 by the coordination of the pyridyl nitrogen to the porphyrin zinc center. Ultrafast photoinduced electron transfer from excited ZnTPP to complex 3 in the supramolecular assembly was observed in real time by monitoring the ν(C≡O) and ν(C═O)NMI spectral changes with femtosecond time-resolved infrared (TRIR) spectroscopy. We have confirmed that photoinduced charge separation produced the monoreduced species by comparing the time-resolved IR spectra with the conventional IR spectra of 3(•-) generated by reversible electrochemical reduction. The lifetimes for the charge separation and charge recombination processes were found to be τCS = 40 ± 3 ps and τCR = 205 ± 14 ps, respectively. The charge recombination is much slower than that in an analogous covalent complex, demonstrating the potential of a supramolecular approach to extend the lifetime of the charge-separated state in photocatalytic complexes. The observed vibrational frequency shifts provide a very sensitive probe of the delocalization of the electron-spin density over the different parts of the Fe2S2 complex. The TR and spectro-electrochemical IR spectra, electron paramagnetic resonance spectra, and density functional theory calculations all show that the spin density in 3(•-) is delocalized over the diiron core and the NMI bridge. This delocalization explains why the complex exhibits low catalytic dihydrogen production even though it features a very efficient photoinduced electron transfer. The ultrafast porphyrin-to-NMI-S2-Fe2(CO)6 photoinduced electron transfer is the first reported example of a supramolecular Fe2S2-hydrogenase model studied by femtosecond TRIR spectroscopy. Our results show that TRIR

  11. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, John Andrew [Univ. of California, Berkeley, CA (United States)

    2004-11-24

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm-1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

  12. Understanding and controlling wind-induced vibrations of bridge cables: Results from the Femern Crossing research project

    DEFF Research Database (Denmark)

    Georgakis, Christos T.; Jakobsen, J. B.; Koss, Holger

    of the project has been the establishment of novel vibration mitigation schemes that could be readily, economically, and effectively implemented on a cable-supported bridge that might form part of the fixed link. In support of the proposed research, Femern A/S commissioned a new climatic wind tunnel, designed......Following the successful completion of the Storebælt and Øresund Crossings, the Danish Ministry of Transport appointed Femern A/S to be in charge of preparation, investigations and planning in relation to the establishment of a fixed link across the Fehmarnbelt. To further investigate the causes...

  13. RESEARCH OF THE HIGH HARMONICS INDIVIDUAL BLADE CONTROL EFFECT ON VIBRATIONS CAUSED BY THE HELICOPTER MAIN ROTOR THRUST

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on the blade frequencies is made. It allows reducing the vibration from thrust. Research takes into account the main rotor including and excluding the blade flapping motion. The minimal vibrations regime is identified.Numerical study of variable loads caused by unsteady flow around the main rotor blades at high relative speeds of flight, which transmitted to the rotor hub, is made. The scheme of a thin lifting surface and the rotor vortex theory are used for simulation of the aerodynamic loads on blades. Non - uniform loads caused by the thrust, decomposed on the blade harmonic and its overtones. The largest values of deviation from the mean amplitude thrust are received. The analysis of variable loads with a traditional control system is made. Algorithms of higher harmonics individual blade control capable of reducing the thrust pulsation under the average value of thrust are developed.Numerical research shows that individual blade control of high harmonics reduces variable loads. The necessary change in the blade installation is about ± 0,2 degree that corresponds to the maximum displacement of the additional con- trol stick is about 1 mm.To receive the overall picture is necessary to consider all six components of forces and moments. Control law with own constants will obtained for each of them. It is supposed, that each of six individual blade control laws have an impact on other components. Thus, the problem reduces to the optimization issue. The

  14. Electronic and vibrational Raman spectroscopy of Nd0.5Sr0.5MnO3 ...

    Indian Academy of Sciences (India)

    Scientific Research, Jakkur P.O., Bangalore 560 064, India. 2Solid State and Structural Chemistry Unit; 3Department of Physics, Indian Institute of. Science .... tion of stoichiometric amounts of neodymium acetate, strontium carbonate and manganese dioxide. The initial materials were grounded and heated at 1000◦C.

  15. Research Article

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... Glasses in. ≤x≤15 mol%), have ve been investigated by X-ray differential thermal analysis g and bending vibrations are and SO4. The thermal ential thermal analysis (DTA). /total BO groups ratio of the UV cut off shift to higher ical band gap decrease with the spectroscopy, differential. Research Article.

  16. Research on wall shear stress considering wall roughness when shear swirling flow vibration cementing

    Science.gov (United States)

    Cui, Zhihua; Ai, Chi; Feng, Fuping

    2017-01-01

    When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.

  17. Vibrations and reorientations of NH3 molecules in [Mn(NH3)6](ClO4)2 studied by infrared spectroscopy and theoretical (DFT) calculations.

    Science.gov (United States)

    Hetmańczyk, Joanna; Hetmańczyk, Łukasz; Migdał-Mikuli, Anna; Mikuli, Edward

    2015-02-05

    The vibrational and reorientational motions of NH3 ligands and ClO4(-) anions were investigated by Fourier transform middle-infrared spectroscopy (FT-IR) in the high- and low-temperature phases of [Mn(NH3)6](ClO4)2. The temperature dependencies of full width at half maximum (FWHM) of the infrared bands at: 591 and 3385cm(-1), associated with: ρr(NH3) and νas(N-H) modes, respectively, indicate that there exist fast (correlation times τR≈10(-12)-10(-13)s) reorientational motions of NH3 ligands, with a mean values of activation energies: 7.8 and 4.5kJmol(-1), in the phase I and II, respectively. These reorientational motions of NH3 ligands are only slightly disturbed in the phase transition region and do not significantly contribute to the phase transition mechanism. Fourier transform far-infrared and middle-infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC(c)=137.6K (on cooling), which suggested lowering of the crystal structure symmetry. Infrared spectra of [Mn(NH3)6](ClO4)2 were recorded and interpreted by comparison with respective theoretical spectra calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311+G(d,p) basis set (on H, N, Cl, O atoms) for the isolated equilibrium two models (Model 1 - separate isolated [Mn(NH3)6](2+) cation and ClO4(-) anion and Model 2 - [Mn(NH3)6(ClO4)2] complex system). Calculated optical spectra show a good agreement with the experimental infrared spectra (FT-FIR and FT-MIR) for the both models. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  19. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koffas, Telly Stelianos [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to

  20. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  1. RESEARCH, APPROXIMATION OF CHARACTERISTICS OF PILLOWS OF SEATS AND INFLUENCE ON VIBRATION OF DRIVER OF TRUCK

    Directory of Open Access Journals (Sweden)

    V. G. Mikhailov

    2016-01-01

    Full Text Available Are considered a situation developed in the field of modelling of fluctuations of vehicles (truck, the attention on low vibroisolation properties of seats is focused. One of the reasons which the weak level of scrutiny of real characteristics of a pillow of a seat is. The technique of tests of pillows of seats is resulted, dependences of change of their parametres on a thickness of a layer pad of a pillow and a rubber category are received.The advanced mathematical model of a pillow of the seat, providing good coincidence of the peak-frequency characteristic in a strip of frequencies of 2–20 Hz and the block-schema of its realisation in package MATLAB\\SIMULIK is offered, allowing more to model fluctuations on a workplace of the driver of a vehicle more precisely. Pillow influence on vibration properties of seats is investigated.

  2. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  3. Research on Spillover Effects for Vibration Control of Piezoelectric Smart Structures by ANSYS

    Directory of Open Access Journals (Sweden)

    Xingjian Dong

    2014-01-01

    Full Text Available To control vibration of a piezoelectric smart structure, a controller is usually designed based on a reduced order model (ROM of the system. When such a ROM based controller operates in closed loop with the actual structure, spillover phenomenon occurs because the unmodeled dynamics, which are not included in ROM, will be excited. In this paper, a new approach aiming at investigating spillover effects in ANSYS software is presented. By using the ANSYS parametric design language (APDL, the ROM based controller is integrated into finite element model to provide an accurate representation of what will happen when the controller is connected to the real plant. Therefore, the issues of spillover effects can be addressed in the closed loop simulation. Numerical examples are presented for investigating spillover effects of a cantilever piezoelectric plate subjected to various types of loading. The importance of considering spillover effects in closed loop simulation of piezoelectric smart structures is demonstrated. Moreover, the present study may provide an efficient method especially beneficial for preliminary design of piezoelectric smart structure to evaluate the performance of candidate control laws in finite element environment considering spillover effects.

  4. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.

    Science.gov (United States)

    Meuzelaar, Heleen; Marino, Kristen A; Huerta-Viga, Adriana; Panman, Matthijs R; Smeenk, Linde E J; Kettelarij, Albert J; van Maarseveen, Jan H; Timmerman, Peter; Bolhuis, Peter G; Woutersen, Sander

    2013-10-03

    Trp-cage is a synthetic 20-residue miniprotein which folds rapidly and spontaneously to a well-defined globular structure more typical of larger proteins. Due to its small size and fast folding, it is an ideal model system for experimental and theoretical investigations of protein folding mechanisms. However, Trp-cage's exact folding mechanism is still a matter of debate. Here we investigate Trp-cage's relaxation dynamics in the amide I' spectral region (1530-1700 cm(-1)) using time-resolved infrared spectroscopy. Residue-specific information was obtained by incorporating an isotopic label ((13)C═(18)O) into the amide carbonyl group of residue Gly11, thereby spectrally isolating an individual 310-helical residue. The folding-unfolding equilibrium is perturbed using a nanosecond temperature-jump (T-jump), and the subsequent re-equilibration is probed by observing the time-dependent vibrational response in the amide I' region. We observe bimodal relaxation kinetics with time constants of 100 ± 10 and 770 ± 40 ns at 322 K, suggesting that the folding involves an intermediate state, the character of which can be determined from the time- and frequency-resolved data. We find that the relaxation dynamics close to the melting temperature involve fast fluctuations in the polyproline II region, whereas the slower process can be attributed to conformational rearrangements due to the global (un)folding transition of the protein. Combined analysis of our T-jump data and molecular dynamics simulations indicates that the formation of a well-defined α-helix precedes the rapid formation of the hydrophobic cage structure, implying a native-like folding intermediate, that mainly differs from the folded conformation in the orientation of the C-terminal polyproline II helix relative to the N-terminal part of the backbone. We find that the main free-energy barrier is positioned between the folding intermediate and the unfolded state ensemble, and that it involves the formation of

  5. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research.

    Science.gov (United States)

    Emwas, Abdul-Hamid M

    2015-01-01

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have evolved as the most common techniques in metabolomics studies, and each brings its own advantages and limitations. Unlike MS spectrometry, NMR spectroscopy is quantitative and does not require extra steps for sample preparation, such as separation or derivatization. Although the sensitivity of NMR spectroscopy has increased enormously and improvements continue to emerge steadily, this remains a weak point for NMR compared with MS. MS-based metabolomics provides an excellent approach that can offer a combined sensitivity and selectivity platform for metabolomics research. Moreover, different MS approaches such as different ionization techniques and mass analyzer technology can be used in order to increase the number of metabolites that can be detected. In this chapter, the advantages, limitations, strengths, and weaknesses of NMR and MS as tools applicable to metabolomics research are highlighted.

  6. Supramolecular organization of perfluorinated 1H-indazoles in the solid state using X-ray crystallography, SSNMR and sensitive (VCD) and non sensitive (MIR, FIR and Raman) to chirality vibrational spectroscopies.

    Science.gov (United States)

    Quesada-Moreno, María M; Avilés-Moreno, Juan Ramón; López-González, Juan Jesús; Jacob, Kane; Vendier, Laure; Etienne, Michel; Alkorta, Ibon; Elguero, José; Claramunt, Rosa M

    2017-01-04

    1H-Indazole derivatives exhibit a remarkable property since some of them form chiral supramolecular structures starting from achiral monomers. The present work deals with the study of three perfluorinated 1H-indazoles that resolve spontaneously as conglomerates. These conglomerates can contain either a pure enantiomer (one helix) or a mixture of both enantiomers (both helices) with an enantiomeric excess (e.e.) of one of them. The difficulty of the structural analysis of these types of compounds is thus clear. We outline a complete strategy to determine the structures and configurations (M or P helices) of the enantiomers (helices) forming the conglomerates of these perfluorinated 1H-indazoles based on X-ray crystallography, solid state NMR spectroscopy and different solid state vibrational spectroscopies that are either sensitive (VCD) or not (FarIR, IR and Raman) to chirality, together with quantum chemical calculations (DFT).

  7. [Application and recent development of research on near-infrared spectroscopy for meat quality evaluation].

    Science.gov (United States)

    Xu, Xia; Cheng, Fang; Ying, Yi-Bin

    2009-07-01

    As one of new optical detection methods, near-infrared spectroscopy (NIRS) technique has been widely used in food industry in recent years. NIRS technique is also promising for quality evaluation of meat and meat products and is characterized by its quickness, online operation and nondestructive detection. The present paper reviews the main application and recent development of research on near-infrared spectroscopy in meat industry, including components analysis, sensory quality evaluation as well as discrimination of production. It's necessary to determine the content of main chemical components in a variety of meat such as protein, fat, water etc as they exert important influence on meat quality. Sensory quality including tenderness, water holding capacity, color, and freshness is commonly evaluated by human sensory system. Thus there is an obvious potential profit to achieve online determination industrialization for meat quality. Additionally the utilization of NIRS in quality detection of common meat products is particularized in this paper. Most study of near-infrared spectroscopy technique for meat quality evaluation lays emphasis on component analysis that especially has shown a progress in the determination of protein, fat, water and part of fatty acid, which has been investigated much recently. Not any kind of sensory quality can be well predicted by NIRS as it depends on the species of meat and the limitation of this optical technique. Therein beef is the mostly used object with many reports on the evaluation of tenderness compared to other types. There is a lot of investigation for sensory quality detection of pork on water holding capacity etc. Meanwhile this review also tries to come up with some perspectives on meat quality detection with near-infrared spectroscopy according to current development trend: on the basis of deeply improving the meat detection precision, near-infrared spectroscopy technique combined with other non-detection techniques

  8. Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research

    Science.gov (United States)

    Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.

    2016-09-01

    Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.

  9. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    Science.gov (United States)

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  10. Chirped-pulse Fourier transform millimeter-wave spectroscopy of ten vibrationally excited states of i-propyl cyanide: exploring the far-infrared region.

    Science.gov (United States)

    Arenas, Benjamin E; Gruet, Sébastien; Steber, Amanda L; Giuliano, Barbara M; Schnell, Melanie

    2017-01-18

    We report here further spectroscopic investigation of the astrochemically relevant molecule i-propyl cyanide. We observed and analysed the rotational spectra of the ground state of the molecule and ten vibrationally excited states with energies between 180-500 cm(-1). For this, we used a segmented W-band spectrometer (75-110 GHz) and performed the experiments under room temperature conditions. This approach thus provides access to high-resolution, pure rotational data of vibrational modes that occur in the far-infrared fingerprint region, and that can be difficult to access with other techniques. The obtained, extensive data set will support further astronomical searches and identifications, such as in warmer regions of the interstellar space where contributions from vibrationally excited states become increasingly relevant.

  11. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    Science.gov (United States)

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Flexible Helicoids, Atomic Force Microscopy (AFM Cantilevers in High Mode Vibration, and Concave Notch Hinges in Precision Measurements and Research

    Directory of Open Access Journals (Sweden)

    Yakov Tseytlin

    2012-05-01

    Full Text Available Flexible structures are the main components in many precision measuring and research systems. They provide miniaturization, repeatability, minimal damping, low measuring forces, and very high resolution. This article focuses on the modeling, development, and comparison of three typical flexible micro- nano-structures: flexible helicoids, atomic force microscopy (AFM cantilevers, and concave notch hinges. Our theory yields results which allow us to increase the accuracy and functionality of these structures in new fields of application such as the modeling of helicoidal DNA molecules’ mechanics, the definition of instantaneous center of rotation in concave flexure notch hinges, and the estimation of the increase of spring constants and resolution at higher mode vibration in AFM cantilevers with an additional concentrated and end extended mass. We developed the original kinetostatic, reverse conformal mapping of approximating contours, and non-linear thermomechanical fluctuation methods for calculation, comparison, and research of the micromechanical structures. These methods simplify complicated solutions in micro elasticity but provide them with necessary accuracy. All our calculation results in this article and in all corresponding referenced author’s publications are in a good agreement with experimental and finite element modeling data within 10% or less.

  13. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    Science.gov (United States)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  14. Spectroscopie moléculaire : calcul de spectres, mesures des températures de rotation et de vibration dans les plasmas thermiques

    OpenAIRE

    Faure, Géraldine

    1997-01-01

    This work deals with vibrational and rotational temperatures of molecules in thermal plasmas.This thesis had two main parts : the first is devoted to the molecular spectra calculation and the second part is devoted to the spectra comparison in four different experimental conditions.A code of calculation has been created to simulate spectra of diatomic molecules. It has been essentially applied on the radicals C2, CN, the molecule N2 and the molecular ion N2+ for variable parameter vibration a...

  15. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    Science.gov (United States)

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  16. Numerical simulation and experimental research of the flow force and forced vibration in the nozzle-flapper valve

    Science.gov (United States)

    Li, Lei; Yan, Hao; Zhang, Hengxuan; Li, Jing

    2018-01-01

    In the pilot stage of nozzle-flapper servo valve, the flow force on the flapper is the key reason that leads to forced vibration of the armature assembly, which may result in the fatigue of the flexure tube in torque motor. To master the principles and features of the flow force and the source of the forced vibration of the armature assembly, mathematical models of flow force and the forced vibration are deduced in this paper. For validating the model, a three-dimensional model is built and a finite element analysis of the flow force with different inlet pressure and deflections is presented and an innovative and experimental rig for measuring the steady and dynamic frequency of flow force is also designed. The characteristic of the main flow force, minor flow force and total flow force are analyzed contrastively, and the experimental results agree well with the CFD results and mathematical model analysis. To find the source of forced vibration of the armature assembly, a knocking method is proposed to measure the natural frequency of armature assembly. By comparing the spectrum of the pressure and vibration movement through experiments, a conclusion can be drawn that the inlet pressure fluctuation near the natural frequency of armature assembly and the asymmetric structure of pilot stage are the necessary and sufficient conditions to make the armature assembly yield forced vibration. In the end, some suggestions have been made to decrease the intensity of forced vibration of the pilot stage according to the findings.

  17. Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Jürgensen, Vibeke Würtz; Claussen, Anetta

    2006-01-01

    +disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties...

  18. Historical Origins of Information Behavior Research by Reference Publication Year Spectroscopy

    Directory of Open Access Journals (Sweden)

    Faramarz Soheili

    2015-12-01

    Full Text Available Background: Using a quantitative method named reference publication year spectroscopy (RPYS, this research tried to determine the historical roots of information behavior research. RPYS pave the way for determining the significant years and works in information behavior. Methodology: Using scientometric method, the initial data of this study, have been extracted from the Web of Science. Using RPYS software, the revised data were analyzed and visualized in Excel. Finding: The distribution of cited references in information behavior revealed three peaks within 19th century. Moreover, our analysis identified 6 peaks between 1900 to 1969 in the field of information behavior, respectively in 1948, 1954, 1957, 1960, 1965, and 1967 has occurred. Results: Based on the study findings, it seems that information behavior research has been shaped intellectually by fields such as Psychology, quantitative and qualitative methodologies, etc. Additionally, it has been influenced by some theories and theoretical works.

  19. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  20. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  1. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  2. Research on impacts of mechanical vibrations on the production machine to its rate of change of technical state

    Directory of Open Access Journals (Sweden)

    Štefánia Salokyová

    2016-06-01

    Full Text Available The article observes the amount of vibration on the bearing house of a turning lathe selected in advance through the change of the revolutions per minute and the thickness of the removed material in frontal type of lathe processing. Increase in mechanical vibration values depending on the value of nominal thickness of splinter was observed during changing technological parameters of the drilling process as a consequence of rotation speed of the motor. The vibration acceleration amplitude course changes depending on the frequencies are evaluated together for 400, 800 and 1200 motor r/min. A piezoelectric sensor of the type 4507B-004 from the Brüel & Kjaer Company was used for monitoring the frequency analysis of the vibration, which was attached to the bearing house of the lathe TOS SV 18RB. The vibration signal measured during the processing and during the time period is transformed through the means of a quick Fourier transformation to the frequency spectrum in the range of 3.0–10.0 kHz. Measured values of vibration acceleration amplitude were processed and evaluated by the SignalExpress software. Graphical abstract Unwanted vibration in machine tools like lathe is one of the main problems as it affects the quality of the machined parts and tool life and creates noise during machining operation. Bearings are of paramount importance to almost all forms of rotating machinery and are the most common among machine elements. The article describes in more detail the issue of vibrations created when machining the material by lathe turning. It also includes execution, experiment evaluation in this field, and comparison of measured vibrations’ acceleration amplitude values according to the standards.

  3. Numerical Research on Hydraulically Generated Vibration and Noise of a Centrifugal Pump Volute with Impeller Outlet Width Variation

    Directory of Open Access Journals (Sweden)

    Houlin Liu

    2014-01-01

    Full Text Available The impeller outlet width of centrifugal pumps is of significant importance for numbers of effects. In the paper, these effects including the performance, pressure pulsations, hydraulically generated vibration, and noise level are investigated. For the purpose, two approaches were used to predict the vibration and sound radiation of the volute under fluid excitation force. One approach is the combined CFD/FEM analysis for structure vibration, and then the structure response obtained from the FEM analysis is treated as the boundary condition for BEM analysis for sound radiation. The other is the combined CFD/FEM/BEM coupling method. Before the numerical methods were used, the simulation results were validated by the vibration acceleration of the monitoring points on the volute. The vibration and noise were analyzed and compared at three flow conditions. The analysis of the results shows that the influences of the sound pressure of centrifugal pumps on the structure appear insignificant. The relative outlet width b2* at nq(SI = 26.7 in this paper should be less than 0.06, based on an overall consideration of the pump characteristics, pressure pulsations, vibration and noise level.

  4. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  5. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    Science.gov (United States)

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  6. Near-infrared spectroscopy (NIRS as a new tool for neuroeconomic research

    Directory of Open Access Journals (Sweden)

    Isabella Maria Kopton

    2014-08-01

    Full Text Available Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory.

  7. Shedding light on words and sentences: near-infrared spectroscopy in language research.

    Science.gov (United States)

    Rossi, Sonja; Telkemeyer, Silke; Wartenburger, Isabell; Obrig, Hellmuth

    2012-05-01

    Investigating the neuronal network underlying language processing may contribute to a better understanding of how the brain masters this complex cognitive function with surprising ease and how language is acquired at a fast pace in infancy. Modern neuroimaging methods permit to visualize the evolvement and the function of the language network. The present paper focuses on a specific methodology, functional near-infrared spectroscopy (fNIRS), providing an overview over studies on auditory language processing and acquisition. The methodology detects oxygenation changes elicited by functional activation of the cerebral cortex. The main advantages for research on auditory language processing and its development during infancy are an undemanding application, the lack of instrumental noise, and its potential to simultaneously register electrophysiological responses. Also it constitutes an innovative approach for studying developmental issues in infants and children. The review will focus on studies on word and sentence processing including research in infants and adults. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Dynamics of an [Fe4S4(SPh)4]2- cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields.

    Science.gov (United States)

    Xiao, Yuming; Koutmos, Markos; Case, David A; Coucouvanis, Dimitri; Wang, Hongxin; Cramer, Stephen P

    2006-05-14

    We have used four vibrational spectroscopies--FT-IR, FT-Raman, resonance Raman, and 57Fe nuclear resonance vibrational spectroscopy (NRVS)--to study the normal modes of the Fe-S cluster in [(n-Bu)4N]2[Fe4S4(SPh)4]. This [Fe4S4(SR)4]2- complex serves as a model for the clusters in 4Fe ferredoxins and high-potential iron proteins (HiPIPs). The IR spectra exhibited differences above and below the 243 K phase transition. Significant shifts with 36S substitution into the bridging S positions were also observed. The NRVS results were in good agreement with the low temperature data from the conventional spectroscopies. The NRVS spectra were interpreted by normal mode analysis using optimized Urey-Bradley force fields (UBFF) as well as from DFT theory. For the UBFF calculations, the parameters were refined by comparing calculated and observed NRVS frequencies and intensities. The frequency shifts after 36S substitution were used as an additional constraint. A D 2d symmetry Fe4S4S'4 model could explain most of the observed frequencies, but a better match to the observed intensities was obtained when the ligand aromatic rings were included for a D 2d Fe4S4(SPh)4 model. The best results were obtained using the low temperature structure without symmetry constraints. In addition to stretching and bending vibrations, low frequency modes between approximately 50 and 100 cm(-1) were observed. These modes, which have not been seen before, are interpreted as twisting motions with opposing sides of the cube rotating in opposite directions. In contrast with a recent paper on a related Fe4S4 cluster, we find no need to assign a large fraction of the low frequency NRVS intensity to 'rotational lattice modes'. We also reassign the 430 cm(-1) band as primarily an elongation of the thiophenolate ring, with approximately 10% terminal Fe-S stretch character. This study illustrates the benefits of combining NRVS with conventional Raman and IR analysis for characterization of Fe-S centers. DFT

  9. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  10. Compositional dependencies in the vibrational properties of amorphous Ge-As-Se and Ge-Sb-Te chalcogenide alloys studied by Raman spectroscopy

    Science.gov (United States)

    Shportko, K.; Revutska, L.; Paiuk, O.; Baran, J.; Stronski, A.; Gubanova, A.; Venger, E.

    2017-11-01

    This work is focused on the compositional dependencies in the Raman spectra of amorphous Ge-As-Se and Ge-Sb-Te chalcogenides with the systematic increase of the Ge-content. Studied Ge-As-Se and Ge-Sb-Te chalcogenides are promising for applications in the photonics, optical, and electronic data storages. Gaussians used to fit the obtained Raman spectra were attributed to the vibrations of the structural units in Ge-Sb-Te and Ge-As-Se samples. Systematic compositional dependencies of the intensities of the characteristic Raman bands correlate with evolution of concentration of the different structural units in Ge-Sb-Te and Ge-As-Se alloys along the studied compositional lines. Obtained compositional trends in the intensities of Raman bands may enable one to predict vibrational properties of other amorphous Ge-Sb-Te and Ge-As-Se chalcogenides.

  11. Observation of Ortho-Para Dependence of Pressure Broadening Coefficient in Acetylene νb{1}+νb{3} Vibration Band Using Dual-Comb Spectroscopy

    Science.gov (United States)

    Iwakuni, Kana; Okubo, Sho; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki; Yamada, Koichi MT

    2016-06-01

    We observe that the pressure-broadening coefficients depend on the ortho-para levels. The spectrum is taken with a dual-comb spectrometer which has the resolution of 48 MHz and the frequency accuracy of 8 digit when the signal-to-noise ratio is more than 20. In this study, about 4.4-Tz wide spectra of the P(31) to R(31) transitions in the νb{1}+νb{3} vibration band of 12C_2H_2 are observed at the pressure of 25, 60, 396, 1047, 1962 and 2654 Pa. Each rotation-vibration absorption line is fitted to Voight function and we determined pressure-broadening coefficients for each rotation-vibration transition. The Figure shows pressure broadening coefficient as a function of m. Here m is J"+1 for R and -J" for P-branch. The graph shows obvious dependence on ortho and para. We fit it to Pade function considering the population ratio of three-to-one for the ortho and para levels. This would lead to detailed understanding of the pressure boarding mechanism. S. Okubo et al., Applied Physics Express 8, 082402 (2015)

  12. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts

    KAUST Repository

    Krier, James M.

    2015-01-14

    © 2014 American Chemical Society. 1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.

  13. Pyrrole Hydrogenation over Rh(111) and Pt(111) Single-Crystal Surfaces and Hydrogenation Promotion Mediated by 1-Methylpyrrole: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J.; Bieri, Marco; Somorjai, Gabor A.

    2008-03-04

    Sum-frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to study the adsorption and hydrogenation of pyrrole over both Pt(111) and Rh(111) single-crystal surfaces at Torr pressures (3 Torr pyrrole, 30 Torr H{sub 2}) to form pyrrolidine and the minor product butylamine. Over Pt(111) at 298 K it was found that pyrrole adsorbs in an upright geometry cleaving the N-H bond to bind through the nitrogen evidenced by SFG data. Over Rh(111) at 298 K pyrrole adsorbs in a tilted geometry relative to the surface through the p-aromatic system. A pyrroline surface reaction intermediate, which was not detected in the gas phase, was seen by SFG during the hydrogenation over both surfaces. Significant enhancement of the reaction rate was achieved over both metal surfaces by adsorbing 1-methylpyrrole before reaction. SFG vibrational spectroscopic results indicate that reaction promotion is achieved by weakening the bonding between the N-containing products and the metal surface because of lateral interactions on the surface between 1-methylpyrrole and the reaction species, reducing the desorption energy of the products. It was found that the ring-opening product butylamine was a reaction poison over both surfaces, but this effect can be minimized by treating the catalyst surfaces with 1-methylpyrrole before reaction. The reaction rate was not enhanced with elevated temperatures, and SFG suggests desorption of pyrrole at elevated temperatures.

  14. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  15. Cantilever-enhanced photoacoustic spectroscopy applied in the research of natural and synthetic calcium phosphate

    Science.gov (United States)

    Brangule, A.; Gross, K. A.; Stepanova, V.

    2017-04-01

    This study demonstrates the significant potential of cantilever-enhanced Fourier transform infrared photoacoustic spectroscopy (FTIR PAS) principles. The improved sensitivity and reproducibility of this method presents a potent tool in the study of biomaterials. The article discusses aspects of the application of cantilever-enhanced FTIR PAS in the research of natural and biological calcium phosphate and the statistical evaluation of the FTIR PAS sampling method. The improved constructions of the FTIR PAS accessory reduce limitations of the conventional capacitive microphone and provide a sensitive tool for samples or processes unreachable by more traditional transmittance methods, or ATR sampling technique. The most common and important applications have been discussed in-depth to show the wide range of problems solved by FTIR PAS.

  16. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  17. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-01-01

    Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.

  18. Vibrational spectroscopy of the mass-selected tetrahydrofurfuryl alcohol monomers and its dimers in gas phase using IR depletion and VUV single photon ionization

    Science.gov (United States)

    Wang, Pengchao; Hu, Yongjun; Zhan, Huaqi; Chen, Jiaxin; Jin, Shan; Song, Wentao; Li, Yujian

    2017-10-01

    Tetrahydrofurfuryl alcohol (THFA, C5H10O2) is a close chemical analog of the sugar rings present in the phosphate-deoxyribose backbone structure of the nucleic acids. In present report, the infrared (IR) spectra of the size-selected THFA monomer and its dimer have been investigated in a pulsed supersonic jet using infrared-vacuum ultraviolet (VUV) ionization. Herein, the laser light at 118 nm wavelength served as the source of ;soft; ionization in a time-of-flight mass spectrometer. The IR features for the monomers located at 3622 cm- 1 can be assigned to the intramolecular hydrogen bonding stretch vibrations mainly referring to A and C conformers. Compared with the monomer, however, characteristic peaks for the dimer centered at 3415 and 3453 cm- 1, red shifted 207 and 169 cm- 1, respectively, were associated with the intermolecular hydrogen bonding stretch vibrations. Combined with the quantum-chemical calculations, the dimer in the gas phase preferred cyclic AC conformer stabled by forming two strong intermolecular hydrogen bonds, which shown the high hydrogen bond selectivity in the cluster. The conclusions drawn from the role played in the conformational flexibility by the hydroxyl and ether groups may be extended to other biomolecules.

  19. Interfacial Water Structure and Cation Binding with the Dppc Phosphate at Air /aqueous Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy

    Science.gov (United States)

    Hua, Wei; Allen, Heather C.

    2012-06-01

    Molecular-level knowledge of water structure and cation binding specificity to lipid headgroups at lipid/water interfaces plays a key role in many relevant chemical, biological, and environmental processes. To obtain information on the molecular organization at aqueous interfaces, vibrational sum frequency generation (VSFG) has been applied extensively as an interface-specific technique. Dipalmitoylphosphocholine (DPPC) is a major component of cell membranes and has been used as a proxy for the organic coating on fat-coated aerosols. In the present work, in addition to conventional VSFG studies on cation interaction with the phosphate headgroup moiety of DPPC, we employ phase-sensitive vibrational sum frequency generation (PS-VSFG) to investigate the average direction of the transition dipole moment of interfacial water molecules. The average orientation of water structure at DPPC/water interfaces is inferred. DPPC orients interfacial water molecules on average with their net transition dipole moment pointing towards the surface. The influence of Na+, K+, Mg2+, Ca2+ is identified in regard to interfacial water structure and DPPC headgroup organization. Ca2+ is observed to have greater impact on the water structure and a unique binding affinity to the phosphate headgroup relative to other cations tested. In highly concentrated Ca2+ regimes the already disturbed interfacial hydrogen-bonding network reorganizes to resemble that of the neat salt solution interface.

  20. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  1. Direct Probing of Photoinduced Electron Transfer in a Self-Assembled Biomimetic [2Fe2S]-Hydrogenase Complex Using Ultrafast Vibrational Spectroscopy

    NARCIS (Netherlands)

    Li, P.; Amirjalayer, S.; Hartl, F.; Lutz, M.; de Bruin, B.; Becker, R.; Woutersen, S.; Reek, J.N.H.

    2014-01-01

    Photoinduced electron transfer in a supramolecular ZnTPP·Fe2S2 complex is investigated using femtosecond infrared spectroscopy, infrared spectro-electrochemistry, and DFT calculations. We find that the electron density is delocalized over the diiron core and the naphthalimide ligand, which explains

  2. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  3. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    Science.gov (United States)

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  4. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  5. Structure and vibrations of 2-fluoro-N-methylaniline in the S0, S1 and D0 states: REMPI and MATI spectroscopy and theoretical calculations

    Science.gov (United States)

    Liu, Sheng; Dai, Wenshuai; Zhang, Lijuan; Cheng, Min; Du, Yikui; Zhu, Qihe

    2017-10-01

    Theoretical calculations predicted that there are only two stable conformers, trans and cis, for 2-fluoro-N-methylaniline (2FNMA) in the S0, S1 and D0 states. Compared to the cis conformer, the trans one is more stable, and has a population more than 99% at room temperature. The optimized molecular skeleton of trans and cis 2FNMA are both non-planar in the S0 state, but planar in the S1 and D0 states. The one-dimensional potential energy surface of 2FNMA in the S0 state is obtained. The Resonance-enhanced two-photon ionization (R2PI) and Mass-analyzed threshold ionization (MATI) spectra of trans 2FNMA are obtained. The first electronic excitation energy (E1) and the adiabatic ionization energy (IE) of trans 2FNMA are determined. The substitution effect on the molecular structures, transition energies and vibrations of 2FNMA are discussed.

  6. Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material Truncated Conical Shells with Eccentric Functionally Graded Material Stringer and Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Dao Van Dung

    Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.

  7. THE EXPERIMENTAL SETUP FOR RESEARCH OF THE INFLUENCE OF MECHANICAL VIBRATIONS ON THE OUTPUT PARAMETERS OF ELECTRONIC SYSTEMS BASED ON FLEXIBLE MODULES

    Directory of Open Access Journals (Sweden)

    S. P. Novoselov

    2015-01-01

    Full Text Available Periodic vibration in the form of distorted sine wave or other complex shapes are most common in the real moving objects, where the device can be exploited on the basis of flexible modules. This kind of exposure directly affects the reliability of the construction in general. The objective of the work was the creation of an experimental device for the study of mechanical vibrations and the dependencies of their impact on the operated device.Research of mechanical vibrations and the dependencies of their influence on the device will allow finding solutions to the problems of reliability of radio electronic devices. It developed an experimental device and automatic adaptive system for control own resonant frequency of the flexible module. As a result of the experiments has been identified according to mechanical influences on the output parameters of the devices. This will take into account and to apply this experience in the design and manufacture of devices with the use of flexible printed circuit boards. 

  8. Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    C. J. Ebben

    2011-10-01

    Full Text Available We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.

  9. A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods

    Directory of Open Access Journals (Sweden)

    D. Cozzolino

    2014-12-01

    Full Text Available Starch is the major component of cereal grains and starchy foods, and changes in its biophysical and biochemical properties (e.g., amylose, amylopectin, pasting, gelatinization, viscosity will have a direct effect on its end use properties (e.g., bread, malt, polymers. The use of rapid and non-destructive methods to study and monitor starch properties, such as gelatinization, retrogradation, water absorption in cereals and starchy foods, is of great interest in order to improve and assess their quality. In recent years, near infrared reflectance (NIR and mid infrared (MIR spectroscopy have been explored to predict several quality parameters, such as those generated by instrumental methods commonly used in routine analysis like the rapid visco analyser (RVA or viscometers. In this review, applications of both NIR and MIR spectroscopy to measure and monitor starch biochemical (amylose, amylopectin, starch and biophysical properties (e.g., pasting properties will be presented and discussed.

  10. Investigating Molecular Structures of Bio-Fuel and Bio-Oil Seeds as Predictors To Estimate Protein Bioavailability for Ruminants by Advanced Nondestructive Vibrational Molecular Spectroscopy.

    Science.gov (United States)

    Ban, Yajing; L Prates, Luciana; Yu, Peiqiang

    2017-10-18

    This study was conducted to (1) determine protein and carbohydrate molecular structure profiles and (2) quantify the relationship between structural features and protein bioavailability of newly developed carinata and canola seeds for dairy cows by using Fourier transform infrared molecular spectroscopy. Results showed similarity in protein structural makeup within the entire protein structural region between carinata and canola seeds. The highest area ratios related to structural CHO, total CHO, and cellulosic compounds were obtained for carinata seeds. Carinata and canola seeds showed similar carbohydrate and protein molecular structures by multivariate analyses. Carbohydrate molecular structure profiles were highly correlated to protein rumen degradation and intestinal digestion characteristics. In conclusion, the molecular spectroscopy can detect inherent structural characteristics in carinata and canola seeds in which carbohydrate-relative structural features are related to protein metabolism and utilization. Protein and carbohydrate spectral profiles could be used as predictors of rumen protein bioavailability in cows.

  11. Combining gravimetric and vibrational spectroscopy measurements to quantify first- and second-shell hydration layers in polyimides with different molecular architectures.

    Science.gov (United States)

    Musto, Pellegrino; Mensitieri, Giuseppe; Lavorgna, Marino; Scarinzi, Gennaro; Scherillo, Giuseppe

    2012-02-02

    In-situ Fourier transform infrared (FTIR) measurements have been carried out at different relative pressures of water vapor to study the H(2)O diffusion in three polyimides differing in their molecular structure and fluorine substitution. Spectral data have been analyzed by difference spectroscopy, least-squares curve fitting, and two-dimensional (2D) correlation spectroscopy, which provided molecular level information on the diffusion mechanism. In particular, two distinct water species were identified corresponding, respectively, to the first and second-shell hydration layers. The spectroscopic analysis demonstrated that the relative population of these species is a function of the total water content in the system. A method has been devised to quantify the water concentration in the two hydration layers, based on a combination of spectroscopic and gravimetric data. The results have been compared with those from an earlier spectroscopic approach reported in the literature and based on the analysis of the carbonyl region.

  12. Folding of a Zinc-Finger ββα-Motif Investigated Using Two-Dimensional and Time-Resolved Vibrational Spectroscopy.

    Science.gov (United States)

    Meuzelaar, Heleen; Panman, Matthijs R; van Dijk, Chris N; Woutersen, Sander

    2016-11-03

    Small proteins provide good model systems for studying the fundamental forces that control protein folding. Here, we investigate the folding dynamics of the 28-residue zinc-finger mutant FSD-1, which is designed to form a metal-independent folded ββα-motif, and which provides a testing ground for proteins containing a mixed α/β fold. Although the folding of FSD-1 has been actively studied, the folding mechanism remains largely unclear. In particular, it is unclear in what stage of folding the α-helix is formed. To address this issue we investigate the folding mechanism of FSD-1 using a combination of temperature-dependent UV circular dichroism (UV-CD), Fourier transform infrared (FTIR) spectroscopy, two-dimensional infrared (2D-IR) spectroscopy, and temperature-jump (T-jump) transient-IR spectroscopy. Our UV-CD and FTIR data show different thermal melting transitions, indicating multistate folding behavior. Temperature-dependent 2D-IR spectra indicate that the α-helix is the most stable structural element of FSD-1. To investigate the folding/unfolding re-equilibration dynamics of FSD-1, the conformational changes induced by a nanosecond T-jump are probed with transient-IR and transient dispersed-pump-probe (DPP) IR spectroscopy. We observe biexponential T-jump relaxation kinetics (with time constants of 80 ± 13 ns and 1300 ± 100 ns at 322 K), confirming that the folding involves an intermediate state. The IR and dispersed-pump-probe IR spectra associated with the two kinetic components suggest that the folding of FSD-1 involves early formation of the α-helix, followed by the formation of the β-hairpin and hydrophobic contacts.

  13. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  14. Research on Electromagnetic Force Distribution and Vibration Performance of A Novel 10/4 Switched Reluctance Motor

    Science.gov (United States)

    Fu, Ziyu; Wang, Xinyu; Cao, Cheng; Liu, Meng; Wang, Kangxi

    2017-06-01

    Radial electromagnetic force is one of the main reasons causing the vibration and noise of the switched reluctance motor. Based on this, the novel structure of 10/4 pole switched reluctance motor is proposed, which increases the air gap flux and electromagnetic torque by increasing the number of stator poles. In addition, the excitation current of the stator winding is reduced by early turn-off angle. Through the finite element modelling analysis, the results show the superiority of the new type of switched reluctance motor. In the end, the vibration characteristics of the conventional motor and the new motor are compared and analysed, and the effect of the structure of this new type of switched reluctance motor is verified.

  15. Numerical Research about Influence of Blade Outlet Angle on Flow-Induced Noise and Vibration for Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Ailing Yang

    2014-03-01

    Full Text Available A hybrid numerical method was used to calculate the flow-induced noise and vibration of the centrifugal pump in the paper. The unsteady flows inside the centrifugal pumps with different blade outlet angles were simulated firstly. The unsteady pressure on the inner surface of the volute and the unsteady force applied on the impeller were analyzed. Then the vibration of the volute and sound field were calculated based on an acoustic-vibro-coupling method. The results show that the pump head has increased 7% while the hydraulic efficiency decreased 11.75% as blade outlet angles increased from 18° to 39°. The amplitude of pressure fluctuation at the first blade passing frequency has decreased but increased at the second-order blade passing frequency as the angle growing. The total fluctuation power near volute tongue goes up about 12% every 3° increment of blade outlet angle. The results also show that vibrating-velocity of the volute at second-order blade passing frequency is much higher than at other frequencies, and the velocity increases rapidly as blade outlet angle varies from 18° to 39°. At the same time, the sound pressure level outside the pump has increased about 8.6 dB when the angle increased from 18° to 39°.

  16. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  17. [Research on the trash content measurement and classification of ginned cotton by using NIR spectroscopy technique].

    Science.gov (United States)

    Guo, Jun-Xian; Rao, Xiu-Qin; Cheng, Fang; Ying, Yi-Bin; Kang, Yu-Guo; Li, Fu-Tang

    2010-03-01

    Near infrared (NIR) spectroscopy was investigated to predict trash content and classify types of ginned cotton by using a fiberoptic in diffuse reflectance mode. Different spectra preprocessing methods were compared, and partial least-squares (PLS) regression was established to predict the trash content of ginned cotton. Discriminant analysis (DA) was used to classify various types of lint and content level of trash. The correlation coefficient r was 0.906 for optimal PLS model using three factors based on first-order derivative spectra, and RMSEC and RMSEP was 0.440 and 0.823 respectively. To classify ginned cotton with and without plant trash, the accuracy rate reached 95.4% using 15 principal components (PCs) via DA, whereas the prediction accuracy rate was only 80.9% for the classification of sample types due to containing foreign fiber, and the classification result for the content level of trash in lint was not good for the samples without any preprocessing. The result indicated that the NIR spectra of sample can be used to predict trash content in ginned cotton, which is often disturbed by type, content and distribution of foreign matters, and the accuracy of some prediction model is unsatisfactory. In order to improve the prediction accuracy, some methods would be applied in future research, such as pretreatment according to acquisition request of solid sample, or using transmission mode.

  18. Research on identification and determination of mixed pesticides in apples using surface enhanced Raman spectroscopy

    Science.gov (United States)

    Zhai, Chen; Li, Yongyu; Peng, Yankun; Xu, Tianfeng; Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei

    2015-05-01

    Residual pesticides in fruits and vegetables have become one of the major food safety concerns around the world. At present, routine analytical methods used for the determination of pesticide residue on the surface of fruits and vegetables are destructive, complex, time-consuming, high cost and not environmentally friendly. In this study, a novel Surface Enhanced Raman Spectroscopy (SERS) method with silver colloid was developed for fast and sensitive nondestructive detection of residual pesticides in fruits and vegetables by using a self-developed Raman system. SERS technology is a combination of Raman spectroscopy and nanotechnology. SERS can greatly enhance the Raman signal intensity, achieve single-molecule detection, and has a simple sample pre-treatment characteristic of high sensitivity and no damage; in recent years it has begun to be used in food safety testing research. In this study a rapid and sensitive method was developed to identify and analyze mixed pesticides of chlorpyrifos, deltamethrin and acetamiprid in apple samples by SERS. Silver colloid was used for SERS measurement by hydroxylamine hydrochloride reduced. The advantages of this method are seen in its fast preparation at room temperature, good reproducibility and immediate applicability. Raman spectrum is highly interfered by noise signals and fluorescence background, which make it too complex to get good result. In this study the noise signals and fluorescence background were removed by Savitzky-Golay filter and min-max signal adaptive zooming method. Under optimal conditions, pesticide residues in apple samples can be detected by SERS at 0.005 μg/cm2 and 0.002 μg/cm2 for individual acetamiprid and thiram, respectively. When mixing the two pesticides at low concentrations, their characteristic peaks can still be identified from the SERS spectrum of the mixture. Based on the synthesized material and its application in SERS operation, the method represents an ultrasensitive SERS performance

  19. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.

    Science.gov (United States)

    Lee, Christopher M; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H

    2014-06-14

    This study reports that the noncentrosymmetry and phase synchronization requirements of the sum frequency generation (SFG) process can be used to distinguish the three-dimensional organization of crystalline cellulose distributed in amorphous matrices. Crystalline cellulose is produced as microfibrils with a few nanometer diameters by plants, tunicates, and bacteria. Crystalline cellulose microfibrils are embedded in wall matrix polymers and assembled into hierarchical structures that are precisely designed for specific biological and mechanical functions. The cellulose microfibril assemblies inside cell walls are extremely difficult to probe. The comparison of vibrational SFG spectra of uniaxially-aligned and disordered films of cellulose Iβ nanocrystals revealed that the spectral features cannot be fully explained with the crystallographic unit structure of cellulose. The overall SFG intensity, the alkyl peak shape, and the alkyl/hydroxyl intensity ratio are sensitive to the lateral packing and net directionality of the cellulose microfibrils within the SFG coherence length scale. It was also found that the OH SFG stretch peaks could be deconvoluted to find the polymorphic crystal structures of cellulose (Iα and Iβ). These findings were used to investigate the cellulose crystal structure and mesoscale cellulose microfibril packing in intact plant cell walls, tunicate tests, and bacterial films.

  20. Vibrational properties of SrCu{sub 2}O{sub 2} studied via Density Functional Theory calculations and compared to Raman and infrared spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Huyberechts, G. [FLAMAC, Technologiepark 903, 9052 Zwijnaarde (Belgium); Servet, B. [Thales Research and Technology France, Campus Polytechnique, 1, avenue Augustin Fresnel, 91767 Palaiseau cedex France (France); Chaix-Pluchery, O. [Laboratoire des Matériaux et du Génie Physique, Grenoble INP—Minatec, 3, parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1 (France)

    2013-08-31

    The SrCu{sub 2}O{sub 2} material is a p-type transparent conductive oxide. A theoretical study of the SrCu{sub 2}O{sub 2} crystal is performed with a state of the art implementation of the Density Functional Theory. The simulated crystal structure is compared with available X-ray diffraction data and previous theoretical modeling. Density Functional Perturbation Theory is used to study the vibrational properties of the SrCu{sub 2}O{sub 2} crystal. A symmetry analysis of the optical phonon eigenvectors at the Brillouin zone center is proposed. The Raman spectra simulated using the derivatives of the dielectric susceptibility, show a good agreement with Raman scattering experimental results. - Highlights: ► The symmetry properties of the optical phonons of the SrCu{sub 2}O{sub 2} crystal are analyzed. ► Born charges and the dynamical matrix are calculated at the Brillouin zone center. ► Density Functional Perturbation Theory (DFPT) is used to compute Raman spectrum. ► DFPT Raman spectrum is compared with experimental results.

  1. Nuclear spectroscopy

    CERN Document Server

    Ajzenberg-Selove, Fay

    1960-01-01

    Nuclear Spectroscopy, Part B focuses on the ways in which experimental data may be analyzed to furnish information about nuclear parameters and nuclear models in terms of which the data are interpreted.This book discusses the elastic and inelastic potential scattering amplitudes, role of beta decay in nuclear physics, and general selection rules for electromagnetic transitions. The nuclear shell model, fundamental coupling procedure, vibrational spectra, and empirical determination of the complex potential are also covered. This publication is suitable for graduate students preparing for exper

  2. Mining Research on Vibration Signal Association Rules of Quayside Container Crane Hoisting Motor Based on Apriori Algorithm

    Science.gov (United States)

    Yang, Chencheng; Tang, Gang; Hu, Xiong

    2017-07-01

    Shore-hoisting motor in the daily work will produce a large number of vibration signal data,in order to analyze the correlation among the data and discover the fault and potential safety hazard of the motor, the data are discretized first, and then Apriori algorithm are used to mine the strong association rules among the data. The results show that the relationship between day 1 and day 16 is the most closely related, which can guide the staff to analyze the work of these two days of motor to find and solve the problem of fault and safety.

  3. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  4. Dispersed fluorescence spectroscopy of the SiCN A ˜ 2 Δ - X ˜ 2 Π system: Observation of some vibrational levels with chaotic characteristics

    Science.gov (United States)

    Fukushima, Masaru; Ishiwata, Takashi

    2016-12-01

    The laser induced fluorescence (LIF) spectrum of the A ˜ 2Δ - X ˜ 2Π transition was obtained for SiCN generated by laser ablation under supersonic free jet expansion. The vibrational structures of the dispersed fluorescence (DF) spectra from single vibronic levels (SVL's) were analyzed with consideration of the Renner-Teller (R-T) interaction. Analysis of the pure bending (ν2) structure by a perturbation approach including R-T, anharmonicity, spin-orbit (SO), and Herzberg-Teller (H-T) interactions indicated considerably different spin splitting for the μ and κ levels of the X ˜ 2Π state of SiCN, in contrast to identical spin splitting for general species derived from the perturbation approach, where μ and κ specify the lower and upper levels, respectively, separated by R-T. Further analysis of the vibrational structure including R-T, anharmonicity, SO, H-T, Fermi, and Sears interactions was carried out via a direct diagonalization procedure, where Sears resonance is a second-order interaction combined from SO and H-T interactions with Δ K = ± 1, ΔΣ = ∓1, and Δ P = 0, and where P is a quantum number, P = K + Σ. The later numerical analysis reproduced the observed structure, not only the pure ν2 structure but also the combination structure of the ν2 and the Si-CN stretching (ν3) modes. As an example, the analysis demonstrates Sears resonance between vibronic levels, (0110) κ Σ(+) and ( 0 2 0 0 ) μ Π /1 2 , with Δ K = ± 1 and Δ P = 0. On the basis of coefficients of their eigen vectors derived from the numerical analysis, it is interpreted as an almost one-to-one mixing between the two levels. The mixing coefficients of the two vibronic levels agree with those obtained from computational studies. The numerical analysis also indicates that some of the vibronic levels show chaotic characteristics in view of the two-dimensional harmonic oscillator (2D-HO) basis which is used as the basis function in the present numerical analysis; i.e., the

  5. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Cernicharo, J. [Department of Astrophysics, CAB. INTA-CSIC. Crta Torrejón-Ajalvir Km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barlow, M. J.; Swinyard, B. M., E-mail: jl.domenech@csic.es [Department of Physics and Astronomy, University College London. Gower Street, London WC1E 6BT (United Kingdom)

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  6. Dominant conformer of tetrahydropyran-2-methanol and its clusters in the gas phase explored by the use of VUV photoionization and vibrational spectroscopy

    Science.gov (United States)

    Zhan, Huaqi; Hu, Yongjun; Wang, Pengchao; Chen, Jiaxin

    2017-04-01

    Tetrahydropyran-2-methanol (THPM) is a typical alcohol containing a six-member cyclic ether, which can be considered as the model molecule of cyclic sugar. Herein, vacuum ultraviolet (VUV) photodissociation spectroscopy is employed to study fragmentation pathways and infrared (IR) plus VUV photoionization spectroscopy to investigate the structures of neutral THPM and its clusters with the size up to the trimer. Qualitative structural assignments are confirmed for the neutral species and ions based on MP2/aug-cc-pVTZ and ωB97X-D/cc-pVTZ calculations. The fragment cations at m/z = 84, 85, and 98 arise by the losing of CH2OH, CH3OH, and H2O from the monomer, respectively, as a result of C-C bond and C-O bond dissociation under the VUV (118 nm) radiation. It is found that the loss of CH3OH and H2O involves hydrogen transfer from the CH2 group to the dissociating CH2 and OH groups. Comparing the observed and calculated spectra of the monomer THPM, it suggests that the conformer containing a chair tetrahydropyran ring and an intramolecular hydrogen bond would be dominantly survived in a supersonic beam. Moreover, the IR spectra of larger clusters n > 1 (n = 2, 3) show only the broad hydrogen bonded OH stretch mode, and thus these larger clusters would form a closed-cyclic structure, where all OH groups are participating in hydrogen bonding. Partially the CH stretch positions of THPM clusters do not change significantly with the increasing of cluster size, thus the CH and CH2 groups are not involved in H-bonding interactions.

  7. Development of the vibration analysis technique of fuel rod and research on the methodology of fuel fretting wear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heung Seok; Kim, Kyung Kyu; Yoon, Hyung Hoo; Song, Ki Nam

    1998-12-01

    The FEM program has been developed to predict the natural frequencies, the FEM program has been developed to predict the natural frequencies, and mode shapes of fuel rod subjected to axial force and continuously supported by a rotational and vent spring system, and to calculate the minimum reaction forces of the spacer grid spring when the maximum vibration amplitude of fuel rod is known. This program has been verified by commercial ANSYS program and the vibration test of dummy rods in air. The test equipment were set to get the fifth modes of test rods. Partial slip problem has been studied for the analysis of fuel fretting problem. Firstly, the assumption of semi-infiniteness of the contact bodies were validated by finite element (FE) analysis. From FE results, a classical bodies were validated by finite element (FE) analysis. From FE results, aclassical theory of elasticity was utilized with regarding the problem as a plane problem. Secondly, the Mindlin-Cattaneo problem was re-evaluated, which gave the fundamental idea for developing the numerical tool for the shear traction on the contact. Shear force of sequentially-changing directions was considered and the corresponding shear traction was evaluated by extending the numerical tool for the Mindlin-Cattaneo problem.

  8. Molecular structure, vinyl rotation barrier, and vibrational dynamics of 2,6-dichlorostyrene. A theoretical and experimental research.

    Science.gov (United States)

    Ceacero-Vega, Antonio A; Ruiz, Tomas Peña; Gómez, Manuel Fernández; Roldán, José M Granadino; Navarro, Amparo; Fernández-Liencres, M Paz; Jayasooriya, Upali A

    2007-07-19

    The molecular structure of 2,6-dichlorostyrene has been analyzed at MP2 and DFT levels using different basis sets concluding in a nonplanar geometry. The influence of either the level of theory or the nature of the substituent has been assessed. The vinyl-phenyl torsion barrier has also been investigated as a function of level of theory. The ultimate factors responsible for the torsion barrier have been studied using two different partitioning schemes, i.e., the total electronic potential energy and the natural bond orbital, NBO. A topological analysis of the electron density within the atom-in-molecule, AIM, theory predicts soft intramolecular chlorine (ring)-hydrogen (vinyl) contacts when the system becomes planar. A first complete vibrational study has been performed using theoretical data and experimental vibrational frequencies from IR, Raman and, for the first time, inelastic neutron scattering, INS, spectra. The new assignment proposed is based on a scaled quantum mechanical, SQM, force field and the wavenumber linear scaling, WLS, approach.

  9. The interplay between the paracetamol polymorphism and its molecular structures dissolved in supercritical CO2 in contact with the solid phase: In situ vibration spectroscopy and molecular dynamics simulation analysis.

    Science.gov (United States)

    Oparin, Roman D; Moreau, Myriam; De Walle, Isabelle; Paolantoni, Marco; Idrissi, Abdenacer; Kiselev, Michael G

    2015-09-18

    The aim of this paper is to characterize the distribution of paracetamol conformers which are dissolved in a supercritical CO2 phase being in equilibrium with their corresponding crystalline form. The quantum calculations and molecular dynamics simulations were used in order to characterize the structure and analyze the vibration spectra of the paracetamol conformers in vacuum and in a mixture with CO2 at various thermodynamic state parameters (p,T). The metadynamics approach was applied to efficiently sample the various conformers of paracetamol. Furthermore, using in situ IR spectroscopy, the conformers that are dissolved in supercritical CO2 were identified and the evolution of the probability of their presence as a functions of thermodynamic condition was quantified while the change in the crystalline form of paracetamol have been monitored by DSC, micro IR and Raman techniques. The DSC analysis as well as micro IR and Raman spectroscopic studies of the crystalline paracetamol show that the subsequent heating up above the melting temperature of the polymorph I of paracetamol and the cooling down to room temperature in the presence of supercritical CO2 induces the formation of polymorph II. The in situ IR investigation shows that two conformers (Conf. 1 and Conf. 2) are present in the phase of CO2 while conformer 3 (Conf. 3) has a high probability to be present after re-crystallization. Copyright © 2015. Published by Elsevier B.V.

  10. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  11. Research on Fluorescence Spectroscopy Characteristics of Dissolved Organic Matter of Landfill Leachate in the Rear Part of Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2015-01-01

    Full Text Available Three-dimensional fluorescence and infrared spectroscopy analysis of the leachate dissolved organic matter (DOM of the Three Gorges was reported in spring, summer, and autumn seasons, respectively. Studies show that, that organic matter of landfill leachate in Yongchuan, Dazu and Jiangjin is the class of fulvic-like acid and protein-like fluorescence. The study also found that the longer the time of the pile of garbage, the lower the content of class of protein-like concentration, and the higher the concentration of fulvic-like acid, indicating that the protein waste material in the humification process is easy degradation. However, the same source of DOM is similar in the functional group composition and molecular structure. Characteristic frequency area analysis showed that humic acids (HA, and fulvic acids (FA contain more than hydrophilic organic matter (HyI aromatic ring structure, and FA aromatic ring structure is the most. Because of Chung-amide NH deformation vibration, there are strong absorption peaks in the 1562~1572 cm−1 for various components; HyI contains many organic nitrogen compounds and fatty acids.

  12. Stochastic Liouville equation simulation of multidimensional vibrational line shapes of trialanine

    NARCIS (Netherlands)

    Jansen, TL; Zhuang, W; Mukamel, S

    2004-01-01

    The line shapes detected in coherent femtosecond vibrational spectroscopies contain direct signatures of peptide conformational fluctuations through their effect on vibrational frequencies and intermode couplings. These effects are simulated in trialanine using a Green's function solution of a

  13. Changing Hydrogen-Bond Structure during an Aqueous Liquid-Liquid Transition Investigated with Time-Resolved and Two-Dimensional Vibrational Spectroscopy.

    Science.gov (United States)

    Bruijn, Jeroen R; van der Loop, Tibert H; Woutersen, Sander

    2016-03-03

    We investigate the putative liquid-liquid phase transition in aqueous glycerol solution, using the OD-stretch mode in dilute OD/OH isotopic mixtures to probe the hydrogen-bond structure. The conversion exhibits Avrami kinetics with an exponent of n = 2.9 ± 0.1 (as opposed to n = 1.7 observed upon inducing ice nucleation and growth in the same sample), which indicates a transition from one liquid phase to another. Two-dimensional infrared (2D-IR) spectroscopy shows that the initial and final phases have different hydrogen-bond structures: the former has a single Gaussian distribution of hydrogen-bond lengths, whereas the latter has a bimodal distribution consisting of a broad distribution and a narrower, ice-like distribution. The 2D-IR spectrum of the final phase is identical to that of ice/glycerol at the same temperature. Combined with the kinetic data this suggests that the liquid-liquid transformation is immediately followed by a rapid formation of small (probably nanometer-sized) ice crystals.

  14. Water-carbon dioxide mixtures at high temperatures and pressures: Local order in the water rich phase investigated by vibrational spectroscopy

    Science.gov (United States)

    Oparin, R.; Tassaing, T.; Danten, Y.; Besnard, M.

    2005-12-01

    Raman scattering combined with near- and midinfrared absorption spectroscopies was used to investigate the evolution of the local order in the water rich phase of water-CO2 mixtures under isobaric heating (T=40-360°C,P=250bars). The quantitative analysis of the spectra shows that tetramers and larger oligomers are the main constituents of water at moderate temperatures below 80 °C. As the temperature increases, the dimer and trimer concentrations considerably increase at the expense of larger oligomers. Finally, water dimers are predominant at the highest temperature investigated close to the temperature of total miscibility of the mixture (T=366°C,P=250bars). This result is consistent with our previous investigation [R. Oparin T. Tassaing, Y. Danten, and M. Besnard, J. Chem. Phys. 120, 10691 (2004)] on water dissolved in the CO2 rich phase where we found that close to the temperature of total miscibility water also exists mainly under dimeric form. The current study combined with that mentioned above provides a model investigation of the evolution of the state of aggregation of water molecules in binary mixture involving a hydrophobic solvent in a wide range of temperature.

  15. Research on the Effect of Cutting Parameters on Chip Formation and Cutting Force in Elliptical Vibration Cutting Process

    Science.gov (United States)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Feng, Da

    2017-12-01

    Elliptical vibration cutting (EVC) has been widely concerned since it was proposed, and its unique characteristics such as friction reversal and intermittent cutting can effectively extend the tool life, improve the machined surface roughness and so on. The objective of this paper was to predict the behavior of cutting force. A method of predicting the behavior of cutting force based on the chip thickness under various cutting conditions is proposed. Based on the established tool motion model, the chip model was founded. By numerical simulation, the effects of cutting parameters on cutting force under various cutting conditions were studied. The results show that the chip thickness can be used to predict the behavior of cutting force.

  16. [Research and application progress of near infrared spectroscopy analytical technology in China in the past five years].

    Science.gov (United States)

    Chu, Xiao-Li; Lu, Wan-Zhen

    2014-10-01

    In the past decade, near infrared spectroscopy (NIR) has expanded rapidly and been applied widely in many fields in China. The recent progress of the research and application of NIR analytical technology in China especially in the past five years has been reviewed. It includes hardware and software R&D, Chemometric algorithms and experimental methods research, and quantitative and qualitative applications in the typical fields such as food, agriculture, pharmaceuticals, petrochemicals, forestry, and medical diagnosis. 209 references are cited, which are mainly published in national journals, professional magazines, and book chapters. The developing trend of near infrared spectroscopy and the strategies to further promote its innovation and development in China in the near future are put forward and discussed.

  17. Fusion related research with laser-induced-breakdown-spectroscopy on metallic samples at the ENEA-Frascati laboratory.

    Science.gov (United States)

    Almaviva, S.; Caneve, L.; Colao, F.; Maddaluno, G.

    2016-04-01

    The study of plasma-wall interactions is of paramount importance for continuous and fault free operations in thermonuclear fusion research to monitor the damages of plasma facing components (PFCs), plasma pollution from impurities and wall retention of hydrogen isotopes, like tritium. These needs make laser-induced-breakdown-spectroscopy (LIBS) a suitable candidate for a real time monitoring of PFCs in the current and next generation fusion devices, like ITER. It is also worthwhile for the quantitative analysis of surfaces, with micro-destructivity of the sample and depth profiling capabilities with sub-micrometric sensitivity. In this paper LIBS spectroscopy is exploited as a valid diagnostic tool for PFCs at the ENEA Research Center in Frascati (Italy) and at the Institute of Plasma Physics and Laser Microfusion (IPPLM) of Warsaw (Poland). The activities have been focused on LIBS characterization of samples simulating PFCs surfaces eroded/redeposited or contaminated from nuclear fuel after or during the normal operation of the reactor.

  18. TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    OpenAIRE

    Ketelaer, J.; Krämer, J.; Beck, D; Blaum, K; Block, M; Eberhardt, K.; Eitel, G.; Ferrer, R.; Geppert, C; George, S; Herfurth, F.; Ketter, J.; Nagy, Sz.; Neidherr, D.; Neugart, R

    2008-01-01

    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also h...

  19. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  20. Structure of the dimeric N-glycosylated form of fungal β-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies

    Directory of Open Access Journals (Sweden)

    Sklenář Jan

    2007-05-01

    Full Text Available Abstract Background Fungal β-N-acetylhexosaminidases catalyze the hydrolysis of chitobiose into its constituent monosaccharides. These enzymes are physiologically important during the life cycle of the fungus for the formation of septa, germ tubes and fruit-bodies. Crystal structures are known for two monomeric bacterial enzymes and the dimeric human lysosomal β-N-acetylhexosaminidase. The fungal β-N-acetylhexosaminidases are robust enzymes commonly used in chemoenzymatic syntheses of oligosaccharides. The enzyme from Aspergillus oryzae was purified and its sequence was determined. Results The complete primary structure of the fungal β-N-acetylhexosaminidase from Aspergillus oryzae CCF1066 was used to construct molecular models of the catalytic subunit of the enzyme, the enzyme dimer, and the N-glycosylated dimer. Experimental data were obtained from infrared and Raman spectroscopy, and biochemical studies of the native and deglycosylated enzyme, and are in good agreement with the models. Enzyme deglycosylated under native conditions displays identical kinetic parameters but is significantly less stable in acidic conditions, consistent with model predictions. The molecular model of the deglycosylated enzyme was solvated and a molecular dynamics simulation was run over 20 ns. The molecular model is able to bind the natural substrate – chitobiose with a stable value of binding energy during the molecular dynamics simulation. Conclusion Whereas the intracellular bacterial β-N-acetylhexosaminidases are monomeric, the extracellular secreted enzymes of fungi and humans occur as dimers. Dimerization of the fungal β-N-acetylhexosaminidase appears to be a reversible process that is strictly pH dependent. Oligosaccharide moieties may also participate in the dimerization process that might represent a unique feature of the exclusively extracellular enzymes. Deglycosylation had only limited effect on enzyme activity, but it significantly affected

  1. On Ultrafast Time-Domain TeraHertz Spectroscopy in the Condensed Phase: Linear Spectroscopic Measurements of Hydrogen-Bond Dynamics of Astrochemical Ice Analogs and Nonlinear TeraHertz Kerr Effect Measurements of Vibrational Quantum Beats

    Science.gov (United States)

    Allodi, Marco A.

    . We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 wavenumbers (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice. To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoium-based THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 wavenumbers), in exact agreement with the fundamental transition frequency of the lowest energy vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies. To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab

  2. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  3. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  4. Preliminary research on organics recognition by x-ray absorption spectroscopy detection and classification

    Science.gov (United States)

    Wang, Qian; Wu, Xiaomei; Zhang, Wei; He, Shuting; Feng, Haifeng; Fang, Zheng

    2016-01-01

    X-ray Absorption Spectroscopy (XAS) was been applied for the material recognition in this paper. Twelve kinds of plastics were selected as specimens. Each specimen was tested for 100 times by different operators for data processing. Seventy sets of spectral data of each specimen were randomly selected as training set and the other 30 sets were selected as testing set. Training set was calculated with Principal Component Analysis (PCA) to get the first four Principal Components, which totally explain 99% of the original spectrum. The first four Principal Components were built plastic classification model respectively through K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) methods. The classification accuracy reached 89.22%-98.17%. Experimental results demonstrate that organics could be recognized by XAS. It shows that the X-ray absorption spectroscopy contains the potential of other organics recognition or even organisms.

  5. [Research progress on method validation of near infrared spectroscopy in quantitative analysis].

    Science.gov (United States)

    Luo, Yu; Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    Due to the advantages of fast and noninvasive, requiring almost no sample preparation, supplying chemical and physical information, near infrared (NIR) spectroscopy is widely used in the pharmaceutical industry. In the life cycle of an established analytical method, rigorous validation should be performed before routine use. However,there is no detailed experimental standards or decision rules for the NIR methods validation currently, and various approaches were applied to validate the established NIR quantification models in literatures.In this paper, progress on the validation of NIR methods developed for the pharmaceutical application was reviewed, concentrating on the standard documents and main ideas of validation.It will provide references for the standardized application of NIR spectroscopy in the pharmaceutical industries. Copyright© by the Chinese Pharmaceutical Association.

  6. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  7. THE NEUROPHYSIOLOGICAL EFFECTS OF WHOLE BODY VIBRATION TRAINING

    OpenAIRE

    KOÇ, Gözde; K. Alparslan ERMAN

    2012-01-01

    Whole body vibration training, the person’s entire body on a platform, creates a vibration that may affect the muscles and bones. Despite the vibration used of massage and treatment since ancient times, it was used as a training method in recent years and became very popular and has attracted the attention of researchers. Whole body vibration training used both sport science with the aim to improve performance and in the fields of medicine for sports therapy. Whole body vibration training bri...

  8. [Research on the blood components detecting by multi-optical path length spectroscopy technique].

    Science.gov (United States)

    Li, Gang; Zhao, Zhe; Liu, Rui; Wang, Hui-quan; Wu, Hong-jie; Lin, Ling

    2010-09-01

    To discuss the feasibility of using the serum's multi-optical path length spectroscopy information for measuring the concentration of the human blood components, the automatic micro-displacement measuring device was designed, which can obtain the near-infrared multi-optical path length from 0 to 4.0 mm (interval is 0.2 mm) spectra of 200 serum samples with multioptical path length spectrum of serum participated in building the quantitative analysis model of four components of the human blood: glucose (GLU), total cholesterol (TC), total protein (TP) and albumin (ALB), by mean of the significant non-linear spectral characteristic of blood. Partial least square (PLS) was used to set up the calibration models of the multi-optical path length near-infrared absorption spectrum of 160 experimental samples against the biochemical analysis results of them. The blood components of another 40 samples were predicted according to the model. The prediction effect of four blood components was favorable, and the correlation coefficient (r) of predictive value and biochemical analysis value were 0.9320, 0.9712, 0.9462 and 0.9483, respectively. All of the results proved the feasibility of the multi-optical path length spectroscopy technique for blood components analysis. And this technique established the foundation of detecting the components of blood and other liquid conveniently and rapidly.

  9. [Research on prediction chemical composition of beef by near infrared reflectance spectroscopy].

    Science.gov (United States)

    Sun, Xiao-Ming; Lu, Ling; Zhang, Jia-Cheng; Zhang, Song-Shan; Sun, Bao-Zhong

    2011-02-01

    This study established a near infrared reflectance spectroscopy models for exactly predicting the fat, protein and moisture of the ground and mince beef on line. Using our country' SupNIR-1000 near infrared spectrometer, the models were set up by artificial neural network (ANN). Related coefficient of calibration (r(c)) of fat model of mince was 0.971 and related coefficient of prediction (r(p)) was 0.972. The protein' r(c) and RP were 0.952 and 0.949, respectively. The moisture' r(c) and r(p) were 0.938 and 0.927, respectively. Using ground beef established models, the fat' r(c) and r(p) were 0.935 and 0.810; the protein' r(c) and r(p) were 0.954 and 0.868; the moisture' r(c) and r(p) were 0.930 and 0.913, respectively. So near infrared reflectance spectroscopy can better detect the fat, protein and moisture of mince than ground beef. But basically the ground beef model also can be used to quickly predict the chemical composition on line.

  10. [Research on detecting explosive content of 2, 4-dimitroanisole based on THz spectroscopy].

    Science.gov (United States)

    Wang, Gao; Xu, De-Gang; Yao, Jian-Quan

    2013-04-01

    In order to detect the content of a new kind of insensitive melting-cast explosive (DNAN), the system detected the THz characteristics wavelength of DNAN, and solved the content of DNAN by the Bill-Lambert law. Time coherent THz spectroscopy detection system was designed, in which the master system controlled stepper motor to get the micro-scanning of the photoelectric detector. The system parameters were calculated and derived for solving the content of DNAN, and THz characteristic spectrum of DNAN was obtained. Experiment used three methods to detect explosives samples with different content of DNAN, and the results show that the accuracy of this system is close to that of MINI-Z terahertz spectrometer currently broadly applied in THz spectroscopy detection equipment at home and abroad. On this basis, the optimization algorithm of characteristic absorption peak was designed, and by the origin software simulation analysis, it shows that the algorithm can further improve accuracy and stability of the detection system.

  11. Vibrational energy flow in substituted benzenes

    Science.gov (United States)

    Pein, Brandt C.

    Using ultrafast infrared (IR) Raman spectroscopy, vibrational energy flow was monitored in several liquid-state substituted benzenes at ambient temperature. In a series of mono-halogenated benzenes, X-C6H 5 (X = F, Cl, Br, I), a similar CH-stretch at 3068 cm-1 was excited using picosecond IR pulses and the resulting vibrational relaxation and overall vibrational cooling processes were monitored with anti-Stokes spectroscopy. In the molecules with a heavier halide substituent the CH-stretch decayed slower while midrange vibrations decayed faster. This result was logical if the density of states (DOS) in the first few tiers, which is the DOS composed of vibrations with smaller quantum number, is what primarily determines energy flow. For tiers 1-4, the DOS was nearly identical in the CH-stretch region while it increased in the midrange region for heavier halide mass. Excitation spectroscopy, an extension of 3D IR-Raman spectroscopy, was developed and used to selectively pump vibrations localized to the substituent or the phenyl group in nitrobenzene (NB), o-fluoronitrobenzene (OFNB) and o-nitrotoluene (ONT) and in the alkylbenzene series toluene, isopropylbenzene (IPB), and t-butylbenzene (TBB). Using quantum chemical calculations, each Raman active vibration was sorted, according to their atomic displacements, into three classifications: substituent, phenyl, or global. Using IR pump wavenumbers that initially excited substituent or phenyl vibrations, IR-Raman spectroscopy was used to monitor energy flowing from the substituent to phenyl vibrations and vice versa. In NB nitro-to-phenyl and nitro-to-global energy flow was almost nonexistent while phenyl-to-nitro and phenyl-to-global was weak. When ortho substituents (-CH3, -F) were introduced, energy flow from nitro-to-phenyl and nitro-to-global was activated. In ONT, phenyl-to-nitro energy flow ceased possibly due to the added methyl group diverting energy from entering the nitro vibrations. Energy flow is therefore

  12. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  13. Ultrafast electronic relaxation and vibrational dynamics in a polyacetylene derivative

    Science.gov (United States)

    Kobayashi, Takayoshi; Iiyama, Tsugumasa; Okamura, Kotaro; Du, Juan; Masuda, Toshio

    2013-04-01

    Real-time vibrational spectra in a polyacetylene derivative, poly[o-TFMPA([o-(trifluoromethyl) phenyl]acetylene)] in a broad electronic spectral region were observed using a sub-7-fs laser. Using the frequencies and initial phases of vibrational modes obtained by the spectroscopy, the assignment of the wavepackets was made. From the first moment, Huang-Rhys parameters were determined for six most prominent modes, which characterize the potential hypersurface composed of multi-dimensional vibrational mode spaces.

  14. Vibrational Energy Relaxation in Water-Acetonitrile Mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  15. Vibrational energy relaxation in water-acetonitrile mixtures

    NARCIS (Netherlands)

    Cringus, D; Yeremenko, S; Pshenichnikov, MS; Wiersma, DA; Kobayashi, T; Okada, T; Kobayashi, T; Nelson, KA; DeSilvestri, S

    2005-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  16. Vibrational energy relaxation in water-acetonitrile mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  17. Modelling, structural, thermal, optical and vibrational studies of a ...

    Indian Academy of Sciences (India)

    sis of all the fundamental vibration modes using the VEDA. 4 program [21]. Scaling factors used in this study were taken from literature [22]. In order to take into account the effect of intermolecular interactions on geometrical parameters and vibrational spectroscopy, we have considered an appropriate cluster model built up ...

  18. Low temperature vibrational spectroscopy. I. Hexachlorotellurates

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Poulsen, Finn Willy; Bjerrum, Niels

    1977-01-01

    Far infrared and Raman spectra of six hexachlorotellurate (IV) salts have been obtained at ~100 K for the first time. In the rubidium, cesium, ammonium, and tetramethylammonium salts the Raman active T2g cation lattice translatory mode was found. In the monoclinic K2[TeCl6] a number of low freque...... pair of electrons present in hexachlorotellurates. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  19. Vibrational Overtone Spectroscopy of Pyrrole and Pyrrolidine

    Science.gov (United States)

    1991-05-23

    general pattern is a strong peak accompanied by two or three weaker peaks to lower energy. For instance, the 13,305 cm-I band in pyrrole has three weaker...Orza, J.M. Anales de Quimica 1984, 80, 59. 29. Navarro, R.; Orza, J.M. Anales de Quimica 1982, 79, 557. 30. Xie, Y; Fan, K.; Boggs,J., Molec. Phys

  20. Terahertz time-domain spectroscopy of crystalline and aqueous systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Eichhorn, Finn

    2007-01-01

    We use ab-initio density-functional perturbation theory together with THz spectroscopy for precise prediction and assignment of vibrational modes in molecular crystals. We show that THz spectroscopy is useful for analysis of liquids and food products....

  1. Alleviation of Buffet-Induced Vibration Using Piezoelectric Actuators

    National Research Council Canada - National Science Library

    Morgenstern, Shawn D

    2006-01-01

    .... The objective of this research was to determine the most critical natural modes of vibration for the F-16 ventral fin and design piezoelectric actuators capable of reducing buffet-induced ventral fin vibration...

  2. Evaluation of vibration limits and mitigation techniques for urban construction.

    Science.gov (United States)

    2013-10-01

    The overriding purpose of this research was to develop a comprehensive framework to address : vibration issues prior to and during construction, including calculation of anticipated ground : vibrations during project design, condition surveys of stru...

  3. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J. [Univ. of California, Berkeley, CA (United States)

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  4. Infrared Spectroscopy and Catalysis Research: Infrared spectra of adsorbed molecules provide important information in the study of catalysis.

    Science.gov (United States)

    Eischens, R P

    1964-10-23

    The examples discussed here represent only a small part of the published work relating to infrared spectra of adsorbed molecules. The publications in this field indicate that infrared spectroscopy is being used for surface chemistry research in about 50 laboratories throughout the world. This effort is mainly devoted to problems related to catalysis, and in this field infrared spectroscopy is the most widely used physical tool for surface chemistry studies. The general acceptance of infrared spectroscopy is primarily due to the fact that it provides information which is pertinent to the understanding of surface reactions on an atomic scale. During the last decade significant progress has also been made in the classical chemical techniques of catalysis study and in utilization of physical tools which depend on phenomena of magnetism, conductivity, low-energy electron diffraction, and electron emission. Probably the most important progress has been in the field of inorganic chemistry, where dramatic advances have been made in knowledge of metal coordination compounds. Such knowledge is vital to the understanding of catalysis on metal surfaces. I believe this progress has produced an attitude of sophisticated optimism among catalysis researchers with regard to eventual understanding of heterogeneous catalysis. This attitude is closely related to the realization that there is no "secret of catalysis" which places catalytic action beyond the limits of ordinary chemical knowledge (22). This view implies that the chemical aspects of heterogeneous catalysis are not unique and that the use of solid catalysts merely provides a highly effective exposure of catalytic atoms and facilitates separation of the products from the catalyst. Many capable catalysis researchers believe that studies of homogeneous catalysis provide the most direct route for the study of heterogeneous catalysis. Obviously homogeneous reactions catalyzed by compounds containing only one or two metal atoms

  5. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2012-03-01

    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  6. Vibrational relaxation pathways of AI and AII modes in N-methylacetamide clusters

    NARCIS (Netherlands)

    Piatkowski, L.; Bakker, H.J.

    2010-01-01

    We studied the pathways of vibrational energy relaxation of the amide I (~1660 cm-1) and amide II (~1560 cm-1) vibrational modes of N-methylacetamide (NMA) in CCl4 solution using two-color femtosecond vibrational spectroscopy. We measured the transient spectral dynamics upon excitation of each of

  7. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    Science.gov (United States)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  8. NATO Advanced Research Workshop on Applications of Picosecond Spectroscopy to Chemistry

    CERN Document Server

    1984-01-01

    With the development of lasers that can generate light 11 14 pulses ranging from 10- - 10- sec duration, and capable of 13 peak powers in excess of 10 watts scientists have been able to investigate the interactions of light with matter in a time and power domain not previously possible. These ultrashort laser pulses provide a powerful tool for the study of chemical phenomena at the most fundamental level. Many of the elementary processes of importance in chemistry including energy dissipa­ tion, molecular motions, structural and chemical changes occur on a very short time scale and thus require special approaches. Th~ use of ultrashort laser pulses to perturb and to probe systems of interest affords a direct approach to the time reso­ lution of very rapid chemical phenomena. It was recognition of the impact of these relatively new approaches to chemical phenomena that motivated NATO to sponsor a meeting on the applications of picosecond spectroscopy in chemistry. The primary aim of the NATO workshop was to ...

  9. Clinical research device for ovarian cancer detection by optical spectroscopy in the ultraviolet C-visible

    Science.gov (United States)

    George, Ronie; Chandrasekaran, Archana; Brewer, Molly A.; Hatch, Kenneth D.; Utzinger, Urs

    2010-09-01

    Early detection of ovarian cancer could greatly increase the likelihood of successful treatment. However, present detection techniques are not very effective, and symptoms are more commonly seen in later stage disease. Amino acids, structural proteins, and enzymatic cofactors have endogenous optical properties influenced by precancerous changes and tumor growth. We present the technical details of an optical spectroscopy system used to quantify these properties. A fiber optic probe excites the surface epithelium (origin of 90% of cases) over 270 to 580 nm and collects fluorescence and reflectance at 300 to 800 nm with four or greater orders of magnitude instrument to background suppression. Up to four sites per ovary are investigated on patients giving consent to oophorectomy and the system's in vivo optical evaluation. Data acquisition is completed within 20 s per site. We illustrate design, selection, and development of the components used in the system. Concerns relating to clinical use, performance, calibration, and quality control are addressed. In the future, spectroscopic data will be compared with histological biopsies from the corresponding tissue sites. If proven effective, this technique can be useful in screening women at high risk of developing ovarian cancer to determine whether oophorectomy is necessary.

  10. Innovative Techniques Simplify Vibration Analysis

    Science.gov (United States)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  11. Coupled rotor/airframe vibration analysis

    Science.gov (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  12. [Research on diagnosis of gas-liquid detonation exhaust based on double optical path absortion spectroscopy technique].

    Science.gov (United States)

    Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-03-01

    The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.

  13. [Research on detection method of adulterated olive oil by Raman spectroscopy and least squares support vector machine].

    Science.gov (United States)

    Zhang, Ying-Qiang; Dong, Wei; Zhang, Bing; Wang, Xiao-Ping

    2012-06-01

    For the purpose of the authentication of sorts as well as the prediction of contents of the oils which were adulterated into olive oil, 117 olive oil samples adulterated with sunflower seed oil, soybean oil and corn oil were detected by Raman spectroscopy, and least squares support vector machine (LS-SVM) based on multiple iterative optimization was used to identify the type of the adulterant oil, and the composite recognition rate was 97%. In addition, methods such as LS-SVM, ANNs and PLSR were used to build the Raman spectra calibration model of the adulterant oil (sunflower seed oil, soybean oil and corn oil) contents respectively, the results indicated that LS-SVM had the best predictive performance, and the root mean square error of prediction (RMSEP) ranged from 0.007 4 to 0.014 2. Research results showed the method based on Raman spectroscopy and LS-SVM was accurate, fast, simple and non-destructive for adulterated olive oil detection.

  14. Research on atmospheric CO2 remote sensing with open-path tunable diode laser absorption spectroscopy and comparison methods

    Science.gov (United States)

    Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen

    2017-06-01

    An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.

  15. Feasibility of Using Integrated Cavity Output Spectroscopy (ICOS) for Laser Scattering Research

    Science.gov (United States)

    Sotelo, Emily

    2012-10-01

    ICOS is proving to be a successful method for accurately measuring the atmospheric absorbance of a laser beam in a simulated environment. It was hypothesized that ICOS could be sensitive enough to accurately measure Rayleigh scattering. If feasible, it would mean that instead of having to conduct open range propagation experiments, scattering losses could be determined using a small, controlled test bed. This would be advantageous because it is cumbersome to propagate a laser beam a long distance in open space, as most other methods require. This study, done by Emily Sotelo as a student intern at the Air Force Research Laboratory, will be applied to the ongoing research of the scalability potential of the DPAL laser.

  16. THE POTENTIAL NEURAL MECHANISMS OF ACUTE INDIRECT VIBRATION

    Directory of Open Access Journals (Sweden)

    Darryl J. Cochrane

    2011-03-01

    Full Text Available There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR, which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz. Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s occur during and post-vibration

  17. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  18. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    BEHROUZ KHEIRI SARABI

    2017-07-11

    Jul 11, 2017 ... Abstract. In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a ...

  19. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  20. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  1. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  2. Online measurement of contents in compound fertilizer and application research using VIS-NIR spectroscopy

    Science.gov (United States)

    Lin, Zhidan; Wang, Yubing; Wang, Rujing; Liu, Jing; Lu, Cuiping; Wang, Liusan

    2015-10-01

    The on-line measurement of the main component contents is essential for production, detection and identification of compound fertilizer. Using developed VIS-NIR sensors for on-line measurement of the main component contents in compound fertilizer, primary results about nitrogen (N), phosphorus pentoxide (P2O5) and potassium oxide (K2O) were reported. A visible (VIS) and near infrared (NIR) spectrophotometer (Ocean Optics), with a measurement range of 360.18-2221.53 nm was used to measure fertilizer spectra in reflectance mode. By using principal component analysis (PCA) and mahalanobis distance method, 3 outlier samples were detected and eliminated from 174 samples firstly. Then these models of three components with the 124 samples in calibration set were established using principal component regress (PCR) and partial least squares regression (PLS) coupled respectively with the full cross-validation technique after preprocessing the original spectrum with different methods. These models were used to estimate the contents of N, P2O5 and K2O of the other 47 samples in predicted set. The research results showed that the method could be applied to rapid measurement to the main component contents in compound fertilizer. Compared with the traditional analysis method, the on-line measurement could do it rapidly, inexpensively and pollution-freely. It suggested the potential use of the VIS-NIR sensing system for on-line measurement in the production, detection and identification process of compound fertilizer.

  3. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-01

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations.

  4. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu [JILA, University of Colorado at Boulder, 440 UCB, Boulder, Colorado 80309-0440 (United States); Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Baraban, Joshua H. [Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Matthews, Devin A. [Institute for Computational Engineering and Science, University of Texas at Austin, 201 E. 24th St., Austin, Texas 78712 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165 (United States)

    2015-06-21

    We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  5. A new Density Functional Theory (DFT) based method for supporting the assignment of vibrational signatures of mannan and cellulose—Analysis of palm kernel cake hydrolysis by ATR-FT-IR spectroscopy as a case study

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Sanadi, Anand Ramesh; Jørgensen, Henning

    2011-01-01

    Attenuated Total Reflectance (ATR) FT-IR spectroscopy gives in situ information on molecular concentration, organization and interactions in plant cell walls. We demonstrate its potential for further developments by a case study which combines ATR-FT-IR spectroscopy with a recently published DFT ...

  6. Vibrational spectroscopic characterization of fluoroquinolones

    Science.gov (United States)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  7. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  8. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  9. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  10. Research on the Combined Effects of Ionization and Displacement Defects in NPN Transistors Based on Deep Level Transient Spectroscopy

    Science.gov (United States)

    Li, Xingji; Liu, Chaoming; Yang, Jianqun; Ma, Guoliang

    2015-04-01

    The properties of the combined effect between ionization and displacement defects have been researched on the base-collector junctions of 3DG110 silicon NPN bipolar junction transistors (BJTs) irradiated by 6 MeV carbon (C) ions with different fluence. The Gummel curve is used to characterize the degradation of the current gain at a given fluence. Nonlinear relationship, induced by 6 MeV C ions with lower fluence, between irradiation fluence and BJT radiation response can be observed, which is attributed to the combined effect. Evolution of deep level centers is characterized by the deep level transient spectroscopy (DLTS) with various biases. An unusual discovery is that the deep level centers decrease in the amplitude of DLTS peaks with increasing the biases. Based on the results of DLTS measurement, interface traps caused by 6 MeV C ions produce apparent enhanced effect to displacement defects in the base-collector junction of NPN BJT. Meanwhile, two factors, including bias used in DLTS measurement and irradiation fluence, can influence characteristics of DLTS signals caused by oxide-trapped charge. With increasing the bias or the irradiation fluence, both the height and the temperature of the defect peaks induced by the oxide charge in DLTS spectra will increase, illustrating concentration and energy level of the defects are enhanced.

  11. TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    CERN Document Server

    Ketelaer, J; Beck, D; Blaum, K; Block, M; Eberhardt, K; Eitel, G; Ferrer, R; Geppert, C; George, S; Herfurth, F; Ketter, J; Nagy, Sz; Neidherr, D; Neugart, R; Nörtershäuser, W; Repp, J; Smorra, C; Trautmann, N; Weber, C

    2008-01-01

    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. This pub...

  12. TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    Science.gov (United States)

    Ketelaer, J.; Krämer, J.; Beck, D.; Blaum, K.; Block, M.; Eberhardt, K.; Eitel, G.; Ferrer, R.; Geppert, C.; George, S.; Herfurth, F.; Ketter, J.; Nagy, Sz.; Neidherr, D.; Neugart, R.; Nörtershäuser, W.; Repp, J.; Smorra, C.; Trautmann, N.; Weber, C.

    2008-09-01

    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beamline for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235U or 252Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. TRIGA-SPEC also serves as a test facility for mass and laser spectroscopic experiments at SHIPTRAP and the low-energy branch of the future GSI facility FAIR. This publication describes the experimental setup as well as its present status.

  13. Application of Fourier Transform Infrared Spectroscopy (FTIR for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research

    Directory of Open Access Journals (Sweden)

    G. E. A. Swann

    2011-02-01

    Full Text Available The development of a rapid and non-destructive method to assess purity levels in samples of biogenic silica prior to geochemical/isotope analysis remains a key objective in improving both the quality and use of such data in environmental and palaeoclimatic research. Here a Fourier Transform Infrared Spectroscopy (FTIR mass-balance method is demonstrated for calculating levels of contamination in cleaned sediment core diatom samples from Lake Baikal, Russia. Following the selection of end-members representative of diatoms and contaminants in the analysed samples, a mass-balance model is generated to simulate the expected FTIR spectra for a given level of contamination. By fitting the sample FTIR spectra to the modelled FTIR spectra and calculating the residual spectra, the optimum best-fit model and level of contamination is obtained. When compared to X-ray Fluorescence (XRF the FTIR method portrays the main changes in sample contamination through the core sequence, permitting its use in instances where other, destructive, techniques are not appropriate. The ability to analyse samples of <1 mg enables, for the first time, routine analyses of small sized samples. Discrepancies between FTIR and XRF measurements can be attributed to FTIR end-members not fully representing all contaminants and problems in using XRF to detect organic matter external to the diatom frustule. By analysing samples with both FTIR and XRF, these limitations can be eliminated to accurately identify contaminated samples. Future, routine use of these techniques in palaeoenvironmental research will therefore significantly reduce the number of erroneous measurements and so improve the accuracy of biogenic silica/diatom based climate reconstructions.

  14. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    Science.gov (United States)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  15. Observation and Analysis of N[subscript 2]O Rotation-Vibration Spectra: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Bryant, Mark S.; Reeve, Scott W.; Burns, William A.

    2008-01-01

    The linear molecule N[subscript 2]O is presented as an alternative gas-phase species for the ubiquitous undergraduate physical chemistry rotation-vibration spectroscopy experiment. Utilizing a 0.5 cm[superscript -1] resolution teaching grade FTIR spectrometer, 15 vibrational bands, corresponding to 1229 rotation-vibration transitions, have been…

  16. Characterization of the quasi-one-dimensional compounds δ-(EDT-TTF-CONMe{sub 2}){sub 2}X, X=AsF{sub 6} and Br by vibrational spectroscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peterseim, Tobias; Dressel, Martin [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Antal, Ágnes [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Batail, Patrick [Laboratoire MOLTECH, UMR 6200 CNRS-Université d' Angers, Bt. K, UFR Sciences, 2 Boulevard Lavoisier, F-49045 Angers (France); Drichko, Natalia [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-02-14

    We have investigated the infrared spectra of the quarter-filled charge-ordered insulators δ-(EDT-TTF-CONMe{sub 2}){sub 2}X (X= AsF{sub 6}, Br) along all three crystallographic directions in the temperature range from 300 to 10 K. DFT-assisted normal mode analysis of the neutral and ionic EDT-TTF-CONMe{sub 2} molecule allows us to assign the experimentally observed intramolecular modes and to obtain relevant information on the charge ordering and intramolecular interactions. From frequencies of charge-sensitive vibrations we deduce that the charge-ordered state is already present at room temperature and does not change on cooling, in agreement with previous NMR measurements. The spectra taken along the stacking direction clearly show features of vibrational overtones excited due to the anharmonic electronic molecule potential caused by the large charge disproportionation between the molecular sites. The shift of certain vibrational modes indicates the onset of the structural transition below 200 K.

  17. The highest bond order between heavier main-group elements in an isolated compound? Energetics and vibrational spectroscopy of S2I4(MF6)2 (M = As, Sb).

    Science.gov (United States)

    Brownridge, Scott; Cameron, T Stanley; Du, Hongbin; Knapp, Carsten; Köppe, Ralf; Passmore, Jack; Rautiainen, J Mikko; Schnöckel, Hansgeorg

    2005-03-21

    The vibrational spectra of S2I4(MF6)2(s) (M = As, Sb), a normal coordinate analysis of S2I4(2+), and a redetermination of the X-ray structure of S2I4(AsF6)2 at low temperature show that the S-S bond in S2I4(2+) has an experimentally based bond order of 2.2-2.4, not distinguishably different from bond orders, based on calculations, of the Si-Si bonds in the proposed triply bonded disilyne of the isolated [(Me3Si)2 CH]2 (iPr)SiSiSiSi(iPr)[CH(SiMe3)2]2 and the hypothetical trans-RSiSiR (R = H, Me, Ph). Therefore, both S2I4(2+) and [(Me3Si)2 CH]2 (iPr)SiSiSiSi(iPr)[CH(SiMe3)2]2 have the highest bond orders between heavier main-group elements in an isolated compound, given a lack of the general acceptance of a bond order > 2 for the Ga-Ga bond in Na2[{Ga(C6H3Trip2-2,6)}2] (Trip = C6H2Pr(i)3-2,4,6) and the fact that the reported bond orders for the heavier group 14 alkyne analogues of formula REER [E = Ge, Sn, or Pb; R = bulky organic group] are ca. 2 or less. The redetermination of the X-ray structure gave a higher accuracy for the short S-S [1.842(4) A, Pauling bond order (BO) = 2.4] and I-I [2.6026(9) A, BO = 1.3] bonds and allowed the correct modeling of the AsF6- anions, the determination of the cation-anion contacts, and thus an empirical estimate of the positive charge on the sulfur and iodine atoms. FT-Raman and IR spectra of both salts, obtained for the first time, were assigned with the aid of density functional theory calculations and gave a stretching frequency of 734 cm(-1) for the S-S bond and 227 cm(-1) for the I-I bond, implying bond orders of 2.2 and 1.3, respectively. A normal-coordinate analysis showed that no mixing occurs and yielded force constants for the S-S (5.08 mdyn/A) and I-I bonds (1.95 mdyn/A), with corresponding bond orders of 2.2 for the S-S bond and 1.3 for the I-I bond, showing that S2I4(2+) maximizes pi bond formation. The stability of S2I4(2+) in the gas phase, in SO2 and HSO3F solutions, and in the solid state as its AsF6- salts was

  18. Vibration for Pain Reduction in a Plastic Surgery Clinic.

    Science.gov (United States)

    Eichhorn, Mitchell George; Karadsheh, Murad Jehad; Krebiehl, Johanna Ruth; Ford, Dawn Marie; Ford, Ronald D

    2016-01-01

    Patients can experience significant pain during routine procedures in the plastic surgery clinic. Methods for clinical pain reduction are often impractical, time-consuming, or ineffective. Vibration is a safe, inexpensive, and highly applicable modality for pain reduction that can be readily utilized for a wide variety of procedures. This study evaluated the use of vibration as a viable pain-reduction strategy in the clinical plastic surgery setting. Patients requiring at least 2 consecutive procedures that are considered painful were enrolled in the study. These included injections, staple removal, and suture removal. In the same patient, one half of the procedures were performed without vibration and the other half with vibration. After completing the procedures, the patients rated their pain with vibration and without vibration. The patient and the researcher also described the experience with a short questionnaire. Twenty-eight patients were enrolled in the study. Patients reported significantly less pain on the Numeric Rating Scale pain scale when vibration was used compared with the control group (p vibration and 1.93 with vibration, and vibration with injections resulted in the greatest improvement. Eighty-six percent of the patients claimed that vibration significantly reduced their pain. Vibration is an effective method of pain reduction. It significantly reduces the pain experienced by patients during minor office procedures. Given its practicality and ease of use, it is a welcome tool in the plastic surgery clinic.

  19. Vibrational lineshapes of adsorbates on solid surfaces

    Science.gov (United States)

    Ueba, H.

    A review is presented of the current activity in vibrational spectroscopy of adsorbates on metal surfaces. A brief introduction of the representative spectroscopies is given to demonstrate the rich information contained in vibrational spectra, which are characterized by their intensity, peak position and width. Analysis of vibrational spectra enables us to gain the deep insight into not only the local character of adsorption site or geometry, but also the dynamical interaction between the adsorbates or between the adsorbate and the substrate. Some recent instructive experimental results, mostly of a CO molecule adsorbed on various metal surfaces, are accompanied by the corresponding theoretical recipe for vibrational excitation mechanisms. Wide spread experimental results of the C-O stretching frequency of CO adsorbed on metal surfaces are discussed in terms of the chemical effect involving the static and dynamic charge transfers between the chemisorbed CO and metal, and also of the electrostatic dipole-dipole interaction between the molecules. The central subject of this review is directed to the linshapes characterized by the vibrational relaxation processes of adsorbates. A simple and transparent model is introduced to show that the characteristic decay time of the correlation function for the vibrational coordinates is the key quantity to determine the spectral lineshapes. Recent experimental results focused on a search for an intrinsic broadening mechanism are reviewed in the light of the so-called T1 (energy) and T2 (phase) relaxation processesof the vibrational excited states of adsorbates. Those are the vibrational energy dissipation into the elementary excitation, such as phonons or electron-hole pairs in the metal substrate, and pure dephasing due to the energy exchange with the sorroundings. The change of width and frequency by varying the experimental variables, such as temperature or isotope effect, provides indispensable knowledge for the dynamical

  20. Whole-Body Vibration and Blood Flow and Muscle Oxygenation: A Meta-Analysis

    Science.gov (United States)

    Games, Kenneth E.; Sefton, JoEllen M.; Wilson, Alan E.

    2015-01-01

    Context: The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. Objective: To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. Data Sources: We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Study Selection: Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Data Extraction: Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. Data Synthesis: We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation

  1. Whole-body vibration and blood flow and muscle oxygenation: a meta-analysis.

    Science.gov (United States)

    Games, Kenneth E; Sefton, JoEllen M; Wilson, Alan E

    2015-05-01

    The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation; however, when the measurement site was considered, muscle oxygenation increased or

  2. Vibrational optical activity principles and applications

    CERN Document Server

    Nafie, Laurence A

    2011-01-01

    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  3. Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules

    CERN Document Server

    Berova, Nina; Nakanishi, Koji; Woody, Robert W

    2012-01-01

    This book provides an introduction to the important methods of chiroptical spectroscopy in general, and circular dichroism (CD) in particular, which are increasingly important in all areas of chemistry, biochemistry, and structural biology. The book can be used as a text for undergraduate and graduate students and as a reference for researchers in academia and industry. Experimental methods and instrumentation are described with topics ranging from the most widely used methods (electronic and vibrational CD) to frontier areas such as nonlinear spectroscopy and photoelectron CD,

  4. Davisson-Germer Prize Talk: Surface vibrations of adsorbates on Si(111): From small clusters to infinite lattices

    Science.gov (United States)

    Raghavachari, Krishnan

    2009-03-01

    Organic functionalization of semiconductor surfaces is a growing research area that offers the possibility of molecular level control of surface features and tailored electronic properties. In this work, quantum chemical cluster calculations are used in conjunction with surface vibrational spectroscopy to determine the structures of functionalized Si(111) surfaces. Interestingly, the interpretation of these spectra even for simple adsorbates is not straightforward. In the limit of high coverage, most calculations using small cluster models lack the long range coupling of the real surface that is required to make definitive assignments. In order to understand the relationship between clusters and infinite periodic vibrations, we have investigated the geometries and harmonic vibrational frequencies of the methyl, acetylenyl, methylacetylenyl, hydrogen, deuterium and chlorine functionalized Si(111) surfaces. From a careful analysis of these systems, we have derived a technique where the collective vibrational modes corresponding to the vibrations of the infinite periodic system can be derived from relatively small cluster models. The calculated frequencies are in good agreement with available experimental values and yield novel insights about the coupling between low frequency adsorbate frequencies and surface phonons. The efficacy of this approach for surfaces of varying adsorbate coverage and the prediction of novel frequency shifts will be discussed along with more complex systems.

  5. Hydrogen Bonds and Vibrations of Water on (110) Rutile

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitin [ORNL; Neogi, Sanghamitra [Pennsylvania State University; Kent, Paul R [ORNL; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Wesolowski, David J [ORNL; Cole, David R [ORNL; Sofo, Jorge O. [Pennsylvania State University

    2009-01-01

    We study the relation between hydrogen bonding and the vibrational frequency spectra of water on the (110) surface of rutile (α-TiO2) with three structural layers of adsorbed water. Using ab-initio molecular dynamics simulations at 280, 300 and 320K, we find strong, crystallographically-controlled adsorption sites, in general agreement with synchrotron X-ray and classical MD simulations. We demonstrate that these sites are produced by strong hydrogen bonds formed between the surface oxygen atoms and sorbed water molecules. The strength of these bonds is manifested by substantial broadening of the stretching mode vibrational band. The overall vibrational spectrum obtained from our simulations is in good agreement with inelastic neutron scattering experiments. We correlate the vibrational spectrum with different bonds at the surface in order to transform these vibrational measurements into a spectroscopy of surface interactions.

  6. Prediction of induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Thomsen, K.; Aagaard Madsen, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)

  7. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, Nick [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm-1 intermolecular vibration of the water dimer-d4. Each of the VRT subbands originate from Ka''=0 and terminate in either Ka'=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the Ka' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D2

  8. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, N.

    1992-11-01

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.

  9. Low temperature vibrational spectroscopy. II. Evidence for order–disorder phase transitions due to weak C–H···Cl hydrogen bonding in tetramethylammonium hexachloroplatinate (IV), -tellurate (IV), and -stannate (IV) and the related perdeuterated compounds

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1978-01-01

    and it is suggested that the phase transitions are caused by an ordering of rotationally disordered methyl groups via the formation of weak C–H···Cl hydrogen bonds at low temperatures. The transition temperatures and hence the interactions are shown to depend on both the kind of hydrogen isotope and metal present...... torsions and other noncubic features play a role, especially in spectra at low temperatures. Possible site symmetries of the [PtCl6]2− ion, which cannot have strictly Oh symmetry in either phase, have been deduced. The spectra of a mixed Pt : Te compound showed that the hexachlorometallate anions vibrate...

  10. Vibration Transmission in a Multi-Storey Lightweight Building

    DEFF Research Database (Denmark)

    Niu, Bin; Andersen, Lars Vabbersgaard; Kiel, Nikolaj

    2012-01-01

    This paper develops a parametric modelling and analysis approach to investigate the vibration transmission in lightweight buildings. The main focus of the research is to investigate the influence of geometry and configuration of the building on the vibration transmission. A building with a single...... the modelling of different connections between panels in the building [2]. Using this parametric building model, free vibration analysis is first performed to obtain the distribution of Eigen frequencies of the building. Then the forced vibration of the building subjected to a mechanical excitation is analysed...... to investigate the transmission of vibration. The influence of different excitation frequencies on the vibration transmission is studied and discussed. The vibration response in two different receiving rooms, one near the source and one far from the source, is illustrated and discussed for the various geometric...

  11. Between photocatalysis and photosynthesis: Synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Debajeet K. [Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Department of Chemistry, University of Basel, CH-4052 Basel (Switzerland); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Hu, Yelin [Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Laboratory for Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, CH-1005 Lausanne (Switzerland); Thiess, Sebastian [Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany); Erat, Selma [Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Toros University, Faculty of Engineering, Electrical-Electronics Department, TR-33140 Mersin (Turkey); Feng, Xuefei [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Mukherjee, Sumanta [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Fortunato, Giuseppino [Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen (Switzerland); Gaillard, Nicolas [Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Toth, Rita [Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); and others

    2013-10-15

    Highlights: ► We provide a series of soft X-ray and nuclear resonant vibration spectroscopy experiments relevant for solar hydrogen production. ► Metal oxide photoelectrodes and photosynthesis protein motifs are investigated. ► Ex situ and photoelectrochemical in situ studies are presented. ► The relevant role of defect states on surfaces, in sub-surfaces and in the bulk is elucidated. -- Abstract: Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science. This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and sub-surface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS)

  12. Relating normal vibrational modes to local vibrational modes: benzene and naphthalene.

    Science.gov (United States)

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2013-07-01

    Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F (q) (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f (x) with the help of the transformation matrix U = WB (†)(BWB (†))(-1) (B: Wilson's B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M (-1) (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C-H and C-C bond strength.

  13. Design and research of analysis instrument based on Q-switch micro-crystal UV laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Yu, Suping; Han, Hanguang; Yu, Jinming; Fu, Yinping; Sha, Pingsheng

    2010-10-01

    The physical principle of micro- crystal UV Laser-Induced Fluorescence Spectroscopy (MUV-LIF) is expatiated in the paper, and the application of MUV-LIF to organic matter is studied. Then a portable intelligent analysis instrument based on MUV-LIF is designed. The instrument is composed of following units-----excitation source module based on micro-crystal UV laser, laser driving and controlling module, sample cell, spectroscopy-detecting module, processing and displaying module. Especially, because of high peak power and high repetition frequency rate, Qswitch micro-crystal UV laser is selected as excitation source. MUV-laser module of the instrument is singlepolarization solid-state coherent sources. The module is quasi monolithic integrated. The MUV-laser emits at wavelengths of 355nm, 266nm and 213nm, and it has many advantages, such as high peak power (greater than 30kw), high repeat frequency rate (greater than 10kHz), subnanosecond pulse (less than 500ps pulse width). So the excitation source module is an efficient compact high-order harmonic laser system. Laser driving and controlling module supplies power regulator and temperature controller for MUV-laser. Fluorescence spectroscopy image is produced by spectroscopy-detecting module and pre-processed in processing module. Qualitative and semi-quantitative analysis of sample can be conducted by referring to fluorescence spectroscopy feature library. The experimental results express that lots of organic matter, e.g. melamine, can be detected. The portal instrument has high SNR and sensitivity.

  14. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  15. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  16. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  17. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  18. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  19. Normal coordinate analysis and vibrational spectroscopy (FT-IR and FT-Raman) studies of (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid using ab initio HF and DFT method

    Science.gov (United States)

    Prabakaran, A.; Muthu, S.

    2012-12-01

    The FT-IR and FT-Raman spectra of (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid (2ADMA) were recorded in the region 4000-400 cm-1 and 4000-100 cm-1, respectively. The geometrical structure, harmonic vibrational frequency, infrared intensity, Raman activities and bonding features of this compound was carried out by ab initio HF and DFT methods with 6-31G (d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The electric dipole moment (μ) and the first-order hyperpolarizability (β0) values have been the computed quantum mechanically. The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The charge delocalizations of these molecules have been analyzed using NBO analysis. The solvent effects have been calculated using TD-DFT in combination with the polarized continuum model (PCM), and the results are in good agreement with experimental measurements. The other molecular properties like Mulliken population analysis, electrostatic potential (ESP) and thermodynamic properties of the title compound at the different temperatures have been calculated. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound which shows good agreement with observed spectra.

  20. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  1. Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: An investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy.

    Science.gov (United States)

    Gardner, Adrian M; Tuttle, William D; Groner, Peter; Wright, Timothy G

    2017-03-28

    For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene are investigated using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate on the 0-350 cm-1 region, where there are a number of torsional and vibtor bands and we discuss the assignment of this region. In Paper II [W. D. Tuttle et al., J. Chem. Phys. 146, 124309 (2017)], we examine the 350-600 cm-1 region where vibtor levels are observed as part of a Fermi resonance. The similarity of much of the observed spectral activity to that in the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, which has been designated G72, but we shall also designate [{3,3}]D2h and we include the symmetry operations, character table, and direct product table for this. We also discuss the symmetries of the internal rotor (torsional) levels and the selection rules for the particular electronic transition of p-xylene investigated here.

  2. Advanced synchrotron-based and globar-sourced molecular (micro) spectroscopy contributions to advances in food and feed research on molecular structure, mycotoxin determination, and molecular nutrition.

    Science.gov (United States)

    Shi, Haitao; Yu, Peiqiang

    2017-04-17

    Mycotoxin contamination has been a worldwide problem for food and feeds production for a long time. There is an obviously increased focus of the food and feed industry toward the reduction of mycotoxin concentration in both the raw materials and finished products. Therefore, both effective qualitative and quantitative techniques for the determination of mycotoxins are required to minimize their harmful effects. Conventional wet chemical methods usually are time-consuming, expensive, and rely on complex extraction and cleanup pretreatments. Synchrotron-based and globar-based molecular spectroscopy have shown great potential to be developed as rapid and nondestructive tools for the determination of molecular structure, molecular nutrition and mycotoxins in feed and food. This article reviews the common types of mycotoxins in feed and food, their toxicity, as well as the conventional detection methods. The principle of advanced molecular spectroscopy techniques and their application prospects for mycotoxin detection are discussed. Recent progress in food and feed research with molecular spectroscopy techniques is highlighted. This review provides a potential and insight into how to determine the structure and mycotoxins of feed and food on a molecular basis with advanced Synchrotron-based and globar-based molecular (micro) spectroscopy.

  3. International Conference on Acoustics and Vibration

    CERN Document Server

    Chaari, Fakher; Walha, Lasaad; Abdennadher, Moez; Abbes, Mohamed; Haddar, Mohamed

    2017-01-01

    The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theori...

  4. 14th International Conference on Acoustics and Vibration of Mechanical Structures

    CERN Document Server

    Marinca, Vasile

    2018-01-01

    This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.

  5. Vibrational damping of composite materials

    Science.gov (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  6. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  7. Vibrational relaxation in simulated two-dimensional infrared spectra of two amide modes in solution

    NARCIS (Netherlands)

    Dijkstra, Arend G.; Jansen, Thomas la Cour; Bloem, Robbert; Knoester, Jasper

    2007-01-01

    Two-dimensional infrared spectroscopy is capable of following the transfer of vibrational energy between modes in real time. We develop a method to include vibrational relaxation in simulations of two-dimensional infrared spectra at finite temperature. The method takes into account the correlated

  8. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  9. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  10. Hubungan Phantom Vibration Syndrome Terhadap Sleep Disorder dan Kondisi Stress

    OpenAIRE

    Ajeng Yeni Setianingrum

    2017-01-01

    Phantom vibration syndrome is a condition where a person would feel the sensation of vibration of a cell phone as if there were incoming notification but the fact is not. This research investigated the relationship between phantom vibration syndromes, sleep disorder and stress condition. Questionnaires were distributed to 120 participants with age range 18 to 23 years old. Data of participants showed that all of participants using a smart mobile phone and 24% of them have more than one cell p...

  11. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  12. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  13. Spectroscopy of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abele, Hartmut; Bittner, Thomas; Cronenberg, Gunther; Filter, Hanno; Jenke, Tobias; Lemmel, Hartmut; Thalhammer, Martin [Atominstitut TU Wien, Wien (Austria); Geltenbort, Peter [Institut Laue-Langevin, Grenoble (France)

    2012-07-01

    This talk is about a test of the Newtons Inverse Square Law of Gravity at micron distances by quantum interference with ultra-cold neutrons deep into the theoretically interesting regime. The method is based on a new resonance spectroscopy technique related to Rabi spectroscopy, but it has been adapted to gravitationally bound quantum systems. By coupling such a quantum system to mechanical vibrations, we observe resonant transitions, devoid of electromagnetic interaction. As Newtonian gravity and hypothetical Fifth Forces evolve with different phase information, the experiment has the potential to test the equivalence principle and Newtons gravity law at the micron scale. This experiment can therefore test speculations on large extra dimensions of sub-millimetre size of space-time or the origin of the cosmological constant in the universe, where effects are predicted in the interesting range of this experiment and might give a signal in an improved setup.

  14. Mössbauer Spectroscopy

    Science.gov (United States)

    Kuzmann, E.; Homonnay, Z.; Nagy, S.; Nomura, K.

    Mössbauer spectroscopy, based on the recoilless resonance emission and absorption of γ photons observed with certain atomic nuclei, is a powerful investigating tool in most disciplines of natural science ranging from physics to chemistry to biology. This nuclear method makes it possible to measure the energy difference between nuclear energy levels to an extremely high resolution (up to 13-15 decimals). This resolution is required to measure the slight variation of nuclear energy levels caused by electric monopole, electric quadrupole, and magnetic dipole interactions between the electrons and the nucleus. Mössbauer nuclides being at different microenvironments act as local probes for the sensitive detection of the hyperfine interactions. Such interactions reflect changes in the electronic, magnetic, geometric, or defect structure as well as in the lattice vibrations, serving as a basis for a variety of applications. In this chapter, the principles and some practical aspects of Mössbauer spectroscopy are described.

  15. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    containing systems using simple instrumentation and well-known and understood theoretical concepts. Overall it is attempted to achieve this goal by presenting five research projects that I have been involved in during my Ph.D. studies which collectively demonstrate some of the many possibilities of gaining......The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...

  16. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  17. No Telescoping Effect with Dual Tendon Vibration.

    Directory of Open Access Journals (Sweden)

    Valeria Bellan

    Full Text Available The tendon vibration illusion has been extensively used to manipulate the perceived position of one's own body part. However, findings from previous research do not seem conclusive sregarding the perceptual effect of the concurrent stimulation of both agonist and antagonist tendons over one joint. On the basis of recent data, it has been suggested that this paired stimulation generates an inconsistent signal about the limb position, which leads to a perceived shrinkage of the limb. However, this interesting effect has never been replicated. The aim of the present study was to clarify the effect of a simultaneous and equal vibration of the biceps and triceps tendons on the perceived location of the hand. Experiment 1 replicated and extended the previous findings. We compared a dual tendon stimulation condition with single tendon stimulation conditions and with a control condition (no vibration on both 'upward-downward' and 'towards-away from the elbow' planes. Our results show a mislocalisation towards the elbow of the position of the vibrated arm during dual vibration, in line with previous results; however, this did not clarify whether the effect was due to arm representation contraction (i.e., a 'telescoping' effect. Therefore, in Experiment 2 we investigated explicitly and implicitly the perceived arm length during the same conditions. Our results clearly suggest that in all the vibration conditions there was a mislocalisation of the entire arm (including the elbow, but no evidence of a contraction of the perceived arm length.

  18. Effects of vibration on flexibility: a meta-analysis.

    Science.gov (United States)

    Osawa, Y; Oguma, Y

    2013-12-01

    Exogenous stimulation of skeletal muscle or tendon is often used to improve range of motion. Despite substantial research efforts, however, the effects of vibration on flexibility have not been clarified. In this review, we investigated the effects of acute and chronic intervention programs which used vibration to improve flexibility in young healthy individuals. Effect size was calculated using data from a total of 600 participants in 19 studies before and after the introduction of vibration-based intervention, and a total of 324 participants in 13 studies on the additive effects of vibration compared with the identical conditions without vibration. Sub-group analyses were performed based on intervention period, type of exercise, and type of vibration. Meta-analysis showed that vibration interventions had significant effects on flexibility (standardized mean difference [SMD]=-0.79, 95% confidence interval [CI]=-1.14- -0.43; panalysis revealed a significant additive effect of vibration on flexibility compared with the identical condition without vibration (SMD=0.25, 95%CI=0.03-0.48; P=0.03), with small heterogeneity (I(2)=0%). The risk of publication bias was low judged from Kendall's τ statistic. We concluded that the use of vibration might lead to additive improvements in flexibility.

  19. Relevance of motion artifact in electromyography recordings during vibration treatment.

    Science.gov (United States)

    Fratini, Antonio; Cesarelli, Mario; Bifulco, Paolo; Romano, Maria

    2009-08-01

    Electromyography readings (EMGs) from quadriceps of fifteen subjects were recorded during whole body vibration treatment at different frequencies (10-50 Hz). Additional electrodes were placed on the patella to monitor the occurrence of motion artifact, triaxial accelerometers were placed onto quadriceps to monitor motion. Signal spectra revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with the accelerometer data. EMG total power was compared to that associated with vibration harmonics narrow bands, before and during vibration. On average, vibration associated power resulted in only 3% (+/-0.9%) of the total power prior to vibration and 29% (+/-13.4%) during vibration. Often, studies employ surface EMG to quantitatively evaluate vibration evoked muscular activity and to set stimulation frequency. However, previous research has not accounted for motion artifacts. The data presented in this study emphasize the need for the removal of motion artifacts, as they consistently affect RMS estimation, which is often used as a concise muscle activity index during vibrations. Such artifacts, rather unpredictable in amplitude, might be the cause of large inter-study differences and must be eliminated before analysis. Motion artifact filtering will contribute to thorough and precise interpretation of neuromuscular response to vibration treatment.

  20. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Administrator

    Present address: The Fritz Haber Research Centre and The Department of Physical Chemisry,. Hebrew University of Jerusalem, ... state of the diatom. Good amount of state-selected experimental data obtained from the molecular beam and the H+/H energy-loss spectroscopy also exists at. Ec.m. = 23 eV for both the IVE ...