WorldWideScience

Sample records for vibrational satellite absorption

  1. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  2. Nonlinear vibration absorption for a flexible arm via a virtual vibration absorber

    Science.gov (United States)

    Bian, Yushu; Gao, Zhihui

    2017-07-01

    A semi-active vibration absorption method is put forward to attenuate nonlinear vibration of a flexible arm based on the internal resonance. To maintain the 2:1 internal resonance condition and the desirable damping characteristic, a virtual vibration absorber is suggested. It is mathematically equivalent to a vibration absorber but its frequency and damping coefficients can be readily adjusted by simple control algorithms, thereby replacing those hard-to-implement mechanical designs. Through theoretical analyses and numerical simulations, it is proven that the internal resonance can be successfully established for the flexible arm, and the vibrational energy of flexible arm can be transferred to and dissipated by the virtual vibration absorber. Finally, experimental results are presented to validate the theoretical predictions. Since the proposed method absorbs rather than suppresses vibrational energy of the primary system, it is more convenient to reduce strong vibration than conventional active vibration suppression methods based on smart material actuators with limited energy output. Furthermore, since it aims to establish an internal vibrational energy transfer channel from the primary system to the vibration absorber rather than directly respond to external excitations, it is especially applicable for attenuating nonlinear vibration excited by unpredictable excitations.

  3. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2017-05-01

    Full Text Available Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated.

  4. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  5. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    been reported. Subsequently, the vibrational absorption (VA) and vibrational circular dichroism (VCD) and the Raman and Raman Optical Activity (ROA) spectra have been reported. In this work an analysis of the aqueous solution VA, VCD, Raman, and ROA spectra for various isotopomers of LALA are reported...... with the experimentally measured spectra. With the DFT, explicit water molecules, and a continuum solvent model we are better able to reproduce the vibrational absorption and Raman spectra than previously reported. The AAT have been implemented at the DFT level, although not within the continuum treatment. The VCD sign...

  6. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NARCIS (Netherlands)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsala, M.; Hoekstra, S.; Halonen, L.

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to

  7. A new vibration mechanism of balancing machine for satellite-borne spinning rotors

    Directory of Open Access Journals (Sweden)

    Wang Qiuxiao

    2014-10-01

    Full Text Available The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors’ low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine’s measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine’s performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite’s rotating payloads in terms of accuracy and stability.

  8. Steps for Vibration Reduction of 50kg-Class Micro-Satellite Structure

    Science.gov (United States)

    Nakamura, Masato; Furukawa, Takuya; Chiba, Masakatsu; Okubo, Hiroshi; Akita, Takeshi; Sugiyama, Yoshihiko; Nakamura, Yosuke; Imamura, Hiroaki; Umehara, Nobuhito

    The paper reports several steps taken to reduce vibration responses of a 50kg-class micro-satellite structure, which is subjected to severe mechanical/vibratory environment during launching. In order to satisfy the required mechanical interface conditions, anti-vibration design of satellite structure was modified to enhance damping capacity of the structure by applying adherent aisogrid-panel, honeycomb panel, polyimid-tape-inserted connections, and damping pads. Considerable reduction of vibration responses was confirmed by vibration test of structural-thermal model.

  9. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. T...

  10. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    Science.gov (United States)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  11. Retrieval of Aerosol Absorption Properties from Satellite Observations

    Science.gov (United States)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  12. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    CERN Document Server

    Karhu, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, $\

  13. Absorption of radiation belt particles by the inner satellites of Jupiter

    Science.gov (United States)

    Mogro-Campero, A.

    1976-01-01

    The study of trapped particle absorption by the inner Jovian satellites is reviewed from the viewpoint of radiation belt physics. Both pre- and post-Pioneer work is discussed but the emphasis is on methods used to deduce radial diffusion coefficients of particle transport from particle data. The phenomenon of particle absorption as observed by experiments on Pioneers 10 and 11 is considered; absorption effects are found to depend on the satellite, and on particle energy and species. Approximate diffusion coefficients derived from the data are found to follow a steeper spatial dependence than previously expected. The assumptions and limitations of absorption analysis and diffusion coefficient estimation are pointed out.

  14. Optical Absorption of Impurities and Defects in Semiconducting Crystals Electronic Absorption of Deep Centres and Vibrational Spectra

    CERN Document Server

    Pajot, Bernard

    2013-01-01

    This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

  15. Prediction of Acoustically Induced Random Vibration Response of Satellite Equipments with Proposed Asymptotic Apparent Mass

    Science.gov (United States)

    Ando, Shigemasa; Shi, Qinzhong

    Acoustically induced random vibration of satellite equipment mounted on honeycomb panels is a critical design consideration in satellite equipment development. Prediction of this random vibration is performed in the early stage of satellite design to specify the design limit value of random vibration excitation for satellite equipment. Various prediction methods for response prediction using Statistical Energy Analysis (SEA) have been developed: (i) NASA Lewis method, (ii) point-mass impedance method, and (iii) area-coupling impedance method. However, the first method has limited accuracy for heavy and concentrated equipment, the second one often overestimates, and the third one requires a detailed parameter. A new method combining the asymptotic apparent mass of specific equipment with NASA Lewis method is proposed herein. This proposed method takes the elastic behavior of satellite equipment rather than a rigid mass. The acoustic excitation experiments for nine real satellites (404 equipments in all) were conducted to compare existing methods to the proposed method statistically. Results show that the proposed method provides the most accurate prediction in the important frequency range.

  16. Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2018-01-01

    We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.

  17. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Science.gov (United States)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  18. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

    Science.gov (United States)

    Karhu, J; Nauta, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-06-28

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits.

  19. Ultrafast optical nonlinearity, electronic absorption, vibrational spectra and solvent effect studies of ninhydrin

    Science.gov (United States)

    Sajan, D.; Devi, T. Uma; Safakath, K.; Philip, Reji; Němec, Ivan; Karabacak, M.

    2013-05-01

    FT-IR, FT-Raman and UV-Vis spectra of the nonlinear optical molecule ninhydrin have been recorded and analyzed. The equilibrium geometry, bonding features, and harmonic vibrational wavenumbers have been investigated with the help of B3LYP density functional theory method. A detailed interpretation of the vibrational spectra is carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. Solvent effects have been calculated using time-dependent density functional theory in combination with the polarized continuum model. Natural bond orbital analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule. Employing the open-aperture z-scan technique, nonlinear optical absorption of the sample has been studied in the ultrafast and short-pulse excitation regimes, using 100 fs and 5 ns laser pulses respectively. It is found that ninhydrin exhibits optical limiting for both excitations, indicating potential photonic applications.

  20. Assessment of Electrical Influence of Multiple Piezoelectric Transducers' Connection on Actual Satellite Vibration Suppression

    Directory of Open Access Journals (Sweden)

    Shigeru Shimose

    2011-01-01

    Full Text Available We conduct comprehensive investigation of a semiactive vibration suppression method using piezoelectric transducers attached to structures. In our system, piezoelectric transducers are connected to an electric circuit composed of the diodes, an inductance, and a selective switch. Our method (SSDI makes better use of counterelectromotive force to suppress the vibration, instead of simple dissipation of vibration energy. We use an actual artificial satellite to verify their high performance compared to conventional semi-active methods. As a consequence, we demonstrate that our semi-active switching method can suppress the vibration of the real artificial satellite to as much as 50% amplitude reduction. In our experiment, we reveal that the suppression performance depends on how multiple piezoelectric transducers are connected, namely, their series or parallel connection. We draw two major conclusions from theoretical analysis and experiment, for constructing effective semi-active controller using piezoelectric transducers. This paper clearly proves that the performance of the method is the connection (series or parallel of multiple piezoelectric transducers and the their resistances dependent on frequency.

  1. Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping

    Science.gov (United States)

    Starosvetsky, Y.; Gendelman, O. V.

    2009-07-01

    In this work, response regimes are investigated in a system comprising of a linear oscillator (subject to harmonic excitation) and a nonlinear energy sink (NES) with nonlinear damping characteristics. An analytical technique for the treatment of certain class of nonlinear damping functions is developed. Special attention is paid to the case of piecewise-quadratic damping, motivated by possible applications. It is demonstrated that the NES with a properly tuned piecewise-quadratic damping element allows complete elimination of undesirable periodic regimes. In this way, an efficient system of vibration absorption is obtained, and its performance can overcome that of a tuned mass damper (TMD). Numerical results agree satisfactorily with the analytical predictions.

  2. Multi-state analysis of the OCS ultraviolet absorption including vibrational structure

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht; Johnson, Matthew Stanley; McBane, G.C.

    2012-01-01

    The first absorption band of OCS (carbonyl sulfide) is analyzed using potential energy surfaces and transition dipole moment functions of the lowest four singlet and the lowest four triplet states. Excitation of the 2 (1)A' state is predominant except at very low photon energies. It is shown that...... that the vibrational structures in the center of the band are due to excitation of the 2 (3)A'' triplet state, whereas the structures at very low energies are caused by bending excitation in the potential wells of states 2 (1)A' and 1 (1)A''....

  3. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    absorption (VA) spectroscopy can be used as a useful tool in medical diagnostics that provides in principle additional information and detail to that which can be obtained/provided from conventional histological studies, and more conventional mass spectroscopic and NMR techniques. The use of high level......In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...... and differences in these cells lines utilizing FTIR spectroscopy. We have used the chemometrical and statistical method principal component analysis (PCA) to investigate the spectral differences. We have been able to identify certain bands in the spectra which are so-called biomarkers for two types of cell lines...

  4. Estimates of aerosol absorption over India using multi-satellite retrieval

    Directory of Open Access Journals (Sweden)

    D. Narasimhan

    2013-10-01

    Full Text Available Aerosol absorption is poorly quantified because of the lack of adequate measurements. It has been shown that the Ozone Monitoring Instrument (OMI aboard EOS-Aura and the Moderate Resolution Imaging Spectroradiometer (MODIS aboard EOS-Aqua, which fly in formation as part of the A-train, provide an excellent opportunity to improve the accuracy of aerosol retrievals. Here, we follow a multi-satellite approach to estimate the regional distribution of aerosol absorption over continental India for the first time. Annually and regionally averaged aerosol single-scattering albedo over the Indian landmass is estimated as 0.94 ± 0.03. Our study demonstrates the potential of multi-satellite data analysis to improve the accuracy of retrieval of aerosol absorption over land.

  5. MIMO active vibration control of magnetically suspended flywheels for satellite IPAC service

    Science.gov (United States)

    Park, Junyoung

    Theory and simulation results have demonstrated that four, variable speed flywheels could potentially provide the energy storage and attitude control functions of existing batteries and control moment gyros (CMGs) on a satellite. Past modeling and control algorithms were based on the assumption of rigidity in the flywheel's bearings and the satellite structure. This dissertation provides simulation results and theory which eliminates this assumption utilizing control algorithms for active vibration control (AVC), flywheel shaft levitation and integrated power transfer and attitude control (IPAC) that are effective even with low stiffness active magnetic bearings (AMB), and flexible satellite appendages. The flywheel AVC and levitation tasks are provided by a multi input multi output (MIMO) control law that enhances stability by reducing the dependence of the forward and backward gyroscopic poles with changes in flywheel speed. The control law is shown to be effective even for (1) Large polar to transverse inertia ratios which increases the stored energy density while causing the poles to become more speed dependent and, (2) Low bandwidth controllers shaped to suppress high frequency noise. These two main tasks could be successfully achieved by MIMO (Gyroscopic) control algorithm, which is unique approach. The vibration control mass (VCM) is designed to reduce the vibrations of flexible appendages of the satellite. During IPAC maneuver, the oscillation of flywheel spin speeds, torque motions and satellite appendages are significantly reduced compared without VCM. Several different properties are demonstrated to obtain optimal VCM. Notch, band-pass and low-pass filters are implemented in the AMB system to reduce and cancel high frequency, dynamic bearing forces and motor torques due to flywheel mass imbalance. The transmitted forces and torques to satellite are considerably decreased in the present of both notch and band-pass filter stages. Successful IPAC simulation

  6. Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study

    DEFF Research Database (Denmark)

    Frimand, Kenneth; Bohr, Henrik; Jalkanen, Karl J.

    2000-01-01

    A detailed comparative study of structures, vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra has been carried out for the zwitterionic structure of the amino acid L-alanine. Theoretically determined structures necessary for deriving VA and VCD spectra were calculated...... at the density functional theory level using the B3LYP functional with the 6-31G* basis set. The Hessians and atomic polar tensors and atomic axial tensors were all calculated at the B3LYP/6-31G* level of theory. An important result is the method of treating solvent effects by both adding explicit water...

  7. Estimate of the effect of micro-vibration on the performance of the Algerian satellite (Alsat-1B) imager

    Science.gov (United States)

    Serief, Chahira

    2017-11-01

    Alsat-1B, launched into a 670 km sun-synchronous orbit on board the PSLV launch vehicle from the Sriharikota launch site in India on 26 September 2016, is a medium resolution Earth Observation satellite with a mass of 100 kg. Alsat-1B will be used for agricultural and resource monitoring, disaster management, land use mapping and urban planning. It is based on the SSTL-100 platform, and flies a 24 m multispectral imager and a 12 m panchromatic imager delivering images with a swath width of 140 km. One of the main factors affecting the performance of satellite-borne optical imaging systems is micro-vibration. Micro-vibration is a low level mechanical disturbance inevitably generated from moving parts on a satellite and exceptionally difficult to be controlled by the attitude and orbital control system (AOCS) of a spacecraft. Micro-vibration usually causes problems for optical imaging systems onboard Earth Observation satellites. The major effect of micro-vibration is the excitation of the support structures for the optical elements during imaging operations which can result in severe degradation of image quality by smearing and distortion. Quantitative characterization of image degradation caused by micro-vibration is thus quite useful and important as part of system level analysis which can help preventing micro-vibration influence by proper design and restoring the degraded image. The aim of this work is to provide quantitative estimates of the effect of micro-vibration on the performance of Alsat-1B imager, which may be experienced operationally, in terms of the modulation transfer function (MTF) and based on ground micro-vibration tests results.

  8. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system

    Science.gov (United States)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu

    2017-06-01

    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  9. Estimates of aerosol absorption over India using multi-satellite retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, D.; Satheesh, S.K. [Indian Institute of Science, Bangalore (India). Centre for Atmospheric and Oceanic Sciences

    2013-11-01

    Aerosol absorption is poorly quantified because of the lack of adequate measurements. It has been shown that the Ozone Monitoring Instrument (OMI) aboard EOSAura and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard EOS-Aqua, which fly in formation as part of the A-train, provide an excellent opportunity to improve the accuracy of aerosol retrievals. Here, we follow a multi-satellite approach to estimate the regional distribution of aerosol absorption over continental India for the first time. Annually and regionally averaged aerosol singlescattering albedo over the Indian landmass is estimated as 0.94{+-}0.03. Our study demonstrates the potential of multisatellite data analysis to improve the accuracy of retrieval of aerosol absorption over land.

  10. Design and experiments of an active isolator for satellite micro-vibration

    Directory of Open Access Journals (Sweden)

    Li Weipeng

    2014-12-01

    Full Text Available In this paper, a soft active isolator (SAI derived from a voice coil motor is studied to determine its abilities as a micro-vibration isolation device for sensitive satellite payloads. Firstly, the two most important parts of the SAI, the mechanical unit and the low-noise driver, are designed and manufactured. Then, a rigid-flexible coupling dynamic model of the SAI is built, and a dynamic analysis is conducted. Furthermore, a controller with a sky-hook damper is designed. Finally, results from the performance tests of the mechanical/electronic parts and the isolation experiments are presented. The SAI attenuations are found to be more than −20 dB above 5 Hz, and the control effect is stable.

  11. Infrared Spectroscopy of CO Ro-vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    OpenAIRE

    Shirahata, Mai; Nakagawa, Takao; Usuda, Tomonori; Goto, Miwa; Suto, Hiroshi; Geballe, T. R.

    2012-01-01

    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ~ 270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (~ 700 K) component, which is highly redshifted (+100 km s-1), is also dete...

  12. Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments

    Science.gov (United States)

    Meng, Yan; Wu, Qi; Chen, Lei; Wangmo, Sonam; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Dajun; Niehaus, Thomas A.; Frauenheim, Thomas

    2013-11-01

    To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small molecules adsorbed on the graphene sheet. Specifically, we find that both spectra involve clearly different characteristic peaks, belonging to the different small molecules upon adsorption, with the ones of ionized molecules being more substantial. Further analysis shows that the adsorptions are almost all due to the presence of dispersion energy in neutral cases and involve charge transfer from the graphene to the small molecules. In contrast, the main binding force in the ionic adsorption systems is the electronic interaction. The results present clear signatures that can be used to recognize different kinds of aromatic hydrocarbon rings on graphene sheets. We expect that our findings will be helpful for designing molecular recognition devices using graphene.To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in

  13. Solar absorption in the atmosphere - estimates from collocated surface and satellite observations over Europe

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Schaepmann-Strub, Gabriela

    2014-05-01

    Solar radiation is the primary source of energy for the Earth's climate system. While the incoming and outgoing solar fluxes at the top-of-atmosphere can be quantified with high accuracy, large uncertainties still exist in the partitioning of solar absorption between surface and atmosphere. To compute best estimates of absorbed solar radiation at the surface and within the atmosphere representative for Europe during 2000-2010, we combine ground-based observations of surface downwelling solar radiation (GEBA, BSRN) with collocated satellite-retrieved surface albedo (MODIS) and top-of-atmosphere net irradiance (CERES EBAF, 1° resolution). The combination of these datasets over European land yields best estimates of annual mean surface and atmospheric absorption of 117 ±6 Wm¯² (42 ±2 % of TOA incident irradiance) and 65 ±3 Wm¯² (23 ±1 %). The fractional atmospheric absorption of 23% represents a robust estimate largely unaffected by variations in latitude and season, thus, making it a potentially useful quantity for first order validation of regional climate models. These estimates are based on quality assessed surface data. First of all, we examine the temporal homogeneity of the monthly GEBA time series beyond 2000 and find the vast majority to be suitable for our purposes. The spatial representativeness of the GEBA and BSRN sites for their collocated 1° CERES EBAF grid cells we assess by using a satellite-derived surface solar radiation product (CM SAF) at 0.03° spatial resolution. We find representation errors of on average 3 Wm¯² or 2% (normalized by point values). Care is taken to identify and quantify uncertainties, which arise mostly from the measurements themselves, in particular surface albedo and ground-based solar radiation data. Other sources of uncertainty, like the spatial coverage by surface sites, the multiplicative combination of spatially averaged surface solar radiation and surface albedo, and the spatial representativeness of the

  14. Solar absorption estimated from surface radiation measurements and collocated satellite products

    Science.gov (United States)

    Hakuba, M. Z.; Wild, M.; Folini, D.; Sanchez-Lorenzo, A.; Schaepman-Strub, G.

    2012-04-01

    The Earth's climate and life-relevant processes are governed by the incoming solar radiation as part of the global energy balance. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the research presented here is an improved understanding of the mean state and spatio-temporal variations of the global energy balance through reducing the uncertainties in one of its components, i.e., the absorption of solar radiation within the climate system. To quantify the solar absorption at the surface and within the atmospheric column, we combine the worldwide surface radiation measurements of the Global Energy Balance archive (GEBA) and Baseline Surface Radiation Network (BSRN) with collocated satellite-inferred surface albedo and top-of-atmosphere (TOA) radiation data (MODIS, CERES). Our analysis of the present mean state, temporal and spatial variability during the last decade (2000-2010) focuses on Europe and Asia, and will expand worldwide in a later step. We examined the quality and homogeneity of station records beyond 2000 provided by GEBA to identify a subset of station records of sufficient quality. We find the vast majority of monthly records to be suitable for our purposes. The considered GEBA sites indicate overall positive trends in Europe, and mostly negative trends over Asia during the last decade (2000-2010). To derive the surface solar absorption at the measurement sites, we intend to combine the shortwave fluxes with the collocated surface albedo from MODIS. The MODIS products include the so-called black-sky albedo (under the assumption of direct radiation only) and white-sky albedo (under diffuse isotropic conditions). The majority of GEBA sites comprises only global radiation data, which do not differentiate between direct and diffuse components. To determine solar absorption from

  15. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    Science.gov (United States)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  16. Evaluating the Impact of Smoke Particle Absorption on Passive Satellite Cloud Optical Depth Retrievals

    Science.gov (United States)

    Alfaro-Contreras, R.; Zhang, J.; Reid, J. S.; Campbell, J. R.

    2013-12-01

    Absorbing aerosol particles, when lifted above clouds, can perturb top-of-atmosphere radiation radiances measured by passive satellite sensors through the absorption of reflected solar energy. This scenario, if not properly screened, impacts cloud physical retrievals, like cloud optical depth (COD), conducted using radiances/channels in the visible spectrum. We describe observations of smoke particle presence above cloud off the southwest coast of Africa, using spatially and temporally collocated Aqua Moderate Resolution Imaging Spectroradiometer (AQUA MODIS), Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements. Results from this study indicate that above cloud aerosol episodes happen rather frequent in the smoke outflow region during the Northern Hemisphere summer where above cloud aerosol plumes introduce a significant bias to MODIS COD retrievals in the visible spectrum. This suggests that individual COD retrievals as well as COD climatology from MODIS can be affected over the smoke outflow region by above cloud aerosol contamination and thus showing the need to account for the presence of above cloud absorbing aerosols in the MODIS visible COD retrievals.

  17. Vibrational effects in x-ray absorption and resonant inelastic x-ray scattering using a semiclassical scheme

    Science.gov (United States)

    Ljungberg, Mathias P.

    2017-12-01

    A method is presented for describing vibrational effects in x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) using a combination of the classical Franck-Condon (FC) approximation and classical trajectories run on the core-excited state. The formulation of RIXS is an extension of the semiclassical Kramers-Heisenberg formalism of Ljungberg et al. [Phys. Rev. B 82, 245115 (2010), 10.1103/PhysRevB.82.245115] to the resonant case, retaining approximately the same computational cost. To overcome difficulties with connecting the absorption and emission processes in RIXS, the classical FC approximation is used for the absorption, which is seen to work well provided that a zero-point-energy correction is included. In the case of core-excited states with dissociative character, the method is capable of closely reproducing the main features for one-dimensional test systems, compared to the quantum-mechanical formulation. Due to the good accuracy combined with the relatively low computational cost, the method has great potential of being used for complex systems with many degrees of freedom, such as liquids and surface adsorbates.

  18. Time evolution of vibrational temperatures in a CO2 glow discharge measured with infrared absorption spectroscopy

    Science.gov (United States)

    Klarenaar, B. L. M.; Engeln, R.; van den Bekerom, D. C. M.; van de Sanden, M. C. M.; Morillo-Candas, A. S.; Guaitella, O.

    2017-11-01

    Vibrational temperatures of CO2 are studied in a pulsed glow discharge by means of time-resolved in situ Fourier transform infrared spectroscopy, with a 10 μs temporal resolution. A method to analyze the infrared transmittance through vibrationally excited CO2 is presented and validated on a previously published CO2 spectrum, showing good agreement between fit and data. The discharge under study is pulsed with a typical duty cycle of 5–10 ms on–off, at 50 mA and 6.7 mbar. A rapid increase of the temperature of the asymmetric stretch vibration (T 3) is observed at the start of the pulse, reaching 1050 K, which is an elevation of 550 K above the rotational temperature ({T}{{rot}}) of 500 K. After the plasma pulse, the characteristic relaxation time of T 3 to {T}{{rot}} strongly depends on the rotational temperature. By adjusting the duty cycle, the rotational temperature directly after the discharge is varied from 530 to 860 K, resulting in relaxation times between 0.4 and 0.1 ms. Equivalently, as the gas heats up during the plasma pulse, the elevation of T 3 above {T}{{rot}} decreases strongly.

  19. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    Science.gov (United States)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  20. Multimode Vibrational Wave Packet Dynamics of Strong-Field-Ionized Methyl Iodide Probed by Femtosecond XUV Absorption Spectroscopy

    Science.gov (United States)

    Loh, Zhi-Heng; Wei, Zhengrong; Li, Jialin

    2017-04-01

    Studies of vibrational wave packets (VWPs) created on the neutral electronic ground-state by intense laser fields have identified R -selective depletion (RSD) as the dominant mechanism for their generation. Another mechanism that is proposed to give rise to VWPs, bond softening (BS), remains hitherto unobserved. Here, we employ femtosecond XUV absorption spectroscopy to investigate the VWP dynamics of CH3 I induced by intense laser fields. Analysis of the first-moment time traces computed about the neutral depletion region reveals both the fundamental and the hot bands of the C-I stretch mode. The initial oscillation phases of these vibrations distinguishes the contributions of RSD and BS to the generation of the VWP in the neutral species. The relative oscillation amplitudes that are associated with the two phases suggest that the C-I VWP is generated predominantly by BS. In the case of the CH3 I+ X 2E3 / 2 ion state, VWP motion along the C-I stretch mode is dominant over the CH3 umbrella mode. Moreover, the amplitudes of the VWPs are only 1 pm (C-I distance) and 1° (H-C-I bond angle). The ability to resolve such VWP dynamics points to the exquisite sensitivity of femtosecond XUV absorption spectroscopy to structural changes. This work is supported by a NTU start-up Grant, the A*Star SERC PSF (122-PSF-0011), the Ministry of Education AcRF (MOE2014-T2-2-052), and the award of a Nanyang Assistant Professorship to Z.-H.L.

  1. Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-01-01

    Full Text Available As a widely used gas insulator, sulfur hexafluoride (SF6 has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV, which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.

  2. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption

    Science.gov (United States)

    Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara

    2016-07-01

    Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.

  3. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: the Role of Vibrational Effects

    Science.gov (United States)

    Hodecker, Manuel; Biczysko, Malgorzata; Dreuw, Andreas; Barone, Vincenzo

    2017-01-01

    Vibrationally resolved one-photon absorption and electronic circular dichroism spectra of (R)-methyl oxirane were calculated with different electronic and vibronic models selecting, through an analysis of the convergence of the results, the best compromise between reliability and computational cost. Linear-response TD-DFT/CAM-B3LYP/SNST electronic computations in conjunction with the simple vertical gradient vibronic model were chosen and employed for systematic comparison with the available experimental data. Remarkable agreement between simulated and experimental spectra was achieved for both one photon absorption and circular dichroism concerning peak positions, relative intensities, and general spectral shapes considering the computational efficiency of the chosen theoretical approach. The significant improvement of the results with respect to smearing of vertical electronic transitions by phenomenological Gaussian functions and the possible inclusion of solvent effects by polarizable continuum models at a negligible additional cost paves the route toward the simulation and analysis of spectral shapes of complex molecular systems in their natural environment. PMID:27159495

  4. Infrared Spectroscopy of CO Ro-Vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    Science.gov (United States)

    Shirahata, Mai; Nakagawa, Takao; Usuda, Tomonori; Goto, Miwa; Suto, Hiroshi; Geballe, Thomas R.

    2013-02-01

    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J ≤ 17). The velocity profiles reveal three distinct components, the strongest and broadest (Δυ > 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ˜270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (˜700 K) component, which is highly redshifted (+100 km s-1), is also detected, in addition to a cold (˜20 K) component centered at the systemic velocity of the galaxy. On the assumption of local thermodynamic equilibrium, the column density of CO in the 270 K component is NCO ˜4.5 × 1018 cm-2, which in fully molecular gas corresponds to an H2 column density of NH2 ˜ 2.5 × 1022 cm-2. The thermal excitation of CO up to the observed high rotational levels requires a density greater than nc (H2) > 2 × 107cm-3, implying that the thickness of the warm absorbing layer is extremely small (Δd warm components, as well as their temperatures, indicate that they originate in molecular clouds near the central engine of the AGN.

  5. Two-Stage Vibration Isolation for Flexible Satellite Bus and Optic Payload Structures

    Science.gov (United States)

    2015-11-27

    and damper model and with neglectable mass . Subscripts denote degree of freedoms corresponding to actuators ( R ), actuator isolators’ locations on... damper inserted inside the elastic element. Comparing with liquid damper and viscoelastic material damper , this damper has such merits as simple...satellite bus and the optic payload are rigid body. This study indicates that a large mass ratio between the satellite bus and the optical payload can

  6. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  7. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    Science.gov (United States)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately

  8. THz absorption spectrum of the CO2–H2O complex: Observation and assignment of intermolecular van der Waals vibrations

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Wallin Mahler Andersen, Denise

    2014-01-01

    Terahertz absorption spectra have been recorded for the weakly bound CO2–H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit...... have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed...

  9. Temperature dependence of X-ray absorption and nuclear magnetic resonance spectra: probing quantum vibrations of light elements in oxides.

    Science.gov (United States)

    Nemausat, Ruidy; Gervais, Christel; Brouder, Christian; Trcera, Nicolas; Bordage, Amélie; Coelho-Diogo, Cristina; Florian, Pierre; Rakhmatullin, Aydar; Errea, Ion; Paulatto, Lorenzo; Lazzeri, Michele; Cabaret, Delphine

    2017-02-22

    A combined experimental-theoretical study on the temperature dependence of the X-ray absorption near-edge structure (XANES) and nuclear magnetic resonance (NMR) spectra of periclase (MgO), spinel (MgAl2O4), corundum (α-Al2O3), berlinite (α-AlPO4), stishovite and α-quartz (SiO2) is reported. Predictive calculations are presented when experimental data are not available. For these light-element oxides, both experimental techniques detect systematic effects related to quantum thermal vibrations which are well reproduced by density-functional theory simulations. In calculations, thermal fluctuations of the nuclei are included by considering nonequilibrium configurations according to finite-temperature quantum statistics at the quasiharmonic level. The influence of nuclear quantum fluctuations on XANES and NMR spectroscopies is particularly sensitive to the coordination number of the probed cation. Furthermore, the relative importance of nuclear dynamics and thermal expansion is quantified over a large range of temperatures.

  10. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  11. Influence of Duschinsky and Herzberg-Teller effects on S₀→ S₁ vibrationally resolved absorption spectra of several porphyrin-like compounds.

    Science.gov (United States)

    Yang, Pan; Qi, Dan; You, Guojian; Shen, Wei; Li, Ming; He, Rongxing

    2014-09-28

    The S0 → S1 (Q band) high-resolved absorption spectra of three porphyrin-like compounds, porphycene, magnesium porphyrin, and zinc tetraazaporphyrin, were simulated in the framework of the Franck-Condon approximation including the Duschinsky and Herzberg-Teller (HT) contributions. Substitution of meso-aza on porphyrin macrocycle framework could change severely the absorption energy, vibrational intensity, and spectral profile of Q band. Therefore, we focused attention on the spectral similarities and contrasts among the three compounds based on the density functional theory and its time-dependent extension calculations. The simulated spectra agreed well with the experimental ones and further confirmed that the HT and Duschinsky effects have significant influence on the weakly allowed or forbidden transition of sizable organic molecules. The pure HT and Duschinsky effects were explored separately to clarify their contributions on changing vibrational intensities of different modes. Moreover, we tentatively assigned most of the vibrational modes which appeared in the experimental spectra but corresponding assignments were not given. The present work provided a useful method to simulate and interpret the absorption spectra of porphyrin-like compounds.

  12. Influence of Duschinsky and Herzberg-Teller effects on S0 → S1 vibrationally resolved absorption spectra of several porphyrin-like compounds

    Science.gov (United States)

    Yang, Pan; Qi, Dan; You, Guojian; Shen, Wei; Li, Ming; He, Rongxing

    2014-09-01

    The S0 → S1 (Q band) high-resolved absorption spectra of three porphyrin-like compounds, porphycene, magnesium porphyrin, and zinc tetraazaporphyrin, were simulated in the framework of the Franck-Condon approximation including the Duschinsky and Herzberg-Teller (HT) contributions. Substitution of meso-aza on porphyrin macrocycle framework could change severely the absorption energy, vibrational intensity, and spectral profile of Q band. Therefore, we focused attention on the spectral similarities and contrasts among the three compounds based on the density functional theory and its time-dependent extension calculations. The simulated spectra agreed well with the experimental ones and further confirmed that the HT and Duschinsky effects have significant influence on the weakly allowed or forbidden transition of sizable organic molecules. The pure HT and Duschinsky effects were explored separately to clarify their contributions on changing vibrational intensities of different modes. Moreover, we tentatively assigned most of the vibrational modes which appeared in the experimental spectra but corresponding assignments were not given. The present work provided a useful method to simulate and interpret the absorption spectra of porphyrin-like compounds.

  13. Temperature dependent equilibrium native to unfolded protein dynamics and properties observed with IR absorption and 2D IR vibrational echo experiments.

    Science.gov (United States)

    Chung, Jean K; Thielges, Megan C; Bowman, Sarah E J; Bren, Kara L; Fayer, M D

    2011-05-04

    Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures. © 2011

  14. Attitude and vibration control of a satellite containing flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actuators

    Science.gov (United States)

    da Fonseca, Ijar M.; Rade, Domingos A.; Goes, Luiz C. S.; de Paula Sales, Thiago

    2017-10-01

    The primary purpose of this paper is to provide insight into control-structure interaction for satellites comprising flexible appendages and internal moving components. The physical model considered herein aiming to attend such purpose is a rigid-flexible satellite consisting of a rigid platform containing two rotating flexible solar panels. The solar panels rotation is assumed to be in a sun-synchronous configuration mode. The panels contain surface-bonded piezoelectric patches that can be used either as sensors for the elastic displacements or as actuators to counteract the vibration motion. It is assumed that in the normal mode operation the satellite platform points towards the Earth while the solar arrays rotate so as to follow the Sun. The vehicle moves in a low Earth polar orbit. The technique used to obtain the mathematical model combines the Lagrangian formulation with the Finite Elements Method used to describe the dynamics of the solar panel. The gravity-gradient torque as well as the torque due to the interaction of the Earth magnetic field and the satellite internal residual magnetic moment is included as environmental perturbations. The actuators are three reaction wheels for attitude control and piezoelectric actuators to control the flexible motion of the solar arrays. Computer simulations are performed using the MATLAB® software package. The following on-orbit satellite operating configurations are object of analysis: i) Satellite pointing towards the Earth (Earth acquisition maneuver) by considering the initial conditions in the elastic displacement equal to zero, aiming the assessment of the flexible modes excitation by the referred maneuver; ii) the satellite pointing towards the Earth with the assumption of an initial condition different from zero for the flexible motion such that the attitude alterations are checked against the elastic motion disturbance; and iii) attitude acquisition accomplished by taking into account initial conditions

  15. Rest-to-Rest Attitude Naneuvers and Residual Vibration Reduction of a Finite Element Model of Flexible Satellite by Using Input Shaper

    Directory of Open Access Journals (Sweden)

    Setyamartana Parman

    1999-01-01

    Full Text Available A three-dimensional rest-to-rest attitude maneuver of flexible spacecraft equipped by on-off reaction jets is studied. Equations of motion of the spacecraft is developed by employing a hybrid system of coordinates and Lagrangian formulation. The finite element method is used to examine discrete elastic deformations of a particular model of satellite carrying flexible solar panels by modelling the panels as flat plate structures in bending. Results indicate that, under an unshaped input, the maneuvers induce undesirable attitude angle motions of the satellite as well as vibration of the solar panels. An input shaper is then applied to reduce the residual oscillation of its motion at several natural frequencies in order to get an expected pointing precision of the satellite. Once the shaped input is given to the satellite, the performance improves significantly.

  16. Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix

    Science.gov (United States)

    Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.

    2017-02-01

    Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

  17. The absorption spectrum of D2O in the region of 0.97 μm: the 3ν1 + ν3 vibrational-rotational band

    Science.gov (United States)

    Serdyukov, V. I.; Sinitsa, L. N.

    2017-08-01

    The vibrational-rotational absorption spectrum of D2O in the range from 10 120 to 10 450 cm-1 is recorded on a Fourier transform spectrometer with a resolution of 0.05 cm-1. The measurements were performed using a multipass White cell with an optical path length of 24 m. A light-emitting diode with brightness higher than that of other devices was used as a radiation source. The signal-to-noise ratio was about 104. The spectrum is interpreted as consisting of lines of more than 400 transitions. The spectral characteristics of lines (centers, intensities, and half widths) are determined by fitting the Voigt profile parameters to experimental data by the least-squares method. The intensities of lines and the experimental rotational energy levels of the (301) vibrational state of the D2 16O molecule with high rotational quantum numbers are determined for the first time.

  18. Solar absorption estimated from surface radiation measurements and collocated satellite products over Europe

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Sanchez-Lorenzo, Arturo

    2013-04-01

    Anthropogenic climate change is physically speaking a perturbation of the atmospheric energy budget through the insertion of constituents such as greenhouse gases or aerosols. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the present study is the assessment of the mean state and the spatio-temporal variations in the solar energy disposition, in which we focus on obtaining an accurate partitioning of absorbed solar radiation between the surface and the atmosphere. Surface based measurements of solar radiation (GEBA, BSRN) are combined with collocated satellite-retrieved surface albedo (MODIS, CERES FSW, or CM SAF GAC-SAL) and top-of-atmosphere net incoming solar radiation (CERES EBAF) to quantify the absorbed solar radiation (ASR) at the surface and within the atmosphere over Europe for the period 2001-2005. In a first step, we examine the quality and temporal homogeneity of the monthly time series beyond 2000 provided by GEBA in order to identify a subset of sufficient quality. We find the vast majority of monthly time series to be suitable for our purposes. Using the satellite-derived CM SAF surface solar radiation product at 0.03° spatial resolution, we assess the spatial representativeness of the GEBA and BSRN sites for their collocated 1° grid cells as we intend to combine the point measurements with the coarser resolved CERES EBAF products (1° resolution), and we find spatial sampling errors of on average 3 Wm-2 or 2% (normalized by point values). Based on the combination of 134 GEBA surface solar radiation (SSR) time series with MODIS white-sky albedo and CERES EBAF top-of-atmosphere net radiation (TOAnet), we obtain a European mean partitioning (2001-2005) of absorbed solar radiation (relative to total incoming radiation) of: ASRsurf= 41% and ASRatm= 25%, together equaling

  19. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: vibrations and structure of its excited S(1)(π,π(*)) electronic state.

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J; Kim, Sunghwan; Laane, Jaan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π(*)) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π(*)) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π(*)) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π(*)) excited state.

  20. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, Maryland 20894 (United States)

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  1. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  2. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state.

  3. A Group Theoretical and Quantum Chemical Study of Electronic Absorption and Fluorescence, Vibrational Spectra, and Conformations of Trimethine Cyanine Dye Molecules

    Directory of Open Access Journals (Sweden)

    Vita Solomko

    2016-01-01

    Full Text Available The energetic structures and conformations of trimethine cyanine dye molecules were investigated. For research, group theoretical and quantum chemical calculation methods were used. The theoretical group analysis of electronic and vibrational structure of molecules was carried out. Also, the energetic structures and conformations of the molecule of this dye were studied. Research shows that the investigated molecule may reside in three different conformational states, one of which is highly symmetric (symmetry C2v and the other two with low symmetry. The third conformer is characterized by lowering of binding energy of the electronic system by 0.23 eV, and the long-wavelength absorption band is shifted to lower energies. Also the group theoretical analysis of the trimethine cyanine molecule had allowed systematizing the vibrational and electronic quantum transitions and identifying the bands in the absorption spectra. It is shown that the excitation of the molecule in S1-state causes trans-cis-isomerization. The presence of the barrier of ~0.1 eV allows the fluorescence process to compete with isomerization process, but isomerization causes a decrease in the fluorescence quantum yield of the dye.

  4. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    Science.gov (United States)

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  5. ABSORPTION, SCATTERING, ATTENUATION COEFFICIENTS and Other Data from SATELLITE From Gulf of Maine from 19850101 to 19921231 (NCEI Accession 9400225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains binary raster images from landsat thematic mapper collected in Gulf of Maine between 1982 to 1985. A suite of Regional Satellite Products from...

  6. Infrared absorption spectra of matrix-isolated cis, cis-HOONO and its ab initio CCSD(T) anharmonic vibrational bands

    Science.gov (United States)

    Zhang, Xu; Nimlos, Mark R.; Ellison, G. Barney; Varner, Mychel E.; Stanton, John F.

    2006-02-01

    The infrared absorption spectra of matrix-isolated cis, cis-peroxynitrous acid (HOONO and DOONO) in argon have been observed. Six of the nine fundamental vibrational modes for cis, cis-HOONO have been assigned definitively, and one tentatively. Coupled-cluster, ab initio anharmonic force field calculations were used to help guide some of the assignments. The experimental matrix frequencies (cm-1) for cis, cis-HOONO are (a'modes)ν1=3303±1,ν2=1600.6±0.6,ν3=1392±1,ν4=922.8±0.5,ν5=789.7±0.4,ν6=617±1; and (a″mode)ν8=462±1. The fundamentals for the deuterated isotopomer, cis, cis-DOONO, are (a'modes)ν1=2447.2±0.6,ν2=1595.7±0.7,ν3=1089.1±0.4,ν4=888.1±0.4,ν5=786.6±0.5,ν6=613.9±0.9; and (a″mode)ν8=456.5±0.5.

  7. Forward modeling and retrieval of water vapor from the Global Ozone Monitoring Experiment: Treatment of narrowband absorption spectra

    NARCIS (Netherlands)

    Lang, R.; Maurellis, A.N.; van der Zande, W.J.; Aben, I.; Landgraf, J.; Ubachs, W.M.G.

    2002-01-01

    [1] We present the algorithm and results for a new fast forward modeling technique applied to the retrieval of atmospheric water vapor from satellite measurements using a weak ro-vibrational overtone band in the visible. The algorithm uses an Optical Absorption Coefficient Spectroscopy (OACS) method

  8. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Cernicharo, J. [Department of Astrophysics, CAB. INTA-CSIC. Crta Torrejón-Ajalvir Km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barlow, M. J.; Swinyard, B. M., E-mail: jl.domenech@csic.es [Department of Physics and Astronomy, University College London. Gower Street, London WC1E 6BT (United Kingdom)

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  9. An Overview of Aerosol Absorption Above Clouds over the Southeast Atlantic Ocean from Passive Satellite Imagery during September 2016.

    Science.gov (United States)

    de Graaf, M.; Tilstra, L. G.

    2016-12-01

    The southeast Atlantic Ocean is key region to study the interactions of aerosols, clouds, and radiation. The ocean west of Africa is an upwelling region with low sea surface temperatures, which encourages the formation of stratocumulus clouds. During the dry monsoon season, biomass burning on the African continent, the largest consumption of biomass by fire in the world, produces huge amounts of smoke extending into the free troposphere. When this smoke is transported over the southeast Atlantic Ocean by favorable winds, it creates a natural laboratory to study the interaction of absorbing biomass burning aerosols, clouds and radiation. Smoke aerosols can have a strong local warming effect by absorbing shortwave radiation in constract to the global cooling effect of aerosols. However, this direct radiative effect is strongly dependent on the brightness of the underlying background, and changes from strong negative (cooling) over dark surfaces (ocean) to strong postive (warming) over clouds. This makes the instanteneous direct radiative effect (DRE) a highly senstive diagnostic for climate models, which do not reproduce the high values found in observations, and disagree on magnitude and even sign of the DRE. During September 2016, an international consortium of institutes have studied the southeast Atlantic using a combination of ground-based, air-borne and space-borne instruments, to improve our understanding of aerosol, clouds and radiation interactions. We present a satellite view of the smoke dispersion during the campaigns over the south Atlantic basin and Africa, and the direct effect of the smoke over clouds. Several techniques have been developed in past, which will be applied to passive satellite instruments like OMI and MODIS. These observations will provide an overview of the meteorological characteristics during the campaigns and a validation tool for the various in-situ and remote sensing observations obtained during the experiments.

  10. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    Science.gov (United States)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  11. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    Directory of Open Access Journals (Sweden)

    M. S. Hammer

    2016-03-01

    Full Text Available Satellite observations of the ultraviolet aerosol index (UVAI are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT. The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (−0.32 to −0.97 exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC, and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from −0.57 to −0.09 over West Africa in January, from −0.32 to +0.0002 over South Asia in April, from −0.97 to −0.22 over southern Africa in July, and from −0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE values ranging from 2.9 in the ultraviolet (UV to 1.3 across the UV–Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform

  12. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    Science.gov (United States)

    Hammer, Melanie S.; Martin, Randall V.; van Donkelaar, Aaron; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-03-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years

  13. Comparison of tropospheric NO2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    Science.gov (United States)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-10-01

    Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the

  14. Comparison of tropospheric NO2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Mendolia

    2013-10-01

    Full Text Available Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81, but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased

  15. ABSORPTION, SCATTERING, ATTENUATION COEFFICIENTS and Other Data from NOAA-12 SATELLITE From World-Wide Distribution from 19960101 to 19961231 (NCEI Accession 9600023)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains Products developed from data collected from NOAA-11 AVHRR satellite in East Coast US/Canada as part of Coastal Ocean Program / Coastwatch. The...

  16. Absorption in dielectric models

    CERN Document Server

    Churchill, R J

    2015-01-01

    We develop a classical microscopic model of a dielectric. The model features nonlinear interaction terms between polarizable dipoles and lattice vibrations. The lattice vibrations are found to act as a pseudo-reservoir, giving broadband absorption of electromagnetic radiation without the addition of damping terms in the dynamics. The effective permittivity is calculated using a perturbative iteration method and is found to have the form associated with real dielectrics. Spatial dispersion is naturally included in the model and we also calculate the wavevector dependence of the permittivity.

  17. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  18. Variable frequency harmonic vibration suppression using active vibration absorption

    Directory of Open Access Journals (Sweden)

    Francisco Beltrán-Carbajal

    2014-01-01

    Full Text Available Los absorbedores dinámicos pasivos de vibraciones se han utilizado ampliamente para atenuación de vibraciones dañinas en muchos sistemas de ingeniería prácticos. La aplicabilidad de estos dispositivos de absorción pasiva de vibraciones se limita a un ancho de banda angosto y especifico de frecuencias de operación. En este artículo se propone un nuevo esquema de absorción activa de vibraciones que permite extender la capacidad de supresión de vibraciones de un absorbedor masa-resorte-amortiguador pasivo para cualquier frecuencia de excitación, incluyendo fuerzas de perturbación armónica resonantes de interés. Los fundamentos centrales de un absorbedor pasivo se explotan en la etapa de diseño del esquema de absorción propuesto. Así, el dispositivo de absorción activa aplica fuerzas sobre el sistema mecánico primario que contrarrestan las fuerzas de perturbación desconocidas, conservando la propiedad de atenuación de vibraciones del absorbedor pasivo. La fuerza de perturbación se estima en línea usando un observador de estado extendido propuesto en este trabajo. Se incluyen resultados en simulación para mostrar la eficiencia del esquema de absorción activa de vibraciones para rechazar vibraciones forzadas resonantes y caóticas completamente desconocidas afectando el sistema mecánico primario, y para probar la efectividad de la estimación de fuerzas de perturbación exógenas.

  19. Simulating cosmic radiation absorption and secondary particle production of solar panel layers of Low Earth Orbit (LEO) satellite with GEANT4

    Science.gov (United States)

    Yiǧitoǧlu, Merve; Veske, Doǧa; Nilüfer Öztürk, Zeynep; Bilge Demirköz, Melahat

    2016-07-01

    All devices which operate in space are exposed to cosmic rays during their operation. The resulting radiation may cause fatal damages in the solid structure of devices and the amount of absorbed radiation dose and secondary particle production for each component should be calculated carefully before the production. Solar panels are semiconductor solid state devices and are very sensitive to radiation. Even a short term power cut-off may yield a total failure of the satellite. Even little doses of radiation can change the characteristics of solar cells. This deviation can be caused by rarer high energetic particles as well as the total ionizing dose from the abundant low energy particles. In this study, solar panels planned for a specific LEO satellite, IMECE, are analyzed layer by layer. The Space Environment Information System (SPENVIS) database and GEANT4 simulation software are used to simulate the layers of the panels. The results obtained from the simulation will be taken in account to determine the amount of radiation protection and resistance needed for the panels or to revise the design of the panels.

  20. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Carbon Aerosols and Implications for Atmospheric Oxidation

    Science.gov (United States)

    Hammer, M. S.; Martin, R.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-12-01

    Absorption of solar radiation by aerosols plays a major role in radiative forcing and atmospheric photochemistry. Many atmospheric chemistry models tend to overestimate tropospheric OH concentrations compared to observations. Accurately representing aerosol absorption in the UV could help rectify the discrepancies between simulated and observed OH concentrations. We develop a simulation of the Ultraviolet Aerosol Index (UVAI), using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI). Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.4 to -1.0) exists between simulated and observed values in biomass burning regions. We implement optical properties for absorbing organic aerosol, known as brown carbon (BrC), into GEOS-Chem and evaluate the simulation with observed UVAI values over biomass burning regions. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.7 in the UV to 1.3 across the UV-Near IR spectrum. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.60 to -0.08 over North Africa in January, from -0.40 to -0.003 over South Asia in April, from -1.0 to -0.24 over southern Africa in July, and from -0.50 to +0.34 over South America in September. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining ozone photolysis frequencies (J(O(1D))) and tropospheric OH concentrations in GEOS-Chem. The inclusion of BrC decreases J(O(1D)) and OH by up to 35% over biomass burning regions, and reduces the global bias in OH.

  1. Absorption of Stationary Elastic Vibrations ili Rocks

    Directory of Open Access Journals (Sweden)

    e. v. Karus

    1958-06-01

    Full Text Available Il carattere di divergenze e d'assorbimentodelle onde sismiche è stato investigato medianteil metodo sismo-acustico basato sullemisurazioni di ampiezze e fasi delle oscillazioniquali sono eccitate nelle roccia da unasorgente d'oscillazioni armoniche stazionarie.I risultati d'investigazione sperimentalemediante il m. s.-a. d'assorbimento della rocciapermettono di differenziare le roccie diversesecondo i parametri d'assorbimento. L'assorbimentomassimo è proprio di roccia sedimentariail minimo di roccia d'eruzione edi roccia sottoposta a un metamorfismo.La proporzionalità inversa è stata osservatatra la velocità delle onde elastiche e ladiminuzione d'assorbimento per i tipi diversidi roccia. È dimostrato che il coefficiente d'assorbimentoè aumentato linearmente con lafrequenza. È osservato il fenomeno della dispersioneanomala della velocità di fase.I dati sperimentali ottenuti confermano leconclusioni della teoria basata sul fenomenod'elasticità in seguito a quella svolta daB. V. Derjagin.

  2. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  3. Hydrocarbons on Saturn's satellites Iapetus and Phoebe

    Science.gov (United States)

    Cruikshank, D.P.; Wegryn, E.; Dalle, Ore C.M.; Brown, R.H.; Bibring, J.-P.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Nicholson, P.D.; Pendleton, Y.J.; Owen, T.C.; Filacchione, G.; Coradini, A.; Cerroni, P.; Capaccioni, F.; Jaumann, R.; Nelson, R.M.; Baines, K.H.; Sotin, Christophe; Bellucci, G.; Combes, M.; Langevin, Y.; Sicardy, B.; Matson, D.L.; Formisano, V.; Drossart, P.; Mennella, V.

    2008-01-01

    Material of low geometric albedo (pV ??? 0.1) is found on many objects in the outer Solar System, but its distribution in the saturnian satellite system is of special interest because of its juxtaposition with high-albedo ice. In the absence of clear, diagnostic spectral features, the composition of this low-albedo (or "dark") material is generally inferred to be carbon-rich, but the form(s) of the carbon is unknown. Near-infrared spectra of the low-albedo hemisphere of Saturn's satellite Iapetus were obtained with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft at the fly-by of that satellite of 31 December 2004, yielding a maximum spatial resolution on the satellite's surface of ???65 km. The spectral region 3-3.6 ??m reveals a broad absorption band, centered at 3.29 ??m, and concentrated in a region comprising about 15% of the low-albedo surface area. This is identified as the C{single bond}H stretching mode vibration in polycyclic aromatic hydrocarbon (PAH) molecules. Two weaker bands attributed to {single bond}CH2{single bond} stretching modes in aliphatic hydrocarbons are found in association with the aromatic band. The bands most likely arise from aromatic and aliphatic units in complex macromolecular carbonaceous material with a kerogen- or coal-like structure, similar to that in carbonaceous meteorites. VIMS spectra of Phoebe, encountered by Cassini on 11 June 2004, also show the aromatic hydrocarbon band, although somewhat weaker than on Iapetus. The origin of the PAH molecular material on these two satellites is unknown, but PAHs are found in carbonaceous meteorites, cometary dust particles, circumstellar dust, and interstellar dust. ?? 2007 Elsevier Inc. All rights reserved.

  4. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  5. Vibrational circular dichroism spectroscopy of a spin-triplet bis-(biuretato) cobaltate(III) coordination compound with low-lying electronic transitions

    DEFF Research Database (Denmark)

    Johannessen, Christian; Thulstrup, Peter W.

    2007-01-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt...

  6. Picosecond excite-and-probe absorption measurement of the intra-2E(g)E(3/2)-state vibrational relaxation time in Ti(3+):Al2O3

    Science.gov (United States)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Yoo, K. M.; Alfano, R. R.

    1987-01-01

    The Ti(3+)-doped Al2O3 has been recently demonstrated to be a tunable solid-state laser system with Ti(3+) as the laser-active ion. In this paper, the kinetics of vibrational transitions in the 2E(g)E(3/2) electronic state of Ti(3+):Al2O3a (crucial for characterizing new host materials for the Ti ion) was investigated. A 527-nm 5-ps pulse was used to excite a band of higher vibrational levels of the 2E(g)E(3/2) state, and the subsequent growth of population in the zero vibrational level and lower vibrational levels was monitored by a 3.9-micron picosecond probe pulse. The time evolution curve in the excited 2E(g)E(3/2) state at room temperature was found to be characterized by a sharp rise followed by a long decay, the long lifetime decay reflecting the depopulation of the zero and the lower vibrational levels of the 2E(g)E(3/2) state via radiative transitions. An upper limit of 3.5 ps was estimated for intra-2E(g)E(3/2)-state vibrational relaxation time.

  7. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  8. Application of system concept in vibration and noise reduction

    Directory of Open Access Journals (Sweden)

    SHENG Meiping

    2017-08-01

    Full Text Available Although certain vibration and noise control technologies are maturing, such as vibration absorption, vibration isolation, sound absorption and sound insulation, and new methods for specific frequency bands or special environments have been proposed unceasingly, there is still no guarantee that practical effective vibration and noise reduction can be obtained. An important constraint for vibration and noise reduction is the lack of a system concept, and the integrity and relevance of such practical systems as ship structure have not obtained enough attention. We have tried to use the system engineering theory in guiding vibration and noise reduction, and have already achieved certain effects. Based on the system concept, the noise control of a petroleum pipeline production workshop has been completed satisfactorily, and the abnormal noise source identification of an airplane has been accomplished successfully. We want to share our experience and suggestions to promote the popularization of the system engineering theory in vibration and noise control.

  9. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  10. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  11. Miniaurizable, High Performance, Fiber-Optic Gyroscopes for Small Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Small satellites require much lighter weight, smaller, and long life Attitude control components that can withstand stressing launch conditions and space vibration...

  12. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    OpenAIRE

    Veronica Vaida; Karl J. Feierabend; Nabilah Rontu; Kaito Takahashi

    2008-01-01

    Atmospheric chemical reactions are often initiated by ultraviolet (UV) solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical re...

  13. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  14. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  15. Satellite reconnaissance

    Science.gov (United States)

    Deloor, G. P.

    1984-06-01

    The potential of the observation equipment in remote sensing satellites is described. United States meteorology, land use and oceanography satellites and the major US Earth observation programs are listed. Imaging satellite systems are described such as: visible light and near infrared, thermal IR window, and microwave window. It is concluded that a geometrical resolution between 10 and 40 m can be expected. In order to reduce the data flow from the satellite system the input side of the system (the object-sensor interaction) has to be known. Satellites with synthetic aperture radar are increasingly important, but satellites can never fully replace observations with aircraft and drones.

  16. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  17. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  18. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. No...

  19. Active vibration isolation platform on base of magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  20. Miniature Reaction Wheel for Small Satellite Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this project is to design, develop, demonstrate, and deliver a miniature, high torque, low-vibration reaction wheel for use on small satellites....

  1. Monothiodibenzoylmethane: Structural and vibrational assignments

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen

    2007-01-01

    The vibrational structure of the title compound (1,3-diphenyl-3-thioxopropane-1-one, TDBM) was studied by a variety of experimental and theoretical methods. The stable ground state configuration of TDBM was investigated by IR absorption measurements in different media, by LD polarization spectros...... to an “open”, non-chelated enethiol form (t-TCC), thereby supporting the previous conclusions by Posokhov et al. No obvious indications of the contribution of other forms to the observed spectra could be found....

  2. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  3. Absorption bands in the spectrum of Io

    Science.gov (United States)

    Cruikshank, D. P.; Jones, T. J.; Pilcher, C. B.

    1978-01-01

    Near-infrared spectra of Io in the region from 2.8 to 4.2 microns are reported which show distinct absorption features, the most notable at 4.1 microns. Frozen volatiles or atmospheric gases cannot account for these absorptions, nor do they resemble those seen in common silicate rocks. Several candidate substances, most notably nitrate and carbonate salts, show absorption features in this spectral region; the deepest band in the spectrum may be a nitrate absorption. The satellite surface is shown to be anhydrous, as indicated by the absence of the 3-micron bound water band.

  4. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    , emerging evidence points to these structures as important hubs for dynamic, multi-faceted regulation in response to a variety of cues. In this review, we summarize the current knowledge of the roles of centriolar satellites in regulating centrosome functions, ciliogenesis, and neurogenesis. We also...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  5. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  6. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  7. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  8. Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N '-methyl amide conformational states

    DEFF Research Database (Denmark)

    Bohr, Henrik; Frimand, Kenneth; Jalkanen, Karl J.

    2001-01-01

    Density-functional theory (DFT) calculations utilizing the Becke 3LYP hybrid functional have been carried out for N-acetyl L-alanine N'-methylamide and examined with respect to the effect of water on the structure, the vibrational frequencies, vibrational absorption (VA), vibrational circular dic...

  9. Vibrationally Excited c-C_3H_2 Re-Visited New Laboratory Measurements and Theoretical Calculations

    Science.gov (United States)

    Gupta, Harshal; Westerfield, J. H.; Baraban, Joshua H.; Changala, Bryan; Thorwirth, Sven; Stanton, John F.; Martin-Drumel, Marie-Aline; Pirali, Olivier; Gottlieb, Carl A.; McCarthy, Michael C.

    2017-06-01

    Cyclopropenylidene, c-C_3H_2, is one of the more abundant organic molecules in the interstellar medium, as evidenced from astronomical detection of its single ^{13}C and both its singly- and doubly-deuterated isotopic species. For this reason, vibrational satellites are of considerable astronomical interest, and were the primary motivation for the earlier laboratory work by Mollaaghababa and co-workers [1]. The recent detection of intense unidentified lines near 18 GHz in a hydrocarbon discharge by FT microwave spectroscopy has spurred a renewed search for the vibrational satellite transitions of c-C_3H_2. Several strong lines have been definitively assigned to the v_6 progression on the basis of follow-up measurements at 3 mm, double resonance and millimeter-wave absorption spectroscopy, and new theoretical calculations using a rovibrational VMP2 method [2] and a high-quality ab initio potential energy surface. The treatment was applied to several excited states as well as the ground state, and included deperturbation of Coriolis interactions. [1] R. Mollaaghababa, C.A. Gottlieb, J. M. Vrtilek, and P. Thaddeus, J. Chem. Phys., 99, 890-896 (1992). [2] P. B. Changala and J. H. Baraban. J. Chem. Phys., 145, 174106 (2016).

  10. Force Limited Vibration Testing and Subsequent Redesign of the Naval Postgraduate School CubeSat Launcher

    Science.gov (United States)

    2014-06-01

    complex (e.g., Honeycomb ), this approach can significantly increase the cost of a satellite program. 3. Limit the responses of the satellite to match...LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS ABC Aft Bulkhead Carrier ADaMSat AS&T Development and Maturation Satellite AFSPC Air Force Space...vibration testing FRF frequency response function GEMSat Government Experimental Multi- Satellite GRACE Government Rideshare Advanced Concepts Experiments

  11. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  12. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  13. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  14. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  15. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  16. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  17. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  18. Legendrian satellites

    OpenAIRE

    Etnyre, John; Vértesi, Vera

    2016-01-01

    In this paper we study Legendrian knots in the knot types of satellite knots. In particular, we classify Legendrian Whitehead patterns and learn a great deal about Legendrian braided patterns. We also show how the classification of Legendrian patterns can lead to a classification of the associated satellite knots if the companion knot is Legendrian simple and uniformly thick. This leads to new Legendrian and transverse classification results for knots in the 3-sphere with its standard contact...

  19. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    igniters, and restrictors, can provide dozens of precision bursts of thrust upon command. Solid-rocket throttling ( vernier -thrusting) is more difficult...Here is a very straightforward micromete - oroid detector. A particle penetrates a pressurized vessel, usually a cylinder; the gas inside escapes; and a...The first Explorer satellites carried wire grids. The Micromete - oroid Satellite series used 46 cards, like those sketched in figure 11-85. Explorer

  20. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  1. Wind-excited vibrations - Solution by passive dynamic vibration absorbers of different types

    Czech Academy of Sciences Publication Activity Database

    Fischer, Ondřej

    2007-01-01

    Roč. 95, 9-11 (2007), s. 1028-1039 ISSN 0167-6105. [EACWE 4. Praha, 11.07.2005-15.07.2005] R&D Projects: GA AV ČR(CZ) IAA200710505; GA AV ČR(CZ) IAA2071401; GA ČR(CZ) GA103/06/0099 Institutional research plan: CEZ:AV0Z20710524 Keywords : wind-excited vibrations * slender structures * vibration absorption Subject RIV: JM - Building Engineering Impact factor: 0.959, year: 2007

  2. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  3. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, Nick [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm-1 intermolecular vibration of the water dimer-d4. Each of the VRT subbands originate from Ka''=0 and terminate in either Ka'=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the Ka' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D2

  4. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, N.

    1992-11-01

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.

  5. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    Science.gov (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  6. Satellite broadcasting

    Science.gov (United States)

    Gregory, D.; Rainger, P.; Harvey, R. V.; Jennings, A.

    Questions related to direct broadcasting satellites are addressed with attention given to celestial mechanics, synchronous orbits, propagation, international plans, domestic installation, related laws and system costs. The role of the World Administrative Planning Conference (WARC) organization is discussed and contrasted with that of the regional administrative radio conference. Topics related to the field of law include coverage and overspill, regulation and control, copyrights and international organizations. Alternative ways of estimating direct broadcasting system costs are presented with consideration given to satellite costs as a function of mass, launch costs and system costs as a function of power.

  7. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  8. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  9. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  10. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  11. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  12. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  13. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  14. Vibrational lineshapes of adsorbates on solid surfaces

    Science.gov (United States)

    Ueba, H.

    interaction between adsorbate and substrate. Besides spectroscopic studies of adsorbate vibrations, infrared stimulated desorption is chosen as a case study of surface chemical reactions activated by laser radiation. The dynamical processes of photodesorption is discussed in conjunction with infrared absorption, which is followed by its energy dissipation into substrate phonons or molecule-surface bond leading to desorption.

  15. Noise Abatement and Internal Vibrational Absorption in Potential Structural Materials

    Science.gov (United States)

    1976-11-01

    as advertising nor IS an officirl indorument or rpprovrl of such products or companies by the United Strtos Government. DISPOSITION INSTRUCTIONS...made from the high damping iron-chromium-aluminum alloy were obtained from Toshiba Electric Company. The plates have been delivered and are...distributed _ by Toshiba Electric Co. (17) on a proprietary Fe-Cr-Al alloy and the existence of a miscribility gap in the Fe - Cr system shown in

  16. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  17. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  18. Investigation of the spectral refractive indices of volcanic ash materials using satellite infrared sounder measurements

    Science.gov (United States)

    Ishimoto, H.; Hayashi, Y.

    2016-12-01

    In the IR window region with wavenumber range of 700-1250 cm-1, a volcanic ash cloud shows a typical spectral signature in the Atmospheric Infrared Sounder (AIRS) data and in the Infrared Atmospheric Sounding Interferometer (IASI) data. The spectral signature depends on the Si-O bond characteristics of the erupted silicate material and therefore it is correlated with the mineral type and SiO2 content. In this work, brightness temperature (BT) spectrums of the volcanic ash clouds in the IR window region has been simulated in detail from the radiative transfer calculations by taking into account the appropriate atmospheric profiles, sea surface temperature/emissivity, atmospheric gas absorptions, and ash-scattering properties. From iterative least-square calculations using measured and simulated BTs, we made estimations of the ash refractive index (RI) as well as the ash cloud parameters (optical depth, particles effective radius, and ash cloud pressure heights). Some estimated RIs were consistent with the reported rock types of the volcanoes, which had been previously classified by compositional analyses in the literature. Furthermore, weak absorptions likely due to Si-O and/or Al-O vibrations, which have been proposed in reports from previous laboratory FTIR experiments for some silicate glass samples were identified. These results suggest that the BT features can potentially allow a diagnosis of the rock type from the measurement of ash clouds. The spectral RI estimated from the analyses of data from a satellite infrared sounder can be used to analyze other satellite measurements. In particular, information for the detailed RI in the infrared region contribute to ash cloud quantification and monitoring from measurements by next-generation geostationary satellites, such as the Japanese HIMAWARI-8.

  19. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  20. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  1. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  2. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  3. Vibrational relaxation of the bending mode of HDO in liquid D2O.

    Science.gov (United States)

    Bodis, Pavol; Larsen, Olaf F A; Woutersen, Sander

    2005-06-23

    The vibrational relaxation of the bending mode of HDO in liquid D2O has been studied using time-resolved mid-infrared pump-probe spectroscopy. At short delays, the transient spectrum clearly shows the v = 1 --> 2 induced absorption and v = 1 --> 0 bleaching and stimulated emission, whereas at long delays, the transient spectrum is dominated by the spectral changes caused by the temperature increase in the sample after vibrational relaxation. From the decay of the v = 1 --> 2 induced absorption, we obtain an estimate of 390 +/- 50 fs for the vibrational lifetime, in surprisingly good agreement with recent theoretical predictions. In the v = 0 --> 1 frequency region, the decay of the absorption change involves a second, slower component, which suggests that after vibrational relaxation the system is not yet in thermal equilibrium.

  4. DFT studies on the vibrational and electronic spectra of acetylsalicylic acid

    Science.gov (United States)

    Ye, Yunfeng; Tang, Guodong; Han, Yonghong; Culnane, Lance F.; Zhao, Jianyin; Zhang, Yu

    2016-05-01

    The following is a theoretical and experimental study on the vibrational and electronic properties of acetylsalicylic acid (ASA). Vibrational information was obtained by FT-IR and Raman spectroscopy which agree well with harmonic vibrational frequency calculations. The calculations were carried out using density functional theory B3LYP methods with 6-311G** and LANL2DZ basis sets. The vibrational assignments were calculated by Gaussview. Absorption UV-Vis experiments of ASA reveal three maximum peaks at 203, 224 and 277 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311G**.

  5. Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique

    Science.gov (United States)

    Wu, Zongfang; Płucienik, Agata; Feiten, Felix E.; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim

    2017-09-01

    Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V2O3(0 0 0 1 ) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.

  6. 150K - 200K miniature pulse tube cooler for micro satellites

    Science.gov (United States)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald; Daniel, Christophe; Crespin, Maurice; Duvivier, Eric

    2014-01-01

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  7. Gas-phase SO2 in absorption towards massive protostars

    NARCIS (Netherlands)

    Keane, JV; Boonman, AMS; Tielens, AGGM; van Dishoeck, EF; Dishoeck, E. F.; Lahuis, F. van; Wright, C. M.; Doty, S. D.

    We present the first detection of the v(3) ro-vibrational band of gas-phase SO2 in absorption in the mid-infrared spectral region around 7.3 mum of a sample of deeply embedded massive protostars. Comparison with model spectra shows that the derived excitation temperatures correlate with previous

  8. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    OpenAIRE

    Wenya Zhou; Haixu Wang; Zhengwei Ruan; Zhigang Wu; Enmei Wang

    2014-01-01

    In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on ...

  9. Anisotropy of infrared absorption in (110) porous silicon layers

    Energy Technology Data Exchange (ETDEWEB)

    Timoshenko, V. Yu.; Osminkina, L.A.; Efimova, A.I.; Fomenko, M.A.; Golovan, L.A.; Kashkarov, P.K. [Moscow State M. V. Lomonosov University, Physics Department, 119992 Moscow (Russian Federation); Kovalev, D.; Kuenzner, N.; Gross, E.; Diener, J.; Koch, F. [Technische Universitaet Muenchen, Physik-Department E16, 85747 Garching (Germany)

    2005-06-01

    In-plane birefringent porous Si (PSi) layers formed from heavily boron-doped (110)Si wafers are investigated by using polarization-resolved infrared absorption (IR) spectroscopy. The absorption by free charge carriers and by Si-H{sub x} (x=1,2,3) surface bond vibrations are found to exhibit strong anisotropy (dichroism), which originates from the form anisotropy of Si nanocrystals assembling (110)PSi layers. The free carrier absorption dichroism is explained by using the effective medium approximation and classical Drude model and considering additional carrier scattering in anisotropically shaped Si nanocrystals. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. D-xylose absorption

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  11. Silicon Micromachined Sensor for Broadband Vibration Analysis

    Science.gov (United States)

    Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward

    1995-01-01

    The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.

  12. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    Science.gov (United States)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  13. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    Science.gov (United States)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  14. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  15. The effects of isomerism on the vibrational spectra and thermodynamic characteristics of biuret in the gas phase

    Science.gov (United States)

    Korolevich, M. V.; Lastochkina, V. A.; Frenkel, M. L.; Kabo, G. Ya.; Zhbankov, R. G.

    1991-03-01

    A theoretical study of the IR spectra of cis- and trans-isomers of biuret, based on coupled calculations of vibrational frequencies as a valence force field approximation and of absorption band intensities by the CNDO/2 method, is reported. Calculated thermodynamic functions for biuret agreed with experimental thermochemical data. For calculating the vibrations of an isolated biuret molecule, the experimental vapour-phase IR absorption spectra were used.

  16. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  17. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  18. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  19. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  20. Vibronic energy map and excited state vibrational characteristics of magnesium myoglobin determined by energy-selective fluorescence.

    OpenAIRE

    Kaposi, A D; Vanderkooi, J. M.

    1992-01-01

    The vibrational frequencies of the singlet excited state of Mg-substituted myoglobin and relative absorption probabilities were determined by fluorescence line-narrowing spectroscopy. These spectra contain information on the structure of the excited state species, and the availability of vibrationally resolved spectra from excited state biomolecules should aid in elucidating their structure and reactivity.

  1. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  2. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    Science.gov (United States)

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  3. Ultrafast Dynamics of Vibration-Cavity Polariton Modes

    Science.gov (United States)

    Owrutsky, Jeff; Dunkelberger, Adam; Fears, Kenan; Simpkins, Blake; Spann, Bryan

    Vibrational modes of polymers, liquids, and solvated compounds can couple to Fabry-Perot optical cavity modes, creating vibration-cavity polariton modes whose energy tunes with the cavity length and incidence angle. Here we report the pump-probe infrared spectroscopy of vibration-cavity polaritons in cavity-coupled W(CO)6. At very early times, we observe quantum beating between the two polariton states find an anomalously low degree of excitation. After the quantum beating, we directly observe spectroscopic signatures of excited-state absorption from both polariton modes and uncoupled reservoir modes. An analytical expression for cavity transmission reproduces these signatures. The upper polariton mode relaxes ten times more quickly than the uncoupled vibrational mode and the polariton lifetime depends on the angle of incidence of the infrared pulses. Coupling to an optical cavity gives a means of control of the lifetime of vibration-cavity polaritons and could have important implications for chemical reactivity in vibrationally excited molecules.

  4. Progress on the use of satellite technology for gravity exploration

    Directory of Open Access Journals (Sweden)

    Yanwei Ding

    2015-07-01

    Full Text Available In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thrusters, aerodynamic configuration, the ability to perform micro-vibration analyses, microwave ranging system and mass center trimmer are described.

  5. Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Dolgin, Benjamin P.

    1991-01-01

    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  6. Iodine Satellite

    Science.gov (United States)

    Dankanich, John; Kamhawi, Hani; Szabo, James

    2015-01-01

    This project is a collaborative effort to mature an iodine propulsion system while reducing risk and increasing fidelity of a technology demonstration mission concept. 1 The FY 2014 tasks include investments leveraged throughout NASA, from multiple mission directorates, as a partnership with NASA Glenn Research Center (GRC), a NASA Marshall Space Flight Center (MSFC) Technology Investment Project, and an Air Force partnership. Propulsion technology is often a critical enabling technology for space missions. NASA is investing in technologies to enable high value missions with very small and low-cost spacecraft, even CubeSats. However, these small spacecraft currently lack any appreciable propulsion capability. CubeSats are typically deployed and drift without any ability to transfer to higher value orbits, perform orbit maintenance, or deorbit. However, the iodine Hall system can allow the spacecraft to transfer into a higher value science orbit. The iodine satellite (iSAT) will be able to achieve a (Delta)V of >500 m/s with 1,300 s. The iSAT spacecraft, illustrated in figure 1, is currently a 12U CubeSat. The spacecraft chassis will be constructed from aluminum with a finish to prevent iodine-driven corrosion. The iSAT spacecraft includes full three-axis control using wheels, magnetic torque rods, inertial management unit, and a suite of sensors and optics. The spacecraft will leverage heat generated by spacecraft components and radiators for a passive thermal control system.

  7. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  8. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  9. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  10. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  11. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  12. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  13. Absorption and photoluminescence in organic cavity QED

    Science.gov (United States)

    Herrera, Felipe; Spano, Frank C.

    2017-05-01

    Organic microcavities can be engineered to reach exotic quantum regimes of strong and ultrastrong light-matter coupling. However, the microscopic interpretation of their spectroscopic signals can be challenging due to the competition between coherent and dissipative processes involving electrons, vibrations, and cavity photons. We develop here a theoretical framework based on the Holstein-Tavis-Cummings model and a Markovian treatment of dissipation to account for previously unexplained spectroscopic features of organic microcavities consistently. We identify conditions for the formation of dark vibronic polaritons, a class of light-matter excitations that are not visible in absorption but lead to strong photoluminescence lines. We show that photon leakage from dark vibronic polaritons can be responsible for enhancing photoluminescence at the lower polariton frequency, and also can explain the apparent breakdown of reciprocity between absorption and emission in the vicinity of the bare molecular transition frequency. Successful comparison with experimental data demonstrates the applicability of our theory.

  14. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  15. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  16. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    Directory of Open Access Journals (Sweden)

    Veronica Vaida

    2008-01-01

    Full Text Available Atmospheric chemical reactions are often initiated by ultraviolet (UV solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical reactions. Experimental and theoretical O–H intensities of several carboxylic acids, alcohols, and peroxides are presented. The importance of combination bands in spectra at chemically relevant energies is examined in the context of atmospheric photochemistry. Candidate systems for overtone-initiated chemistry are provided, and their lowest energy barrier for reaction and the minimum quanta of O–H stretch required for reaction are calculated. We conclude with a discussion of the major pathways available for overtone-induced reactions in the atmosphere.

  17. Feasibility of microminiature satellites

    Science.gov (United States)

    Imai, Ryouichi

    1991-07-01

    A conceptual study is conducted on technical problems and system design techniques to accomplish higher performance microminiature satellites by smaller systems. Applications of microminiature satellite technology to practical satellite mission are mentioned. Concepts of microminiature satellites, measures to miniaturize satellites, and micro-miniaturization technologies for communication and data processing, electric solar power paddle, attitude and orbit control, structure, thermal control, propulsion, and instrumentation systems are outlined. Examples of miniaturizing satellite missions such as planet exploration, low-altitude communication networks, space positioning system, low-altitude earth observation mission, clustered satellites, tethered satellites, and timely observation are described. Satellite miniaturizing technology can also be used to launch systems by lasers, and superconductive linear catapults (space escalator). It is pointed out that keys to promote satellite miniaturization are electronics, precision machining, raw material, electric power source technologies, and system design technology to integrate those technologies.

  18. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  19. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  20. Amplifying vibrational circular dichroism by manipulation of the electronic manifold.

    Science.gov (United States)

    Domingos, Sérgio R; Panman, Matthijs R; Bakker, Bert H; Hartl, Frantisek; Buma, Wybren J; Woutersen, Sander

    2012-01-11

    Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification. This journal is © The Royal Society of Chemistry 2012

  1. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  2. Photochromism of Composite Organometallic Nanostructures Based on Diarylethenes. II. Vibrational Spectroscopy and Quantum Chemistry Studies

    Science.gov (United States)

    Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.

    2017-11-01

    The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.

  3. Reducing vibration transfer from power plants by active methods

    Science.gov (United States)

    Kiryukhin, A. V.; Milman, O. O.; Ptakhin, A. V.

    2017-12-01

    The possibility of applying the methods of active damping of vibration and pressure pulsations for reducing their transfer from power plants into the environment, the seating, and the industrial premises are considered. The results of experimental works implemented by the authors on the active broadband damping of vibration and dynamic forces after shock-absorption up to 15 dB in the frequency band up to 150 Hz, of water pressure pulsations in the pipeline up to 20 dB in the frequency band up to 600 Hz, and of spatial low-frequency air noise indoors of a diesel generator at discrete frequency up to 20 dB are presented. It is shown that a reduction of vibration transfer through a vibration-isolating junction (expansion joints) of pipelines with liquid is the most complicated and has hardly been developed so far. This problem is essential for vibration isolation of power equipment from the seating and the environment through pipelines with water and steam in the power and transport engineering, shipbuilding, and in oil and gas pipelines in pumping stations. For improving efficiency, reducing the energy consumption, and decreasing the overall dimensions of equipment, it is advisable to combine the work of an active system with passive damping means, the use of which is not always sufficient. The executive component of the systems of active damping should be placed behind the vibration isolators (expansion joints). It is shown that the existence of working medium and connection of vibration with pressure pulsations in existing designs of pipeline expansion joints lead to growth of vibration stiffness of the expansion joint with the environment by two and more orders as compared with the static stiffness and makes difficulties for using the active methods. For active damping of vibration transfer through expansion joints of pipelines with a liquid, it is necessary to develop expansion joint structures with minimal connection of vibrations and pulsations and minimal

  4. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  5. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  6. Membrane Gas Absorption

    NARCIS (Netherlands)

    Jansen, A.E.; Klaassen, R.; Feron, P.H.M.

    1995-01-01

    Membrane gas absorption processes are absorption processes utilising hollow fibre membranes as contacting media for gas and liquid flows. The principle of operation and engineering aspects are discussed, followed by discussion of a number of typical applications. Benefits in terms of operation,

  7. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  8. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  9. Vibrational kinetics in Cl2 and O2 low-pressure inductively-coupled plasmas

    Science.gov (United States)

    Booth, Jean-Paul; Foucher, Mickael; Marinov, Daniil; Chabert, Pascal; Annusova, Anna; Guerra, Vasco; Agarwal, Ankur; Rauf, Shahid

    2015-09-01

    Low energy electron interactions with molecules via resonances can cause vibrational excitation (affecting chemical kinetics), electron energy loss and modification of the EEDF. However, with the exception of N2 and H2 plasmas, very little attention has been paid to this subject. We have implemented a novel high-sensitivity ultra-broadband UV absorption bench, allowing spectra to be recorded with noise as low as 2×10-5 over a 250 nm wavelength range, and recording of complete vibronic bands. We applied this to radiofrequency inductively-coupled plasmas in low pressure (5-50 mTorr) pure O2 and pure Cl2. In O2 plasmas we surprisingly observe highly vibrationally excited O2 (v'' up to 18) via B-X Schumann-Runge bands. Cl2 molecules show a broad UV absorption spectrum in the region 250-400 nm, with distinctly different absorption spectra for vibrationally excited molecules. However, only a small fraction of the Cl2 molecules were observed in vibrationally excited states and the vibrational temperature is close to equilibrium with the local gas translational temperature (up to 1000 K), in contrast to O2. We are currently working on global models with vibrational kinetics to explain these results. Work supported by LABEX Plas@par (ANR-11-IDEX-0004-02), and Applied Materials.

  10. Out-of-plane vibrations of acetone oxime-D o and -D 6

    Science.gov (United States)

    Keresztury, G.; Holly, S.; Incze, M.

    1984-03-01

    The Raman and polarized i.r. spectra of crystalline acetone oxime-d 6 (AD-d 6) were recorded and used for a complete assignment of the fundamental vibrations. Experimental evidence is presented for the assignment of the 650 cm -1 infrared absorption band of AO-d 0 and -d 6 crystals to a hot transition of the OH out-of-plane bending vibration. A simplified force field is proposed for the out-of-plane vibrations of the molecule.

  11. Vibrational relaxation beyond the linear damping limit in two-dimensional optical spectra of molecular aggregates

    Science.gov (United States)

    Perlík, Václav; Šanda, František

    2017-08-01

    We present a computational model for the spectra of molecular aggregates with signatures of vibronic progression. Vibronic dynamics is implemented by coupling the dynamics of Frenkel excitons with underdamped vibrations. Vibrational dynamics includes linear damping resulting in the exponential decay and quadratic damping inducing subexponential or power law relaxation and increasing vibrational decoherence as demonstrated on lineshapes of the absorption spectrum. Simulations of the third-order coherent response account for bath reorganization during excitonic transport, which allows us to study the line-shape evolution of cross peaks of 2D spectra.

  12. Integrated Advanced Microwave Sounding Unit-A (AMSU-A) METOP Stress Analysis Report (Qual Level Random Vibration) A1 Module

    Science.gov (United States)

    Mehitretter, R.

    1996-01-01

    Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module performed using the Meteorological Operational (METOP) Qualification Level 9.66 grms Random Vibration PSD Spectrum is presented. The random vibration structural margins of safety and natural frequency predictions are summarized.

  13. Vibrational Förster transfer to hydrated protons.

    Science.gov (United States)

    Timmer, R L A; Tielrooij, K J; Bakker, H J

    2010-05-21

    We have studied the influence of excess protons on the vibrational energy relaxation of the O-H and O-D stretching modes in water using femtosecond pump-probe spectroscopy. Without excess protons, we observe exponential decays with time constants of 1.7 and 4.3 ps for the bulk and anion bound O-D stretch vibrations. The addition of protons introduces a new energy relaxation pathway, which leads to an increasingly nonexponential decay of the O-D stretch vibration. This new pathway is attributed to a distance-dependent long range dipole-dipole (Forster) interaction between the O-D stretching vibration and modes associated with dissolved protons. The high efficiency of hydrated protons as receptors of vibrational energy follows from the very large absorption cross section and broad bandwidth of protons in water. For a proton concentration of 1M we find that Forster energy transfer occurs over an average distance of 4.5 A, which corresponds to a separation of about two water molecules.

  14. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  15. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  16. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  17. Satellite orbit predictor

    Science.gov (United States)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  18. Acoustic absorption of natural gas compression facility enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, P.; Wong, G. [Noise Management Ltd., Calgary, AB (Canada)

    2009-07-01

    Noise sources at gas compressor facilities include the enclosure/building housing a gas engine and compressor, the ventilation openings, doors and windows for the enclosure, the engine air intake and exhaust, and a cooler. Accurate predictions of the noise levels inside the enclosure, the breakout noise from open windows and doors and ventilation, as well as the transmission through the walls, is necessary in order to determine cost effective noise mitigation for the facility. In order to accurately predict the sound breakout from these facilities it is necessary to know the acoustic absorption of the interior of these equipment enclosures. Although the acoustic absorption data of the wall systems may be available, the absorption attributable to the non-enclosure surfaces, the equipment and fittings, is not usually known and is difficult to predict. Since piping, instrumentation and mechanical equipment often take on a typical arrangement, shape, volumetric density and material composition, it is useful to know the typical acoustic absorption attributable to these items. In this study, reverberation time (RT) measurements were taken at 2 decommissioned gas compressor facilities in order to determine the absorption characteristics of the enclosure. The RT was measured according to ASTM C423-02a. The overall absorption coefficient of a compressor enclosure with a solid liner was found to be similar to that of steel decking. Fittings within the enclosure did not increase the high frequency absorption of the enclosure. It was concluded that room modes, structural vibrations, and fittings may serve to increase the effective absorption at frequencies below 630 Hz. Because of the small dimensions of the enclosure, low-frequency response of the room affected the reliability of the data below 160Hz. Structural vibration of the enclosure was investigated, and may considerably influence the noise breakout from the enclosure apart from the interior acoustical considerations. 4

  19. Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations

    Science.gov (United States)

    2017-01-01

    This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute–water and water–water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy. PMID:28783431

  20. Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations.

    Science.gov (United States)

    Persson, Rasmus A X; Pattni, Viren; Singh, Anurag; Kast, Stefan M; Heyden, Matthias

    2017-09-12

    This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute-water and water-water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy.

  1. A mid-infrared absorption diagnostic for acetylene detection

    Science.gov (United States)

    KC, Utsav; Nasir, Ehson F.; Farooq, Aamir

    2015-08-01

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm-1 over a wide range of temperatures (1000-2200 K) and pressures (1-5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene.

  2. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  3. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  4. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  5. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  6. Satellite Tags- Hawaii EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  7. Zeeman atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given. (WHK)

  8. Absorption heat pump system

    Science.gov (United States)

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  9. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  10. AGN warm absorption with the ATHENA

    Science.gov (United States)

    Różańska, Agata; Gronkiewicz, Dominik; Hryniewicz, Krzysztof; Adhikari, Tek Prasad; Rataj, Mirosław; Skup, Konrad

    2016-06-01

    X-ray astronomy requires satellites to make progress in searching the distribution of hot matter in the Universe. Approximately 15 years period of time is needed for full construction of the flight instrument from the mission concept up to the launch. A new generation X-ray telescope ATHENA (the Advanced Telescope for High Energy Astrophysics) was approved by European Space Agency as a large mission with a launch foreseen in 2028. In this paper we show how microcalorimeter on the board of ATHENA will help us to study warm absorption observed in active galactic nuclei (AGN). We show that future observations will allow us to identify hundreds of lines from highly ionized elements and to measure Galactic warm absorption with very high precision.

  11. Optical absorption measurement system

    Science.gov (United States)

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  12. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E

    2003-08-01

    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  13. Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption

    Energy Technology Data Exchange (ETDEWEB)

    Biancofiore, C.; Karuza, M.; Galassi, M.; Natali, R.; Vitali, D. [School of Science and Technology, Physics Division, University of Camerino, via Madonna delle Carceri, 9, I-62032 Camerino (Italy) and INFN, Sezione di Perugia (Italy); Tombesi, P.; Di Giuseppe, G. [School of Science and Technology, Physics Division, University of Camerino, via Madonna delle Carceri, 9, I-62032 Camerino (Italy) and INFN, Sezione di Perugia (Italy); CriptoCam S.r.l., via Madonna delle Carceri 9, I-62032 Camerino (Italy)

    2011-09-15

    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We determine in particular to what extent optical absorption by the membrane hinders reaching a quantum regime for the cavity-membrane system. We show that even though membrane absorption may significantly lower the cavity finesse and also heat the membrane, one can still simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.

  14. Absorption cooling device. Absorptions-Kuehlvorrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, J.; Vardi, I.; Kimchi, Y.; Ben-Dror, J.

    1980-03-25

    The invention concerns improvements of absorption refrigerators, where a lithium chloride or lithium bromide/water cycle is used. According to the invention an inner separating or dividing structure between different functional parts of a machine of this type is provided. The structure contains two sections of wall, which are separated from one another by a suitable space, in order to achieve thermal insulation. This air space is provided with an opening in the direction towards the inside of the container and the opening is shielded to prevent the entry of liquids (in liquid or spray form).

  15. Vibrational Sensing in Marine Invertebrates

    Science.gov (United States)

    1997-09-30

    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  16. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  17. Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation

    Science.gov (United States)

    Turco, E.; Gardonio, P.

    2017-10-01

    This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.

  18. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  19. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  20. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  1. Central cooling: absorptive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  2. Final Report: Vibrational Dynamics in Photoinduced Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth G. Spears

    2006-04-19

    The objective of this grant was to understand how molecular vibrational states (geometry distortions) are involved in photoinduced electron transfer rates of molecules. This subject is an important component of understanding how molecular absorbers of light convert that energy into charge separation. This is important because the absorption usually excites molecular vibrations in a new electronic state prior to electron transfer to other molecules or semiconductor nanoparticles, as in some types of solar cells. The speeds of charge separation and charge recombination are key parameters that require experiments such as those in this work to test the rules governing electron transfer rates. Major progress was made on this goal. Some of the molecular structures selected for developing experimental data were bimolecular charge transfer complexes that contained metals of cobalt or vanadium. The experiments used the absorption of an ultrafast pulse of light to directly separate charges onto the two different molecular parts of the complex. The charge recombination then proceeds naturally, and one goal was to measure the speed of this recombination for different types of molecular vibrations. We used picosecond and femtosecond duration pulses with tunable colors at infrared wavelengths to directly observe vibrational states and their different rates of charge recombination (also called electron transfer). We discovered that different contact geometries in the complexes had very different electron transfer rates, and that one geometry had a significant dependence on the amount of vibration in the complex. This is the first and only measurement of such rates, and it allowed us to confirm our interpretation with a number of molecular models and test the sensitivity of electron transfer to vibrational states. This led us to develop a general theory, where we point out how molecular distortions can change the electron transfer rates to be much faster than prior theories

  3. Satellite material contaminant optical properties

    Science.gov (United States)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  4. Observing Climate with Satellites - Are We on Thin Ice?

    Science.gov (United States)

    Tucker, Compton

    2012-01-01

    The Earth s climate is determined by irradiance from the Sun and properties of the atmosphere, oceans, and land that determine the reflection, absorption, and emission of energy within our atmosphere and at the Earth s surface. Since the 1970s, Earth-viewing satellites have complimented non-satellite geophysical observations with consistent, quantitative, and spatially-continuous measurements that have led to an unprecedented understanding of the Earth s climate system. I will describe the Earth s climate system as elaborated by satellite and in situ observations, review arguments against global warming, and show the convergence of evidence for human-caused warming of our planet.

  5. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution

    Science.gov (United States)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming

    2013-06-01

    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  6. [Synthesis, characterization and study on vibration spectra of potassium triborate].

    Science.gov (United States)

    Zhang, Jin-Ping; Sun, Yong; Yang, Gang; Li, Zuo-Hu

    2007-07-01

    Potassium triborate was synthesized with potassium carbonate and boric acid by controlling suitable feed mixture ratio, reaction temperature and dehydration temperature in the self-designed boiling reactor. According to chemical analysis, the formula of the synthetics was monohydrate potassium triborate (KB3O5 x H2O). It's structure was characterized by XRD, FTIR, Raman and TG, and it was found by XRD analysis that the synthetics was amorphous solid. FTIR and Raman spectroscopy anal-ysis show that three coordination B(3) -O bond, four coordination B(4) -O bond, and hydroxy and triborate anions existed in the formula of the synthetics. Thermogravimetric (TG) analysis show that the groups which can lose mono-water existed in the formula of the synthetics, and structural formula of the synthetics was deduced as K[B3O4 (OH)2]. Vibration spectra of the synthetics were studied, including FTIR and Raman spectroscopy. Vibration absorption peaks of some main groups of the synthetics were investigated, including three coordination B(3) -O bond and four coordination B(4) -O bond that are the main existing forms of boron atoms in the synthetics as well as other groups, and each vibration absorption peak was assigned.

  7. Sub-millimetre wave absorption spectra of artificial RNA molecules

    CERN Document Server

    Globus, T; Woolard, D; Gelmont, B

    2003-01-01

    We demonstrate submillimetre-wave Fourier transform spectroscopy as a novel technique for biological molecule characterization. Transmission measurements are reported at frequencies 10-25 cm sup - sup 1 for single- and double-stranded RNA molecules of known base-pair sequences: homopolymers poly[A], poly[U], poly[C] and poly[G], and double-stranded homopolymers poly[A]-poly[U] and poly[C]-poly[G]. Multiple resonances are observed (i.e. in the microwave through terahertz frequency regime). We also present a computational method to predict the low-frequency absorption spectra of short artificial DNA and RNA. Theoretical conformational analysis of molecules was utilized to derive the low-frequency vibrational modes. Oscillator strengths were calculated for all the vibrational modes in order to evaluate their weight in the absorption spectrum of a molecule. Normal modes and absorption spectra of the double-stranded RNA chain poly[C]-poly[G] were calculated. The absorption spectra extracted from the experiment wer...

  8. Bruel & Kjær Solutions for Satellite Qualification Testing

    Science.gov (United States)

    Wethly, Patrick

    2012-07-01

    Early 2011 the Laboratório de Integração e Testes (LIT) do Instituto Nacional de Pesquisas Espaciais (INPE, http://www.lit.inpe.br/) in Brazil selected Brüel & Kjær as supplier to replace their existing data acquisition and vibration test system for satellite qualification testing. The Brüel & Kjær supplied Satellite Qualification Test System (SQTS) is an integrated total solution for vibration, shock and acoustic fatigue satellite testing. Based on Brüel & Kjær state-of-the-art data acquisition platform LAN-XI the delivered solution integrates different Brüel & Kjær software applications providing a fully integrated solution supporting INPE’s workflow requirements for Satellite Qualification testing. The delivered solutions allows the INPE engineers to seamlessly run the different tasks at hand ensuring ease of use for setup, data acquisition & post processing in relation to the typical satellite qualification tests and is designed to allow multiple INPE engineers and INPE’s client to validate and witness data acquisition in real- time. This paper describes the integrated solutions provided to INPE.

  9. Vibrational spectra, electronic absorption, nonlinear optical properties, evaluation of bonding, chemical reactivity and thermodynamic properties of ethyl 4-(1-(2-(hydrazinecarbonothioyl)hydrazono)ethyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate molecule by ab initio HF and density functional methods.

    Science.gov (United States)

    Singh, R N; Rawat, Poonam; Sahu, Sangeeta

    2015-01-25

    In this work, detailed vibrational spectral analysis of ethyl 4-(1-(2-(hydrazinecarbonothioyl)hydrazono)ethyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (EHCHEDPC) molecule has been carried out using FT-IR spectroscopy and potential energy distribution (PED). Theoretical calculations were performed by ab initio RHF and density functional theory (DFT) method, using 6-31G(d,p) and 6-311+G(d,p) basis sets. The other carried outwork cover: structural, thermodynamic properties, electronic transitions, bonding, multiple interaction, chemical reactivity and hyperpolarizability analysis. The results of the calculation were applied to the simulated spectra of (EHCHEDPC), which show excellent agreement with observed spectra. The vibrational analysis shows red shift in both group, the proton donor (pyrrole N-H) and proton acceptor (C=O of ester) indicating the presence of intermolecular hydrogen bonding. Time dependent density functional theory (TD-DFT) has been used to find electronic excitations and their nature. The results of natural bond orbital (NBOs) analysis show the charges transfer and delocalization in various intra- and intermolecular interactions. The binding energy of intermolecular multiple interactions is calculated to be 12.54 kcal mol(-1) using QTAIM calculation. The electronic descriptors analyses reveal the investigated molecule used as precursor for heterocyclic derivatives synthesis. First hyperpolarizability (β0) has been computed to evaluate non-linear optical (NLO) response. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Experimental and Theoretical Study of Strong Low-Terahertz Absorption of Thymine

    Science.gov (United States)

    Zhang, W.-D.; Bykhovski, A.; Deibel, J. A.; Brown, E. R.

    2017-07-01

    The absorption coefficient of a nucleobase-thymine-in powder form was measured with terahertz spectroscopy in both frequency- and time-domain experiments. For frequencies below 3 THz, a strong signature was observed at 1.27 THz. Furthermore, molecular-dynamic simulations were conducted to reveal that the 1.27 THz absorption signature is related to a transverse optical phonon mode. The simulations also indicated that bound water molecules are vital to the vibrational mode.

  11. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    Science.gov (United States)

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  12. Absorption heat pump system

    Science.gov (United States)

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  13. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  14. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  16. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  17. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  18. [Absorption Characteristics and Simulation of LLM-105 in the Terahertz Range].

    Science.gov (United States)

    Meng, Zeng-rui; Shang, Li-ping; Du, Yu; Deng, Hu

    2015-07-01

    2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), a novel explosive with high energy and low sensibility. In order to study the molecular structure characteristics of the explosive, the absorption spectra of LLM-105 in the frequency range of 0.2-2.4 THz were detected by terahertz time-domain spectroscopy (THz-TDS). The results showed that a number of characteristic absorption peaks with different intensity located at 1.27, 1.59, 2.00, 2.08, 2.20, 2.29 THz. The article also simulated the absorption spectra of LLM-105 molecular crystal within 0.2-2.5 THz region by using Materials Studio 6.0 software based on density functional theory (DFT), and the simulated results agreed well with the experimental data except for the peak at 2.29 THz, which verified theoretically the accuracy of the experimental data. In addition, the vibrational modes of the characteristic peaks in the experimental absorption spectra were analyzed and identified, the results showed that the forming of the characteristic absorption peaks and the molecular vibration were closely related, which further provided important laboratory and technology support for the study of the transformation of molecule structure of LLM-105. There was no simulated frequency agreed with the experimental absorption peak at 2.29 THz, which may be caused by the vibration of the crystal lattice or other reasons.

  19. Analysis of absorption performances of anechoic layers with steel plate backing.

    Science.gov (United States)

    Meng, Hao; Wen, Jihong; Zhao, Honggang; Lv, Linmei; Wen, Xisen

    2012-07-01

    Rubber layers with air-filled cavities or local resonance scatters can be used as anechoic coatings. A lot of researches have focused on the absorption mechanism of the anechoic coatings. As the anechoic coatings are bonded to the hull of submarine, the vibration of the hull should not be neglected when the analysis of the absorption characters is carried out. Therefore, it is more reasonable to treat the anechoic coating and the backing as a whole when the acoustic performance is analyzed. Considering the effects of the steel plate backing, the sound absorption performances on different models of anechoic coatings are investigated in this paper. The Finite Element Method is used to illustrate the vibrational behaviors of the anechoic coatings under the steel backings by which the displacement contours is obtained for analysis. The theoretical results show that an absorption peak is induced by the resonance of the steel slab and rubber layer. At the frequency of this absorption peak, the steel plate and the coating vibrates longitudinally like a mass-spring system in which the steel slab serves for mass and the coating layer is the spring. To illuminate the effects of the steel slab backing on the acoustic absorption, the thicknesses of the steel slab and the anechoic layer are discussed. Finally, an experiment is performed and the results show a good agreement with the theoretical analysis.

  20. Visual Absorption Capability

    Science.gov (United States)

    Lee Anderson; Jerry Mosier; Geoffrey Chandler

    1979-01-01

    Visual absorption capability (VAC) is a tool to assess a landscape's susceptibility to visual change caused by man's activities. This paper explores different descriptive approaches to VAC and addresses in depth the development of the VAC process used on the Klamath National Forest. Four biophysical factors were selected to assess VAC for the lands within the...

  1. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  2. 14 CFR 33.63 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  3. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  4. 14 CFR 33.33 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  5. 14 CFR 33.43 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  6. 49 CFR 178.819 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  7. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  8. Mechanical Parameters Effects on Acoustic Absorption at Polymer Foam

    Directory of Open Access Journals (Sweden)

    Lyes Dib

    2015-01-01

    Full Text Available Polymer foams have acoustic absorption properties that play an important role in reducing noise level. When the skeleton is set to motion, it is necessary to use generalized Biot-Allard model which takes into account the deformation of the skeleton and the fluid and the interactions between them. The aim of this work is to study the quality of acoustic absorption in polyurethane foam and to show the importance of the structural vibration of this foam on the absorption by varying mechanical parameters (Young’s modulus E, Poisson’s coefficient ν, structural damping factor η, and the density ρ1. We calculated the absorption coefficient analytically using classical Biot formulation (us, uf and numerically using Biot mixed formulation (us, p in 3D COMSOL Multiphysics. The obtained results are compared together and show an excellent agreement. Afterwards, we studied the effect of varying each mechanical parameter independently on the absorption in interval of ±20%. The simulations show that these parameters have an influence on the sound absorption around the resonance frequency fr.

  9. Time-resolved vibrational spectroscopy of a molecular shuttle.

    Science.gov (United States)

    Panman, Matthijs R; Bodis, Pavol; Shaw, Danny J; Bakker, Bert H; Newton, Arthur C; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Woutersen, Sander

    2012-02-14

    Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid-IR spectrum. Using ab initio calculations on specific parts of the rotaxane, and by comparing the transient spectra of the normal rotaxane with that of the N-deuterated version, we can assign the observed vibrational modes of each species occurring during the shuttling cycle in an unambiguous way. The complete time- and frequency-dependent data set is analyzed using singular value decomposition (SVD). Using a kinetic model to describe the time-dependent concentrations of the transient species, we derive the absorption spectra associated with each stage in the operation cycle of the molecular shuttle, including the recombination of the charged species.

  10. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    Science.gov (United States)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  11. Synergic use of TOMS and AERONET observations for characterization of aerosol absorption

    Science.gov (United States)

    Torres, O.; Sinyuk, A.; Bhartia, P. K.; Dubovik, O.; Holben, B.

    2003-04-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  12. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  13. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  14. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  15. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  16. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  17. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  18. Wedge Absorption Remote Sensor.

    Science.gov (United States)

    1981-05-01

    Training Equipment Center ATTN: Technical Information Center Dr. Eugene W. Bierly Orlando, FL 32813 Director, Division of Atmos Sciences National Scinece ...Fort Monmouth, NJ 07703 AFGL/LY Hanscom AFB, MA 01731 Commander US Army Satellite Comm Agency The Environmental Research ATTN: DRCPM-SC-3 Institute of...Library Commanding Officer TSLD (Bette Smith) US Army Foreign Sci & Tech Cen Griffiss AFB, NY 13441 ATTN: DRXST-IS1 220 7th Street, NE Environmental

  19. Vibrational modes of nanolines

    Science.gov (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  20. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    Directory of Open Access Journals (Sweden)

    Dan Lis

    2014-11-01

    Full Text Available Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS. They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA and surface-enhanced Raman scattering (SERS techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis.

  1. Vibration Modes at Terahertz and Infrared Frequencies of Ionic Liquids Consisting of an Imidazolium Cation and a Halogen Anion.

    Science.gov (United States)

    Yamada, Toshiki; Tominari, Yukihiro; Tanaka, Shukichi; Mizuno, Maya; Fukunaga, Kaori

    2014-11-17

    The terahertz and infrared frequency vibration modes of room-temperature ionic liquids with imidazolium cations and halogen anions were extensively investigated. There is an intermolecular vibrational mode between the imidazolium ring of an imidazolium cation, a halogen atomic anion with a large absorption coefficient and a broad bandwidth in the low THz frequency region (13-130 cm(-1)), the intramolecular vibrational modes of the alkyl-chain part of an imidazolium cation with a relatively small absorption coefficient in the mid THz frequency region (130-500 cm(-1)), the intramolecular skeletal vibrational modes of an imidazolium ring affected by the interaction between the imidazolium ring, and a halogen anion with a relatively large absorption coefficient in a high THz frequency region (500-670 cm(-1)). Interesting spectroscopic features on the interaction between imidazolium cations and halogen anions was also obtained from spectroscopic studies at IR frequencies (550-3300 cm(-1)). As far as the frequency of the intermolecular vibrational mode is concerned, we found the significance of the reduced mass in determining the intermolecular vibration frequency.

  2. Ionospheric Absorption on 1539 Khz in Relation to Solar Ionizing Radiation

    Science.gov (United States)

    Boska, J.

    1984-01-01

    Radio wave absorption data on 1539 kHz for the summer period of 1978 to 1980 are considered in relation to variations of solar X-ray and L-alpha radiation. It is shown that under non-flare conditions L-alpha dominates in controlling absorption and that X-rays contribute about 10% to the total absorption. Optimum regression equations show that absorption is proportional to the m-th power of ionizing flux where m 1. The role of correcting L-alpha values, measured by the AE-E satellite, is discussed.

  3. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary ...... processes, with emphasis on exploitative learning. Before concluding, the paper addresses implications for theory and practice and limitations of this study....

  4. Planets and satellites galore

    Science.gov (United States)

    Marsden, B. G.

    1980-10-01

    The facts and controversies surrounding the discoveries of Uranus, Neptune, Pluto and their satellites are reviewed. Earth-approaching and earth-crossing minor planets are discussed with attention to the work of Helin and Giclas. The problems attending satellite discoveries are examined, and the criteria for 1978 P 1 is evaluated.

  5. Satellite Communications Industry

    Science.gov (United States)

    1993-04-01

    Ariane $loom SAJAC 1 Hughes Satellite Japan 06/94 $150m SAJAC 2 Hughes Satellite Japan -- (spare) $150m SatcomHl GE GE Americom /95 $50m SOLIDARIDAD ...1 Hughes SCT (Mexico) 11/93 Ariane $loom SOLIDARIDAD 2 Hughes SCT (Mexico) /94 $loom Superbird Al Loral Space Com Gp (Jap) 11/92 Ariane $175m

  6. Relic Neutrino Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  7. Acetylene, 12C2H2: new CRDS data and global vibration-rotation analysis up to 8600 cm-1

    OpenAIRE

    Herman, Michel

    2008-01-01

    Abstract The absorption spectrum of 12C2H2 has been recorded using cavity ring downringdown spectroscopy and analyzed in the ranges 60006356 cm and 66677015 cm. Fourteen new bands have been identified and additional J-lines were assigned in 10 already known bands. These new data, together with the published vibration-rotation absorption lines of 12C2H2 accessing vibrational states up to 8600 cm have been gathered in a ...

  8. Evaluation of hand-arm vibration reducing effect of anti-vibration glove

    OpenAIRE

    樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎

    2015-01-01

    Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...

  9. Absorption in periodic layered structures

    OpenAIRE

    Moroz, Alexander; Tip, Adriaan; Combes, Jean-Michel

    2000-01-01

    Photonic band structure of metal-dielectric and semiconductor-dielectric layered structures are studied in the presence of a strong absorption. It is shown that absorption can enlarge some gaps by as much as 50%.

  10. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems.

    Science.gov (United States)

    Błasiak, Bartosz; Londergan, Casey H; Webb, Lauren J; Cho, Minhaeng

    2017-04-18

    The vibrational frequency of a chosen normal mode is one of the most accurately measurable spectroscopic properties of molecules in condensed phases. Accordingly, infrared absorption and Raman scattering spectroscopy have provided valuable information on both distributions and ensemble-average values of molecular vibrational frequencies, and these frequencies are now routinely used to investigate structure, conformation, and even absolute configuration of chemical and biological molecules of interest. Recent advancements in coherent time-domain nonlinear vibrational spectroscopy have allowed the study of heterogeneous distributions of local structures and thermally driven ultrafast fluctuations of vibrational frequencies. To fully utilize IR probe functional groups for quantitative bioassays, a variety of biological and chemical techniques have been developed to site-specifically introduce vibrational probe groups into proteins and nucleic acids. These IR-probe-labeled biomolecules and chemically reactive systems are subject to linear and nonlinear vibrational spectroscopic investigations and provide information on the local electric field, conformational changes, site-site protein contacts, and/or function-defining features of biomolecules. A rapidly expanding library of data from such experiments requires an interpretive method with atom-level chemical accuracy. However, despite prolonged efforts to develop an all-encompassing theory for describing vibrational solvatochromism and electrochromism as well as dynamic fluctuations of instantaneous vibrational frequencies, purely empirical and highly approximate theoretical models have often been used to interpret experimental results. They are, in many cases, based on the simple assumption that the vibrational frequency of an IR reporter is solely dictated by electric potential or field distribution around the vibrational chromophore. Such simplified description of vibrational solvatochromism generally referred to as

  11. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of fluorination.

  12. Absorption characteristics of bacteriorhodopsin molecules

    Indian Academy of Sciences (India)

    The analytical expression for the absorption coefficient of BR film is applied to study the absorption characteristics of BR molecules in a typical laser system operating at funda- mental wavelength 514 nm. The experimental data available for the absorption coefficients of the levels B and M corresponding to the wavelength ...

  13. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    Directory of Open Access Journals (Sweden)

    Souhir Boujday

    2015-08-01

    Full Text Available In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR, (phase-modulated InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS, and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS. Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.

  14. Sound absorption of porous substrates covered by foliage: experimental results and numerical predictions.

    Science.gov (United States)

    Ding, Lei; Van Renterghem, Timothy; Botteldooren, Dick; Horoshenkov, Kirill; Khan, Amir

    2013-12-01

    The influence of loose plant leaves on the acoustic absorption of a porous substrate is experimentally and numerically studied. Such systems are typical in vegetative walls, where the substrate has strong acoustical absorbing properties. Both experiments in an impedance tube and theoretical predictions show that when a leaf is placed in front of such a porous substrate, its absorption characteristics markedly change (for normal incident sound). Typically, there is an unaffected change in the low frequency absorption coefficient (below 250 Hz), an increase in the middle frequency absorption coefficient (500-2000 Hz) and a decrease in the absorption at higher frequencies. The influence of leaves becomes most pronounced when the substrate has a low mass density. A combination of the Biot's elastic frame porous model, viscous damping in the leaf boundary layers and plate vibration theory is implemented via a finite-difference time-domain model, which is able to predict accurately the absorption spectrum of a leaf above a porous substrate system. The change in the absorption spectrum caused by the leaf vibration can be modeled reasonably well assuming the leaf and porous substrate properties are uniform.

  15. Nuclear-Motion Effects in Attosecond Transient Absorption Spectroscopy of Molecules

    CERN Document Server

    Bækhøj, Jens E; Madsen, Lars Bojer

    2015-01-01

    We investigate the characteristic effects of nuclear motion on attosecond transient absorption spectra in molecules by calculating the spectrum for different model systems. Two models of the hydrogen molecular ion are considered: one where the internuclear separation is fixed, and one where the nuclei are free to vibrate. The spectra for the fixed nuclei model are similar to atomic spectra reported elsewhere, while the spectra obtained in the model including nuclear motion are very different and dominated by extremely broad absorption features. These broad absorption features are analyzed and their relation to molecular dissociation investigated. The study of the hydrogen molecular ion validates an approach based on the Born-Oppenheimer approximation and a finite electronic basis. This latter approach is then used to study the three-dimensional hydrogen molecule including nuclear vibration. The spectrum obtained from H$_2$ is compared to the result of a fixed-nuclei calculation. In the attosecond transient ab...

  16. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  17. [Light absorption by suspended particulate matter in Chagan Lake, Jilin].

    Science.gov (United States)

    Wang, Yuan-Dong; Liu, Dian-Wei; Song, Kai-Shan; Zhang, Bai; Wang, Zong-Ming; Jiang, Guang-Ji; Tang, Xu-Guang; Lei, Xiao-Chun; Wu, Yan-Qing

    2011-01-01

    Spectral characteristics and the magnitudes of light absorption by suspended particulate matter were determined by spectrophotometry in this optically complex Lake Chagan waters for the purpose of surveying the natural variability of the absorption coefficients to parameterize the bio-optical models for converting satellite or in-situ water reflectance signatures into water quality information. Experiments were carried out on seasonal frozen Lake Chagan, one representative inland case-2 water body in Northeast of China. Particulate absorption properties analyzed using the field data on July 15th and October 12th 2009 were measured using the quantitative filter technique to produce absorption spectra containing several fractions that could be attributed to two main optical active constituents (OACs) phytoplankton pigments and non-algal particulates (mineral sediments, and organic detritus). Results suggested that the suspended particulate matter (SPM) concentration was higher while phytoplankton biomass (chlorophyll-a concentration) was lower in July and that in October. The spectral shape of total suspended particulate matter resembled that of non-algal particulates which contributed greater than phytoplankton in total particulate absorption during both periods. An obvious absorption peak occurring at around 440 nm exhibited an increase in phytoplankton contribution in October. Non-algal particulate absorption at 440 nm (a(NAP) (440)) had better correlation with total suspended particulate matter concentration than that with chlorophyll-a over the two periods. Light absorption by phytoplankton pigments in the Chagan lake region was generally lower than that of non-algal components. Chl. a dominating phytoplankton pigment composition functioned exponentially with its absorption coefficients at 440 and 675 nm specifically, the average values of which in July were 0.146 8 m2 x mg(-1) and 0.050 3 respectively while in October they were 0.153 3 and 0.013 2 m2 x mg(-1

  18. Satellite Operations in Alaska

    Science.gov (United States)

    Kreller, M. A.

    2016-12-01

    Numerous observational challenges exist across Alaska impacting National Weather Service (NWS) forecast operations and providing decision support services (DSS) to critical core partners and customers. These observational challenges range from limited utility of GOES imagery at higher latitudes, scarcity of observing platforms, to limited radar coverage. Although we are fortunate to receive these valuable and limited data sets, there still remain extensive spatial and temporal data gaps across Alaska. Many forecast challenges in Alaska are similar to those in the CONUS with the detection and monitoring of wildfire conditions, severe thunderstorms, river flooding, and coastal flooding, etc. There are additional unique DSS provided in Alaska including sea ice forecasting, ivu (ice shoves onshore), coastal erosion due to permafrost melt, and extreme hazardous winter conditions (temperatures as low as -80F). In addition to the observational and forecast challenges, the sheer size of the area of responsibility in Alaska is a challenge. NWS operations have always heavily relied on satellite imagery to quickly assess the current weather situation and provide forecast guidance. NWS operations have established several partnerships with the satellite community to help with these challenges. In particular the GOES-R and Joint Polar Satellite System (JPSS) OCONUS Satellite Proving Ground (PG) Programs have not only improved Alaska's observational challenges, but continue to identify new capabilities with the next generation geostationary and polar-orbiting satellite products.. For example, River ice and flood detection products derived from the Suomi-NPP VIIRS satellite imagery with the support of the JPSS Proving Ground and Risk Reduction Program. This presentation will provide examples of how new satellite capabilities are being used in NWS Alaska forecast operations to support DSS, with emphasis on JPSS satellite products. Future satellite utilization or operational needs

  19. Infrared Laser Therapy using IR absorption of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, K; Ishii, K; Hazama, H, E-mail: awazu@see.eng.osaka-u.ac.jp [Medical Beam Physics Lab., Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2011-02-01

    Since numerous characteristic absorption lines caused by molecular vibration exist in the mid-infrared (MIR) wavelength region, selective excitation or selective dissociation of molecules is possible by tuning the laser wavelength to the characteristic absorption lines of target molecules. By applying this feature to the medical fields, less-invasive treatment and non-destructive diagnosis with absorption spectroscopy are possible using tunable MIR lasers. A high-energy nanosecond pulsed MIR tunable laser was obtained with difference-frequency generation (DFG) between a Nd:YAG and a tunable Cr:forsterite lasers. The MIR-DFG laser was tunable in a wavelength range of 5.5-10 {mu}m and generated a laser pulses with an energy of up to 1.4 mJ, a pulse width of 5 ns, and a pulse repetition rate of 10 Hz. Selective removal of atherosclerotic lesion was successfully demonstrated with the MIR-DFG laser tuned at a wavelength of 5.75 {mu}m, which corresponds to the characteristic absorption of the ester bond in cholesterol esters in the atherosclerotic lesions. We have developed a non-destructive diagnostic probe with an attenuated total reflection (ATR) prism and two hollow optical fibres. An absorption spectrum of cholesterol was measured with the ATR probe by scanning the wavelength of the MIR-DFG laser, and the spectrum was in good agreement with that measured with a commercial Fourier transform infrared spectrometer.

  20. Polarized absorption in determination of impurities in olive oil

    Science.gov (United States)

    Alias, A. N.; Zabidi, Z. M.; Yaacob, Y.; Amir, I. S.; Alshurdin, S. H. N.; Aini, N. A.

    2017-08-01

    The effect of impurities in olive oil blending with palm oil was characterized using polarized absorption method. Polarized absorption was based on the absorption of light which vibrating in a particular plane to pass through the sample. This polarized light allowed the molecule to absorb at the specific orientation. There were four samples have been prepared that were 100:0, 70:30, 50:50 and 0:100 with volume ratio of the olives to palm oil. Two linear polarizers were mounting between the samples in order to get linearly polarized. This specific orientation was affected the absorption spectra of the sample. The results have shown that the analyzing polarizer with angle 00 has bell shape spectra. All the orientation of analyzing polarizer had shown the maximum current output at 100% olive oil. Whereas 100% palm oil has shown the minimum current output. The changing in absorption spectra indicates that the anisotropic properties of each sample were different due to the present of impurities.

  1. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    Science.gov (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  2. Skeletal muscle satellite cells

    Science.gov (United States)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  3. Rapidly variable relatvistic absorption

    Science.gov (United States)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  4. An Attitude Heading and Reference System For Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2017-01-01

    One of the most challenging problems for marine satellite tracking antennas (MSTAs) is to estimate the antenna attitude, which is affected by the ship motion, especially the ship vibration and rotational motions caused by ocean waves. To overcome this problem, an attitude heading and reference...

  5. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  6. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  7. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  8. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  9. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  10. ExoMol molecular line lists - XIV. The rotation-vibration spectrum of hot SO2

    DEFF Research Database (Denmark)

    Underwood, Daniel S.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2016-01-01

    Sulphur dioxide is well-known in the atmospheres of planets and satellites, where its presence is often associated with volcanism, and in circumstellar envelopes of young and evolved stars as well as the interstellar medium. This work presents a line list of 1.3 billion 32S16O2 vibration-rotation...

  11. Stroboscopic shearography for vibration analysis

    Science.gov (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank

    1999-09-01

    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  12. Vibrational Collapse of Hexapod Packings

    Science.gov (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Zheng, Hu; Dierichs, Karola; Menges, Achim; Behringer, Robert

    2017-06-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from non-convex grains can be stable without external support. In the current experiments, we investigate the effect of vibration on destroying such columns. The change of column height during vertical vibration, can be well characterized by stretched exponential relaxation when the column is short, which is in agreement with previous work, while a faster collapse happens when the column is tall. We investigate the collapse after the fast process including its dependence on column geometry, and on interparticle and basal friction.

  13. Innovative Techniques Simplify Vibration Analysis

    Science.gov (United States)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  14. Small Satellite Transporter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to determine whether this small satellite transporter is capable of transporting at least four 6U CubeSats is possible for a given set of...

  15. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  16. Multiple Satellite Trajectory Optimization

    National Research Council Canada - National Science Library

    Mendy Jr, Paul B

    2004-01-01

    This thesis develops and validates a satellite trajectory optimization model. A summary is given of the general mathematical principles of dynamic optimal control to minimize fuel consumed or transfer time...

  17. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators

    Science.gov (United States)

    Bek, Marko; Betjes, Joris; von Bernstorff, Bernd-Steffen; Emri, Igor

    2017-12-01

    This paper presents the analysis of pressure dependence of three thermoplastic polyurethane (TPU) materials on vibration isolation. The three TPU Elastollan® materials are 1190A, 1175A, and 1195D. The aim of this investigation was to analyze how much the performance of isolation can be enhanced using patented Dissipative bulk and granular systems technology. The technology uses granular polymeric materials to enhance materials properties (without changing its chemical or molecular composition) by exposing them to "self-pressurization," which shifts material energy absorption maxima toward lower frequencies, to match the excitation frequency of dynamic loading to which a mechanical system is exposed. Relaxation experiments on materials were performed at different isobaric and isothermal states to construct mastercurves, the time-temperature-pressure interrelation was modeled using the Fillers-Moonan-Tschoegl model. Dynamic material functions, related to isolation stiffness and energy absorption, were determined with the Schwarzl approximation. An increase in stiffness and energy absorption at selected hydrostatic pressure, compared to its stiffness and energy absorption at ambient conditions, is represented with κk(p, ω), defining the increase in stiffness and κd(p, ω), defining the increase in energy absorption. The study showed that close to the glassy state, moduli of 1190A and 1195D are about 6-9 times higher compared to 1175A, whereas their properties at ambient conditions are, for all practical purposes, the same. TPU 1190A turns out to be most sensitive to pressure: at 300 MPa its properties are shifted for 5.5 decades, while for 1195D and 1175A this shift is only 3.5 and 1.5 decades, respectively. In conclusion, the stiffness and energy absorption of isolation may be increased with pressure for about 100 times for 1190A and 1195D and for about 10 times for 1175A.

  18. Saturn's outer satellite, Phoebe

    Science.gov (United States)

    1981-01-01

    Voyager 2 took this photo of Saturn's outer satellite, Phoebe, on Sept. 4, 1981, from 2.2 million kilometers (1.36 million miles) away. The photo shows that Phoebe is about 200 kilometers (120 miles) in diameter, about twice the size of Earth-based measurements; and dark, with five percent reflectivity -- much darker than any other Saturnian satellite. That, and information from Earth-based observations, indicates Phoebe is almost certainly a captured asteroid, and did not form in the original Saturn nebula as Saturn's other satellites did. Phoebe is the only Saturnian satellite that does not always show the same face to Saturn: Its orbital period is 550 days. Its rotation period (length of day), determined from Voyager 2 observations, is nine to ten hours. Other ground-based observations that indicate that Phoebe is a captured asteroid: It orbits Saturn in the ecliptic plane (the plane in which Earth and most other planets orbit the Sun), rather than in Saturn's equatorial plane as the other Saturn satellites do. And Phoebe's orbit is retrograde -- in the direction opposite to that of the other satellites. Voyager is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  19. Vibrational overtone spectrum of matrix isolated cis, cis-HOONO

    Science.gov (United States)

    Zhang, Xu; Nimlos, Mark R.; Ellison, G. Barney; Varner, Mychel E.; Stanton, John F.

    2007-05-01

    Cis, cis-peroxynitrous acid is known to be an intermediate in atmospheric reactions between OH and NO2 as well as HOO and NO. The infrared absorption spectra of matrix-isolated cc-HOONO and cc-DOONO in argon have been observed in the range of 500-8000cm-1. Besides the seven fundamental vibrational modes that have been assigned earlier for this molecule [Zhang et al., J. Chem. Phys. 124, 084305 (2006)], more than 50 of the overtone and combination bands have been observed for cc-HOONO and cc-DOONO. Ab initio CCSD(T)/atomic natural orbital anharmonic force field calculations were used to help guide the assignments. Based on this study of the vibrational overtone transitions of cis, cis-HOONO that go as high as 8000cm-1 and the earlier paper on the vibrational fundamentals, we conclude that the CCSD(T)/ANO anharmonic frequencies seem to correct to ±35cm-1. The success of the theoretically predicted anharmonic frequencies {υ } in assigning overtone spectra of HOONO up to 8000cm-1 suggests that the CCSD(T)/ANO method is producing a reliable potential energy surface for this reactive molecule.

  20. Lattice Metamaterials with Mechanically Tunable Poisson's Ratio for Vibration Control

    Science.gov (United States)

    Chen, Yanyu; Li, Tiantian; Scarpa, Fabrizio; Wang, Lifeng

    2017-02-01

    Metamaterials with artificially designed architectures are increasingly considered as new paradigmatic material systems with unusual physical properties. Here, we report a class of architected lattice metamaterials with mechanically tunable negative Poisson's ratios and vibration-mitigation capability. The proposed lattice metamaterials are built by replacing regular straight beams with sinusoidally shaped ones, which are highly stretchable under uniaxial tension. Our experimental and numerical results indicate that the proposed lattices exhibit extreme Poisson's-ratio variations between -0.7 and 0.5 over large tensile deformations up to 50%. This large variation of Poisson's-ratio values is attributed to the deformation pattern switching from bending to stretching within the sinusoidally shaped beams. The interplay between the multiscale (ligament and cell) architecture and wave propagation also enables remarkable broadband vibration-mitigation capability of the lattice metamaterials, which can be dynamically tuned by an external mechanical stimulus. The material design strategy provides insights into the development of classes of architected metamaterials with potential applications including energy absorption, tunable acoustics, vibration control, responsive devices, soft robotics, and stretchable electronics.

  1. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  2. High-resolution Absorption Spectra of Acetylene in 142.8-152.3 nm

    Science.gov (United States)

    Hu, Ya-hua; Zhen, Chen; Dai, Jing-hua; Zhou, Xiao-guo; Liu, Shi-lin

    2008-10-01

    The absorption spectra of acetylene molecules was measured under jet-cooled conditions in the wavelength range of 142.8-152.3 nm, with a tunable and highly resolved vacuum ultraviolet (VUV) laser generated by two-photon resonant four wave difference frequency mixing processes. Due to the sufficient vibrational and rotational cooling effect of the molecular beam and the higher resolution VUV laser, the observed absorption spectra exhibit more distinct spectral features than the previous works measured at room temperature. The major three vibrational bands are assigned as a C-C symmetry stretching vibrational progress (u2 = 0-2) of the tilde C1 IIu state of acetylene. The observed shoulder peak at 148.2 nm is assigned to the first overtone band of the trans-bending mode u4 of the tilde C1 IIustate of acetylene. Additionally, the two components, 4o2(μ1IIu) and 4o2(κ1 IIuare suggested to exhibit in the present absorption spectra, due to their Renner-Teller effect and transition selection rule. All band origins and bandwidths are obtained subsequently, and it is found that bandwidths are broadened and lifetimes decrease gradually with the excitation of vibration.

  3. Vibration-rotation energy pattern in acetylene: 13CH12CH up to 6750 cm-1.

    Science.gov (United States)

    Fayt, A; Robert, S; Di Lonardo, G; Fusina, L; Tamassia, F; Herman, M

    2007-03-21

    All known vibration-rotation absorption lines of 13CH12CH accessing levels up to 6750 cm-1 were gathered from the literature. They were fitted simultaneously to J-dependent Hamiltonian matrices exploiting the well known vibrational polyad or cluster block diagonalization, in terms of the pseudo-quantum-numbers Ns=v1+v2+v3 and Nr=5v1+3v2+5v3+v4+v5, and accounting also for l parity and ef symmetry properties. The anharmonic interaction coupling terms known to occur from a pure vibrational fit in this acetylene isotopologue [Robert et al., J. Chem. Phys. 123, 174302 (2005)] were included in the model. A total of 12 703 transitions accessing 158 different (v1v2v3v4v5,l4l5) vibrational states was fitted with a dimensionless standard deviation of 0.99, leading to the determination of 216 vibration-rotation parameters. The experimental data included very weak vibration-rotation transitions accessing 18 previously unreported states, some of them forming Q branches with very irregular patterns.

  4. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results...

  5. ISDN - The case for satellites

    Science.gov (United States)

    Pelton, J. N.; McDougal, P. J.

    1987-05-01

    The role of satellites in the proposed Integrated Services Digital Network (ISDN) is examined. ISDN is to be a unified global network providing international telecommunication services. The delay time connected with satellite communications is considered. The advantages of using satellites in ISDN are: (1) the digital services available with satellites (time-division multiple access, intermediate data rate, and Intelsat business services); (2) satellite networking features; (3) flexibility; and (4) global interconnectivity. It is noted that with the use of powerful transmitters on satellites, the growth of small earth stations, and developments in band switching and intersatellite links that satellites are applicable to ISDN.

  6. Low-energy isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.

    1986-01-23

    The low-lying isovector quadrupole vibrations are described by an extension of the vibrational model allowing independent proton and neutron vibrations coupled by the symmetry energy. The recently detected low-lying isovector states in nearly spherical nuclei with N=84 are described well concerning their energies and E2/M1 mixing ratios. (orig.).

  7. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  8. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  9. 33 CFR 159.103 - Vibration test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  10. 14 CFR 27.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of the...

  11. 14 CFR 29.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  12. 14 CFR 29.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...

  13. 14 CFR 27.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  14. 49 CFR 178.608 - Vibration standard.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...

  15. 49 CFR 178.985 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  16. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.

    1998-01-01

    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  17. Vibrations in a moving flexible robot arm

    Science.gov (United States)

    Wang, P. K. C.; Wei, Jin-Duo

    1987-01-01

    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  18. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods......Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a specimen and non-uniform intensity in the test chamber. In this study, several methods that convert Sabine absorption coefficients...

  19. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance

    Science.gov (United States)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan

    2008-01-01

    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  20. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    202) 767-2601 Calculations are presented of vibrational absorption spectra for energy minimized structures of PCE-nH2O, TCE-nH2O, DCE-nH2O, and VC...2 Energy- Minimized Structures and Their IR Spectra………………. ………………………...….4 Conclusion...for calculation of absorption spectra is presented. Second, DFT calculations of energy- minimized structures and vibration resonance structure for

  1. Vibration Theory, Vol. 1A

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present collection of solved problems has been published as a supplement to the textbook Svingningsteori. Bind 1. Lineær svingningsteori,Aalborg tekniske Universitetsforlag, 1991, whicj is used in the introductory course on linear vibration theory that is being given on th e8th semester...

  2. Vibration Damping Circuit Card Assembly

    Science.gov (United States)

    Hunt, Ronald Allen (Inventor)

    2016-01-01

    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  3. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...

  4. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  5. A mid-infrared absorption diagnostic for acetylene detection

    KAUST Repository

    KC, Utsav

    2015-05-14

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene. © 2015 Springer-Verlag Berlin Heidelberg

  6. Effect of shelf aging on vibration transmissibility of anti-vibration gloves.

    Science.gov (United States)

    Shibata, Nobuyuki

    2017-10-05

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  7. Solar absorption in the clear and cloudy skies - quantification and attribution

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin

    2015-04-01

    We estimate atmospheric solar absorption at 433 locations worldwide through combining ground-based measurements of surface solar radiation (SSR) with collocated satellite-derived surface albedo and top-of-atmosphere net irradiance under both, all-sky and clear-sky conditions. Using two ground-based SSR datasets (BSRN and GEBA) and the CERES EBAF data product, we estimate atmospheric absorption at around 23±2

  8. An Analytical Approach on Thermally Induced Vibrations of Nonhomogeneous Tapered Plate

    Directory of Open Access Journals (Sweden)

    Anupam Khanna

    2013-01-01

    Full Text Available A mathematical model to control the vibrations of a rectangular plate is constructed with an aim to assist engineers in designing and fabrication of various structures used in the field of science and technology, mostly used in satellite and aeronautical engineering. The present study is related to the analysis of free vibrations of nonhomogeneous rectangular plate clamped at all the four edges. Authors studied the bilinear effect of thickness as well as temperature variations in both and directions. Variation in Poisson's ratio is also considered linearly in -direction due to nonhomogeneity. Rayleigh-Ritz method is used to analyze the frequencies for the first two modes of vibrations for different values of thermal gradient, nonhomogeneity constant, taper constants and aspect ratio. All the numerical computations have been performed for an alloy of aluminum, that is, duralumin. All the results are presented in the form of graphs.

  9. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  10. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  11. Nonlinear dynamic analysis of single-sided and single-mass crushing system under impact and vibration

    Directory of Open Access Journals (Sweden)

    Suhuan NI

    2017-10-01

    Full Text Available To research and develop efficient vibrating type crusher, a single-sided dynamic model is established for the impact and vibration crushing system, and the differential equation of vibration is set up with Newton's law for dynamic analysis. By making amplitude frequency curve, hysteretic impact force curve and energy absorption curve, the influence of which on the system response is analyzed. Based on the conclusion and using numerical method, the primary forced resonance of the system is calculated, and the time history of displacement, velocity and acceleration is obtained, showing that the motion mass movement is not a simple harmonic motion, the nonlinear impact force is one of the factors that influences the vibration system, and the influence rules of clearance, vibration frequency on the amplitude frequency curve, impact force and energy absorption are also obtained. The gap between the material and the broken head should be kept as small as possible so as to achieve a better crushing effect with a smaller excitation force, and the system is best to work in the main resonant area to get a big impact. The research result provides reference for further study of rules and mechanism of the vibration systems.

  12. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  13. The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration.

    Science.gov (United States)

    Huang, Yu; Griffin, Michael J

    2012-06-01

    The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.

  14. Interplay of exciton coupling and large-amplitude motions in the vibrational circular dichroism spectrum of dehydroquinidine

    NARCIS (Netherlands)

    Nicu, V.P.; Domingos, S.R.; Strudwick, B.H.; Brouwer, A.M.; Buma, W.J.

    2015-01-01

    A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low-energy conformers of dehydroquinidine reveals the existence of families of pseudo-conformers, the structures of which differ mostly in the orientation of a single

  15. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  16. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  17. Transient vibration of wind turbine blades

    Science.gov (United States)

    Li, Yuanzhe; Li, Minghai; Jiang, Feng

    2017-09-01

    This article aims to the transient vibration of wind turbine blades. We firstly introduce transient vibration and previous studies in this area. The report then shows the fundamental equations and derivation of Euler Equation. A 3-D beam are created to compare the analytical and numerical result. In addition we operate the existing result and Patran result of a truncation wedge beam, especially the frequencies of free vibration and transient vibration. Transient vibration cannot be vanished but in some case it can be reduced.

  18. Experimental and theoretical study of the vibrational spectra of oligoureas: helical versus β-sheet-type secondary structures.

    Science.gov (United States)

    Cavagnat, Dominique; Claudon, Paul; Fischer, Lucile; Guichard, Gilles; Desbat, Bernard

    2011-04-21

    Ab initio calculations of two oligoureas stabilized in helix and sheet organization have been performed. The hydrogen bond distances were found to be almost the same for both structures. The vibrational assignment of the two oligourea structures and the direction of the transition moment of each vibration have been determined. From these results, and using the experimental isotropic optical index determined for one oligourea, we have established the anisotropic infrared optical files for the two structures. Interestingly, most urea absorptions vibrate in only one principal direction. Also, the shift of the carbonyl band is weaker and inverse to what was reported for corresponding protein secondary structures. Finally, simulations of the Polarization Modulation Infrared Reflection Absorption Spectroscopy (PMIRRAS) and Attenuated Reflection Spectroscopy (ATR) infrared spectra demonstrate the possibility to determine the orientation of the oligoureas in thin or ultrathin films, even if in some cases it may be difficult to unambiguously assign their secondary structure.

  19. Dynamic characterization of satellite components through non-invasive methods

    Energy Technology Data Exchange (ETDEWEB)

    Mullens, Joshua G [Los Alamos National Laboratory; Wiest, Heather K [Los Alamos National Laboratory; Mascarenas, David D [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2011-01-24

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. The harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modeling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  20. Dynamic characterization of satellite components through non-invasive methods

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Joshua G [Los Alamos National Laboratory; Wiest, Heather K [Los Alamos National Laboratory; Mascarenas, David D. L. [Los Alamos National Laboratory; Macknelly, David [INST-OFF/AWE; Park, Gyuhae [Los Alamos National Laboratory

    2010-10-21

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. This harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as a replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modelling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  1. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  2. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value......There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...

  3. Infrared absorption peaks in nitrogen doped CZ silicon

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, N. [RIAST, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8570 (Japan); JEITA Nitrogen Measurement WG, 3-11 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)]. E-mail: inouen@riast.osakafu-u.ac.jp; Nakatsu, M. [RIAST, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8570 (Japan); Ono, H. [Japan Fine Ceramics Center, 2-4-3 Nishi-shinbashi, Minato-ku, Tokyo 105-0003 (Japan); JEITA Nitrogen Measurement WG, 3-11 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Inoue, Y. [Tokyo University of Education, Bunkyo-ku, Tokyo 117-0002 (Japan)

    2006-10-15

    Dependences on annealing temperature and nitrogen concentration were examined for new local vibration mode infrared absorption peaks at 856, 973, 984 and 1002 cm{sup -1} in nitrogen-doped CZ silicon crystal. The new absorption peaks were so weak that two sets of samples were examined for temperature and concentration dependences, respectively, to get reliable results. The peak at 1002 cm{sup -1} behaved similarly for annealing, though much weaker, to the known peaks at 810 and 1018 cm{sup -1} which are attributed to interstitial N pair accompanied by the two oxygen interstitials (NNO {sub i}O {sub i}). This suggests that the origin contains 2 O {sub i} also. It was strong in low concentration regime, which is similar to the behavior of shallow thermal donors. This suggests that the structure contains one nitrogen rather than two (N-O interstitial pair). The results were compared with the electronic transition absorption by shallow thermal donors (STD). The absorptions at 1002 and 240 cm{sup -1} behaved similarly. These suggest that the peak at 1002 cm{sup -1} is likely due to NOO {sub i}O {sub i} which is the candidate for STD. The temperature dependence of the other new peaks was slightly different from each other. Origin of the other peaks is not clear yet.

  4. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    Directory of Open Access Journals (Sweden)

    Jie Hui

    2016-03-01

    Full Text Available The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.

  5. The structure of filled skutterudites and the local vibration behavior of the filling atom

    Science.gov (United States)

    Zhou, Xiaojuan; Zong, Peng-an; Chen, Xihong; Tao, Juzhou; Lin, He

    2017-02-01

    Both of atomic pair distribution function (PDF) and extended x-ray absorption fine structure (EXAFS) experiments have been carried out on unfilled and Yb-filled skutterudites YbxCo4Sb12 (x=0, 0.15, 0.2 and 0.25) samples. The structure refinements on PDF data confirm the large amplitude vibration of Yb atom and the dependence of Yb vibration amplitude on the filling content. Temperature dependent EXAFS experiment on filled skutterudites have been carried out at Yb LⅢ-edge in order to explore the local vibration behavior of filled atom. EXAFS experiments show that the Einstein temperature of the filled atom is very low (70.9 K) which agrees with the rattling behavior.

  6. Fractal Theory and Contact Dynamics Modeling Vibration Characteristics of Damping Blade

    Directory of Open Access Journals (Sweden)

    Ruishan Yuan

    2014-01-01

    Full Text Available The contact surface structure of dry friction damper is complicate, irregular, and self-similar. In this paper, contact surface structure is described with the fractal theory and damping blade is simplified as 2-DOF cantilever beam model with lumped masses. By changing the position of the damper, lacing and shroud structure are separately simulated to study vibration absorption effect of damping blade. The results show that both shroud structure and lacing could not only dissipate energy but also change stiffness of blade. Under the same condition of normal pressure and contact surface, the damping effect of lacing is stronger than that of shroud structure. Meanwhile, the effect on changing blade stiffness of shroud structure is stronger than that of lacing. This paper proposed that there is at least one position of the blade, at which the damper dissipates the most vibration energy during a vibration cycle.

  7. The structure of filled skutterudites and the local vibration behavior of the filling atom

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaojuan [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Dongguan Institute of Neutron Science, Dongguan 523808 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Peng-an [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen, Xihong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Tao, Juzhou, E-mail: taoj@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Dongguan Institute of Neutron Science, Dongguan 523808 (China); Lin, He, E-mail: linhe@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204 (China)

    2017-02-15

    Both of atomic pair distribution function (PDF) and extended x-ray absorption fine structure (EXAFS) experiments have been carried out on unfilled and Yb-filled skutterudites Yb{sub x}Co{sub 4}Sb{sub 12} (x=0, 0.15, 0.2 and 0.25) samples. The structure refinements on PDF data confirm the large amplitude vibration of Yb atom and the dependence of Yb vibration amplitude on the filling content. Temperature dependent EXAFS experiment on filled skutterudites have been carried out at Yb L{sub Ⅲ}-edge in order to explore the local vibration behavior of filled atom. EXAFS experiments show that the Einstein temperature of the filled atom is very low (70.9 K) which agrees with the rattling behavior.

  8. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  9. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  10. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  11. An effective way to reduce water absorption to terahertz

    Science.gov (United States)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  12. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  13. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  14. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.

    2016-01-01

    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains...

  15. Wave energy absorption by ducks

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    2017-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....

  16. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  17. Vibrational damping of composite materials

    Science.gov (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  18. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  19. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  20. Vibrational coupling in plasmonic molecules.

    Science.gov (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2017-10-31

    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  1. A night with good vibrations

    CERN Multimedia

    2002-01-01

    Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva

  2. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol

    Science.gov (United States)

    Moorthi, P. P.; Gunasekaran, S.; Swaminathan, S.; Ramkumaar, G. R.

    2015-02-01

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule.

  3. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2017-01-01

    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  4. Linear Absorption and Two-Dimensional Infrared Spectra of N-Methylacetamide in Chloroform Revisited : Polarizability and Multipole Effects

    NARCIS (Netherlands)

    Jansen, Thomas L. C.

    2014-01-01

    The effect of solvent polarizability and multipole effects on the amide I vibrational spectra of a peptide unit is investigated. Four molecular dynamics force fields of increasing complexity for the solvent are used to model both the linear absorption and two-dimensional infrared spectra. It is

  5. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  6. Package security recorder of vibration

    Science.gov (United States)

    Wang, Xiao-na; Hu, Jin-liang; Song, Shi-de

    2013-08-01

    This paper introduces a new kind of electronic product — Package Security Recorder of Vibration. It utilizes STC89C54RD+ LQFP-44 MCU as its main controller. At the same time, it also utilizes Freescale MMA845A 3-Axis 8-bit/12-bit Digital Accelerometer and Maxim DS1302 Trickle Charge Timekeeping Chip. It utilizes the MCU to read the value of the accelerometer and the value of the timekeeping chip, and records the data into the inner E2PROM of MCU. The whole device achieves measuring, reading and recording the time of the vibration and the intensity of the vibration. When we need the data, we can read them out. The data can be used in analyzing the condition of the cargo when it transported. The device can be applied to monitor the security of package. It solves the problem of responsibility affirming, when the valuable cargo are damaged while it transported. It offers powerful safeguard for the package. It's very value for application.

  7. Vibrational self-trapping in beta-sheet structures observed with femtosecond nonlinear infrared spectroscopy.

    Science.gov (United States)

    Bodis, Pavol; Schwartz, Erik; Koepf, Matthieu; Cornelissen, Jeroen J L M; Rowan, Alan E; Nolte, Roeland J M; Woutersen, Sander

    2009-09-28

    Self-trapping of NH-stretch vibrational excitations in synthetic beta-sheet helices is observed using femtosecond infrared pump-probe spectroscopy. In a dialanine-based beta-sheet helix, the transient-absorption change upon exciting the NH-stretch mode exhibits a negative absorption change at the fundamental frequency and two positive peaks at lower frequencies. These two induced-absorption peaks are characteristic for a state in which the vibrational excitation is self-trapped on essentially a single NH-group in the hydrogen-bonded NH...OC chain, forming a small (Holstein) vibrational polaron. By engineering the structure of the polymer we can disrupt the hydrogen-bonded NH...OC chain, allowing us to eliminate the self-trapping, as is confirmed from the NH-stretch pump-probe response. We also investigate a trialanine-based beta-sheet helix, where each side chain participates in two NH...OC chains with different hydrogen-bond lengths. The chain with short hydrogen bonds shows the same self-trapping behavior as the dialanine-based beta-sheet helix, whereas in the chain with long hydrogen bonds the self-trapping is too weak to be observable.

  8. All-Semiconductor Plasmonic Resonator for Surface-Enhanced Infrared Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2017-01-01

    Full Text Available Infrared absorption spectroscopy remains a challenge due to the weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. A highly doped semiconductor supports intrinsic plasmon modes at infrared frequencies, and is compatible with the current epitaxial growth processing, which makes it promising for various applications. Here, we propose an all-semiconductor plasmonic resonator to enhance the infrared absorption of the adsorbed molecules. An optical model is employed to investigate the effect of structural parameters on the spectral features of the resonator and the enhanced infrared absorption characteristics are further discussed. When a molecular layer is deposited upon the resonator, the weak molecular absorption signal can be significantly enhanced. A high enhancement factor of 470 can be achieved once the resonance wavelength of the resonator is overlapped with the desired vibrational mode of the molecules. Our study offers a promising approach to engineering semiconductor optics devices for mid-infrared sensing applications.

  9. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  10. Rotation of Synchronous Satellites: Application to the Galilean Satellites

    Science.gov (United States)

    Henrard, Jacques; Schwanen, Gabriel

    2004-03-01

    An analytical theory of the rotation of a synchronous satellite is developed for the application to the rotation of the Galilean satellites. The theory is developed in the framework of Hamiltonian mechanics, using Andoyer variables. Special attention is given to the frequencies of libration as functions of the moments of inertia of the satellite.

  11. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  12. Strong CH+ J=1-0 emission and absorption in DR21

    NARCIS (Netherlands)

    Falgarone, E.; Ossenkopf, V.; Gerin, M.; Lesaffre, P.; Godard, B.; Pearson, J.; Cabrit, S.; Joblin, Ch; Benz, A. O.; Boulanger, F.; Fuente, A.; Güsten, R.; Harris, A.; Klein, T.; Kramer, C.; Lord, S.; Martin, P.; Martin-Pintado, J.; Neufeld, D.; Phillips, T. G.; Röllig, M.; Simon, R.; Stutzki, J.; van der Tak, F.; Teyssier, D.; Yorke, H.; Erickson, N.; Fich, M.; Jellema, W.; Marston, A.; Risacher, C.; Salez, M.; Schmülling, F.

    We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR 21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption

  13. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  14. Satellite Ocean Heat Content Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  15. CDDIS_GNSS_satellite_data

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Navigation Satellite System (GNSS) data consists of the U.S. Global Positioning System (GPS) and the Russian GLObal NAvigation Satellite System (GLONASS)...

  16. Satellite transmission of oceanographic data

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desai, R.G.P.; DeSa, E.J.

    Oceanographic data collected on a research vessel has been transmitted to a shore laboratory using the INMARSAT maritime satellite The system configuration used, consisted of Satellite Communication Terminals interfaced to desk top computers...

  17. Report on design and technical standard planning of vibration controlling structure on the buildings, in the Tokai Reprocessing Facility, Power Reactor and Nuclear Fuel Development Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, Shuji; Shinohara, Takaharu; Yamazaki, Toshihiko; Nakayama, Kazuhiko [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Kondo, Toshinari; Hosoya, Hisashi

    1997-10-01

    The Tokai reprocessing facility buildings are constituted by a lower foundation, vibration controlling layers, and upper structure. At the vibration controlling layer, a laminated rubber aiming support of the building load and extension of the eigenfrequency and a damper aiming absorption of earthquake energy are provided. Of course, the facility buildings are directly supported at the arenaceous shale (Taga Layer) of the Miocene in the Neogene confirmed to the stablest ground, as well the buildings with high vibration resistant importance in Japan. This report shows that when the vibration controlling structure is adopted for the reprocessing facility buildings where such high vibration resistance is required, reduction of input acceleration for equipments and pipings can be achieved and the earthquake resistant safety can also be maintained with sufficient tolerance and reliability. (G.K.)

  18. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.

    Science.gov (United States)

    Mitchell, Deborah G; Johnson, Alan M; Johnson, Jeremy A; Judd, Kortney A; Kim, Kilyoung; Mayhew, Maurine; Powell, Amber L; Sevy, Eric T

    2008-02-14

    Relaxation of highly vibrationally excited 1,2-, 1,3-, and 1,4-difluorobenzne (DFB) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot DFB (E' approximately 41,000 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Collisions between hot DFB isomers and CO2 result in large amounts of rotational and translational energy transfer from the hot donors to the bath. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these states. The amount of translational energy gained by CO2 during collisions was determined using Doppler spectroscopy to measure the width of the absorption line for each transition. The energy transfer probability distribution function, P(E,E'), for the large DeltaE tail was obtained by resorting the state-indexed energy transfer probabilities as a function of DeltaE. P(E,E') was fit to a biexponential function to determine the average energy transferred in a single DFB/CO2 collision and fit parameters describing the shape of P(E,E'). P(E,E') fit parameters for DFB/CO2 and the previously studied C6F6/CO2 system are compared to various donor molecular properties. A model based on Fermi's Golden Rule indicates that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes. A fractional mode population analysis is performed, which suggests that for energy transfer from DFB and C6F6 to CO2 the two key donor vibrational modes from which energy leaks out of the donor into the bath are nu11 and nu16. These "gateway" modes are some of the same modes determined to be the most efficient energy transfer modes by quantum scattering studies of benzene/He collisions.

  19. The projected pattern correlation technique for vibration measurements

    Science.gov (United States)

    Konrath, R.; Klinge, F.; Schroeder, A.; Kompenhans, Juergen; Fuellekrug, U.

    2004-06-01

    The objective of this paper is the description of the Projected Pattern Correlation method for measuring surface velocities and to present results of a feasibility study. Similar to the Moire technique the local surface velocities of a large area are determined simultaneously, which replace a time consuming point wise scanning as it is necessary in e.g. Laser Doppler Vibrometry. Furthermore, the dynamics of non-periodic processes can be resolved temporally and spatially. In difference to the Moire or grid projection techniques the evaluation step is fast (real-time measurements are possible) more robust and provides a high spatial resolution. The measurement precision is assessed using a simple test arrangement. Vibration measurements are performed on a satellite model structure and a honeycomb sandwich plate.

  20. The expected time until absorption when absorption is not certain

    OpenAIRE

    Walker, D. M.

    1998-01-01

    This paper considers continuous-time Markov chains whose state space consists of an irreducible class, , and an absorbing state which is accessible from . The purpose is to provide a way to determine the expected time to absorption conditional on such time being finite, in the case where absorption occurs with probability less than 1. The results are illustrated by applications to the general birth and death process and the linear birth, death and catastrophe process.

  1. Analysis of Free Pendulum Vibration Absorber Using Flexible Multi-Body Dynamics

    Directory of Open Access Journals (Sweden)

    Emrah Gumus

    2016-01-01

    Full Text Available Structures which are commonly used in our infrastructures are becoming lighter with progress in material science. These structures due to their light weight and low stiffness have shown potential problem of wind-induced vibrations, a direct outcome of which is fatigue failure. In particular, if the structure is long and flexible, failure by fatigue will be inevitable if not designed properly. The main objective of this paper is to perform theoretical analysis for a novel free pendulum device as a passive vibration absorber. In this paper, the beam-tip mass-free pendulum structure is treated as a flexible multibody dynamic system and the ANCF formulation is used to demonstrate the coupled nonlinear dynamics of a large deflection of a beam with an appendage consisting of a mass-ball system. It is also aimed at showing the complete energy transfer between two modes occurring when the beam frequency is twice the ball frequency, which is known as autoparametric vibration absorption. Results are discussed and compared with findings of MSC ADAMS. This novel free pendulum device is practical and feasible passive vibration absorber in the mitigation of large amplitude wind-induced vibrations in traffic signal structures.

  2. Actively controlled vibration welding system and method

    Science.gov (United States)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  3. Coupled rotor/airframe vibration analysis

    Science.gov (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  4. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  5. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    Science.gov (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  6. High force vibration testing with wide frequency range

    Science.gov (United States)

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  7. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

    OpenAIRE

    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun

    2017-01-01

    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  8. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  9. Analysis of potential helicopter vibration reduction concepts

    Science.gov (United States)

    Landgrebe, A. J.; Davis, M. W.

    1985-01-01

    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  10. Liquid Space Lubricants Examined by Vibrational Micro-Spectroscopy

    Science.gov (United States)

    Street, Kenneth W., Jr.

    2008-01-01

    Considerable effort has been expended to develop liquid lubricants for satellites and space exploration vehicles. These lubricants must often perform under a range of harsh conditions such as vacuum, radiation, and temperature extremes while in orbit or in transit and in extremely dusty environments at destinations such as the Moon and Mars. Historically, oil development was guided by terrestrial application, which did not provide adequate space lubricants. Novel fluids such as the perfluorinated polyethers provided some relief but are far from ideal. With each new fluid proposed to solve one problem, other problems have arisen. Much of the work performed at the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in elucidating the mechanisms by which chemical degradation of space oils occur has been done by vibrational micro-spectroscopic techniques such as infrared and Raman, which this review details. Presented are fundamental lubrication studies as well as actual case studies in which vibrational spectroscopy has led to millions of dollars in savings and potentially prevented loss of mission.

  11. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    Absorption coefficients measured in reverberation chambers, Sabine absorption coefficients, suffer from two major problems. Firstly, they sometimes exceed unity. Secondly, the reproducibility of the Sabine absorption coefficients is quite poor, meaning that the Sabine absorption coefficients vary...

  12. Vibration fatigue using modal decomposition

    Science.gov (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  13. Saturn's outer satellite - Phoebe

    Science.gov (United States)

    1999-01-01

    Voyager 2 took these images of Saturn's outer satellite Phoebe, on Sept. 4, 1981, from 2.2 million kilometers (1.36 million miles)away. This pair shows two different hemispheres of the satellite. The left image shows a bright mountain on the upper right edge reflecting the light of the setting sun. This mountain is possibly the central peak of a large impact crater taking up most of the upper right quadrant of Phoebe in this view. The right images shows a hemisphere with an intrinsically bright spot in the top portion of the image as well as the ridges appearing bright in the sunset light of the lower right. These images were processed by the Multimission Image Processing Laboratory of the Jet Propulsion Laboratory. The Jet Propulsion Laboratory manages the Voyager Project for NASA's Office of Space Science and Applications.

  14. Expert systems for satellite stationkeeping

    Science.gov (United States)

    Mekaru, M. M.; Wright, M. A.

    The feasibility of implementing artificial intelligence on satellites is evaluated, with the aim of using an onboard expert system to perform effective stationkeeping functions without assistance from the ground. The Defense Satellite Communication System (DSCS III) is used as an example. The cost for implementing a satellite stationkeeping expert system is analyzed. A ground-based expert system could reduce the current number of support personnel for the stationkeeping task. Results of analyzing a possible flight system are quite promising. An expert system for satellite stationkeeping seems feasible, appears cost-effective, and offers increased satellite endurance through autonomous operations.

  15. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  16. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  17. Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...

    Indian Academy of Sciences (India)

    operator which conveniently describes stretching vibrations of biomolecules. For a copper tetramesityl porphyrin molecule, the higher excited vibrational levels are calculated by applying the U(2) algebraic approach. Keywords. Lie algebraic techniques; vibrational spectra; copper tetramesityl porphyrin. PACS Nos 31.65.

  18. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  19. Introduction to vibrations and waves

    CERN Document Server

    Pain, H John

    2015-01-01

    Based on the successful multi-edition book "The Physics ofVibrations and Waves" by John Pain, the authors carry overthe simplicity and logic of the approach taken in the originalfirst edition with its focus on the patterns underlying andconnecting so many aspects of physical behavior, whilst bringingthe subject up-to-date so it is relevant to teaching in the21st century.The transmission of energy by wave propagation is a key conceptthat has applications in almost every branch of physics withtransmitting mediums essentially acting as a continuum of coupledoscillators. The characterization of t

  20. Vibration diagnostics instrumentation for ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, A.

    2007-06-15

    The future e{sup -}e{sup +} 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)

  1. ASPEC: Solar power satellite

    Science.gov (United States)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  2. Two-photon-absorption line strengths for nitric oxide: Comparison of theory and sub-Doppler, laser-induced fluorescence measurements

    Science.gov (United States)

    Kulatilaka, Waruna D.; Lucht, Robert P.

    2017-03-01

    We discuss the results of high-resolution, sub-Doppler two-photon-absorption laser-induced fluorescence (TPALIF) spectroscopy of nitric oxide at low pressure and room temperature. The measurements were performed using the single-longitudinal mode output of a diode-laser-seeded optical parametric generator (OPG) system with a measured frequency bandwidth of 220 MHz. The measurements were performed using a counter-propagating pump beam geometry, resulting in sub-Doppler TPALIF spectra of NO for various rotational transitions in the (0,0) vibrational band of the A2Σ+ - X2Π electronic transition. The experimental results are compared with the results of a perturbative treatment of the rotational line strengths for the 20 different rotational branches of the X2Π(v″ = 0) → A2Σ+(v' = 0) two-photon absorption band. In the derivation of the expressions for the two-photon transition absorption strength, the closure relation is used for rotational states in the intermediate levels of the two-photon transition in analogy with the Placzek treatment of Raman transitions. The theoretical treatment of the effect of angular momentum coupling on the two-photon rotational line strengths features the use of irreducible spherical tensors and 3j symbols. The final results are expressed in terms of the Hund's case (a) coupling coefficients aJ and bJ for the X2Π(v″ = 0) rotational level wavefunctions, which are intermediate between Hund's case (a) and case (b). Considerable physical insight is provided by this final form of the equations for the rotational line strengths. Corrections to the two-photon absorption rotational line strength for higher order effects such as centrifugal stretching can be included in a straightforward fashion in the analysis by incorporating higher order terms in these coupling coefficients aJ and bJ, although these corrections are essentially negligible for J satellite transitions are in excellent agreement with our experimental measurements.

  3. Laser satellite power systems

    Energy Technology Data Exchange (ETDEWEB)

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  4. Vibrational relaxation of hot carriers in C60 molecule

    Science.gov (United States)

    Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Electron-phonon coupling in molecular systems is at the heart of several important physical phenomena, including the mobility of carriers in organic electronic devices. Following the optical absorption, the vibrational relaxation of excited (hot) electrons and holes to the fullerene band-edges driven by electron-phonon coupling, known as the hot carrier thermalization process, is of particular fundamental interest. Using the non-adiabatic molecular dynamical methodology (PYXAID + Quantum Espresso) based on density functional approach, we have performed a simulation of vibrionic relaxations of hot carriers in C60. Time-dependent population decays and transfers in the femtosecond scale from various excited states to the states at the band-edge are calculated to study the details of this relaxation process. This work was supported by the U.S. National Science Foundation.

  5. Precision tethered satellite attitude control. Ph.D. Thesis

    Science.gov (United States)

    Kline-Schoder, Robert J.

    1990-01-01

    Tethered spacecraft possess unique dynamic characteristics which make them advantageous for certain classes of experiments. One use for which tethers are particularly well suited is to provide an isolated platform for spaceborne observatories. The advantages of tethering a pointing platform 1 or 2 km from a space shuttle or space station are that, compared to placing the observatory on the parent spacecraft, vibrational disturbances are attenuated and contamination is eliminated. In practice, all satellites have some requirement on the attitude control of the spacecraft, and tethered satellites are no exception. It has previously been shown that conventional means of performing attitude control for tethered satellites are insufficient for any mission with pointing requirements more stringent than about 1 deg. This is due mainly to the relatively large force applied by the tether to the spacecraft. A particularly effective method of implementing attitude control for tethered satellites is to use this tether tension force to generate control torques by moving the tether attach point relative to the subsatellite center of mass. A demonstration of this attitude control technique on an astrophysical pointing platform has been proposed for a space shuttle flight test project and is referred to as the Kinetic Isolation Tether Experiment (KITE).

  6. Innovative nanostructures for highly sensitive vibrational biosensing (Conference Presentation)

    Science.gov (United States)

    Popp, Juergen; Mayerhöfer, Thomas; Cialla-May, Dana; Weber, Karina; Huebner, Uwe

    2016-03-01

    Employing vibrational spectroscopy (IR-absorption and Raman spectroscopy) allows for the labelfree detection of molecular specific fingerprints of inorganic, organic and biological substances. The sensitivity of vibrational spectroscopy can be improved by several orders of magnitude via the application of plasmonic active surfaces. Within this contribution we will discuss two such approaches, namely surface enhanced Raman spectroscopy (SERS) as well as surface enhanced IR absorption (SEIRA). It will be shown that SERS using metal colloids as SERS active substrate in combination with a microfluidic lab-on-a-chip (LOC) device enables high throughput and reproducible measurements with highest sensitivity and specificity. The application of such a LOC-SERS approach for therapeutic drug monitoring (e.g. quantitative detection of antibiotics in a urine matrix) will be presented. Furthermore, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer as one-time use SERS substrates for specific food analysis (e.g. quantitative detection of toxic food colorants). The second part of this contribution presents a slit array metamaterial perfect absorber for IR sensing applications consisting of a dielectric layer sandwiched between two metallic layers of which the upper layer is perforated with a periodic array of slits. Light-matter interaction is greatly amplified in the slits, where also the analyte is concentrated, as the surface of the substrate is covered by a thin silica layer. Thus, already small concentrations of analytes down to a monolayer can be detected by refractive index sensing and identified by their spectral fingerprints with a standard mid-infrared lab spectrometer.

  7. Displacement of polarons by vibrational modes in doped conjugated polymers

    Science.gov (United States)

    Anderson, M.; Ramanan, C.; Fontanesi, C.; Frick, A.; Surana, S.; Cheyns, D.; Furno, M.; Keller, T.; Allard, S.; Scherf, U.; Beljonne, D.; D'Avino, G.; von Hauff, E.; Da Como, E.

    2017-10-01

    Organic pi-conjugated polymers are deemed to be soft materials with strong electron-phonon coupling, which results in the formation of polarons, i.e., charge carriers dressed by self-localized distortion of the nuclei. Universal signatures for polarons are optical resonances below the band gap and intense vibrational modes (IVMs), both found in the infrared (IR) spectral region. Here, we study p -doped conjugated homo- and copolymers by combining first-principles modelling and optical spectroscopy from the far-IR to the visible. Polaronic IVMs are found to feature absorption intensities comparable to purely electronic transitions and, most remarkably, show only loose resemblance to the Raman or IR-active modes of the neutral polymer. The IVM frequency is dramatically scaled down (up to 50%) compared to the backbone carbon-stretching modes in the pristine polymers. The very large intensity of IVMs is associated with displacement of the excess positive charge along the backbone driven by specific vibrational modes. We propose a quantitative picture for the identification of these polaron shifting modes that solely based on structural information, directly correlates with their IR intensity. This finding finally discloses the elusive microscopic mechanism behind the huge IR intensity of IVMs in doped polymeric semiconductors.

  8. Galilean satellites: identification of water frost.

    Science.gov (United States)

    Pilcher, C B; Ridgway, S T; McCord, T B

    1972-12-08

    Water frost absorptions have been detected in the infrared reflectivities of Jupiter's Galilean satellites JII (Europa) and JIII (Ganymede). We have determined the percentage of frost-covered surface area to be 50 to 100 percent for JII, 20 to 65 percent for JIII, and possibly 5 to 25 percent for JIV (Callisto). The leading side of JIII has 20 percent more frost cover than the trailing side, which explains the visible geometric albedo differences between the two sides. The reflectivity of the material underlying the frost on JII, JIII, and JIV resembles that of silicates. The surface of JI (Io) may be covered by frost particles much smaller than those on JII and JIII.

  9. Vibrational Locomotion Enabling Subsurface Exploration of Unconsolidated Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The idea of vibrational locomotion is based on vibrational-fluidization in ISRU reactor systems, which has proven very effective for regolith mixing. The vibrating...

  10. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2006-01-17

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the testing of the rebuilt laboratory prototype and its conversion into a version that will be operable in the drilling tests at TerraTek Laboratories. In addition, formations for use in these tests were designed and constructed, and a test protocol was developed. The change in scope and no-cost extension of Phase II to January, 2006, described in our last report, were approved. The tests are scheduled to be run during the week of January 23, and should be completed before the end of the month.

  11. Chaotic vibrations of heated plates

    Science.gov (United States)

    Fermen-Coker, Muge

    1998-12-01

    In recent years, the investigation of dynamical behavior of plates under thermal loads has become important due to the high temperatures reached on external skin panels of hypersonic vehicles. It has been shown by other researchers that the skin panels may encounter chaotic vibrations about their thermally buckled positions. In this research, the chaotic vibrations of simply supported plates under thermal and sinusoidal excitation is studied in order to predict the vibratory behavior of a representative class of such skin panels. A method for the development of equations of motion, that forms a foundation for further investigation of the response of elastic panels under general thermal, mechanical and aerodynamic loading and various boundary conditions, is presented and discussed. The boundaries of regular and chaotic regions of motion are defined and the sensitivity of these boundaries to changes in design parameters is explored for the purpose of developing useful design criteria. The onset of chaos is predicted through the computation of Lyapunov exponents. The sensitivity of Lyapunov exponent calculations to the choice of numerical method of integration, numerical precision and the magnitude of coefficients as functions of design variables, is discussed. The effects of thermal moment, thermal buckling, amplitude and frequency of excitation, damping, thickness and length to width ratio of panels on the onset of chaos is studied. The results of the research are presented as a contribution to the panel design of hypersonic vehicles.

  12. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  13. Satellite instruments measure hole in the ozone layer; Satellietinstrumenten meten gat in de ozonlaag

    Energy Technology Data Exchange (ETDEWEB)

    Stammes, P. [Sectie Atmosferisch Onderzoek, KNMI, De Bilt (Netherlands)

    2000-09-01

    Two instruments by means of which the conditions in the atmosphere are measured and monitored are discussed: (1) the Global Ozone Monitoring Experiment (GOME) aboard the ERS-2 satellite, which was launched by the European Space Agency (ESA) at April 21, 1995; (2) the much larger instrument Sciamachy (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) which will be launched as part of the environmental satellite Envisat in 2001. In 2003 the new Ozone Monitoring Instrument (OMI) will be launched aboard the NASA satellite Aura.

  14. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    We wish to report the occurrence of vibrational resonance in certain discrete systems like sine square map and sine circle map, in a unique fashion, comprising of multiple resonant peaks which pave the way for enrichment. As the systems of our choice are capable of exhibiting vibrational resonance behaviour unlike the ...

  15. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    system [10], bistable systems [1,11,12], time-delayed system [13] and also in a few low- dimensional maps [14] due to its ... the driving force, has attracted much attention in recent years. The study of vibrational ... odic trigonometric functions, one can expect the recurrence of multiple resonant peaks due to vibrational ...

  16. Modified Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Chen, Gun-Shing; Dolgin, Benjamin P.

    1993-01-01

    Composite-material (fiber/matrix laminate) struts damping longitudinal vibrations fabricated more easily in proposed new design. Prior design described in "Composite Struts Would Damp Vibrations" (NPO-17914). New design similar except pattern of fibers includes rounded bends (instead of sharp bends) in fibers.

  17. Torsional vibrations of infinite composite poroelastic cylinders

    African Journals Online (AJOL)

    user

    Abstract. A study of torsional vibrations of an infinite composite poroelastic circular solid cylinder made of two different materials is made. The frequency equation of such torsional vibrations is obtained following analytical model based on Biot's theory of wave propagation in liquid saturated porous media. Each dilatation of ...

  18. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  19. The analysis of nonstationary vibration data

    Science.gov (United States)

    Piersol, Allan G.

    1987-01-01

    The general methodology for the analysis of arbitrary nonstationary random data is reviewed. A specific parametric model, called the product model, that has applications to space vehicle launch vibration data analysis is discussed. Illustrations are given using the nonstationary launch vibration data measured on the Space Shuttle orbiter vehicle.

  20. Quenching of self-excited vibrations

    NARCIS (Netherlands)

    Verhulst, F.

    2005-01-01

    Stable normal-mode vibrations in engineering can be undesirable and one of the possibilities for quenching these is by embedding the oscillator in an autoparametric system by coupling to a damped oscillator. There exists the possibility of destabilizing the undesirable vibrations by a suitable

  1. NOISE AND VIBRATION DAMPING FOR YACHT INTERIOR

    Directory of Open Access Journals (Sweden)

    Murat Aydın

    2016-12-01

    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  2. Vibrational Stability of NLC Linac Accelerating Structure

    CERN Document Server

    Le Pimpec, F; Bowden, G B; Doyle, E; McKee, B; Seryi, Andrei; Redaelli, S; Adiga, S

    2002-01-01

    The vibration of components of the NLC linac, such as accelerating structures and girders, is being studied both experimentally and analytically. Various effects are being considered including structural resonances and vibration caused by cooling water in the accelerating structure. This paper reports the status of ongoing work.

  3. Satellite-derived methane emissions from inundation in Bangladesh

    Science.gov (United States)

    Peters, C. N.; Bennartz, R.; Hornberger, G. M.

    2017-05-01

    The uncertainty in methane (CH4) source strength of rice fields and wetlands is particularly high in South Asia CH4 budgets. We used satellite observations of CH4 column mixing ratios from Atmospheric Infrared Sounder (AIRS), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and Greenhouse Gases Observing Satellite (GOSAT) to estimate the contribution of Bangladesh emissions to atmospheric CH4 concentrations. Using satellite-derived inundation area as a proxy for source area, we developed a simple inverse advection model that estimates average annual CH4 surface fluxes to be 4, 9, and 19 mg CH4 m-2 h-1 in AIRS, SCIAMACHY, and GOSAT, respectively. Despite this variability, our flux estimates varied over a significantly narrower range than reported values for CH4 surface fluxes from a survey of 32 studies reporting ground-based observations between 0 and 260 mg CH4 m-2 h-1. Upscaling our satellite-derived surface flux estimates, we estimated total annual CH4 emissions for Bangladesh to be 1.3 ± 3.2, 1.8 ± 2.0, 3.1 ± 1.6 Tg yr-1, depending on the satellite. Our estimates of total emissions are in line with the median of total emission values for Bangladesh reported in earlier studies.

  4. Communication: creation of molecular vibrational motions via the rotation-vibration coupling

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm

    2015-01-01

    whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds......Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational...... motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length...

  5. Forced Transverse Vibration of a Closed Double Single-Walled Carbon Nanotube System Containing a Fluid with Effect of Compressive Axial Load

    Directory of Open Access Journals (Sweden)

    Mehrdad Nasirshoaibi

    2015-01-01

    Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.

  6. Modeling Displacement Measurement using Vibration Transducers

    Directory of Open Access Journals (Sweden)

    AGOSTON Katalin

    2014-05-01

    Full Text Available This paper presents some aspects regarding to small displacement measurement using vibration transducers. Mechanical faults, usages, slackness’s, cause different noises and vibrations with different amplitude and frequency against the normal sound and movement of the equipment. The vibration transducers, accelerometers and microphone are used for noise and/or sound and vibration detection with fault detection purpose. The output signal of the vibration transducers or accelerometers is an acceleration signal and can be converted to either velocity or displacement, depending on the preferred measurement parameter. Displacement characteristics are used to indicate when the machine condition has changed. There are many problems using accelerometers to measure position or displacement. It is important to determine displacement over time. To determinate the movement from acceleration a double integration is needed. A transfer function and Simulink model was determinate for accelerometers with capacitive sensing element. Using these models the displacement was reproduced by low frequency input.

  7. Passively damped vibration welding system and method

    Science.gov (United States)

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  8. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  9. Absorption and Metabolism of Xanthophylls

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2011-06-01

    Full Text Available Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.

  10. Satellite Laser Ranging Satellite Orbit Product from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — SLR Satellite Orbit solutions available from the Crustal Dynamics Data Information System (CDDIS). Precise Orbit Determination (POD) solutions in Standard Product 3...

  11. Ab initio calculations of spectroscopic constants and vibrational state lifetimes of diatomic alkali-alkaline-earth cations.

    Science.gov (United States)

    Fedorov, Dmitry A; Barnes, Dustin K; Varganov, Sergey A

    2017-09-28

    We investigate the lifetimes of vibrational states of diatomic alkali-alkaline-earth cations to determine their suitability for ultracold experiments where long decoherence time and controllability by an external electric field are desirable. The potential energy and permanent dipole moment curves for the ground electronic states of LiBe + , LiMg + , NaBe + , and NaMg + are obtained using the coupled cluster with singles doubles and triples and multireference configuration interaction methods in combination with large all-electron cc-pCVQZ and aug-cc-pCV5Z basis sets. The energies and wave functions of all vibrational states are obtained by solving the Schrödinger equation for nuclei with the B-spline basis set method. To predict the lifetimes of vibrational states, the transition dipole moments, as well as the Einstein coefficients describing spontaneous emission, and the stimulated absorption and emission induced by black body radiation are calculated. Surprisingly, in all studied ions, the lifetimes of the highest excited vibrational states are similar to the lifetimes of the ground vibrational states indicating that highly vibrationally excited ions could be useful for the ultracold experiments requiring long decoherence time.

  12. Ab initio calculations of spectroscopic constants and vibrational state lifetimes of diatomic alkali-alkaline-earth cations

    Science.gov (United States)

    Fedorov, Dmitry A.; Barnes, Dustin K.; Varganov, Sergey A.

    2017-09-01

    We investigate the lifetimes of vibrational states of diatomic alkali-alkaline-earth cations to determine their suitability for ultracold experiments where long decoherence time and controllability by an external electric field are desirable. The potential energy and permanent dipole moment curves for the ground electronic states of LiBe+, LiMg+, NaBe+, and NaMg+ are obtained using the coupled cluster with singles doubles and triples and multireference configuration interaction methods in combination with large all-electron cc-pCVQZ and aug-cc-pCV5Z basis sets. The energies and wave functions of all vibrational states are obtained by solving the Schrödinger equation for nuclei with the B-spline basis set method. To predict the lifetimes of vibrational states, the transition dipole moments, as well as the Einstein coefficients describing spontaneous emission, and the stimulated absorption and emission induced by black body radiation are calculated. Surprisingly, in all studied ions, the lifetimes of the highest excited vibrational states are similar to the lifetimes of the ground vibrational states indicating that highly vibrationally excited ions could be useful for the ultracold experiments requiring long decoherence time.

  13. Radio broadcasting via satellite

    Science.gov (United States)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  14. The Galilean Satellites

    Science.gov (United States)

    1998-01-01

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission

  15. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian

    2017-01-01

    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  16. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  17. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  18. Research activities on vibro-acoustics of satellites during rocket launch

    OpenAIRE

    Murakami, Keiichi; Inada, Yoshinobu; Aoyama, Takashi; Takahashi, Takashi; Aiso, Hideaki; 村上 桂一; 稲田 喜信; 青山 剛史; 高橋 孝; 相曽 秀昭

    2006-01-01

    A study to establish a prediction method for vibro-acoustics of satellites during rocket launch has been conducted using a multidisciplinary analysis method of fluid, acoustic, and vibration. This coupling method consists of following four elements: numerical analyses of (1) sound generation, (2) sound propagation, (3) sound permeation, and (4) vibro-acoustics of payload. In the sound generation analysis, it can be seen from FEM analysis of a simply modeled deflector that a strong resonance o...

  19. Collision matrix for Leo satellites

    Science.gov (United States)

    McKnight, Darren; Lorenzen, Gary

    The Low Earth Orbit (LEO) is becoming cluttered with thousands of satellites, rocket bodies, and a variety of space garbage. This collection of objects crossing paths at speeds on the order of 10 km/s is creating an increasing collision hazard to many operational systems. The effect that the destruction of LEO satellites will have on other users of the near-Earth environment is of great concern. A model is examined which quantifies the effect of one satellite fragmentation on neighboring satellites. This model is used to evaluate the interdependent hazard to a series of satellite systems. A number of space system fragmentation events are numerically simulated and the collision hazard to each is tabulated. Once all satellites in the matrix have been fragmented separately, a complete collision hazard representation can be depicted. This model has potential for developing an enhanced understanding of a number of aspects of the growing debris hazard in LEO.

  20. The vibroacoustic response and sound absorption performance of multilayer, microperforated rib-stiffened plates

    Science.gov (United States)

    Zhou, Haian; Wang, Xiaoming; Wu, Huayong; Meng, Jianbing

    2017-10-01

    The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas, the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water. Finally, the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.

  1. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Kim, Heejae; Kim, Seongheun; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O-D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O-D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O-D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O-D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O-D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O-D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O-D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O-D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O-D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O-D stretch mode is shown to be important and the asymmetric line shapes of the O-D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  2. Enhanced absorption cycle computer model

    Science.gov (United States)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  3. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2014-05-01

    Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

  4. Public Service Communication Satellite Program

    Science.gov (United States)

    Brown, J. P.

    1977-01-01

    The proposed NASA Public Service Communication Satellite Program consists of four different activities designed to fulfill the needs of public service sector. These are: interaction with the users, experimentation with existing satellites, development of a limited capability satellite for the earliest possible launch, and initiation of an R&D program to develop the greatly increased capability that future systems will require. This paper will discuss NASA efforts in each of these areas.

  5. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  6. Carbon Nanotube Tape Vibrating Gyroscope

    Science.gov (United States)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  7. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  8. Nonlinear absorption in discrete systems

    Energy Technology Data Exchange (ETDEWEB)

    Spire, A; Leon, J [Physique Mathematique et Theorique, CNRS-UMR5825, Universite Montpellier 2, 34095 Montpellier (France)

    2004-10-01

    In the context of nonlinear scattering, a continuous wave incident onto a nonlinear discrete molecular chain of coupled oscillators can be partially absorbed as a result of a three-wave resonant interaction that couples two HF-waves of frequencies close to the edge of the Brillouin zone. Hence both nonlinearity and discreteness are necessary for generating this new absorption process which manifests itself by soliton generation in the medium. As a paradigm of this nonlinear absorption we consider here the Davydov model that describes exciton-phonon coupling in hydrogen-bonded molecular chains.

  9. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  10. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2005-04-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  11. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  12. Parametric study on a collocated PZT beam vibration absorber and power harvester

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shyh Chin [Mechanical Engineering, Ming Chi University of Technology, New Taipei (China); Tsai, Chao Yang [Mechanical Engineering Army Academy, R.O.C., Taoyuan (China); Liao, Hsiao Hui [LNG Construction and Project Division, CPC Corp., Taipei (China)

    2016-11-15

    The parametric effects of a PZT beam that is simultaneously used as a vibration absorber and a power harvester were investigated in this study. A cantilever beam paved with PZT layers and with added tip mass has been widely used as a harvester or sometimes as a Dynamic vibration absorber (DVA). However, the beam is rarely considered a collocated device. In this study, the first step was theoretical derivation of a distributed beam covered with bimorph PZT layers. Then, the beam was attached to a 1DOF vibratory main system. Two indicators for vibration absorption and power harvesting were defined. Numerical results demonstrated that the lumped mass ratio favored both of the abilities, but that the DVA mass ratio influenced these two abilities in exactly the opposite way. The conjunction of a harvester circuit into a DVA shifted its resonance frequency up to 5 % (an extreme case of open circuit R→∞). Simultaneous power harvesting diminished the absorption capability up to 35 % for each set of mass ratios. To achieve the maximum degree of power harvesting, a corresponding load resistance that somewhat increases with the lumped mass ratio is applied. Experimental results verified the existence of the best load resistance, but the measured harvested curve was lower than the theoretical calculation because of structure damping and deviations of PZT material properties.

  13. Vibrational and electronic properties of 4‧-halomethyl-2-biphenylcarbonitrile compounds

    Science.gov (United States)

    Shankar Rao, Y. B.; Veeraiah, V.; Sundius, Tom; Chaitanya, Kadali

    2017-09-01

    In this paper we studied the structural, vibrational and electronic properties of the 4‧-bromomethyl-2-biphenylcarbonitrile (BMBP) 4‧-chloromethyl-2-biphenylcarbonitrile (CMBP) and 4‧-fluoromethyl-2-biphenylcarbonitrile (FMBP) compounds using experimental and theoretical methods. The FT-IR and FT-Raman spectra of BMBP in solid phase were recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The UV absorption spectrum of BMBP was recorded in dichloromethane and methanol solvents in the range 180-400 nm. The theoretical spectral properties of title compounds were simulated using density functional theory (DFT) and time dependent DFT methods. Scaling of the vibrational frequencies was carried out with the MOLVIB program using multiple scaling factors and assignment to each vibrational frequency was consigned on the basis of potential energy distribution (PED). The electronic spectrum of BMBP in two different solvents (methanol and dichloromethane), calculated at the CAM-B3LYP/6-31G(d,p) level compares well with the experimental data and validates the current method for predicting the absorption spectrum of CMBP and FMBP. Furthermore, the electronic, nonlinear optical and thermodynamics properties of the three compounds were discussed in detailed.

  14. Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness

    Science.gov (United States)

    Shui, Xin; Wang, Shimin

    2018-02-01

    The design and characterization of a mechanical vibration absorber are addressed. A distinctive feature of the absorber is its tunable piecewise-linear stiffness, which is realized by means of a slider with two stop-blocks installed constraining the bilateral deflections of the elastic support. A new analytical approach named as the equivalent stiffness technique (EST) is introduced and then employed to obtain the analytical relations of the frequency, amplitude and phase with a view to exhibit a more comprehensive characterization of the absorber. Experiments are conducted to demonstrate the feasibility of the design. The experimental data show good agreement with the analytical results. The final results indicate that the tunable stiffness absorber (TSA) possesses a typical nonlinear characteristic at each given position of the slider, and its stiffness can be tuned in real time over a wide range by adjusting the slider position. Hence the TSA has a large optimum vibration-absorption range together with a wide suppression band around each optimal position, which contributes to its excellent capacity of vibration absorption.

  15. Jupiter's Galilean Satellites

    Science.gov (United States)

    McGrath, Melissa A.

    2005-01-01

    Jupiter's Galilean satellites Io, Europa, Ganymede and Callisto encompass some of the most bizarre environments known in the solar system, spanning that of Io, the most volcanically active and perhaps the most inhospitable body known, to Europa, currently the focus of a search for life in the solar system because of its subsurface ocean. One of the premier areas of scientific return in solar system research in the past 10 years, due in large part to the Galileo mission and observations by the Hubble Space Telescope, has been a remarkable increase in our knowledge about these satellites. Discoveries have been made of tenuous molecular oxygen atmospheres on Europa and Ganymede, a magnetic field and accompanying auroral emissions at the poles of Ganymede, and of ozone and sulfur dioxide embedded in the surfaces of Europa, Ganymede and Callisto. Io's unusual sulfur dioxide atmosphere, including its volcanic plumes and strong electrodynamic interaction with magnetospheric plasma, has finally been quantitatively characterized. This talk will present highlights from the recent discoveries and advances in our understanding of these fascinating objects.

  16. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  17. Different Structures of PVA Nanofibrous Membrane for Sound Absorption Application

    Directory of Open Access Journals (Sweden)

    Jana Mohrova

    2012-01-01

    Full Text Available The thin nanofibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nanofibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA was used as a polymer because of its good water solubility. It is possible to influence the structure of nanofibrous layer during the production process thanks to this property of polyvinyl alcohol.

  18. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    Science.gov (United States)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  19. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  20. Microwave Spectral Taxonomy and Astronomical Searches for Vibrationally-Excited C_2S and C_3S

    Science.gov (United States)

    McGuire, Brett A.; Martin-Drumel, Marie-Aline; Stanton, John F.; McCarthy, Michael C.

    2016-06-01

    C_2S and C_3S are common interstellar species, and have relatively simple reaction chemistries. For these reasons, they frequently serve as probes of chemical evolution and physical conditions in rich astronomical sources. Because their rotational lines are often conspicuous there, detection of C_2S and C_3S in vibrationally-excited states might provide additional insight into formation pathways and excitation conditions. However, knowledge of the vibrational satellite transitions of both species is incomplete. Here, we report laboratory measurements of rotational spectra of vibrationally-excited C_2S and C_3S obtained from two microwave spectral taxonomy studies, in which CS_2 alone or in combination with a hydrocarbon precursor (acetylene or diacetylene), were produced using an electrical discharge. For C_3S, these studies, in combination with high-level quantum chemical calculations, greatly extend previous microwave measurements, while for C_2S, satellite transitions from several vibrational states have been observed for the first time. On the basis of precise laboratory rest frequencies, renewed searches for these transitions can be undertaken with confidence in publicly-available astronomical line surveys.

  1. Design and Implementation of a Digital Controller for a Vibration Isolation and Vernier Pointing System

    Science.gov (United States)

    Neff, Daniel J.; Britcher, Colin P.

    1996-01-01

    This paper discusses the recommissioning of the Annular Suspension and Pointing System (ASPS), originally developed in the mid 1970's for pointing and vibration isolation of space experiments. The hardware was developed for NASA Langley Research Center by Sperry Flight Systems (now Honeywell Satellite Systems), was delivered to NASA in 1983. Recently, the hardware was loaned to Old Dominion University (ODU). The ASPS includes coarse gimbal assemblies and a Vernier Pointing Assembly (VPA) that utilize magnetic suspension to provide noncontacting vibration isolation and vernier pointing of the payload. The VPA is the main focus of this research. At ODU, the system has been modified such that it can now be operated in a l-g environment without a gravity offload. Suspension of the annular iron rotor in five degrees-of-freedom has been achieved with the use of modern switching power amplifiers and a digital controller implemented on a 486-class PC.

  2. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  3. Simulation studies for multichannel active vibration control

    Science.gov (United States)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  4. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  5. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  6. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-09-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  7. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  8. Observing iodine monoxide from satellite

    Science.gov (United States)

    Schoenhardt, Anja; Richter, Andreas; Begoin, Mathias; Wittrock, Folkard; Burrows, John P.

    Iodine and iodine monoxide (IO) belong to the group of reactive halogen species, and they may impact on atmospheric chemical composition and the radiation budget. Vice versa, sur-rounding conditions may influence the emissions and pathways of iodine compounds. Although atmospheric amounts of iodine are typically fairly small, the impact may still be substantial. Iodine radicals are photolytically released from precursors and may then cause catalytic ozone depletion. In this reaction with ozone, IO is produced, a molecule which plays a central role in the iodine cycling. Via self reactions of IO, higher iodine oxides form and initiate the formation of new particles, which may change the atmospheric radiation balance. Apart from that, many living species, including human beings, vertebrates in general, but also micro-and macroalgae species, e.g., depend on the supply with iodine. Consequently, it is necessary to understand the cycling of iodine through the different components of the Earth system. Although increas-ing research effort in the form of field, laboratory and modeling studies has strongly improved our knowledge and understanding of iodine abundances and impact, still many open questions remain. The relevance of iodine on a global scale is not well known yet; sources are not well quantified and release processes are not fully understood. Since recently, IO may be observed from space by the SCIAMACHY instrument on the EN-VISAT satellite, which is in a near-polar, sun-synchronous orbit. Nadir observations from SCIAMACHY have been analysed for the IO absorption signature in the visible wavelength range for several mission years. IO amounts are typically close to the limit of detectability of SCIAMACHY. Detecting such small quantities, careful attention needs to be paid to system-atic errors, spectral correlations and resulting retrieval artefacts. Subsequently, appropriate temporal averaging is utilised to improve the signal-to-noise ratio. The resulting

  9. Low-Absorption Laser Windows

    Science.gov (United States)

    1976-04-01

    ABSORPTION MEASUREMENTS AT 1.06 Urn James W. Davisson U.S. Naval Research Laboratory Washington, D.C. 20375 ABSTRACT A procedure for the chemical poli...W. Davisson , Fourth Laser Window Materials Conf. p. 466). The alkaline earth fluorides and LiF were mechanically polished by rubbing: till dry

  10. Theory of graphene saturable absorption

    Science.gov (United States)

    Marini, A.; Cox, J. D.; García de Abajo, F. J.

    2017-03-01

    Saturable absorption is a nonperturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a semianalytical nonperturbative single-particle approach, describing electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics nonperturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. We obtain results in qualitative agreement with atomistic quantum-mechanical simulations of graphene nanoribbons including electron-electron interactions, finite-size, and higher-band effects. Remarkably, such effects are found to affect mainly the linear absorption, while the predicted saturation intensities are in good quantitative agreement in the limit of extended graphene. Additionally, we find that the modulation depth of saturable absorption in graphene can be electrically manipulated through an externally applied gate voltage. Our results are relevant for the development of graphene-based optoelectronic devices, as well as for applications in mode-locking and random lasers.

  11. Low cost subpixel method for vibration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)

    2014-05-27

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  12. Reducing Transmitted Vibration Using Delayed Hysteretic Suspension

    Directory of Open Access Journals (Sweden)

    Lahcen Mokni

    2011-01-01

    Full Text Available Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.

  13. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  14. Aerosol absorption and radiative forcing

    Directory of Open Access Journals (Sweden)

    P. Stier

    2007-10-01

    Full Text Available We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006 significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA radiative forcing clear-sky from −0.79 to −0.53 W m−2 (33% and all-sky from −0.47 to −0.13 W m−2 (72%. Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36% clear-sky and of 0.12 W m−2 (92% all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W

  15. Absorptive capacity and smart companies

    Directory of Open Access Journals (Sweden)

    Patricia Moro González

    2014-12-01

    Full Text Available Purpose: The current competitive environment is substantially modifying the organizations’ learning processes due to a global increase of available information allowing this to be transformed into knowledge. This opportunity has been exploited since the nineties by the tools of “Business Analytics” and “Business Intelligence” but, nevertheless, being integrated in the study of new organizational capacities engaged in the process of creating intelligence inside organizations is still an outstanding task. The review of the concept of absorptive capacity and a detailed study from the perspective of this new reality will be the main objective of study of this paper.Design/methodology/approach: By comparing classical absorptive capacity and absorptive capacity from the point of view of information management tools in each one of the three stages of the organizational learning cycle, some gaps of the former are overcome/fulfilled. The academic/bibliographical references provided in this paper have been obtained from ISI web of knowledge, Scopus and Dialnet data bases, supporting the state of affairs on absorptive capacity and thereafter filtering by "Business Intelligence" and "Business Analytics". Specialized websites and Business Schools` Publications there have also been included, crowning the content on information management tools used that are currently used in the strategic consulting.Findings: Our contribution to the literature is the development of "smart absorptive capacity". This is a new capacity emerging from the reformulation of the classical concept of absorptive capacity wherein some aspects of its definition that might have been omitted are emphasized. The result of this new approach is the creation of a new Theoretical Model of Organizational Intelligence, which aims to explain, within the framework of the Resources and Capabilities Theory, the competitive advantage achieved by the so-called smart companies

  16. The vibrational Stokes shift of water (HOD in D2O)

    Science.gov (United States)

    Wang, Zhaohui; Pang, Yoonsoo; Dlott, Dana D.

    2004-05-01

    The vibrational Stokes shift of the OH stretching transition νOH of water is the shift between the ground-state absorption and the excited-state (v=1) emission. A recent measurement on HOD in D2O solvent [S. Woutersen and H. J. Bakker, Phys. Rev. Lett. 83, 2077 (1999)] of a 70 cm-1 redshift, and a subsequent calculation of a 57 cm-1 redshift using equilibrium molecular dynamics simulations [C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 117, 8847 (2002)] were in good agreement. We now report extensive measurements of the vibrational Stokes shift in HOD/D2O using an ultrafast IR pump, Raman probe method. The vibrational Stokes shift is seen to depend on the pump pulse frequency and on time delay; by varying these parameters it can be made to range from 112 to -32 cm-1 (negative values indicate a blueshift in the excited state). The equilibrium vibrational Stokes shift is actually a negative rather than a positive quantity. Possible reasons for the disagreement between experiment and theory are briefly discussed.

  17. Vibration response of piezoelectric microcantilever as ultrasmall mass sensor in liquid environment.

    Science.gov (United States)

    Karimpour, Masoud; Ghaderi, Reza; Raeiszadeh, Farhad

    2017-10-01

    The present study aims to analyze the vibrating behavior of a piezoelectric microcantilever (MC) as a mass nanosensor. The vibrating behavior of the MC as well as its sensitivity as a mass nanosensor are investigated and compared in both air and liquid environments. To this end, Euler-Bernoulli theory was used to model the vibrating behavior of piezoelectric MC with added mass at its free end. Frequency analysis was conducted by considering geometric discontinuities and taking added mass into account. The effect of liquid environment applied to the MC (as hydrodynamic forces) was based on a string of spheres model. Since changes in resonance frequency are used as the measurement parameter in mass sensors, changes in resonance frequency during absorption of nanoparticles was selected as the main parameter to be investigated in this study. Ultimately, with the aim to achieve optimal geometric dimensions for the piezoelectric MC, sensitivity analysis was additionally performed in order to increase the frequency sensitivity. According to the results, frequency sensitivity of the piezoelectric MC decreased in liquid environment compared to air environments. Moreover, increases in fluid density and viscosity caused a decreased frequency sensitivity. Simulation results indicate that the second vibrating mode in air and liquid environments is the appropriate operating mode for this type of MC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Parallel calculations of vibrational properties in complex materials: negative thermal expansion and elastic inhomogeneity

    Science.gov (United States)

    Vila, F. D.; Rehr, J. J.

    Effects of thermal vibrations are essential to obtain a more complete understanding of the properties of complex materials. For example, they are important in the analysis and simulation of x-ray absorption spectra (XAS). In previous work we introduced an ab initio approach for a variety of vibrational effects, such as crystallographic and XAS Debye-Waller factors, Debye and Einstein temperatures, and thermal expansion coefficients. This approach uses theoretical dynamical matrices from which the locally-projected vibrational densities of states are obtained using a Lanczos recursion algorithm. In this talk I present recent improvements to our implementation, which permit simulations of more complex materials with up to two orders of magnitude larger simulation cells. The method takes advantage of parallelization in calculations of the dynamical matrix with VASP. To illustrate these capabilities we discuss two problems of considerable interest: negative thermal expansion in ZrW2O8; and local inhomogeneities in the elastic properties of supported metal nanoparticles. Both cases highlight the importance of a local treatment of vibrational properties. Supported by DOE Grant DE-FG02-03ER15476, with computer support from DOE-NERSC.

  19. Isotropic Zero Thermal Expansion and Local Vibrational Dynamics in (Sc,Fe)F3.

    Science.gov (United States)

    Qin, Feiyu; Chen, Jun; Aydemir, Umut; Sanson, Andrea; Wang, Lu; Pan, Zhao; Xu, Jiale; Sun, Chengjun; Ren, Yang; Deng, Jinxia; Yu, Ranbo; Hu, Lei; Snyder, G Jeffrey; Xing, Xianran

    2017-09-18

    Scandium fluoride (ScF3) exhibits a pronounced negative thermal expansion (NTE), which can be suppressed and ultimately transformed into an isotropic zero thermal expansion (ZTE) by partially substituting Sc with Fe in (Sc0.8Fe0.2)F3 (Fe20). The latter displays a rather small coefficient of thermal expansion of -0.17 × 10(-6)/K from 300 to 700 K. Synchrotron X-ray and neutron pair distribution functions confirm that the Sc/Fe-F bond has positive thermal expansion (PTE). Local vibrational dynamics based on extended X-ray absorption fine structure indicates a decreased anisotropy of relative vibration in the Sc/Fe-F bond. Combined analysis proposes a delicate balance between the counteracting effects of the chemical bond PTE and NTE from transverse vibration. The present study extends the scope of isotropic ZTE compounds and, more significantly, provides a complete local vibrational dynamics to shed light on the ZTE mechanism in chemically tailored NTE compounds.

  20. Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols

    Science.gov (United States)

    Jacobson, Mark Z.

    2012-03-01

    This study examines modeled properties of black carbon (BC), tar ball (TB), and soil dust (SD) absorption within clouds and aerosols to understand better Cloud Absorption Effects I and II, which are defined as the effects on cloud heating of absorbing inclusions in hydrometeor particles and of absorbing aerosol particles interstitially between hydrometeor particles at their actual relative humidity (RH), respectively. The globally and annually averaged modeled 550 nm aerosol mass absorption coefficient (AMAC) of externally mixed BC was 6.72 (6.3-7.3) m2/g, within the laboratory range (6.3-8.7 m2/g). The global AMAC of internally mixed (IM) BC was 16.2 (13.9-18.2) m2/g, less than the measured maximum at 100% RH (23 m2/g). The resulting AMAC amplification factor due to internal mixing was 2.41 (2-2.9), with highest values in high RH regions. The global 650 nm hydrometeor mass absorption coefficient (HMAC) due to BC inclusions was 17.7 (10.6-19) m2/g, ˜9.3% higher than that of the IM-AMAC. The 650 nm HMACs of TBs and SD were half and 1/190th, respectively, that of BC. Modeled aerosol absorption optical depths were consistent with data. In column tests, BC inclusions in low and mid clouds (CAE I) gave column-integrated BC heating rates ˜200% and 235%, respectively, those of interstitial BC at the actual cloud RH (CAE II), which itself gave heating rates ˜120% and ˜130%, respectively, those of interstitial BC at the clear-sky RH. Globally, cloud optical depth increased then decreased with increasing aerosol optical depth, consistent with boomerang curves from satellite studies. Thus, CAEs, which are largely ignored, heat clouds significantly.

  1. Satellite Observations of Desert Dust-induced Himalayan Snow Darkening

    Science.gov (United States)

    Gautam, Ritesh; Hsu, N. Christina; Lau, William K.-M.; Yasunari, Teppei J.

    2013-01-01

    The optically thick aerosol layer along the southern edge of the Himalaya has been subject of several recent investigations relating to its radiative impacts on the South Asian summer monsoon and regional climate forcing. Prior to the onset of summer monsoon, mineral dust from southwest Asian deserts is transported over the Himalayan foothills on an annual basis. Episodic dust plumes are also advected over the Himalaya, visible as dust-laden snow surface in satellite imagery, particularly in western Himalaya. We examined spectral surface reflectance retrieved from spaceborne MODIS observations that show characteristic reduction in the visible wavelengths (0.47 nm) over western Himalaya, associated with dust-induced solar absorption. Case studies as well as seasonal variations of reflectance indicate a significant gradient across the visible (0.47 nm) to near-infrared (0.86 nm) spectrum (VIS-NIR), during premonsoon period. Enhanced absorption at shorter visible wavelengths and the resulting VIS-NIR gradient is consistent with model calculations of snow reflectance with dust impurity. While the role of black carbon in snow cannot be ruled out, our satellite-based analysis suggests the observed spectral reflectance gradient dominated by dust-induced solar absorption during premonsoon season. From an observational viewpoint, this study underscores the importance of mineral dust deposition toward darkening of the western Himalayan snow cover, with potential implications to accelerated seasonal snowmelt and regional snow albedo feedbacks.

  2. Research on the sound absorption characteristics of porous metal materials at high sound pressure levels

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-05-01

    Full Text Available Porous metal materials are widely used in noise control with high sound pressure applications such as aircraft engine liners and combustion chambers for rocket engines due to their excellent performance of sound absorption characteristics and distinguished advantages in heat resistance, lightness, and stiffness. Understanding the effect of sound pressure on the acoustic properties of these materials is crucial when attempting to predict silencer performance. In this article, we experimentally investigate the sound absorption characteristics of porous metal materials at high sound pressure level. The effects of material parameters on the sound absorption characteristics of porous metal materials under high sound pressure level are further explored experimentally. Measurements are carried out by using a standard impedance tube that has been modified to accommodate sound pressure level of up to 150 dB. The experimental results show that with the increase in sound pressure level, the effect of sound pressure level on the sound absorption characteristics yields different variation regularities in different frequencies. The sound absorption performance of porous metal materials increases with the increase in sound pressure level in low frequency, which is reasonably consistent with the theoretical results. Under high sound pressure level, the sound absorption characteristics are significantly dependent upon the material parameters such as the metal fiber diameter, the material porosity, and the material thickness. It could provide a reliable experimental validation for the applications of porous metal materials in the area of vibration and noise control at high sound pressure levels.

  3. INTERACTION OF LASER RADIATION WITH MATTER: Effect of stimulated emission on the distribution of CO molecules over vibrational levels

    Science.gov (United States)

    Grigorian, G. M.; Kochetov, I. V.

    2008-10-01

    The vibrational distribution function (VDF) of CO molecules is measured in the presence and absence of generation in a CO laser pumped by a longitudinal dc discharge. Kinetic equations for the VDF and the Boltzmann equation for the energy distribution function of electrons are solved simultaneously in a theoretical model. A comparison of the experimental and calculated lasing spectra and VDF demonstrates their good agreement. By introducing an absorbing cell with different gases (NO, C2H4, CO2, C6H6) into a resonator, the influence of selection of laser lines on the lasing spectrum and the VDF of CO molecules is studied. It is shown experimentally that the population of CO molecules at vibrational levels involved in lasing and at higher levels strongly decreases and the VDF at lower levels changes insignificantly. It is demonstrated that the VDF shape of CO molecules at high vibrational levels can be changed by introducing intracavity absorption.

  4. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  5. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  6. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  7. Dipole active vibrations and dipole moments of N2 and O2 physisorbed on a metal surface

    Science.gov (United States)

    Gustafsson, K.; Andersson, S.

    2006-07-01

    We have, in infrared reflection absorption measurements, observed narrow dipole active absorption lines associated with the fundamental internal vibrational transitions of N2 and O2 physisorbed at 30K on the chemically inert Pt(111)(1×1)H surface. Such transitions are forbidden for free homonuclear molecules and become dipole active at a metal surface due to polarization induced surface dipole moments. The measurements show that the internal stretch vibration frequencies are lowered by 7-8cm-1 relative to the gas phase values. The measured static and dynamic dipole moments are in the ranges of 0.06-0.07 and 0.001-0.002D, respectively. We find that good estimates of the induced dynamic as well as the static dipole moments can in general be obtained from a van der Waals model but that the ratios of the measured static and dynamic moments indicates a need for a refinement of the dipole moment function.

  8. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  9. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  10. Satellite Rings Movie

    Science.gov (United States)

    2000-01-01

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies.The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000.Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  11. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  12. 14 CFR 23.251 - Vibration and buffeting.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...

  13. Whole-body vibration dosage alters leg blood flow

    NARCIS (Netherlands)

    Lythgo, Noel; Eser, Prisca; de Groot, Patricia; Galea, Mary

    The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used

  14. 14 CFR 25.251 - Vibration and buffeting.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 25.251 Section 25... Vibration and buffeting. (a) The airplane must be demonstrated in flight to be free from any vibration and... airplane must be demonstrated in flight to be free from excessive vibration under any appropriate speed and...

  15. Vibration improved the fluidity of aluminum alloys in thin wall ...

    African Journals Online (AJOL)

    user

    The effect of vibration is quantified and incorporated into the fluidity model, such that the velocity with and without vibration can be considered in the fluidity model. High pouring temperature aluminum alloy in thin wall investment casting, fluidity characteristic is improved by application of vibration. Keywords: Vibration ...

  16. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S. (Sedco forex, Montrouge (France)); Malone, D. (Anadrill, Sugar Land, TX (United States)); Sheppard, M. (Schlumberger Cambridge Research, Cambridge (United Kingdom))

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  17. Study of satellite microminiaturization technology

    Science.gov (United States)

    Obara, Hiroaki; Oomura, Katsutoshi

    1992-07-01

    The characteristics, objectives, and missions, such as those for message relaying, low orbit broadcasting, monitoring and warning, scientific observation and space environment monitoring, planet exploration, and technology development of microminiature satellites are outlined. An overview of the study of satellite microminiaturization technologies for communication, information processing, sensing for navigation and observation missions, power supply, actuators, structure and thermal control, and overall system is presented.

  18. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element for an...

  19. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  20. Mobility management in satellite networks

    Science.gov (United States)

    Johanson, Gary A.

    1995-01-01

    This paper addresses the methods used or proposed for use in multi-beam and/or multi-satellite networks designed to provide Mobile Satellite Services (MSS). Specific topics include beam crossover in the North American Mobile Satellite (MSAT) system as well as registration and live call hand-off for a multi-regional geosynchronous (GEO) satellite based system and a global coverage Low Earth Orbiting (LEO) system. In the MSAT system, the individual satellite beams cover very large geographic areas so the need for live call hand-off was not anticipated. This paper discusses the methods used to keep track of the beam location of the users so that incoming call announcements or other messages may be directed to them. Proposed new GEO systems with large numbers of beams will provide much smaller geographic coverage in individual beams and thus the need arises to keep track of the user's location as well as to provide live call hand-off as the user traverses from beam to beam. This situation also occurs in proposed LEO systems where the problems are worsened by the need for satellite to satellite hand-off as well as beam to beam hand-off within a single satellite. The paper discusses methods to accomplish these handoffs and proposes system architectures to address the various hand-off scenarios.