Sample records for vibrational spectroscopic technique

  1. Study of molecular structure, anharmonic vibrational dynamic and electronic properties of sulindac using spectroscopic techniques integrated with quantum chemical calculations (United States)

    Faizan, Mohd; Alam, Mohammad Jane; Ahmad, Shabbir


    In the present investigation, spectroscopic techniques (FTIR, FT-Raman and UV-Vis) and quantum chemical calculations are employed for exploring vibrational and electronic spectra of sulindac compound. The calculations are performed on most stable conformer of the sulindac molecule using density functional theory (DFT). Anharmonic corrections are made to frequencies using vibrational second-order perturbation theory (VPT2). The effect of intermolecular interactions on the vibrational dynamics has been analyzed using dimeric structure of sulindac molecule. Hirshfeld surface analysis and 2D fingerprint plots are utilized to investigate the nature of interaction present in the crystal system. To account for electronic spectra in different solvents, an integral equation formalism of polarizable continuum model (IEFPCM) at TD-DFT/B3LYP/6-31G(d,p) level of theory has been employed. An excellent agreement between the theoretical and experimental data over the entire spectral region is observed. In addition, natural bond orbital (NBO) analysis, frontier molecular orbitals, nonlinear optical properties (NLO) and molecular electrostatic potential (MEP) analysis are also reported.

  2. Vibrational spectroscopic characterization of fluoroquinolones (United States)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.


    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  3. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)


    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  4. Molecular structure, vibrational spectroscopic studies and natural ...

    Indian Academy of Sciences (India)

    pp. 845–860. Molecular structure, vibrational spectroscopic studies and natural bond orbital analysis of 7-amino-4-trifluoromethyl coumarin ..... [15] A Frisch, A B Nielsen and A J Holder, GAUSSIANVIEW Users Manual, Gaussian. Inc., Pittsburgh, PA (2000). [16] S Selladurai and K Subramanian, Acta Crystallogr. C48, 281 ...

  5. Transient full-field vibration measurement using spectroscopical stereo photogrammetry. (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan


    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  6. Vibrational and electronic spectroscopic studies of melatonin (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.


    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  7. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.


    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  8. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques (United States)

    Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia


    N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

  9. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    Energy Technology Data Exchange (ETDEWEB)

    Hougen, J.T. [NIST, Gaithersburg, MD (United States)


    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  10. Deduction of structural information of interfacial proteins by combined vibrational spectroscopic methods. (United States)

    Wang, Jie; Paszti, Zoltan; Clarke, Matthew L; Chen, Xiaoyun; Chen, Zhan


    We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.

  11. Planar chromatography coupled with spectroscopic techniques.

    NARCIS (Netherlands)

    Somsen, G.W.; Wilson, I.D.; Morden, W.


    Recent progress in the combination of planar, or thin-layer chromatography (TLC) with a variety of modern spectroscopic techniques is reviewed. The utility of TLC for separation followed by mass spectrometry, with a variety of ionisation techniques, is illustrated with reference to a wide range of

  12. Principles of Vibrational Spectroscopic Methods and their Application to Bioanalysis

    DEFF Research Database (Denmark)

    Moore, David S.; Jepsen, Peter Uhd; Volka, Karel


    or nanostructures. Finally, terahertz spectroscopy has given many new possibilities for studies of low-frequency interactions between electromagnetic radiation and biomaterials. In contrast to spectroscopic techniques at shorter wavelengths, THz spectroscopy directly probes long-range dynamics in biomolecules (such...

  13. Innovative Techniques Simplify Vibration Analysis (United States)


    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  14. Multivariate Chemical Image Fusion of Vibrational Spectroscopic Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Aoife A. Gowen


    Full Text Available Chemical image fusion refers to the combination of chemical images from different modalities for improved characterisation of a sample. Challenges associated with existing approaches include: difficulties with imaging the same sample area or having identical pixels across microscopic modalities, lack of prior knowledge of sample composition and lack of knowledge regarding correlation between modalities for a given sample. In addition, the multivariate structure of chemical images is often overlooked when fusion is carried out. We address these challenges by proposing a framework for multivariate chemical image fusion of vibrational spectroscopic imaging modalities, demonstrating the approach for image registration, fusion and resolution enhancement of chemical images obtained with IR and Raman microscopy.

  15. Thermal stability and hydration behavior of ritonavir sulfate: A vibrational spectroscopic approach

    Directory of Open Access Journals (Sweden)

    Kaweri Gambhir


    Full Text Available Ritonavir sulfate is a protease inhibitor widely used in the treatment of acquired immunodeficiency syndrome. In order to elucidate the inherent stability and sensitivity characteristics of ritonavir sulfate, it was investigated under forced thermal and hydration stress conditions as recommended by the International Conference on Harmonization guidelines. In addition, competency of vibrational (infrared and Raman spectroscopy was assessed to identify structural changes of the drug symbolizing its stress degradation. High performance liquid chromatography was used as a confirmatory technique for both thermal and hydration stress study, while thermogravimetric analysis/differential thermal analysis and atomic force microscopy substantiated the implementation of vibrational spectroscopy in this framework. The results exhibited high thermal stability of the drug as significant variations were observed in the diffuse reflectance infrared Fourier transform spectra only after the drug exposure to thermal radiations at 100 °C. Hydration behavior of ritonavir sulfate was evaluated using Raman spectroscopy and the value of critical relative humidity was found to be >67%. An important aspect of this study was to utilize vibrational spectroscopic technique to address stability issues of pharmacological molecules, not only for their processing in pharmaceutical industry, but also for predicting their shelf lives and suitable storage conditions.

  16. Rapid identification of single microbes by various Raman spectroscopic techniques (United States)

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen


    A fast and unambiguous identification of microorganisms is necessary not only for medical purposes but also in technical processes such as the production of pharmaceuticals. Conventional microbiological identification methods are based on the morphology and the ability of microbes to grow under different conditions on various cultivation media depending on their biochemical properties. These methods require pure cultures which need cultivation of at least 6 h but normally much longer. Recently also additional methods to identify bacteria are established e.g. mass spectroscopy, polymerase chain reaction (PCR), flow cytometry or fluorescence spectroscopy. Alternative approaches for the identification of microorganisms are vibrational spectroscopic techniques. With Raman spectroscopy a spectroscopic fingerprint of the microorganisms can be achieved. Using UV-resonance Raman spectroscopy (UVRR) macromolecules like DNA/RNA and proteins are resonantly enhanced. With an excitation wavelength of e.g. 244 nm it is possible to determine the ratio of guanine/cytosine to all DNA bases which allows a genotypic identification of microorganisms. The application of UVRR requires a large amount of microorganisms (> 10 6 cells) e.g. at least a micro colony. For the analysis of single cells micro-Raman spectroscopy with an excitation wavelength of 532 nm can be used. Here, the obtained information is from all type of molecules inside the cells which lead to a chemotaxonomic identification. In this contribution we show how wavelength dependent Raman spectroscopy yields significant molecular information applicable for the identification of microorganisms on a single cell level.

  17. Metrology of vibration measurements by laser techniques (United States)

    von Martens, Hans-Jürgen


    Metrology as the art of careful measurement has been understood as uniform methodology for measurements in natural sciences, covering methods for the consistent assessment of experimental data and a corpus of rules regulating application in technology and in trade and industry. The knowledge, methods and tools available for precision measurements can be exploited for measurements at any level of uncertainty in any field of science and technology. A metrological approach to the preparation, execution and evaluation (including expression of uncertainty) of measurements of translational and rotational motion quantities using laser interferometer methods and techniques will be presented. The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and upgraded ISO standards are reviewed with respect to their suitability for ensuring traceable vibration measurements and calibrations in an extended frequency range of 0.4 Hz to higher than 100 kHz. Using adequate vibration exciters to generate sufficient displacement or velocity amplitudes, the upper frequency limits of the laser interferometer methods specified in ISO 16063-11 for frequencies <= 10 kHz can be expanded to 100 kHz and beyond. A comparison of different methods simultaneously used for vibration measurements at 100 kHz will be demonstrated. A statistical analysis of numerous experimental results proves the highest accuracy achievable currently in vibration measurements by specific laser methods, techniques and procedures (i.e. measurement uncertainty 0.05 % at frequencies <= 10 kHz, <= 1 % up to 100 kHz).

  18. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen. (United States)

    Bağcıoğlu, Murat; Zimmermann, Boris; Kohler, Achim


    Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques. Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques. The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of pollen. Out of the seven tested

  19. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  20. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)



    Jul 11, 2017 ... Abstract. In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a ...

  1. Process Analytical Techniques Based on In-Line Vibrational Spectroscopy and their Industrial Applications

    Directory of Open Access Journals (Sweden)

    Jednačak, T.


    Full Text Available Process analytical techniques (PAT involve the monitoring and control of physical and chemical processes as well as the identification of important process parameters in order to obtain the products with desired properties. PAT have been applied in various industrial process phases to ensure better process understanding, quality by optimal design and determination of process disturbances in time. In-line vibrational spectroscopic techniques are one of the major process analytical techniques used today. The most frequently used in-line vibrational spectroscopic techniques are near infrared spectroscopy (NIR, attenuated total reflectance middle infrared spectroscopy (ATR-MIR and Raman spectroscopy (Table 1, Figs. 1 and 2. They provide in situ real-time monitoring of the production processes by using different types of in-line probes (Figs. 3–5 which reduce exposure to hazardous materials and contamination, sample degradation or equilibrium perturbations in the reaction system. Due to the aforementioned advantages, in-line vibrational spectroscopic techniques have been successfully applied for different industrial pur- poses. The analysis of characteristic vibrational bands in in-line infrared and Raman spectra enable the monitoring of different processes such as crystallization, dissolution, polimorphic transitions and chemical reactions (Scheme 1, Figs. 6 and 7. The obtained data are, due to their complexity, very often further processed by multivariate data analysis methods (Fig. 9, such as principal components analysis (PCA and partial least squares (PLS. The basic principles of PCA and PLS are shown in Fig. 8. A number of different in-line vibrational spectroscopic techniques as well as multivariate data analysis methods have been developed recently, but in this article only the most important and most frequently used techniques are described.   KUI – 7/2013 Received April 10, 2012 Accepted July 18, 2012

  2. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.


    The A 1B1 interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies

  3. Conformational analysis and vibrational spectroscopic studies on dapsone (United States)

    Ildiz, Gulce Ogruc; Akyuz, Sevim


    In this study, the theoretical conformation analysis of free dapsone has been performed by single point energy calculations at both semi-empirical PM3 and DFT/B3LYP-3-21G theory levels and three stable conformers were determined. Both the IR and Raman spectra of the molecule in solid phase have been recorded. The IR intensities and harmonic vibrational wavenumbers of each conformer were calculated by DFT method at B3LYP/6-31++G(d,p) theory level. For the fundamental characterization, the total energy distribution (TED) calculations of the vibrational modes were done using parallel quantum mechanic solution program (SQM) and the fundamental modes were assigned. The theoretical results are in agreement with the experimental ones.

  4. Vibrational spectroscopic and structural investigations on fullerene: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)


    The molecular structure of fullerene (C{sub 60}) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electron affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.

  5. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map. (United States)

    Daly, Clyde A; Berquist, Eric J; Brinzer, Thomas; Garrett-Roe, Sean; Lambrecht, Daniel S; Corcelli, Steven A


    The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C4C1im][PF6]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO2-[C4C1im][PF6] clusters extracted from an MD simulation. When the map was tested on 500 different CO2-[C4C1im][PF6] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm-1. The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.

  6. Vibrational spectroscopic study of nickel (II) formate, Ni(HCO 2) 2, and its aqueous solution (United States)

    Edwards, H. G. M.; Knowles, A.


    A vibrational spectroscopic study of nickel (II) formate and its aqueous solution has been made. The vibrations characteristic of a formato—nickel complex have been assigned and it is concluded that the species Ni(HCO 2) +(HCO 2) - exists in the solid state, with monodentate ligand-to-metal bonding. The Raman spectrum of an aqueous solution of nickel (II) formate indicates that complete dissociation of the formato—nickel (II) species occurs to formate ions and nickel (II) hexa-aquo ions. Comparisons are made with other nickel (II) carboxylates.

  7. Temperature-dependent vibrational spectroscopic study and DFT calculations of the sorbic acid (United States)

    Saraiva, G. D.; Nogueira, C. E. S.; Freire, P. T. C.; de Sousa, F. F.; da Silva, J. H.; Teixeira, A. M. R.; Mendes Filho, J.


    This work reports a temperature-dependent vibrational spectroscopic study of the sorbic acid (C6H8O2), as well as the mode assignment at ambient conditions, based on the density functional theory. Temperature-dependent vibrational properties have been performed in polycrystalline sorbic acid through both Raman and infrared spectroscopy in the 20-300 K and 80-300 K temperature ranges, respectively. These studies present the occurrence of some modifications in the Raman spectra that could be interpreted as a low temperature phase transition undergone by sorbic acid from the monoclinic phase to an unknown phase with conformational change of the molecules in the unit cell.

  8. Sub-THz spectroscopic characterization of vibrational modes in artificially designed DNA monocrystal (United States)

    Sizov, Igor; Rahman, Masudur; Gelmont, Boris; Norton, Michael L.; Globus, Tatiana


    Sub-terahertz (sub-THz) vibrational spectroscopy is a new spectroscopic branch for characterizing biological macromolecules. In this work, highly resolved sub-THz resonance spectroscopy is used for characterizing engineered molecular structures, an artificially designed DNA monocrystal, built from a short DNA sequence. Using a recently developed frequency domain spectroscopic instrument operating at room temperature with high spectral and spatial resolution, we demonstrated very intense and specific spectral lines from a DNA crystal in general agreement with a computational molecular dynamics (MD) simulation of a short double stranded DNA fragment. The spectroscopic signature measured in the frequency range between 310 and 490 GHz is rich in well resolved and reproducible spectral features thus demonstrating the capability of THz resonance spectroscopy to be used for characterizing custom macromolecules and structures designed and implemented via nanotechnology for a wide variety of application domains. Analysis of MD simulation indicates that intense and narrow vibrational modes with atomic movements perpendicular (transverse) and parallel (longitudinal) to the long DNA axis coexist in dsDNA, with much higher contribution from longitudinal vibrations.

  9. Data Management Techniques for Blade Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław


    Full Text Available Well-designed procedures are required to handle large amounts of data, generated by complex measurement systems used in engine tests. The paper presents selected methodologies and software tools for characterisation and monitoring of blade vibration. Common file formats and data structures as well as methods to process and visualise tip-timing data are discussed. Report Generation Framework (RGF developed in Python is demonstrated as a flexible tool for processing and publishing blade vibration results.

  10. Laboratory spectroscopic study and astronomical detection of vibrationally excited n-propyl cyanide (United States)

    Müller, Holger S. P.; Walters, Adam; Wehres, Nadine; Belloche, Arnaud; Wilkins, Olivia H.; Liu, Delong; Vicente, Rémi; Garrod, Robin T.; Menten, Karl M.; Lewen, Frank; Schlemmer, Stephan


    Context. We performed a spectral line survey called Exploring Molecular Complexity with ALMA (EMoCA) toward Sagittarius B2(N) between 84.1 and 114.4 GHz with the Atacama Large Millimeter/submillimeter Array (ALMA) in its Cycles 0 and 1. We determined line intensities of n-propyl cyanide in the ground vibrational states of its gauche and anti conformers toward the hot molecular core Sagittarius B2(N2) which suggest that we should also be able to detect transitions pertaining to excited vibrational states. Aims: We wanted to determine spectroscopic parameters of low-lying vibrational states of both conformers of n-propyl cyanide to search for them in our ALMA data. Methods: We recorded laboratory rotational spectra of n-propyl cyanide in two spectral windows between 36 and 127 GHz. We searched for emission lines produced by these states in the ALMA spectrum of Sagittarius B2(N2). We modeled their emission and the emission of the ground vibrational states assuming local thermodynamic equilibrium (LTE). Results: We have made extensive assignments of a- and b-type transitions of the four lowest vibrational states of the gauche conformer which reach J and Ka quantum numbers of 65 and 20, respectively. We assigned mostly a-type transitions for the anti conformer with J and Ka quantum numbers up to 48 and 24, respectively. Rotational and Fermi perturbations between two anti states allowed us to determine their energy difference. The resulting spectroscopic parameters enabled us to identify transitions of all four vibrational states of each conformer in our ALMA data. The emission features of all states, including the ground vibrational state, are well-reproduced with the same LTE modeling parameters, which gives us confidence in the reliability of the identifications, even for the states with only one clearly detected line. Conclusions: Emission features pertaining to the highest excited vibrational states of n-propyl cyanide reported in this work have been identified just

  11. Scaling Techniques for Combustion Device Random Vibration Predictions (United States)

    Kenny, R. J.; Ferebee, R. C.; Duvall, L. D.


    This work presents compares scaling techniques that can be used for prediction of combustion device component random vibration levels with excitation due to the internal combustion dynamics. Acceleration and unsteady dynamic pressure data from multiple component test programs are compared and normalized per the two scaling approaches reviewed. Two scaling technique are reviewed and compared against the collected component test data. The first technique is an existing approach developed by Barrett, and the second technique is an updated approach new to this work. Results from utilizing both techniques are presented and recommendations about future component random vibration prediction approaches are given.

  12. Spectroscopic Measurement Techniques for Aerospace Flows (United States)

    Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha


    The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real

  13. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques. (United States)

    Singh, Gurpreet; Mohanty, B P; Saini, G S S


    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique (United States)

    Wu, Zongfang; Płucienik, Agata; Feiten, Felix E.; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim


    Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V2O3(0 0 0 1 ) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.

  15. Fluid Surface Damping: A Technique for Vibration Suppression of Beams

    Directory of Open Access Journals (Sweden)

    Hany Ghoneim


    Full Text Available A fluid surface damping (FSD technique for vibration suppression of beamlikestructures is proposed. The technique is a modification of the surface layer damping method. Two viscoelastic surface layers containing fluid-filled cavities are attached symmetrically to the opposite surfaces of the beam. The cavities on one side are attached to the corresponding cavities on the other side via connection passages. As the beam vibrates, the fluid is pumped back and forth through the connecting passages. Therefore, in addition to the viscoelastic damping provided by the surface layers, the technique offers viscous damping due to the fluid flow through the passage. A mathematical model for the proposed technique is developed, normalized, and solved in the frequency domain to investigate the effect of various parameters on the vibration suppression of a cantilever beam. The steady-state frequency response for a base white-noise excitation is calculated at the beam's free tip and over a frequency range containing the first five resonant frequencies. The parameters investigated are the flow-through passage viscous resistance, the length and location of the layers, the hydraulic capacitance of the fluid-filled cavities, and inertia of the moving fluid (hydraulic inertance. Results indicate that the proposed technique has promising potential in the field of vibration suppression of beamlike structures. With two FSD elements, all peak vibration amplitudes can be well suppressed over the entire frequency spectrum studied.

  16. Spectroscopic Study and Astronomical Detection of Vibrationally Excited n-PROPYL Cyanide (United States)

    Müller, Holger S. P.; Wehres, Nadine; Wilkins, Olivia H.; Lewen, Frank; Schlemmer, Stephan; Walters, Adam; Vicente, Rémi; Liu, Delong; Garrod, Robin T.; Belloche, Arnaud; Menten, Karl M.


    We have obtained ALMA data of Sagittarius (Sgr for short) B2(N) between 84.0 and 114.4 GHz in its Early Science Cycles 0 and 1. We have focused our analyses on the northern, secondary hot molecular core Sgr B2(N2) because of the smaller line widths. The survey led to the first detection of a branched alkyl compound, iso-propyl cyanide, i-C_3H_7CN, in space besides the ˜2.5 times more abundant straight chain isomer n-propyl cyanide, a molecule which we had detected in our IRAM 30 m survey. We suspected to be able to detect n-propyl cyanide in vibrationally excited states in our ALMA data. We have recorded laboratory rotational spectra of this molecule in three large frequency regions and identified several excited vibrational states. The analyses of these spectra have focused on the 36 to 70 GHz and 89 to 127 GHz regions and on the four lowest excited vibrational states of both the lower lying gauche- and the slightly higher lying anti-conformer for which rotational constants had been published. We will present results of our laboratory spectroscopic investigations and will report on the detection of these states toward Sgr B2(N2). A. Belloche et al., Science 345 (2014) 1584. A. Belloche et al., A&A 499 (2009) 215. E. Hirota, J. Chem. Phys. 37 (1962) 2918.

  17. Conformational analysis, inter-molecular interactions, electronic properties and vibrational spectroscopic studies on cis-4-hydroxy-d-proline

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar Srivastava


    Full Text Available The present study deals with a non-native amino acid, cis-4-hydroxy-d-proline (CHDP using density functional theory at B3LYP/6-31+G(d,p level. The potential energy surface scan reveals the global minimum structure of CHDP along with two potential conformers. Highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential surfaces are used to explain the chemical reactivity of title molecule. The atomic charge analysis has been carried out using Mulliken and natural population schemes. The equilibrium geometry of CHDP dimer has been obtained and inter-molecular interactions are explored using QTAIM and Natural bonding orbital analyses. Vibrational spectroscopic analysis has been performed on CHDP monomer and dimer at the same level of theory. Assignments to all vibrational modes up to 400 cm−1 have been offered along with their potential energy distribution to the maximum possible accuracy. The calculated frequencies are scaled by an equation, rather than by a constant factor and then compared with experimental FT-IR frequencies obtained by KBr disc and Nujol mull techniques. A number of electronic and thermodynamic parameters have also been evaluated for CHDP monomer and dimer.

  18. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel


    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  19. Planetary Gearbox Fault Detection Using Vibration Separation Techniques (United States)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason


    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  20. An equipment test for grading lumber by transverse vibration technique

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigo Carreira


    Full Text Available Due to the great variability of its mechanical properties, the rational use of lumber for structural purposes is directly conditioned to its grading. There are several techniques available for grading structural lumber. The most relevant one is the transverse vibration technique which obtained reliable results in non-destructive evaluation of lumber. The purpose of this work is to present the bases for the mechanical grading of lumber and the results of the calibration test of the frst transverse vibration equipment developed in Brazil. In this research 30 beams of cupiúba (Goupia glabra with nominal dimensions of 5 cm X 10 cm X 300 cm, were used. The tests were accomplished at the Wood and Timber Structures Laboratory (LaMEM of the University of São Paulo (USP. The results showed a strong correlation between the elasticity modulus measured by the static bending test and the one obtained with the transverse vibration equipment, showing the high reliability of the vibration method for the grading of structural lumber. A determination coeffcient (R² of 0.896 was obtained with the Brazilian equipment, showing that it can be used in the grading of lumber.

  1. The effect of synthesis temperature on the formation of hydrotalcites in Bayer liquor: a vibrational spectroscopic analysis. (United States)

    Palmer, Sara J; Frost, Ray L


    The seawater neutralization process is currently used in the alumina industry to reduce the pH and dissolved metal concentrations in bauxite refinery residues through the precipitation of Mg, Al, and Ca hydroxide and carbonate minerals. This neutralization method is very similar to the co-precipitation method used to synthesize hydrotalcite (Mg6Al2(OH)16CO3.4H2O). This study looks at the effect of temperature on the type of precipitates that form from the seawater neutralization process of Bayer liquor. The Bayer precipitates have been characterized by a variety of techniques, including X-ray diffraction (XRD), Raman spectroscopy, and infrared spectroscopy. The mineralogical composition of Bayer precipitates largely includes hydrotalcite, hydromagnesite, and calcium carbonate species. Analysis with XRD determined that Bayer hydrotalcites that are synthesized at 55 degrees C have a larger interlayer distance, indicating that more anions are removed from Bayer liquor. Vibrational spectroscopic techniques have identified an increase in hydrogen bond strength for precipitates formed at 55 degrees C, suggesting the formation of a more stable Bayer hydrotalcite. Raman spectroscopy identified the intercalation of sulfate and carbonate anions into Bayer hydrotalcites using these synthesis conditions.

  2. Preparation of spherical particles by vibrating orifice technique (United States)

    Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki


    Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.

  3. Vibration isolation techniques suitable for portable electronic speckle pattern interferometry (United States)

    Findeis, Dirk M.; Gryzagoridis, Jasson; Rowland, David R.


    Electronic Speckle Pattern Interferometry (ESPI) and Digital Shearography are optical interference techniques, suitable for non-destructive inspection procedures. Due to the stringent vibration isolation conditions required for ESPI, the technique is mainly suited for laboratory based inspection procedures, which cannot be said for Digital Shearography. On the other hand, the interference patterns obtained using ESPI exhibit better fringe definition and contrast than those obtained using Digital Shearography. The image quality of Digital Shearography can be improved by introducing phase stepping and unwrapping techniques, but these methods add a level of complexity to the inspection system and reduce the image refresh rate of the overall process. As part of a project to produce a low cost portable ESPI system suitable for industrial applications, this paper investigates various methods of minimizing the impact of environmental vibration on the ESPI technique. This can be achieved by effectively 'freezing' the object movement during the image acquisition process. The methods employed include using a high-powered infra-red laser, which is continuously pulsed using an electronic signal generator as well as a mechanical chopper. The effect of using a variable shutter speed camera in conjunction with custom written software acquisition routines is also studied. The techniques employed are described and are applied to selected samples. The initial results are presented and analyzed. Conclusions are drawn and their impact on the feasibility of a portable ESPI system discussed.

  4. The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH) · 5H2O--a vibrational spectroscopic study. (United States)

    Frost, Ray L; López, Andrés; Xi, Yunfei; Lima, Rosa Malena Fernandes; Scholz, Ricardo; Granja, Amanda


    We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH) · 5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [Formula: see text] soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm(-1) are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm(-1) are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm(-1) with sharper bands at 3459, 3530 and 3562 cm(-1) assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Time-resolved infrared spectroscopic techniques as applied to Channelrhodopsin

    Directory of Open Access Journals (Sweden)

    Eglof eRitter


    Full Text Available Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins.

  6. Vibrational and impedance spectroscopic study on PVP-NH{sub 4}SCN based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramya, C.S. [Solid State and Radiation Physics Laboratory, Department of Physics, Bharathiar University, Coimbatore-641 046 (India); Selvasekarapandian, S. [Solid State and Radiation Physics Laboratory, Department of Physics, Bharathiar University, Coimbatore-641 046 (India)]. E-mail:; Savitha, T. [Solid State and Radiation Physics Laboratory, Department of Physics, Bharathiar University, Coimbatore-641 046 (India); Hirankumar, G. [Solid State and Radiation Physics Laboratory, Department of Physics, Bharathiar University, Coimbatore-641 046 (India); Angelo, P.C. [Department of Metallurgical Engineering, P.S.G. College of Technology, Coimbatore-641 004 (India)


    Polymer electrolytes based on poly (N-vinyl pyrrolidone) (PVP) and ammonium thiocyanate (NH{sub 4}SCN) prepared by solution cast technique have been studied using X-ray diffraction (XRD), Raman and impedance spectroscopic techniques. The XRD and Raman spectra for the electrolytes indicate that the amorphous nature of PVP increases with the increase of the concentration of ammonium thiocyanate. The spectral changes in the Raman bands of the C=O and the C{identical_to}N stretching indicate the interaction between the salt and the polymer. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte exhibits high ionic conductivity and it has been found to be 1.7x10{sup -4} S cm{sup -1}, at room temperature. The ionic coordination in the polymeric electrolytes, as determined by Raman spectroscopy, has been discussed in relation to the conductance behavior.

  7. Vibrational and impedance spectroscopic study on PVP-NH 4SCN based polymer electrolytes (United States)

    Ramya, C. S.; Selvasekarapandian, S.; Savitha, T.; Hirankumar, G.; Angelo, P. C.


    Polymer electrolytes based on poly ( N-vinyl pyrrolidone) (PVP) and ammonium thiocyanate (NH 4SCN) prepared by solution cast technique have been studied using X-ray diffraction (XRD), Raman and impedance spectroscopic techniques. The XRD and Raman spectra for the electrolytes indicate that the amorphous nature of PVP increases with the increase of the concentration of ammonium thiocyanate. The spectral changes in the Raman bands of the C dbnd O and the C tbnd N stretching indicate the interaction between the salt and the polymer. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte exhibits high ionic conductivity and it has been found to be 1.7×10 -4 S cm -1, at room temperature. The ionic coordination in the polymeric electrolytes, as determined by Raman spectroscopy, has been discussed in relation to the conductance behavior.

  8. Submicron Surface Vibration Profiling Using Doppler Self-Mixing Techniques

    Directory of Open Access Journals (Sweden)

    Tânia Pereira


    Full Text Available Doppler self-mixing laser probing techniques are often used for vibration measurement with very high accuracy. A novel optoelectronic probe solution is proposed, based on off-the-shelf components, with a direct reflection optical scheme for contactless characterization of the target’s movement. This probe was tested with two test bench apparatus that enhance its precision performance, with a linear actuator at low frequency (35 µm, 5–60 Hz, and its dynamics, with disc shaped transducers for small amplitude and high frequency (0.6 µm, 100–2500 Hz. The results, obtained from well-established signal processing methods for self-mixing Doppler signals, allowed the evaluation of vibration velocity and amplitudes with an average error of less than 10%. The impedance spectrum of piezoelectric (PZ disc target revealed a maximum of impedance (around 1 kHz for minimal Doppler shift. A bidimensional scan over the PZ disc surface allowed the categorization of the vibration mode (0, 1 and explained its deflection directions. The feasibility of a laser vibrometer based on self-mixing principles and supported by tailored electronics able to accurately measure submicron displacements was, thus, successfully demonstrated.

  9. Vibration-rotation spectroscopic database on acetylene, X ˜ 1 Σg + (12C2H2) (United States)

    Amyay, B.; Fayt, A.; Herman, M.; Vander Auwera, J.


    A complete set of calculated vibration-rotation energies of 12C2H2 ( X ˜ 1 Σg + ) is provided for all vibrational states up to 13 000 cm-1 and some at higher energies, with rotational (J) and vibrational angular momentum (l) quantum numbers such that 0 ≤ J ≤ 100 and 0 ≤ |l| ≤ 20, respectively. The calculation is performed using a global effective Hamiltonian and related spectroscopic constants from the literature [B. Amyay et al., J. Mol. Spectrosc. 267, 80 (2011)], based on the polyad model. The numerical values of all related polyad matrix elements are also provided. The model and equations for the Hamiltonian matrix elements are gathered. The experimental acetylene database used for determining the parameters is listed.

  10. Assessment of Gear Damage Monitoring Techniques Using Vibration Measurements (United States)

    Wang, Wilson Q.; Ismail, Fathy; Farid Golnaraghi, M.


    Each gear damage monitoring technique has its merits and limitations. This paper experimentally investigates the sensitivity and robustness of the currently well-accepted techniques: phase and amplitude demodulation, beta kurtosis and wavelet transform. Four gear test cases were used: healthy gears, cracked, filed and chipped gears. The vibration signal was measured on the gearbox housing and processed, online, under three filtering conditions: general signal average, overall residual and dominant meshing frequency residual. Test results show that beta kurtosis is a very reliable time-domain diagnostic technique. Phase modulation is very sensitive to gear imperfections, but other information should be used to confirm its diagnostic results. Continuous wavelet transform provides a good visual inspection especially when residual signals are used. The diagnosis based only on dominant meshing frequency residual, however, should not be used independently for gear health condition monitoring, it may give false alarms.

  11. The projected pattern correlation technique for vibration measurements (United States)

    Konrath, R.; Klinge, F.; Schroeder, A.; Kompenhans, Juergen; Fuellekrug, U.


    The objective of this paper is the description of the Projected Pattern Correlation method for measuring surface velocities and to present results of a feasibility study. Similar to the Moire technique the local surface velocities of a large area are determined simultaneously, which replace a time consuming point wise scanning as it is necessary in e.g. Laser Doppler Vibrometry. Furthermore, the dynamics of non-periodic processes can be resolved temporally and spatially. In difference to the Moire or grid projection techniques the evaluation step is fast (real-time measurements are possible) more robust and provides a high spatial resolution. The measurement precision is assessed using a simple test arrangement. Vibration measurements are performed on a satellite model structure and a honeycomb sandwich plate.

  12. Structural analysis of irradiated crotoxin by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Karina C. de; Fucase, Tamara M.; Silva, Ed Carlos S. e; Chagas, Bruno B.; Buchi, Alisson T.; Viala, Vincent L.; Spencer, Patrick J.; Nascimento, Nanci do, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia


    Snake bites are a serious public health problem, especially in subtropical countries. In Brazil, the serum, the only effective treatment in case of snake bites, is produced in horses which, despite of their large size, have a reduced lifespan due to the high toxicity of the antigen. Ionizing radiation has been successfully employed to attenuate the biological activity of animal toxins. Crotoxin, the main toxic compound from Crotalus durissus terrificus (Cdt), is a heterodimeric protein composed of two subunits: crotapotin and phospholipase A{sub 2}. Previous data indicated that this protein, following irradiation process, undergoes unfolding and/or aggregation, resulting in a much lower toxic antigen. The exact mechanisms and structural modifications involved in aggregation process are not clear yet. This work investigates the effects of ionizing radiation on crotoxin employing Infrared Spectroscopy, Circular Dichroism and Dynamic Light Scattering techniques. The infrared spectrum of lyophilized crotoxin showed peaks corresponding to the vibrational spectra of the secondary structure of crotoxin, including β-sheet, random coil, α-helix and β-turns. We calculated the area of these spectral regions after adjusting for baseline and normalization using the amide I band (1590-1700 cm{sup -1}), obtaining the variation of secondary structures of the toxin following irradiation. The Circular Dichroism spectra of native and irradiated crotoxin suggests a conformational change within the molecule after the irradiation process. This data indicates structural changes between the samples, apparently from ordered conformation towards a random coil. The analyses by light scattering indicated that the irradiated crotoxin formed multimers with an average molecular radius 100 folds higher than the native toxin. (author)

  13. Rovibrational spectroscopic constants and fundamental vibrational frequencies for isotopologues of cyclic and bent singlet HC{sub 2}N isomers

    Energy Technology Data Exchange (ETDEWEB)

    Inostroza, Natalia; Fortenberry, Ryan C.; Lee, Timothy J. [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Huang, Xinchuan, E-mail: [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States)


    Through established, highly accurate ab initio quartic force fields, a complete set of fundamental vibrational frequencies, rotational constants, and rovibrational coupling and centrifugal distortion constants have been determined for both the cyclic 1 {sup 1} A' and bent 2 {sup 1} A' DCCN, H{sup 13}CCN, HC{sup 13}CN, and HCC{sup 15}N isotopologues of HCCN. Spectroscopic constants are computed for all isotopologues using second-order vibrational perturbation theory (VPT2), and the fundamental vibrational frequencies are computed with VPT2 and vibrational configuration interaction (VCI) theory. Agreement between VPT2 and VCI results is quite good, with the fundamental vibrational frequencies of the bent isomer isotopologues in accord to within a 0.1-3.2 cm{sup –1} range. Similar accuracies are present for the cyclic isomer isotopologues. The data generated here serve as a reference for astronomical observations of these closed-shell, highly dipolar molecules using new, high-resolution telescopes and as reference for laboratory studies where isotopic labeling may lead to elucidation of the formation mechanism for the known interstellar molecule: X {sup 3} A' HCCN.

  14. Vibration Analysis using 3D Image Correlation Technique

    Directory of Open Access Journals (Sweden)

    Splitthof K.


    Full Text Available Digital speckle correlation techniques have already been successfully proven to be an accurate displacement analysis tool for a wide range of applications. With the use of two cameras, three dimensional measurements of contours and displacements can be carried out. With a simple setup it opens a wide range of applications. Rapid new developments in the field of digital imaging and computer technology opens further applications for these measurement methods to high speed deformation and strain analysis, e.g. in the fields of material testing, fracture mechanics, advanced materials and component testing. The high resolution of the deformation measurements in space and time opens a wide range of applications for vibration analysis of objects. Since the system determines the absolute position and displacements of the object in space, it is capable of measuring high amplitudes and even objects with rigid body movements. The absolute resolution depends on the field of view and is scalable. Calibration of the optical setup is a crucial point which will be discussed in detail. Examples of the analysis of harmonic vibration and transient events from material research and industrial applications are presented. The results show typical features of the system.

  15. Evaluation of vibration limits and mitigation techniques for urban construction. (United States)


    The overriding purpose of this research was to develop a comprehensive framework to address : vibration issues prior to and during construction, including calculation of anticipated ground : vibrations during project design, condition surveys of stru...

  16. Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. (United States)

    Muhamadali, Howbeer; Subaihi, Abdu; Mohammadtaheri, Mahsa; Xu, Yun; Ellis, David I; Ramanathan, Rajesh; Bansal, Vipul; Goodacre, Royston


    Despite the fact that various microorganisms (e.g., bacteria, fungi, viruses, etc.) have been linked with infectious diseases, their crucial role towards sustaining life on Earth is undeniable. The huge biodiversity, combined with the wide range of biochemical capabilities of these organisms, have always been the driving force behind their large number of current, and, as of yet, undiscovered future applications. The presence of such diversity could be said to expedite the need for the development of rapid, accurate and sensitive techniques which allow for the detection, differentiation, identification and classification of such organisms. In this study, we employed Fourier transform infrared (FT-IR), Raman, and surface enhanced Raman scattering (SERS) spectroscopies, as molecular whole-organism fingerprinting techniques, combined with multivariate statistical analysis approaches for the classification of a range of industrial, environmental or clinically relevant bacteria (P. aeruginosa, P. putida, E. coli, E. faecium, S. lividans, B. subtilis, B. cereus) and yeast (S. cerevisiae). Principal components-discriminant function analysis (PC-DFA) scores plots of the spectral data collected from all three techniques allowed for the clear differentiation of all the samples down to sub-species level. The partial least squares-discriminant analysis (PLS-DA) models generated using the SERS spectral data displayed lower accuracy (74.9%) when compared to those obtained from conventional Raman (97.8%) and FT-IR (96.2%) analyses. In addition, whilst background fluorescence was detected in Raman spectra for S. cerevisiae, this fluorescence was quenched when applying SERS to the same species, and conversely SERS appeared to introduce strong fluorescence when analysing P. putida. It is also worth noting that FT-IR analysis provided spectral data of high quality and reproducibility for the whole sample set, suggesting its applicability to a wider range of samples, and perhaps the

  17. A novel technique for active vibration control, based on optimal tracking control (United States)

    Kheiri Sarabi, Behrouz; Sharma, Manu; Kaur, Damanjeet


    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-damper system is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.

  18. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations (United States)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.


    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  19. Identification of Meat Species by Using Molecular and Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Evrim Güneş Altuntaş


    Full Text Available Meat is one of the main nutrition source in the human diet with its excellent protein, vitamin and mineral contents. Despite its advantages, being high-priced makes meat products open to adulteration. Meat products are mixed food types which can contain different species of meat. However, mixing two or more types of meats is not always allowed by laws. On the other hand, replacement high quality meats with cheaper meat types are a cost lowering way for the producers. The commonly consumed meat types differ from country to country, but generally economical, ethnic and religion concerns are in the foreground. In this case, species identification techniques are gaining importance. Although some techniques depending on DNA or spectroscopy have been developed for many years, choosing the best method for species identification is still among the controversial issues today. Thus, the currently used methods and promising techniques in this area were discussed in this review.

  20. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi


    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  1. Use of Advanced Spectroscopic Techniques for Predicting the Mechanical Properties of Wood Composites (United States)

    Timothy G. Rials; Stephen S. Kelley; Chi-Leung So


    Near infrared (NIR) spectroscopy was used to characterize a set of medium-density fiberboard (MDF) samples. This spectroscopic technique, in combination with projection to latent structures (PLS) modeling, effectively predicted the mechanical strength of MDF samples with a wide range of physical properties. The stiffness, strength, and internal bond properties of the...

  2. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data. (United States)

    Tassaing, T; Garrain, P A; Bégué, D; Baraille, I


    The present study is aimed at a detailed analysis of supercritical water structure based on the combination of experimental vibrational spectra as well as molecular modeling calculations of isolated water clusters. We propose an equilibrium cluster composition model where supercritical water is considered as an ideal mixture of small water clusters (n=1-3) at the chemical equilibrium and the vibrational spectra are expected to result from the superposition of the spectra of the individual clusters, Thus, it was possible to extract from the decomposition of the midinfrared spectra the evolution of the partition of clusters in supercritical water as a function of density. The cluster composition predicted by this model was found to be quantitatively consistent with the near infrared and Raman spectra of supercritical water analyzed using the same procedure. We emphasize that such methodology could be applied to determine the portion of cluster in water in a wider thermodynamic range as well as in more complex aqueous supercritical solutions.

  3. Speciation, in the nuclear fuel cycle by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Colette, S.; Plancque, G.; Allain, F.; Lamouroux, C.; Steiner, V.; Amekraz, B.; Moulin, C. [CEA/Saclay, Dept, des Procedes d' Enrichissement (DPE), 91 - Gif-sur-Yvette (France)


    New analytical techniques allowing to perform speciation in the framework of the nuclear fuel cycle are more and more needed. They have to be selective (since matrix encountered are very complex), sensitive (in order to work at representative concentration and below solubility limit), as well as non intrusive (in order to keep the image of the real solution). Among them, laser-based analytical techniques present these advantages together with the possibility to perform remote measurements via fiber optics. Hence, Time-Resolved Laser-Induced Fluorescence (TRLIF) has been used for actinides/lanthanides interaction and speciation studies in inorganic and organic matrices from the reprocessing to waste storage. Moreover, new ion detection methods such as Electro-Spray - Mass Spectrometry (ES-MS) seems promising for speciation studies. Hence, it is the first time that it is possible to directly couple a liquid at atmospheric pressure to a mass detection working at reduced pressure with a soft mode of ionisation that should allow to give informations on chemical species present. Principle, advantages and limitations as well as results obtained with the use of TRLIF and ES-MS on different systems of interest including actinides, lanthanides, fission products in interaction with simple organic molecules to very complex structure will be presented and discussed. (authors)

  4. Characterization of Sorolla's gouache pigments by means of spectroscopic techniques (United States)

    Roldán, Clodoaldo; Juanes, David; Ferrazza, Livio; Carballo, Jorgelina


    This paper presents the characterization of the Joaquín Sorolla's gouache sketches for the oil on canvas series "Vision of Spain" commissioned by A. M. Huntington to decorate the library of the Hispanic Society of America in New York. The analyses were focused on the identification of the elemental composition of the gouache pigments by means of portable EDXRF spectrometry in a non-destructive mode. Additionally, SEM-EDX and FTIR analyses of a selected set of micro-samples were carried out to identify completely the pigments, the paint technique and the binding media. The obtained results have confirmed the identification of lead and zinc white, vermillion, earth pigments, ochre, zinc yellow, chrome yellow, ultramarine, Prussian blue, chromium based and copper-arsenic based green pigments, bone black and carbon based black pigments, and the use of gum arabic as binding media in the gouache pigments.

  5. Characterization of Pvp Based Solid Polymer Electrolytes Using Spectroscopic Techniques (United States)

    Ramya, C. S.; Selvasekarapandian, S.; Bhuvaneswari, M. S.; Savitha, T.


    Polymer electrolytes based on poly (vinyl pyrrolidone) - ammonium thiocyanate have beeri prepared by solution cast technique. The interaction of salt with the polymer has been examined using Raman spectroscopy. Results revealed that the interaction of the salt has been found to be through the carbonyl group of the polymer matrix. Conductivity measurements showed that these systems conduct ionically. The possible correlation between the conductivity and the structure of these electrolytic systems was also investigated which shows that the conductivity values are directly related to the total "free anion" concentration. Conductivity analysis showed that the addition of ammonium thiocyanate as a dopant in the polymeric electrolyte system enhanced the ionic conductivity. 20 mol% ammonium thiocyanate doped polymer electrolyte exhibits high ionic conductivity and has been found to be 1.7 × 10-4 S cm-1, at room temperature.

  6. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay


    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  7. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. (United States)

    Wang, Chuji; Sahay, Peeyush


    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  8. Modern Data Analysis techniques in Noise and Vibration Problems (United States)


    ce cours (commun a l’acoustique et aux vibrations) conduit de fagon naturelle a presenter, parallelement aux methodologies, les aspects fondamentaux...without knowledge to first order of the shear stress and entropy fluctuations. Finally, when mean motion is appreciable, convection of the stress...some right-hand side "equivalent source" terms to the left-hand side to represent these mean convection effects as distinct from "generation

  9. Vibrational spectroscopic study of nickel(II) hypophosphite, Ni(H 2PO 2) 2 (United States)

    Bickley, R. I.; Edwards, H. G. M.; Gustar, R. E.; Tait, J. K. F.


    The vibrational spectrum of nickel(II) hypophosphite is reported for the first time. A comparison between the solid-state Raman spectrum and that of a 0.6 M aqueous solution of nickel(II) hypophosphite with sodium hypophosphite indicates the presence of a bidentate monohypophosphito complex, Ni(H 2PO 2) +, and hypophosphite ions H 2PO -2 in the solid state, with dissociation into hexa-aquo nickel(II) ions and hypophosphite ions in aqueous solution. This is compared with the behaviour of nickel(II) carboxylates in the solid state and in aqueous solution.

  10. Vibrational spectroscopic studies and molecular docking of 10,10-Dimethylanthrone (United States)

    Sheena Mary, Y.; Yamuna, T. S.; Yohannan Panicker, C.; Yathirajan, H. S.; Siddegowda, M. S.; Al-Saadi, Abdulaziz A.; Van Alsenoy, Christian; War, Javeed Ahmad


    FT-IR and FT-Raman spectra of 10,10-Dimethylanthrone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. In its most stable form, the title compound maintains C2v symmetry as determined by XRD results, where both methyl groups are staggered with respect to the corresponding C23sbnd C24 and C23sbnd C28 bonds. The geometrical parameters (B3LYP/6-311++G(d,p)(5D,7F)) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As seen from the MEP map, negative potential regions are localized over the carbonyl group and are possible sites for electrophilic attack. The title compound, 10,10-Dimethylanthrone forms a stable complex with human topoisomerase-II as is evident from the ligand-receptor interactions and show appreciable antineoplastic activity.

  11. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach (United States)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin


    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  12. Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide (United States)

    Mohamed Asath, R.; Premkumar, S.; Mathavan, T.; Milton Franklin Benial, A.


    The most stable molecular structure of 6-aminonicotinamide (ANA) molecule was predicted by conformational analysis and vibrational spectral analysis was carried out by experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies were assigned and compared. The π→π* electronic transition of the molecule was predicted by theoretically calculated ultraviolet-visible spectra in gas and liquid phase and further validated experimentally using ethanol as a solvent. Frontier molecular orbitals analysis was carried out to probe the reactive nature of the ANA molecule and further the site selectivity to specific chemical reactions were effectively analyzed by Fukui function calculation. The molecular electrostatic potential surface was simulated to confirm the reactive sites of the molecule. The natural bond orbital analysis was also performed to understand the intra molecular interactions, which confirms the bioactivity of the ANA molecule. Neuroprotective nature of the ANA molecule was analyzed by molecular docking analysis and the ANA molecule was identified as a good inhibitor against Alzheimer's disease.

  13. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu (India); Rekha, T. N. [PG & Research Department of Physics, Lady Doak College, Madurai 625002, Tamilnadu (India); Jawahar, A. [Department of Chemistry, N.M.S.S.V.N College, Madurai-625019, Tamilnadu (India)


    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the π to π* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  14. Vibrational spectroscopic analysis of aluminum phthalocyanine chloride. experimental and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, I.M., E-mail: [Physics Department, Faculty of Science, Ain Shams University, Abbasia, Cairo (Egypt); El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Eid, Kh.M. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Physics department, Bukairiayh for Sciences & Arts, Quassim University, Quassim (Saudi Arabia); Ammar, H.Y. [Physics Department, Faculty of Arts and science, Najran University, Najran (Saudi Arabia)


    In this work, we report a combined experimental and theoretical study of aluminum phthalocyanine chloride (AlPcCl). The FT-IR and Raman spectra of AlPcCl were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31g and B3LYP/6-311g to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All the observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. The natural bond orbital (NBO) calculations were performed to study the atomic charge distribution of the investigated compound. The calculated results showed that dipole moment of the investigated compound was 4.68 Debye and HOMO-LUMO energy gap was 2.14 eV. The lowering of frontier orbital gap appears to be the cause of its enhanced charge transfer interaction.

  15. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde. (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha


    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Vibrational spectroscopic studies and computational study of ethyl methyl ketone thiosemicarbazone (United States)

    Anoop, M. R.; Binil, P. S.; Suma, S.; Sudarsanakumar, M. R.; Y, Sheena Mary.; Varghese, Hema Tresa; Panicker, C. Yohannan


    FT-IR and FT-Raman spectra of ethyl methyl ketone thiosemicarbazone were recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers were computed using HF/6-31G(d) and B3LYP/6-31G(d) basis sets and are assigned with the aid of MOLEKEL program. The first hyperpolarizability, infrared intensities and Raman activities are also reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive molecule for future applications in non-linear optics. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated values. The red shift of the NH stretching wavenumber in the infrared spectrum compared to the computed wavenumber indicates the weakening of the N-H bond resulting in proton transfer to the neighbouring sulfur atom.

  17. Near-infrared and Mid-infrared Spectroscopic Techniques for a Fast and Nondestructive Quality Control of Thymi herba. (United States)

    Pezzei, Cornelia K; Schönbichler, Stefan A; Hussain, Shah; Kirchler, Christian G; Huck-Pezzei, Verena A; Popp, Michael; Krolitzek, Justine; Bonn, Günther K; Huck, Christian W


    In this study, novel near-infrared and attenuated total reflectance mid-infrared spectroscopic methods coupled with multivariate data analysis were established enabling the determination of thymol, rosmarinic acid, and the antioxidant capacity of Thymi herba. A new high-performance liquid chromatography method and UV-Vis spectroscopy were applied as reference methods. Partial least squares regressions were carried out as cross and test set validations. To reduce systematic errors, different data pretreatments, such as multiplicative scatter correction, 1st derivative, or 2nd derivative, were applied on the spectra. The performances of the two infrared spectroscopic techniques were evaluated and compared. In general, attenuated total reflectance mid-infrared spectroscopy demonstrated a slightly better predictive power (thymol: coefficient of determination = 0.93, factors = 3, ratio of performance to deviation = 3.94; rosmarinic acid: coefficient of determination = 0.91, factors = 3, ratio of performance to deviation = 3.35, antioxidant capacity: coefficient of determination = 0.87, factors = 2, ratio of performance to deviation = 2.80; test set validation) than near-infrared spectroscopy (thymol: coefficient of determination = 0.90, factors = 6, ratio of performance to deviation = 3.10; rosmarinic acid: coefficient of determination = 0.92, factors = 6, ratio of performance to deviation = 3.61, antioxidant capacity: coefficient of determination = 0.91, factors = 6, ratio of performance to deviation = 3.42; test set validation). The capability of infrared vibrational spectroscopy as a quick and simple analytical tool to replace conventional time and chemical consuming analyses for the quality control of T. herba could be demonstrated. Georg Thieme Verlag KG Stuttgart · New York.

  18. Effects of cyclosporine A on biomembranes. Vibrational spectroscopic, calorimetric and hemolysis studies. (United States)

    O'Leary, T J; Ross, P D; Lieber, M R; Levin, I W


    Cyclosporine A (CSA)-dipalmitoylphosphatidylcholine (DPPC) interactions were investigated using scanning calorimetry, infrared spectroscopy, and Raman spectroscopy. CSA reduced both the temperature and the maximum heat capacity of the lipid bilayer gel-to-liquid crystalline phase transition; the relationship between the shift in transition temperature and CSA concentration indicates that the peptide does not partition ideally between DPPC gel and liquid crystalline phases. This nonideality can be accounted for by excluded volume interactions between peptide molecules. CSA exhibited a similar but much more pronounced effect on the pretransition; at concentrations of 1 mol % CSA the amplitude of the pretransition was less than 20% of its value in the pure lipid. Raman spectroscopy confirmed that the effects of CSA on the phase transitions are not accompanied by major structural alterations in either the lipid headgroup or acyl chain regions at temperatures away from the phase changes. Both infrared and Raman spectroscopic results demonstrated that CSA in the lipid bilayer exists largely in a beta-turn conformation, as expected from single crystal x-ray data; the lipid phase transition does not induce structural alterations in CSA. Although the polypeptide significantly affects DPPC model membrane bilayers, CSA neither inhibited hypotonic hemolysis nor caused erythrocyte hemolysis, in contrast to many chemical agents that are believed to act through membrane-mediated pathways. Thus, agents, such as CSA, that perturb phospholipid phase transitions do not necessarily cause functional changes in cell membranes.

  19. Vibrational spectroscopic and dielectric properties investigations of phase transitions in KMgPO4 compound (United States)

    Miladi, L.; Oueslati, A.; Guidara, K.


    The potassium orthophosphate KMgPO4 with a β-tridymite structure was synthesized via solid-state reaction. X-ray diffraction study confirms the formation of a single phase material which crystallizes at room temperature in monoclinic system. This compound has been investigated by vibrational spectroscopy in the temperature range573-723 K. Thermal analysis shows that this composition undergoes two phase transitions at T1=633Kand T2=693 K.The evolution of Raman line ν and half -width Δν versus temperature introduces huge changes which are associated with the phase transitions originating from the reorientation of the PO4 tetrahedron. Besides, an analysis of the dielectric constants ε‧ and ε″versus temperature at several frequencies shows a distribution of relaxation times. This relaxation is probably due to the change in dynamical state of the K+ cation. The ac conductivity behavior can be understood in terms of the motions of K+ cations along the tunnels which are formed by six-membered rings of MgO4 and PO4 tetrahedron linked by common vertices. The activation energies values obtained from the thermal evolution of the conductivity are: Ea1=0.52 eV (T693 K).

  20. Development of flexural vibration inspection techniques to rapidly assess the structural health of rural bridge systems (United States)

    Brian K. Brashaw; Robert Vatalaro; Xiping Wang; Kevin Sarvela; James P. Wacker


    Approximately 4,000 vehicle bridges in the State of Minnesota contain structural timber members. Recent research at the University of Minnesota Duluth Natural Resources Research Institute (UMD NRRI) has been conducted on vibration testing of timber bridges as a means of developing rapid in-place testing techniques for assessing the structural health of bridges. The...

  1. Ultrafast vibrational spectroscopic studies on the photoionization of the α-tocopherol analogue trolox C. (United States)

    Parker, Anthony W; Bisby, Roger H; Greetham, Gregory M; Kukura, Philipp; Scherer, Kathrin M; Towrie, Michael


    The initial events after photoexcitation and photoionization of α-tocopherol (vitamin E) and the analogue Trolox C have been studied by femtosecond stimulated Raman spectroscopy, transient absorption spectroscopy and time-resolved infrared spectroscopy. Using these techniques it was possible to follow the formation and decay of the excited state, neutral and radical cation radicals and the hydrated electron that are produced under the various conditions examined. α-Tocopherol and Trolox C in methanol solution appear to undergo efficient homolytic dissociation of the phenolic -OH bond to directly produce the tocopheroxyl radical. In contrast, Trolox C photochemistry in neutral aqueous solutions involves intermediate formation of a radical cation and the hydrated electron which undergo geminate recombination within 100 ps in competition with deprotonation of the radical cation. The results are discussed in relation to recently proposed mechanisms for the reaction of α-tocopherol with peroxyl radicals, which represents the best understood biological activity of this vitamin.

  2. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yujie, E-mail: [Texas A& M University, College Station, Texas 77843 (United States); Voronine, Dmitri V.; Sokolov, Alexei V. [Texas A& M University, College Station, Texas 77843 (United States); Baylor University, Waco, Texas 76798 (United States); Scully, Marlan O. [Texas A& M University, College Station, Texas 77843 (United States); Baylor University, Waco, Texas 76798 (United States); Princeton University, Princeton, New Jersey 08544 (United States)


    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  3. Non-invasive spectroscopic techniques in the diagnosis of non-melanoma skin cancer (United States)

    Drakaki, E.; Sianoudis, IA; Zois, EN; Makropoulou, M.; Serafetinides, AA; Dessinioti, C.; Stefanaki, E.; Stratigos, AJ; Antoniou, C.; Katsambas, A.; Christofidou, E.


    The number of non-melanoma skin cancers is increasing worldwide and has become an important health and economic issue. Early detection and treatment of skin cancer can significantly improve patient outcome. Therefore there is an increase in the demand for proper management and effective non-invasive diagnostic modalities in order to avoid relapses or unnecessary treatments. Although the gold standard of diagnosis for non-melanoma skin cancers is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of non-melanoma skin cancers include high-definition optical coherence tomography, fluorescence spectroscopy, oblique incidence diffuse reflectance spectrometry among others spectroscopic techniques. Our findings establish how those spectrometric techniques can be used to more rapidly and easily diagnose skin cancer in an accurate and automated manner in the clinic.

  4. Synthesis and vibrational spectroscopic characterisation of nickel (II) propionate tetrahydrate, Ni(CH 3CH 2COO) 2·4H 2O, and its aqueous solution (United States)

    Bickley, R. I.; Edwards, H. G. M.; Gustar, R.; Rose, S. J.


    A two-stage synthesis for nickel(II) propionate is described. A comprehensive Raman and infrared spectroscopic study of propionic acid, nickel propionate, sodium propionate and barium propionate has been made and the vibrational spectra have been assigned. From comparisons of the Raman and infrared spectra of sodium propionate and nickel propionate, it is concluded that nickel (II) propionate dissociates into the propionate ion CH 3CH 2CO 2-, hexa-aquo nickel(II) ions Ni(H 2O) 2+6, and the monopropionato-nickel(II) species (CH 3CH 2COO)Ni +, in aqueous solution.

  5. Investigation of effect of annealing on thermally evaporated ZnSe thin films through spectroscopic techniques (United States)

    Mahesha, M. G.; Rashmitha; Meghana, N.; Padiyar, Meghavarsha


    ZnSe thin films have been grown on clean glass substrates by thermal evaporation technique and deposited films have been annealed at 473 K. William-Hall method has been adopted to extract information on crystallite size and internal strain in the film from X-ray diffractogram. Effect of annealing on ZnSe films has been analyzed by spectroscopic techniques which include optical absorption, Raman, and photoluminescence spectroscopy. From optical absorption, band gap has been estimated along with other optical parameters like refractive index and extinction coefficient. Also, Urbach tail, which originates near bad edge due to structural disorders, has been characterized. Raman spectra have been analyzed to get the information on the influence of crystallite size and strain effect on peak position, intensity and width. Photoluminescence spectra have been recorded and analyzed to get an insight on defect levels induced due to vacancies, interstadials, and impurity complexes.

  6. Applications of structural and spectroscopic techniques to the experimental and theoretical study of new luminescent materials

    CERN Document Server

    Navarro Ahumada, G A


    momentum:DELTA J = 6 is observed for this system. A declining cascade that can reasonably explain the unsuspected related spectral intensity, in the order of 10-9, is presented and suggested although a value was predicted for the electric dipolar force of lesser than 4 orders of magnitude what was observed. This problem is discussed and a mechanism is proposed for spectral intensities associated with two emissions characterized by DELTA J = 4 (electric hexadecapole) and DELTA J = 2 (electric cuadrupole). The laboratory tests made, include synthesis by solid state reactions of Dy sup 3 sup + and Ho sup 3 sup + , type elpasolites, structural characterization using the x-ray diffraction, neutron diffraction and diffuse neutron scattering techniques, and Raman and electronic spectroscopic characterization. Results are presented for cubic systems with Cr sup 3 sup + (3d sup 3 ) and Mo sup 3 sup + (4d sup 3 ) ions, since these are privileged from a spectroscopic point of view and except for the hexacyano ion of Cr(...

  7. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C


    pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...

  8. In situ vibrational spectroscopic investigation of C4 hydrocarbon selective oxidation over vanadium-phosphorus-oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhi -Yang [Iowa State Univ., Ames, IA (United States)


    n-Butane selective oxidation over the VPO catalyst to maleic anhydride is the first and only commercialized process of light alkane selective oxidation. The mechanism of this reaction is still not well known despite over twenty years of extensive studies, which can partially be attributed to the extreme difficulties to characterize catalytic reactions real-time under typical reaction conditions. In situ spectroscopic characterization techniques such as Infrared spectroscopy and laser Raman spectroscopy were used in the current mechanistic investigations of n-butane oxidation over VPO catalysts. To identify the reaction intermediates, oxidation of n-butane, 1,3-butadiene and related oxygenates on the VPO catalyst were monitored using FTIR spectroscopy under transient conditions. n-Butane was found to adsorb on the VPO catalyst to form olefinic species, which were further oxidized to unsaturated, noncyclic carbonyl species. The open chain dicarbonyl species then experienced cycloaddition to form maleic anhydride. VPO catalyst phase transformations were investigated using in situ laser Raman spectroscopy. This report contains Chapter 1: General introduction; Chapter 2: Literature review; and Chapter 5: Conclusion and recommendations.

  9. Remote Sensing of Grass Response to Drought Stress Using Spectroscopic Techniques and Canopy Reflectance Model Inversion

    Directory of Open Access Journals (Sweden)

    Bagher Bayat


    Full Text Available The aim of this study was to follow the response to drought stress in a Poa pratensis canopy exposed to various levels of soil moisture deficit. We tracked the changes in the canopy reflectance (450–2450 nm and retrieved vegetation properties (Leaf Area Index (LAI, leaf chlorophyll content (Cab, leaf water content (Cw, leaf dry matter content (Cdm and senescent material (Cs during a drought episode. Spectroscopic techniques and radiative transfer model (RTM inversion were employed to monitor the gradual manifestation of drought effects in a laboratory setting. Plots of 21 cm × 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were divided into a well-watered control group and a group subjected to water stress for 36 days. In a regular weekly schedule, canopy reflectance and destructive measurements of LAI and Cab were taken. Spectral analysis indicated the first sign of stress after 4–5 days from the start of the experiment near the water absorption bands (at 1930 nm, 1440 nm and in the red (at 675 nm. Spectroscopic techniques revealed plant stress up to 6 days earlier than visual inspection. Of the water stress-related vegetation indices, the response of Normalized Difference Water Index (NDWI_1241 and Normalized Photochemical Reflectance Index (PRI_norm were significantly stronger in the stressed group than the control. To observe the effects of stress on grass properties during the drought episode, we used the RTMo (RTM of solar and sky radiation model inversion by means of an iterative optimization approach. The performance of the model inversion was assessed by calculating R2 and the Normalized Root Mean Square Error (RMSE between retrieved and measured LAI (R2 = 0.87, NRMSE = 0.18 and Cab (R2 = 0.74, NRMSE = 0.15. All parameters retrieved by model inversion co-varied with soil moisture deficit. However, the first strong sign of water stress on the retrieved grass properties was detected as a change of Cw

  10. New sensor and non-contact geometrical survey for the vibrating wire technique

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Renan [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil); Junqueira Leão, Rodrigo, E-mail: [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil); Cernicchiaro, Geraldo [Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, RJ (Brazil); Terenzi Neuenschwander, Regis; Citadini, James Francisco; Droher Rodrigues, Antônio Ricardo [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil)


    The tolerances for the alignment of the magnets in the girders of the next machine of the Brazilian Synchrotron Light Laboratory (LNLS), Sirius, are as small as 40 µm for translations and 0.2 mrad for rotations. Therefore, a novel approach to the well-known vibrating wire technique has been developed and tested for the precise fiducialization of magnets. The alignment bench consists of four commercial linear stages, a stretched wire, a commercial lock-in amplifier working with phase-locked loop (PLL), a coordinate measuring machine (CMM) and a vibration sensor for the wire. This novel sensor has been designed for a larger linear region of operation. For the mechanical metrology step of the fiducialization of quadrupoles an innovative technique, using the vision system of the CMM, is presented. While the work with pitch and yaw orientations is still ongoing with promising partial results, the system already presents an uncertainty level below 10 µm for translational alignment.

  11. Investigation on the use of optimization techniques for helicopter airframe vibrations design studies (United States)

    Sreekanta Murthy, T.


    Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.

  12. Hybrid Analytical Technique for Nonlinear Vibration Analysis of Thin-Walled Beams (United States)

    Noor, Ahmed K.; Hadian, Jafar M.; Andersen, Carl M.


    A two-step hybrid analytical technique is presented for the nonlinear vibration analysis of thin-walled beams. The first step involves the generation of various-order perturbation functions using the Linstedt-Poincare perturbation technique. The second step consists of using the perturbation functions as coordinate (or approximation) functions and then computing both the amplitudes of these functions and the nonlinear frequency of vibration via a direct variational procedure. The analytical formulation is based on a form of the geometrically nonlinear beam theory with the effects of in-plane inertia, rotatory inertia, and transverse shear deformation included. The effectiveness of the proposed technique is demonstrated by means of a numerical example of thin-walled beam with a doubly symmetric I-section. The solutions obtained using a single-spatial mode were compared with those obtained using multiple-spatial modes. The standard of comparison was taken to be the frequencies obtained by the direct integration/fast Fourier transform (FFT) technique. The nonlinear frequencies obtained by the hybrid technique were shown to converge to the corresponding ones obtained by the direct integration/fast Fourier transform (FFT) technique well beyond the range of applicability of the perturbation technique. The frequencies and total strain energy of the beam were overestimated by using a single-spatial mode.

  13. Application of vibration response technique for the firmness evaluation of pear fruit during storage


    Oveisi, Z.; Minaei, S.; Rafiee , S; Eyvani, A.; Borghei, A.


    Storage conditions of pear affect its subsequent softening process and shelf life. Measurements of firmness have traditionally been carried out according to the Magness Taylor (MT) procedure; using a texture analyzer or penetrometer in reference texture tests. In this study, a non-destructive method using Laser Doppler vibrometer (LDV) technology was used to estimate texture firmness of pears. This technique was employed to detect responses to imposed vibration of intact fruit using a shaker....

  14. Extension of vibrational power flow techniques to two-dimensional structures (United States)

    Cuschieri, Joseph M.


    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  15. Dielectric studies of boron sub phthalocyanine chloride thin films by admittance spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, Sameer; Neerja [Department of Physics, DAV College, Amritsar-143301 (India); Mahajan, Aman, E-mail:; Sharma, Anshul Kumar; Kumar, Sanjeev; Bedi, R. K. [Material Research Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India)


    The dielectric properties of Boron Sub Phthalocyanine Chloride (Cl-SubPc) thermally deposited on ITO substrate have been studied using admittance spectroscopic techniques. The I-V and capacitance –frequency (C-F) studies at various bias voltages reveal that the mobility of charge carriers decrease with bias voltage, however the conduction phenomenon still remain hopping in nature. From the differential susceptance curve, the contribution of the Schottky barrier contact in the charge carrier concentration was found to be absent. The mobility of charge carriers have been determined using differential susceptance variation and from the phase of admittance curve. The values obtained in two cases have been found to be in agreement with each other.

  16. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    CERN Document Server

    Daksha, M; Schuengel, E; Korolov, I; Derzsi, A; Koepke, M; Donko, Z; Schulze, J


    A Computationally Assisted Spectroscopic Technique to measure secondary electron emission coefficients ($\\gamma$-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of Phase Resolved Optical Emission Spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient $\\gamma$...

  17. Recent developments in spectroscopic imaging techniques for historical paintings - A review (United States)

    Alfeld, M.; de Viguerie, L.


    This paper provides an overview over the application of scanning macro-XRF with mobile instruments for the investigation of historical paintings. The method is compared to synchrotron based macro-XRF imaging and Neutron Activation Auto-Radiography. Full-Field XRF imaging instruments, a potential future alternative to scanning macro-XRF, and confocal XRF, providing complementary depth profiles and developing into a 3D imaging technique itself, are described with the focus on investigations of historical paintings. Recent developments of X-ray radiography are presented and the investigation of cultural heritage objects other than paintings by MA-XRF is summarized. In parallel to XRF, hyperspectral imaging in the visible and range has developed into a technique with comparable capabilities, providing insight in chemical compounds, where XRF imaging identifies the distribution of elements. Due to the complementary nature of these techniques the latter is summarized. Further, progress and state of the art in data evaluation for spectroscopic imaging is discussed. In general it could be observed that technical capabilities in MA-XRF and hyperspectral imaging have reached a plateau and that with the availability of commercial instruments the focus of recent studies has shifted from the development of methods to applications of the instruments. Further, that while simple instruments are easily available with medium budgets only few groups have high-end instrumentation available, bought or in-house built.

  18. Vibrational predissociation dynamics in the vibronic states of the aniline-neon van der Waals complex: New features revealed by complementary spectroscopic approaches (United States)

    Becucci, M.; Lakin, N. M.; Pietraperzia, G.; Castellucci, E.; Bréchignac, Ph.; Coutant, B.; Hermine, P.


    We report two independent sets of experimental spectroscopic data which both contain information about the vibrational dynamics occurring in the aniline-neon van der Waals complex in its S1 electronically excited state. The high resolution excitation spectra of the three vibronic bands, 6a01¯, I02¯, and 101¯, of the S1←S0 transition, exhibit lifetime broadening with respect to transitions to the corresponding states in the aniline monomer. The dispersed emission spectra taken under excitation of the same three vibronic bands give access to both the distribution of aniline monomer states produced by vibrational predissociation of the complex and to the rates at which this dynamics proceeds. The overall results are discussed in a consistent way, with emphasis being given to the role of the coupling between the intramolecular and the intermolecular vibrational states. In the case of I02¯ excitation, it is shown that this coupling is reflected in the shape of the van der Waals wavefunction, as accessed through the analysis of the high resolution spectra [M. Becucci, G. Pietraperzia, N. M. Lakin, E. Castellucci, Ph. Bréchignac, Chem. Phys. Lett. 260, 87 (1996).].

  19. Application of vibration response technique for the firmness evaluation of pear fruit during storage. (United States)

    Oveisi, Z; Minaei, S; Rafiee, S; Eyvani, A; Borghei, A


    Storage conditions of pear affect its subsequent softening process and shelf life. Measurements of firmness have traditionally been carried out according to the Magness Taylor (MT) procedure; using a texture analyzer or penetrometer in reference texture tests. In this study, a non-destructive method using Laser Doppler vibrometer (LDV) technology was used to estimate texture firmness of pears. This technique was employed to detect responses to imposed vibration of intact fruit using a shaker. Vibration transmitted through the fruit to the upper surface was measured by LDV. A fast Fourier transform algorithm was used to process response signals and the desired results were extracted. Multiple Linear Regression models using fruit density and four parameters obtained from modal tests showed better correlation (R(2) = 0.803) with maximum force in Magness Taylor test compared to the models that used only modal parameters (R(2) = 0.798). The best polynomial regression models for pear firmness were based on elasticity index (EI) and damping ratio (η) with R(2) = 0.71 and R(2) = 0.64, respectively. This study shows the capability of the LDV technique and the vibration response data for predicting ripeness and modeling pear firmness and the significant advantage for commercially classifying of pears based on consumer demands.

  20. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques (United States)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav


    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  1. Ab initio calculations of spectroscopic constants and vibrational state lifetimes of diatomic alkali-alkaline-earth cations. (United States)

    Fedorov, Dmitry A; Barnes, Dustin K; Varganov, Sergey A


    We investigate the lifetimes of vibrational states of diatomic alkali-alkaline-earth cations to determine their suitability for ultracold experiments where long decoherence time and controllability by an external electric field are desirable. The potential energy and permanent dipole moment curves for the ground electronic states of LiBe + , LiMg + , NaBe + , and NaMg + are obtained using the coupled cluster with singles doubles and triples and multireference configuration interaction methods in combination with large all-electron cc-pCVQZ and aug-cc-pCV5Z basis sets. The energies and wave functions of all vibrational states are obtained by solving the Schrödinger equation for nuclei with the B-spline basis set method. To predict the lifetimes of vibrational states, the transition dipole moments, as well as the Einstein coefficients describing spontaneous emission, and the stimulated absorption and emission induced by black body radiation are calculated. Surprisingly, in all studied ions, the lifetimes of the highest excited vibrational states are similar to the lifetimes of the ground vibrational states indicating that highly vibrationally excited ions could be useful for the ultracold experiments requiring long decoherence time.

  2. Ab initio calculations of spectroscopic constants and vibrational state lifetimes of diatomic alkali-alkaline-earth cations (United States)

    Fedorov, Dmitry A.; Barnes, Dustin K.; Varganov, Sergey A.


    We investigate the lifetimes of vibrational states of diatomic alkali-alkaline-earth cations to determine their suitability for ultracold experiments where long decoherence time and controllability by an external electric field are desirable. The potential energy and permanent dipole moment curves for the ground electronic states of LiBe+, LiMg+, NaBe+, and NaMg+ are obtained using the coupled cluster with singles doubles and triples and multireference configuration interaction methods in combination with large all-electron cc-pCVQZ and aug-cc-pCV5Z basis sets. The energies and wave functions of all vibrational states are obtained by solving the Schrödinger equation for nuclei with the B-spline basis set method. To predict the lifetimes of vibrational states, the transition dipole moments, as well as the Einstein coefficients describing spontaneous emission, and the stimulated absorption and emission induced by black body radiation are calculated. Surprisingly, in all studied ions, the lifetimes of the highest excited vibrational states are similar to the lifetimes of the ground vibrational states indicating that highly vibrationally excited ions could be useful for the ultracold experiments requiring long decoherence time.

  3. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang


    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.

  4. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques. (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M; Prates, Luciana L; Yu, Peiqiang


    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Application of spectroscopic techniques for the analysis of kidney stones: a pilot study (United States)

    Shameem, K. M., Muhammed; Chawla, Arun; Bankapur, Aseefhali; Unnikrishnan, V. K.; Santhosh, C.


    Identification and characterization of kidney stone remains one of the important analytical tasks in the medical field. Kidney stone is a common health complication throughout the world, which may cause severe pain, obstruction and infection of urinary tract, and can lead to complete renal damage. It commonly occurs in both sexes regardless of age. Kidney stones have different composition, although each stones have a major single characteristic component. A complete understanding of a sample properties and their function can only be feasible by utilizing elemental and molecular information simultaneously. Two laser based analytical techniques; Laser Induced Breakdown spectroscopy (LIBS) and Raman spectroscopy have been used to study different types of kidney stones from different patients. LIBS and Raman spectroscopy are highly complementary spectroscopic techniques, which provide elemental and molecular information of a sample. Q-switched Nd:YAG laser at 355 nm laser having energy 17mJ per pulse at 10 Hz repetition rate was used for getting LIBS spectra. Raman measurements were carried out using a home assembled micro-Raman spectrometer. Using the recorded Raman spectra of kidney stones, we were able to differentiate different kinds of kidney stones. LIBS spectra of the same stones are showing the evidence of C, Ca, H, and O and also suggest the presence of certain pigments.

  6. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)


    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  7. Ship vibration analysis by finite element technique. Pt. II: Vibration analysis / Analyse van scheepstrillingen door middel van de elementenmethode. Dl. II: Trillingsanalyse

    NARCIS (Netherlands)

    Hylarides, S.


    In the calculation of the natural frequencies of ships more accurate values are expected when the shell-like structure of ships is taken into account by the finite element technique, especially in the higher-node vibration modes. To avoid large matrix systems an elimination process has been

  8. Development of linear and nonlinear hand-arm vibration models using optimization and linearization techniques. (United States)

    Rakheja, S; Gurram, R; Gouw, G J


    Hand-arm vibration (HAV) models serve as an effective tool to assess the vibration characteristics of the hand-tool system and to evaluate the attenuation performance of vibration isolation mechanisms. This paper describes a methodology to identify the parameters of HAV models, whether linear or nonlinear, using mechanical impedance data and a nonlinear programming based optimization technique. Three- and four-degrees-of-freedom (DOF) linear, piecewise linear and nonlinear HAV models are formulated and analyzed to yield impedance characteristics in the 5-1000 Hz frequency range. A local equivalent linearization algorithm, based upon the principle of energy similarity, is implemented to simulate the nonlinear HAV models. Optimization methods are employed to identify the model parameters, such that the magnitude and phase errors between the computed and measured impedance characteristics are minimum in the entire frequency range. The effectiveness of the proposed method is demonstrated through derivations of models that correlate with the measured X-axis impedance characteristics of the hand-arm system, proposed by ISO. The results of the study show that a linear model cannot predict the impedance characteristics in the entire frequency range, while a piecewise linear model yields an accurate estimation.

  9. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy (United States)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.


    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  10. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane


    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  11. Preliminary R&D of vibrating wire alignment technique for HEPS (United States)

    Wu, Lei; Wang, Xiao-Long; Li, Chun-Hua; Qu, Hua-Min


    The alignment tolerance of multipoles on a girder is better than ±30 μm in the storage ring of the High Energy Photon Source (HEPS) which will be the next project at IHEP (Institute of High Energy Physics). It is difficult to meet the precision when only using the traditional optical survey method. In order to achieve this goal, a vibrating wire alignment technique with high precision and sensitivity is considered to be used in this project. This paper presents some preliminary research works about theory, scheme design and achievements.

  12. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities.

    Directory of Open Access Journals (Sweden)

    Inna Székács

    Full Text Available Optical waveguide lightmode spectroscopic (OWLS techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na(+ and organic cations through gramicidin channels and detecting the Cl(--channel functions of the (α5β2γ2 GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline.

  13. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model (United States)

    Depciuch, J.; Sowa-Kucma, M.; Nowak, G.; Papp, M.; Gruca, P.; Misztak, P.; Parlinska-Wojtan, M.


    Depression becomes nowadays a high mortality civilization disease with one of the major causes being chronic stress. Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of rats subjected to chronic mild stress, which is a common animal depression model. Moreover, the efficiency of the imipramine treatment was evaluated. It was found that chronic mild stress not only damages the structure of the phospholipids and proteins, but also decreases their level in the blood serum. A 5 weeks imipramine treatment did increase slightly the quantity of proteins, leaving the damaged phospholipids unchanged. Structural information from phospholipids and proteins was obtained by UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of stressed rats was normalized after imipramine therapy, while the impaired structure of phospholipids remained unaffected. These findings strongly suggest that the depression factor, which is chronic mild stress, may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression.

  14. Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. (United States)

    Kucha, Christopher T; Liu, Li; Ngadi, Michael O


    Fat is one of the most important traits determining the quality of pork. The composition of the fat greatly influences the quality of pork and its processed products, and contribute to defining the overall carcass value. However, establishing an efficient method for assessing fat quality parameters such as fatty acid composition, solid fat content, oxidative stability, iodine value, and fat color, remains a challenge that must be addressed. Conventional methods such as visual inspection, mechanical methods, and chemical methods are used off the production line, which often results in an inaccurate representation of the process because the dynamics are lost due to the time required to perform the analysis. Consequently, rapid, and non-destructive alternative methods are needed. In this paper, the traditional fat quality assessment techniques are discussed with emphasis on spectroscopic techniques as an alternative. Potential spectroscopic techniques include infrared spectroscopy, nuclear magnetic resonance and Raman spectroscopy. Hyperspectral imaging as an emerging advanced spectroscopy-based technology is introduced and discussed for the recent development of assessment for fat quality attributes. All techniques are described in terms of their operating principles and the research advances involving their application for pork fat quality parameters. Future trends for the non-destructive spectroscopic techniques are also discussed.

  15. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail:; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)


    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  16. Vibrational spectroscopic study of the contents of a chest excavated from the wreck of the HMS Pandora. (United States)

    Edwards, H G M; Farwell, D W; Lee, J S; Fredericks, P M


    The FT-IR and Raman spectroscopic analysis of a red powder found in a chest from an officer's cabin during the excavation of the wreck of the 18th Century frigate HMS Pandora have confirmed that the pigment is cinnabar, mercury(II) sulphide. Weaker signals in the Raman spectrum are assignable to a proteinaceous material, such as collagen, typical of a degraded vellum or parchment. Comparison of the Raman spectra with that of a pigmented seal from a 1786 Lieutenant's commission demonstrated that the beeswax component of the seal was not observable.

  17. Comparative Study of Time-Frequency Decomposition Techniques for Fault Detection in Induction Motors Using Vibration Analysis during Startup Transient

    Directory of Open Access Journals (Sweden)

    Paulo Antonio Delgado-Arredondo


    Full Text Available Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults. There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG, the time-frequency Morlet scalogram (TFMS, multiple signal classification (MUSIC, and fast Fourier transform (FFT. The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.

  18. Vibrational sum‐frequency generation as a probe for composition, chemical reactivity, and film formation dynamics of the sea surface nanolayer

    National Research Council Canada - National Science Library

    Laβ, Kristian; Kleber, Joscha; Friedrichs, Gernot


    Vibrational Sum Frequency Generation (VSFG) is a surface sensitive nonlinear laser spectroscopic technique, which has been widely used in physics and physical chemistry to investigate interface processes and heterogeneous chemistry...

  19. The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng

    Directory of Open Access Journals (Sweden)

    Maxleene Sandasi


    Full Text Available The name “ginseng” is collectively used to describe several plant species, including Panax ginseng (Asian/Oriental ginseng, P. quinquefolius (American ginseng, P. pseudoginseng (Pseudoginseng and Eleutherococcus senticosus (Siberian ginseng, each with different applications in traditional medicine practices. The use of a generic name may lead to the interchangeable use or substitution of raw materials which poses quality control challenges. Quality control methods such as vibrational spectroscopy-based techniques are here proposed as fast, non-destructive methods for the distinction of four ginseng species and the identification of raw materials in commercial ginseng products. Certified ginseng reference material and commercial products were analysed using hyperspectral imaging (HSI, mid-infrared (MIR and near-infrared (NIR spectroscopy. Principal component analysis (PCA and (orthogonal partial least squares discriminant analysis models (OPLS-DA were developed using multivariate analysis software. UHPLC-MS was used to analyse methanol extracts of the reference raw materials and commercial products. The holistic analysis of ginseng raw materials revealed distinct chemical differences using HSI, MIR and NIR. For all methods, Eleutherococcus senticosus displayed the greatest variation from the three Panax species that displayed closer chemical similarity. Good discrimination models with high R2X and Q2 cum vales were developed. These models predicted that the majority of products contained either /P. ginseng or P. quinquefolius. Vibrational spectroscopy and HSI techniques in tandem with multivariate data analysis tools provide useful alternative methods in the authentication of ginseng raw materials and commercial products in a fast, easy, cost-effective and non-destructive manner.

  20. Mineralogical Characterization Studies of Ancient Potteries of Tamilnadu, India by FT-IR Spectroscopic Technique

    Directory of Open Access Journals (Sweden)

    R. Ravisankar


    Full Text Available We report the spectroscopic investigation of ancient potteries excavated in Tamilnadu. Qualitative analyses were carried out to determine the major and minor constituent minerals present in the samples from the band position or location of the peaks. From the prominent IR absorption peaks, the minerals were identified with the available literature are the quartz, orthoclase, albite, magnetite, hematite, kaolinite, montmorillonite, illite, gypsum and calcite. The interpretation of results is made from the IR characteristics absorption bands. Spectroscopic results indicates that these potteries were refried to a less than 900 °C.

  1. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations (United States)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.


    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  2. Vibrational, NMR and UV-Visible spectroscopic investigation, VCD and NLO studies on Benzophenone thiosemicarbazone using computational calculations (United States)

    Moorthy, N.; Jobe Prabakar, P. C.; Ramalingam, S.; Periandy, S.; Parasuraman, K.


    In order to explore the unbelievable NLO property of prepared Benzophenone thiosemicarbazone (BPTSC), the experimental and theoretical investigation has been made. The theoretical calculations were made using RHF and CAM-B3LYP methods at 6-311++G(d,p) basis set. The title compound contains Cdbnd S ligand which helps to improve the second harmonic generation (SHG) efficiency. The molecule has been examined in terms of the vibrational, electronic and optical properties. The entire molecular behavior was studied by their fundamental IR and Raman wavenumbers and was compared with the theoretical aspect. The molecular chirality has been studied by performing vibrational circular dichroism (circularly polarized infrared radiation). The Mulliken charge levels of the compound ensure the perturbation of atomic charges according to the ligand. The molecular interaction of frontier orbitals emphasizes the modification of chemical properties of the compound through the reaction path. The enormous amount of NLO activity was induced by the Benzophenone in thiosemicarbazone. The Gibbs free energy was evaluated at different temperature and from which the enhancement of chemical stability was stressed. The VCD spectrum was simulated and the optical dichroism of the compound has been analyzed.

  3. Hemodynamic and ventilatory effects of manual respiratory physiotherapy techniques of chest clapping, vibration, and shaking in an animal model. (United States)

    Wong, W P; Paratz, J D; Wilson, K; Burns, Y R


    Chest clapping, vibration, and shaking were studied in 10 physiotherapists who applied these techniques on an anesthetized animal model. Hemodynamic variables (such as heart rate, blood pressure, pulmonary artery pressure, and right atrial pressure) were measured during the application of these techniques to verify claims of adverse events. In addition, expired tidal volume and peak expiratory flow rate were measured to ascertain effects of these techniques. Physiotherapists in this study applied chest clapping at a rate of 6.2 +/- 0.9 Hz, vibration at 10.5 +/- 2.3 Hz, and shaking at 6.2 +/- 2.3 Hz. With the use of these rates, esophageal pressure swings of 8.8 +/- 5.0, 0.7 +/- 0.3, and 1.4 +/- 0.7 mmHg resulted from clapping, vibration, and shaking respectively. Variability in rates and "forces" generated by these techniques was physiotherapy experience and layers of towel used explained approximately 79% of the variance in clapping force (P = 0.004), whereas age and clinical experience explained >80% of variance in shaking force (P = 0.003). Application of these techniques by physiotherapists was found to have no significant effects on hemodynamic and most ventilatory variables in this study. From this study, we conclude that chest clapping, vibration, and shaking 1). can be consistently performed by physiotherapists; 2). are significantly related to physiotherapists' characteristics, particularly clinical experience; and 3). caused no significant hemodynamic effects.

  4. Vibrational spectroscopic studies on fibrinogen adsorption at polystyrene/protein solution interfaces: hydrophobic side chain and secondary structure changes. (United States)

    Wang, Jie; Chen, Xiaoyun; Clarke, Matthew L; Chen, Zhan


    Structural changes of fibrinogen after adsorption to polystyrene (PS) were examined at the PS/protein solution interface in situ using sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Different behaviors of hydrophobic side chains and secondary structures of adsorbed fibrinogen molecules have been observed. Our results indicate that upon adsorption, the hydrophobic PS surface induces fast structural changes of fibrinogen molecules by aligning some hydrophobic side chains in fibrinogen so that they face to the surface. Such structural changes of fibrinogen hydrophobic side chains are local changes and do not immediately induce significant changes of the protein secondary structures. Our research also shows that the interactions between adsorbed fibrinogen and the PS surface can induce significant changes of protein secondary structures or global conformations which occur on a much longer time scale.

  5. Vibrational Spectroscopic Studies and Computational Study of 1,2-Diphenyl-4-n-Butyl-3,5-Pyrazolidinedione

    Directory of Open Access Journals (Sweden)

    C. Yohannan Panicker


    Full Text Available FT-IR and FT-Raman spectra of 1,2-diphenyl-4-n-Butyl-3,5-pyrazolidinedione (Phenylbutazone were recorded and analyzed. The vibrational wavenumbers were computed using HF/6-31G(d and B3LYP/6-31G(d basis sets and compared with experimental data. The first hyperpolarizability, infrared intensities and Raman activities are also reported. The geometrical parameters of the title compound obtained from theoretical calculations are in agreement with that of reported similar derivatives. The first hyperpolarizability is comparable with reported values of similar derivatives and is an attractive molecule for future applications in non-linear optics. The variation in C-N bond lengths suggests an extended π-electron delocalization over the pyrazolidinedione moiety which is responsible for the nonlinearity of the molecule.

  6. Spectroscopic investigation, vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking studies of oxoaporphine alkaloid liriodenine (United States)

    Costa, Renyer A.; Pitt, Priscilla Olliveira; Pinheiro, Maria Lucia B.; Oliveira, Kelson M. T.; Salomé, Kahlil Schwanka; Barison, Andersson; Costa, Emmanoel Vilaça


    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of liriodenine is presented using B3LYP function with 6-311G (2d, p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing similar values. In addition, natural bond orbitals (NBOs), HOMO-LUMO energy gap, mapped molecular Electrostatic Potential (MEP) surface calculation, first and second order hyperpolarizabilities were also performed with the same calculation level. Theoretical UV spectrum agreed well with the measured experimental data, with transitions assigned. The molecular electrostatic potential map shows opposite potentials regions that forms hydrogen bonds that stabilize the dimeric form, which were confirmed by the close values related to the C dbnd O bond stretching between the dimeric form and the experimental IR spectra (1654 cm- 1 for the experimental, 1700 cm- 1 for the dimer form). Calculated HOMO/LUMO gaps shows the excitation energy for Liriodenine, justifying its stability and kinetics reaction. Molecular docking studies with Candida albicans dihydrofolate reductase (DHFR) and Candida albicans secreted aspartic protease (SAP) showed binding free energies values of - 8.5 and - 8.3 kcal/mol, suggesting good affinity between the liriodenine and the target macromolecules.

  7. Spectroscopic investigation, vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking studies of oxoaporphine alkaloid liriodenine. (United States)

    Costa, Renyer A; Pitt, Priscilla Olliveira; Pinheiro, Maria Lucia B; Oliveira, Kelson M T; Salomé, Kahlil Schwanka; Barison, Andersson; Costa, Emmanoel Vilaça


    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of liriodenine is presented using B3LYP function with 6-311G (2d, p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing similar values. In addition, natural bond orbitals (NBOs), HOMO-LUMO energy gap, mapped molecular Electrostatic Potential (MEP) surface calculation, first and second order hyperpolarizabilities were also performed with the same calculation level. Theoretical UV spectrum agreed well with the measured experimental data, with transitions assigned. The molecular electrostatic potential map shows opposite potentials regions that forms hydrogen bonds that stabilize the dimeric form, which were confirmed by the close values related to the CO bond stretching between the dimeric form and the experimental IR spectra (1654cm-1 for the experimental, 1700cm-1 for the dimer form). Calculated HOMO/LUMO gaps shows the excitation energy for Liriodenine, justifying its stability and kinetics reaction. Molecular docking studies with Candida albicans dihydrofolate reductase (DHFR) and Candida albicans secreted aspartic protease (SAP) showed binding free energies values of -8.5 and -8.3kcal/mol, suggesting good affinity between the liriodenine and the target macromolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development and Quantification of UV-Visible and Laser Spectroscopic Techniques for Materials Accountability and Process Control

    Energy Technology Data Exchange (ETDEWEB)

    Ken Czerwinski; Phil Weck; Frederic Poineau


    Ultraviolet-Visible Spectroscopy (UV-Visible) and Time Resolved Laser Fluorescence Spectroscopy (TRLFS) optical techniques can permit on-line, real-time analysis of the actinide elements in a solvent extraction process. UV-Visible and TRLFS techniques have been used for measuring the speciation and concentration of the actinides under laboratory conditions. These methods are easily adaptable to multiple sampling geometries, such as dip probes, fiber-optic sample cells, and flow-through cell geometries. To fully exploit these techniques for GNEP applications, the fundamental speciation of the target actinides and the resulting influence on 3 spectroscopic properties must be determined. Through this effort detection limits, process conditions, and speciation of key actinide components can be establish and utilized in a range of areas of interest to GNEP, especially in areas related to materials accountability and process control.

  9. Vibration control of a class of semiactive suspension system using neural network and backstepping techniques (United States)

    Zapateiro, M.; Luo, N.; Karimi, H. R.; Vehí, J.


    In this paper, we address the problem of designing the semiactive controller for a class of vehicle suspension system that employs a magnetorheological (MR) damper as the actuator. As the first step, an adequate model of the MR damper must be developed. Most of the models found in literature are based on the mechanical behavior of the device, with the Bingham and Bouc-Wen models being the most popular ones. These models can estimate the damping force of the device taking the control voltage and velocity inputs as variables. However, the inverse model, i.e., the model that computes the control variable (generally the voltage) is even more difficult to find due to the numerical complexity that implies the inverse of the nonlinear forward model. In our case, we develop a neural network being able to estimate the control voltage input to the MR damper, which is necessary for producing the optimal force predicted by the controller so as to reduce the vibrations. The controller is designed following the standard backstepping technique. The performance of the control system is evaluated by means of simulations in MATLAB/Simulink.

  10. Prediction of Milk Quality Parameters Using Vibrational Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae

    Vibrational spectroscopic techniques are widely used throughout all stages of food production. The analysis of raw materials, real-time process control, and end-product quality evaluation are all crucial steps in food production. In order to increase production throughput there is a need for speed...

  11. Vibration Control of a Semiactive Vehicle Suspension System Based on Extended State Observer Techniques

    Directory of Open Access Journals (Sweden)

    Ze Zhang


    Full Text Available A feedback control method based on an extended state observer (ESO method is implemented to vibration reduction in a typical semiactive suspension (SAS system using a magnetorheological (MR damper as actuator. By considering the dynamic equations of the SAS system and the MR damper model, an active disturbance rejection control (ADRC is designed based on the ESO. Numerical simulation and real-time experiments are carried out with similar vibration disturbances. Both the simulation and experimental results illustrate the effectiveness of the proposed controller in vibration suppression for a SAS system.

  12. Vibrational spectroscopic analysis of cyanopyrazine-2-carboxamide derivatives and investigation of their reactive properties by DFT calculations and molecular dynamics simulations (United States)

    Beegum, Shargina; Mary, Y. Sheena; Varghese, Hema Tresa; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Zitko, Jan; Dolezal, Martin; Van Alsenoy, C.


    Using density functional theory technique in the B3LYP approximation and cc-pVDZ (5D, 7F) basis set, the molecular structural parameters and vibrational wave numbers of two cyanopyrazine-2-carboxamide derivatives have been investigated. On the basis of potential energy distribution detailed vibrational assignments of observed FT-IR and FT-Raman bands have been proposed. Using molecular electrostatic potential map relative reactivities towards electrophilic and nucleophilic attack are predicted. The first and second hyperpolarizabilities are calculated and the first hyperpolarizability of the title compounds are greater than that of the standard NLO material urea. Molecular studies reveal that the predicted binding affinities of the best poses were -8.7 kcal/mol for BACPC, -9.0 kcal/mol for CBACPC, and -8.8 kcal/mol for the original inhibitor. Efforts were made in order to investigate local reactivity properties of title compounds as well. In order to do so we have calculated average local ionization energy (ALIE) surfaces, Fukui functions, bond dissociation energies (BDE) (within the framework of DFT calculations) and radial distribution functions (RDF) (within the molecular dynamics simulations). ALIE surfaces and Fukui functions gave us initial information on the site reactivity towards electrophilic and nucleophilic attacks. BDE indicated locations that might be prone to autoxidation mechanism, while RDF indicated which atoms of title molecules are having pronounced interactions with water.

  13. Evaluation of vibration limits and mitigation techniques for urban construction : [summary]. (United States)


    Construction activities such as pile driving and : dynamic compaction of loose soils induce ground : and structure vibrations. Their effects may annoy : local populations, disturb sensitive equipment, or : reduce structures serviceability and dura...

  14. Vibration Reduction Methods and Techniques for Rotorcraft Utilizing On-Blade Active Control Project (United States)

    National Aeronautics and Space Administration — Rotor blades adapted for vibration control have the added benefit of extended blade and rotor life, as well as improved passenger comfort. Approaches that have been...

  15. Determination of depleted uranium in environmental samples by gamma-spectroscopic techniques. (United States)

    Karangelos, D J; Anagnostakis, M J; Hinis, E P; Simopoulos, S E; Zunic, Z S


    The military use of depleted uranium initiated the need for an efficient and reliable method to detect and quantify DU contamination in environmental samples. This paper presents such a method, based on the gamma spectroscopic determination of 238U and 235U. The main advantage of this method is that it allows for a direct determination of the U isotope ratio, while requiring little sample preparation and being significantly less labor intensive than methods requiring radiochemical treatment. Furthermore, the fact that the sample preparation is not destructive greatly simplifies control of the quality of measurements. Low energy photons are utilized, using Ge detectors efficient in the low energy region and applying appropriate corrections for self-absorption. Uranium-235 in particular is determined directly from its 185.72 keV photons, after analyzing the 235U-226Ra multiplet. The method presented is applied to soil samples originating from two different target sites, in Southern Yugoslavia and Montenegro. The analysis results are discussed in relation to the natural radioactivity content of the soil at the sampling sites. A mapping algorithm is applied to examine the spatial variability of the DU contamination.

  16. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique. (United States)

    Fry-Petit, A M; Rebola, A F; Mourigal, M; Valentine, M; Drichko, N; Sheckelton, J P; Fennie, C J; McQueen, T M


    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn2Mo3O8, this approach allows direct assignment of the constrained rotational mode of Mo3O13 clusters and internal modes of MoO6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  17. Coupling spectroscopic and chromatographic techniques for evaluation of the depositional history of hydrocarbons in a subtropical estuary. (United States)

    Martins, César C; Doumer, Marta E; Gallice, Wellington C; Dauner, Ana Lúcia L; Cabral, Ana Caroline; Cardoso, Fernanda D; Dolci, Natiely N; Camargo, Luana M; Ferreira, Paulo A L; Figueira, Rubens C L; Mangrich, Antonio S


    Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. "Novel Techniques in Non-Stationary Analysis of Rotorcraft Vibration Signitures" (United States)

    Meng, Teresa


    This research effort produced new methods to analyze the performance of linear predictors that track non-stationary processes. Specifically, prediction methods have been applied to the vibration pattern of rotorcraft drivetrains. This analysis is part or a larger rotorcraft Health and Usage Monitoring System (HUMS) that can diagnose immediate failures of the subsystems, as indicated by abrupt change in the vibration signature, and prognosticate future health, by examining the vibration patterns against long-term trends. This problem is described by a earlier joint paper co-authored by members of the funding agency and the recipient institutions prior to this grant effort. Specific accomplishments under this grant include the following: (1) Definition of a framework for analysis of non-stationary time-series estimation using the coefficients of an adaptive filter. (2) Description of a novel method of combining short-term predictor error and long-term regression error to analyze the performance of a non-stationary predictor. (3) Formulation of a multi-variate probability density function that quantifies the performance of a adaptive predictor by using the short- and long-term error variables in a Gamma function distribution. and (4) Validation of the mathematical formulations with empirical data from NASA flight tests and simulated data to illustrate the utility beyond the domain of vibrating machinery.

  19. Infrared spectroscopy and spectroscopic imaging in forensic science. (United States)

    Ewing, Andrew V; Kazarian, Sergei G


    Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.

  20. Spatially-resolved spectroscopic technique for measuring optical properties of food (United States)

    Quantification of optical properties is important to understand light interaction with biological materials, and to develop effective optical sensing techniques for property characterization and quality measurement of food products. This chapter reviews spatially-resolved method, with the focus on f...

  1. Investigation of Effectiveness of Some Vibration-Based Techniques in Early Detection of Real-Time Fatigue Failure in Gears

    Directory of Open Access Journals (Sweden)

    Hasan Ozturk


    Full Text Available Bending fatigue crack is a dangerous and insidious mode of failure in gears. As it produces no debris in its early stages, it gives little warning during its progression, and usually results in either immediate loss of serviceability or greatly reduced power transmitting capacity. This paper presents the applications of vibration-based techniques (i.e. conventional time and frequency domain analysis, cepstrum, and continuous wavelet transform to real gear vibrations in the early detection, diagnosis and advancement monitoring of a real tooth fatigue crack and compares their detection and diagnostic capabilities on the basis of experimental results. Gear fatigue damage is achieved under heavy-loading conditions and the gearbox is allowed to run until the gears suffer badly from complete tooth breakage. It has been found that the initiation and progression of fatigue crack cannot be easily detected by conventional time and frequency domain approaches until the fault is significantly developed. On the contrary, the wavelet transform is quite sensitive to any change in gear vibration and reveals fault features earlier than other methods considered.

  2. Understanding defect related luminescence processes in wide bandgap materials using low temperature multi-spectroscopic techniques

    DEFF Research Database (Denmark)

    Prasad, Amit Kumar

    3+; this is possibly related to spin-lattice interaction during resonant excitation. I also examined the YPO4:Sm,Ce system, a model analogue material for feldspar to understand the tunneling mechanism in randomly distributed defects. For the first time, a precise mapping of the energy levels......+) can be adequately described using the prevalent mathematical model of excited-state tunneling. Finally, inspired by the results of YPO4:Ce, Sm, I discovered a Stokes shifted infra-red photoluminescence (IRPL) signal in feldspar. Current methods of OSL rely on transfer of electrons from the...... important technique developments in my thesis. Firstly, based on the model of the red edge effect, a simple method is proposed for estimation of the width of the band tail states in feldspar. Secondly, it is shown that the infra-red photoluminescence (IRPL) technique can be used for non-destructive probing...

  3. Analysis of the binding interaction in uric acid - Human hemoglobin system by spectroscopic techniques (United States)

    Makarska-Bialokoz, Magdalena


    The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.

  4. FT-Raman, FT-IR, UV spectroscopic, NBO and DFT quantum chemical study on the molecular structure, vibrational and electronic transitions of clopidogrel hydrogen sulfate form 1: A comparison to form 2 (United States)

    Srivastava, Anubha; Mishra, Rashmi; Tandon, Poonam; Bansal, A. K.


    Clopidogrel hydrogen sulfate (+)-(S)-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1), is a selective adenosine diphosphate (ADP) receptor antagonist often used in the treatment of coronary artery, peripheral vascular and cerebrovascular diseases. In the present communication, a comparative study of two polymorphic forms (forms 1 and 2) of clopidogrel hydrogen sulfate (CLP) has been reported. There is difference in conformation and intermolecular hydrogen bonding pattern of two forms. These differences are nicely reflected in the vibrational spectra. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands of CLP form 1 are interpreted with the aid of structure optimizations and normal mode analysis based on ab initio HF and DFT method employing 6-311++G(d,p) basis. Polymorphism in CLP have been studied using various characterization tools like FT-Raman, FT-IR spectroscopy and DSC in combination with the quantum chemical calculations. UV-vis spectroscopic studies along with HOMO-LUMO analysis of both polymorphs were performed. The solvent effect calculated by TD-DFT/IEF-PCM/6-31G model results complements with the experimental findings. Stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  5. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique (United States)

    Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer


    In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  6. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

    Directory of Open Access Journals (Sweden)

    Mercan Kadir


    Full Text Available In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM is investigated. The method of discrete singular convolution (DSC is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love’s first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  7. Rapid non-destructive assessment of pork edible quality by using VIS/NIR spectroscopic technique (United States)

    Zhang, Leilei; Peng, Yankun; Dhakal, Sagar; Song, Yulin; Zhao, Juan; Zhao, Songwei


    The objectives of this research were to develop a rapid non-destructive method to evaluate the edible quality of chilled pork. A total of 42 samples were packed in seal plastic bags and stored at 4°C for 1 to 21 days. Reflectance spectra were collected from visible/near-infrared spectroscopy system in the range of 400nm to 1100nm. Microbiological, physicochemical and organoleptic characteristics such as the total viable counts (TVC), total volatile basic-nitrogen (TVB-N), pH value and color parameters L* were determined to appraise pork edible quality. Savitzky-Golay (SG) based on five and eleven smoothing points, Multiple Scattering Correlation (MSC) and first derivative pre-processing methods were employed to eliminate the spectra noise. The support vector machines (SVM) and partial least square regression (PLSR) were applied to establish prediction models using the de-noised spectra. A linear correlation was developed between the VIS/NIR spectroscopy and parameters such as TVC, TVB-N, pH and color parameter L* indexes, which could gain prediction results with Rv of 0.931, 0.844, 0.805 and 0.852, respectively. The results demonstrated that VIS/NIR spectroscopy technique combined with SVM possesses a powerful assessment capability. It can provide a potential tool for detecting pork edible quality rapidly and non-destructively.

  8. Determination of heavy metals in environmental bio-indicators by voltammetric and spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, C.; Torsi, G. [Bologna Univ. (Italy). Dipt. di Chimica; Garai, T. [Hungarian Academy of Sciences, Budapest (Hungary). Research Lab. for Inorganic Chemistry


    The determination of copper, lead, cadmium and zinc in matrices involved in the food chain as algae, species Ulva rigida, and clams, species Tapes philippinarum by differential pulse anodic stripping voltammetry (DPASV) was carried out. For the mercury determination in these matrices, a new accurate and precise method was developed employing a mixture of concentrated acids H{sub 2}SO{sub 4}-K{sub 2}Cr{sub 2}O{sub 7} for digestion and subsequent cold vapor atomic absorption spectrometry (CV-AAS) by reduction with SnCl{sub 2}. The analytical procedures were verified for four reference standard materials: Ulva lactuca BCR-CRM 279, Lagarosiphon major BCR-CRM 060, Oyster tissue NBS-SRM 1566, Mussel tissue BCR-CRM 278. For all the elements the precision, expressed as relative standard deviation (s{sub r}), and the accuracy, expressed as relative error (e), were in the order of 3 to 5%, while the detection limits were in the range 0.010-0.100 {mu}g/g. The standard addition technique improved the resolution of the voltammetric method even in the case of very high element concentration ratios. The analytical procedure was used for real matrices sampled in the Adriatic Sea south to Po river mouth, in the zone ``Goro bay``, and at open sea north to the Ravenna shore. (orig.) With 2 figs., 4 tabs., 36 refs.

  9. Finding relevant spectral regions between spectroscopic techniques by use of cross model validation and partial least squares regression. (United States)

    Westad, Frank; Afseth, Nils Kristian; Bro, Rasmus


    In this paper, we extend the concept of cross model validation (CMV) to multiple X and Y variables where different spectroscopic techniques serve as X and Y data in a regression context. For the first dataset on marzipan samples the main objective was to find significant regions in the spectral data, and to discuss the issue of false discovery, i.e. combinations of variables that erroneously are found to be significant. A permutation test within the framework of CMV showed that no regression coefficients in the partial least squares regression (PLSR) model between FT-IR and VIS/NIR spectra show significance at the 5% level. We believe the reason is that the CMV acts as strong filter towards spurious correlations. Corresponding CH- and OH-bands between FT-IR and NIR spectra gave significant regions. For the second dataset, the results from CMV are interpreted more in detail with chemical background knowledge in mind. Most of the significant regions found between the Raman and NIR spectra could be interpreted from the chemical composition of the oil mixtures. Some regions were more difficult to interpret, which could be due to systematic baseline effects in the NIR data.

  10. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging. (United States)

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank


    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  11. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part A Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)


    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. This paper presents a statistical analysis of high frequency stress wave signals captured from a newly developed noninvasive, non-destructive tube inspection technique known as the vibration impact acoustic emission (VIAE) technique. Acoustic emission (AE) signals have been introduced into the ASTM A179 seamless steel tubes using an impact hammer, and the AE wave propagation was captured using an AE sensor. Specifically, a healthy steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AE features extracted from the captured signals are rise time, peak amplitude, duration and count. The VIAE technique also analysed the AE signals using statistical features such as root mean square (r.m.s.), energy, and crest factor. It was evident that duration, count, r.m.s., energy and crest factor could be used to automatically identify the presence of defect in carbon steel tubes using AE signals captured using the non-invasive VIAE technique.

  12. In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses

    Directory of Open Access Journals (Sweden)

    Jonkers Ilse


    Full Text Available Abstract Background The per-operative assessment of primary stem stability may help to improve the performance of total hip replacement. Vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. The objective of the present study was to evaluate in vivo a vibration analysis-based endpoint criterion for the insertion of the stem by successive surgeon-controlled hammer blows. Methods A protocol using a vibration analysis technique for the characterisation of the primary bone-prosthesis stability was tested in 83 patients receiving a custom-made, intra-operatively manufactured stem prosthesis. Two groups were studied: one (n = 30 with non cemented and one (n = 53 with partially cemented stem fixation. Frequency response functions of the stem-femur system corresponding to successive insertion stages were compared. Results The correlation coefficient between the last two frequency response function curves was above 0.99 in 86.7% of the non cemented cases. Lower values of the final correlation coefficient and deviations in the frequency response pattern were associated with instability or impending bone fracture. In the cases with a partially cemented stem an important difference in frequency response function between the final stage of non cemented trial insertion and the final cemented stage was found in 84.9% of the cases. Furthermore, the frequency response function varied with the degree of cement curing. Conclusion The frequency response function change provides reliable information regarding the stability evolution of the stem-femur system during the insertion. The protocol described in this paper can be used to accurately detect the insertion end point and to reduce the risk for intra-operative fracture.

  13. New spectroscopic tools and techniques for characterizing M dwarfs and discovering their planets in the near-infrared (United States)

    Terrien, Ryan C.

    M dwarfs are the least massive and most common stars in the Galaxy. Due to their prevalence and long lifetimes, these diminutive stars play an outsize role in several fields of astronomical study. In particular, it is now known that they commonly host planetary systems, and may be the most common hosts of Earth-size, rocky planets in the habitable zone. A comprehensive understanding of M dwarfs is crucial for understanding the origins and conditions of their planetary systems, including their potential habitability. Such an understanding depends on methods for precisely and accurately measuring their properties. These tools have broader applicability as well, underlying the use of M dwarfs as fossils of Galactic evolution, and helping to constrain the structures and interiors of these stars. The measurement of the fundamental parameters of M dwarfs is encumbered by their spectral complexity. Unlike stars of spectral type F, G, or K that are similar to our G type Sun, whose spectra are dominated by continuum emission and atomic features, the cool atmospheres of M dwarfs are dominated by complex molecular absorption. Another challenge for studies of M dwarfs is that these stars are optically faint, emitting much of their radiation in the near-infrared (NIR). The availability and performance of NIR spectrographs have lagged behind those of optical spectrographs due to the challenges of producing low-noise, high-sensitivity NIR detector arrays, which have only recently become available. This thesis discusses two related lines of work that address these challenges, motivated by the development of the Habitable Zone Planet Finder (HPF), a NIR radial velocity (RV) spectrograph under development at Penn State that will search for and confirm planets around nearby M dwarfs. This work includes the development and application of new NIR spectroscopic techniques for characterizing M dwarfs, and the development and optimization of new NIR instrumentation for HPF. The first line

  14. Molecular structure and vibrational spectroscopic analysis of an antiplatelet drug; clopidogrel hydrogen sulphate (form 2) - A combined experimental and quantum chemical approach (United States)

    Srivastava, Anubha; Mishra, Soni; Tandon, Poonam; Patel, Sarasvatkumar; Ayala, A. P.; Bansal, A. K.; Siesler, H. W.


    Clopidogrel hydrogen sulphate which belongs to a class of medicine called antiplatelet drugs. Chemically it is methyl (+)-(S)-α-(2-chlorophenyl)-4,5,6,7-tetrahydrothieno [3,2- c] pyridine-5-acetate hydrogen sulphate having the empirical formula C 16H 17ClNO 2S.HSO 4 and molecular mass 321.82 g/mol. The present study is confined to vibrational spectroscopy of the polymorph identified as form 2 of the clopidogrel hydrogen sulphate. The vibrational analysis of clopidogrel hydrogen sulphate salt (form 2) considering separately the two counterions has been performed. We also report a theoretical and experimental study of the molecular conformation and vibrational dynamics of the independent moieties of the clopidogrel hydrogen sulphate salt. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The calculated wavenumbers after a proper scaling show a very good agreement with the observed values. A complete vibrational assignment is provided for the observed Raman and infrared spectra of clopidogrel hydrogen sulphate form 2.

  15. Application of phosphorus-31 and aluminum-27 NMR spectroscopic techniques to study aqueous and methanolic solutions of tetraphenylammonium aluminophosphate (United States)

    Goudarzi, Nasser; Amin, Amir H.


    In this work, aluminum-27 and phosphorus-31 NMR spectroscopic techniques were used to investigate and characterize the distribution of aluminophosphate (AlPO) species soluble in the aqueous and methanolic solutions of tetraphenylammonium (TPhA) chloride. The reaction between hexaaquaaluminum cations, [A1(H2O)6]3+, and different phosphate ligands such as H3PO4, H2PO4-, and the acidic dimers H6P2O8 and H5P2O8- resulted in the formation of the soluble AlPO cations. The effective aluminum-27 and phosphorous-31 NMR spectroscopies can be employed to characterize the species present in a solution. Assignment of the peaks present in the aluminum-27 NMR spectra to the aluminate species or aluminate connectivities was done to acquire information about different AlPO complexes. Some resonance lines were observed in the phosphorus-31 {1H} NMR spectra, indicating the existence of different complexes in the AlPO solutions. Some peaks were observed in the methanolic solutions of AlPO at the chemical shifts of -0.41, -6.4, -7.5, -7.9, -13.1, -13.9, -16.6, -18.1, and -20.6 ppm. Four additional peaks were also observed in the phosphorus-31 {1H} NMR spectra of the methanolic solutions of AlPO, whose intensities changed with changes in the methanol:water volume ratio; they were observed in methanol but not in aqueous AlPO.

  16. Robustness of Command Input Preshaping Technique Applied to Residual Vibration Reduction

    Directory of Open Access Journals (Sweden)

    Paolo Pennacchi


    Full Text Available Open-loop control techniques, such as command input preshaping, are quite sensible to modelling errors and noise. In the paper, an analysis and a discussion about the robustness of the technique with respect to the errors than can affect estimation of the values of the system parameters is presented.

  17. Design of the 12-bit Delta-Sigma Modulator using SC Technique for Vibration Sensor Output Processing

    Directory of Open Access Journals (Sweden)

    M. Pavlik


    Full Text Available The work deals with the design of the 12-bit Delta-Sigma modulator using switched capacitors (SC technique. The modulator serves to vibration sensor output processing. The first part describes the Delta-Sigma modulator parameters definition. Results of the proposed topology ideal model were presented as well. Next, the Delta-Sigma modulator circuitry on the transistor level was done. The ONSemiconductor I2T100 0.7 um CMOS technology was used for design. Then, the Delta-Sigma modulator nonidealities were simulated and implemented into the MATLAB ideal model of the modulator. The model of real Delta-Sigma modulator was derived. Consequently, modulator coefficients were optimized. Finally, the corner analysis of the Delta-Sigma modulator with the optimized coefficients was simulated. The value of SNDR = 82.2 dB (ENOB = 13.4 bits was achieved.

  18. Spectroscopic data

    CERN Document Server

    Melzer, J


    During the preparation of this compilation, many people contributed; the compilers wish to thank all of them. In particular they appreciate the efforts of V. Gilbertson, the manuscript typist, and those of K. C. Bregand, J. A. Kiley, and W. H. McPherson, who gave editorial assistance. They would like to thank Dr. J. R. Schwartz for his cooperation and encouragement. In addition, they extend their grati­ tude to Dr. L. Wilson of the Air Force Weapons Laboratory, who gave the initial impetus to this project. v Contents I. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 11. Organization ofthe Spectroscopic Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Methods of Production and Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2...

  19. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 1(exp 1)A' l-C3H(-): A Possible Link to Lines Observed in the Horsehead Nebula PDR (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.


    It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.

  20. On Ultrafast Time-Domain TeraHertz Spectroscopy in the Condensed Phase: Linear Spectroscopic Measurements of Hydrogen-Bond Dynamics of Astrochemical Ice Analogs and Nonlinear TeraHertz Kerr Effect Measurements of Vibrational Quantum Beats (United States)

    Allodi, Marco A.

    . We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 wavenumbers (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice. To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoium-based THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 wavenumbers), in exact agreement with the fundamental transition frequency of the lowest energy vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies. To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab

  1. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Michael James [Univ. of California, Berkeley, CA (United States)


    The ammonia synthesis reaction has been studied using single crystal model catalysis combined with sum frequency generation (SFG) vibrational spectroscopy. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia or equilibrium concentrations of reactants and products on Fe(111) surfaces. Special attention was paid to understand how potassium promotion of the iron catalyst affects the intermediates of ammonia synthesis. An Fe(111) surface promoted with 0.2 monolayers of potassium red shifts the vibrational frequencies of the reactive surface intermediates, NH and NH2, providing evidence for weakened the nitrogen-hydrogen bonds relative to clean Fe(111). Spectral features of these surface intermediates persisted to higher temperatures for promoted iron surfaces than for clean Fe(111) surfaces implying that nitrogen-iron bonds are stronger for the promoted surface. The ratio of the NH to NH2 signal changed for promoted surfaces in the presence of equilibrium concentrations of reactants and products. The order of adding oxygen and potassium to promoted surfaces does not alter the spectra indicating that ammonia induces surface reconstruction of the catalyst to produce the same surface morphology. When oxygen is co-adsorbed with nitrogen, hydrogen, ammonia or potassium on Fe(111), a relative phase shift of the spectra occurs as compared to the presence of adsorbates on clean iron surfaces. Water adsorption on iron was also probed using SFG vibrational spectroscopy. For both H2O and D2O, the only spectral feature was in the range of

  2. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study (United States)

    Wang, Xiao Hu; Zheng, Chang Cheng; Ning, Ji Qiang


    Transition-metal dichalcogenides (TMDs) nanostructures including nanotubes and monolayers have attracted great interests in materials science, chemistry to condensed matter physics. We present an interesting study of the vibration modes in multi-walled tungsten sulfide (WS2) nanotubes prepared via sulfurizing tungsten oxide (WO3) nanowires which are investigated by confocal micro-Raman spectroscopy. The inter-layer vibration mode of WS2 nanotubes, A1g, is found to be sensitive to the diameter and curvature strain, while the in-plane vibration mode, E12g, is not. A1g mode frequency shows a redshift by 2.5 cm−1 for the multi-layered nanotubes with small outer-diameters, which is an outcome of the competition between the Van der Waals force stiffening and the curvature strain softening. We also show that the Raman peak intensity ratio is significantly different between the 1–2 wall layered nanotubes and monolayer flat sheets. PMID:27620879

  3. Structural, electronic, topological and vibrational properties of a series of N-benzylamides derived from Maca (Lepidium meyenii) combining spectroscopic studies with ONION calculations (United States)

    Chain, Fernando E.; Ladetto, María Florencia; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia


    In the present work, the structural, topological and vibrational properties of four members of the N-benzylamides series derived from Maca (Lepidium meyenii) whose names are, N-benzylpentadecanamide, N-benzylhexadecanamide, N-benzylheptadecanamide and N-benzyloctadecanamide, were studied combining the FTIR, FT-Raman and 1H and 13C-NMR spectroscopies with density functional theory (DFT) and ONION calculations. Furthermore, the N-benzylacetamide, N-benzylpropilamide and N-benzyl hexanamide derivatives were also studied in order to compare their properties with those computed for the four macamides. These seven N-benzylamides series have a common structure, C8H8NO-R, being R the side chain [-(CH2)n-CH3] with a variable n number of CH2 groups. Here, the atomic charges, molecular electrostatic potentials, stabilization energies, topological properties of those macamides were analyzed as a function of the number of C atoms of the side chain while the frontier orbitals were used to compute the gap energies and some descriptors in order to predict their reactivities and behaviors in function of the longitude of the side chain. Here, the force fields, the complete vibrational assignments and the corresponding force constants were only reported for N-benzylacetamide, N-benzyl hexanamide and N-benzylpentadecanamide due to the high number of vibration normal modes that present the remains macamides.

  4. Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM)

    DEFF Research Database (Denmark)

    Mu, X.; Kobler, A.; Wang, D.


    Transmission electron microscopy (TEM) has been used intensively in investigating battery materials, e.g. to obtain phase maps of partially (dis)charged (lithium) iron phosphate (LFP/FP), which is one of the most promising cathode material for next generation lithium ion (Li-ion) batteries. Due...... to the weak interaction between Li atoms and fast electrons, mapping of the Li distribution is not straightforward. In this work, we revisited the issue of TEM measurements of Li distribution maps for LFP/FP. Different TEM techniques, including spectroscopic techniques (energy filtered (EF)TEM in the energy...... with each other. Because of the strong difference in the imaging mechanisms, it proves the reliability of both the spectroscopic and STEM diffraction phase mapping. A comprehensive comparison of all methods is given in terms of information content, dose level, acquisition time and signal quality. The latter...

  5. Gel performance in rheology and profile control under low-frequency vibration: coupling application of physical and chemical EOR techniques. (United States)

    Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir


    Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.

  6. A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection (United States)

    Peeters, Cédric; Guillaume, Patrick; Helsen, Jan


    The detection and diagnosis of incipient rolling element bearing faults is not an undemanding task and signal analysis of vibration measurements therefore often incorporates the use of various complex processing techniques. One of the key steps in the processing procedure is the proper separation of the bearing signal from other influencing sources like shafts or gears. The latter sources produce deterministic signal components showing up as discrete frequencies in the amplitude spectrum, while bearing signals are assumed to be (quasi-) cyclostationary resulting in a smearing of the bearing frequencies in the spectrum. This property gave rise to the idea of using the cepstrum for the purpose of separating the deterministic signal content from the second-order cyclostationary bearing signal. The cepstrum essentially groups the deterministic multi-harmonic signal content in a cepstral peak at the corresponding quefrency, making it more suitable for easy removal of the discrete frequency peaks. Even though initially there was a tendency to only remove or 'lifter' the selected cepstral peaks, nowadays the full real cepstrum is set to zero instead of only certain quefrency bands. This technique, called cepstrum pre-whitening, is easy to implement, can be performed quickly without the need for additional input parameters or fine-tuning and would be well-suited for practical applications. However, these advantages do come at the cost of some control and insight over the editing procedure of the signal. In order to assess the performance of this cepstrum pre-whitening technique, it is compared to an automated cepstrum editing procedure. It automatically selects certain peaks in the real cepstrum and only sets them to zero instead of the full real cepstrum. Both methods perform quite well in separating deterministic signal content from more random content, but there are some differences to observe when using them for diagnosis purposes. An analysis of the methods is made

  7. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins. (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang


    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift (United States)

    Zhong, Shuncong; Zhong, Jianfeng; Zhang, Qiukun; Maia, Nuno


    A novel quasi-optical coherence vibration tomography (Quasi-OCVT) measurement system suitable for structural damage detection is proposed by taking the concept of two-dimensional optical coherence vibration tomography (2D-OCVT) technique. An artificial quasi-interferogram fringe pattern (QIFP) similar to the interferogram of 2D-OCVT system, as a sensor, was pasted on the surface of a vibrating structure. Image sequences of QIFP were captured by a high-speed camera that worked as a detector. The period density of the imaged QIFP changed due to the structural vibration, from which the vibration information of the structure could be obtained. Noise influence on the measurement accuracy, torsional sensitivity and optical distortion effect of the Quasi-OCVT system were investigated. The efficiency and reliability of the proposed method were demonstrated by applying the system to damage detection of a cracked beam-like structure with a roving auxiliary mass. The roving of the mass along the cracked beam brings about the change of natural frequencies that could be obtained by the Quasi-OCVT technique. Therefore, frequency-shift curves can be achieved and these curves provide additional spatial information for structural damage detection. Same cases were also analyzed by the finite element method (FEM) and conventional accelerometer-based measurement method. Comparisons were carried out among these results. Results obtained by the proposed Quasi-OCVT method had a good agreement with the ones obtained by FEM, from which the damage could be directly detected. However, the results obtained by conventional accelerometer showed misleading ambiguous peaks at damage position owing to the mass effect on the structure, where the damage location cannot be identified confidently without further confirmation. The good performance of the cost-effective Quasi-OCVT method makes it attractive for vibration measurement and damage detection of beam-like structures.

  9. Estimating the vibration level of an L-shaped beam using power flow techniques (United States)

    Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.


    The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.

  10. Vibrational spectroscopic investigations and molecular docking studies of biologically active 2-[4-(4-phenylbutanamido)phenyl]-5-ethylsulphonyl-benzoxazole (United States)

    Jalaja, K.; Al-Alshaikh, Monirah A.; Mary, Y. Sheena; Panicker, C. Yohannan; El-Emam, Ali A.; Temiz-Arpaci, Ozlem; Alsenoy, C. Van


    The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of 2-[4-(4-phenylbutanamido)phenyl]-5-ethylsulphonyl-benzoxazole have been investigated experimentally and theoretically using Gaussian09 software. The wavenumbers were assigned by potential energy distribution and the frontier molecular orbital analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The MEP analysis shows that the negative electrostatic potential regions are mainly localized over the oxygen's of the carbonyl and sulfonyl groups and nitrogen atom of the benzoxazole ring and are possible sites for electrophilic attack and the positive regions are localized over the NH group as possible sites for nucleophilic attack. From the molecular docking study, the ligand binds at the active sites of the protein by weak non-covalent interactions most prominent of which are H-bonding, cation-π and sigma-π interactions.

  11. Vibrational spectroscopic studies of N1-ethyl-5‧-bromo-7-azaindirubin-3‧-oxime and N1-ethyl-indirubin-3‧-monooxime (United States)

    Li, Ying-Sing; Yao, Qi-Zheng; Wang, Zhao-Hui; Cheng, Jingcai; Truong, Tuyen Thi T.


    We have prepared N1-ethyl-5‧-bromo-7-azaindirubin-3‧-oxime due to its potential for being a pharmaceutical. Infrared and Raman spectra have been recorded and vibrational assignments have been suggested based mainly on our previous vibrational investigation of N1-isopropyl-5‧-chloro-7-azaindirubin-3‧-oxime and on group characteristic frequencies. Temperature variation study has revealed the presence of conformers due to the internal rotation of ethyl group. IR spectra collected for N1-ethyl-7-azaindirubin-3‧-oxime have shown rather similar spectral features with that of N1-ethyl-5‧-bromo-7-azaindirubin-3‧-oxime. IR spectra of these compounds have revealed the association through hydrogen bonding in the solid state. IR spectra recorded for these samples after annealing at high temperatures indicated the thermal conversion temperature to be lowered than 270 °C. Results from thermal analyses have determined the beginning decomposition temperatures to be 250 °C and the decomposition enthalpies to be 94 kJ/mol for both N1-ethyl-5‧-bromo-7-azaindirubin-3‧-oxime and N1-ethyl-7-azaindirubin-3‧-oxime.

  12. Nonlinear analysis of a two-degree-of-freedom vibration energy harvester using high order spectral analysis techniques (United States)

    Nico, V.; Frizzell, R.; Punch, J.


    Conventional vibration energy harvesters are generally based on linear mass-spring oscillator models. Major limitations with common designs are their narrow bandwidths and the increase of resonant frequency as the device is scaled down. To overcome these problems, a two-degree-of-freedom nonlinear velocity-amplified energy harvester has been developed. The device comprises two masses, oscillating one inside the other, between four sets of nonlinear magnetic springs. Impacts between the masses allow momentum transfer from the heavier mass to the lighter, providing velocity amplification. This paper studies the nonlinear effects introduced by the presence of magnetic springs, using high order spectral analysis techniques on experimental and simulated data obtained for a range of excitation levels and magnetic spring configurations, which enabled the effective spring constant to be varied. Standard power spectrum analysis only provide limited information on the response of nonlinear systems. Instead, bispectral analysis is used here to provide deeper insight of the complex dynamics of the nonlinear velocity-amplified energy harvester. The analysis allows identification of period-doubling and couplings between modes that could be used to choose geometrical parameters to enhance the bandwidth of the device.

  13. High-accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 11 A' l-C3H-: A Possible Link to Lines Observed in the Horsehead Nebula Photodissociation Region (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.


    It has been shown that rotational lines observed in the Horsehead nebula photodissociation region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 1 A' C3H-. The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D eff for C3H- is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H+. As a result, 1 1 A' C3H- is a more viable candidate for these observed rotational transitions. It has been previously proposed that at least C6H- may be present in the Horsehead nebular PDR formed by way of radiative attachment through its dipole-bound excited state. C3H- could form in a similar way through its dipole-bound state, but its valence excited state increases the number of relaxation pathways possible to reach the ground electronic state. In turn, the rate of formation for C3H- could be greater than the rate of its destruction. C3H- would be the seventh confirmed interstellar anion detected within the past decade and the first C n H- molecular anion with an odd n.

  14. The Soleil View on Prototypical Organic Nitriles: Selected Vibrational Modes of Ethyl Cyanide, C_2H_5CN, and Spectroscopic Analysis Using AN Automated Spectral Assignment Procedure (asap) (United States)

    Endres, Christian; Caselli, Paola; Martin-Drumel, Marie-Aline; McCarthy, Michael C.; Pirali, Olivier; Wehres, Nadine; Schlemmer, Stephan; Thorwirth, Sven


    Vibrational spectra of small organic nitriles, propionitrile and n-butyronitrile, have been investigated at high spectral resolution at the French national synchroton facility SOLEIL using Fourier-transform far-infrared spectroscopy (< 700 cm-1). The Automated Spectral Assignment Procedure (ASAP) has been used for line assignement and accurate determination of rotational level energies, in particular, of the ν20=1 and the ν12=1 states of propionitrile. The analysis does not only confirm the applicability of the ASAP in the treatment of (dense) high-resolution infrared spectra but also reveals some of its limitations which will be discussed in some detail. M. A. Martin-Drumel, C. P. Endres, O. Zingsheim, T. Salomon, J. van Wijngaarden, O. Pirali, S. Gruet, F. Lewen, S. Schlemmer, M. C. McCarthy, and S. Thorwirth 2015, J. Mol. Spectrosc. 315, 72

  15. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin. (United States)

    Prabavathi, N; Nilufer, A; Krishnakumar, V


    The FTIR and FT-Raman spectra of Isoxanthopterin have been recorded in the region 4000-450 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of Isoxanthopterin were obtained by the density functional theory (DFT) using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were scaled and compared with experimental values. The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-visible spectrum was also recorded and compared with the theoretical values. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0), related properties (β, α0 and Δα) and the Mulliken charges of the molecule were also computed using DFT calculations. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. Information about the charge density distribution of the molecule and its chemical reactivity has been obtained by mapping molecular electrostatic potential surface. In addition, the non-linear optical properties were discussed from the dipole moment values and excitation wavelength in the UV-visible region. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach. (United States)

    Chandrasekaran, A; Ravisankar, R; Rajalakshmi, A; Eswaran, P; Vijayagopal, P; Venkatraman, B


    Gamma Ray and Fourier Transform Infrared (FTIR) spectroscopic techniques were used to evaluate the natural radioactivity due to natural radionuclides and mineralogical characterization in soils of Yelagiri hills, Tamilnadu, India. Various radiological parameters were calculated to assess the radiation hazards associated with the soil. The distribution pattern of activity due to natural radionuclides is explained by Kriging method of mapping. Using FTIR spectroscopic technique the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, montmorillonite, illite, and organic carbon were identified and characterized. The extinction coefficient values were calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index was calculated to know the crystalline nature of quartz. The result indicates that the presence of disordered crystalline quartz in soils. The relation between minerals and radioactivity was assessed by multivariate statistical analysis (Pearson's correlation and cluster analysis). The statistical analysis confirms that the clay mineral kaolinite and non-clay mineral quartz is the major factor than other major minerals to induce the important radioactivity variables and concentrations of uranium and thorium. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The spectroscopic analysis of the v2 = 1, v5 = 1, and v3 = v6 = 1 infrared vibration system of H3SiI (United States)

    Canè, Elisabetta; Villa, Mattia; Tamassia, Filippo; Fusina, Luciano; Bürger, Hans; Litz, Marion


    The ν2 (A1)/ν5 (E)/ν3 + ν6 (E) band system of H328SiI was investigated using Fourier transform infrared spectra recorded from 820 to 1100 cm- 1 at a resolution of 2.0 × 10- 3 cm- 1. In total, 11,903 transitions were assigned. Additional 1466 transitions reaching the v3 = v6 = 1 state were obtained from the ν3 + ν6 - ν6 and ν3 + ν6 - ν3 hot bands near 360 and 590 cm- 1, respectively. Moreover, 30 highly accurate CO2 laser sideband transitions of the rQ0 branch of ν5 (J.M. Frye, W. Schupita, and G. Magerl, J. Mol. Spectrosc. 128, 427 (1988)) were implemented in the data set with J max ″ = 140 and K max ″ = 21. To adequately reproduce the complex pattern of interacting levels the Hamiltonian employed included 14 off-diagonal terms. These comprise x,y Coriolis ro-vibration resonances, between ν2/ν5, ν2/ν3 + ν6 and ν5/ν3 + ν6, and the anharmonic Fermi resonance between ν5/ν3 + ν6. All these resonances strongly perturb the v2 = 1, v5 = 1, and v3 = v6 = 1 excited states whose rounded deperturbed vibrational term values are 904.5, 941.1, and 953.7 cm- 1, respectively. In addition, the Δl = Δk = ± 2 l-resonance was found to be active within the v3 = v6 = 1 state and between v5 = 1 and v3 = v6 = 1; the Δl = ± 2 , Δk = ∓ 1 l-resonance within the v5 = 1 state and between v5 = 1 and v3 = v6 = 1 was established, as well as the Δl = ± 1 , Δk = ∓ 2 α resonance between v2 = 1 and v5 = 1. A standard deviation of the fit, 0.48 × 10- 3 cm- 1, resulted which is ca. three times the estimated precision of experimental wavenumbers. Improved J-dependent ground state parameters of H3SiI were obtained by fitting 5420 combination differences, σ(fit) = 0.22 × 10- 3 cm- 1.

  18. Computational study of the vibrational spectroscopic studies, natural bond orbital, frontier molecular orbital and second-order non-linear optical properties of acetophenone thiosemicarbazone molecule (United States)

    Li, Xiao-Hong; Mei, Zheng; Zhang, Xian-Zhou


    The vibrational frequencies of acetophenone thiosemicarbazone in the ground state have been calculated using density functional method (B3LYP) with 6-31G(d), 6-31G(d,p) and 6-311++G(d,p) basis sets. The analysis of natural bond orbital was also performed. The IR spectra were obtained and interpreted by means of potential energies distributions (PEDs) using MOLVIB program. In addition, the results show that there exist Nsbnd H…N and Nsbnd H…S hydrogen bonds in the title compound, which play a major role in stabilizing the molecule and are confirmed by the natural bond orbital analysis. The predicted NLO properties show that the title compound is a good candidate as second-order NLO material. In addition, the frontier molecular orbitals were analyzed and the crystal structure obtained by molecular mechanics belongs to the Pbca space group, with lattice parameters Z = 8, a = 16.0735 Å, b = 7.1719 Å, c = 7.8725 Å, ρ = 0.808 g/cm3.

  19. Identification of vegetable oil botanical speciation in refined vegetable oil blends using an innovative combination of chromatographic and spectroscopic techniques. (United States)

    Osorio, Maria Teresa; Haughey, Simon A; Elliott, Christopher T; Koidis, Anastasios


    European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work. Copyright © 2014 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Anatoliy Alexandrovich Bogoyavlenskiy


    Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.

  1. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid (United States)

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi


    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00 ≤ pH ≤ 7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields.

  2. Synthesis by coprecipitation technique and spectroscopic properties of some phosphates. [Yttrium or rare earth and potassium and alkaline earth metal phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Arbus, A.; Duranceau, C.; Zambon, D.; Cousseins, J.C. (Clermont-Ferrand-2 Univ., 63 - Aubiere (FR))


    The coprecipitation process has been used for the synthesis of some KBLn(PO{sub 4}){sub 2} compounds where B is an alkaline earth metal and Ln a lanthanide or yttrium. After the gel stage, an amorphous powder is obtained by drying, the thermal evolution of which is studied by X-ray diffraction. The temperature of calcination for the different powders is included in the 500-700{sup 0}C range, lower than that of the classical solid state synthesis, 800-1000{sup 0}C. The final phosphates crystallize with monoclinic or tetragonal symmetry. The spectroscopic properties of some Eu{sup 3+}-doped compounds prepared by coprecipitation technique are reported.

  3. Probing the binding of insecticide permethrin to calf thymus DNA by spectroscopic techniques merging with chemometrics method. (United States)

    Zhang, Yue; Zhang, Guowen; Li, Yu; Hu, Yuting


    The binding of permethrin (PE) with calf thymus DNA (ctDNA) in physiological buffer (pH 7.4) was investigated by ultraviolet-visible (UV-vis) absorption, fluorescence, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopy merging with multivariate curve resolution-alternating least-squares (MCR-ALS) chemometrics approach. The MCR-ALS was applied to resolve the combined spectroscopic data matrix, which was obtained by UV-vis and fluorescence methods. The concentration profiles of PE, ctDNA, and PE-ctDNA complex and their pure spectra were then successfully obtained. The PE molecular was found to be able to intercalate into the base pairs of ctDNA as evidenced by decreases in resonance light-scattering signal and iodide-quenching effect and increase in ctDNA viscosity. The results of FT-IR spectra indicated that PE was prone to bind to G-C base pairs of ctDNA, and the molecular docking studies were used to validate and clarify the specific binding. The observed changes in CD signals revealed that the DNA turned into a more highly wound form of B-conformation. The calculated thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), suggested that hydrogen bonds and van der Waals forces played a predominant role in the binding of PE to ctDNA.

  4. The Shock and Vibration Bulletin. Part 2. Model Test and Analysis, Testing Techniques, Machinery Dynamics, Isolation and Damping, Structural Dynamics (United States)


    jBfr 5? JOR JS T SIONAL/lBRATIONjerF^EAR-RANCHED PROPULSION.gVSTEMS j... 117 / H.F. Tavares, Cepstrum Engenharia Ltda., Rio de Janeiro, Brazil and V...MODELLING IN FINITE ELEMENT ANALYSES OF TORSIONAL VIBRATION OF GEAR-BRANCHED PROPULSION SYSTEMS H. F. Tavares Cepstrum Engenharia Ltda. S8o Paulo

  5. Synthesis, crystal structure, and vibrational spectroscopic and UV-visible studies of Cs{sub 2}MnP{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Kaoua, Saida; Krimi, Saida [LPCMI, Faculte des Sciences Aien Chok, UH2C, Casablanca (Morocco); Pechev, Stanislav; Gravereau, Pierre; Chaminade, Jean-Pierre [CNRS, Universite de Bordeaux, ICMCB, 87, Avenue du Dr. A. Schweitzer, Pessac (France); Couzi, Michel [CNRS, Universite de Bordeaux, ISM, UMR 5255, F-33400 Talence (France); El Jazouli, Abdelaziz, E-mail: [LCMS, URAC 17, Faculte des Sciences Ben M' Sik, UH2MC, Casablanca (Morocco)


    A new member of the A{sub 2}MP{sub 2}O{sub 7} diphosphate family, Cs{sub 2}MnP{sub 2}O{sub 7}, has been synthesized and structurally characterized. The crystal structure was determined by single crystal X-Ray diffraction. Cs{sub 2}MnP{sub 2}O{sub 7} crystallizes in the orthorhombic system, space group Pnma ( Music-Sharp-Sign 62), with the unit cell parameters a=16.3398(3), b=5.3872(1), c=9.8872(2) A, Z=4 and V=870.33(3) A{sup 3}. The structure parameters were refined to a final R{sub 1}/wR{sub 2}=0.0194/0.0441 for 1650 observed reflections. The 2D framework of Cs{sub 2}MnP{sub 2}O{sub 7} structure consists of P{sub 2}O{sub 7} and MnO{sub 5} units. The corner-shared MnO{sub 5} and P{sub 2}O{sub 7} units are alternately arranged along the b axis to form [(MnO)P{sub 2}O{sub 7}]{sub {infinity}} chains. These chains are interconnected by an oxygen atom to form sheets parallel to the (b, c) plane. The cesium atoms are located between the sheets in 9- and 10-fold coordinated sites. The infrared and Raman vibrational spectra have been investigated. A factor group analysis leads to the determination of internal modes of (P{sub 2}O{sub 7}) groups. UV-visible spectrum consists of weak bands, between 340 and 700 nm, assigned to the forbidden d-d transitions of Mn{sup 2+} ion, and of a strong band around 250 nm, attributed to the O--Mn charge transfer. - Graphical abstract: Structure of Cs{sub 2}MnP{sub 2}O{sub 7}: The 2D structure of Cs{sub 2}MnP{sub 2}O{sub 7} is built from P{sub 2}O{sub 7} diphosphate groups and MnO{sub 5} square pyramids which share corners and form [(MnO)P{sub 2}O{sub 7}]{sub {infinity}} chains along b axis. These chains are interconnected by an oxygen atom to form wavy (MnP{sub 2}O{sub 7}){sup 2-} sheets parallel to the (b, c) plane. The cesium ions are located between these sheets in the inter-layers space, in zigzag positions. Highlights: Black-Right-Pointing-Pointer A new diphosphate, Cs{sub 2}MnP{sub 2}O{sub 7}, has been synthesized and structurally

  6. Spectroscopic Constants and Vibrational Frequencies for l-C3H+ and Isotopologues from Highly-Accurate Quartic Force Fields: The Detection of l-C3H+ in the Horsehead Nebula PDR Questioned (United States)

    Huang, Xinchuan; Fortenberry, Ryan Clifton; Lee, Timothy J.


    Very recently, molecular rotational transitions observed in the photon-dominated region of the Horsehead nebula have been attributed to l-C3H+. In an effort to corroborate this finding, we employed state-of-the art and proven high-accuracy quantum chemical techniques to compute spectroscopic constants for this cation and its isotopologues. Even though the B rotational constant from the fit of the observed spectrum and our computations agree to within 20 MHz, a typical level of accuracy, the D rotational constant differs by more than 40%, while the H rotational constant differs by three orders of magnitude. With the likely errors in the rotational transition energies resulting from this difference in D on the order of 1 MHz for the lowest observed transition (J = 4 yields 3) and growing as J increases, the assignment of the observed rotational lines from the Horsehead nebula to l-C3H+ is questionable.

  7. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Schmidt, Matthias; Musat, Niculina [Helmholtz Centre for Environmental Research–UFZ, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig (Germany); Swanson, Juliet S.; Reed, Donald T. [Los Alamos National Laboratory, Repository Science and Operations, 1400 University Drive, Carlsbad, NM, 88220 (United States); Stumpf, Thorsten [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Cherkouk, Andrea, E-mail: [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany)


    Highlights: • First prolonged kinetics study of uranium to halophilic archaea was performed. • An atypical time-dependent bioassociation behavior of uranium was observed. • Unique combination of spectroscopic and microscopic methods was used. • In situ ATR FT-IR showed association of U(VI) to phosphoryl and carboxylate groups. • Time-dependent changes of U(VI) localization could be monitored by SEM/EDX. - Abstract: The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.

  8. Multidisciplinary approach for the study of an Egyptian coffin (late 22nd/early 25th dynasty): Combining imaging and spectroscopic techniques (United States)

    Bracci, S.; Caruso, O.; Galeotti, M.; Iannaccone, R.; Magrini, D.; Picchi, D.; Pinna, D.; Porcinai, S.


    This paper demonstrates that an educated methodology based on both non-invasive and micro invasive techniques in a two-step approach is a powerful tool to characterize the materials and stratigraphies of an Egyptian coffin, which was restored several times. This coffin, belonging to a certain Mesiset, is now located at the Museo Civico Archeologico of Bologna (inventory number MCABo EG 1963). Scholars attributed it to the late 22nd/early 25th dynasty by stylistic comparison. The first step of the diagnostic approach applied imaging techniques on the whole surface in order to select measurements spots and to unveil both original and restored areas. Images and close microscopic examination of the polychrome surface allowed selecting representative areas to be investigated in situ by portable spectroscopic techniques: X-ray Fluorescence (XRF), Fiber Optic Reflectance Spectroscopy (FORS) and Fourier Transform Infrared spectroscopy (FTIR). After the analysis of the results coming from the first step, very few selected samples were taken to clarify the stratigraphy of the polychrome layers. The first step, based on the combination of imaging and spectroscopic techniques in a totally non-invasive modality, is quite unique in the literature on Egyptian coffins and enabled us to reveal many differences in the ground layer's composition and to identify a remarkable number of pigments in the original and restored areas. This work offered also a chance to check the limitations of the non-invasive approach applied on a complex case, namely the right localization of different materials in the stratigraphy and the identification of binding media. Indeed, to dissolve any remaining doubts on superimposed layers belonging to different interventions, it was necessary to sample few micro-fragments in some selected areas and analyze them prepared as cross-sections. The original ground layer is made of calcite, while the restored areas show the presence of either a mixture of calcite

  9. Material Properties of Various Cast Aluminum Alloys Made Using a Heated Mold Continuous Casting Technique with and without Ultrasonic Vibration

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu


    Full Text Available This work was carried out to develop high-quality cast aluminum alloys using a new casting technology. For this purpose, commercial Al alloys were created by heated mold continuous casting (HMC with ultrasonic vibration (UV. With the HMC process, the grain size and the crystal orientation of the Al alloys were controlled, i.e., fine grains with a uniformly organized lattice formation. In addition, an attempt was made to modify the microstructural formation by cavitation. These microstructural characteristics made excellent mechanical properties. Using UV in the continuous casting process, more fine and spherical grains were slightly disordered, which was detected using electron backscattered diffraction. The mechanical properties of the UV HMC Al alloys were slightly higher than those for the related cast Al alloys without UV. Moreover, the severe vibration caused higher mechanical properties. The lattice and dislocation characteristics of the cast samples made with and without UV processes were analyzed systematically using electron backscattered diffraction.

  10. Electromagnetism based atmospheric ice sensing technique - A conceptual review

    Directory of Open Access Journals (Sweden)

    U Mughal


    Full Text Available Electromagnetic and vibrational properties of ice can be used to measure certain parameters such as ice thickness, type and icing rate. In this paper we present a review of the dielectric based measurement techniques for matter and the dielectric/spectroscopic properties of ice. Atmospheric Ice is a complex material with a variable dielectric constant, but precise calculation of this constant may form the basis for measurement of its other properties such as thickness and strength using some electromagnetic methods. Using time domain or frequency domain spectroscopic techniques, by measuring both the reflection and transmission characteristics of atmospheric ice in a particular frequency range, the desired parameters can be determined.

  11. A spectroscopic technique for evaluating sterol-aponin interactions and implications for management of Ptychodiscus brevis red tides. (United States)

    Barltrop, J; Martin, D F


    A double-beam quadruple-cell spectrophotometric technique is described that can be used to evaluate the interaction between sterols and HPLC fractions from Nannochloris sp. which are cytolytic (aponin) toward the red tide organism. The interaction with ergosterol but not beta-sitosterol is consistent with complex formation and also with the reduction of cytolytic activity of aponin in the presence of ergosterol, as previously noted. Implications for the mechanism of aponin cytolytic activity are considered.

  12. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R


    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  13. An on-road shock and vibration response test series utilizing worst case and statistical analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cap, J.S. [Sandia National Labs., Albuquerque, NM (US). Mechanical and Thermal Environments Dept.


    Defining the maximum expected shock and vibration responses for an on-road truck transportation environment is strongly dependent on the amount of response data that can be obtained. One common test scheme consists of measuring response data over a relatively short prescribed road course and then reviewing that data to obtain the maximum response levels. The more mathematically rigorous alternative is to collect an unbiased ensemble of response data during a long road trip. This paper compares data gathered both ways during a recent on-road certification test for a tractor trailer van being designed by Sandia.

  14. Vibrational circular dichroism spectroscopy of a spin-triplet bis-(biuretato) cobaltate(III) coordination compound with low-lying electronic transitions

    DEFF Research Database (Denmark)

    Johannessen, Christian; Thulstrup, Peter W.


    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt...

  15. Use of radiocarbon and spectroscopic analyses to characterise soil organic matter pools isolated using different fractionation techniques. (United States)

    Miller, Gemma; Cloy, Joanna; Garnett, Mark; Sohi, Saran; Rees, Robert; Griffiths, Bryan


    Experimental division of soil organic matter (SOM) into functional pools has the potential to improve soil C modelling. Soil physical fractionation techniques seek to quantify these pools, however the fractions isolated vary in number, size, ecological role and composition. The use of different techniques to quantify soil C fractions in different studies presents a question - do similar fractions isolated by different methods fit the same conceptual definition? This study examined a sandy loam from the south-west of Scotland, sampled in summer, which had been under grassland management for at least 20 years. We compared average 14C ages of SOM fractions isolated using three published and frequently applied physical fractionation methods (1) a density separation technique isolating three fractions - free light (FLF) 1.8 g cm 3 (Sohi et al, 2001); (2) a combined physical and chemical separation isolating five fractions: sand and aggregates (S+A) > 63 µm and > 1.8 g cm-3, particulate organic matter (POM) > 63 µm and 45 µm, residual organic carbon (rSOC) the residue left after s+c is oxidised with NaOCl, and dissolved organic carbon (DOC) 4000 years BP for DOC and POM. Both Method 3 fractions were dominated by modern C. The average 14C ages of FLF, IALF, DOC and POM were surprisingly higher than the mineral bound fractions, although they made up a relatively small proportion of the total organic C (8.4 and 12.4 % for Methods 1 and 2 respectively). These results will be discussed alongside data from FTIR and UV-vis spectroscopy. The characterisation of physically separated organic matter pools is likely to provide improved opportunities for modelling the long term behaviour of SOM on the basis of defined chemical and physical properties. References Sohi, S.P., Mahieu, N., Arah, J.R.M., Powlson, D.S., Madari, B. and Gaunt J.L. (2001) A procedure for isolating soil organic matter fractions suitable for modelling. Soil Science Society of America Journal 65

  16. Observational and laboratory studies of optical properties of black and brown carbon particles in the atmosphere using spectroscopic techniques (United States)

    Nakayama, Tomoki; Matsumi, Yutaka


    Light absorption and scattering by aerosols are as an important contributor to radiation balance in the atmosphere. Black carbon (BC) is considered to be the most potent light absorbing material in the visible region of the spectrum, although light absorbing organic carbon (brown carbon or BrC) and mineral dust may also act as sources of significant absorption, especially in the ultraviolet (UV) and shorter visible wavelength regions. The optical properties of such particles depend on wavelength, particle size and shape, morphology, coating, and complex refractive index (or chemical composition), and therefore accurate in situ measurements of the wavelength dependence of the optical properties of particles are needed. Recently, cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS) have been used for the direct measurements of extinction and absorption coefficients of particles suspended in air. We have applied these techniques to the observational studies of optical properties of BC and BrC in an urban site in Japan and to the laboratory studies of optical properties of secondary organic aerosols (SOAs) generated from a variety of biogenic and anthropogenic volatile organic compounds and those of diesel exhaust particles (DEPs). In the presentation, the basic principles of these techniques and the results obtained in our studies and in the recent literatures will be overviewed. References Guo, X. et al., Measurement of the light absorbing properties of diesel exhaust particles using a three-wavelength photoacoustic spectrometer, Atmos. Environ., 94, 428-437 (2014). Nakayama, T. et al., Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques, Atmos. Environ., 44, 3034-3042 (2010). Nakayama, T. et al., Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of alpha

  17. A new approach for the modelling of chestnut wood photo-degradation monitored by different spectroscopic techniques. (United States)

    Bonifazi, G; Calienno, L; Capobianco, G; Monaco, A Lo; Pelosi, C; Picchio, R; Serranti, S


    The aim of this work is to study the colour and chemical modifications of the surfaces in chestnut wood samples as a consequence of irradiating in a controlled environment. The changes were investigated by a new analytical approach by combining traditional techniques such as reflectance spectrophotometry in the visible range and Fourier transform infrared spectroscopy with new hyperspectral imaging, in order to obtain forecast models to describe the phenomenon. The statistical elaboration of the experimental data allowed to validate the measurements and to obtain models enabling to relate the investigated parameters; the elaboration of the hyperspectral images by chemometric methods allowed for studying the changes in the reflectance spectra. A result of great importance is the possibility to correlate the oxidation of wood chemical components with the colour change in a totally non-invasive modality. This result is particularly relevant in the field of cultural heritage and in general in the control processes of wooden materials.

  18. Development of the vibration analysis technique of fuel rod and research on the methodology of fuel fretting wear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heung Seok; Kim, Kyung Kyu; Yoon, Hyung Hoo; Song, Ki Nam


    The FEM program has been developed to predict the natural frequencies, the FEM program has been developed to predict the natural frequencies, and mode shapes of fuel rod subjected to axial force and continuously supported by a rotational and vent spring system, and to calculate the minimum reaction forces of the spacer grid spring when the maximum vibration amplitude of fuel rod is known. This program has been verified by commercial ANSYS program and the vibration test of dummy rods in air. The test equipment were set to get the fifth modes of test rods. Partial slip problem has been studied for the analysis of fuel fretting problem. Firstly, the assumption of semi-infiniteness of the contact bodies were validated by finite element (FE) analysis. From FE results, a classical bodies were validated by finite element (FE) analysis. From FE results, aclassical theory of elasticity was utilized with regarding the problem as a plane problem. Secondly, the Mindlin-Cattaneo problem was re-evaluated, which gave the fundamental idea for developing the numerical tool for the shear traction on the contact. Shear force of sequentially-changing directions was considered and the corresponding shear traction was evaluated by extending the numerical tool for the Mindlin-Cattaneo problem.

  19. vibrational spectroscopic investigation of some hofmann

    African Journals Online (AJOL)

    Preferred Customer

    4-phenylpyridine, G = 1,4-dioxane and M = Ni, Co and Cd) have been prepared in powder form and their FT-IR and Raman spectra have ... is also known as coordination polymer which is the term given in inorganic chemistry to a metal coordination ... linear optics devices and as magnetic materials [1]. The Hofmann type ...

  20. vibrational spectroscopic investigation of some hofmann

    African Journals Online (AJOL)

    Preferred Customer

    Hofmann type compounds are the members of the metal organic frameworks or coordination polymers. One-, two- and three-dimensional CN-bridged metal complex structures made up of building blocks such as linear [Ag(CN)2]-, square planar [Ni(CN)4]2- or tetrahedral [Cd(CN)4]2-, and of the complementary ligands such ...

  1. Molecular structure, vibrational spectroscopic studies and natural ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 74; Issue 5. Molecular structure ... The entropy of the title compound was also performed at HF using the hybrid functional BLYP and B3LYP with 6-31 G(d,p) as basis set levels of theory. Natural bond orbital (NBO) analysis of the title molecule is also carried out.

  2. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems. (United States)

    Błasiak, Bartosz; Londergan, Casey H; Webb, Lauren J; Cho, Minhaeng


    The vibrational frequency of a chosen normal mode is one of the most accurately measurable spectroscopic properties of molecules in condensed phases. Accordingly, infrared absorption and Raman scattering spectroscopy have provided valuable information on both distributions and ensemble-average values of molecular vibrational frequencies, and these frequencies are now routinely used to investigate structure, conformation, and even absolute configuration of chemical and biological molecules of interest. Recent advancements in coherent time-domain nonlinear vibrational spectroscopy have allowed the study of heterogeneous distributions of local structures and thermally driven ultrafast fluctuations of vibrational frequencies. To fully utilize IR probe functional groups for quantitative bioassays, a variety of biological and chemical techniques have been developed to site-specifically introduce vibrational probe groups into proteins and nucleic acids. These IR-probe-labeled biomolecules and chemically reactive systems are subject to linear and nonlinear vibrational spectroscopic investigations and provide information on the local electric field, conformational changes, site-site protein contacts, and/or function-defining features of biomolecules. A rapidly expanding library of data from such experiments requires an interpretive method with atom-level chemical accuracy. However, despite prolonged efforts to develop an all-encompassing theory for describing vibrational solvatochromism and electrochromism as well as dynamic fluctuations of instantaneous vibrational frequencies, purely empirical and highly approximate theoretical models have often been used to interpret experimental results. They are, in many cases, based on the simple assumption that the vibrational frequency of an IR reporter is solely dictated by electric potential or field distribution around the vibrational chromophore. Such simplified description of vibrational solvatochromism generally referred to as

  3. Investigation into the interaction of losartan with human serum albumin and glycated human serum albumin by spectroscopic and molecular dynamics simulation techniques: A comparison study. (United States)

    Moeinpour, Farid; Mohseni-Shahri, Fatemeh S; Malaekeh-Nikouei, Bizhan; Nassirli, Hooriyeh


    The interaction between losartan and human serum albumin (HSA), as well as its glycated form (gHSA) was studied by multiple spectroscopic techniques and molecular dynamics simulation under physiological conditions. The binding information, including the binding constants, effective quenching constant and number of binding sites showed that the binding partiality of losartan to HSA was higher than to gHSA. The findings of three-dimensional fluorescence spectra demonstrated that the binding of losartan to HSA and gHSA would alter the protein conformation. The distances between Trp residue and the binding sites of the drug were evaluated on the basis of the Förster theory, and it was indicated that non-radiative energy transfer from HSA and gHSA to the losartan happened with a high possibility. According to molecular dynamics simulation, the protein secondary and tertiary structure changes were compared in HSA and gHSA for clarifying the obtained results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Structure and spectroscopic analysis of the graphene monolayer film directly grown on the quartz substrate via the HF-CVD technique (United States)

    Mahmoud, Waleed E.; Al-Hazmi, Farag S.; Al-Ghamdi, A. A.; Shokr, F. S.; Beall, Gary W.; Bronstein, Lyudmila M.


    Direct growth of a monolayer graphene film on a quartz substrate by a hot filament chemical vapor deposition technique is reported. The monolayer graphene film prepared was characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), selected area electron diffraction (SAED), and atomic force microscopy (AFM). The optical properties were studied by spectroscopic elliposmetry. The experimental data were fitted by the Forouhi-Bloomer model to estimate the extinction coefficient and the refractive index of the monolayer graphene film. The refractive index spectrum in the visible region was studied based on the harmonic oscillator model. The lattice dielectric constant, real and imaginary dielectric constants and the ratio of the charge carrier number to the effective mass were determined. The surface and volume energy loss parameters were also found and showed that the value of the surface energy loss is greater than the volume energy loss. The determination of these optical constants will open new avenue for novel applications of graphene films in the field of wave plates, light modulators, ultrahigh-frequency signal processing and LCDs.

  5. Studies on the interaction between promethazine and human serum albumin in the presence of flavonoids by spectroscopic and molecular modeling techniques. (United States)

    He, Ling-Ling; Wang, Zhi-Xin; Wang, Yong-Xia; Liu, Xian-Ping; Yang, Yan-Jie; Gao, Yan-Ping; Wang, Xin; Liu, Bin; Wang, Xin


    Fluorescence, absorption, time-correlated single photon counting (TCSPC), and circular dichroism (CD) spectroscopic techniques as well as molecular modeling methods were used to study the binding characterization of promethazine (PMT) to human serum albumin (HSA) and the influence of flavonoids, rutin and baicalin, on their affinity. The results indicated that the fluorescence quenching mechanism of HSA by PMT is a static quenching due to the formation of complex. The reaction was spontaneous and mainly mediated by hydrogen bonds and hydrophobic interactions. The binding distance between the tryptophan residue of HSA and PMT is less than 8nm, which indicated that the energy transfer from the tryptophan residue of HSA to PMT occurred. The binding site of PMT on HSA was located in sites I and the presence of PMT can cause the conformational changes of HSA. There was the competitive binding to HSA between PMT and flavonoids because of the overlap of binding sites in HSA. The flavonoids could decrease the association constant and increase the binding distance. In addition, their synergistic effect can further change the conformation of HSA. The decrease in the affinities of PMT binding to HSA in the presence of flavonoids may lead to the increase of free drug in blood, which would affect the transportation or disposition of drug and evoke an adverse or toxic effect. Hence, rationalising dosage and diet regimens should be taken into account in clinical application of PMT. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. In-depth investigation on physicochemical and thermal properties of magnesium (II gluconate using spectroscopic and thermoanalytical techniques

    Directory of Open Access Journals (Sweden)

    Mahendra Kumar Trivedi


    Full Text Available Magnesium gluconate is a classical organometallic pharmaceutical compound used for the prevention and treatment of hypomagnesemia as a source of magnesium ion. The present research described the in-depth study on solid state properties viz. physicochemical and thermal properties of magnesium gluconate using sophisticated analytical techniques like PXRD, PSA, FT-IR, UV–Vis spectroscopy, TGA/DTG, and DSC. Magnesium gluconate was found to be crystalline in nature along with the crystallite size ranging from 14.10 to 47.35 nm. The particle size distribution was at d(0.1=6.552 µm, d(0.5=38.299 µm, d(0.9=173.712 µm and D(4,3=67.122 µm along with the specific surface area of 0.372 m2/g. The wavelength for the maximum absorbance was at 198.0 nm. Magnesium gluconate exhibited 88.51% weight loss with three stages of thermal degradation process up to 895.18 °C from room temperature. The TGA/DTG thermograms of the analyte indicated that magnesium gluconate was thermally stable up to around 165 °C. Consequently, the melting temperature of magnesium gluconate was found to be 169.90 °C along with the enthalpy of fusion of 308.7 J/g. Thus, the authors conclude that the achieved results from this study are very useful in pharmaceutical and nutraceutical industries for the identification, characterization and qualitative analysis of magnesium gluconate for preformulation studies and also for developing magnesium gluconate based novel formulation.

  7. Testing techniques and comparisons between theory and test for vibration modes of ring stiffened truncated-cone shells. (United States)

    Naumann, E. C.


    Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.

  8. A new information diffusion modelling technique based on vibrating string equation and its application in natural disaster risk assessment (United States)

    Bai, Cheng-Zu; Zhang, Ren; Hong, Mei; Qian, Long-xia; Wang, Zhengxin


    In this paper, to naturally fill the gap in incomplete data, a new algorithm is proposed for estimating the risk of natural disasters based on the information diffusion theory and the equation of the vibrating string. Two experiments are performed with small samples to investigate its effectiveness. Furthermore, to demonstrate the practicality of the new algorithm, it is applied to study the relationship between epicentral intensity and earthquake magnitude, with strong-motion earthquake observations measured in Yunnan Province in China. The regression model, the back-propagation neural network and the conventional information diffusion model are also involved for comparison. All results show that the new algorithm, which can unravel fuzzy information in incomplete data, is better than the main existing methods for risk estimation.

  9. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    Directory of Open Access Journals (Sweden)

    Souhir Boujday


    Full Text Available In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR, (phase-modulated InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS, and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS. Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.

  10. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick


    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  11. Indoor positioning algorithm combined with angular vibration compensation and the trust region technique based on received signal strength-visible light communication (United States)

    Wang, Jin; Li, Haoxu; Zhang, Xiaofeng; Wu, Rangzhong


    Indoor positioning using visible light communication has become a topic of intensive research in recent years. Because the normal of the receiver always deviates from that of the transmitter in application, the positioning systems which require that the normal of the receiver be aligned with that of the transmitter have large positioning errors. Some algorithms take the angular vibrations into account; nevertheless, these positioning algorithms cannot meet the requirement of high accuracy or low complexity. A visible light positioning algorithm combined with angular vibration compensation is proposed. The angle information from the accelerometer or other angle acquisition devices is used to calculate the angle of incidence even when the receiver is not horizontal. Meanwhile, a received signal strength technique with high accuracy is employed to determine the location. Moreover, an eight-light-emitting-diode (LED) system model is provided to improve the accuracy. The simulation results show that the proposed system can achieve a low positioning error with low complexity, and the eight-LED system exhibits improved performance. Furthermore, trust region-based positioning is proposed to determine three-dimensional locations and achieves high accuracy in both the horizontal and the vertical components.

  12. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)


    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  13. Extension of an Itô-based general approximation technique for random vibration of a BBW general hysteris model part II: Non-Gaussian analysis (United States)

    Davoodi, H.; Noori, M.


    The work presented in this paper constitutes the second phase of on-going research aimed at developing mathematical models for representing general hysteretic behavior of structures and approximation techniques for the computation and analysis of the response of hysteretic systems to random excitations. In this second part, the technique previously developed by the authors for the Gaussian response analysis of non-linear systems with general hysteretic behavior is extended for the non-Gaussian analysis of these systems. This approximation technique is based on the approach proposed independently by Ibrahim and Wu-Lin. In this work up to fourth order moments of the response co-ordinates are obtained for the Bouc-Baber-Wen smooth hysteresis model. These higher order statistics previously have not been made available for general hysteresis models by using existing approximation methods. Second order moments obtained for the model by this non-Gaussian closure scheme are compared with equivalent linearization and Gaussian closure results via Monte Carlo simulation (MCS). Higher order moments are compared with the simulation results. The study performed for a wide range of degradation parameters and input power spectral density ( PSD) levels shows that the non-Gaussian responses obtained by this approach are in better agreement with the MCS results than the linearized and Gaussian ones. This approximation technique can provide information on higher order moments for general hysteretic systems. This information is valuable in random vibration and the reliability analysis of hysteretically yielding structures.

  14. Vibrational monitor of early demineralization in tooth enamel after in vitro exposure to phosphoridic liquid (United States)

    Pezzotti, Giuseppe; Adachi, Tetsuya; Gasparutti, Isabella; Vincini, Giulio; Zhu, Wenliang; Boffelli, Marco; Rondinella, Alfredo; Marin, Elia; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato


    The Raman spectroscopic method has been applied to quantitatively assess the in vitro degree of demineralization in healthy human teeth. Based on previous evaluations of Raman selection rules (empowered by an orientation distribution function (ODF) statistical algorithm) and on a newly proposed analysis of phonon density of states (PDOS) for selected vibrational modes of the hexagonal structure of hydroxyapatite, a molecular-scale evaluation of the demineralization process upon in vitro exposure to a highly acidic beverage (i.e., CocaCola™ Classic, pH = 2.5) could be obtained. The Raman method proved quite sensitive and spectroscopic features could be directly related to an increase in off-stoichiometry of the enamel surface structure since the very early stage of the demineralization process (i.e., when yet invisible to other conventional analytical techniques). The proposed Raman spectroscopic algorithm might possess some generality for caries risk assessment, allowing a prompt non-contact diagnostic practice in dentistry.

  15. Perspective on quantifying electron localization/delocalization, non-linear optical response and vibrational analysis of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline (United States)

    Arun Sasi, B. S.; Jebin, R. P.; Suthan, T.; James, C.


    An organic nonlinear optical material 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline (DMBDNA) has been grown by slow evaporation technique. Vibrational spectral analysis has been carried out using FT Raman, FT-IR and UV-Vis spectroscopic techniques. The influence of intramolecular charge transfer within the molecule has been studied on the basis of NBO analysis. Vibrational frequencies have been calculated and scaled, which has been compared with the experimental FT-IR and FT Raman spectra. The effect of electronic localization and delocalization within the molecule is conceded on the basis of electron density partitioning paradigm.

  16. Smearing technique for vibration analysis of simply supported cross-stiffened and doubly curved thin rectangular shells

    DEFF Research Database (Denmark)

    Luan, Yu; Ohlrich, Mogens; Jacobsen, Finn


    Plates stiffened with ribs can be modeled as equivalent homogeneous isotropic or orthotropic plates. Modeling such an equivalent smeared plate numerically, say, with the finite element method requires far less computer resources than modeling the complete stiffened plate. This may be important when...... a number of stiffened plates are combined in a complicated assembly composed of many plate panels. However, whereas the equivalent smeared plate technique is well established and recently improved for flat panels, there is no similar established technique for doubly curved stiffened shells. In this paper...... the improved smeared plate technique is combined with the equation of motion for a doubly curved thin rectangular shell, and a solution is offered for using the smearing technique for stiffened shell structures. The developed prediction technique is validated by comparing natural frequencies and mode shapes...

  17. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan


    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  18. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas (Conference Presentation) (United States)

    Dutra, Eric C.; Covington, Aaron M.; Darling, Timothy; Mancini, Roberto C.; Haque, Showera; Angermeier, William A.


    Visible spectroscopic techniques are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. Experiments conducted at the University of Nevada (Reno) at the Nevada Terawatt Facility (NTF) using the 1 MA Z-pinch (Zebra). The research explored the response of Al III doublet, 4p 2P3/2 to 4s 2S1/2 and 4p 2P1/2 to 4s 2S1/2 transitions. Optical light emitted from the pinch is fiber coupled to high-resolution spectrometers. The dual spectrometers are coupled to two high-speed visible streak cameras to capture time-resolved emission spectra from the experiment. The data reflects emission spectra from 100 ns before the current peak to 100 ns after the current peak, where the current peak is approximately the time at which the pinch occurs. The Al III doublet is used to measure Zeeman, Stark, and Doppler broadened emission. The line emission is then used to calculate the temperature, electron density, and B-fields. The measured quantities are used as initial parameters for the line shape code to simulate emission spectra and compare to experimental results. Future tests are planned to evaluate technique and modeling on other material wire array, gas puff, and DPF platforms. This work was done by National

  19. The two-dimensional vibrating reed technique. A study of anisotropic pinning in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karelina, Anna


    In this work the anisotropy of the pinning forces of vortices in a-b plane of high temperature-supraconductors was examined. For this purpose vibrating reed with two degrees of freedom of the oscillation was constructed. The pinning forces were examined in single crystals of YBa{sub 2}Cu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. The experiments with YBa{sub 2}Cu{sub 3}O{sub 7} show that at temperatures lower than 78 K the vortices are in a nonequilibrium state. This leads to a flux creep and to a drift of the resonance frequency with time. This prevents the comparison of resonance curves in different directions of oscillations. In Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals the vortices are in more stable state, but the measurements of the resonance curves in different directions show no indication of the four-fold symmetry. At temperatures below 60 K a strong hysteresis of the resonance frequency and the resonance-oscillation amplitude was found in YBa{sub 2}Cu{sub 3}O{sub 7} crystals as a function of the magnetic field. (orig.)

  20. Use of Spectroscopic, Zeta Potential and Molecular Dynamic Techniques to Study the Interaction between Human Holo-Transferrin and Two Antagonist Drugs: Comparison of Binary and Ternary Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Saberi


    Full Text Available For the first time, the binding of ropinirole hydrochloride (ROP and aspirin (ASA to human holo-transferrin (hTf has been investigated by spectroscopic approaches (fluorescence quenching, synchronous fluorescence, time-resolved fluorescence, three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light scattering, as well as zeta potential and molecular modeling techniques, under simulated physiological conditions. Fluorescence analysis was used to estimate the effect of the ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and quenching properties of binary and ternary complexes. The synchronized fluorescence and three-dimensional fluorescence spectra demonstrated some micro-environmental and conformational changes around the Trp and Tyr residues with a faint red shift. Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds interactions are the major acting forces in stabilizing the complexes. Steady-state and time-resolved fluorescence data revealed that the fluorescence quenching of complexes are static mechanism. The effect of the drugs aggregating on the hTf resulted in an enhancement of the resonance light scattering (RLS intensity. The average binding distance between were computed according to the forster non-radiation energy transfer theory. The circular dichroism (CD spectral examinations indicated that the binding of the drugs induced a conformational change of hTf. Measurements of the zeta potential indicated that the combination of electrostatic and hydrophobic interactions between ROP, ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the experimental results. This study is expected to provide important insight into the interaction of hTf with ROP and ASA to use in various toxicological and therapeutic processes.

  1. 2012 Gordon Research Conference on Vibrational Spectroscopy - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Franz [Northwestern Univ., Evanston, IL (United States)


    The Vibrational Spectroscopy conference brings together experimentalists and theoreticians working at the frontiers of modern vibrational spectroscopy, with a special emphasis on spectroscopies that probe the structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear, and multidimensional spectroscopies. The conference highlights both the application of these techniques in chemistry, materials, biology, the environment, and medicine as well as the development of theoretical models that enable one to connect spectroscopic signatures to underlying molecular motions including chemical reaction dynamics. The conference goal is to advance the field of vibrational spectroscopy by bringing together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules, nanomaterials, and environmental systems.

  2. Spectroscopic detection of chemotherapeutics and antioxidants (United States)

    Latka, Ines; Grüner, Roman; Matthäus, Christian; Dietzek, Benjamin; Werncke, W.; Lademann, Jürgen; Popp, Jürgen


    The hand-foot-syndrome presents a severe dermal side-effect of chemotherapeutic cancer treatment. The cause of this side-effect is the elimination of systemically administered chemotherapeutics with the sweat. Transported to the skin surface, the drugs subsequently penetrate into the skin in the manner of topically applied substances. Upon accumulation of the chemotherapeutics in the skin the drugs destroy cells and tissue - in the same way as they are supposed to act in cancer cells. Aiming at the development of strategies to illuminate the molecular mechanism underlying the handfoot- syndrome (and, in a second step, strategies to prevent this severe side-effect), it might be important to evaluate the concentration and distribution of chemotherapeutics and antioxidants in the human skin. The latter can be estimated by the carotenoid concentration, as carotenoids serve as marker substances for the dermal antioxidative status.Following the objectives outlined above, this contribution presents a spectroscopic study aiming at the detection and quantification of carotenoids and selected chemotherapeutics in human skin. To this end, spontaneous Raman scattering and coherent anti-Stokes Raman scattering (CARS) microspectroscopy are combined with two-photon excited fluorescence. While the latter technique is Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at Return to your MySPIE To Do List at and approve or disapprove this submission. Your manuscript will not be published without this approval.restricted to the detection of fluorescent chemotherapeutics, e.g., doxorubicin, the vibrational spectroscopic techniques can - in principle - be applied to any type of analyte molecules. Furthermore, we will present the

  3. Spectroscopic imaging: basic principles. (United States)

    Skoch, Antonin; Jiru, Filip; Bunke, Jürgen


    Spectroscopic imaging (SI) is a method that enables the measurement of the spatial distribution of metabolite concentrations in tissue. In this paper, an overview of measurement and processing techniques for SI is given. First, the basic structure of SI pulse sequences is introduced and the concepts of k-space, point spread function and spatial resolution are described. Then, special techniques are presented for the purpose of eliminating spurious signals and reducing measurement time. Finally, basic post-processing of SI data and the methods for viewing the results of SI measurement are summarized.

  4. Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique (United States)

    Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban


    Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is

  5. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. (United States)

    Niazi, Nabeel Khan; Bibi, Irshad; Shahid, Muhammad; Ok, Yong Sik; Shaheen, Sabry M; Rinklebe, Jörg; Wang, Hailong; Murtaza, Behzad; Islam, Ejazul; Farrakh Nawaz, M; Lüttge, Andreas


    In this study, we examined the sorption of arsenite (As(III)) and arsenate (As(V)) to Japanese oak wood-derived biochar (OW-BC) in aqueous solutions, and determined its efficiency to remove As from As-contaminated well water. Results revealed that, among the four sorption isotherm models, Langmuir model showed the best fit to describe As(III) and As(V) sorption on OW-BC, with slightly greater sorption affinity for As(V) compared to As(III) (QL=3.89 and 3.16mgg-1; R2=0.91 and 0.85, respectively). Sorption edge experiments indicated that the maximum As removal was 81% and 84% for As(III)- and As(V)-OW-BC systems at pH7 and 6, respectively, which decreased above these pH values (76-69% and 80-58%). Surface functional groups, notably OH, COOH, CO, CH3, were involved in As sequestration by OW-BC, suggesting the surface complexation/precipitation and/or electrostatic interaction of As on OW-BC surface. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that 36% of the added As(III) was partially oxidized to As(V) in the As(III) sorption experiment, and in As(V) sorption experiment, 48% of As(V) was, albeit incompletely, reduced to As(III) on OW-BC surface. Application of OW-BC to As-contaminated well water (As: 27-144μgL-1; n=10) displayed that 92 to 100% of As was depleted despite in the presence of co-occurring competing anions (e.g., SO42-, CO32-, PO43-). This study shows that OW-BC has a great potential to remove As from solution and drinking (well) water. Overall, the combination of macroscopic sorption data and integrated spectroscopic and microscopic techniques highlight that the fate of As on biochar involves complex redox transformation and association with surface functional moieties in aquatic systems, thereby providing crucial information required for implication of biochar in environmental remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques (United States)

    Singh, Shashi B.; Wang, Yu-Fu; Shao, Yu-Cheng; Lai, Hsuan-Yu; Hsieh, Shang-Hsien; Limaye, Mukta V.; Chuang, Chen-Hao; Hsueh, Hung-Chung; Wang, Hsaiotsu; Chiou, Jau-Wern; Tsai, Hung-Ming; Pao, Chih-Wen; Chen, Chia-Hao; Lin, Hong-Ji; Lee, Jyh-Fu; Wu, Chun-Te; Wu, Jih-Jen; Pong, Way-Faung; Ohigashi, Takuji; Kosugi, Nobuhiro; Wang, Jian; Zhou, Jigang; Regier, Tom; Sham, Tsun-Kong


    Efforts have been made to elucidate the origin of d0 magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO.Efforts have been made to elucidate the origin of d0 magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites

  7. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin


    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  8. Advances of Vibrational Circular Dichroism (VCD) in bioanalytical chemistry. A review. (United States)

    Kurouski, Dmitry


    Vibrational Circular Dichroism (VCD) is a unique and relatively new spectroscopic technique that is capable of determining an absolute configuration of chiral molecules. VCD can be also used to determine structure of large macromolecules. This review highlights the most recent advances of VCD in bioanalytical chemistry. It shows that VCD is capable of unraveling supramolecular organization of peptides, proteins, saccharides, glycerophospholipids, polypeptide microcrystals, as well as amyloid fibrils and DNA. This review also demonstrates how VCD can be utilized to explore molecule-molecule interactions that determine mechanisms of chiral separations in chromatography. It aims to attract attention of scientists from all different research areas demonstrating the strength and capability of this very powerful spectroscopic technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An impulsive receptance technique for the time domain computation of the vibration of a whole aero-engine model with nonlinear bearings (United States)

    Hai, Pham Minh; Bonello, Philip


    The direct study of the vibration of real engine structures with nonlinear bearings, particularly aero-engines, has been severely limited by the fact that current nonlinear computational techniques are not well-suited for complex large-order systems. This paper introduces a novel implicit "impulsive receptance method" (IRM) for the time domain analysis of such structures. The IRM's computational efficiency is largely immune to the number of modes used and dependent only on the number of nonlinear elements. This means that, apart from retaining numerical accuracy, a much more physically accurate solution is achievable within a short timeframe. Simulation tests on a realistically sized representative twin-spool aero-engine showed that the new method was around 40 times faster than a conventional implicit integration scheme. Preliminary results for a given rotor unbalance distribution revealed the varying degree of journal lift, orbit size and shape at the example engine's squeeze-film damper bearings, and the effect of end-sealing at these bearings.

  10. VSI@ESS: Case study for a vibrational spectroscopy instrument at the european spallation source

    Directory of Open Access Journals (Sweden)

    Zoppi Marco


    Full Text Available Neutron Vibrational Spectroscopy is a well-established experimental technique where elementary excitations at relatively high frequency are detected via inelastic neutron scattering. This technique attracts a high interest in a large fraction of the scientific community in the fields of chemistry, materials science, physics, and biology, since one of its main applications exploits the large incoherent scattering cross section of the proton with respect to all the other elements, whose dynamics can be spectroscopically detected, even if dissolved in very low concentration in materials composed of much heavier atoms. We have proposed a feasibility study for a Vibrational Spectroscopy Instrument (VSI at the European Spallation Source ESS. Here, we will summarize the preliminary design calculations and the corresponding McStas simulation results for a possible ToF, Inverted Geometry, VSI beamline.

  11. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering


    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  12. Vibrational Diver (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef


    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  13. Spectroscopic Studies of Molecular Systems relevant in Astrobiology (United States)

    Fornaro, Teresa


    . The reliability of such theoretical results has been validated with respect to experiments, by performing infrared measurements of uracil in the solid state through the Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) technique. The good performance in predicting the experimental shifts of the vibrational frequencies of uracil due to the intermolecular hydrogen bonds in the solid state with respect to uracil isolated in Argon matrix, has allowed also to provide some new assignments of the experimental spectrum of uracil in the solid state. Finally, the study of molecule-mineral interactions has been addressed, investigating experimentally the thermodynamics of the adsorption process of nucleic acid components on brucite, a serpentinite-hosted hydrothermal mineral, through determination of the equilibrium adsorption isotherms. Additionally, surface complexation studies have been carried out to get the stoichiometry of surface reactions and the associated electrical work. Such surface complexation modeling has provided reasonable inferences for the possible surface complexes, determining the number of inner/outer-sphere linkages for the adsorbates and the number of surface sites involved in the reaction stoichiometry. However, to distinguish the specific functional groups which constitute the points of attachment to the surface, further quantum mechanical simulations on the energetics of these complexes and spectroscopic characterizations are in progress.

  14. Real-time detection of doorway states in the intramolecular vibrational energy redistribution of the OH/OD stretch vibration of phenol


    Yamada, Yuji; Mikami, Naohiko; Ebata, Takayuki


    A picosecond time-resolved IR-UV pump-probe spectroscopic study was carried out for the intramolecular vibrational energy redistribution of the OH/OD stretching vibration of isolated phenol and its isotopomers in supersonic beams. The time evolution due to IVR showed a significant isotope effect; the OH stretch vibration showed a single exponential decay and its lifetime is greatly lengthened upon the deuterium substitution of the CH group. The OD stretch vibration exhibited prominent quantum...

  15. Synthesis, characterization, in silico ADMET prediction, and protein binding analysis of a novel zinc(II) Schiff-base complex: Application of multi-spectroscopic and computational techniques. (United States)

    Shahraki, Somaye; Shiri, Fereshteh; Saeidifar, Maryam


    By reaction of 1,2-diaminocyclohexane with the 2,3-butanedione monoxime in the presence of ZnCl2, a new Schiff base complex was obtained. This complex was characterized by elemental analyses, FT-IR, (1)H NMR, UV-Vis, and conductivity measurements. The reactivity of this complex to human serum albumin (HSA) under simulative physiological conditions was studied by spectroscopic and molecular docking analysis. Experimental results at various temperatures indicated that the intrinsic fluorescence of protein was quenched through a static quenching mechanism. The negative value of enthalpy change and positive value of entropy change indicated that both hydrogen bonding and hydrophobic forces played a major role in the binding of Zn(II) complex to HSA. FT-IR, three-dimensional fluorescence, and UV-Vis absorption results showed that the secondary structure of HSA changed after Zn(II) complex bound to protein. The binding distance was calculated to be 4.96 nm, according to fluorescence resonance energy transfer. Molecular docking results confirmed the spectroscopic results and showed that above complex is embedded into subdomain IIA of protein. All these experimental and computational results clarified that Zn(II) complex could bind with HSA effectively, which could be a useful guideline for efficient Schiff-base drug design.

  16. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin


    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  17. Infrared Spectroscopic Imaging of Latent Fingerprints and Associated Forensic Evidence


    Chen, Tsoching; Schultz, Zachary D.; Levin, Ira W.


    Fingerprints reflecting a specific chemical history, such as exposure to explosives, are clearly distinguished from overlapping, and interfering latent fingerprints using infrared spectroscopic imaging techniques and multivariate analysis.

  18. Determination of platinum-group metals and lead in vegetable environmental bio-monitors by voltammetric and spectroscopic techniques: critical comparison. (United States)

    Locatelli, Clinio; Melucci, Dora; Torsi, Giancarlo


    This paper reports voltammetric sequential determination of Pt(II), Pd(II), and Rh(III), by square-wave adsorption stripping voltammetry (SWAdSV), and Pb(II), by square-wave anodic stripping voltammetry (SWASV), in vegetable environmental matrices. Analytical procedures were verified by the analysis of the standard reference materials: Olive Leaves BCR-CRM 062 and Tomato Leaves NIST-SRM 1573a. Precision and accuracy, expressed as relative standard deviation and relative error, respectively, were always less than 6% and the limits of detection (LOD) for each element were below 0.096 mug g(-1). Once set up on the standard reference materials, the analytical procedure was transferred and applied to laurel leaves sampled in proximity to a superhighway and in the Po river mouth area. A critical comparison with spectroscopic measurements is discussed.

  19. Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...

    Indian Academy of Sciences (India)

    operator which conveniently describes stretching vibrations of biomolecules. For a copper tetramesityl porphyrin molecule, the higher excited vibrational levels are calculated by applying the U(2) algebraic approach. Keywords. Lie algebraic techniques; vibrational spectra; copper tetramesityl porphyrin. PACS Nos 31.65.

  20. Vibrational spectroscopic characterization of the phosphate mineral phosphophyllite - Zn2Fe(PO4)2·4H2O, from Hagendorf Süd, Germany and in comparison with other zinc phosphates (United States)

    Scholz, Ricardo; Frost, Ray L.; Xi, Yunfei; Graça, Leonardo M.; Lagoeiro, Leonardo; López, Andrés


    This research was undertaken on phosphophyllite sample from the Hagendorf Süd pegmatite, Bavaria, Germany. Chemical analysis was carried out by Scanning Electron Microscope in the EDS mode and indicates a zinc and iron phosphate with partial substitution of manganese, which partially replaced iron. The calculated chemical formula of the studied sample was determined to be: Zn2(Fe0.65, Mn0.35)∑1.00(PO4)2·4(H2O). The intense Raman peak at 995 cm-1 is assigned to the ν1PO43- symmetric stretching mode and the two Raman bands at 1073 and 1135 cm-1 to the ν3PO43- antisymmetric stretching modes. The ν4PO43- bending modes are observed at 505, 571, 592 and 653 cm-1 and the ν2PO43- bending mode at 415 cm-1. The sharp Raman band at 3567 cm-1 attributed to the stretching vibration of OH units brings into question the actual formula of phosphophyllite. Vibrational spectroscopy enables an assessment of the molecular structure of phosphophyllite to be assessed.

  1. Vibrational dynamics of aniline(Ar)1 and aniline(CH4)1 clusters (United States)

    Nimlos, M. R.; Young, M. A.; Bernstein, E. R.; Kelley, D. F.


    The first excited electronic state (S1) vibrational dynamics of aniline(Ar)1 and aniline(CH4)1 van der Waals (vdW) clusters have been studied using molecular jet and time resolved emission spectroscopic techniques. The rates of intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) as functions of vibrational energy are reported for both clusters. For vibrational energy in excess of the cluster binding energy, both clusters are observed to dissociate. The dispersed emission spectra of these clusters demonstrate that aniline(Ar)1 dissociates to all energetically accessible bare molecule states and that aniline(CH4)1 dissociates selectively to only the bare molecule vibrationless state. The emission kinetics show that in the aniline(Ar)1 case, the initially excited states have nanosecond lifetimes, and intermediate cluster states have very short lifetimes. In contrast, the initially excited aniline(CH4)1 states and other intermediate vibrationally excited cluster states are very short lived (golden rule, and the density of vdW vibrational states is the most important factor in determining the relative [aniline(Ar)1 vs aniline(CH4)1] rates of IVR; (2) IVR among the vdW modes is rapid; and (3) VP rates can be calculated by a restricted vdW mode phase space Rice-Ramsberger-Kassel-Marcus theory. Since the density of vdW states is three orders of magnitude greater for aniline(CH4)1 than aniline(Ar)1 at 700 cm-1, the model predicts that IVR is slow and rate limiting in aniline(Ar)1, whereas VP is slow and rate limiting in aniline(CH4)1. The agreement of these predictions with the experimental results is very good and is discussed in detail.

  2. Vibrating minds

    CERN Document Server


    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  3. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.


    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  4. Vibrational Damping of Composite Materials


    Biggerstaff, Janet M.


    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  5. Isolation, spectroscopic and density functional theory studies of 7-(4-methoxyphenyl)-9H-furo[2,3-f]chromen-9-one: A new flavonoid from the bark of Millettia ovalifolia (United States)

    Rahman, Taj Ur; Arfan, Mohammad; Mahmood, Tariq; Liaqat, Wajiha; Gilani, Mazhar Amjad; Uddin, Ghias; Ludwig, Ralf; Zaman, Khair; Choudhary, M. Iqbal; Khattak, Khanzadi Fatima; Ayub, Khurshid


    The phytochemical examination of chloroform soluble fraction (FX2) of methanolic extract of bark of Millettia ovalifolia yielded a new flavonoid; 7-(4-methoxyphenyl)-9H-furo [2,3-f]chromen-9-one (1). Compound 1 is characterized by spectroscopic analytical techniques such as UV, IR, 1D, 2D NMR spectroscopy, and mass spectrometry. A theoretical model is also developed for obtaining geometric, electronic and spectroscopic properties of 1. The geometry optimization and harmonic vibration simulations have been carried out at B3LYP/6-31G(d,p). The vibrational spectrum of compound 1 shows nice correlation with the experimental IR spectrum, through a scaling factor of 0.9613. 1H and 13C NMR chemical shifts are simulated using Cramer's re-parameterized function WP04 at 6-31G(d,p) basis set, and correlate nicely with the experimental chemical shifts.

  6. Reliability Analysis of Random Vibration Transmission Path Systems


    Wei Zhao; Yi-Min Zhang


    The vibration transmission path systems are generally composed of the vibration source, the vibration transfer path, and the vibration receiving structure. The transfer path is the medium of the vibration transmission. Moreover, the randomness of transfer path influences the transfer reliability greatly. In this paper, based on the matrix calculus, the generalized second moment technique, and the stochastic finite element theory, the effective approach for the transfer reliability of vibratio...

  7. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton


    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  8. Comparison of the nature of interactions of two sialic acid specific lectins Saraca indica and Sambucus nigra with N-acetylneuraminic acid by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Singha, Shuvendu [Department of Natural Science, West Bengal University of Technology, Kolkata 700064 (India); Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032 (India); Bose, Partha P. [Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844101 (India); Ganguly, Tapan [School of Laser Science and Engineering, Jadavpur University, Jadavpur, Kolkata 700032 (India); Campana, Patricia T. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 03828-000 São Paulo (Brazil); Ghosh, Rina [Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032 (India); Chatterjee, Bishnu P., E-mail: [Department of Natural Science, West Bengal University of Technology, Kolkata 700064 (India)


    The present paper deals with the isolation and purification of a new sialic acid binding lectin from the seed integument of Saraca indica (Ashok) and the purified lectin was designated Saracin II. Comparative studies on the interactions of saracin II and another sialic acid specific lectin Sambucus nigra agglutinin (SNA) with N-acetylneuraminic acid (NANA) were made using UV–vis absorption, steady state and time resolved fluorescence along with circular dichroism (CD) spectroscopy to reveal the nature and mechanisms of binding of these two lectins with NANA. The experimental observations obtained from UV–vis, steady state and time resolved fluorescence measurements demonstrated that SNA–NANA system formed relatively stronger ground state complex than saracin II–NANA pair. CD measurements further substantiated the propositions made from steady state and time resolved spectroscopic investigations. It was inferred that during interaction of SNA with NANA, the lectin adopted a relatively looser conformation with the extended polypeptide structures leading to the exposure of the hydrophobic cavities which favoured stronger binding with NANA. - Highlights: • Of the two lectins, stronger binding of SNA with NANA is observed. • Full exposure of the hydrophobic cavities of SNA favors the stronger interactions. • Saracin II can be used for the new generation of lectin based-therapeutics.

  9. Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Zhongjie Xu


    Full Text Available Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT exhibits significant antitumor activity. However, the mechanism of its pharmacological interaction with human serum albumin (HSA and DNA remains poorly understood. Here, we aimed to elucidate the interactions of Dp44mT with HSA and DNA using MTT assays, spectroscopic methods, and molecular docking analysis. Our results indicated that addition of HSA at a ratio of 1:1 did not alter the cytotoxicity of Dp44mT, but did affect the cytotoxicity of the Dp44mT-Cu complex. Data from fluorescence quenching and UV-VIS absorbance measurements demonstrated that Dp44mT could bind to HSA with a moderate affinity (Ka = approximately 104 M−1. CD spectra revealed that Dp44mT could slightly disrupt the secondary structure of HSA. Dp44mT could also interact with Ct-DNA, but had a moderate binding constant (KEB = approximately 104 M−1. Docking studies indicated that the IB site of HSA, but not the IIA and IIIA sites, could be favorable for Dp44mT and that binding of Dp44mT to HSA involved hydrogen bonds and hydrophobic force, consistent with thermodynamic results from spectral investigations. Thus, the moderate binding affinity of Dp44mT with HSA and DNA partially contributed to its antitumor activity and may be preferable in drug design approaches.

  10. Structures of storage-induced transformation products of the beer's bitter principles, revealed by sophisticated NMR spectroscopic and LC-MS techniques. (United States)

    Intelmann, Daniel; Kummerlöwe, Grit; Haseleu, Gesa; Desmer, Nina; Schulze, Kerstin; Fröhlich, Roland; Frank, Oliver; Luy, Burkhard; Hofmann, Thomas


    Besides undesirable changes in the attractive aroma, a significant decrease in the intensity of the bitterness as well as a change of the taste into a lingering, harsh bitterness has long been known as a shelf-life limiting factor of beer. Multiple studies have demonstrated that the aging of beer induces a decrease of the total amount of cis- and trans-iso-alpha-acids, the well-known bitter principles of beer. Although the trans-iso-alpha-acids exclusively, not the cis-iso-alpha-acids, were found to be degraded upon storage of beer, the key transformation products formed exclusively from the trans isomers in beer are not known. In the present study, suitable model experiments followed by LC-MS/MS and sophisticated NMR spectroscopic experiments, including the measurement of residual dipolar couplings (RDCs) in gel-based alignment media as well as a novel broadband and B(1)-field-compensated incredible natural abundance double-quantum transfer experiment (INADEQUATE) pulse sequence, enabled the identification of a series of previously unknown trans-specific iso-alpha-acid transformation products, namely, tricyclocohumol, tricyclocohumene, isotricyclocohumene, tetracyclocohumol, and epitetracyclocohumol, respectively. HPLC-MS/MS analysis of these compounds, which exhibit the aforementioned harsh lingering bitter taste and have threshold concentrations ranging from 5 to 70 micromol L(-1), confirmed their generation during aging of beer and, for the first time, explained the storage-induced changes of the beer's bitter taste on a molecular level.

  11. Synthesis, spectroscopic and structural studies of new azo dyes metal chelates derivated from 1-phenil-azo-2-naphthol (United States)

    Ferreira, Gilson Rodrigues; de Oliveira, Luiz Fernando C.


    In this study, experimental techniques such as Raman and infrared vibrational analysis and X-ray crystal diffraction were used to characterize three new azo chelate dyes derived from 1-phenyl-azo-2-naphthol (Sudan I) and its analogue 1-(xylylphenylazo)-2-naphthol (Sudan II) with metal ions. The Raman and infrared spectroscopic analysis have also provided useful information concerning the coordination and formation of the molecular complexes through their main bands. In the vibrational spectra, the fingerprint bands, such as the ones at 1369/1368/1359 cm-1 assigned to [ν(CC) + δ(CH)], ν(Cdbnd N)], 1351/1352/1338 cm-1 assigned to [δ(CH)] and 816/824/813 cm-1 assigned to [ω(CH)] respectively for the SD1Cu, SD1Co and SD2Ni, can be used to characterize such compounds.

  12. Analysis of potential helicopter vibration reduction concepts (United States)

    Landgrebe, A. J.; Davis, M. W.


    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  13. FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer. (United States)

    Baker, M J; Gazi, E; Brown, M D; Shanks, J H; Gardner, P; Clarke, N W


    Fourier transform infrared (FTIR) spectroscopy is a vibrational spectroscopic technique that uses infrared radiation to vibrate molecular bonds within the sample that absorbs it. As different samples contain different molecular bonds or different configurations of molecular bonds, FTIR allows us to obtain chemical information on molecules within the sample. Fourier transform infrared microspectroscopy in conjunction with a principal component-discriminant function analysis (PC-DFA) algorithm was applied to the grading of prostate cancer (CaP) tissue specimens. The PC-DFA algorithm is used alongside the established diagnostic measures of Gleason grading and the tumour/node/metastasis system. Principal component-discriminant function analysis improved the sensitivity and specificity of a three-band Gleason score criterion diagnosis previously reported by attaining an overall sensitivity of 92.3% and specificity of 99.4%. For the first time, we present the use of a two-band criterion showing an association of FTIR-based spectral characteristics with clinically aggressive behaviour in CaP manifest as local and/or distal spread. This paper shows the potential for the use of spectroscopic analysis for the evaluation of the biopotential of CaP in an accurate and reproducible manner.

  14. Chirped-pulse Fourier transform millimeter-wave spectroscopy of ten vibrationally excited states of i-propyl cyanide: exploring the far-infrared region. (United States)

    Arenas, Benjamin E; Gruet, Sébastien; Steber, Amanda L; Giuliano, Barbara M; Schnell, Melanie


    We report here further spectroscopic investigation of the astrochemically relevant molecule i-propyl cyanide. We observed and analysed the rotational spectra of the ground state of the molecule and ten vibrationally excited states with energies between 180-500 cm(-1). For this, we used a segmented W-band spectrometer (75-110 GHz) and performed the experiments under room temperature conditions. This approach thus provides access to high-resolution, pure rotational data of vibrational modes that occur in the far-infrared fingerprint region, and that can be difficult to access with other techniques. The obtained, extensive data set will support further astronomical searches and identifications, such as in warmer regions of the interstellar space where contributions from vibrationally excited states become increasingly relevant.

  15. Surface force and vibrational spectroscopic analyses of interfacial water molecules in the vicinity of methoxy-tri(ethylene glycol)-terminated monolayers: mechanisms underlying the effect of lateral packing density on bioinertness. (United States)

    Sekine, Taito; Asatyas, Syifa; Sato, Chikako; Morita, Shigeaki; Tanaka, Masaru; Hayashi, Tomohiro

    Unequivocal dependence of bioinertness of self-assembled monolayers of methoxy-tri(ethylene glycol)-terminated alkanethiol (EG3-OMe SAMs) on their packing density has been a mystery for more than two decades. We tackled this long-standing question by performing surface force and surface-enhanced infrared absorption (SEIRA) spectroscopic measurements. Our surface force measurements revealed a physical barrier of interfacial water in the vicinity of the Au-supported EG3-OMe SAM (low packing density), whereas the Ag-supported one (high packing density) did not possess such interfacial water. In addition, the results of SEIRA measurements clearly exhibited that hydrogen bonding states of the interfacial water differ depending on the substrates. We also characterized the bioinertness of these SAMs by protein adsorption tests and adhesion assays of platelet and human umbilical vein endothelial cells. The hydrogen bonding states of the interfacial water and water-induced interaction clearly correlated with the bioinertness of the SAMs, suggesting that the interfacial water plays an important role determining the interaction of the SAMs with biomolecules and cells.

  16. Insights into the effect of N-acetyl-L-cysteine-capped CdTe quantum dots on the structure and activity of human serum albumin by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haoyu; Yang, Xudan; Li, Meng; Han, Songlin; Liu, Yingxue [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China); Tan, Xuejie [School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong Province 250353 (China); Liu, Chunguang, E-mail: [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China); Liu, Rutao [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China)


    Quantum dots (QDs) are a kind of nanostructured semiconductor crystals with the size range of 1–10 nm. Their unique photophysical properties and potential toxicity to human health have aroused wide concern of scientists and general public. However, the interaction mechanism of QDs on human serum albumin (HSA, the vital protein in human blood) from both structural and functional perspectives is rarely reported. In the present work, effects of N-acetyl-L-cysteine-capped CdTe quantum dots with fluorescence emission peak at 612 nm (QDs-612) on the conformation and function of HSA were investigated by spectroscopic methods, molecular docking study and esterase activity assay. The hydrophobic interaction between HSA and QDs-612 was spontaneous with the binding constants calculated to be 6.85×10{sup 5} L mol{sup −1} (298 K) and 8.89×10{sup 5} L mol{sup −1} (308 K). The binding of QDs-612 to HSA induced the static quenching of fluorescence and the changes of secondary structure and microenvironment of Tyr-411 residue, which resulted in serious decrease on the hydrolysis of substrate p-nitrophenylacetate in esterase activity assay of HSA. This work confirms the possibility on direct interaction of QDs-612 with HSA and obtains a possible mechanism of relationship between conformation and function of HSA. - Highlights: • The interaction between CdTe QDs (QDs-612) and HSA is spontaneous. • The predominant force of the binding is hydrophobic interaction. • The interaction changes the secondary structure of HSA. • Tyr-411 residue of HSA expose to a hydrophilic environment. • The esterase activity of HSA decreases by adding QDs-612.

  17. Studies on the interactions of chloroquine diphosphate and phenelzine sulfate drugs with human serum albumin and human hemoglobin proteins by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tunç, Sibel, E-mail:; Duman, Osman, E-mail:; Bozoğlan, Bahar Kancı


    The interactions of chloroquine diphosphate (CQP) and phenelzine sulfate (PS) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins were investigated by various spectroscopic methods. It was found that CQP caused the fluorescence quenching of protein molecules through a static quenching mechanism, but PS did not. The values of Stern–Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were calculated for HSA–CQP and HMG–CQP systems at pH 7.4 and different temperatures. For CQP, there was only one binding site on HSA and HMG proteins and the binding affinity of HSA was higher than that of HMG. The binding constants decreased with increasing temperature. The values of negative enthalpy change and positive entropy change indicated that electrostatic interactions play an important role in the binding processes. In addition, the binding processes were spontaneous and carried out by exothermic reactions. According to Förster resonance energy transfer theory, the average binding distance between proteins and CQP was calculated as 3.72 nm for HSA–CQP system and 3.45 nm for HMG–CQP system. Circular dichroism analysis displayed that the addition of CQP led to a decrease in the α-helix amount of HSA and HMG proteins. -- Highlights: • Unlike PS, CQP was bounded by HSA and HMG proteins. • The fluorescence spectra of HSA and HMG were quenched by CQP through static mechanism. • HSA–CQP and HMG–CQP complexes were stabilized by electrostatic attraction forces. • Binding constants, thermodynamic parameters and binding distances were calculated. • The binding of CQP changed the conformational structure of HSA and HMG proteins.

  18. Molecular structure, vibrational spectroscopic, first order hyperpolarizability and HOMO-LUMO studies of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid. (United States)

    Ramalingam, M; Sethuraman, V; Sundaraganesan, N


    The FT-IR and FT-Raman spectra of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (7AVCA) were recorded in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers were carried out by ab initio HF and density functional theoretical methods invoking 6-311G(d,p) basis set. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The electric dipole moment (μ) and the first order hyperpolarizability (β0) values have been computed quantum mechanically. The calculated results show that 7AVCA may have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the FT-IR and FT-Raman spectra of 7AVCA is reported. The theoretical IR and Raman spectra of 7AVCA have also been constructed. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Spectroscopic investigation, vibrational assignments, Fukui functions, HOMO-LUMO, MEP and molecular docking evaluation of 4 - [(3, 4 - dichlorophenyl) amino] 2 - methylidene 4 - oxo butanoic acid by DFT method (United States)

    Vanasundari, K.; Balachandran, V.; Kavimani, M.; Narayana, B.


    The experimental FT-IR and FT-Raman spectra of 4 - [(3, 4 -dichlorophenyl) amino] 2 - methylidene 4 - oxo butanoic acid (DMOA) has been recorded. Quantum chemical calculations of geometry and vibrational wavenumbers of the title compound are carried out theoretically and were compared with the experimental results. NBO analysis, HOMO-LUMO, hardness, softness, first hyperpolarizability and molecular electrostatic potential results are also reported. The negative regions of the MEP are related to electrophilic reactivity and the positive regions to nucleophilic reactivity, as shown in the MEP plot and the title compound has several possible sites. Natural bonding orbital (NBO) assessment was completed with a reason to clarify charge transfer, inter hybridization and delocalization of electron density within the molecule. A computation of the first hyperpolarizability of the compound indicates that this class of substituted butanoic acid may be a good candidate as an NLO material. The study is extended to calculate the binding energy of the title compound with suitable protein by Autodock software. The RDG scatter graphs and the RDG gradient isosurface further illustrate that the interactions between DMOA belong to the van der Waals interactions.

  20. Multi-pass spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Stehle, Jean-Louis [Sopralab, 7 rue du Moulin des Bruyeres, 92400 Courbevoie (France); Samartzis, Peter C., E-mail: [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece); Stamataki, Katerina [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece); Department of Chemistry, University of Crete, Voutes, 71003, Heraklion (Greece); Piel, Jean-Philippe [Sopralab, 7 rue du Moulin des Bruyeres, 92400 Courbevoie (France); Katsoprinakis, George E.; Papadakis, Vassilis [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece); Schimowski, Xavier [Sopralab, 7 rue du Moulin des Bruyeres, 92400 Courbevoie (France); Rakitzis, T. Peter [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece); Department of Physics, University of Crete, Voutes, 71003, Heraklion (Greece); Loppinet, Benoit [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece)


    Spectroscopic ellipsometry is an established technique, particularly useful for thickness measurements of thin films. It measures polarization rotation after a single reflection of a beam of light on the measured substrate at a given incidence angle. In this paper, we report the development of multi-pass spectroscopic ellipsometry where the light beam reflects multiple times on the sample. We have investigated both theoretically and experimentally the effect of sample reflectivity, number of reflections (passes), angles of incidence and detector dynamic range on ellipsometric observables tanΨ and cosΔ. The multiple pass approach provides increased sensitivity to small changes in Ψ and Δ, opening the way for single measurement determination of optical thickness T, refractive index n and absorption coefficient k of thin films, a significant improvement over the existing techniques. Based on our results, we discuss the strengths, the weaknesses and possible applications of this technique. - Highlights: • We present multi-pass spectroscopic ellipsometry (MPSE), a multi-pass approach to ellipsometry. • Different detectors, samples, angles of incidence and number of passes were tested. • N passes improve polarization ratio sensitivity to the power of N. • N reflections improve phase shift sensitivity by a factor of N. • MPSE can significantly improve thickness measurements in thin films.

  1. Determination of the Oscillator Strengths for the Third and Fourth Vibrational Overtone Transitions in Simple Alcohols (United States)

    Wallberg, Jens; Kjaergaard, Henrik G.


    Absolute measurements of the weak transitions require sensitive spectroscopic techniques. With our recently constructed pulsed cavity ring down (CRD) spectrometer, we have recorded the third and fourth vibrational overtone of the OH stretching vibration in a series of simple alcohols: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), 2-propanol (2-PrOH) and tert-butanol (tBuOH). The CRD setup (in a flow cell configuration) is combined with a conventional FTIR spectrometer to determine the partial pressure of the alcohols from the fundamental transitions of the OH-stretching vibration. The oscillator strengths of the overtone transitions are determined from the integrated absorbances of the overtone spectra and the partial pressures. Furthermore, the oscillator strengths were calculated using vibrational local mode theory with energies and dipole moments calculated at CCSD(T)/aug-cc-pVTZ level of theory. We find a good agreement between the observed and calculated oscillator strengths across the series of alcohols.

  2. Fukui Function Analysis and Optical, Electronic, and Vibrational Properties of Tetrahydrofuran and Its Derivatives: A Complete Quantum Chemical Study

    Directory of Open Access Journals (Sweden)

    Apoorva Dwivedi


    Full Text Available The spectroscopic, optical, and electronic properties of tetrahydrofuran and its derivatives were investigated by FTIR techniques. We have done a comparative study of tetrahydrofuran and its derivatives with B3LYP with 6-311 G (d, p as the basis set. Here we have done a relative study of their structures, vibrational assignments, and thermal, electronic, and optical properties of ttetrahydrofuran and its derivatives. We have plotted frontier orbital HOMO-LUMO surfaces and molecular electrostatic potential surfaces to explain the reactive nature of tetrahydrofuran and its derivatives.

  3. Nano-spectroscopic imaging of intermolecular structure, coupling and dynamics

    CERN Document Server

    Pollard, Benjamin; Hinrichs, Karsten; Raschke, Markus B


    Molecular self-assembly, the function of biomembranes, and the performance of organic solar cells rely on molecular interactions on the nanoscale. The understanding and design of such intrinsic or engineered heterogeneous functional soft matter has long been impeded by a lack of spectroscopic tools with sufficient nanometer spatial resolution, attomolar sensitivity, and intermolecular spectroscopic specificity. We implement vibrational scattering-scanning near-field optical microscopy ($s$-SNOM) in a multi-spectral modality with unprecedented spectral precision to investigate the structure-function relationship in nano-phase separated block-copolymers. We use a vibrational resonance as a sensitive reporter of the local chemical environment and resolve, with few nanometer spatial resolution and 0.2 cm$^{-1}$ spectral precision, spectral Stark shifts and line broadening correlated with molecular-scale morphologies. By creating images of solvatochromic vibrational shifts we discriminate local variations in elect...

  4. Will Raman meet bacteria on Mars? An overview of the optimal Raman spectroscopic techniques for carotenoid biomarkers detection on mineral backgrounds

    NARCIS (Netherlands)

    Hooijschuur, J.H.; Verkaaik, M.F.C.; Davies, G.R.; Ariese, F.


    Raman spectroscopy appears to be an ideal technique for the initial detection of biomarkers, molecules that are potentially indicative of life on planetary bodies elsewhere in our solar system. Carotenoids are particularly useful biomarkers as they are used widely across the species, relatively

  5. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique]. (United States)

    Jiang, Zhi-quan; Hu, Ke-liang


    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  6. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen


      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  7. Adaptive Multi-Layer LMS Controller Design and Application to Active Vibration Suppression on a Truss and Proposed Impact Analysis Technique (United States)

    Barney, Timothy A.; Shin, Y. S.; Agrawal, B. N.


    This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7-meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the dSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.

  8. Liquid Space Lubricants Examined by Vibrational Micro-Spectroscopy (United States)

    Street, Kenneth W., Jr.


    Considerable effort has been expended to develop liquid lubricants for satellites and space exploration vehicles. These lubricants must often perform under a range of harsh conditions such as vacuum, radiation, and temperature extremes while in orbit or in transit and in extremely dusty environments at destinations such as the Moon and Mars. Historically, oil development was guided by terrestrial application, which did not provide adequate space lubricants. Novel fluids such as the perfluorinated polyethers provided some relief but are far from ideal. With each new fluid proposed to solve one problem, other problems have arisen. Much of the work performed at the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in elucidating the mechanisms by which chemical degradation of space oils occur has been done by vibrational micro-spectroscopic techniques such as infrared and Raman, which this review details. Presented are fundamental lubrication studies as well as actual case studies in which vibrational spectroscopy has led to millions of dollars in savings and potentially prevented loss of mission.

  9. Optical Spectroscopic Monitoring of Parachute Yarn Aging

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, D.R.; Garcia, M.J.; Simpson, R.L.; Behr, V.L.; Whinery, L.D.; Peng, L.W.


    Optical spectroscopic techniques were evaluated as nondestructive monitors of the aging of parachutes in nuclear weapons. We analyzed thermally aged samples of nylon and Kevlar webbing by photoluminescence spectroscopy and reflection spectroscopy. Infrared analysis was also performed to help understand the degradation mechanisms of the polymer materials in the webbing. The photoluminescence and reflection spectra were analyzed by chemometric data treatment techniques to see if aged-induced changes in the spectra correlated to changes in measured tensile strength. A correlation was found between the shapes of the photoluminescent bands and the measured tensile strengths. Photoluminescent spectra can be used to predict the tensile strengths of nylon and Kevlar webbing with sufficient accuracy to categorize the webbing sample as above rated tensile strength, marginal or below rated tensile strength. The instrumentation required to perform the optical spectroscopic measurement can be made rugged, compact and portable. Thus, optical spectroscopic techniques offer a means for nondestructive field monitoring of parachutes in the enduring stockpile/

  10. Application of vibrational spectroscopy in the in vitro studies of carbon fiber-polylactic acid composite degradation. (United States)

    Blazewicz, Marta; Gajewska, Maria Chomyszyn; Paluszkiewicz, Czeslawa


    Vibrational spectroscopy was used for assessment of new material for stomatology, for guided tissue regeneration (GTR) techniqe.Implants applied in the healing of periodontal defects using GTR technique have to meet stringent requirements concerning their chemical as well physical properties.At present the implants prepared from two layers membranes differing in porosity in their outer and inner layers are studied clinically. Composite plates prepared by us consist of three layers: polylactic acid film, carbon fibres coated with polylactic acid and carbon fabric.Vibrational spectroscopic studies of the material; polylactic acid- carbon fiber have made it possible to analyse chemical reactions occurring between the polymer and carbon surface. Analysis of the IR spectra of samples treated in Ringer solution allowed to describe the phenomena resulting from the composite degradation. It was shown that material biostability is related to the presence of carbon fibers.

  11. Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. (United States)

    Rinklebe, Jörg; Shaheen, Sabry M; Schröter, Felix; Rennert, Thilo


    Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) combined with a seven steps sequential extraction technique were used to assess the geochemical distribution of chromium (Cr) and lead (Pb) in a contaminated floodplain soil. Total contents of Cr and Pb were 490.3 and 402.1 mg kg(-1), respectively. The residual fraction was 59.5 and 56.3% of total Cr and Pb. The crystalline iron (Fe) oxide was the dominant non-residual fraction of Cr (35.9% of total Cr). Considerable amounts of Pb were found in the organic fraction (35.4%). Using (13)C nuclear magnetic resonance spectroscopy, the soil organic matter was identified as 48.9% aromatic carbon, which indicated that a certain portion of Pb and Cr might be associated with aromatic compounds. The SEM-EDX images demonstrate a concomitant occurrence of Pb, manganese (Mn), Fe, and aluminum (Al) as well as a coexistence of Cr and Fe. The release dynamics of dissolved Cr and Pb as affected by redox potential (EH), pH, Fe, Mn, dissolved organic carbon, and sulfate was quantified using an automated biogeochemical microcosm apparatus. Soil pH decreased under oxic conditions. The release of Cr, Pb, Fe, and Mn increased under acidic oxic (pH = 3.7, EH = 521 mV) conditions due to the associated decrease of pH (7.1-3.7). The mobilization of Cr and Pb was affected by the Fe and Mn. In conclusion, our multi-technique approach identified the geochemical distribution of Cr and Pb and verified major factors that explain mobilization of Cr and Pb in floodplain soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Coupled rotor/airframe vibration analysis (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.


    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  13. Spectroscopic analysis and control (United States)

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles


    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  14. Fourier transform infrared spectroscopic study of truffles (United States)

    Zhao, Dezhang; Liu, Gang; Song, Dingshan; Liu, Jian-hong; Zhou, Yilan; Ou, Jiaming; Sun, Shizhong


    Truffles are rare wild growing edible mushrooms belonging to Ascomycetes. In this paper, Fourier transform infrared (FTIR) spectroscopy was used to obtain vibrational spectra of truffles. The results show that the mushrooms exhibit characteristic spectra. The two strongest absorption bands appear at about 1077cm -1 and 1040 cm -1, which were described as C-O stretching in carbohydrate. The vibrational spectra indicate that the main compositions of the truffles are polysaccharide and protein. According to the characteristics bands and absorption ratios of spectra, different species of truffles can be discriminated. It is also found the great changes between moldy and healthy truffles, which the major differences are observed in the bands of protein. In addition, FTIR spectral differences are observed between the same species of truffles from different producing areas. It is showed that the FTIR spectroscopic method is valuable tool for rapid and nondestructive analysis of truffles prior to any extraction method used.

  15. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A


    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  16. Conformational and vibrational reassessment of solid paracetamol (United States)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.


    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  17. Development of a THz spectroscopic imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Usami, M [TOCHIGI Nikon Corporation, 770 Midori, Ohtawara, Tochigi (Japan); Iwamoto, T [TOCHIGI Nikon Corporation, 770 Midori, Ohtawara, Tochigi (Japan); Fukasawa, R [TOCHIGI Nikon Corporation, 770 Midori, Ohtawara, Tochigi (Japan); Tani, M [Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Nishi-ku, Kobe (Japan); Watanabe, M [Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Nishi-ku, Kobe (Japan); Sakai, K [Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Nishi-ku, Kobe (Japan)


    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated.

  18. Utility of chromatographic and spectroscopic techniques for a detailed characterization of poly(styrene-b-isoprene) miktoarm star copolymers with complex architecture

    KAUST Repository

    Šmigovec Ljubič, Tina


    We analyzed various miktoarm star copolymers of the PS(PI) x type (x = 2, 3, 5, 7), which consist of one long polystyrene (PS) arm (82 or 105 kDa) and various numbers of short polyisoprene (PI) arms (from 11.3 to 39.7 kDa), prepared by anionic polymerization and selective chlorosilane chemistry. The length of the PI arm in stars decreases with the number of arms, so that the chemical compositions of all PS(PI) x samples were comparable. Our aim was to determine the purity of samples and to identify exactly the constituents of individual samples. For this purpose we used a variety of separation techniques (size-exclusion chromatography (SEC), reversed-phase liquid-adsorption chromatography (RP-LAC), and two-dimensional liquid chromatography (2D-LC)) and characterization techniques (UV-MALS-RI multidetection SEC system, NMR, and MALDI-TOF MS). The best separation and identification of the samples\\' constituents were achieved by RP-LAC, which separates macromolecules according to their chemical composition, and a subsequent analysis of the off-line collected fractions from the RP-C18 column by SEC/UV-MALS-RI multidetection system. The results showed that all PS(PI) x samples contained the homo-PS and homo-PI in minor amounts and the high-molar-mass (PS) y(PI) z (y > 1) species, the content of which is higher in the samples PS(PI) 5 and PS(PI) 7 than in the samples PS(PI) 2 and PS(PI) 3. The major constituent of the PS(PI) 2 sample was the one with the predicted structure. On the other hand, the major components of the PS(PI) x (x = 3, 5, and 7) samples were the stars consisting of a smaller number of PI arms than predicted from the functionalities of chlorosilane coupling agents. These results are in agreement with the average chemical composition of samples determined by proton NMR spectroscopy and characterization of the constituents by MALDI-TOF MS. © 2012 American Chemical Society.

  19. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques (United States)

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui


    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M-1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.

  20. Reliability Analysis of Random Vibration Transmission Path Systems

    Directory of Open Access Journals (Sweden)

    Wei Zhao


    Full Text Available The vibration transmission path systems are generally composed of the vibration source, the vibration transfer path, and the vibration receiving structure. The transfer path is the medium of the vibration transmission. Moreover, the randomness of transfer path influences the transfer reliability greatly. In this paper, based on the matrix calculus, the generalized second moment technique, and the stochastic finite element theory, the effective approach for the transfer reliability of vibration transfer path systems was provided. The transfer reliability of vibration transfer path system with uncertain path parameters including path mass and path stiffness was analyzed theoretically and computed numerically, and the correlated mathematical expressions were derived. Thus, it provides the theoretical foundation for the dynamic design of vibration systems in practical project, so that most random path parameters can be considered to solve the random problems for vibration transfer path systems, which can avoid the system resonance failure.

  1. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O


    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  2. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Yaghlane, Saida Ben [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Cotton, C. Eric; Francisco, Joseph S., E-mail:, E-mail: [Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707 (United States); Linguerri, Roberto; Hochlaf, Majdi, E-mail:, E-mail: [Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée (France)


    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality. By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.

  3. Characterization of the deterioration of bone black in the 17 th century Oranjezaal paintings using electron-microscopic and micro-spectroscopic imaging techniques (United States)

    van Loon, Annelies; Boon, Jaap J.


    A whitish deterioration product was observed on the dark paint in a number of large-scale oil paintings that are part of the Oranjezaal interior decoration in the Royal Palace Huis ten Bosch (The Hague). The whitened areas of a painting by Pieter Soutman dating from 1648 were micro-sampled and compared with "healthy" black paint using different analytical imaging techniques. The dark paint was identified as bone black in linseed oil with a lead drier added. Microscopic images of the cross-section revealed a white top layer of 10-20 μm in the black paint layer. Imaging the cross-section surface with scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX) and specular reflection Fourier transform infrared (FTIR) showed homogeneous distributions of phosphate, phosphorus and calcium over the black and the white degraded bone black. X-ray diffraction (XRD) showed the presence of calcium phosphate hydrate (Ca 3(PO 4) 2· xH 2O), monetite (CaHPO 4) with possibly some poorly crystalline or amorphous hydroxyapatite (Ca 5(OH)(PO 4) 3). The EDX maps of lead and carbon, however, showed some discontinuity between the degraded and non-degraded bone black. There was an increase in the lead concentration in the white top layer, and a slight decrease of carbon. Transmission FTIR demonstrated that aromatic network polymers from the carbon black are markedly diminished in the white deterioration product. It is proposed that the carbonized organic matter in the bone black is vulnerable to photo bleaching in the presence of a lead catalyst under these circumstances.

  4. Structure, morphology and Raman and optical spectroscopic analysis of In1-xCuxP thin films grown by MOCVD technique for solar cell applications (United States)

    Alshahrie, Ahmed; Juodkazis, S.; Al-Ghamdi, A. A.; Hafez, M.; Bronstein, L. M.


    Nanocrystalline In1-xCuxP thin films (0 ≤ x ≤ 0.5) have been deposited on quartz substrates by a Metal-Organic Chemical Vapor Deposition (MOCVD) technique. The effect of the copper ion content on the structural crystal lattice, morphology and optical behavior of the InP thin films was assessed using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Raman spectroscopy and spectrophotometry. All films exhibited a crystalline cubic zinc blende structure, inferring the solubility of the Cu atoms in the InP crystal structure. The XRD patterns demonstrated that the inclusion of Cu atoms into the InP films forced the nanoparticles in the films to grow along the (1 1 1) direction. The AFM topography showed that the Cu ions reduce the surface roughness of deposited films. The Raman spectra of the deposited films contain the first and second order anti-stoke ΓTO, ΓLO, ΧLO + ΧTO, 2ΓTO, and ΓLO + ΓTO bands which are characteristic of the InP crystalline structure. The intensities of these bands decreased with increasing the content of the Cu atoms in the InP crystals implying the creation of a stacking fault density in the InP crystal structure. The In1-xCuxP thin films have shown high optical transparency of 90%. An increase of the optical band gap from 1.38 eV to 1.6 eV was assigned to the increase of the amount of Cu ions in the InP films. The In0.5Cu0.5P thin film exhibited remarkable optical conductivity with very low dissipation factor which makes it a promising buffer window for solar energy applications.

  5. Spectroscopic study of emission coal mineral plasma produced by laser ablation (United States)

    Vera, L. P.; Pérez, J. A.; Riascos, H.


    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C2 Swan System (d3Πg→a3Πu), the First Negative System N2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x1018 cm-3 respectively.

  6. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue (United States)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit


    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  7. Stroboscopic shearography for vibration analysis (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank


    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  8. Raman spectroscopic analyses of preserved historical specimens of human hair attributed to Robert Stephenson and Sir Isaac Newton. (United States)

    Edwards, Howell G M; Hassan, Nik F N; Wilson, Andrew S


    The Raman spectra of two historical specimens of human hair attributed to the engineer Robert Stephenson and scientist Sir Isaac Newton, preserved in private collections are reported. Comparisons are made with the Raman spectra of modern hair specimens and with hair from archaeological excavations. The hair spectra collected with a laser excitation of 785 nm are of a better quality than those collected using 1064 nm. The historical hair specimens are remarkably well-defined spectroscopically in terms of the amide I vibrational mode and the [small nu](SS), ascribed to a predominantly gauche-gauche-gauche CSSC conformation. The contrast with degraded hair specimens recovered from archaeological excavations is striking. The presence of a weak feature near 2590 cm(-1) in the hair samples attributed to a [small nu](SH) vibration could be indicative of a reduction process operative on the CSSC cystine keratotic linkages and a possible origin of this is bacterial biodegradation identified histologically. This study demonstrates the molecular information available from non-destructive Raman spectroscopic analysis from single hair shafts or small bundles of fibres which complements information available from histological and destructive analytical techniques for rare biological specimens subjected to conservation or curation procedures in museums or private collections.

  9. Reducing Transmitted Vibration Using Delayed Hysteretic Suspension

    Directory of Open Access Journals (Sweden)

    Lahcen Mokni


    Full Text Available Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.

  10. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level. (United States)

    Harz, M; Rösch, P; Popp, J


    Rapid microbial detection and identification with a high grade of sensitivity and selectivity is a great and challenging issue in many fields, primarily in clinical diagnosis, pharmaceutical, or food processing technology. The tedious and time-consuming processes of current microbiological approaches call for faster ideally on-line identification techniques. The vibrational spectroscopic techniques IR absorption and Raman spectroscopy are noninvasive methods yielding molecular fingerprint information; thus, allowing for a fast and reliable analysis of complex biological systems such as bacterial or yeast cells. In this short review, we discuss recent vibrational spectroscopic advances in microbial identification of yeast and bacterial cells for bulk environment and single-cell analysis. IR absorption spectroscopy enables a bulk analysis whereas micro-Raman-spectroscopy with excitation in the near infrared or visible range has the potential for the analysis of single bacterial and yeast cells. The inherently weak Raman signal can be increased up to several orders of magnitude by applying Raman signal enhancement methods such as UV-resonance Raman spectroscopy with excitation in the deep UV region, surface enhanced Raman scattering, or tip-enhanced Raman scattering. Copyright 2008 International Society for Advancement of Cytometry

  11. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    Energy Technology Data Exchange (ETDEWEB)

    Plenio, M. B.; Almeida, J.; Huelga, S. F. [Institute for Theoretical Physics, Albert-Einstein-Allee 11, University Ulm, D-89069 Ulm (Germany)


    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  12. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence. (United States)

    Plenio, M B; Almeida, J; Huelga, S F


    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  13. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates (United States)

    Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O.


    The influence of exciton-vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein-pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton-vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton-vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton-vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton-vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system-bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be

  14. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L


    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  15. Spectroscopic Dosimeter Project (United States)

    National Aeronautics and Space Administration — Analysis of Phase I test data demonstrates that the Photogenics Spectroscopic Dosimeter will detect neutron energies from 0.8 up to 600 MeV. The detector...

  16. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)


    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  17. [Progress in Raman spectroscopic measurement of methane hydrate]. (United States)

    Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun


    Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.

  18. Quantitative field spectroscopic measurement instrumentation and techniques


    Schaepman, Michael E.; Dangel, Stefan; Kneubühler, Mathias; Schläpfer, Daniel; Bojinski, Stephan; Brazile, Jason; Kötz, Benjamin; Strub, Gabriela; Kohler, R.; POPP C; Schopfer, Jürg; Klaus I. Itten


    Over the past few years imaging spectrometer have increased in number and quality significantly. Directly correlated to this growth, is the need of (near-) simultaneous field work with non-imaging spectroradiometers. Due to severe constraints in technology requirements for these field instruments (portability, power supply, etc.), reliable portable instruments have become available later than their imaging correspondents. The systematic use of a large variety of ground instruments from their ...

  19. Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings (United States)

    Fang, Tian-Shen


    This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…

  20. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Michael C.; Weber, J. Mathias, E-mail: [JILA, University of Colorado at Boulder, 440 UCB, Boulder, Colorado 80309-0440 (United States); Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Baraban, Joshua H. [Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Matthews, Devin A. [Institute for Computational Engineering and Science, University of Texas at Austin, 201 E. 24th St., Austin, Texas 78712 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165 (United States)


    We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  1. nmr spectroscopic study and dft calculations of vibrational analyses ...

    African Journals Online (AJOL)

    Preferred Customer

    ANALYSES, GIAO NMR SHIELDINGS AND 1JCH, 1JCC SPIN-SPIN COUPLING. CONSTANTS ... proton coupled and uncoupled 13C, 15N, DEPT, COSY, HETCOR, INADEQUATE NMR spectra and the magnitude ... methodology an interesting variety of spin-spin coupling constants can be calculated with good accuracy in ...

  2. Spectroscopic and Vibrational Energy Transfer Studies in Molecular Bromine (United States)


    total removal from state p as defined in Eq (28). Using the relationships just described, Eq (29) can be rewritten as dxp/dt = -(1/TTR (p)) xp + kpop Y...dt = -(1/tR (p)) xp + kpop Y exp(-t/CR(po)) (31) The solution for this equation is xP(t)- (p))_-T YJ x (32) [exp(-t/tTR (po)) - exp(-t/rTR (P

  3. Spectrochemistry of Solutions: A Vibrational Spectroscopic Study of ...

    African Journals Online (AJOL)

    Ion pairing and upper stage transition of magnesium (II) and calcium (II) with thiocyanate ion has been studied by Infrared and Raman spectroscopy. A complete picture of species present in thiocyanate solutions has been established. The spectral profile consists of five thiocyanate species namely; a triple-ion, [SCN - M ...

  4. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses (United States)

    Le, Thien-Phu


    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  5. The use of random decrement technique for identification of structural modes of vibration. [tested on a generalized payload and the space shuttle model (United States)

    Ibrahim, S. R.


    An algorithm is developed to obtain the free responses of a structure from its random responses due to some unknown or known random input or inputs, using the random-decrement technique without changing time correlation between signals. The algorithm is tested using random responses from a 'generalized payload' model and from the 'Space Shuttle' model. The resulting free responses are then used to identify the modal characteristics of the two systems.

  6. Spectroscopic Characterization of Omeprazole and Its Salts

    Directory of Open Access Journals (Sweden)

    Tomislav Vrbanec


    Full Text Available During drug development, it is important to have a suitable crystalline form of the active pharmaceutical ingredient (API. Mostly, the basic options originate in the form of free base, acid, or salt. Substances that are stable only within a certain pH range are a challenge for the formulation. For the prazoles, which are known to be sensitive to degradation in an acid environment, the formulation is stabilized with alkaline additives or with the application of API formulated as basic salts. Therefore, preparation and characterization of basic salts are needed to monitor any possible salinization of free molecules. We synthesized salts of omeprazole from the group of alkali metals (Li, Na, and K and alkaline earth metals (Mg, Ca. The purpose of the presented work is to demonstrate the applicability of vibrational spectroscopy to discriminate between the OMP and OMP-salt molecules. For this reason, the physicochemical properties of 5 salts were probed using infrared and Raman spectroscopy, NMR, TG, DSC, and theoretical calculation of vibrational frequencies. We found out that vibrational spectroscopy serves as an applicable spectroscopic tool which enables an accurate, quick, and nondestructive way to determine the characteristic of OMP and its salts.

  7. Composite heat damage spectroscopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C.J.; Muhs, J.D.; Wachter, E.A.; Ziegler, R.E. (Oak Ridge National Lab., TN (USA)); Powell, G.L.; Smyrl, N.R. (Oak Ridge Y-12 Plant, TN (USA)); Philpot, H.E. (Oak Ridge Gaseous Diffusion Plant, TN (USA))


    The Oak Ridge National Laboratory/Applied Technology Division (ORNL/ATD) has successfully demonstrated the unique applicability of two spectroscopic techniques that possess the capability of detecting heat damage in IM6/3501-6 laminates and correlation of this damage with the residual mechanical-strength properties. The results on the diffuse reflectance infrared fourier transform (DRIFT) and laser-pumped fluorescence (LPF) spectroscopic techniques, which are capable of rapid, in-service, non-destructive detection and quantitation of heat damage in IM6/3501-6 laminates, is presented. Both of these techniques have been shown to be quite effective at probing the elusive and complex molecular changes that take place in IM6/3501-6 laminates subjected to varying degrees of thermal degradation. Using LPF or DRIFT techniques, it has been shown that laminates having different thermal histories can be readily differentiated from one another due to their characteristic fingerprint'' spectral features. The effects of short-term, elevated temperature heating on the room- temperature compressive interlaminar-shear, and flexural strengths and room-temperature shore-D hardness properties of dry'' and wet'' preconditioned IM6/3501-6 laminates are discussed. Additionally, the geometrical changes and percent-weight-loss measurements of IM6/3501-6 laminates that accompany heat damage are also examined. It was found that below a certain temperature/time exposure threshold, these laminates visually and microscopically appeared to be undamaged but, in fact, may have lost a significant percentage of their original strength. In addition, laminates that were exposed above the temperature/time exposure threshold suffered dramatic geometrical changes and large amounts of weight loss. 32 refs., 39 figs., 10 tabs.

  8. Solid-state transformation of the pseudopolymorphic forms of codeine phosphate hemihydrate and codeine phosphate sesquihydrate monitored by vibrational spectroscopy and thermal analysis (United States)

    Petruševski, Gjorgji; Ugarkovic, Sonja; Makreski, Petre


    The results from the first study on the pseudopolymorphism and solid-state transformations of codeine phosphate hemihydrate and codeine phosphate sesquihydrate are presented. The vibrational (infrared and Raman) spectra for both studied forms have revealed differences indicating that vibrational spectroscopy could discriminate between pseudopolymorphic forms of these compounds. Coupling the obtained spectroscopic data and the results from the thermoanalytical techniques (TGA/DSC) afforded interpretation of the undergoing solid-state transformations that occur when the compounds are being exposed at increased humidity and/or temperature. It was observed that, at room temperature, the hemihydrate and the sesquihydrate forms are the only sufficiently stable pseudopolymorphs of codeine phosphate explaining their intense pharmaceutical application.

  9. FEM Updating of Tall Buildings using Ambient Vibration Data

    DEFF Research Database (Denmark)

    Ventura, C. E.; Lord, J. F.; Turek, M.


    Ambient vibration testing is the most economical non-destructive testing method to acquire vibration data from large civil engineering structures. The purpose of this paper is to demonstrate how ambient vibration Modal Identification techniques can be effectively used with Model Updating tools...... and the corresponding mode shapes. The degree of torsional coupling between the modes was also investigated. The modal identification results obtained from ambient vibration measurements of each building were used to update a finite element model of the structure. The starting model of each structure was developed from...... an ambient vibration modal identification....

  10. Tunable Passive Vibration Suppressor (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)


    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  11. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  12. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. (United States)

    Tugarova, Anna V; Mamchenkova, Polina V; Dyatlova, Yulia A; Kamnev, Alexander A


    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250nm; their zeta potential was measured to be minus 18.5mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500cm-1 down to 150cm-1) showed a single very strong band with a maximum at 250cm-1 which, in line with its increased width (ca. 30cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum (United States)

    Tugarova, Anna V.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Kamnev, Alexander A.


    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250 nm; their zeta potential was measured to be minus 18.5 mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500 cm-1 down to 150 cm-1) showed a single very strong band with a maximum at 250 cm-1 which, in line with its increased width (ca. 30 cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.

  14. Low cost subpixel method for vibration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)


    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  15. Review of magnetostrictive vibration energy harvesters (United States)

    Deng, Zhangxian; Dapino, Marcelo J.


    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  16. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.


    absorption (VA) spectroscopy can be used as a useful tool in medical diagnostics that provides in principle additional information and detail to that which can be obtained/provided from conventional histological studies, and more conventional mass spectroscopic and NMR techniques. The use of high level......In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...... and differences in these cells lines utilizing FTIR spectroscopy. We have used the chemometrical and statistical method principal component analysis (PCA) to investigate the spectral differences. We have been able to identify certain bands in the spectra which are so-called biomarkers for two types of cell lines...

  17. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug. (United States)

    Uma Maheswari, J; Muthu, S; Sundius, Tom


    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.


    Directory of Open Access Journals (Sweden)

    V.P. Babak


    Full Text Available  Bridge structure test results with using different types of dynamic force have been considered. It has been shown, that the developed technique of registering and processing vibration signals allows obtaining thin spectrum structure. The analysis of its change that is defined by the type of structure loading applied has been carried out. Key parameters of the vibration signals registered have been defined.

  19. Brain palpation from physiological vibrations using MRI


    Zorgani, Ali; Souchon, Rémi; Dinh, Au-Hoang; Chapelon, Jean-Yves; Ménager, Jean-Michel; Lounis, Samir; Rouvière, Olivier; Catheline, Stefan


    It is commonly supposed that noise obscures but does not contain useful information. However, in wave physics and especially, seismology, scientists developed some tools known as “noise correlation” to extract useful information and construct images from the random vibrations of a medium. Living tissues are full of unexploited vibrations as well. In this manuscript, we show that noise correlation techniques in the brain using MRI can conduct to a tomography related to the stiffness that physi...

  20. Spectroscopic characterizations of organic/inorganic nanocomposites (United States)

    Govani, Jayesh R.


    In the present study, pure and 0.3 wt%, 0.4 wt%, as well as 0.5 wt% L-arginine doped potassium dihydrogen phosphate (KDP) crystals were grown using solution growth techniques and further subjected to infrared (IR) absorption and Raman studies for confirmation of chemical group functionalization for investigating the incorporation mechanism of the L-arginine organic material into the KDP crystal structure. Infrared spectroscopic analysis suggests that structural changes are occurring for the L-arginine molecule as a result of its interaction with the KPD crystal. Infrared spectroscopic technique confirms the disturbance of the N-H, C-H and C-N bonds of the amino acid, suggesting successful incorporation of L-arginine into the KDP crystals. Raman analysis also reveals modification of the N-H, C-H and C-N bonds of the amino acid, implying successful inclusion of L-arginine into the KDP crystals. With the help of Gaussian software, a prediction of possible incorporation mechanisms of the organic material was obtained from comparison of the simulated infrared and Raman vibrational spectra with the experimental results. Furthermore, we also studied the effect of L-arginine doping on the thermal stability of the grown KDP crystal by employing Thermo gravimetric analysis (TGA). TGA suggests that increasing the level of L-arginine doping speeds the decomposition process and it weakens the KDP crystal, which indicates successful doping of the KDP crystals with L-arginine amino acid. Urinary stones are one of the oldest and most widely spread diseases in humans, animals and birds. Many remedies have been employed through the ages for the treatment of urinary stones. Recent medicinal measures reflect the modern advances, which are based on surgical removal, percutaneous techniques and extracorporeal shock wave lithotripsy (ESWL). Although these procedures are valuable, they are quite expensive for most people. Furthermore, recurrence of these diseases is awfully frequent with

  1. Accurate spectroscopic characterization of the HOC(O)O radical: A route toward its experimental identification (United States)

    Puzzarini, Cristina; Biczysko, Malgorzata; Peterson, Kirk A.; Francisco, Joseph S.; Linguerri, Roberto


    A set of accurate spectroscopic parameters for the detection of the atmospherically important HOC(O)O radical has been obtained by means of state-of-the-art ab initio computations. These include advanced coupled cluster treatments, involving both standard and explicitly correlated approaches, to correctly account for basis set incompleteness and core-valence effects. Geometric parameters for the X˜ 2A' and A˜ 2A' ' states and, for the ground state only, vibrationally corrected rotational constants including quartic and sextic centrifugal distortion terms are reported. The infrared spectrum of the X˜ 2A' state has been simulated in the 4000-400 cm-1 wavenumber interval with an approach based on second order vibrational perturbation theory that allows accounting for anharmonic effects in both energies and intensities. Finally, the vibronic spectrum for the A ˜ ← X ˜ transition has been calculated at three different temperatures in the 9000-3000 cm-1 energy range with a time-independent technique based on the Franck-Condon approximation.

  2. Simulating electric field interactions with polar molecules using spectroscopic databases. (United States)

    Owens, Alec; Zak, Emil J; Chubb, Katy L; Yurchenko, Sergei N; Tennyson, Jonathan; Yachmenev, Andrey


    Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH 3 and NH 3 , and spontaneous emission data for optoelectrical Sisyphus cooling of H 2 CO and CH 3 Cl are discussed.

  3. Vibrational spectroscopy in diagnosis and screening

    CERN Document Server

    Severcan, F


    In recent years there has been a tremendous growth in the use of vibrational spectroscopic methods for diagnosis and screening. These applications range from diagnosis of disease states in humans, such as cancer, to rapid identification and screening of microorganisms. The growth in such types of studies has been possible thanks to advances in instrumentation and associated computational and mathematical tools for data processing and analysis. This volume of Advances in Biomedical Spectroscopy contains chapters from leading experts who discuss the latest advances in the application of Fourier

  4. High-accuracy calculations of the rotation-vibration spectrum of {{\\rm{H}}}_{3}^{+} (United States)

    Tennyson, Jonathan; Polyansky, Oleg L.; Zobov, Nikolai F.; Alijah, Alexander; Császár, Attila G.


    Calculation of the rotation-vibration spectrum of {{{H}}}3+, as well as of its deuterated isotopologues, with near-spectroscopic accuracy requires the development of sophisticated theoretical models, methods, and codes. The present paper reviews the state-of-the-art in these fields. Computation of rovibrational states on a given potential energy surface (PES) has now become standard for triatomic molecules, at least up to intermediate energies, due to developments achieved by the present authors and others. However, highly accurate Born–Oppenheimer energies leading to highly accurate PESs are not accessible even for this two-electron system using conventional electronic structure procedures (e.g. configuration-interaction or coupled-cluster techniques with extrapolation to the complete (atom-centered Gaussian) basis set limit). For this purpose, highly specialized techniques must be used, e.g. those employing explicitly correlated Gaussians and nonlinear parameter optimizations. It has also become evident that a very dense grid of ab initio points is required to obtain reliable representations of the computed points extending from the minimum to the asymptotic limits. Furthermore, adiabatic, relativistic, and quantum electrodynamic correction terms need to be considered to achieve near-spectroscopic accuracy during calculation of the rotation-vibration spectrum of {{{H}}}3+. The remaining and most intractable problem is then the treatment of the effects of non-adiabatic coupling on the rovibrational energies, which, in the worst cases, may lead to corrections on the order of several cm‑1. A promising way of handling this difficulty is the further development of effective, motion- or even coordinate-dependent, masses and mass surfaces. Finally, the unresolved challenge of how to describe and elucidate the experimental pre-dissociation spectra of {{{H}}}3+ and its isotopologues is discussed.

  5. Vibration analysis of cryocoolers (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui


    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  6. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)


    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  7. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong


    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  8. Composite materials inspection. [ultrasonic vibration holographic NDT (United States)

    Erf, R. K.


    Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

  9. Vibrational lineshapes of adsorbates on solid surfaces (United States)

    Ueba, H.

    interaction between adsorbate and substrate. Besides spectroscopic studies of adsorbate vibrations, infrared stimulated desorption is chosen as a case study of surface chemical reactions activated by laser radiation. The dynamical processes of photodesorption is discussed in conjunction with infrared absorption, which is followed by its energy dissipation into substrate phonons or molecule-surface bond leading to desorption.

  10. Direct quantum mechanical/molecular mechanical simulations of two-dimensional vibrational responses: N-methylacetamide in water

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jonggu; Cho, Minhaeng, E-mail: [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)


    Multidimensional infrared (IR) spectroscopy has emerged as a viable tool to study molecular structure and dynamics in condensed phases, and the third-order vibrational response function is the central quantity underlying various nonlinear IR spectroscopic techniques, such as pump-probe, photon echo and two-dimensional (2D) IR spectroscopy. In this paper, a new computational method is presented that calculates this nonlinear response function in the classical limit from a series of classical molecular dynamics (MD) simulations, employing a quantum mechanical/molecular mechanical (QM/MM) force field. The method relies on the stability matrix formalism where the dipole-dipole quantum mechanical commutators appearing in the exact quantum response function are replaced by the corresponding Poisson brackets. We present the formulation and computational algorithm of the method for both the classical and the QM/MM force fields and apply it to the 2D IR spectroscopy of carbon monoxide (CO) and N-methylacetamide (NMA), each solvated in a water cluster. The conventional classical force field with harmonic bond potentials is shown to be incapable of producing a reliable 2D IR signal because intramolecular vibrational anharmonicity, essential to the production of the nonlinear signal, is absent in such a model. The QM/MM force field, on the other hand, produces distinct 2D spectra for the NMA and CO systems with clear vertical splitting and cross peaks, reflecting the vibrational anharmonicities and the vibrational couplings between the underlying vibrational modes, respectively. In the NMA spectrum, the coupling between the amide I and II modes is also well reproduced. While attaining the converged spectrum is found to be challenging with this method, with an adequate amount of computing it can be straightforwardly applied to new systems containing multiple chromophores with little modeling effort, and therefore it would be useful in understanding the multimode 2D IR spectrum

  11. Simulation studies for multichannel active vibration control (United States)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.


    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  12. Astrophysical techniques

    CERN Document Server

    Kitchin, CR


    DetectorsOptical DetectionRadio and Microwave DetectionX-Ray and Gamma-Ray DetectionCosmic Ray DetectorsNeutrino DetectorsGravitational Radiation Dark Matter and Dark Energy Detection ImagingThe Inverse ProblemPhotographyElectronic ImagingScanningInterferometrySpeckle InterferometryOccultationsRadarElectronic ImagesPhotometryPhotometryPhotometersSpectroscopySpectroscopy SpectroscopesOther TechniquesAstrometryPolarimetrySolar StudiesMagnetometryComputers and The Internet.

  13. Structural and spectroscopic studies of surfaces

    CERN Document Server

    Laitenberger, P


    and on a 10ML thick Ar spacer layer, a remarkable substrate dependence is revealed. A new STM-based technique for fabricating simple metal-structures with dimensions in the 10-100nm regime which are partially electrically isolated from their environment was developed in collaboration with Dr. L. A. Silva. This technique employs the STM tip as a mechanical nanofabrication tool to machine gaps into a thin metallic film deposited on an insulating substrate, which laterally confine and electrically isolate the desired metal regions. Several metal structures, such as nanoscale wires and pads, were successfully created. Finally, the conceptual basis and present stage of construction of a new surface analytical tool, the Scanning Probe Energy Loss Spectrometer (SPELS), is discussed. The SPELS offers the exciting prospect of collecting structural as well as spectroscopic information with a spatial resolution of a few nanometres. Once successfully developed, it will be ideally suited for spectroscopic studies of nanos...

  14. 14th International Conference on Acoustics and Vibration of Mechanical Structures

    CERN Document Server

    Marinca, Vasile


    This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.

  15. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals. (United States)

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin


    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  16. Vibrational damping of composite materials (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  17. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis (United States)

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin


    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  18. Enroute to investigating protein dynamics under selective vibrational excitation at the THz FEL FELBE (United States)

    Bauer, C.; Gensch, M.; Heberle, J.


    We aim at investigating proteins under irradiation with intense THz radiation tuned into resonance to specific vibrational modes. This approach is much in analogy to recent experiments that showed selective vibrational control in Complex materials [1, 2, 3]. To achieve the necessary sensitivity for protein dynamics we combine a novel time-resolved IR difference spectroscopic setup with uniquely intense, tuneable narrow bandwidth THz radiation (1.2 - 75 THz) of the free electron laser FELBE.

  19. Raman spectroscopic study of LiHPO (United States)

    Lee, Kwang-Sei; Ko, Jae-Hyeon; Moon, Joonhee; Lee, Sookyoung; Jeon, Minhyon


    The dielectric constant of polycrystalline LiH 2PO 4 has been measured between 297 and 17 K. No marked changes were observed over this range, indicating that the room-temperature orthorhombic phase persisted up to 17 K. Raman spectra of polycrystalline LiH 2PO 4 were also measured at 297, 200, and 70 K in the frequency shift region of 15-4000 cm -1 with Raman-active vibrational modes naively assigned to low-frequency (0-300 cm -1) external and high-frequency (300-4000 cm -1) internal modes. In addition to the internal modes of the PO 4 tetrahedra, the internal modes of the LiO 4 tetrahedra spectroscopically manifested themselves between 390-500 cm -1. This frequency range overlaps those of ν2 (PO 4) and ν4 (PO 4). The LiH 2PO 4O-H vibrational frequencies were in good agreement with crystallographic reports that there are two types of hydrogen bonds: intermediate (long bonds) and strong (short bonds).

  20. Spectroscopic and density functional theory studies of 7-hydroxy-3‧-methoxyisoflavone: A new isoflavone from the seeds of Indigofera heterantha (Wall) (United States)

    Rahman, Taj Ur; Uddin, Ghias; Nisa, Riffat Un; Ludwig, Ralf; Liaqat, Wajiha; Mahmood, Tariq; Mohammad, Ghulam; Choudhary, M. Iqbal; Ayub, Khurshid


    A new isoflavone 7-hydroxy 3‧-methoxyisoflavone (1) is isolated from the seeds of Indigofera heterantha. The structure of this new compound was established using spectroscopic techniques such as ID, 2D NMR, and mass spectrometry. Density functional theory calculations are carried out for the first time for geometric, electronic and spectroscopic properties of 1 (isoflavone). DFT calculations have been performed at B3LYP/6-311G(d,p) level of theory for obtaining geometric and spectroscopic properties of compound 1. The simulated vibrational spectrum of compound 1 at B3LYP/6-311G(d,p) shows nice correlation with the experimental IR spectrum after a scaling factor of 0.973. 1H and 13C NMR chemical shifts were calculated using Cramer's re-parameterized function WP04 at 6-311G(d,p) basis set, and show nice correlation with the experimental data. Four conformers were considered for NMR chemical shift calculations. Electronic properties such as band gap, Ionization potential and electron affinities were also simulated for the first time; however, no comparison could be made with the experiment.

  1. Determination of the spectroscopic properties of indium bromide (United States)

    Mulders, H. C. J.; Rijke, A. J.; Haverlag, M.; Kroesen, G. M. W.


    To develop a more efficient plasma light source, molecules are considered as the prime source of radiation because they can potentially avoid the conversion losses of the low-pressure mercury lamp as well as the thermal losses of the high-pressure mercury lamps. A candidate to serve as the prime radiator in such a lamp could be indium bromide, but spectroscopic data to assess its aptitude are largely unavailable. To increase the knowledge of the spectroscopic properties of these molecules and InBr in particular, an experiment was designed to acquire this information. Laser-induced fluorescence was used to study the radiative properties of InBr for lighting purposes. Using an innovative method to interpret the measured data, detection--excitation (detex) plots, more information can be obtained from the spectra. Also the effect of a background gas and plasma was investigated for both a capacitive and an inductive plasma. Mainly the electronic A-state of InBr was investigated. Results include newly identified rotational transitions, vibrational constants, rotational constants for different vibrational levels, band head wave numbers and Franck-Condon factors for various vibrational transitions.

  2. Model Indepedent Vibration Control


    Yuan, Jing


    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  3. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  4. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  5. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus


    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  6. Gearbox vibration diagnostic analyzer (United States)


    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  7. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian


    Everything engineers need to know about mechanical vibration and one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  8. Whole body vibration improves body mass, flexibility and strength in ...

    African Journals Online (AJOL)

    Whole body vibration improves body mass, flexibility and strength in previously sedentary adults. Abstract. Objectives. This study aimed to determine the effectiveness of whole body vibration (WBV) training for promoting health- related physical fitness in sedentary adults. Design. A non-randomised sampling technique was ...

  9. Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Bayat, M.; Shahidi, M.; Barari, Amin


    We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...... accuracy which is valid for a wide range of vibration amplitudes as indicated in the presented examples....

  10. AC impedance and dielectric spectroscopic studies of Mg ion ...

    Indian Academy of Sciences (India)

    Abstract. Polyvinyl alcohol (PVA)–polyethylene glycol (PEG) based solid polymer blend electrolytes with magne- sium nitrate have been prepared by the solution cast technique. Impedance spectroscopic technique has been used, to characterize these polymer electrolytes. Complex impedance analysis was used to ...

  11. AC impedance and dielectric spectroscopic studies of Mg 2 ion ...

    Indian Academy of Sciences (India)

    Polyvinyl alcohol (PVA)–polyethylene glycol (PEG) based solid polymer blend electrolytes with magnesium nitrate have been prepared by the solution cast technique. Impedance spectroscopic technique has been used, to characterize these polymer electrolytes. Complex impedance analysis was used to calculate bulk ...

  12. Surface Vibration Reconstruction using Inverse Numerical Acoustics

    Directory of Open Access Journals (Sweden)

    F. Martinus


    Full Text Available This paper explores the use of inverse numerical acoustics to reconstruct the surface vibration of a noise source. Inverse numerical acoustics is mainly used for source identification. This approach uses the measured sound pressure at a set of field points and the Helmholtz integral equation to reconstruct the normal surface velocity. The number of sound pressure measurements is considerably less than the number of surface vibration nodes. An overview of inverse numerical acoustics is presented and compared with other holography techniques such as nearfield acoustical holography and the Helmholtz equation least squares method. In order to obtain an acceptable reproduction of the surface vibration, several critical factors such as the field point selection and the effect of experimental errors have to be handled properly. Other practical considerations such as the use of few measured velocities and regularization techniques will also be presented. Examples will include a diesel engine, a transmission housing and an engine cover.

  13. Vibrational spectroscopy in the electron microscope. (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A


    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.


    Directory of Open Access Journals (Sweden)

    V.І. Marchuk


    Full Text Available This paper investigates the mechanism of origin of structural, structural and technological defects of rollers. The technique for integrated indicator of vibration working surfaces of the rings to determine the level of life of the finished part to the operation as part of the bearing and predict the vibroacoustic characteristics of rolling bearings. It was established that technological defects cause low-frequency and high-frequency vibrations. The question about the extent to which it is necessary to strengthen the tolerances on the parameters of bearings on which vibration level is determined not errors bearing parts and their structural properties. Calculated values of the amplitudes vibroacceleration due to the rigidity of the bearing vibrations are so small that in some cases adopted precision calculations turned enough to detect such vibrations. Thus, when tested on the vibro-acoustic installations structural vibration does not play an important role.

  15. The Shock Vibration Bulletin. Part 3. Isolation and Damping, Vibration Test Criteria, and Vibration Analysis and Test (United States)


    fatigae equivalent test time of 45-mimates. 1. BACKGROUND subjected to both vibration and loose cargo testing as well an the type and amount of...Environmental Test the track laying environment. Nethods, 10 March 1975. 8. FUTURE EFFORTS 11. Soci, Darrell F., Fatigae Life Estimation Techniques, Technical

  16. Ultrafast Dynamics of Vibration-Cavity Polariton Modes (United States)

    Owrutsky, Jeff; Dunkelberger, Adam; Fears, Kenan; Simpkins, Blake; Spann, Bryan

    Vibrational modes of polymers, liquids, and solvated compounds can couple to Fabry-Perot optical cavity modes, creating vibration-cavity polariton modes whose energy tunes with the cavity length and incidence angle. Here we report the pump-probe infrared spectroscopy of vibration-cavity polaritons in cavity-coupled W(CO)6. At very early times, we observe quantum beating between the two polariton states find an anomalously low degree of excitation. After the quantum beating, we directly observe spectroscopic signatures of excited-state absorption from both polariton modes and uncoupled reservoir modes. An analytical expression for cavity transmission reproduces these signatures. The upper polariton mode relaxes ten times more quickly than the uncoupled vibrational mode and the polariton lifetime depends on the angle of incidence of the infrared pulses. Coupling to an optical cavity gives a means of control of the lifetime of vibration-cavity polaritons and could have important implications for chemical reactivity in vibrationally excited molecules.

  17. Integrated photonics for infrared spectroscopic sensing (United States)

    Lin, Hongtao; Kita, Derek; Han, Zhaohong; Su, Peter; Agarwal, Anu; Yadav, Anupama; Richardson, Kathleen; Gu, Tian; Hu, Juejun


    Infrared (IR) spectroscopy is widely recognized as a gold standard technique for chemical analysis. Traditional IR spectroscopy relies on fragile bench-top instruments located in dedicated laboratory settings, and is thus not suitable for emerging field-deployed applications such as in-line industrial process control, environmental monitoring, and point-ofcare diagnosis. Recent strides in photonic integration technologies provide a promising route towards enabling miniaturized, rugged platforms for IR spectroscopic analysis. Chalcogenide glasses, the amorphous compounds containing S, Se or Te, have stand out as a promising material for infrared photonic integration given their broadband infrared transparency and compatibility with silicon photonic integration. In this paper, we discuss our recent work exploring integrated chalcogenide glass based photonic devices for IR spectroscopic chemical analysis, including on-chip cavityenhanced chemical sensing and monolithic integration of mid-IR waveguides with photodetectors.

  18. Vibration diagnostics instrumentation for ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, A.


    The future e{sup -}e{sup +} 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)

  19. Characterization of pollen by vibrational spectroscopy. (United States)

    Zimmermann, Boris


    Classification, discrimination, and biochemical assignment of vibrational spectra of pollen samples belonging to 43 different species of the order Pinales has been made using three different vibrational techniques. The comparative study of transmission (KBr pellet) and attenuated total reflection (ATR) Fourier transform infrared (FT-IR) and FT-Raman spectroscopies was based on substantial variability of pollen grain size, shape, and relative biochemical composition. Depending on the penetration depth of the probe light, vibrational techniques acquire predominant information either on pollen grain walls (FT-Raman and ATR-FT-IR) or intracellular material (transmission FT-IR). Compared with the other two methods, transmission FT-IR obtains more comprehensive information and as a result achieves superior spectral identification and discrimination of pollen. The results strongly indicate that biochemical similarities of pollen grains belonging to the same plant genus or family lead to similar features in corresponding vibrational spectra. The exploitation of that property in aerobiological monitoring was demonstrated by simple and rapid pollen identification based on relatively small spectral libraries, with the same (or better) taxonomic resolution as that provided by optical microscopy. Therefore, the clear correlation between vibrational spectra and pollen grain morphology, biochemistry, and taxonomy is obtained, while successful pollen identification illustrates the practicability of such an approach in environmental studies.

  20. Does more sophisticated modeling reduce model uncertainty? A case study on vibration predictions

    NARCIS (Netherlands)

    Waarts, P.H.; Wit, M.S. de


    In this paper, the reliability of vibration predictions in civil engineering is quantified. Emphasis is laid on the vibration predictions for road- and rail traffic and vibrations from building activities such as (sheet)pile driving. Several kinds of prediction techniques were investigated: expert

  1. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I (United States)

    Takahashi, Masae; Ishikawa, Yoichi


    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  2. Vibration Measurements on the Frejlev Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hansen, Lars Pilegaard

    The present report presents full-scale measurements on the Frejlev-mast which is a 200 meter hight guyed steel mast located 10 km. from Aalborg. The goal of the research was to investigate various techniques which could be used to estimate cable forces from vibration measurements. The cables...

  3. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu


    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  4. Flow distribution and tube vibration in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.


    A project was initiated to study flow distribution and tube vibration in heat exchangers. An experimental program was carried out on a full-size heat exchanger in four test phases of parametric study. The flow induced vibration data were used to quantify and develop non-intrusive vibration monitoring techniques for online problem evaluation and to study the influence of design features and conditions on the vibration. The in-tube vibration data obtained have shown that the vibroacoustic and microphone monitoring techniques to be reliable and accurate methods for the detection of tube impacting in an operating heat exchanger. Development of work on the use of a two-accelerator vibroacoustic technique for the location of impacting zones in a bundle showed promise and is currently being employed in the field. The in-tube vibration data have demonstrated the effects that changes in the design of a bundle can have on tube vibration in that bundle. These results indicate that an important factor in bundle design is the local flow distribution in areas of high vibration susceptibility. The in-tube data have demonstrated that tubes in zones other than the inlet region can be susceptible to a form of periodic resonant excitation. This observation has implications for cases where flow reduction is implemented to avoid an instability problem. Such a reduction could bring the tube bundle into a flow regime where it is susceptible to the resonant excitation. 10 refs., 55 figs., 4 tabs.

  5. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  6. Spectroscopic characterization of cardiovascular tissue. (United States)

    Clarke, R H; Isner, J M; Gauthier, T; Nakagawa, K; Cerio, F; Hanlon, E; Gaffney, E; Rouse, E; DeJesus, S


    We present results of a series of laser spectroscopic measurements on in vitro samples of cardiovascular tissue. These include laser Raman scattering, Fourier transform infrared, plasma emission and fluorescence, and electron paramagnetic resonance spectroscopy. The results of these spectroscopic measurements are discussed in terms of their implications for the field of laser angioplasty.

  7. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David


    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  8. Spectroscopic Studies On Some Methylphosphonothioic Diamides And Related Compounds


    Ibrahim, E. H. M. [عز الدين حرب محمد ابراهيم; Nour, E. M.; Alnaimi, I. S.


    A series of methylphosphonothioic diamides MrP (S) (NHR)., ( R = Mr, pr' and Bu') and some related compounds viz, PhP(S)(NHBu)a ,P1^P(S) ( NHCHJ'h ) arc preparpd and their infrared, n.m.r. and mass spectra arc- recorded. The V(P=S), M(P—C) and V(P—N) values are determined in each case and indicate very little effect of the substituents on these bond vibrations. On the bases of 'H, ^C and ^P n.m.r. spectroscopic data it was shown that the spectra of all diamides agree with the expected structu...

  9. "Divide and conquer" semiclassical molecular dynamics: A practical method for spectroscopic calculations of high dimensional molecular systems. (United States)

    Di Liberto, Giovanni; Conte, Riccardo; Ceotto, Michele


    We extensively describe our recently established "divide-and-conquer" semiclassical method [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)] and propose a new implementation of it to increase the accuracy of results. The technique permits us to perform spectroscopic calculations of high-dimensional systems by dividing the full-dimensional problem into a set of smaller dimensional ones. The partition procedure, originally based on a dynamical analysis of the Hessian matrix, is here more rigorously achieved through a hierarchical subspace-separation criterion based on Liouville's theorem. Comparisons of calculated vibrational frequencies to exact quantum ones for a set of molecules including benzene show that the new implementation performs better than the original one and that, on average, the loss in accuracy with respect to full-dimensional semiclassical calculations is reduced to only 10 wavenumbers. Furthermore, by investigating the challenging Zundel cation, we also demonstrate that the "divide-and-conquer" approach allows us to deal with complex strongly anharmonic molecular systems. Overall the method very much helps the assignment and physical interpretation of experimental IR spectra by providing accurate vibrational fundamentals and overtones decomposed into reduced dimensionality spectra.

  10. Vibration Analysis and the Accelerometer (United States)

    Hammer, Paul


    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  11. Low-Contamination Vibrating Feeder for Silicon Chips (United States)

    Mackintosh, B. H.


    Vibratory feeding is method of controlling flow of small oddly shaped particles. Technique applied to other materials that require contamination control by feeding material through vibrating troughs topped by particular material.

  12. L-glutamine: Dynamical properties investigation by means of INS, IR, RAMAN, {sup 1}H NMR and DFT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pawlukojć, A., E-mail: [Institute of Nuclear Chemistry and Technology, Dorodna 16 str., 03-195 Warsaw (Poland); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Hołderna-Natkaniec, K. [Faculty of Physics, A. Mickiewicz University, 61-614 Poznań (Poland); Bator, G. [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw (Poland); Natkaniec, I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Faculty of Physics, A. Mickiewicz University, 61-614 Poznań (Poland)


    Graphical abstract: - Highlights: • The L-glutamine was investigated by INS, IR, Raman and {sup 1}H NMR spectroscopy. • DFT calculations for the solids state model were performed. • The NH{sub 3}{sup +} torsional vibration mode is observed in the INS spectra. • Activation energy for the NH{sub 3}{sup +} group reorientation is obtained. - Abstract: Vibrational spectra of L-glutamine in the solid state were studied using the inelastic neutron scattering (INS), infrared (IR), Raman and {sup 1}H NMR spectroscopy techniques. DFT calculation using CASTEP code with the periodic boundary conditions was used to determine and describe the normal modes in the vibrational spectra of pure L-glutamine. An excellent agreement between the calculated and experimental INS, IR and Raman data has been found. Bands assigned to the stretching vibrations of the NH{sub 3}{sup +} group in hydrogen bonds are observed at 2400, 2618 and 2619 cm{sup −1}, while the NH{sub 3}{sup +} torsion vibration mode is observed at 441 cm{sup −1}. The band at 2041 cm{sup −1} is assigned to combinations of the NH{sub 3}{sup +} bending symmetry vibration and the CO{sub 2}{sup -} rocking vibration and can be used as an “indicator band” for the identification of the NH{sub 3}{sup +} groups in amino acid. For the L-glutamine an activation energy needed for the NH{sub 3}{sup +} group reorientation was obtained as 7.4 kcal/mol. It was found, that the combination three spectroscopic methods (INS, IR and Raman) with calculations for the crystal state proved to be an effective tool to investigate dynamical properties of amino acid crystals.

  13. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  14. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration (United States)

    Irvine, T.


    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  15. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire


    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  16. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration (United States)

    Irvine, T.


    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested according. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.


    Directory of Open Access Journals (Sweden)

    A. Palevicius


    Full Text Available Methods allowing investigation of vibrations of the stainless steel waveguide by combining noncontact techniques with the state-of-the-art multiphysics software are developed. The vibrations of the waveguide, used in nowadays surgery are examined by the aids of the holographic interferometry technique, vibrometer based on Doppler shift of backscattered laser light and the virtual model of the waveguide is created by the Comsol Multiphysics software. 

  18. Spectroscopic Parameters of Lumbar Intervertebral Disc Material (United States)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.


    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  19. Vibrational dephasing in matter-wave interferometers (United States)

    Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.


    Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.

  20. A hybrid nonlinear vibration energy harvester (United States)

    Yang, Wei; Towfighian, Shahrzad


    Vibration energy harvesting converts mechanical energy from ambient sources to electricity to power remote sensors. Compared to linear resonators that have poor performance away from their natural frequency, nonlinear vibration energy harvesters perform better because they use vibration energy over a broader spectrum. We present a hybrid nonlinear energy harvester that combines bi-stability with internal resonance to increase the frequency bandwidth. A two-fold increase in the frequency bandwidth can be obtained compared to a bi-stable system with fixed magnets. The harvester consists of a piezoelectric cantilever beam carrying a movable magnet facing a fixed magnet. A spring allows the magnet to move along the beam and it provides an extra stored energy to further increase the amplitude of vibration acting as a mechanical amplifier. An electromechanically coupled mathematical model of the system is presented to obtain the dynamic response of the cantilever beam, the movable magnet and the output voltage. The perturbation method of multiple scales is applied to solve these equations and obtain approximate analytical solutions. The effects of various system parameters on the frequency responses are investigated. The numerical approaches of the long time integration (Runge-Kutta method) and the shooting technique are used to verify the analytical results. The results of this study can be used to improve efficiency in converting wasted mechanical vibration to useful electrical energy by broadening the frequency bandwidth.

  1. Confocal light scattering and absorption spectroscopic microscopy (United States)

    Qiu, Le; Vitkin, Edward; Salahuddin, Saira; Zaman, Munir M.; Andersson, Charlotte; Freedman, Steven D.; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.


    We have developed a novel optical method for observing submicron intracellular structures in living cells which is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light scattering spectroscopy (LSS). CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales on the order of 100 nm. In addition, it provides not only size information but also information about the biochemical and physical properties of the cell.

  2. Utilization of noise analysis technique for mechanical vibrations estimation in the ATUCHA{sub 1} and Embalse Argentine NPP; Uso de la tecnica de analisis de ruido para la estimacion de vibraciones mecanicas en las centrales nucleares argentinas Atucha I y Embalse

    Energy Technology Data Exchange (ETDEWEB)

    Lescano, V.H.; Wentzeis, L.M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Constituyentes; Guevara, M.; Moreno, C. [Nucleoelectrica Argentina S.A., Cordoba (Argentina). Central Nuclear Embalse; Pineyro, J. [Nucleoelectrica Argentina S.A., Buenos Aires (Argentina). Central Nuclear Atucha I


    In Argentine, comprehensive noise measurements have been performed with the reactor instrumentation of the PHWR power plant Atucha I and Embalse. The Embalse reactor is a CANDU-600 (600 Mwe) type pressurized heavy water reactor. It's a heavy water moderator and heavy water cooled natural uranium fueled pressure tube system. Signal of vanadium and platinum type in core-self power neutron detectors of ex-core ion chambers and of a moderator pressure sensor have been recorded and analysed. The vibration of reactor internals as vertical and horizontal in-core neutron flux detectors units and the coolant channels systems, consisting of calandria and pressure tubes with fuel bundles, have been identified and monitored during normal reactor operation. Atucha I, is a PHWR reactor natural uranium fueled, and heavy water moderated and cooled. Neutron noise techniques using of ex-core ionization chambers and in-core Vanadium SPND's were implemented, among others, in order to produce early detection of anomalous vibrations in the reactor internals. Noise analysis was successfully performed to identify normal and peculiar vibrations in particular reactor internals. (author)

  3. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao


    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  4. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    The objective of this thesis is to fundamentally study the influence of die surface vibration on friction under low frequency in metal forging processes. The research includes vibrating tool system design for metal forming, theoretical and experimental investigations, and finite element simulations...... on die surface vibration in forging process. After a general introduction to friction mechanisms and friction test techniques in metal forming, the application of ultrasonic vibration in metal forming, the influence of sliding velocity on friction is described. Some earlier investigations...... is undergoing vibration. In the experiments, die surface orientation, frequency and amplitude of vibration, vibrating wave form and the direction of vibration has been taken into account as the parameters which influence friction behaviour in forging process. The results reveal that friction could be reduced up...

  5. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four ...

  6. Analysis of real-time vibration data (United States)

    Safak, E.


    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  7. Vibrational spectroscopy of resveratrol (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő


    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  8. Bumblebee vibration activated foraging


    Su, Dan Kuan-Nien


    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  9. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard


    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  10. Vibrations and waves

    CERN Document Server

    Kaliski, S


    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  11. Polarized Raman spectroscopic characterization of normal and oral cancer blood plasma (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Singaravelu, Ganesan


    In India oral cancer ranks the top due to the habitual usage of tobacco in its various forms and remains the major burden. Hence priority is given for early diagnosis as it is the better solution for cure or to improve the survival rate. For the past three decades, optical spectroscopic techniques have shown its capacity in the discrimination of normal and malignant samples. Many research works have conventional Raman in the effective detection of cancer using the variations in bond vibrations of the molecules. However in addition polarized Raman provides the orientation and symmetry of biomolecules. If so can polarized Raman be the better choice than the conventional Raman in the detection of cancer? The present study aimed to found the answer for the above query. The conventional and polarized Raman spectra were acquired for the same set of blood plasma samples of normal subjects and oral malignant (OSCC) patients. Thus, obtained Raman spectral data were compared using linear discriminant analysis coupled with artificial neural network (LDA-ANN). The depolarization ratio of biomolecules such as antioxidant, amino acid, protein and nucleic acid bases present in blood plasma was proven to be the best attributes in the categorization of the groups. The polarized Raman results were promising in discriminating oral cancer blood plasma from that of normal blood plasma with improved efficiency. The results will be discussed in detail.

  12. [In situ Raman spectroscopic observation of micro-processes of methane hydrate formation and dissociation]. (United States)

    Liu, Chang-Ling; Ye, Yu-Guang; Meng, Qing-Guo; Lü, Wan-Jun; Wang, Fei-Fei


    Micro laser Raman spectroscopic technique was used for in situ observation of the micro-processes of methane hydrate formed and decomposed in a high pressure transparent capillary. The changes in clathrate structure of methane hydrate were investigated during these processes. The results show that, during hydrate formation, the Raman peak (2 917 cm(-1)) of methane gas gradually splits into two peaks (2 905 and 2 915 cm(-1)) representing large and small cages, respectively, suggesting that the dissolved methane molecules go into two different chemical environments. In the meantime, the hydrogen bonds interaction is strengthened because water is changing from liquid to solid state gradually. As a result, the O-H stretching vibrations of water shift to lower wavenumber. During the decomposition process of methane hydrates, the Raman peaks of the methane molecules both in the large and small cages gradually clear up, and finally turn into a single peak of methane gas. The experimental results show that laser Raman spectroscopy can accurately demonstrate some relevant information of hydrate crystal structure changes during the formation and dissociation processes of methane hydrate.

  13. FT-IR, NMR spectroscopic and quantum mechanical investigations of two ferrocene derivatives

    Directory of Open Access Journals (Sweden)

    Ö. Alver


    Full Text Available New ferrocene derivatives as N-(3-piperidin-1-ylpropylferrocenamide (Fc-3ppa and N-(pyridine-3-ylmethylferrocenamide (Fc-3pica and structural investigations were carried out with 1H, 13C, DEPT 45 or 135, HETCOR, COSY NMR and FT-IR spectroscopic techniques. Characterization of Fc-3ppa (FeC19H26N2O and Fc-3pica (FeC17H16N2O was also supported by density functional theory (DFT used by B3LYP functional and 6-31G(d or 6-311++G(d,p basis sets. From the combination of all the results, it can be clearly seen that syntheses of Fc-3ppa and Fc-3pica have been successfully achieved. Theoretical values are successfully compared against experimental data and B3LYP method is able to provide satisfactory results for predicting NMR properties and vibrational frequencies of the synthesized ferrocene based systems.

  14. New quinolone derivative: Spectroscopic characterization and reactivity study by DFT and MD approaches (United States)

    Ranjith, P. K.; Mary, Y. Sheena; Panicker, C. Yohannan; Anto, P. L.; Armaković, Stevan; Armaković, Sanja J.; Musiol, Robert; Jampilek, Josef; Van Alsenoy, C.


    The spectral characterization of ethyl-4-hydroxy-2-oxo-1, 2-dihydroquinoline-3-carboxylate (EHODQ3C) was performed by FT-IR and FT-Raman spectroscopic techniques and density functional theory computations have been carried using B3LYP/6-311++G(d,p) method. On the basis of potential energy distribution the vibrational assignments of the wavenumbers were proposed. Splitting of the Nsbnd H stretching mode and downshifted from the computed value which indicates the weakening of the Nsbnd H bond. NBO analysis was performed to study donor acceptor interactions. DFT calculations and molecular dynamics (MD) simulations have been combined in order to investigate fundamental reactive properties of the title molecule. To determine important reactive molecule sites we have calculated average local ionization energies (ALIE) and Fukui functions. Sensitivity towards autoxidation mechanism has been investigated by calculation of bond dissociation energies, while stability of title molecule in water has been investigated by calculation of radial distribution functions (RDF) after (MD) simulations. EHODQ3C exhibits inhibitory activity against ACP reductase and appears to be highly selective.

  15. Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet


    Full Text Available Building on diamond characteristics such as hardness, chemical inertness and low electron emission threshold voltage, the current microscopic, spectroscopic and voltammetric investigations are directed towards improving the properties of electrode coating materials for their future use in clinical studies of deep brain stimulation via fast-scan cyclic voltammetry (FSCV. In this study we combine the capabilities of confocal Raman mapping in providing detailed and accurate analysis of local distributions of material constituents in a series of boron-doped polycrystalline diamond films grown by chemical vapor deposition, with information from the more conventional techniques of scanning electron microscopy (SEM and infrared absorption spectroscopy. Although SEM images show a uniform distribution of film crystallites, they have the limitation of being unable to differentiate the distribution of boron in the diamond. Values of 1018–1021 atoms/cm3 of boron content have been estimated from the absorption coefficient of the 1290 cm−1 infrared absorption band and from the 500 cm−1 Raman vibration. The observed accumulation of boron atoms and carbon sp2 impurities at the grain boundaries suggests that very high doping levels do not necessarily contribute to improvement of the material’s conductivity, corroborating with voltammetric data. FSCV results also indicate an enhanced stability of analyte detection.

  16. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E


    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  17. Vibrational and theoretical study of selected diacetylenes. (United States)

    Roman, Maciej; Baranska, Malgorzata


    Six commonly used disubstituted diacetylenes with short side-chains (RCCCCR, where R=CH2OH, CH2OPh, C(CH3)2OH, C(CH3)3, Si(CH3)3, and Ph) were analyzed using vibrational spectroscopy and quantum-chemical calculations to shed new light on structural and spectroscopic properties of these compounds. Prior to that the conformational analysis of diacetylenes was performed to search the Potential Energy Surface for low-energy minima. Theoretical investigations were followed by the potential energy distribution (PED) analysis to gain deeper insight into FT-Raman and FT-IR spectra that, in some cases, were recorded for the first time for the studied compounds. The analysis was focused mainly on spectral features of the diacetylene system sensitive to the substitution. Shifts of the characteristic bands and changes in bond lengths were observed when changing the substituent. Furthermore, Fermi resonance was observed in the vibrational spectra of some diacetylenes. FT-IR spectra were measured by using two methods, i.e. transmission (with KBr substrate) and Attenuated Total Reflection (ATR), showing the latter adequate and fast tool for IR measurements of diacetylenes. Additionally, Surface Enhanced Raman Spectroscopy (SERS) was applied for phenyl derivative for the first time to study its interaction with metallic nanoparticles that seems to be perpendicular. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The diffraction signatures of individual vibrational modes in polyatomic molecules (United States)

    Ryu, Seol; Weber, Peter M.; Stratt, Richard M.


    Though one normally thinks of single-molecule diffraction studies as tools for eliciting molecular geometry, molecular diffraction patterns are really the Fourier transforms of complete molecular wave functions. There is thus at least the possibility of imaging the vibrational wave functions of polyatomic molecules by means of a pump-probe diffraction experiment: the pump laser could prepare a specific vibrational state and an electron or x-ray could then be diffracted off the molecule some short time later. The present paper develops the general theory of diffraction signatures for individual vibrational wave functions in polyatomic molecules and investigates the feasibility of seeing such signatures experimentally using the example of a linear triatomic molecule modeled after CS2. Although aligned molecules in specific vibrational quantum states turn out to exhibit very characteristic diffraction signatures, the signatures of the vibrational wave functions are partially washed out for the complete isotropy expected from gas phase molecules. Nonetheless, it is possible to design a diffraction experiment using a pump-dump sequence with a polarized laser beam which will select a nonisotropic sample of vibrationally excited molecules. We show that the resulting level of anisotropy should enhance the diffraction signature, helping to distinguish different vibrational components. These model calculations therefore suggest the possibility of observing the dynamics of vibrational wave packets using experimentally realizable diffraction techniques.

  19. Novel Molecular Spectroscopic Multimethod Approach for Monitoring Water Absorption/Desorption Kinetics of CAD/CAM Poly(Methyl Methacrylate) Prosthodontics. (United States)

    Wiedemair, Verena; Mayr, Sophia; Wimmer, Daniel S; Köck, Eva Maria; Penner, Simon; Kerstan, Andreas; Steinmassl, Patricia-Anca; Dumfahrt, Herbert; Huck, Christian W


    Water absorbed to poly(methyl methacrylate) (PMMA)-based CAD/CAM (computer-assisted design/computer-assisted manufacturing) prosthodontics can alter their properties including hardness and stability. In the present contribution, water absorption and desorption kinetics under defined experimental conditions were monitored employing several supplementary and advanced Fourier transform infrared (FT-IR) spectroscopic techniques in combination with multivariate analysis (MVA). In this synergistic vibrational spectroscopic multimethod approach, first a novel near-infrared (NIR) diffuse fiber optic probe reflection spectroscopic method was established for time-resolved analysis of water uptake within seven days under controlled conditions. Near-infrared water absorbance spectra in a wavenumber range between 5288-5100 cm-1 (combination band) and 5424-5352 cm-1 (second overtone) were used establishing corresponding calibration and validation models to quantify the amount of water in the milligram range. Therefore, 14 well-defined samples exposed to prior optimized experimental conditions were taken into consideration. The average daily water uptake conducting reference analysis was calculated as 22 mg/day for one week. Additionally, in this study for the first time NIR two-dimensional correlation spectroscopy (2D-COS) was conducted to monitor and interpret the spectral dynamics of water absorption on the prosthodontics in a wavenumber range of 5100-5300 cm-1. For sensitive time-resolved recording of water desorption, a recently developed high-temperature, high-pressure FT-IR reaction cell with water-free ultra-dry in situ and operando operation was applied. The reaction cell, as well as the sample holder, was fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high temperature zone. Applying a temperature gradient in the range of 25-150 ℃, mid-infrared (MIR) 2D-COS was successfully conducted to get insights into the dynamic

  20. Combined spectroscopic and quantum chemical studies of ezetimibe (United States)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti


    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.


    Directory of Open Access Journals (Sweden)

    Belhadef RACHID


    Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  2. Optical and Spectroscopic Properties of Polymer Layers Doped with Rare Earth Ions


    Prajzler, Vaclav; Lyutakov, Oleksiy; Huttel, Ivan; Oswald, Jiri; Jerabek, Vitezslav


    We report on spectroscopic properties of the Polymethylmethacrylate and Epoxy Novolak Resin polymer doped with Rare Earth ions. Polymer layers were fabricated by a spin coating or by pouring the polymer into a bottomless mould placed on a quartz substrate. The fabricated polymer layers doped with RE ions were examined by infrared spectroscopy and IR spectroscopy of the samples revealed absorption bands corresponding to the O-H vibrations in the region from 3340 cm-1 to 3380 cm-1. Transmission...

  3. Composite Struts Would Damp Vibrations (United States)

    Dolgin, Benjamin P.


    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  4. Ship Vibration Design Guide (United States)


    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  5. Compact Vibration Damper (United States)

    Ivanco, Thomas G. (Inventor)


    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  6. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  7. Blade Vibration Measurement System (United States)

    Platt, Michael J.


    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  8. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.


    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  9. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)


    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  10. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang


    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  11. Minimization of the Vibration Energy of Thin-Plate Structures and the Application to the Reduction of Gearbox Vibration (United States)

    Inoue, Katsumi; Krantz, Timothy L.


    While the vibration analysis of gear systems has been developed, a systematic approach to the reduction of gearbox vibration has been lacking. The technique of reducing vibration by shifting natural frequencies is proposed here for gearboxes and other thin-plate structures using the theories of finite elements, modal analysis, and optimization. A triangular shell element with 18 degrees of freedom is developed for structural and dynamic analysis. To optimize, the overall vibration energy is adopted as the objective function to be minimized at the excitation frequency by varying the design variable (element thickness) under the constraint of overall constant weight. Modal analysis is used to determine the sensitivity of the vibration energy as a function of the eigenvalues and eigenvectors. The optimum design is found by the gradient projection method and a unidimensional search procedure. By applying the computer code to design problems for beams and plates, it was verified that the proposed method is effective in reducing vibration energy. The computer code is also applied to redesign the NASA Lewis gear noise rig test gearbox housing. As one example, only the shape of the top plate is varied, and the vibration energy levels of all the surfaces are reduced, yielding an overall reduction of 1/5 compared to the initial design. As a second example, the shapes of the top and two side plates are varied to yield an overall reduction in vibration energy of 1/30.

  12. Vibration factors impact analysis on aerial film camera imaging quality (United States)

    Xie, Jun; Han, Wei; Xu, Zhonglin; Tan, Haifeng; Yang, Mingquan


    Aerial film camera can acquire ground target image information advantageous, but meanwhile the change of aircraft attitude, the film features and the work of camera inside system could result in a vibration which could depress the image quality greatly. This paper presented a design basis of vibration mitigation stabilized platform based on the vibration characteristic of the aerial film camera and indicated the application analysis that stabilized platform could support aerial camera to realize the shoot demand of multi-angle and large scale. According to the technique characteristics of stabilized platform, the development direction are high precision, more agility, miniaturization and low power.

  13. Liicg - a New Method for Rotational and Ro-Vibrational Spectroscopy at 4K (United States)

    Kluge, Lars; Stoffels, Alexander; Bruenken, Sandra; Asvany, Oskar; Schlemmer, Stephan


    Since many years low temperature ion trapping techniques are successfully used in our laboratories in combination with sensitive action spectroscopy schemes (Laser Induced Reactions) to measure high resolution ro-vibrational and rotational spectra of gas-phase molecular ions. Here we present a further development of a LIR method first introduced for recording rotationally resolved electronic spectra of N2+. This new method, called LIICG (Light Induced Inhibition of Complex Growth), makes use of state specific He-attachment rates to stored cold molecular ions. We have recently demonstrated its applicability to rotational and ro-vibrational spectroscopy of C3H+ and CH5+. The measurements were performed in recently completed 4K 22-pole ion trap instruments. Ionic species are produced in a storage ion source and are mass selected before they enter the trap. For spectroscopy normally a few thousand ions are stored at 4K together with He at high number densities (around 1014 cm-3). Under these conditions He attaches to the ions via ternary collision processes. As we will show, this attachement process is hindered by exciting a rotational or ro-vibrational transition, likely because the attachment rates for He are slower for higher rotational or ro-vibrational levels. So by exciting the bare ion the number of ion- He complexes at equilibrium is reduced. In this way the spectrum of the bare ion can be recorded by counting the number of ion-He complexes as a function of frequency. To test the new method we chose well known rotational ground state transitions of CO+, HCO+ and CD+. In particular CD+ appeared to be a good candidate for understanding the new method in detail, due to its strong LIICG signal and its simple rotational spectrum. In this contribution we will explain the LIICG scheme and its underlying kinetics using the example of CD+. We will show effects of different experimental conditions on the signal (e.g. He number density, temperature, radiation power…) to

  14. Spectroscopic investigations (FT-IR & FT-Raman) and molecular docking analysis of 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine (United States)

    Prasath, M.; Govindammal, M.; Sathya, B.


    The Azathioprine is used as anticancer agent. Azathioprine is chemically called 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine (6M4N5P). The vibrational analysis of the 6M4N5P compound was carried out by using FT-IR and FT-Raman spectroscopic techniques and compared with aspects. The optimized geometry, frequency and intensity of the vibrational bands of 6M4N5P were obtained from the HF and DFT methods with 6-31G (d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The calculated Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies show that charge transfer occur within the molecule. MEP (Molecular Electrostatic Potential) is very useful in the investigation of the charge distributions and molecular structure. The molecule orbital contributions were determined by using the total density of states (TDOS). A molecular docking analysis has been carried out to understand the conformational change and electrostatic properties of 6M4N5P in the active site of Rac1-Receptor.

  15. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Puzzarini, Cristina [Dipartimento di Chimica " Giacomo Ciamician," Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Ali, Ashraf [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Biczysko, Malgorzata; Barone, Vincenzo, E-mail: [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)


    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm{sup –1} for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  16. Spectroscopic and structural elucidation of alanyl-containing dipeptides and their hydrogensquarates (United States)

    Koleva, Bojidarka B.; Kolev, Tsonko M.; Spiteller, Michael


    The hydrogensquarates of alanyl-containing dipeptides glycylalanine ( H-Gly-Ala-OH) and alanylalanine ( H-Ala-Ala-OH) are characterized structurally by means of quantum chemical ab initio calculations, solid-state linear-dichroic infrared (IR-LD) spectroscopy, 1H and 13C NMR data, ESI-MS, HPLC-MS/MS, TGV and DSC methods. The structures consist in positive charged peptide moiety and negative hydrogensquarate anion (HSq -), stabilizing by strong intermolecular hydrogen bonds. The theoretical and IR-LD spectroscopic data are compared with corresponding ones of zwitterion dipeptides with a view to understanding the structural and conformational changes as well as the IR-spectroscopic ones as a result of hydrogensquarates formation. The strong overlapped and complicated IR-spectroscopic bands typical for hydrogensquarates in solid-state are assigned supporting with the presented vibrational analysis of the dipeptides and of the hydrogensqauarate anion.

  17. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)


    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  18. Vibrational spectroscopy and imaging: applications for tissue engineering. (United States)

    Querido, William; Falcon, Jessica M; Kandel, Shital; Pleshko, Nancy


    Tissue engineering (TE) approaches strive to regenerate or replace an organ or tissue. The successful development and subsequent integration of a TE construct is contingent on a series of in vitro and in vivo events that result in an optimal construct for implantation. Current widely used methods for evaluation of constructs are incapable of providing an accurate compositional assessment without destruction of the construct. In this review, we discuss the contributions of vibrational spectroscopic assessment for evaluation of tissue engineered construct composition, both during development and post-implantation. Fourier transform infrared (FTIR) spectroscopy in the mid and near-infrared range, as well as Raman spectroscopy, are intrinsically label free, can be non-destructive, and provide specific information on the chemical composition of tissues. Overall, we examine the contribution that vibrational spectroscopy via fiber optics and imaging have to tissue engineering approaches.

  19. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Saman Hosseinpour


    Full Text Available Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm.

  20. Spectroscopic and molecular modeling studies of N-(4-(3-methyl-3-phenylcyclobutyl-3-phenylthiazole-2(3H-ylideneaniline by using experimental and density functional methods

    Directory of Open Access Journals (Sweden)

    Fatih Şen


    Full Text Available In the present study, a combined experimental and computational study on molecular structure and spectroscopic characterization on the title compound has been reported. The crystal was synthesized and its molecular structure brought to light by X-ray single crystal structure determination. The spectroscopic properties of the compound were examined by FT-IR and NMR (1H and 13C techniques. FT-IR spectra of the target compound in solid state were observed in the region 4000–400 cm−1. The 1H and 13C NMR spectra were recorded in CDCl3 solution. The molecular geometries were those obtained from the X-ray structure determination optimized using the density functional theory (DFT/B3LYP method with the 6-31G(d, p and 6-31G+(d, p basis set in ground state. From the optimized geometry of the molecule, geometric parameters (bond lengths, bond angles and torsion angles, vibrational assignments and chemical shifts of the title compound have been calculated theoretically and compared with those of experimental data. Besides, molecular electrostatic potential (MEP, frontier molecular orbitals (FMOs, Mulliken population analysis, Thermodynamic properties and non-linear optical (NLO properties of the title molecule were investigated by theoretical calculations.

  1. Enhancing forensic science with spectroscopic imaging (United States)

    Ricci, Camilla; Kazarian, Sergei G.


    This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging

  2. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)


    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  3. Smart paint sensor for monitoring structural vibrations (United States)

    Al-Saffar, Y.; Aldraihem, O.; Baz, A.


    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures.

  4. Rotational spectra of vibrationally excited CCH and CCD. (United States)

    Killian, T C; Gottlieb, C A; Thaddeus, P


    The millimeter-wave rotational spectra of the lowest bending and stretching vibrational levels of CCH and CCD were observed in a low pressure discharge through acetylene and helium. The rotational, centrifugal distortion, and fine structure constants were determined for the (02(0)0) and (02(2)0) bending states, the (100) and (001) stretching levels, and the (011) combination level of CCH. The same pure bending and stretching levels, and the (110) combination level were observed in CCD. Apparent anomalies in the spectroscopic constants in the bending states were shown to be due to l-type resonances. Hyperfine constants, which in CCH are sensitive to the degree of admixture of the A 2Pi excited electronic state, were determined in the excited vibrational levels of both isotopic species. Theoretical Fermi contact and dipole-dipole hyperfine constants calculated by Peric et al. [J. Mol. Spectrosc. 150, 70 (1991)] were found to be in excellent agreement with the measured constants. In CCD, new rotational lines tentatively assigned to the (100) level largely on the basis of the observed hyperfine structure support the assignment of the C-H stretching fundamental (nu1) by Stephens et al. [J. Mol. Struct. 190, 41 (1988)]. Rotational lines in the excited vibrational levels of CCH are fairly intense in our discharge source because the vibrational excitation temperatures of the bending vibrational levels and the (110) and (011) combination levels are only about 100 K higher than the gas kinetic temperature, unlike the higher frequency stretching vibrations, where the excitation temperatures are five to ten times higher.

  5. FT-IR and FT-Raman spectroscopic signatures, vibrational assignments, NBO, NLO analysis and molecular docking study of 2-{[5-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N,N-dimethylethanamine. (United States)

    Almutairi, Maha S; Alanazi, Amer M; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Pathak, Shilendra K; Srivastava, Ruchi; Prasad, Onkar; Sinha, Leena


    FT-Raman and FT-IR spectra of the title compound 2-{[5-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N,N-dimethylethanamine were recorded and investigated. The DFT/B3LYP/6-311++G(d,p) method was used to compute the vibrational wavenumbers. A good coherence between experimental and theoretical wavenumbers shows the preciseness of the assignments. NLO properties like the dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface and contour map have been calculated to get a better cognizance of the properties of the title molecule. Natural bond orbital analysis has been applied to estimate the stability of the molecule arising from charge delocalization. The molecular docking studies concede that title compound may exhibit HIV-1 Protease 1N49 inhibitory activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Signature of nonadiabatic coupling in excited-state vibrational modes. (United States)

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian


    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  7. Spectroscopic investigation of local mechanical impedance of living cells

    CERN Document Server

    Costa, Luca; Benseny-Cases, Núria; Mayeaux, Véronique; Chevrier, Joël; Comin, Fabio


    The mechanical properties of PC12 living cells have been studied at the nanoscale with a Force Feedback Microscope using two experimental approaches. Firstly, the local mechanical impedance of the cell membrane has been mapped simultaneously to the cell morphology at constant force. As the force of the interaction is gradually increased, we observed the appearance of the sub-membrane cytoskeleton. We shall compare the results obtained with this method with the measurement of other existing techniques. Secondly, a spectroscopic investigation has been performed varying the indentation of the tip in the cell membrane and consequently the force applied on it. In contrast with conventional dynamic atomic force microscopy techniques, here the small oscillation amplitude of the tip is not necessarily imposed at the cantilever first eigenmode. This allows the user to arbitrarily choose the excitation frequency in developing spectroscopic AFM techniques. The mechanical response of the PC12 cell membrane is found to be...

  8. Atropisomerism at C ̶ N bonds: Structural conformations and vibrational spectral study of Iminothiazoline Derivatives with density functional theoretical optimizations

    Directory of Open Access Journals (Sweden)



    Full Text Available The isolation of the pair atropisomers of the both iminothiazoline derivatives and the spectroscopic analytical of the compound have been computed using B3LYP/6-31G(d,p level to derive the equilibrium geometry, conformational stability, molecular orbital energies and vibrational frequencies was studied in this paper.

  9. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.


    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  10. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony


    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  11. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu


    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  12. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. (United States)

    Claßen, Jens; Aupert, Florian; Reardon, Kenneth F; Solle, Dörte; Scheper, Thomas


    The use of spectroscopic sensors for bioprocess monitoring is a powerful tool within the process analytical technology (PAT) initiative of the US Food and Drug Administration. Spectroscopic sensors enable the simultaneous real-time bioprocess monitoring of various critical process parameters including biological, chemical, and physical variables during the entire biotechnological production process. This potential can be realized through the combination of spectroscopic measurements (UV/Vis spectroscopy, IR spectroscopy, fluorescence spectroscopy, and Raman spectroscopy) with multivariate data analysis to obtain relevant process information out of an enormous amount of data. This review summarizes the newest results from science and industry after the establishment of the PAT initiative and gives a critical overview of the most common in-line spectroscopic techniques. Examples are provided of the wide range of possible applications in upstream processing and downstream processing of spectroscopic sensors for real-time monitoring to optimize productivity and ensure product quality in the pharmaceutical industry.

  13. Spectroscopic Classification of Two Supernovae (United States)

    Gomez, S.; Blanchard, P.; Nicholl, M.; Berger, E.


    We obtained optical spectroscopic observations of 2 transients reported to the Transient Name Server by the ATLAS survey (Tonry et al. 2011, PASP, 123, 58; Tonry et al., ATel #8680) and the Pan-STARRS Survey for Transients (PSST; Huber et al., ATel #7153;

  14. Modeling Vibration Intensity of Aircraft Bevel Gears

    Directory of Open Access Journals (Sweden)

    V. V. Golovanov


    Full Text Available The subject is the aircraft bevel gears, which are part of the drive systems of gas turbine engines and helicopter transmissions. The article deals with defect specifics of the aircraft conical gears with a circular tooth as compared to the conical gear wheels of general engineering. The finite element method has been used to find by calculation that the main reason for destruction of aircraft bevel gears is a resonant vibration excitation of the gear wheel rim due to its nodal diameter eigenvibrations happened to be within the operating range of the transmission rotation frequencies. A parametric finite element model has been developed. It allows us to investigate the impact of modification parameters of the drive side of gear wheels on the function of the kinematic transmission error at different values of transmitted torque. Using the method of main coordinates, a reduced dynamic model of the bevel gear has been developed to allow simulating the vibration intensity of bevel gears with various parameters of the working profile modification. Within the framework of evaluation test of the dynamic model, amplitude-frequency characteristics have been constructed for the main parameters of transmission oscillations, including vibrational stresses in the teeth space. It is found that modification parameters of the transmission drive side have a significant effect on the vibration intensity of the bevel gears in the entire operating range. The main factor affecting the vibration stress amplitude in the gear wheel is the amplitude of the kinematic error function with the corresponding torque transmitted. The obtained research results can be used when designing the new aircraft drives and modernizing the existing ones. As part of the further development, it is expected to create a technique for recording the damage accumulation in the conical gears, taking into account the typical flight profile of a gas turbine engine or a helicopter.


    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich


    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  16. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith


    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  17. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... toddlers will need help from a parent or caregiver. Older kids and adults can choose ACTs that they can do on their ... (clapping) or vibration to loosen mucus from airway walls. See how different airway clearance techniques work to help you clear the thick, sticky mucus ...

  18. A Vibrating Wire System For Quadrupole Fiducialization

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary


    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  19. Flushing Enhancement with Vibration and Pulsed Current in Electrochemical Machining

    Directory of Open Access Journals (Sweden)

    Zhujian Feng


    Full Text Available This research aims to understand flushing of by-products in electrochemical machining (ECM by modeling and experimentally verifying mechanism of particle transport in inter-electrode gap under low frequency vibration. A series of hole were drilled on steel plates to evaluate the effect of vibration on material removal rate and hole quality. Infinite focus optical technique was used to capture and analyze the three-dimensional images of ECM'ed features. Experimental results showed that maximum machining depth and minimum taper angle can be achieved when vibrating the workpiece at 40 Hz and 10 µm amplitude. Simulation results showed that the highest average flushing speed of 0.4 m/s was obtained at this vibration frequency and amplitude. Machining depth and material removal rate has a positive correlation with the average flushing speed. Sharper ECM’ed profile is obtained since the taper angle is favorably reduced at high average flushing speed.

  20. Active isolation of vibrations with adaptive structures (United States)

    Guigou, C.; Fuller, C. R.; Wagstaff, P. R.


    Vibration transmission in structures is controlled by means of a technique which employs distributed arrays of piezoelectric transducers bonded to the supporting structure. Distributed PVDF piezoelectric strips are employed as error sensors, and a two-channel feedforward adaptive LMS algorithm is used for minimizing error signals and thereby controlling the structure. A harmonic force input excites a thick plate, and a receiving plate is configured with three pairs of piezoelectric actuators. Modal analyses are performed to determine the resonant frequencies of the system, and a scanning laser vibrometer is used to study the shape of the response of the receiving plate during excitation with and without the control algorithm. Efficient active isolation of the vibrations is achieved with modal suppression, and good control is noted in the on-resonance cases in which increased numbers of PVDF sensors and piezoelectric actuators are employed.

  1. Acoustical analysis of gear housing vibration (United States)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.; Oswald, Fred B.


    The modal and acoustical analysis of the NASA gear-noise rig is described. Experimental modal analysis techniques were used to determine the modes of vibration of the transmission housing. The resulting modal data were then used in a boundary element method (BEM) analysis to calculate the sound pressure and sound intensity on the surface of the housing as well as the radiation efficiency of each mode. The radiation efficiencies of the transmission housing modes are compared with theoretical results for finite, baffled plates. A method that uses the measured mode shapes and the BEM to predict the effect of simple structural changes on the sound radiation efficiency of the modes of vibration is also described.

  2. Spectroscopic Investigation of the Mechanism of Photocatalysis

    Directory of Open Access Journals (Sweden)

    Yoshio Nosaka


    Full Text Available Reaction mechanisms of various kinds of photocatalysts have been reviewed based on the recent reports, in which various spectroscopic techniques including luminol chemiluminescence photometry, fluorescence probe method, electron spin resonance (ESR, and nuclear magnetic resonance (NMR spectroscopy were applied. The reaction mechanisms elucidated for bare and modified TiO2 were described individually. The modified visible light responsive TiO2 photocatalysts, i.e., Fe(III-deposited metal-doped TiO2 and platinum complex-deposited TiO2, were studied by detecting paramagnetic species with ESR, •O2− (or H2O2 with chemiluminescence photometry, and OH radicals with a fluorescence probe method. For bare TiO2, the difference in the oxidation mechanism for the different crystalline form was investigated by the fluorescence probe method, while the adsorption and decomposition behaviors of several amino acids and peptides were investigated by 1H-NMR spectroscopy.

  3. Spectroscopic and chemometric exploration of food quality

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær


    in order to control the quality of the end product and to continuously monitor the production. In this thesis, the possibilities and limitations of the application of spectroscopy and chemometrics in rapid control of food quality are discussed and demonstrated by the examples in the eight included......The desire to develop non-invasive rapid measurements of essential quality parameters in foods is the motivation of this thesis. Due to the speed and noninvasive properties of spectroscopic techniques, they have potential as on-line or atline methods and can be employed in the food industry...... publications. Different aspects of food quality are covered, but the focus is mainly on the development of multivariate calibrations for predictions of rather complex attributes such as the water-holding capacity of meat, ethical quality of the slaughtering procedure, protein content of single wheat kernels...

  4. Raman Spectroscopic Investigation of Dyes in Spices (United States)

    Uhlemann, Ute; Ramoji, Anuradha; Rösch, Petra; Da Costa Filho, Paulo Augusto; Robert, Fabien; Popp, Jürgen


    In this study, a number of synthetic colorants for spices have been investigated by means of Raman spectroscopy, resonance Raman spectroscopy, and surface enhanced (resonance) Raman spectroscopy (SER(S)). The aim of the study was the determination of limits of detection for each dye separately and in binary mixtures of dyes in spiked samples of the spices. Most of the investigated dyes have been azo dyes, some being water-soluble, the other being fat-soluble. Investigating the composition of food preparations is an ongoing and important branch of analytical sciences. On one hand, new ingredients have to be analyzed with regard to their contents, on the other hand, raw materials that have been tampered have to be eliminated from food production processes. In the last decades, the various Raman spectroscopic methods have proven to be successful in many areas of life and materials sciences. The ability of Raman spectroscopy to distinguish even structural very similar analytes by means of their vibrational fingerprint will also be important in this study. Nevertheless, Raman scattering is a very weak process that is oftentimes overlaid by matrix interferences or fluorescence. In order to achieve limits of detection in the nanomolar range, the signal intensity has to be increased. According to the well-known equations, there are several ways of achieving this increase: •increasing sample concentration •increasing laser power •decreasing the laser wavelength •using electronic resonance •increasing the local electromagnetic field In this study, nearly all of the above-mentioned principles were applied. In a first step, all dyes were investigated in solution at different concentrations to determine a limit of detection. In the second step, spiked spice samples have been extracted with a variety of solvents and process parameters tested. To lower the limit of detection even further, SERS spectroscopy has been used as well in as out of electronic resonance.

  5. Structural and Spectroscopic Properties of Water Around Small Hydrophobic Solutes (United States)

    Montagna, Maria; Sterpone, Fabio; Guidoni, Leonardo


    We investigated the structural, dynamical and spectroscopic properties of water molecules around a solvated methane by means of Car-Parrinello molecular dynamics simulations. Despite their mobility, in the first-shell water molecules are dynamically displaced in a clathrate-like cage around the hydrophobic solute. No significant differences in water geometrical parameters, in molecular dipole moments or in hydrogen bonding properties are observed between in-shell and out-shell molecules, indicating that liquid water can accommodate a small hydrophobic solute without altering its structural properties. The calculated contribution of the first shell water molecules to the infrared spectra does not show significant differences with respect the bulk signal once the effects of the missing polarization of second-shell molecules has been taken into account. Small fingerprints of the clathrate-like structure appear in the vibrational density of states in the libration and OH stretching regions. PMID:22946539

  6. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States (United States)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago


    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  7. Terahertz spectroscopic investigation of methylenedioxy amphetamine (United States)

    Wang, Guangqin; Shen, Jingling


    Experimental measurement and theoretical analysis of THz spectrum for methylenedioxy amphetamine are introduced. The refractive index and absorption coefficient of the sample were observed by terahertz time-domain spectroscopy (THz-TDS) technique in the range of 0.2~2.6 THz. It exhibits obvious absorption feature at 1.40 THz and weak THz absorption at around 1.68 and 2.21 THz. The spectral absorption characteristic in THz band was useful for the inspection and identification of drugs using THz-TDS. The theoretical calculation was performed using Density functional theory (DFT) with the GAUSSIAN 03 software package. Fully geometry optimization and frequency analysis of the optimized structure were performed at the B3LYP/6-21G levels. The simulated absorption spectrum was in agreement with the experimental data, and can hence be used for the assignment of observed THz spectrum. The theoretical simulation result showed that absorption peaks mainly result from intra-molecule and inter-molecule vibrations, different absorption peaks are corresponding to different vibrational modes and intensity. So the combination of the THz-TDS and DFT is an effective way to investigate characteristic spectra of illicit drugs.

  8. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)


    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  9. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.


    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  10. Spectroscopic identification of rare earth elements in phosphate glass (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.


    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV–VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  11. Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Reed, E; Fried, L E


    We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.

  12. Spectroscopic characterization of enzymatic flax retting: Factor analysis of FT-IR and FT-Raman data (United States)

    Archibald, D. D.; Henrikssen, G.; Akin, D. E.; Barton, F. E.


    Flax retting is a chemical, microbial or enzymatic process which releases the bast fibers from the stem matrix so they can be suitable for mechanical processing before spinning into linen yarn. This study aims to determine the vibrational spectral features and sampling methods which can be used to evaluate the retting process. Flax stems were retted on a small scale using an enzyme mixture known to yield good retted flax. Processed stems were harvested at various time points in the process and the retting was evaluated by conventional methods including weight loss, color difference and Fried's test, a visual ranking of how the stems disintegrate in hot water. Spectroscopic measurements were performed on either whole stems or powders of the fibers that were mechanically extracted from the stems. Selected regions of spectra were baseline and amplitude corrected using a variant of the multiplicative signal correction method. Principal component regression and partial least-squares regression with full cross-validation were used to determine the spectral features and rate of spectral transformation by regressing the spectra against the retting time in hours. FT-Raman of fiber powders and FT-IR reflectance of whole stems were the simplest and most precise methods for monitoring the retting transformation. Raman tracks the retting by measuring the decrease in aromatic signal and subtle changes in the C-H stretching vibrations. The IR method uses complex spectral features in the fingerprint and carbonyl region, many of which are due to polysaccharide components. Both spectral techniques monitor the retting process with greater precision than the reference method.

  13. Structural characterization of chiral molecules using vibrational circular dichroism spectroscopy

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard


    . This is the cornerstone of biological specificity. Chiral molecules also interact differently with different polarization states of electromagnetic radiation, because the absorption coefficient depends on the state of polarization. This is called dichroism and gives rise to several spectroscopic techniques targeting...

  14. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  15. Avoiding the Health Hazard of People from Construction Vehicles: A Strategy for Controlling the Vibration of a Wheel Loader. (United States)

    Chi, Feng; Zhou, Jun; Zhang, Qi; Wang, Yong; Huang, Panling


    The vibration control of a construction vehicle must be carried out in order to meet the aims of sustainable environmental development and to avoid the potential human health hazards. In this paper, based on market feedback, the driver seat vibration of a type of wheel loader in the left and right direction, is found to be significant over a certain speed range. In order to find abnormal vibration components, the order tracking technique (OTT) and transmission path analysis (TPA) were used to analyze the vibration sources of the wheel loader. Through this analysis, it can be seen that the abnormal vibration comes from the interaction between the tire tread and the road, and this is because the vibration was amplified by the cab mount, which was eventually transmitted to the cab seat. Finally, the seat vibration amplitudes were decreased by up to 50.8%, after implementing the vibration reduction strategy.

  16. The effects of ligand substitution and deuteriation on the spectroscopic and photophysical properties of [Ru(LL)(CN)(4)](2-) complexes

    NARCIS (Netherlands)

    Kovacs, Margit; Ronayne, Kate L.; Browne, Wesley R.; Henry, William; Vos, Johannes G.; McGarvey, John J.; Horvath, Attila


    The spectroscopic characterisation of a series of [Ru(LL)(CN)(4)](2-) complexes, where LL = 1,10-phenanthroline (phen) and its methyl- and phenyl-substituted derivatives and several deuteriated isotopologues are reported. The optical and vibrational properties of these complexes are compared with

  17. Spectroscopic characterization of a Nigerian standard sand: Igbokoda sand

    CSIR Research Space (South Africa)

    Ojuri, OO


    Full Text Available the Middle Ordovician St. Peter Sandstone near Ottawa, Illinois, had been picked by the American Society for Testing and Materials (ASTM) as the reference sand to employ in testing cement and strength of concrete [9]. To the best of our knowledge... and magnetic resonance spectroscopic techniques due to its importance in cement, geotechnical/geo-environmental research in Nigeria. This should halt importation of standard silica sand for mortar and concrete testing...

  18. The 1997 spectroscopic GEISA databank. (United States)

    Jacquinet-Husson, N.; Arie, E.; Ballard, J.; Barbe, A.; Bjoraker, G.; Bonnet, B.; Brown, L. R.; Camy-Peyret, C.; Champion, J. P.; Chedin, A.; Chursin, A.; Clerbaux, C.; Duxbury, G.; Flaud, J.-M.; Fourrie, N.; Fayt, A.; Graner, G.; Gamache, R.; Goldman, A.; Golovko, V.; Guelachvili, G.; Hartmann, J. M.; Hilico, J. C.; Hillman, J.; Lefevre, G.; Lellouch, E.; Mikhailenko, S. N.; Naumenko, O. V.; Nemtchinov, V.; Newnham, D. A.; Nikitin, A.; Orphal, J.; Perrin, A.; Reuter, D. C.; Rinsland, C. P.; Rosenmann, L.; Rothman, L. S.; Scott, N. A.; Selby, J.; Sinitsa, L. N.; Sirota, J. M.; Smith, A. M.; Smith, K. M.; Tyuterev, V. G.; Tipping, R. H.; Urban, S.; Varanasi, P.; Weber, M.


    The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are the spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the giant planets. GEISA-97 contains also a catalog of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. The modifications and improvements made to the earlier edition (GEISA-92) and the data management software are described.

  19. Transformation of ab initio force fields in calculations of molecular vibrations using regundand vibrational coordinates (United States)

    Pitsevich, G. A.; Kostopravova, A. V.; Umreiko, D. S.; Ksenofontov, M. A.


    A technique was suggested to transform ab initio molecular force fields calculated using a set of independent vibrational coordinates into a form corresponding to a complete set of regundand coordinates and reflecting the molecular symmetry. Conditions necessary for the appropriate transformations to be possible are formulated. The possibility of transforming the force field for the simplest fragment containing regundand coordinates was demonstrated using ethylene as an example.

  20. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E


    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  1. Synthesis, characterisation and spectroscopic analysis of fluorescent dyes for applications-based chemistry


    Higginbotham, Heather Fay


    This research project investigates the synthesis and spectroscopic analysis of organic and inorganic fluorescent and luminescent materials for future use in applications-based chemistry. This work specifically focuses upon fluorescent dyes with tunable emission properties designed for the investigation of applications less commonly explored in literature. The use of advanced spectroscopic and single particle fluorescence techniques is also an underlying theme of each chapter, used to elucidat...

  2. Vibration Modes at Terahertz and Infrared Frequencies of Ionic Liquids Consisting of an Imidazolium Cation and a Halogen Anion. (United States)

    Yamada, Toshiki; Tominari, Yukihiro; Tanaka, Shukichi; Mizuno, Maya; Fukunaga, Kaori


    The terahertz and infrared frequency vibration modes of room-temperature ionic liquids with imidazolium cations and halogen anions were extensively investigated. There is an intermolecular vibrational mode between the imidazolium ring of an imidazolium cation, a halogen atomic anion with a large absorption coefficient and a broad bandwidth in the low THz frequency region (13-130 cm(-1)), the intramolecular vibrational modes of the alkyl-chain part of an imidazolium cation with a relatively small absorption coefficient in the mid THz frequency region (130-500 cm(-1)), the intramolecular skeletal vibrational modes of an imidazolium ring affected by the interaction between the imidazolium ring, and a halogen anion with a relatively large absorption coefficient in a high THz frequency region (500-670 cm(-1)). Interesting spectroscopic features on the interaction between imidazolium cations and halogen anions was also obtained from spectroscopic studies at IR frequencies (550-3300 cm(-1)). As far as the frequency of the intermolecular vibrational mode is concerned, we found the significance of the reduced mass in determining the intermolecular vibration frequency.

  3. Single nanoparticle tracking spectroscopic microscope (United States)

    Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA


    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  4. Spectroscopic Classification of Seven Supernovae (United States)

    Blanchard, P.; Gomez, S.; Nicholl, M.; Berger, E.


    We obtained optical spectroscopic observations of 7 transients reported to the Transient Name Server by the ATLAS survey (Tonry et al. 2011, PASP, 123, 58; Tonry et al., ATel #8680), the Pan-STARRS Survey for Transients (PSST; Huber et al., ATel #7153;, DPAC and the ESA Gaia Photometric Science Alerts Team (, and the Tsinghua University-National Astronomical Observatories of China Transient Survey (TNTS).

  5. Vibrational Sensing in Marine Invertebrates (United States)


    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  6. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  7. Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme. (United States)

    Slater, Jeffrey W; Marguet, Sean C; Cirino, Sabrina L; Maugeri, Pearson T; Shafaat, Hannah S


    Nickel-substituted rubredoxin (NiRd) is a functional enzyme mimic of hydrogenase, highly active for electrocatalytic and solution-phase hydrogen generation. Spectroscopic methods can provide valuable insight into the catalytic mechanism, provided the appropriate technique is used. In this study, we have employed multiwavelength resonance Raman spectroscopy coupled with DFT calculations on an extended active-site model of NiRd to probe the electronic and geometric structures of the resting state of this system. Excellent agreement between experiment and theory is observed, allowing normal mode assignments to be made on the basis of frequency and intensity analyses. Both metal-ligand and ligand-centered vibrational modes are enhanced in the resonance Raman spectra. The latter provide information about the hydrogen bonding network and structural distortions due to perturbations in the secondary coordination sphere. To reproduce the resonance enhancement patterns seen for high-frequency vibrational modes, the secondary coordination sphere must be included in the computational model. The structure and reduction potential of the Ni(III)Rd state have also been investigated both experimentally and computationally. This work begins to establish a foundation for computational resonance Raman spectroscopy to serve in a predictive fashion for investigating catalytic intermediates of NiRd.

  8. The origins of vibration theory (United States)

    Dimarogonas, A. D.


    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  9. Raman spectroscopic investigation of the chemopreventive response of naringenin and its nanoparticles in DMBA-induced oral carcinogenesis (United States)

    Krishnakumar, N.; Sulfikkarali, N. K.; Manoharan, S.; Venkatachalam, P.


    Raman spectroscopy is a vibrational spectroscopic technique that can be used to optically probe the biomolecular changes associated with tumor progression. The aim of the present study is to investigate the biomolecular changes in chemopreventive response of prepared naringenin-loaded nanoparticles (NARNPs) relative to efficacy of free naringenin (NAR) during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis by Fourier Transform Raman (FT-Raman) spectroscopy. Oral squamous cell carcinoma (OSCC) was developed in the buccal pouch of golden Syrian hamsters by painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. Raman spectra differed significantly between the control and tumor tissues, with tumors showing higher percentage signals for nucleic acids, phenylalanine and tryptophan and a lower in the percentage of phospholipids. Moreover, oral administration of free NAR and NARNPs significantly increased phospholipids and decreased the levels of tryptophan, phenylalanine and nucleic acid contents. On a comparative basis, NARNPs was found to have a more potent antitumor effect than free NAR in completely preventing the formation of squamous cell carcinoma and in improving the biochemical status to a normal range in DMBA-induced oral carcinogenesis. The present study further suggest that Raman spectroscopy could be a valuable tool for rapid and sensitive detection of specific biomolecular changes in response to chemopreventive agents.

  10. Spectroscopic and Theoretical Investigations of the Potential Energy Surfaces of Molecules with Intramolecular π-type Hydrogen Bonding (United States)

    Ocola, Esther; Shin, Hee-Won; Al-Saadi, Abdulaziz; Laane, Jaan


    Spectroscopic methods and theoretical calculations have been utilized to investigate the conformations of several cyclic organic molecules. The laser induced fluorescence (LIF) spectra of 2-indanol show the presence of four conformations. The one with intramolecular hydrogen bonding between the --OH group and the benzene ring is of lowest energy. The potential energy surface (PES) in terms of the ring puckering and internal rotational vibrations, which govern the conformational changes, was determined. 3-Cyclopenten-1-ol possesses a similar PES as established from its infrared and Raman spectra and theoretical calculations. This PES also shows the presence of four conformations. The π -bonding conformer lies at lowest energy. LIF has been used to study the conformational energies of 2-hydroxytetralin, and 2-cyclohexenol has been investigated by infrared and Raman techniques. The analyses of the hydrogen bonding in these molecules as well as in a dozen others were supported by both ab initio and DFT calculations. Supported by R.A. Welch grant A-0396.

  11. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.


    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  12. Far-infrared Spectroscopic Characterization of Anti-vinyl Alcohol (United States)

    Bunn, Hayley; Soliday, Rebekah M.; Sumner, Isaiah; Raston, Paul L.


    We report a detailed analysis of the high-resolution far-infrared spectrum of anti-vinyl alcohol, which has been previously identified toward Sagittarius B2(N). The ν 15 OH torsional fundamental investigated here is more than 200 cm-1 removed from the next nearest vibration, making it practically unperturbed and ideal to help refine the ground state rotational constants that were previously determined from 25 microwave lines. We assigned 1335 lines within the ν 15 fundamental centered at 261.5512 cm-1, with J and K a ranges of 1-59 and 0-16, respectively. The microwave and far-infrared line positions were fit with Watson-type A- and S-reduced Hamiltonians, with the inclusion of quartic and select sextic distortion terms. This resulted in a significant refinement of the ground state constants, in addition to the determination of the {ν }15=1 state constants for the first time. The spectroscopic parameters are in good agreement with the results from anharmonic coupled-cluster calculations, and should be useful in searches for rotationally and/or vibrationally warm anti-vinyl alcohol in interstellar molecular clouds.

  13. Silicon Micromachined Sensor for Broadband Vibration Analysis (United States)

    Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward


    The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.

  14. Evaluation of blast-induced vibration effects on structures 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)


    Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.

  15. Optimization of the impact multi-mass vibration absorbers

    Directory of Open Access Journals (Sweden)

    Ivan Kernytskyy


    Full Text Available The problem of attaching dynamic vibration absorber (DVA to a discrete multi-degree-of-freedom or continuous structure has been outlined in many papers and monographs. An impact damping system can overcome some limitations by impact as the damping medium and impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA with the several of the impact masses. Such originally designed absorbers reduce vibration selectively in maximum vibration mode without introducing vibration in other modes. An impact damper is a passive control device which takes the form of a freely moving mass, constrained by stops attached to the structure under control, i.e. the primary structure. The damping results from the exchange of momentum during impacts between the mass and the stops as the structure vibrates. The paper contemplates the provision of the impact multi-mass DVA’s with masses collisions for additional damping. For some cases of DVA optimization such a design seems more effective than conventional multi-mass DVA with independent mass moving. A technique is developed to give the optimal DVA’s for the elimination of excessive vibration in harmonic stochastic and impact loaded systems.

  16. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas


    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  17. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)


    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  18. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR (United States)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya


    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  19. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics (United States)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.


    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  20. Local vibrations and lift performance of low Reynolds number airfoil

    Directory of Open Access Journals (Sweden)

    TariqAmin Khan


    Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.

  1. Laboratory and workplace assessments of rivet bucking bar vibration emissions. (United States)

    McDowell, Thomas W; Warren, Christopher; Xu, Xueyan S; Welcome, Daniel E; Dong, Ren G


    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  2. Vibrational energy relaxation in liquids (United States)

    Chesnoy, J.; Gale, G. M.

    The de-excitation of the vibrational population of small molecules in the liquid state is considered. Experimental techniques applicable to the measurement of relaxation times in dense phases are first described. Theoretical approaches are subsequently developed with special emphasis on the relationship between ab-initio quantum methods and binary interaction models. Finally, a selection of experimental results is analysed in the light of these theories. Special attention is given to the dependence of the relaxation time on experimental parameters such as density, temperature or the concentration of a mixture. The behaviour of the relaxation time across the liquid/solid phase transition is also treated. La désexcitation vibrationnelle de petites molécules est étudiée en phase liquide. Les techniques expérimentales utilisables pour mesurer les temps de relaxation en phase dense sont d'abord décrites. Les approches théoriques sont ensuite développées en montrant en particulier les liens entre les deux principales : l'approche quantique ab-initio et les modèles d'interaction binaire. Un choix de résultats expérimentaux est finalement analysé à la lumière de ces théories. Les dépendances des temps de relaxation envers les paramètres expérimentaux, comme la densité, la température ou la concentration d'un mélange, sont spécialement étudiées. Le comportement de la relaxation à la transition liquide/solide est aussi abordé.

  3. Vibration response of misaligned rotors (United States)

    Patel, Tejas H.; Darpe, Ashish K.


    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  4. Acute and chronic neuromuscular adaptations to local vibration training. (United States)

    Souron, Robin; Besson, Thibault; Millet, Guillaume Y; Lapole, Thomas


    Vibratory stimuli are thought to have the potential to promote neural and/or muscular (re)conditioning. This has been well described for whole-body vibration (WBV), which is commonly used as a training method to improve strength and/or functional abilities. Yet, this technique may present some limitations, especially in clinical settings where patients are unable to maintain an active position during the vibration exposure. Thus, a local vibration (LV) technique, which consists of applying portable vibrators directly over the tendon or muscle belly without active contribution from the participant, may present an alternative to WBV. The purpose of this narrative review is (1) to provide a comprehensive overview of the literature related to the acute and chronic neuromuscular changes associated with LV, and (2) to show that LV training may be an innovative and efficient alternative method to the 'classic' training programs, including in the context of muscle deconditioning prevention or rehabilitation. An acute LV application (one bout of 20-60 min) may be considered as a significant neuromuscular workload, as demonstrated by an impairment of force generating capacity and LV-induced neural changes. Accordingly, it has been reported that a training period of LV is efficient in improving muscular performance over a wide range of training (duration, number of session) and vibration (frequency, amplitude, site of application) parameters. The functional improvements are principally triggered by adaptations within the central nervous system. A model illustrating the current research on LV-induced adaptations is provided.

  5. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers. (United States)

    Killgore, Jason P; Tung, Ryan C; Hurley, Donna C


    Combining heated-tip atomic force microscopy (HT-AFM) with quantitative methods for determining surface mechanical properties, such as contact resonance force microscopy, creates an avenue for nanoscale thermomechanical property characterization. For nanomechanical methods that employ an atomic force microscope cantilever's vibrational modes, it is essential to understand how the vibrations of the U-shaped HT-AFM cantilever differ from those of a more traditional rectangular lever, for which analytical techniques are better developed. Here we show, with a combination of finite element analysis (FEA) and experiments, that the HT-AFM cantilever exhibits many more readily-excited vibrational modes over typical AFM frequencies compared to a rectangular cantilever. The arms of U-shaped HT-AFM cantilevers exhibit two distinct forms of flexural vibrations that differ depending on whether the two arms are vibrating in-phase or out-of-phase with one another. The in-phase vibrations are qualitatively similar to flexural vibrations in rectangular cantilevers and generally show larger sensitivity to surface stiffness changes than the out-of-phase vibrations. Vibration types can be identified from their frequency and by considering vibration amplitudes in the horizontal and vertical channels of the AFM at different laser spot positions on the cantilever. For identifying contact resonance vibrational modes, we also consider the sensitivity of the resonant frequencies to a change in applied force and hence to tip-sample contact stiffness. Finally, we assess how existing analytical models can be used to accurately predict contact stiffness from contact-resonance HT-AFM results. A simple two-parameter Euler-Bernoulli beam model provided good agreement with FEA for in-phase modes up to a contact stiffness 500 times the cantilever spring constant. By providing insight into cantilever vibrations and exploring the potential of current analysis techniques, our results lay the groundwork

  6. Tissue vibration in prolonged running. (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M


    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons (United States)

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.


    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  8. Vibrating Intrinsic reverberation Chambers for shielding effectiveness measurements

    NARCIS (Netherlands)

    van de Beek, G.S.; Vogt-Ardatjew, R.A.; Schipper, H.; Leferink, Frank Bernardus Johannes


    A new technique for shielding effectiveness measurements is the dual VIRC method. In this method two Vibrating Intrinsic Reverberation Chambers (VIRC) are combined together via a common wall with an aperture that forms the interface between them. This particular set-up makes it possible to achieve a

  9. Interventions for chronic low back pain: whole body vibration and ...

    African Journals Online (AJOL)

    Objectives. This study explored, described and compared the effects of whole body vibration (WBV) therapy and conventional spinal stabilisation exercises in persons with chronic low back pain (CLBP). Design. A non-randomised sampling technique was used to delineate the base of volunteers gathered by a combination ...

  10. Whole body vibration improves body mass, flexibility and strength in ...

    African Journals Online (AJOL)

    Objectives. This study aimed to determine the effectiveness of whole body vibration (WBV) training for promoting healthrelated physical fitness in sedentary adults. Design. A non-randomised sampling technique was used with an equivalent match-pair comparison group, pre- and posttest design. Volunteers were gathered ...

  11. On Modal Parameter Estimates from Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Agneni, A.; Brincker, Rune; Coppotelli, B.


    Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...

  12. Videokymography : High-speed line scanning of vocal fold vibration

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK

    A digital technique for high-speed visualization of vibration, called videokymography, was developed and applied to the vocal folds. The system uses a modified video camera able to work in two modes: high-speed (nearly 8,000 images/s) and standard (50 images/s in CCIR norm). In the high-speed mode,

  13. Analytical Harmonic Vibrational Frequencies for the Green Fluorescent Protein Computed with ONIOM: Chromophore Mode Character and Its Response to Environment. (United States)

    Thompson, Lee M; Lasoroski, Aurélie; Champion, Paul M; Sage, J Timothy; Frisch, Michael J; van Thor, Jasper J; Bearpark, Michael J


    A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment.

  14. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C


    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  15. Spectroscopic Diagnostics to Support Advanced Microelectronic Fabrication Techniques. (United States)


    St. Louis , and Prof. F. Kaufman of the University of Pittsburgh, as well as 2-4 interfacing with researchers in various government-funded and...first. A subcontract to Washington University, St. Louis is devoted to development of sources for these radicals. The kinetic studies are conducted...Lett. 108, 560 (1984). 32. J.M. Jasinaki, E.A. Whittaker, G.C. Bjorklund, R.H. Dreyfus , R.D. Estes, and R.E. Walkup, Appl. Phy.. Lett. 44, 1155 (1984

  16. Chemical characterization of ultrafiltration membranes by spectroscopic techniques.

    NARCIS (Netherlands)

    Fontyn, M.; Bijsterbosch, B.H.; Riet, van 't K.


    In relation to the complicated problem of membrane fouling, a study of the adsorption mechanism of some foulants on polysulfone ultrafiltration membranes is being made. This report deals with an analysis of the bulk and surface compositions of two of these membranes. Attenuated total reflection

  17. Identification of Meat Species by Using Molecular and Spectroscopic Techniques


    Evrim Güneş Altuntaş; Ebru Deniz; Beycan Ayhan; Kezban Candogan; Duygu Ozel Demiralp


    Meat is one of the main nutrition source in the human diet with its excellent protein, vitamin and mineral contents. Despite its advantages, being high-priced makes meat products open to adulteration. Meat products are mixed food types which can contain different species of meat. However, mixing two or more types of meats is not always allowed by laws. On the other hand, replacement high quality meats with cheaper meat types are a cost lowering way for the producers. The commonly consumed mea...

  18. Simultaneous electronic and lattice characterization using coupled femtosecond spectroscopic techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Beechem Iii, Thomas Edwin; Serrano, Justin Raymond; Hopkins, Patrick E


    High-power electronics are central in the development of radar, solid-state lighting, and laser systems. Large powers, however, necessitate improved heat dissipation as heightened temperatures deleteriously affect both performance and reliability. Heat dissipation, in turn, is determined by the cascade of energy from the electronic to lattice system. Full characterization of the transport then requires analysis of each. In response, this four-month late start effort has developed a transient thermoreflectance (TTR) capability that probes the thermal response of electronic carriers with 100 fs resolution. Simultaneous characterization of the lattice carriers with this electronic assessment was then investigated by equipping the optical arrangement to acquire a Raman signal from radiation discarded during the TTR experiment. Initial results show only tentative acquisition of a Raman response at these timescales. Using simulations of the response, challenges responsible for these difficulties are then examined and indicate that with outlined refinements simultaneous acquisition of TTR/Raman signals remains attainable in the near term.

  19. Raman Spectroscopic Techniques for Planetary Exploration: Detecting Microorganisms through Minerals

    NARCIS (Netherlands)

    Verkaaik, M.F.C.; Hooijschuur, J.H.; Davies, G.R.; Ariese, F.


    Raman spectroscopy can provide highly specific chemical fingerprints of inorganic and organic materials and is therefore expected to play a significant role in interplanetary missions, especially for the search for life elsewhere in our solar system. A major challenge will be the unambiguous

  20. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.


    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.