WorldWideScience

Sample records for vibrational raman optical

  1. Vibrational Raman optical activity of ketose monosaccharides

    Science.gov (United States)

    Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.

    1995-07-01

    The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.

  2. VIBRATIONAL RAMAN OPTICAL-ACTIVITY CALCULATIONS USING LONDON ATOMIC ORBITALS

    DEFF Research Database (Denmark)

    Helgaker, T.; Ruud, K.; Bak, Keld L.

    1994-01-01

    Ab initio calculations of Raman differential intensities are presented at the self-consistent field (SCF) level of theory. The electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors are calculated at the frequency of the inc...

  3. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    . DFT Becke3LYP/6-31G* theory has been used to determine the geometry, Hessian, atomic polar tensors (APT), and atomic axial tensors (AAT), and the electric dipole-electric dipole polarizability derivatives (EDEDPD), which are required for us to simulate the VA, VCD, and Raman spectra. The electric...

  4. Optimized geometry, vibration (IR and Raman spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: A theoretical study

    Directory of Open Access Journals (Sweden)

    Tamer Ömer

    2016-03-01

    Full Text Available The molecular modeling of p-nitroanilinium perchlorate molecule was carried out by using B3LYP and HSEH1PBE levels of density functional theory (DFT. The IR and Raman spectra were simulated and the assignments of vibrational modes were performed on the basis of relative contribution of various internal co-ordinates. NBO analysis was performed to demonstrate charge transfer, conjugative interactions and the formation of intramolecular hydrogen bonding interactions within PNAPC. Obtained large dipole moment values showed that PNAPC is a highly polarizable complex, and the charge transfer occurs within PNAPC. Hydrogen bonding and charge transfer interactions were also displayed by small HOMO-LUMO gap and molecular electrostatic potential (MEP surface. The strong evidences that the material can be used as an efficient nonlinear optical (NLO material of PNAPC were demonstrated by considerable polarizability and hyperpolarizability values obtained at DFT levels.

  5. Effects of shape and dopant on structural, optical absorption, Raman, and vibrational properties of silver and copper quantum clusters: A density functional theory study

    International Nuclear Information System (INIS)

    Li Wei-Yin; Chen Fu-Yi

    2014-01-01

    We investigate the effects of shape and single-atom doping on the structural, optical absorption, Raman, and vibrational properties of Ag 13 , Ag 12 Cu 1 , Cu 13 , and Cu 12 Ag 1 clusters by using the (time-dependent) density functional theory. The results show that the most stable structures are cuboctahedron (COh) for Ag 13 and icosahedron (Ih) for Cu 13 , Ag 12 Cu 1core , and Cu 12 Ag 1sur . In the visible—near infrared optical absorption, the transitions consist of the interband and the intraband transitions. Moreover, red shifts are observed as follows: 1) clusters change from Ag 12 Cu 1core to Ag 13 to Ag 12 Cu 1sur with the same motifs, 2) the shapes of pure Ag 13 and Ag 12 Cu 1core clusters change from COh to Ih to decahedron (Dh), 3) the shape of Ag 12 Cu 1sur clusters changes from Ih to COh to Dh, and 4) the shapes of pure Cu 13 and Cu 12 Ag 1 clusters change from Ih to Dh to COh. All of the Raman and vibrational spectra exhibit many significant vibrational modes related to the shapes and the compositions of the clusters. The ranges of vibrational spectra of Ag 13 , Ag 12 Cu 1 or Cu 13 , and Cu 12 Ag 1 clusters become narrower and the vibrational intensities increase as the shape of the clusters changes from Ih to Dh to COh. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  7. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  8. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  9. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  10. Interference-free optical detection for Raman spectroscopy

    Science.gov (United States)

    Fischer, David G (Inventor); Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor)

    2012-01-01

    An architecture for spontaneous Raman scattering (SRS) that utilizes a frame-transfer charge-coupled device (CCD) sensor operating in a subframe burst gating mode to realize time-resolved combustion diagnostics is disclosed. The technique permits all-electronic optical gating with microsecond shutter speeds (<5 .mu.s), without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally-polarized excitation lasers, the technique measures time-resolved vibrational Raman scattering that is minimally contaminated by problematic optical background noise.

  11. Raman intensity and vibrational modes of armchair CNTs

    Science.gov (United States)

    Hur, Jaewoong; Stuart, Steven J.

    2017-07-01

    Raman intensity changes and frequency patterns have been studied using the various armchair (n, n) to understand the variations of bond polarizability, in regard to changing diameters, lengths, and the number of atoms in the (n, n). The Raman intensity trends of the (n, n) are validated by those of Cn isomers. For frequency trends, similar frequency patterns and frequency inward shifts for the (n, n) are characterized. Also, VDOS trends of the (n, n) expressing Raman modes are interpreted. The decomposition of vibrational modes in the (n, n) into radial, longitudinal, and tangential mode is beneficially used to recognize the distinct characteristics of vibrational modes.

  12. Raman Spectroscopy with simple optic components

    International Nuclear Information System (INIS)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula

    2014-01-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  13. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Department of Physics, Science Faculty, Anadolu University, Eskişehir, Turkey ... IR spectrum was recorded using Bruker Optics IFS66v/s FTIR spectrometer at a ... spectrum was obtained using a Bruker Senterra Dispersive Raman microscope.

  14. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  15. Raman amplification in optical communication systems

    DEFF Research Database (Denmark)

    Kjær, Rasmus

    2008-01-01

    Fiber Raman amplifiers are investigated with the purpose of identifying new applications and limitations for their use in optical communication systems. Three main topics are investigated, namely: New applications of dispersion compensating Raman amplifiers, the use Raman amplification to increase...... fiberbaserede Raman-forstærkere med henblik på at identificere både deres begrænsninger og nye anvendelsesmuligheder i optiske kommunikationssystemer. En numerisk forstærkermodel er blevet udviklet for bedre at forstå forstærkerens dynamik, dens gain- og støjbegrænsninger. Modellen bruges til at forudsige...... forstærkerens statiske og dynamiske egenskaber, og det eftervises at dens resultater er i god overensstemmelse med eksperimentelle forstærkermålinger. Dispersions-kompenserende fiber er på grund af sin store udbredelse og fiberens høje Raman gain effektivitet et meget velegnet Raman gain-medium. Tre nye...

  16. Optically active vibrational modes of PPV derivatives on textile substrate

    International Nuclear Information System (INIS)

    Silva, M.A.T. da; Dias, I.F.L.; Santos, E.P. dos; Martins, A.A.; Duarte, J.L.; Laureto, E.; Reis, G.A. dos; Guimarães, P.S.S.; Cury, L.A.

    2013-01-01

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on “dirty” textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I (01) /I (00) , were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: ► MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. ► Their properties were studied by photoluminescence and Raman techniques. ► We observed inversion of first vibrational band in relation to purely electronic peak. ► Optically active vibrational modes of PPV derivatives were studied.

  17. Combined experimental and theoretical study on the Raman and Raman optical activity signatures of pentamethylundecane diastereoisomers.

    Science.gov (United States)

    Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent

    2010-09-16

    The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.

  18. Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Robinson, David J.; Hecht, Lutz

    2002-01-01

    Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of to......Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar...

  19. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.

    Science.gov (United States)

    Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr

    2007-06-14

    The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third

  20. Vibrational dynamics of amorphous metals by inelastic neutron and raman scattering

    International Nuclear Information System (INIS)

    Lustig, N.E.

    1986-01-01

    Time-of-flight inelastic neutron scattering and Raman measurements were performed on amorphous (a-) metals. The neutron-weighted vibrational density of states, G(E), obtained for a-Fe 78 P 22 , a-Ni 82 B 18 and a-Ni 67 B 33 transition metal metalloid alloys (TM-m), indicated two major vibrational bands: a low frequency acoustic-like band and a high frequency optic-like band, derived from TM-TM and TM-m interactions, respectively. Similar neutron measurements were performed on the corresponding polycrystalline (c-) alloys, c-Fe 3 P and c-Ni 2 B. A comparison of the amorphous and crystalline densities of states indicates the elimination of sharp features and the addition of vibrational states at low and high frequencies upon amorphization. The experimental G(E) results for a-Fe 78 P 22 are in good agreement with the theoretically predicted spectrum. A comparison between the a-Ni 67 B 33 and the phenomenologically broadened c-Ni 2 B spectrum indicates a change in the short-range order. This finding is consistent with structural measurements on this alloy. Raman measurements were carried out using interference enhanced Raman spectroscopy (IERS) on thin film Ni-B alloys. The measured spectra provide information about the weighted phonon density of states, and is in good agreement with the neutron results

  1. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  2. Raman study of vibrational dynamics of aminopropylsilanetriol in gas phase

    Science.gov (United States)

    Volovšek, V.; Dananić, V.; Bistričić, L.; Movre Šapić, I.; Furić, K.

    2014-01-01

    Raman spectrum of aminopropylsilanetriol (APST) in gas phase has been recorded at room temperature in macro chamber utilizing two-mirror technique over the sample tube. Unlike predominantly trans molecular conformation in condensed phase, the spectra of vapor show that the molecules are solely in gauche conformation with intramolecular hydrogen bond N⋯Hsbnd O which reduces the molecular energy in respect to trans conformation by 0.152 eV. The assignment of the molecular spectra based on the DFT calculation is presented. The strong vibrational bands at 354 cm-1, 588 cm-1 and 3022 cm-1 are proposed for verifying the existence of the ring like, hydrogen bonded structure. Special attention was devoted to the high frequency region, where hydrogen bond vibrations are coupled to stretchings of amino and silanol groups.

  3. Molecular structures of viruses from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Hecht, Lutz; Syme, Christopher D.

    2002-01-01

    A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity to chira......A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity...... (top component) of cowpea mosaic virus from those of the intact middle and bottom-upper components separated by means of a caesium chloride density gradient, the ROA spectrum of the viral RNA was obtained, which revealed that the RNA takes up an A-type single-stranded helical conformation...... and that the RNA conformations in the middle and bottom-upper components are very similar. This information is not available from the X-ray crystal structure of cowpea mosaic virus since no nucleic acid is visible....

  4. Optical vibration measurement of mechatronics devices

    Science.gov (United States)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  5. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas

    2005-01-01

    For noninvasive characterization of chemical species or biological components within a complex heterogeneous system, their intrinsic molecular vibrational properties can be used in contrast mechanisms in optical microscopy. A series of recent advances have made coherent anti-Stokes Raman scattering (CARS) microscopy a powerful technique that allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capability. In this review, we discuss theoretical and experimental aspects of CARS microscopy in a collinear excitation beam geometry. Particular attention is given to the underlying physical principles behind the new features of CARS signal generation under tight focusing conditions. We provide a brief overview of the instrumentation of CARS microscopy and its experimental characterization by means of imaging of model systems and live unstained cells. CARS microscopy offers the possibility of spatially resolved vibrational spectroscopy, providing chemical and physical structure information of molecular specimens on the sub-micrometre length scale. We review multiplex CARS microspectroscopy allowing fast acquisition of frequency-resolved CARS spectra, time-resolved CARS microspectroscopy recording ultrafast Raman free induction decays and CARS correlation spectroscopy probing dynamical processes with chemical selectivity. (topical review)

  6. Raman Spectroscopy with simple optic components; Espectrometria Raman con componentes opticos simples

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula [Direccion de Investigacion y Desarrollo, Instituto Peruano de Energia Nuclear, Lima (Peru)

    2014-07-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  7. Nonplanar Tertiary Amides in Rigid Chiral Tricyclic Dilactams. Peptide Group Distortions and Vibrational Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Pazderková, Markéta; Profant, V.; Hodačová, J.; Šebestík, Jaroslav; Pazderka, T.; Novotná, P.; Urbanová, M.; Šafařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, V.; Maloň, Petr

    2013-01-01

    Roč. 117, č. 33 (2013), s. 9626-9642 ISSN 1520-6106 R&D Projects: GA ČR GAP205/10/1276 Institutional support: RVO:61388963 Keywords : spirodilactams * amide bond * vibrational circular dichroism * non-planarity * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  8. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  9. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  10. Chiral Topological Orders in an Optical Raman Lattice (Open Source)

    Science.gov (United States)

    2016-03-01

    PAPER • OPEN ACCESS Chiral topological orders in an optical Raman lattice To cite this article: Xiong-Jun Liu et al 2016 New J. Phys. 18...... chiral spin liquid Abstract Wefind an optical Raman lattice without spin-orbit coupling showing chiral topological orders for cold atoms. Two

  11. First international conference on vibration control in optics and metrology

    International Nuclear Information System (INIS)

    Baker, L.R.

    1987-01-01

    This book contains 27 selections. Some of the titles are: Use of optics for vibration analysis of automotive components; Use of pulsed lasers for vibration analysis in the nuclear power industry; Vibration analysis of photocopiers; Control of ground vibrations; Design of low-vibration buildings: two case histories; and Continuous pulsed electronic speckle pattern interferometry

  12. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  13. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.

    Science.gov (United States)

    Okuno, Masanari; Hamaguchi, Hiro-o

    2010-12-15

    We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.

  14. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  15. Dynamic optical bistability in resonantly enhanced Raman generation

    International Nuclear Information System (INIS)

    Novikova, I.; Phillips, D.F.; Zibrov, A.S.; Andre, A.; Walsworth, R.L.

    2004-01-01

    We report observations of novel dynamic behavior in resonantly enhanced stimulated Raman scattering in Rb vapor. In particular, we demonstrate a dynamic hysteresis of the Raman scattered optical field in response to changes of the drive laser field intensity and/or frequency. This effect may be described as a dynamic form of optical bistability resulting from the formation and decay of atomic coherence. We have applied this phenomenon to the realization of an all-optical switch

  16. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  17. Femtosecond time-resolved studies of coherent vibrational Raman scattering in large gas-phase molecules

    International Nuclear Information System (INIS)

    Hayden, C.C.; Chandler, D.W.

    1995-01-01

    Results are presented from femtosecond time-resolved coherent Raman experiments in which we excite and monitor vibrational coherence in gas-phase samples of benzene and 1,3,5-hexatriene. Different physical mechanisms for coherence decay are seen in these two molecules. In benzene, where the Raman polarizability is largely isotropic, the Q branch of the vibrational Raman spectrum is the primary feature excited. Molecules in different rotational states have different Q-branch transition frequencies due to vibration--rotation interaction. Thus, the macroscopic polarization that is observed in these experiments decays because it has many frequency components from molecules in different rotational states, and these frequency components go out of phase with each other. In 1,3,5-hexatriene, the Raman excitation produces molecules in a coherent superposition of rotational states, through (O, P, R, and S branch) transitions that are strong due to the large anisotropy of the Raman polarizability. The coherent superposition of rotational states corresponds to initially spatially oriented, vibrationally excited, molecules that are freely rotating. The rotation of molecules away from the initial orientation is primarily responsible for the coherence decay in this case. These experiments produce large (∼10% efficiency) Raman shifted signals with modest excitation pulse energies (10 μJ) demonstrating the feasibility of this approach for a variety of gas phase studies. copyright 1995 American Institute of Physics

  18. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-08-01

    Full Text Available Bi4Te3, as one of the phases of the binary Bi–Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  19. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    Science.gov (United States)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  20. The Raman and vibronic activity of intermolecular vibrations in aromatic-containing complexes and clusters

    International Nuclear Information System (INIS)

    Maxton, P.M.; Schaeffer, M.W.; Ohline, S.M.; Kim, W.; Venturo, V.A.; Felker, P.M.

    1994-01-01

    Theoretical and experimental results pertaining to the excitation of intermolecular vibrations in the Raman and vibronic spectra of aromatic-containing, weakly bound complexes and clusters are reported. The theoretical analysis of intermolecular Raman activity is based on the assumption that the polarizability tensor of a weakly bound species is given by the sum of the polarizability tensors of its constituent monomers. The analysis shows that the van der Waals bending fundamentals in aromatic--rare gas complexes may be expected to be strongly Raman active. More generally, it predicts strong Raman activity for intermolecular vibrations that involve the libration or internal rotation of monomer moieties having appreciable permanent polarizability anisotropies. The vibronic activity of intermolecular vibrations in aromatic-rare gas complexes is analyzed under the assumption that every vibronic band gains its strength from an aromatic-localized transition. It is found that intermolecular vibrational excitations can accompany aromatic-localized vibronic excitations by the usual Franck--Condon mechanism or by a mechanism dependent on the librational amplitude of the aromatic moiety during the course of the pertinent intermolecular vibration. The latter mechanism can impart appreciable intensity to bands that are forbidden by rigid-molecule symmetry selection rules. The applicability of such rules is therefore called into question. Finally, experimental spectra of intermolecular transitions, obtained by mass-selective, ionization-detected stimulated Raman spectroscopies, are reported for benzene--X (X=Ar, --Ar 2 , N 2 , HCl, CO 2 , and --fluorene), fluorobenzene--Ar and --Kr, aniline--Ar, and fluorene--Ar and --Ar 2 . The results support the conclusions of the theoretical analyses and provide further evidence for the value of Raman methods in characterizing intermolecular vibrational level structures

  1. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  2. Vibrational optical activity principles and applications

    CERN Document Server

    Nafie, Laurence A

    2011-01-01

    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  3. Fiber optic vibration sensor using bifurcated plastic optical fiber

    Science.gov (United States)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  4. Raman optical activity of proteins and glycoproteins

    International Nuclear Information System (INIS)

    Smyth, E.

    2000-03-01

    Raman optical activity (ROA), measured in this project as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarised incident laser light, offers the potential to provide more information about the structure of biological molecules in aqueous solution than conventional spectroscopic techniques. Chapter one contains a general discussion of the relative merits of different spectroscopic techniques for structure determination of biomolecules, as well as a brief introduction to ROA. In Chapter two a theoretical analysis of ROA is developed, which extends the discussion in chapter one. The spectrometer setup and sample preparation is then discussed in chapter three. Instrument and sample conditions are monitored to ensure that the best results are obtained. As with any experimental project problems occur, which may result in a degradation of the spectra obtained. The cause of these problems was explored and remedied whenever possible. Chapter four introduces a brief account of protein, glycoprotein and carbohydrate structure and function, with a particular emphasis on the structure of proteins. In the remaining chapters experimental ROA results on proteins and glycoproteins, with some carbohydrate samples, from a wide range of sources are examined. For example, in chapter five some β-sheet proteins are examined. Structural features in these proteins are examined in the extended amide III region of their ROA spectra, revealing that ROA is sensitive to the rigidity or flexibility inherent in proteins. Chapter six concentrates on a group of proteins (usually glycoproteins) known as the serine proteinase inhibitors (serpins). Medically, the serpins are one of the most important groups of proteins of current interest, with wide-ranging implications in conditions such as Down's syndrome, Alzheimer's disease, and emphysema with associated cirrhosis of the liver. With favourable samples and conditions ROA may offer the

  5. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    . The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...

  6. Lanthanum trilactate: Vibrational spectroscopic study - infrared/Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Švecová, M.; Novák, Vít; Bartůněk, V.; Člupek, M.

    2016-01-01

    Roč. 87, Nov (2016), s. 123-128 ISSN 0924-2031 Institutional support: RVO:61388963 Keywords : lanthanum trilactate * tris(2-hydroxypropanoato-O1,O2) * lanthanum tris[2-(hydroxy-kappa O)propanoato-kappa O] * Raman spectra * infrared spectra * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.740, year: 2016

  7. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy

    International Nuclear Information System (INIS)

    Shi Yulei; Wang Li

    2005-01-01

    Terahertz time-domain spectroscopy is used to investigate the absorption and dispersion of polycrystalline α- and γ-glycine in the spectral region 0.5-3.0 THz. The spectra exhibit distinct features in these two crystalline phases. The observed far-infrared responses are attributed to intermolecular vibrational modes mediated by hydrogen bonds. We also measure the Raman spectra of the polycrystalline and dissolved glycine in the frequency range 28-3900 cm -1 . The results show that all the vibrational modes below 200 cm -1 are nonlocalized but are of a collective (phonon-like) nature. Furthermore, the temperature dependence of the Raman spectra of α-glycine agrees with the anharmonicity mechanism of the vibrational potentials

  8. Optical Sensors based on Raman Effects

    DEFF Research Database (Denmark)

    Jernshøj, Kit Drescher

    Formålet med denne afhandling er at give en systematisk og uddybende videnskabelig diskussion af molekylær Raman spredning, som kan danne grundlag for udviklingen af molekylespecifikke optiske sensorer til on-site, ikke-destruktiv måling. Afhandlingen falder i tre dele, to teoriafsnit, hvor første...... del omhandler den tilgangelige molekylære information ved overfladeforstærket resonans Raman spredning (SERRS), samt hvordan adgangen til denne information kan optimeres. Anden del omhandler, hvordan det molekylære informationsindhold kan forøges ved at kombinere polariserede Raman og resonans Raman...... målinger på frie molekyler med multivariat analyse. I tredje og sidste del, som er et eksperimentelt afsnit, præsenteres og diskuteres overfladeforstærkede Raman målinger (SERS) på tre udvalgte pesticider. Afhandlingen indledes med en diskussion af teorien bag SERRS med speciel fokus på den molekylære...

  9. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  10. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  11. Zero-point vibrational effects on optical rotation

    DEFF Research Database (Denmark)

    Ruud, K.; Taylor, P.R.; Åstrand, P.-O.

    2001-01-01

    We investigate the effects of molecular vibrations on the optical rotation in two chiral molecules, methyloxirane and trans-2,3-dimethylthiirane. It is shown that the magnitude of zero-point vibrational corrections increases as the electronic contribution to the optical rotation increases....... Vibrational effects thus appear to be important for an overall estimate of the molecular optical rotation, amounting to about 20-30% of the electronic counterpart. We also investigate the special case of chirality introduced in a molecule through isotopic substitution. In this case, the zero-point vibrational...

  12. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    Science.gov (United States)

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  13. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  14. New insight into the solution structures of wheat gluten proteins from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, E.W.; Kasarda, D.D.; Hecht, L.

    2003-01-01

    Vibrational Raman optical activity (ROA) spectra of the wheat proteins a-gliadin (A-gliadin), omega-liadin, and a 30 kDa peptide called T-A-1 from the high molecular weight glutenin subunit (HMW-GS) Dx5 were measured to obtain new information about their solution structures. The spectral data show...... that, under the conditions investigated, A-gliadin contains a considerable amount of hydrated alpha-helix, most of which probably lies within a relatively structured C-terminal domain. Smaller quantities of beta-structure and poly(L-proline) II (PPII) helix were also identified. Addition of methanol...

  15. Corrosion product characterisation by fibre optic raman spectroscopy

    International Nuclear Information System (INIS)

    Guzonas, D.A.; Rochefort, P.A.; Turner, C.W.

    1998-01-01

    Fibre optic Raman spectroscopy has been used to characterise secondary-side deposits removed from CANDU steam generators. The deposits examined were in the form of powders, millimetre-sized flakes, and deposits on the surfaces of pulled steam generator tubes. The compositions of the deposits obtained using Raman spectroscopy are similar to the compositions obtained using other ex-situ analytical techniques. A semi-quantitative estimate of amounts of the major components can be obtained from the spectra. It was noted that the signal-to-noise ratio of the Raman spectra decreased as the amount of magnetite in the deposit increased, as a result of absorption of the laser light by the magnetite. The conversion of magnetite to hematite by the laser beam was observed when high laser powers were used. The Raman spectra of larger flake samples clearly illustrate the inhomogeneous nature of the deposits. (author)

  16. Wide-Field Vibrational Phase Contrast Imaging Based on Coherent Anti-Stokes Raman Scattering Holography

    International Nuclear Information System (INIS)

    Lv Yong-Gang; Ji Zi-Heng; Dong Da-Shan; Gong Qi-Huang; Shi Ke-Bin

    2015-01-01

    We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging. (paper)

  17. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    International Nuclear Information System (INIS)

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. First-principles analysis of the Raman spectrum of vitreous silica: comparison with the vibrational density of states

    International Nuclear Information System (INIS)

    Umari, P; Pasquarello, Alfredo

    2003-01-01

    The HH and HV Raman spectra of vitreous silica are calculated from first principles for a model structure consisting of a disordered network of corner-sharing tetrahedra, for which the vibrational properties were obtained previously. We analyse the contribution of specific atomic motions to the Raman spectra and perform a detailed comparison with respect to the vibrational density of states. We find that the HV spectrum closely resembles the vibrational density of states. By comparison, the HH spectrum shows significant differences and arises almost exclusively from oxygen vibrations

  19. First-principles analysis of the Raman spectrum of vitreous silica: comparison with the vibrational density of states

    Energy Technology Data Exchange (ETDEWEB)

    Umari, P; Pasquarello, Alfredo [Institut de Theorie des Phenomenes Physiques (ITP), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), CH-1015 Lausanne (Switzerland)

    2003-04-30

    The HH and HV Raman spectra of vitreous silica are calculated from first principles for a model structure consisting of a disordered network of corner-sharing tetrahedra, for which the vibrational properties were obtained previously. We analyse the contribution of specific atomic motions to the Raman spectra and perform a detailed comparison with respect to the vibrational density of states. We find that the HV spectrum closely resembles the vibrational density of states. By comparison, the HH spectrum shows significant differences and arises almost exclusively from oxygen vibrations.

  20. Raman optical activity study on insulin amyloid- and prefibril intermediate

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, Shigeki; Watarai, H.

    2012-01-01

    Roč. 24, č. 2 (2012), s. 97-103 ISSN 0899-0042 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * amyloid * fibril * intermediate * insulin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.718, year: 2012

  1. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    Science.gov (United States)

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  2. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    Science.gov (United States)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  3. Combined IR-Raman vs vibrational sum-frequency heterospectral correlation spectroscopy

    Science.gov (United States)

    Roy, Sandra; Beutier, Clémentine; Hore, Dennis K.

    2018-06-01

    Vibrational sum-frequency generation spectroscopy is a valuable probe of surface structure, particularly when the same molecules are present in one of the adjacent bulk solid or solution phases. As a result of the non-centrosymmetric requirement of SFG, the signal generated is a marker of the extent to which the molecules are ordered in an arrangement that breaks the up-down symmetry at the surface. In cases where the accompanying changes in the bulk are of interest in understanding and interpreting the surface structure, simultaneous analysis of the bulk IR absorption or bulk Raman scattering is helpful, and may be used in heterospectral surface-bulk two-dimensional correlation. We demonstrate that, in such cases, generating a new type of bulk spectrum that combines the IR and Raman amplitudes is a better candidate than the individual IR and Raman spectra for the purpose of correlation with the SFG signal.

  4. Two-Photon Vibrational Spectroscopy using local optical fields of gold and silver nanostructures

    Science.gov (United States)

    Kneipp, Katrin; Kneipp, Janina; Kneipp, Harald

    2007-03-01

    Spectroscopic effects can be strongly affected when they take place in the immediate vicinity of metal nanostructures due to coupling to surface plasmons. We introduce a new approach that suggests highly efficient two-photon labels as well as two-photon vibrational spectroscopy for non-destructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states performed in the enhanced local optical fields of gold nanoparticles, surface enhanced hyper Raman scattering (SEHRS). We infer effective two-photon cross sections for SEHRS on the order of 10^5 GM, similar or higher than the best known cross sections for two-photon fluorescence. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy, and the high sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy.

  5. Linear response properties required to simulate vibrational spectra of biomolecules in various media: (R)-phenyloxirane (A comparative theoretical and spectroscopic vibrational study)

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Jürgensen, Vibeke Würtz; Degtyarenko, I.M.

    2005-01-01

    We here present a combined VA, VCD, Raman and ROA vibrational study of phenyloxirane. We have simulated the vibrational absorption (VA), also called IR, vibrational circular dichroism (VCD), Raman scattering and Raman optical activity (ROA) intensities utilizing the density functional theory (DFT...

  6. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  7. Optical characterization of semiconductors infrared, Raman, and photoluminescence spectroscopy

    CERN Document Server

    Perkowitz, Sidney

    1993-01-01

    This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial sci

  8. Circularly polarized infrared and visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement

    International Nuclear Information System (INIS)

    Cheon, Sangheon; Cho, Minhaeng

    2005-01-01

    Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases

  9. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  10. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, Maxim F.; Domcke, Wolfgang [Department of Chemistry, Technische Universität München, D-85747 Garching (Germany); Rao, B. Jayachander [Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  11. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Kapitán, J.; Pačes, Ondřej; Bouř, Petr

    2016-01-01

    Roč. 55, č. 10 (2016), s. 3504-3508 ISSN 1433-7851 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA14-00431S; GA ČR(CZ) GA16-05935S Institutional support: RVO:61388963 Keywords : angular momentum theory * diamagnetic molecules * excited electronic states * magnetic field * Raman optical activity Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  12. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, Martin; Bouř, Petr

    2011-01-01

    Roč. 115, č. 14 (2011), s. 4128-4137 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * lactamide * solvent models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  13. Quantitative analysis of sugar composition in honey using 532-nm excitation Raman and Raman optical activity spectra

    Czech Academy of Sciences Publication Activity Database

    Šugar, Jan; Bouř, Petr

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1298-1303 ISSN 0377-0486 R&D Projects: GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : honey * sugar mixtures * spectral decompositions * Raman spectroscopy * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.969, year: 2016

  14. Raman vibrational spectra of thymol blue dyed polyvinyl alcohol (PVA) film dosimeters

    International Nuclear Information System (INIS)

    Lepit, A.; Saion, E.B.; Susilawati; Doyan, A.; Wan Yusoff, W.M.D.

    2002-01-01

    Radiation-sensitive dyed polyvinyl alcohol (PVA) film indicators containing chloral hydrate and acid-sensitive thymol blue dye have been studied for routine food irradiation dosimeters. The free standing dyed film dosimeters of different chloral hydrate concentrations (0.1, 0.5, 1.0, 2.0 and 2.5 g) were irradiated with the absorbed dose ranges from 1 kGy to 12 kGy using gamma rays from Co-60 teletherapy. Upon exposure the dosimeters undergo chemical change and become more acidic, resulting in colour change from yellow to red at the critical doses depending on the chloral hydrate concentrations. The radiation-induced change in colour was analysed using UV-Vis spectrometer that the absorption spectra produced two maximal of the visible bands peaking at 445 nm for low doses and 554 nm for high doses. Spectra of inelastic Raman scattering photons corresponding to Raman shift frequency of unirradiated and irradiated films were measured using a dispersive Raman spectrometer. The spectral intensity of C=C, C-0 and S-H molecular vibration peaks for their respective Raman shifts were studied which provide the dose response to the change of dye molecular structure of the dosimeters. (Author)

  15. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...

  16. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    Science.gov (United States)

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  17. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  18. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin; Guo, Huaihong; Yang, Teng; Zhang, Zhidong; Kumamoto, Yasuaki; Shen, Chih Chiang; Hsu, Yu Te; Li, Lain-Jong; Saito, Riichiro; Kawata, Satoshi

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  19. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and ...

  20. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    Science.gov (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  1. Raman study of vibrational dephasing in liquid CH3CN and CD3CN

    International Nuclear Information System (INIS)

    Schroeder, J.; Schiemann, V.H.; Sharko, P.T.; Jonas, J.

    1977-01-01

    The Raman line shapes of the ν 1 (a 1 ) C--H and C--D fundamentals in liquid acetonitrile and acetonitrile-d 3 have been measured as a function of pressure up to 4 kbar within the temperature interval 30--120 degreeC. Densities have also been determined. From the isotropic component of the vibrational Raman band shape the vibrational relaxation times have been obtained as a function of temperature and pressure (density). The experimental results can be summarized as follows: (i) as T increases at constant density rho, the vibrational relaxation rate (tau/sub vib/) -1 increases; (ii) at constant T as density is raised tau/sub vib/ -1 increases; (iii) at constant pressure the T increase produces higher tau/sub vib/ -1 , however, the change is more pronounced for the CD 3 CN liquid. Isotopic dilution studies of the CH 3 CN/CD 3 CN mixtures shows no significant effect on (tau/sub vib/ -1 ). The experimental data are interpreted in terms of the Kubo stochastic line shape theory and the dephasing model of Fischer and Laubereau. The results based on Kubo formalism indicate that dephasing is the dominant relaxation mechanism and that the modulation is fast. The isolated binary collision model proposed by Fischer and Laubereau for vibrational dephasing reproduces the essential features of the density and temperature dependence of the (tau/sub vib/) -1 and suggests that pure dephasing is the dominant broadening mechanism for the isotropic line shapes studied. In the calculation the elastic collision times were approximated by the Enskog relaxation times

  2. Tunable optical assembly with vibration dampening

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2009-01-01

    An optical assembly is formed by one or more piezoelectric fiber composite actuators having one or more optical fibers coupled thereto. The optical fiber(s) experiences strain when actuation voltage is applied to the actuator(s). Light passing through the optical fiber(s) is wavelength tuned by adjusting the actuation voltage.

  3. Dynamic Volume Holography and Optical Information Processing by Raman Scattering

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2002-01-01

    A method of producing holograms of three-dimensional optical pulses is proposed. It is shown that both the amplitude and the phase profile of three-dimensional optical pulse can be stored in dynamic perturbations of a Raman medium, such as plasma. By employing Raman scattering in a nonlinear medium, information carried by a laser pulse can be captured in the form of a slowly propagating low-frequency wave that persists for a time large compared with the pulse duration. If such a hologram is then probed with a short laser pulse, the information stored in the medium can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals. While storing or reading the pulse structure, the optical information can be processed as an analogue or digital signal, which allows simultaneous transformation of three-dimensional continuous images or computing discrete arrays of binary data. By adjusting the phase fronts of the reference pulses, one can also perform focusing, redirecting, and other types of transformation of the output pulses

  4. Optical trapping and Raman spectroscopy of solid particles.

    Science.gov (United States)

    Rkiouak, L; Tang, M J; Camp, J C J; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-06-21

    The heterogeneous interactions of gas molecules on solid particles are crucial in many areas of science, engineering and technology. Such interactions play a critical role in atmospheric chemistry and in heterogeneous catalysis, a key technology in the energy and chemical industries. Investigating heterogeneous interactions upon single levitated particles can provide significant insight into these important processes. Various methodologies exist for levitating micron sized particles including: optical, electrical and acoustic techniques. Prior to this study, the optical levitation of solid micron scale particles has proved difficult to achieve over timescales relevant to the above applications. In this work, a new vertically configured counter propagating dual beam optical trap was optimized to levitate a range of solid particles in air. Silica (SiO2), α-alumina (Al2O3), titania (TiO2) and polystyrene were stably trapped with a high trapping efficiency (Q = 0.42). The longest stable trapping experiment was conducted continuously for 24 hours, and there are no obvious constraints on trapping time beyond this period. Therefore, the methodology described in this paper should be of major benefit to various research communities. The strength of the new technique is demonstrated by the simultaneous levitation and spectroscopic interrogation of silica particles by Raman spectroscopy. In particular, the adsorption of water upon silica was investigated under controlled relative humidity environments. Furthermore, the collision and coagulation behaviour of silica particles with microdroplets of sulphuric acid was followed using both optical imaging and Raman spectroscopy.

  5. Vibrational properties of SrCu{sub 2}O{sub 2} studied via Density Functional Theory calculations and compared to Raman and infrared spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Huyberechts, G. [FLAMAC, Technologiepark 903, 9052 Zwijnaarde (Belgium); Servet, B. [Thales Research and Technology France, Campus Polytechnique, 1, avenue Augustin Fresnel, 91767 Palaiseau cedex France (France); Chaix-Pluchery, O. [Laboratoire des Matériaux et du Génie Physique, Grenoble INP—Minatec, 3, parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1 (France)

    2013-08-31

    The SrCu{sub 2}O{sub 2} material is a p-type transparent conductive oxide. A theoretical study of the SrCu{sub 2}O{sub 2} crystal is performed with a state of the art implementation of the Density Functional Theory. The simulated crystal structure is compared with available X-ray diffraction data and previous theoretical modeling. Density Functional Perturbation Theory is used to study the vibrational properties of the SrCu{sub 2}O{sub 2} crystal. A symmetry analysis of the optical phonon eigenvectors at the Brillouin zone center is proposed. The Raman spectra simulated using the derivatives of the dielectric susceptibility, show a good agreement with Raman scattering experimental results. - Highlights: ► The symmetry properties of the optical phonons of the SrCu{sub 2}O{sub 2} crystal are analyzed. ► Born charges and the dynamical matrix are calculated at the Brillouin zone center. ► Density Functional Perturbation Theory (DFPT) is used to compute Raman spectrum. ► DFPT Raman spectrum is compared with experimental results.

  6. Ab-initio study of structural, vibrational and optical properties of solid oxidizers

    Energy Technology Data Exchange (ETDEWEB)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in

    2016-09-15

    We report the structural, elastic and vibrational properties of five ionic-molecular solid oxidizers MNO{sub 3} (M = Li, Na, K) and MClO{sub 3} (M = Na, K). By treating long range electron-correlation effects, dispersion corrected method leads to more accurate predictions of structural properties and phase stability of KNO{sub 3} polymorphs. The obtained elastic moduli show soft nature of these materials and are consistent with Ultrasonic Pulse Echo measurements. We made a complete assignment of vibrational modes which are in good accord with available experimental results. From calculated IR and Raman spectra, it is found that the vibrational frequencies show a red-shift from Li → Na → K (Na → K) and N → Cl for nitrates (chlorates) due to increase in mass of metal and non-metal atoms, respectively. The calculated electronic structure using recently developed Tran-Blaha modified Becke-Johnson potential show that the materials are wide band gap insulators with predominant ionic bonding between M{sup +} (metal) and NO{sub 3}{sup −}/ClO{sub 3}{sup −} ions and covalent bonding (N−O and Cl−O) within nitrate and chlorate anionic group. From the calculated optical spectra, we observe that electric-dipole transitions are due to nitrate/chlorate group below 20 eV and cationic transitions occur above 20 eV. The calculated reflectivity spectra are consistent with the available experimental measurements. - Highlights: • Ground state properties with inclusion of dispersion correction method. • Elastic constants and mechanical properties. • Vibrational spectra and their complete assignment. • Raman and IR spectra. • Electronic structure and optical properties using TB-mBJ potential.

  7. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  8. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    Science.gov (United States)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  9. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  10. Critical test of vibrational dephasing theories in solids using spontaneous Raman scattering in isotopically mixed crystals

    International Nuclear Information System (INIS)

    Marks, S.; Cornelius, P.A.; Harris, C.B.

    1980-01-01

    A series of experiments have been conducted in order to evaluate the relative importance of several recent theories of vibrational dephasing in solids. The theories are discussed briefly, and are used to interpret the temperature dependence of the C--H and C--D stretch bands in the spontaneous Raman spectra of h 14 - and d 14 -1,2,4,5-tetramethyl benzene (durene). The infrared spectra of these same molecules are also reported in the region of the combination bands involving C--H (or C--D) stretches and low-frequency modes. The results support the applicability of the model of Harris et al., [C. B. Harris, R. M. Shelby and P. A. Cornelius, Phys. Rev. Lett. 38, 1415 (1977); Chem Phys. Lett. 57, 8 (1978); R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem. Phys. 70, 34 (1979)], based on energy exchange in anharmonically coupled low-frequency modes. This theory is then used, in connection with Raman spectra obtained in isotopically mixed samples of durene, to elucidate the vibrational dynamics underlying the dephasing. It is found that the results are consistent with the hypothesis that some low-frequency modes in this molecule are significantly delocalized or ''excitonic'' in character, and that this delocalization may be studied by means of Raman spectroscopy on the low-frequency modes themselves, as well as by exchange analysis of the coupled high-frequency modes. These conclusions represent a generalization and extension of the previously published exchange model [R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem Phys. 70, 34 (1979)

  11. Optical conductivity and electronic Raman response of cuprate superconductors

    International Nuclear Information System (INIS)

    Vanyolos, A.; Dora, B.; Virosztek, A.

    2010-01-01

    We present the results of detailed analytical calculations for the in-plane optical conductivity and the electronic Raman susceptibility in quasi two-dimensional systems possessing a ground state with two competing order parameters: a d-wave density wave (dDW) and d-wave superconductor (dSC). In the coexisting dDW+dSC phase we determine the frequency dependence of these correlation functions in the presence of randomly distributed non-magnetic impurities in the unitary limit.

  12. Transition polarizability model of induced resonance Raman optical activity

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  13. Vibrational microspectroscopic identification of powdered traditional medicines: Chemical micromorphology of Poria observed by infrared and Raman microspectroscopy

    Science.gov (United States)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-01

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm-1. Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria.

  14. Raman spectroscopic studies of optically trapped red blood cells

    International Nuclear Information System (INIS)

    Dasgupta, R.; Gupta, P.K.

    2010-01-01

    Raman spectroscopic studies were performed on optically trapped red blood cells (RBCs) collected from healthy volunteers and patients suffering from malaria (Plasmodium vivax infection) using near infrared (785 nm) laser source. The results show significant alteration in the spectra averaged over ∼ 50 non-parasitized RBCs per sample. As compared to RBCs from healthy donors, in cells collected from malaria patients, a significant decrease in the intensity of the low spin (oxygenated-haemoglobin) marker Raman band at 1223 cm -1 (υ 13 or υ 42 ) along with a concomitant increase in the high spin (deoxygenated-haemoglobin) marker bands at 1210 cm -1 (υ 5 + υ 18 ) and 1546 cm -1 (υ 11 ) was observed. The changes primarily suggest a reduced haemoglobin-oxygen affinity for the non-parasitized red cells in malaria patients. The possible causes include up regulation of intra-erythrocytic 2,3-diphosphoglycerate and/or ineffective erythropoiesis resulted from the disease. During the above study we also observed that significant photo-damage may results to the intracellular haemoglobin (Hb) if higher laser power is used. For a laser power above ∼ 5 mW the observed increase in intensity of the Raman bands at 975 cm -1 (υ 46 ), 1244 cm -1 (υ 42 ) and 1366 cm -1 (υ 4 ) with increasing exposure time suggests photo-denaturation of Hb and the concomitant decrease in intensity of the Raman band at 1544 cm -1 (υ 11 ) suggests photo induced methaemoglobin formation. The photo damage of intracellular haemoglobin by the above processes was also observed to result in intracellular heme aggregation. (author)

  15. Vibrational dynamics (IR, Raman, NRVS) and DFT study of new antitumor tetranuclearstannoxanecluster, Sn(IV)$-$oxo$-${di$-$o$-$vanillin} dimethyl dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Arjmand, F. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Sharma, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Usman, M. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Leu, B. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Hu, M. Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Toupet, L. [Univ. de Rennes, Rennes (France). Inst. de Physique de Rennes; Gosztola, David J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Tabassum, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry

    2016-06-21

    The vibrational dynamics of a newly synthesized tetrastannoxane was characterized with a combination of experimental (Raman, IR and tin-based nuclear resonance vibrational spectroscopy) and computational (DFT/B3LYP) methods, with an emphasis on the vibrations of the tin sites. The cytotoxic activity revealed a significant regression selectively against the human pancreatic cell lines.

  16. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    Science.gov (United States)

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  17. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  18. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Nityananda; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 3{sub 10}- and α-helix of acetyl(alanine){sub n}NH{sub 2} (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm{sup −1} is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine){sub 20} and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  19. Structural, vibrational and theoretical studies of anilinium trichloroacetate: New hydrogen bonded molecular crystal with nonlinear optical properties

    Science.gov (United States)

    Tanak, H.; Pawlus, K.; Marchewka, M. K.; Pietraszko, A.

    2014-01-01

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm-1 and 3600-80 cm-1 regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be deff = 0.70 deff (KDP).

  20. Surface-enhanced raman optical data storage system

    Science.gov (United States)

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  1. Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline

    Science.gov (United States)

    Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.

    2017-12-01

    Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.

  2. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  3. Raman Probe Based on Optically-Poled Double-Core Fiber

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths.......A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths....

  4. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Conformational flexibility of L-alanine zwitterion determines shapes of Raman and Raman optical activity spectral bands

    Czech Academy of Sciences Publication Activity Database

    Kapitán, Josef; Baumruk, V.; Kopecký ml., V.; Bouř, Petr

    2006-01-01

    Roč. 110, č. 14 (2006), s. 4689-4696 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA203/06/0420 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * molecular flexibility * alanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.047, year: 2006

  6. Analyzing the fundamental properties of Raman amplification in optical fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Povlsen, Jørn Hedegaard

    2005-01-01

    The Raman response of germanosilicate fibers is presented. This includes not only the material dependence but also the relation between the spatial-mode profile of the light and the Raman response in the time and frequency domain. From the Raman-gain spectrum, information is derived related...

  7. Vibrational microspectroscopic identification of powdered traditional medicines: chemical micromorphology of Poria observed by infrared and Raman microspectroscopy.

    Science.gov (United States)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-15

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm(-1). Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    Science.gov (United States)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other

  9. Raman probes based on optically-poled double-clad fiber and coupler

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber......Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy...

  10. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.

    Science.gov (United States)

    Cheon, Sangheon; Cho, Minhaeng

    2009-03-19

    Vibrational optical activity (VOA) of chiral molecules in condensed phases can be studied by using vibrational circular dichroism and Raman optical activity measurement techniques. Recently, IR-vis sum frequency generation has shown to be an alternative VOA measurement method. Such a three-wave-mixing method employing a polarization modulation technique can be a potentially useful VOA measurement tool. Here, a theoretical description of difference frequency generation (DFG) employing circularly polarized visible radiations is presented. Frequency scanning to obtain a VOA-DFG spectrum is achieved by controlling the difference between the two electronically nonresonant incident radiation frequencies. If the two incident beams are linearly polarized and their polarization directions are perpendicular to each other, one can selectively measure the all-electric-dipole-allowed chiral component of the DFG susceptibility. In addition, by using circularly polarized beams and taking the DFG difference intensity signal, which is defined as the difference between left and right circularly polarized DFG signals, additional chiral susceptibility components originating from the electric quadrupole transition can be measured. The DFG as a novel VOA measurement technique for solution samples containing chiral molecules will therefore be a useful coherent spectroscopic tool for determining absolute configuration of chiral molecules in condensed phases.

  11. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy

    Science.gov (United States)

    Wei, Lu; Yu, Yong; Shen, Yihui; Wang, Meng C.; Min, Wei

    2013-01-01

    Synthesis of new proteins, a key step in the central dogma of molecular biology, has been a major biological process by which cells respond rapidly to environmental cues in both physiological and pathological conditions. However, the selective visualization of a newly synthesized proteome in living systems with subcellular resolution has proven to be rather challenging, despite the extensive efforts along the lines of fluorescence staining, autoradiography, and mass spectrometry. Herein, we report an imaging technique to visualize nascent proteins by harnessing the emerging stimulated Raman scattering (SRS) microscopy coupled with metabolic incorporation of deuterium-labeled amino acids. As a first demonstration, we imaged newly synthesized proteins in live mammalian cells with high spatial–temporal resolution without fixation or staining. Subcellular compartments with fast protein turnover in HeLa and HEK293T cells, and newly grown neurites in differentiating neuron-like N2A cells, are clearly identified via this imaging technique. Technically, incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, whereas SRS imaging of exogenous carbon–deuterium bonds (C–D) in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems. Moreover, coupled with label-free SRS imaging of the total proteome, our method can readily generate spatial maps of the quantitative ratio between new and total proteomes. Thus, this technique of nonlinear vibrational imaging of stable isotope incorporation will be a valuable tool to advance our understanding of the complex spatial and temporal dynamics of newly synthesized proteome in vivo. PMID:23798434

  12. Vibrational properties of epitaxial Bi{sub 4}Te{sub 3} films as studied by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China); Song, Yuxin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se; Gong, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Lu, Pengfei [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wang, Shumin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-08-15

    Bi{sub 4}Te{sub 3}, as one of the phases of the binary Bi–Te system, shares many similarities with Bi{sub 2}Te{sub 3}, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi{sub 4}Te{sub 3} films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi{sub 4}Te{sub 3} films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi{sub 4}Te{sub 3} films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi{sub 4}Te{sub 3} films, it is found that the Raman-active phonon oscillations in Bi{sub 4}Te{sub 3} films exhibit the vibrational properties of those in both Bi and Bi{sub 2}Te{sub 3} films.

  13. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.

  14. On-line Vibration Diagnostics of the Optical Elements at BL-28 of the Photon Factory

    International Nuclear Information System (INIS)

    Maruyama, T.; Kashiwagi, T.; Kikuchi, T.; Toyoshima, A.; Kubota, M.; Ono, K.

    2007-01-01

    We have analyzed the data of encoders attached to optical elements and developed an on-line vibration diagnostics system of the monochromator. After eliminating the vibration source we have been able to improve the performance of the monochromator

  15. The Utilization of Low Frequency Raman Spectra of Gases for the Study of Molecules with Large Amplitude Vibration

    Institute of Scientific and Technical Information of China (English)

    James R. Durig; Sarah Xiao-hua Zhou; Joshua Klaassen; Arindam Ganguly

    2009-01-01

    The utilization of the Raman spectra of the low frequency bending mode for three quasi-linear molecules, disiloxane, (SiH3)2 O; methylisocyanate, CH3NCO; and dimethy lisocyanate, (CH3)2SiHNCO for observing the low frequency anharmonic bending vibration is demonstrated which is superior to the corresponding far infrared spectra. From the observed frequencies from the Raman spectra the potential function governing the heavy atom motion to linearity has been obtained from which the barrier has been determined. These experimental values are compared to the ab ini-tio predicted values. Also low frequency Raman spectra of the ring puckering vibration of chlorocy-clobutane, c-C4H7Cl, bromocyclobutane, c-C4H7Br, and aminocyclobutane, c-C4H7NH2, have been utilized to obtain the potential function governing the ring inversion for these molecules. The deter-mined barriers to planarity are compared to those obtained from MP2 (full) ab initio and density functional theory B3LYP calculations by utilizing a variety of basis sets. For all of these studies it is shown that the Raman spectra are superior to the infrared spectra for determining the frequencies of the excited state transitions.

  16. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman optical activity (ROA) provides...

  17. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman Optical Activity (ROA) and...

  18. Temperature dependence of Raman scattering by optical phonons in ZnTe

    International Nuclear Information System (INIS)

    Simmonds, P.E.; Martin, A.D.

    1987-01-01

    Measurements of the temperature dependence of Raman scattering by optical phonons between temperatures 5 K and 293 K in the II-VI semiconductor ZnTe are reported. Typical Raman spectra for ZnTe at different temperatures are shown and values of the measured LO and TO phonon Raman shifts and linewidths are given for T = 5, 77, and 293 K. The measured linewidth of the LO Raman line as a function of temperature is plotted and compared with model predictions based on various three- and four-phonon processes

  19. SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard

    2013-04-09

    Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough into National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.

  20. FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline.

    Science.gov (United States)

    Arivazhagan, M; Anitha Rexalin, D

    2012-10-01

    The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 4-chloro-2-fluoroaniline (CFA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of ab initio and density functional theory (DFT) methods. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β(0)) of this novel molecular system and related properties (β, α(0) and Δα) of CFA are calculated using B3LYP/6-311++G(d,p) and HF/6-311++G(d,p) methods on the finite-field approach. The calculated results also show that the CFA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The result confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The HOMO-LUMO energies UV-vis spectral analysis and MEP are performed by B3LYP/6-311++G(d,p) approach. A detailed interpretation of the infrared and Raman spectra of CFA is also reported based on total energy distribution (TED). The difference between the observed and scaled wave number values of the most of the fundamentals is very small. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Statistical strategies to reveal potential vibrational markers for in vivo analysis by confocal Raman spectroscopy

    Science.gov (United States)

    Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão

    2016-07-01

    The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.

  2. Remote Raman microimaging using an AOTF and a spatially coherent microfiber optical probe

    International Nuclear Information System (INIS)

    Trey Skinner, H.; Cooney, T.F.; Sharma, S.K.; Angel, S.M.

    1996-01-01

    A fiber-optic Raman microimaging probe is described that is suitable for acquiring high-spatial-resolution Raman images in sampling situations with no clear line of sight. A high-power near-infrared diode laser combined with an acousto-optic tunable filter and a spatially coherent optical fiber bundle allow fluorescence-free Raman images of remotely located samples to be acquired at distances up to several meters. The feasibility of this technique is demonstrated with Raman images of (1) a pellet containing a mixture of a highly scattering sample, bis-methylstyrylbenzene (BMSB), KCl, and graphite, and (2) a partially graphitized diamond. These images clearly show phase boundaries over an area of approximately 0.1 mm 2 with ∼4-μm resolution. copyright 1996 Society for Applied Spectroscopy

  3. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    Science.gov (United States)

    Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.

    2016-04-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.

  4. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, S; Anwar, S; Waheed, A; Maraj, M

    2016-01-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm −1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm −1 for pure soybean oil, 1461 cm −1 for soybean oil based biodiesel, 1670 cm −1 for pure olive oil, 1666 cm −1 for olive oil based biodiesel, 1461 cm −1 for pure coconut oil, and 1460 cm −1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel. (paper)

  5. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    Science.gov (United States)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  6. Damage and failure detection of composites using optical fiber vibration sensor

    International Nuclear Information System (INIS)

    Yang, Y. C.; Han, K. S.

    2001-01-01

    An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly

  7. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Directory of Open Access Journals (Sweden)

    Chae-Ryon Kong

    2011-09-01

    Full Text Available Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC converts the wide angular range of scattered photons (numerical aperture (NA of 1.0 from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22. A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.

  8. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  9. Scaling the Raman Gain Coefficient of Optical Fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Bromage, J; Leng, L

    2002-01-01

    Scaling rules for the Raman gain coefficient are provided with emphasis on the effective area and wavelength dependence. Translation from measurements made at one pump wavelength to other pump wavelengths is demonstrated....

  10. Temperature monitoring and leak detection in sodium circuits of FBR using Raman distributed fiber optic sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Murali, N.; Sosamma, S.; Babu Rao, C.; Kumar, Anish; Purnachandra Rao, B.; Jayakumar, T.

    2013-01-01

    This paper discusses the fiber optic temperature sensor based leak detection in the coolant circuits of fast breeder reactor. These sensors measure the temperature based on spontaneous Raman scattering principle and is not influenced by the electromagnetic interference. Various experiments were conducted to evaluate the performance of the fiber optic sensor based leak detection using Raman distributed Temperature Sensor (RDTS). This paper also deals with the details of fiber optic sensor type leak detector layout for the coolant circuit of FBR, performance requirement of leak detection system, description of the test facility, experimental procedure and test results of various experiments conducted. (author)

  11. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  12. Soliton-effect generation of Raman pulses in optical fibers with slowly decreasing dispersion

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    We suggested that single-mode fibers with slowly decreasing dispersion (FSDD) should be used for the generation of tunable ultrashort RAman pulses. A mathematical model is obtained for the description of ultrafast stimulated Raman scattering in optical fibers with slowly decreasing dispersion. Numerical simulations show that, under identical pump conditions, Raman pulse generated from this kind of fiber is shorter with a higher peak power than that generated from conventional fibers. This means that the Raman threshold of fibers with slowly decreasing dispersion may be lower than that of conventional fibers. Given pump conditions, we found that the highest peak power and narrowest width of the Raman pulse correspond to an optimal decrement velocity of the fiber dispersion

  13. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    Science.gov (United States)

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  14. Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4

    International Nuclear Information System (INIS)

    Fontané, X.; Izquierdo-Roca, V.; Saucedo, E.; Schorr, S.; Yukhymchuk, V.O.; Valakh, M.Ya.; Pérez-Rodríguez, A.; Morante, J.R.

    2012-01-01

    Highlights: ► Analysis of main and weaker Raman peaks from Cu 2 FeZnS 4 and Cu 2 ZnSnS 4 compounds. ► Identification of a cation disorder induced Raman peak in Cu 2 ZnSnS 4 . ► Analysis of spectral features of main Raman peaks from Cu 2 (Fe,Zn)SnS 4 . - Abstract: This work reports the analysis of the vibrational properties of stannite–kesterite Cu 2 (Fe,Zn)SnS 4 compounds that has been performed by Raman scattering measurements. The detailed analysis of the experimental spectra has allowed determining the frequency and symmetry assignment of the main and weaker peaks from both stannite Cu 2 FeSnS 4 (CFTS) and kesterite Cu 2 ZnSnS 4 (CZTS) phases. The measurements performed in the kesterite CZTS samples have also revealed the presence of local inhomogeneities that are characterised by an additional peak in the spectra at about 331 cm −1 . This peak has been related to the presence in these local regions of a high degree of disorder in the cation sublattice, in agreement with previous neutron diffraction analysis in similar samples. Finally, the spectra from the solid solution alloys show a one-mode behaviour of the main A/A 1 peak with the chemical composition.

  15. A simple optical method for measuring the vibration amplitude of a speaker

    OpenAIRE

    UEDA, Masahiro; YAMAGUCHI, Toshihiko; KAKIUCHI, Hiroki; SUGA, Hiroshi

    1999-01-01

    A simple optical method has been proposed for measuring the vibration amplitude of a speaker vibrating with a frequency of approximately 10 kHz. The method is based on a multiple reflection between a vibrating speaker plane and a mirror parallel to that speaker plane. The multiple reflection can magnify a dispersion of the laser beam caused by the vibration, and easily make a measurement of the amplitude. The measuring sensitivity ranges between sub-microns and 1 mm. A preliminary experim...

  16. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  17. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  18. Optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy

    International Nuclear Information System (INIS)

    Saleem, M; Bilal, M; Anwar, S; Rehman, A; Ahmed, M

    2013-01-01

    We present the optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy. Raman spectra were acquired from 18 blood serum samples using a laser at 532 nm as the excitation source. A multivariate regression model based on partial least-squares regression is developed that uses Raman spectra to predict dengue infection with leave-one-sample-out cross validation. The prediction of dengue infection by our model yields correlation coefficient r 2 values of 0.9998 between the predicted and reference clinical results. The model was tested for six unknown human blood sera and found to be 100% accurate in accordance with the clinical results. (letter)

  19. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  20. Infrared and Raman Vibrational Spectroscopies Reveal the Palette of Frescos Found in the Medieval Monastery of Karaach Teke

    International Nuclear Information System (INIS)

    Zorba, T.; Paraskevopoulos, K.M.; Pavlidou, E.; Andrikopoulos, K.S.; Daniilia, S.; Popkonstantinov, K.; Kostova, R.; Platnyov, V.

    2007-01-01

    Vibrational spectroscopy is applied on samples obtained from the excavation area of the medieval Monastery (10 th century) of Karaach-Teke in Bulgaria. The results of the corresponding study, reveal the type of materials used for the creation of the wall-paintings and give evidence of Byzantine influence, a fact that further supports the well known impact of Byzantium on the technology and thematic-aesthetic features of iconography in Bulgaria during this era. In addition, the complementarity of FTIR and -Raman spectroscopies in the identification of pigments is indicated

  1. Diagnostics of the Raman spectral structure of the stretching vibrations of water by means of polarization CARS

    International Nuclear Information System (INIS)

    Bunkin, A.F.; Maltsev, D.V.; Surskii, K.O.; Shapiro, Y.G.; Chernov, V.G.

    1988-01-01

    A method is proposed for decomposing into components by computer the partially resolved polarization CARS spectra of the ν OH Raman band of stretching vibrations of liquid water under various experimental conditions. The spectroscopic parameters of the ν OH band of the components at water temperatures of 5 degree C and 20 degree C are given. It is shown that single-mode-continuum models and mixed models of the structure of liquid water (in the 5--60 degree C range) contradict the results of experiments on polarization CARS

  2. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations

    Science.gov (United States)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-03-01

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The 13C and 1H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied.

  3. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations.

    Science.gov (United States)

    Karthikeyan, N; Prince, J Joseph; Ramalingam, S; Periandy, S

    2015-03-15

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The (13)C and (1)H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Influence of the precursors in the morphology, structure, vibrational order and optical gap of nano structured Zn O

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, J. F.; Londono C, A.; Jurado L, F. F.; Romero S, J. D., E-mail: jfjurado@unal.edu.co [Universidad Nacional de Colombia, Laboratorio de Propiedades Termicas Dielectricas de Compositos, A. A. 127, Manizales (Colombia)

    2014-07-01

    The synthesis of Zn O by reaction in solid state from two precursor salts (zinc acetate and zinc sulfate), presented significant differences concerning morphology, structure, vibrational order and optical gap. As well as covering in the size of the compounds, a homogeneous distribution of nanoparticles of 21±3 nm and micro stars of 1.03±0.19 μm respectively. The Zn O showed a structural phase with a vibrational state of the hexagonal type (wurtzite). The variation in the morphology due to the precursor is attributed to the disorder within of lattice, which contributes to vibrational changes and is correlated to the degrees of freedom of molecules. Measurements of UV-Vis of nanoparticles displayed a band gap (E{sub g}) lower than the one reported for the bulk material. The structural characterization of the compounds was carried out by using a X-ray Bruker D8 Advance diffractometer. The vibrational order was assessed throughout micro-Raman with a monochromatic radiation source of 473 nm). (Author)

  5. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-01-01

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  6. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  7. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    Science.gov (United States)

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing

  8. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  9. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions

    Czech Academy of Sciences Publication Activity Database

    Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr

    2007-01-01

    Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  10. Raman spectroscopy of optical properties in CdS thin films

    Directory of Open Access Journals (Sweden)

    Trajić J.

    2015-01-01

    Full Text Available Properties of CdS thin films were investigated applying atomic force microscopy (AFM and Raman spectroscopy. CdS thin films were prepared by using thermal evaporation technique under base pressure 2 x 10-5 torr. The quality of these films was investigated by AFM spectroscopy. We apply Raman scattering to investigate optical properties of CdS thin films, and reveal existence of surface optical phonon (SOP mode at 297 cm-1. Effective permittivity of mixture were modeled by Maxwell - Garnet approximation. [Projekat Ministarstva nauke Republike Srbije, br. 45003

  11. Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy.

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; Huang, Zhiwei

    2015-11-01

    This study aims to compare the diagnostic performance of the two different endoscope-based fiber-optic Raman probe designs (i.e., bevelled and volume Raman probes) for real-time, in vivo detection of gastric dysplasia at endoscopy. To conduct the clinical comparison, a total of 1,050 in vivo tissue Raman spectra (normal: n = 864; dysplasia: n = 186) were acquired from 66 gastric patients (normal: n = 48; dysplasia: n = 18) by using bevelled Raman probe, while a total of 1,913 in vivo tissue Raman spectra (normal: n = 1,786; dysplasia: n = 127) were acquired from 98 gastric patients (normal: n = 87; dysplasia: n = 11) by using volume Raman probe. The bevelled Raman probe provides approximately twofold improvements in tissue Raman-to-autofluorescence intensity ratios as compared to the use of volume Raman probe. Partial least squares discriminant analysis together with leave-one patient-out cross-validation on in vivo tissue Raman spectra acquired yields a diagnostic accuracy of 93.0 % (sensitivity of 92.5 %; specificity of 93.1 %) for differentiating gastric dysplasia from normal gastric tissue by using the bevelled fiber-optic Raman probe, which is superior to the diagnostic performance (accuracy of 88.4 %; sensitivity of 85.8 %; specificity of 88.6 %) by using the volume Raman probe. This work demonstrates that the Raman spectroscopic technique coupled with bevelled fiber-optic Raman probe has great potential to enhance in vivo diagnosis of gastric precancer and early cancer at endoscopy. Graphical Abstract Comparison of in vivo gastric tissue Raman spectra acquired by using bevelled and volume fiber-optic Raman probes.

  12. Effect of ionizing radiation on in situ Raman scattering and photoluminescence of silica optical fibers

    International Nuclear Information System (INIS)

    Bilodeau, T.G.; Ewing, K.J.; Nau, G.M.; Aggarwal, I.D.

    1995-01-01

    Raman fiber optic chemical sensors provide remote situ characterization capability. One application of Raman fiber optic chemical sensors is the characterization of the contents of nuclear waste tanks. In these tanks it is expected that approximately 20 meters of optical fiber will be exposed to radiation levels between 100 and 1,000 rads/hour. In support of this work two silica optical fiber types (one a communications grade fiber and the other nominally radiation resistant) have been tested at the radiation levels expected in the tanks. Luminescence and Raman scattering measurements have been performed in situ with 488-nm excitation on two types of silica optical fiber exposed to a constant low to moderate dose rate of gamma radiation of 880 rads(Si)/hour from a 60 Co source for a total dose of greater than 45 krads. The nominally radiation-resistant fiber was also excited with 514.5-nm and near-infrared 830-nm laser radiation. The rate of the silica Raman signal decrease is more than three times greater for the visible excitation wavelengths than for the 830-nm excitation for the radiation resistant fiber. The behavior of the 650-nm photoluminescence line upon irradiation was different for the two fibers studied, both in terms of the shift of the 650-nm line and rate of increase of the normalized photoluminescence intensity. In all cases the photoluminescence from the fibers was less than the Raman intensity. No radioluminescence was observed in either fiber. The radiation resistant fiber exhibited photo bleaching effects on the Raman transmission when photoannealed with 488-nm laser light

  13. Effect of ionizing radiation on in situ Raman scattering and photoluminescence of silica optical fibers

    Science.gov (United States)

    Bilodeau, T. G.; Ewing, K. J.; Nau, G. M.; Aggarwai, I. D.

    1995-02-01

    Raman fiber optic chemical sensors provide remote in situ characterization capability. One application of Raman fiber optic chemical sensors is the characterization of the contents of nuclear waste tanks. In these tanks it is expected that approximately 20 meters of optical fiber will be exposed to radiation levels between 100 and 1000 rads/hour. In support of this work two silica optical fiber types (one a communications grade fiber and the other nominally radiation resistant) have been tested at the radiation levels expected in the tanks. Luminescence and Raman scattering measurements have been performed in situ with 488-nm excitation on two types of silica optical fiber exposed to a constant low to moderate dose rate of gamma radiation of 880 rads(Si)/hour from a /sup 60/Co source for a total dose of greater than 45 krads. The nominally radiation-resistant fiber was also excited with 514.5-nm and near-infrared 830-nm laser radiation. The rate of the silica Raman signal decrease is more than three times greater for the visible excitation wavelengths than for the 830-nm excitation for the radiation resistant fiber. The behavior of the 650-nm photoluminescence line upon irradiation was different for the two fibers studied, both in terms of the shift of the 650-nm line and rate of increase of the normalized photoluminescence intensity. In all cases the photoluminescence from the fibers was less than the Raman intensity. No radioluminescence was observed in either fiber. The radiation resistant fiber exhibited photobleaching effects on the Raman transmission when photoannealed with 488-nm laser light.

  14. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

    Science.gov (United States)

    Käppler, Andrea; Fischer, Dieter; Oberbeckmann, Sonja; Schernewski, Gerald; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2016-11-01

    The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range microplastics fraction into 500-50 μm (rapid and reliable analysis by FTIR imaging) and into 50-1 μm (detailed and more time-consuming analysis by Raman imaging). Graphical Abstract Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images.

  15. Development of a Raman spectrometer to study surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Biswas, Nandita; Chadha, Ridhima; Kapoor, Sudhir; Sarkar, Sisir K.; Mukherjee, Tulsi

    2011-02-01

    Raman spectroscopy is an important tool, which provides enormous information on the vibrational and structural details of materials. This understanding is not only interesting due to its fundamental importance, but also of considerable importance in optoelectronics and device applications of these materials in nanotechnology. In this report, we begin with a brief introduction on the Raman effect and various Raman scattering techniques, followed by a detailed discussion on the development of an instrument with home-built collection optics attachment. This Raman system consists of a pulsed laser excitation source, a sample compartment, collection optics to collect the scattered light, a notch filter to reject the intense laser light, a monochromator to disperse the scattered light and a detector to detect the Raman signal. After calibrating the Raman spectrometer with standard solvents, we present our results on Surface-Enhanced Raman Scattering (SERS) investigations on three different kinds of chemical systems. (author)

  16. Towards optical fibre based Raman spectroscopy for the detection of surgical site infection

    Science.gov (United States)

    Thompson, Alex J.; Koziej, Lukasz; Williams, Huw D.; Elson, Daniel S.; Yang, Guang-Zhong

    2016-03-01

    Surgical site infections (SSIs) are common post-surgical complications that remain significant clinical problems, as they are associated with substantial mortality and morbidity. As such, there is significant interest in the development of minimally invasive techniques that permit early detection of SSIs. To this end, we are applying a compact, clinically deployable Raman spectrometer coupled to an optical fibre probe to the study of bacteria, with the long term goal of using Raman spectroscopy to detect infection in vivo. Our system comprises a 785 nm laser diode for excitation and a commercial (Ocean Optics, Inc.) Raman spectrometer for detection. Here we discuss the design, optimisation and validation of this system, and describe our first experiences interrogating bacterial cells (Escherichia coli) in vitro.

  17. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  18. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase...

  19. Study of optical phonon modes of CdS nanoparticles using Raman

    Indian Academy of Sciences (India)

    In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time ...

  20. Monitoring of zwitterionic proline and alanine conformational space by raman optical activity

    Czech Academy of Sciences Publication Activity Database

    Kapitán, Josef; Bouř, Petr; Baumruk, V.

    2005-01-01

    Roč. 12, č. 1 (2005), s. 30 ISSN 1211-5894. [Meeting of Structural Biologists /4./. 10.03.2005-21.03.2005, Nové Hrady] Institutional research plan: CEZ:AV0Z40550506 Keywords : proline * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry

  1. Detection of Molecular Chirality by Induced Resonance Raman Optical Activity in Europium Complexes

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, Shigeki; Bouř, Petr

    2012-01-01

    Roč. 51, č. 44 (2012), s. 11058-11061 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Institutional support: RVO:61388963 Keywords : europium * complexes * raman optical activity * resonance Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.734, year: 2012

  2. Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia.

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; Huang, Zhiwei

    2016-06-23

    This study aims to assess the clinical utility of a rapid fiber-optic Raman spectroscopy technique developed for enhancing in vivo diagnosis of gastric precancer during endoscopic examination. We have developed a real-time fiber-optic Raman spectroscopy system capable of simultaneously acquiring both fingerprint (FP) (i.e., 800-1800 cm(-1)) and high-wavenumber (HW) (i.e., 2800-3600 cm(-1)) Raman spectra from gastric tissue in vivo at endoscopy. A total of 5792 high-quality in vivo FP/HW Raman spectra (normal (n = 5160); dysplasia (n = 155), and adenocarcinoma (n = 477)) were acquired in real-time from 441 tissue sites (normal (n = 396); dysplasia (n = 11), and adenocarcinoma (n = 34)) of 191 gastric patients (normal (n = 172); dysplasia (n = 6), and adenocarcinoma (n = 13)) undergoing routine endoscopic examinations. Partial least squares discriminant analysis (PLS-DA) together with leave-one-patient-out cross validation (LOPCV) were implemented to develop robust spectral diagnostic models. The FP/HW Raman spectra differ significantly between normal, dysplasia and adenocarcinoma of the stomach, which can be attributed to changes in proteins, lipids, nucleic acids, and the bound water content. PLS-DA and LOPCV show that the fiber-optic FP/HW Raman spectroscopy provides diagnostic sensitivities of 96.0%, 81.8% and 88.2%, and specificities of 86.7%, 95.3% and 95.6%, respectively, for the classification of normal, dysplastic and cancerous gastric tissue, superior to either the FP or HW Raman techniques alone. Further dichotomous PLS-DA analysis yields a sensitivity of 90.9% (10/11) and specificity of 95.9% (380/396) for the detection of gastric dysplasia using FP/HW Raman spectroscopy, substantiating its clinical advantages over white light reflectance endoscopy (sensitivity: 90.9% (10/11), and specificity: 51.0% (202/396)). This work demonstrates that the fiber-optic FP/HW Raman spectroscopy technique has great promise for enhancing in vivo diagnosis of gastric

  3. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  4. Theoretical Modeling of the Surface-Enhanced Raman Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Novák, Vít; Šebestík, Jaroslav; Bouř, Petr

    2012-01-01

    Roč. 8, č. 5 (2012), s. 1714-1720 ISSN 1549-9618 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational spectroscopy * absolute-configuration * silver electrode * spectra * scattering * pyridine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  5. Evans hole and non linear optical activity in Bis(melaminium) sulphate dihydrate: A vibrational spectral study.

    Science.gov (United States)

    Suresh Kumar, V R; Binoy, J; Dawn Dharma Roy, S; Marchewka, M K; Jayakumar, V S

    2015-01-01

    Bis(melaminium) sulphate dihydrate (BMSD), an interesting melaminium derivative for nonlinear optical activity, has been subjected to vibrational spectral analysis using FT IR and FT Raman spectra. The analysis has been aided by the Potential Energy Distribution (PED) of vibrational spectral bands, derived using density functional theory (DFT) at B3LYP/6-31G(d) level. The geometry is found to correlate well with the XRD structure and the band profiles for certain vibrations in the finger print region have been theoretically explained using Evans hole. The detailed Natural Bond Orbital (NBO) analysis of the hydrogen bonding in BMSD has also been carried out to understand the correlation between the stabilization energy of hyperconjugation of the lone pair of donor with the σ(∗) orbital of hydrogen-acceptor bond and the strength of hydrogen bond. The theoretical calculation shows that BMSD has NLO efficiency, 2.66 times that of urea. The frontier molecular orbital analysis points to a charge transfer, which contributes to NLO activity, through N-H…O intermolecular hydrogen bonding between the melaminium ring and the sulphate. The molecular electrostatic potential (MEP) mapping has also been performed for the detailed analysis of the mutual interactions between melaminium ring and sulphate ion. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Single mode optical fiber vibration sensor: design and development

    Science.gov (United States)

    Alanis-Carranza, L. E.; Alvarez-Chavez, J. A.; Perez-Sanchez, G. G.; Sierra-Calderon, A.; Rodriguez-Novelo, J. C.

    2016-09-01

    This work deals with the design and development of an SMF28-based vibration detector including the fiber segment, the data acquisition via an NI-USB-6212 card, the data processing code in Visual Basic and the signal spectrum obtained via Fourier analysis. The set-up consists of a regulated voltage source at 2.6V, 300mA, which serves as the power source for a 980nm semiconductor laser operating at 150mW which is fiber coupled into a 20m-piece of SMF-28 fiber. Perpendicular to such fiber the perturbations ranged from 1 to 100 kHz, coming from a DC motor at 12 Volts. At the detection stage, a simple analog filter and a commercial photo diode were employed for data acquisition, before a transimpedance amplification stage reconstructed the signal into the National Instruments data acquisition card. At the output, the signals Fourier transformation allows the signal to be displayed in a personal computer. The presentation will include a full electrical and optical characterization of the device and preliminary sensing results, which could be suitable for structural health monitoring applications.

  7. Structural, optical and vibrational properties of Cr2O3 with ferromagnetic and antiferromagnetic order: A combined experimental and density functional theory study

    Science.gov (United States)

    Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.

    2017-12-01

    Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.

  8. Contribution to the heavy-ion optical potential from coupling to vibrational states

    Energy Technology Data Exchange (ETDEWEB)

    Donangelo, R; Canto, L F; Hussein, M S

    1978-11-01

    The component of the optical potential in the elastic channel due to the coupling to vibrational states in Coulomb excitation is derived using a previously developed semiclassical method. Several numerical examples are worked out.

  9. Vibrational Spectra and Density functional calculation of Organic Nonlinear Optic Crystal p-Amino Acetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Saja, D; Joe, I Hubert; Jayakumar, V S [Department of Physics, Mar Ivanios College, Thiruvananthapuram-695015, Kerala (India)

    2006-01-01

    The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA.

  10. Vibrational Spectra and Density functional calculation of Organic Nonlinear Optic Crystal p-Amino Acetanilide

    International Nuclear Information System (INIS)

    Saja, D; Joe, I Hubert; Jayakumar, V S

    2006-01-01

    The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA

  11. Optical properties behavior of three optical filters and a mirror used in the internal optical head of a Raman laser spectrometer after exposed to proton radiation

    Science.gov (United States)

    Guembe, V.; Alvarado, C. G.; Fernández-Rodriguez, M.; Gallego, P.; Belenguer, T.; Díaz, E.

    2017-11-01

    The Raman Laser Spectrometer is one of the ExoMars Pasteur Rover's payload instruments that is devoted to the analytical analysis of the geochemistry content and elemental composition of the observed minerals provided by the Rover through Raman spectroscopy technique. One subsystem of the RLS instrument is the Internal Optical Head unit (IOH), which is responsible for focusing the light coming from the laser onto the mineral under analysis and for collecting the Raman signal emitted by the excited mineral. The IOH is composed by 4 commercial elements for Raman spectroscopy application; 2 optical filters provided by Iridian Spectral Technologies Company and 1 optical filter and 1 mirror provided by Semrock Company. They have been exposed to proton radiation in order to analyze their optical behaviour due to this hostile space condition. The proton irradiation test was performed following the protocol of LINES lab (INTA). The optical properties have been studied through transmittance, reflectance and optical density measurements, the final results and its influence on optical performances are presented.

  12. Novel acid mono azo dye compound: Synthesis, characterization, vibrational, optical and theoretical investigations of 2-[(E)-(8-hydroxyquinolin-5-yl)-diazenyl]-4,5-dimethoxybenzoic acid

    Science.gov (United States)

    Saçmacı, Mustafa; Çavuş, Hatice Kanbur; Arı, Hatice; Şahingöz, Recep; Özpozan, Talat

    2012-11-01

    Novel acid mono azo dye, 2-[(E)-(8-hydroxyquinolin-5yl)-diazenyl]-4,5-dimethoxybenzoic acid (HQD), was synthesized by coupling diazonium salt solution of 2-amino-4,5-dimethoxybenzoic acid (DMA) with 8-hydroxyquinoline (HQ). This dye was characterized by UV-vis, IR & Raman, 1H and 13C NMR spectroscopic techniques and elemental analysis. The normal coordinate analysis of HQD was also performed to assign each band in vibrational spectra. DFT (B3LYP and B3PW91) calculations were employed to optimize the geometry, to interpret NMR spectra, to calculate and to determine the stable tautomeric structure of the compound. Natural Bond Orbital (NBO) analysis was performed to investigate intramolecular interactions. The vibrational spectral data obtained from solid phase IR & Raman spectra were assigned based on the results of the theoretical calculations. UV-vis spectroscopic technique was employed to obtain the optical band gap of HQD. The analysis of the optical absorption data revealed the existence of direct and indirect transitions in the optical band gaps. The optical band gaps of HQD have been found 1.95 and 1.90 eV for direct and indirect transitions, respectively.

  13. Fiber-optic surface-enhanced Raman system for field screening of hazardous compounds

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Goudonnet, J.P.; Arakawa, E.T.; Reddick, R.C.; Gammage, R.B.; Haas, J.W.; James, D.R.; Wachter, E.A.

    1988-01-01

    Surface-enhanced Raman scattering permits identification of compounds adsorbed onto a metal microbase that is microlithographically produced with submicron resolution. Less than one percent of a monolayer of a Raman Active target compound offers a high signal-to-noise ratio. By depositing the microbase on the exterior of a fiber optic cable, convenient field screening or monitoring is permitted. By using highly effective microbases, it is possible to reduce laser power requirements sufficiently to allow an economical, but complete, system to be housed in a suitcase. We shall present details of SERS system of this type and shall show data on samples of interest in the screening of hazardous compounds

  14. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  15. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations.

    Science.gov (United States)

    Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S

    2013-04-15

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  17. Ab initio study of structural, electronic, optical, and vibrational properties of ZnxSy (x + y = 2 to 5) nanoclusters

    International Nuclear Information System (INIS)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-01-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y (x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS 2 , ZnS 3 , and ZnS 4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  18. Resonance Raman assignment and evidence for noncoupling of individual 2- and 4-vinyl vibrational modes in a monomeric cyanomethemoglobin

    International Nuclear Information System (INIS)

    Gersonde, K.; Yu, N.T.; Lin, S.H.; Smith, K.M.; Parish, D.W.

    1989-01-01

    We have investigated the resonance Raman spectra of monomeric insect cyanomethemoglobins (CTT III and CTT IV) reconstituted with (1) protohemes IX selectively deuterated at the 4-vinyl as well as the 2,4-divinyls, (2) monovinyl-truncated hemes such as pemptoheme (2-hydrogen, 4-vinyl) and isopemptoheme (2-vinyl, 4-hydrogen), (3) symmetric hemes such as protoheme III (with 2- and 3-vinyls) and protoheme XIII (with 1- and 4-vinyls), and (4) hemes without 2- and 4-vinyls such as mesoheme IX, deuteroheme IX, 2,4-dimethyldeuteroheme IX, and 2,4-dibromodeuteroheme IX. Evidence is presented that the highly localized vinyl C = C stretching vibrations at the 2- and 4-positions of the heme in these cyanomet CTT hemoglobins are noncoupled and inequivalent; i.e., the 1631- and 1624-cm-1 lines have been assigned to 2-vinyl and 4-vinyl, respectively. The elimination of the 2-vinyl (in pemptoheme) or the 4-vinyl (in isopemptoheme) does not affect the C = C stretching frequency of the remaining vinyl. Furthermore, two low-frequency vinyl bending modes at 412 and 591 cm-1 exhibit greatly different resonance Raman intensities between 2-vinyl and 4-vinyl. The observed intensity at 412 cm-1 is primarily derived from 4-vinyl, whereas the 591-cm-1 line results exclusively from the 2-vinyl. Again, there is no significant coupling between 2-vinyl and 4-vinyl for these two bending modes

  19. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    Science.gov (United States)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  20. Simulation of Raman optical activity of multi-component monosaccharide samples

    Czech Academy of Sciences Publication Activity Database

    Melcrová, Adéla; Kessler, Jiří; Bouř, Petr; Kaminský, Jakub

    2016-01-01

    Roč. 18, č. 3 (2016), s. 2130-2142 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S; GA ČR GA15-09072S; GA ČR(CZ) GA16-00270S; GA ČR GA13-03978S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : NORMAL-MODE OPTIMIZATION * VIBRATIONAL RAMAN * ACTIVITY SPECTRA Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016

  1. Fiber Optic Coupled Raman Based Detection of Hazardous Liquids Concealed in Commercial Products

    Directory of Open Access Journals (Sweden)

    Michael L. Ramírez-Cedeño

    2012-01-01

    Full Text Available Raman spectroscopy has been widely proposed as a technique to nondestructively and noninvasively interrogate the contents of glass and plastic bottles. In this work, Raman spectroscopy is used in a concealed threat scenario where hazardous liquids have been intentionally mixed with common consumer products to mask its appearance or spectra. The hazardous liquids under consideration included the chemical warfare agent (CWA simulant triethyl phosphate (TEP, hydrogen peroxide, and acetone as representative of toxic industrial compounds (TICs. Fiber optic coupled Raman spectroscopy (FOCRS and partial least squares (PLS algorithm analysis were used to quantify hydrogen peroxide in whiskey, acetone in perfume, and TEP in colored beverages. Spectral data was used to evaluate if the hazardous liquids can be successfully concealed in consumer products. Results demonstrated that FOC-RS systems were able to discriminate between nonhazardous consumer products and mixtures with hazardous materials at concentrations lower than 5%.

  2. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations

    Science.gov (United States)

    Anand, S.; Sundararajan, R. S.; Ramachandraraja, C.; Ramalingam, S.; Durga, R.

    2015-03-01

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the 13C NMR and 1H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  3. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations.

    Science.gov (United States)

    Anand, S; Sundararajan, R S; Ramachandraraja, C; Ramalingam, S; Durga, R

    2015-03-05

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the (13)C NMR and (1)H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy

    Science.gov (United States)

    Lin, Kan; Zheng, Wei; Lim, Chwee Ming; Huang, Zhiwei

    2016-01-01

    We assess the clinical utility of a unique simultaneous fingerprint (FP) (i.e., 800-1800 cm−1) and high-wavenumber (HW) (i.e., 2800-3600 cm−1) fiber-optic Raman spectroscopy for in vivo diagnosis of laryngeal cancer at endoscopy. A total of 2124 high-quality in vivo FP/HW Raman spectra (normal = 1321; cancer = 581) were acquired from 101 tissue sites (normal = 71; cancer = 30) of 60 patients (normal = 44; cancer = 16) undergoing routine endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous laryngeal tissue that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in the larynx. Partial least squares-discriminant analysis and leave-one tissue site-out, cross-validation were employed on the in vivo FP/HW tissue Raman spectra acquired, yielding a diagnostic accuracy of 91.1% (sensitivity: 93.3% (28/30); specificity: 90.1% (64/71)) for laryngeal cancer identification, which is superior to using either FP (accuracy: 86.1%; sensitivity: 86.7% (26/30); specificity: 85.9% (61/71)) or HW (accuracy: 84.2%; sensitivity: 76.7% (23/30); specificity: 87.3% (62/71)) Raman technique alone. Further receiver operating characteristic analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for laryngeal cancer diagnosis. We demonstrate for the first time that the simultaneous FP/HW Raman spectroscopy technique can be used for improving real-time in vivo diagnosis of laryngeal carcinoma during endoscopic examination. PMID:27699131

  5. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-01-01

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal

  6. A combined Raman spectroscopic and theoretical investigation of fundamental vibrational bands of furfuryl alcohol (2-furanmethanol)

    DEFF Research Database (Denmark)

    Barsberg, S.; Berg, Rolf W.

    2006-01-01

    . study of FA in weakly interacting environments. It is the first study of FA vibrational properties based on d. functional theory (DFT/B3LYP), and a recently proposed hybrid approach to the calcn. of fundamental frequencies, which also includes an anharmonic contribution. FA occupies five different...

  7. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus

    International Nuclear Information System (INIS)

    Fore, Samantha; Chan, James; Taylor, Douglas; Huser, Thomas

    2011-01-01

    We show that laser tweezers Raman spectroscopy of eukaryotic cells with a significantly larger diameter than the tight focus of a single-beam laser trap leads to optical trapping of the cell by its optically densest part, i.e. typically the cell's nucleus. Raman spectra of individual optically trapped monocytes are compared with location-specific Raman spectra of monocytes adhered to a substrate. When the cell's nucleus is stained with a fluorescent live cell stain, the Raman spectrum of the DNA-specific stain is observed only in the nucleus of individual monocytes. Optically trapped monocytes display the same behavior. We also show that the Raman spectra of individual monocytes exhibit the characteristic Raman signature of cells that have not yet fully differentiated and that individual primary monocytes can be distinguished from transformed monocytes based on their Raman spectra. This work provides further evidence that laser tweezers Raman spectroscopy of individual cells provides meaningful biochemical information in an entirely non-destructive fashion that permits discerning differences between cell types and cellular activity

  8. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Jia Xinhong; Rao Yunjiang; Wang Zinan; Zhang Weili; Ran Zengling; Deng Kun; Yang Zixin

    2012-01-01

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  9. Combined distributed Raman and Bragg fiber temperature sensing using incoherent optical frequency domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Koeppel

    2018-02-01

    Full Text Available Optical temperature sensors offer unique features which make them indispensable for key industries such as the energy sector. However, commercially available systems are usually designed to perform either distributed or distinct hot spot temperature measurements since they are restricted to one measurement principle. We have combined two concepts, fiber Bragg grating (FBG temperature sensors and Raman-based distributed temperature sensing (DTS, to overcome these limitations. Using a technique called incoherent optical frequency domain reflectometry (IOFDR, it is possible to cascade several FBGs with the same Bragg wavelength in one fiber and simultaneously perform truly distributed Raman temperature measurements. In our lab we have achieved a standard deviation of 2.5 K or better at a spatial resolution in the order of 1 m with the Raman DTS. We have also carried out a field test in a high-voltage environment with strong magnetic fields where we performed simultaneous Raman and FBG temperature measurements using a single sensor fiber only.

  10. Combining optical trapping in a microfluidic channel with simultaneous micro-Raman spectroscopy and motion detection

    Science.gov (United States)

    Lawton, Penelope F.; Saunter, Christopher D.; Girkin, John M.

    2014-03-01

    Since their invention by Ashkin optical tweezers have demonstrated their ability and versatility as a non-invasive tool for micromanipulation. One of the most useful additions to the basic optical tweezers system is micro-Raman spectroscopy, which permits highly sensitive analysis of single cells or particles. We report on the development of a dual laser system combining two spatial light modulators to holographically manipulate multiple traps (at 1064nm) whilst undertaking Raman spectroscopy using a 532nm laser. We can thus simultaneously trap multiple particles and record their Raman spectra, without perturbing the trapping system. The dual beam system is built around micro-fluidic channels where crystallisation of calcium carbonate occurs on polymethylmethacrylate (PMMA) beads. The setup is designed to simulate at a microscopic level the reactions that occur on items in a dishwasher, where permanent filming of calcium carbonate on drinking glasses is a problem. Our system allows us to monitor crystal growth on trapped particles in which the Raman spectrum and changes in movement of the bead are recorded. Due to the expected low level of crystallisation on the bead surfaces this allows us to obtain results quickly and with high sensitivity. The long term goal is to study the development of filming on samples in-situ with the microfl.uidic system acting as a model dishwasher.

  11. Structural symmetry breaking of silicon containing polymers and their relation with electrical conductivity and Raman active vibrations

    Science.gov (United States)

    Cabrera, Alejandro; González, Carmen; Tagle, Luis; Terraza, Claudio; Volkmann, Ulrich; Barriga, Andrés; Ramos, Esteban; Pavez, Maximiliano

    2011-03-01

    The incorporation of silicon into the polymeric main chain or side groups can provide an enhancement in chemical, physical and mechanical properties. We report an efficient method for the synthesis of polymers containing silicon in the main chain, from the polycondensation reactions of four optically active carboxylic diacid. The solubility of the polymers, the molecular weight, the glass transition and the thermal stability were studied by standard techniques. Raman spectroscopy was used to probe the conformation of stretching modes as function of the temperature. The conductivity measurements indicated that the alignment of the molecules is a crucial parameter for electrical performance. When the polymers were exposed to iodine, charge transfer increased their mobility and decreased their optical band gaps. These novel properties highlight the possibility to generate alternative active opto-electronics polymers.

  12. Qualitative and quantitative approach towards the molecular understanding of structural, vibrational and optical features of urea ninhydrin monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Sasikala, V. [Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala 690110 (India); Sajan, D., E-mail: drsajanbmc@gmail.com [Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala 690110 (India); Chaitanya, K. [Department of Chemistry, Nanjing University of Science and Technology, Xialingwei 200, Nanjing (China); Sundius, Tom [Department of Physics, University of Helsinki (Finland); Devi, T. Uma [Department of Physics, Government Arts College for Women (Autonomous), Pudukottai (India)

    2017-04-15

    In this study, single crystals of urea ninhydrin monohydrate (UNMH) have been grown by slow evaporation method. The grown crystals were characterized by FT-IR, FT-Raman and UV-Vis-NIR spectroscopies. The Kurtz and Perry powder method was employed to confirm the near-zero SHG efficiency of the as-grown centrosymmetric UNMH crystal. The third order nonlinearity of the crystal has been studied by the open aperture Z-scan method. The nonlinear absorption coefficient is calculated and the potentiality of UNMH in optical limiting applications is identified. The molecular geometry and the origin of optical non-linearity at the molecular level have been investigated by the density functional theory. The normal coordinate analysis was carried out to assign the molecular vibrational modes. Vibrational spectral studies confirms the presence of weak O-H⋯O and moderate O-H⋯O type hydrogen bonds in the molecule as well as O-H⋯O, N-H⋯O and blue-shifted C-H⋯O type H-bonds in the crystal. The intramolecular charge transfer interactions and the electronic absorption mechanisms have been discussed. The static and the dynamic values of hyperpolarizabilities for UNMH were estimated theoretically by DFT methods. - Highlights: • Molecular geometric and NBO interaction features of UNMH were analyzed. • Vibrational spectral features and types of H-bonding in isolated gaseous phase molecule were discussed. • Electronic absorption maxima of different phases of UNMH were found out. • The non-linear absorption behaviour of UNMH is investigated using z-scan. • First- and second- order hyperpolarizability values were estimated theoretically.

  13. Study of the optical properties of aerosols in the Sao Paulo State by LIDAR Raman technique

    International Nuclear Information System (INIS)

    Costa, Renata Facundes da

    2010-01-01

    The investigation reported in this dissertation has been divided in two parts. The first part was made to carry out an independent calibration of a Raman LIDAR system for water vapor in the CLA installed using a methodology that was developed at Howard University, based on a careful analysis of the efficiency of the optical system components aimed at determining the efficiency and displaying the spectral response of the system. After this study, which led to a better understanding of the eld of instrumental system, the second part, presents a preliminary study of the optical properties of aerosols in the troposphere by evaluating parameters such as, for example, the vertical profiles of aerosol extinction, SR and LR, using a mobile Raman LIDAR system developed by Raymetrics LIDAR Systems, during campaigns conducted in some research institutes in the State of Sao Paulo. (author)

  14. Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy

    International Nuclear Information System (INIS)

    Kharintsev, S S; Fishman, A I; Salakhov, M Kh; Hoffmann, G G

    2013-01-01

    This paper highlights optical plasmonic antennas designed with dc-pulsed low-voltage electrochemical etching of a gold wire for implementing tip-enhanced Raman scattering (TERS) measurements. We demonstrate a versatile electrochemical system that allows one to engineer TERS-active metallic gold tips with diverse shapes and sizes in a highly reproducible fashion. The underlying etching mechanism at a voltage-driven meniscus around a gold wire immersed into an electrolyte is discussed in detail. We show that the developed method is suitable to produce not only the simplest geometries such as cones and spheroids, but more complex designs. Attempts have been made to design plasmonic tapered antennas with quasi-uniformly spaced nano-sized bumps on the mesoscopic zone for the extra surface plasmon-light coupling. The capability of the patterned antenna to enhance and localize optical fields is demonstrated with near-field Raman microscopy and spectroscopy of single-walled carbon nanotubes bundles. (paper)

  15. Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chen, W.-T.; Chien, T.-Y.; Lee, C.-H.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2004-01-01

    Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse

  16. Studies on structural, optical, thermal and vibrational properties of thienyl chalcone derivative: 1-(4-Nitrophenyl)-3-(2-thienyl)prop-2-en-1-one

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Al-Maqtari, H. M.; Jamalis, J.; Pizani, P. S.

    2018-03-01

    The structural, optical, thermal and vibrational properties of thienyl chalcone derivative 1-(4-Nitrophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9NO3S were investigated combining nuclear magnetic resonance (1H and 13C NMR), X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis spectroscopy at room temperature assisted by density functional theory (DFT) calculations and Raman scattering at the temperature range 303-463 K. The electronic properties, including excitation energies, oscillator strengths, HOMO and LUMO energies were calculated by time-dependent DFT (TD-DFT) to complement the experimental findings. The B3LYP/6-311G (d,p) (B3LYP/cc-pVTZ) calculations led to the identification of 'two minima on the molecules' potential energy surfaces. From these calculations, it was predicted that the most stable conformer for C13H9NO3S in the gas phase is founded at 0 K relationship to dihedral angle C8sbnd C9sbnd C10sbnd S1, in agreement with XRD results. The molecular plot showed that the electrical charge mobility in the molecule occurs from thiophene to benzene ring. The optical band gap energy calculated from the difference between HOMO and LUMO orbitals was founded to be ∼3.87 (3.82) eV, in close agreement with the experimental value of 2.94 eV. The comparison between experimental and theoretical vibrational spectra gives a precise knowledge of the fundamental vibrational modes and leads to a better interpretation of the experimental Raman and infrared spectra. As temperature increases from room temperature to 443 K, it was observed the current phonon anharmonicity effects associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external modes region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9NO3S goes to phase transition in the temperature range 453-463 K. This thermal phenomenon was attributed to the disappearance of the lattice (∼10-200 cm-1

  17. Ramachandran Plot for Alanine Dipeptide as Determined from Raman Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Parchaňský, Václav; Kapitán, J.; Kaminský, Jakub; Šebestík, Jaroslav; Bouř, Petr

    2013-01-01

    Roč. 4, č. 16 (2013), s. 2763-2768 ISSN 1948-7185 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : Raman optical activity * Ramachandran plot * molecular modelling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013

  18. Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides.

    Science.gov (United States)

    Sen, Mrinal; Das, Mukul K

    2013-12-01

    In this Letter, we propose an all-optical circuit for a cascadable and integrable logic inverter based on stimulated Raman scattering. A maximum product criteria for noise margin is taken to analyze the cascadability of the inverter. Variation of noise margin for different model parameters is also studied. Finally, the time domain response of the inverter is analyzed for different widths of input pulses.

  19. Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Taylor, D S; Lane, S; Zwerdling, T; Tuscano, J; Huser, T

    2007-03-05

    Currently, a combination of technologies is typically required to assess the malignancy of cancer cells. These methods often lack the specificity and sensitivity necessary for early, accurate diagnosis. Here we demonstrate using clinical samples the application of laser trapping Raman spectroscopy as a novel approach that provides intrinsic biochemical markers for the noninvasive detection of individual cancer cells. The Raman spectra of live, hematopoietic cells provide reliable molecular fingerprints that reflect their biochemical composition and biology. Populations of normal T and B lymphocytes from four healthy individuals, and cells from three leukemia patients were analyzed, and multiple intrinsic Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for cancer cell identification. A combination of two multivariate statistical methods, principal component analysis (PCA) and linear discriminant analysis (LDA), was used to confirm the significance of these markers for identifying cancer cells and classifying the data. The results indicate that, on average, 95% of the normal cells and 90% of the patient cells were accurately classified into their respective cell types. We also provide evidence that these markers are unique to cancer cells and not purely a function of differences in their cellular activation.

  20. Next generation in-situ optical Raman sensor for seawater investigations

    Science.gov (United States)

    Kolomijeca, A.; Kwon, Y.-H.; Ahmad, H.; Kronfeldt, H.-D.

    2012-04-01

    We introduce the next generation of optical sensors based on a combination of surfaced enhanced Raman scattering (SERS) and shifted excitation Raman difference spectroscopy (SERDS) suited for investigations of tiny concentrations of pollutions in the seawater. First field measurements were carried out in the Arctic area which is of global interest since it is more affected by global warming caused climatic changes than any other areas of our planet and it is a recipient for many toxic organic pollutants. A significant long-range atmospheric transport of pollutants to Svalbard is mainly originated from industrialized countries in Europe and North America during the last decades. Therefore, the main interest is to investigate the Arctic water column and also the sediments. Standard chemical methods for water/sediment analysis are extremely accurate but complex and time-consuming. The primary objective of our study was to develop a fast response in-situ optical sensor for easy to use and quick analysis. The system comprises several components: a handheld measurement head containing a 671 nm microsystem diode laser and the Raman optical bench, a laser driver electronics board, a custom-designed miniature spectrometer with an optical resolution of 8 cm-1 and a netbook to control the spectrometer as well as for data evaluation. We introduced for the first time the portable Raman sensor system on an Artic sea-trial during a three week cruise on board of the James Clark Ross research vessel in August 2011. Numerous Raman and SERS measurements followed by SERDS evaluations were taken around locations 78° N and 9° E. Different SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances (PAHs) in the water down to very small (nmol/l) concentrations. Stability tests of the substrates were carried out also for the applicability of our system e.g. on a mooring. Details of the in-situ Raman sensor were presented

  1. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads S; Albro, Michael B; Stevens, Molly M

    2017-09-01

    Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2  = 0.84) and glycosaminoglycans (GAGs) (R 2  = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser

    OpenAIRE

    Ma, Xiaodong; Huo, Haibin; Wang, Wenhui; Tian, Ye; Wu, Nan; Guthy, Charles; Shen, Mengyan; Wang, Xingwei

    2010-01-01

    A novel fabrication method for surface-enhanced Raman scattering (SERS) sensors that used a fast femtosecond (fs) laser scanning process to etch uniform patterns and structures on the endface of a fused silica optical fiber, which is then coated with a thin layer of silver through thermal evaporation is presented. A high quality SERS signal was detected on the patterned surface using a Rhodamine 6G (Rh6G) solution. The uniform SERS sensor built on the tip of the optical fiber tip was small, l...

  3. Co+ -ion implantation induced doping of nanocrystalline CdS thin films: structural, optical, and vibrational properties

    International Nuclear Information System (INIS)

    Chandramohan, S.; Sarangi, S.N.; Majumder, S.; Som, T.; Kanjilal, A.; Sathyamoorthy, R.

    2009-01-01

    Full text: Transition metal (Mn, Fe, Co and Ni) doped CdS nanostructures and nanocrystalline thin films have attracted much attention due to their anticipated applications in magneto-optical, non-volatile memory and future spintronics devices. Introduction of impurities in substitutional positions is highly desirable for such applications. Ion implantation is known to provide many advantages over conventional methods for efficient doping and possibility of its seamless integration with device processing steps. It is not governed by equilibrium thermodynamics and offers the advantages of high spatial selectivity and to overcome the solubility limits. In this communication, we report on modifications of structural morphological, optical, and vibrational properties of 90 keV Co + -ion implanted CdS thin films grown by thermal evaporation. Co + -ion implantation was performed in the fluence range of 0.1-3.6x10 16 ions cm -2 These fluences correspond to Co concentration in the range of 0.34-10.8 at % at the peak position of profile. Implantation was done at an elevated temperature of 573 K in order to avoid amorphization and to enhance the solubility of Co ions in the CdS lattice. Films were characterized by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), optical absorption, and micro-Raman spectroscopy. Implantation does not lead to any secondary phase formation either in the form of impurity or the metallic clusters. However, implantation improves the crystalline quality of the samples and leads to supersaturation of Co ions in the CdS lattice. Thus, nanocrystalline CdS thin films can be considered as a good radiation- resistant material, which can be employed for prolonged use in solar cells for space applications. The optical band gap is found to decrease systematically with increasing ion fluence from 2.39 to 2.28 eV. Implantation leads to agglomeration of grains and a systematic increase in the surface roughness. Both GAXRD and micro-Raman

  4. Employing optical code division multiple access technology in the all fiber loop vibration sensor system

    Science.gov (United States)

    Tseng, Shin-Pin; Yen, Chih-Ta; Syu, Rong-Shun; Cheng, Hsu-Chih

    2013-12-01

    This study proposes a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) framework to access the vibration frequency of a test object on the all fiber loop vibration sensor (AFLVS). Each user possesses an individual SAC, and fiber Bragg grating (FBG) encoders/decoders using multiple FBG arrays were adopted, providing excellent orthogonal properties in the frequency domain. The system also mitigates multiple access interference (MAI) among users. When an optical fiber is bent to a point exceeding the critical radius, the fiber loop sensor becomes sensitive to external physical parameters (e.g., temperature, strain, and vibration). The AFLVS involves placing a fiber loop with a specific radius on a designed vibration platform.

  5. Modelling and processing of data from a fibre-optic sensor of vibrations

    International Nuclear Information System (INIS)

    Morawski, R Z; Makowski, P L; Michalik, L; Domanski, A W

    2010-01-01

    A new technique of vibration sensing, based on a polarimetric fibre-optic strain sensor, is presented; it is designed for localisation of multiple sources of disturbances in a broad spectrum without using fibre gratings. A mathematical model of the sensor is used for development of a variational method for estimation of amplitudes of component vibrations on the basis of noisy samples of the voltage at the output of the sensor.

  6. Raman laser spectrometer optical head: qualification model assembly and integration verification

    Science.gov (United States)

    Ramos, G.; Sanz-Palomino, M.; Moral, A. G.; Canora, C. P.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; Lopez-Reyes, G.; Rull, F.

    2017-08-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.

  7. Multiwavelength excitation Raman scattering of Cu2ZnSn(SxSe1−x)4 (0 ≤ x ≤ 1) polycrystalline thin films: Vibrational properties of sulfoselenide solid solutions

    International Nuclear Information System (INIS)

    Dimitrievska, Mirjana; Xie, Haibing; Fairbrother, Andrew; Fontané, Xavier; Saucedo, Edgardo; Izquierdo-Roca, Victor; Gurieva, Galina; 2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" data-affiliation=" (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" >Pérez-Rodríguez, Alejandro; Schorr, Susan

    2014-01-01

    In this work, Raman spectroscopy and X-ray diffraction were applied together to evaluate the crystal structure and the phonon modes of photovoltaic grade Cu 2 ZnSn(S x Se 1−x ) 4 thin films, leading to a complete characterization of their structural and vibrational properties. Vibrational characterization has been based on Raman scattering measurements performed with different excitation wavelengths and polarization configurations. Analysis of the experimental spectra has permitted identification of 19 peaks, which positions are in good accord with theoretical predictions. Besides, the observation of Cu 2 ZnSnS 4 -like A symmetry peaks related to S vibrations and Cu 2 ZnSnSe 4 -like A symmetry peaks related to Se vibrations, additional Raman peaks, characteristic of the solid solution and previously not reported, are observed, and are attributed to vibrations involving both S and Se anions.

  8. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d81

    International Nuclear Information System (INIS)

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-01-01

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new 3 B 1 /sub g/ → 1 A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced 3 A/sub u/- 3 B 1 /sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K

  9. Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime

    Science.gov (United States)

    Shui, Tao; Yang, Wen-Xing; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional (1 D ) and two-dimensional (2 D ) atomic gratings with periodic parity-time (PT )-symmetric refractive index. The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the conditions under which PT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating. The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition, we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated optics.

  10. Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy

    Science.gov (United States)

    Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed

    2015-04-01

    We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.

  11. Circular dichroism and Raman optical activity in antiferromagnetic transition metal fluorides

    International Nuclear Information System (INIS)

    Hoffman, K.R.; Lockwood, D.J.; Yen, W.M.

    2005-01-01

    The Raman optical activity (ROA) of magnons in rutile-structure antiferromagnetic FeF 2 (T N = 78 K) has been studied as a function of temperature and applied magnetic field. For exciting light incident along the c axis, ROA is observed for magnons but not for phonons. In zero field, a small splitting (0.09 cm -1 ) of the two acoustic-magnon branches is observed for the first time by inelastic light scattering. The splitting in applied magnetic field is found to reduce with increasing temperature in accordance with theory. No ROA was detected for two-magnon excitations. In optical absorption measurements performed over thirty years ago, a very small circular dichroism (CD) was observed in the magnon sidebands of other simple rutile antiferromagnetic fluorides (MnF 2 and CoF 2 ). The origin of this CD was not understood at the time. The Raman studies of the one-magnon Raman scattering in FeF 2 have demonstrated that in zero field the degeneracy of the antiferromagnetic magnon branches is lifted by a weak magnetic dipole-dipole interaction, as predicted by Pincus and Loudon and by White four decades ago. The source of the observed CD in the magnon sidebands can now be traced to this same magnetic-dipole induced splitting

  12. CH Stretching Region: Computational Modeling of Vibrational Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Hudecová, Jana; Profant, V.; Novotná, P.; Baumruk, V.; Urbanová, M.; Bouř, Petr

    2013-01-01

    Roč. 9, č. 7 (2013), s. 3096-3108 ISSN 1549-9618 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : density-functional theory * circular-dichroism spectra * N-methyl acetamide * alpha-pinene * Raman Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  13. Confocal Raman microscopy supported by optical clearing treatment of the skin—influence on collagen hydration

    International Nuclear Information System (INIS)

    Sdobnov, Anton Yu; Tuchin, Valery V; Lademann, Juergen; Darvin, Maxim E

    2017-01-01

    Confocal Raman microscopy (CRM) is employed to study the skin physiology, drug permeation and skin disease monitoring. In order to increase the depth of investigations, the effect of optical clearing was observed on porcine ear skin ex vivo . The optical clearing agents (OCAs) glycerol and iohexol (Omnipaque ™ ) were applied to the porcine ear skin and investigated by CRM after 30 and 60 min of treatment. The extent of optical clearing by utilizing concentrations of 70% glycerol and 100% Omnipaque ™ was evaluated. The intensity of the skin-related Raman peaks significantly increased starting from the depth 160 µ m for Omnipaque ™ and 40 µ m for glycerol ( p   ⩽  0.05) after 60 min of treatment. The OCAs’ influence on the collagen hydration in the deep-located dermis was investigated. Both OCAs induce skin dehydration, but the effect of glycerol treatment (30 min and 60 min) is stronger. The obtained results demonstrate that with increasing the treatment time, both glycerol and Omnipaque ™ solutions improve the optical clearing of porcine skin making the deep-located dermal regions able for investigations. At the used concentrations and time intervals, glycerol is more effective than Omnipaque ™ . However, Omnipaque ™ is more promising than glycerol for future in vivo applications as it is an already approved pharmaceutic substance without any known impact on the skin structure. (paper)

  14. Confocal Raman microscopy supported by optical clearing treatment of the skin—influence on collagen hydration

    Science.gov (United States)

    Sdobnov, Anton Yu; Tuchin, Valery V.; Lademann, Juergen; E Darvin, Maxim

    2017-07-01

    Confocal Raman microscopy (CRM) is employed to study the skin physiology, drug permeation and skin disease monitoring. In order to increase the depth of investigations, the effect of optical clearing was observed on porcine ear skin ex vivo. The optical clearing agents (OCAs) glycerol and iohexol (Omnipaque™) were applied to the porcine ear skin and investigated by CRM after 30 and 60 min of treatment. The extent of optical clearing by utilizing concentrations of 70% glycerol and 100% Omnipaque™ was evaluated. The intensity of the skin-related Raman peaks significantly increased starting from the depth 160 µm for Omnipaque™ and 40 µm for glycerol (p  ⩽  0.05) after 60 min of treatment. The OCAs’ influence on the collagen hydration in the deep-located dermis was investigated. Both OCAs induce skin dehydration, but the effect of glycerol treatment (30 min and 60 min) is stronger. The obtained results demonstrate that with increasing the treatment time, both glycerol and Omnipaque™ solutions improve the optical clearing of porcine skin making the deep-located dermal regions able for investigations. At the used concentrations and time intervals, glycerol is more effective than Omnipaque™. However, Omnipaque™ is more promising than glycerol for future in vivo applications as it is an already approved pharmaceutic substance without any known impact on the skin structure.

  15. The use of an optical data acquisition system for bladed disk vibration analysis

    Science.gov (United States)

    Lawrence, C.; Meyn, E. H.

    1985-01-01

    A new concept in instrumentation was developed by engineers at NASA Lewis Research Center to collect vibration data from multi-bladed rotors. This new concept, known as the optical data acquisition system, uses optical transducers to measure bladed tip deflections by reflection of light beams off the tips of the blades as they pass in front of the optical transducer. By using an array of transducers around the perimeter of the rotor, detailed vibration signals can be obtained. In this study, resonant frequencies and mode shapes were determined for a 56 bladed rotor using the optical system. Frequency data from the optical system was also compared to data obtained from strain gauge measurements and finite element analysis and was found to be in good agreement.

  16. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    Science.gov (United States)

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry.

  17. Four-Wave Optical Parametric Amplification in a Raman-Active Gas

    Directory of Open Access Journals (Sweden)

    Yuichiro Kida

    2015-08-01

    Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.

  18. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography.

    Science.gov (United States)

    Robles, Francisco E; Fischer, Martin C; Warren, Warren S

    2016-01-11

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography.

  19. Vibrational Characterizations of Zn0.72Li0.28O/Si Thin Films Studied by Fourier Transform Raman Spectroscopy

    International Nuclear Information System (INIS)

    Myo Myat Thet; Win Kyaw; Yin Maung Maung; Ko Ko Kyaw Soe

    2008-03-01

    The Zn0.72Li0.28O/Si (x = 0.28mol%) thin layers were fabricated on p-Si(100) substrate with five different process temperature. Vibrational characterizations of those thin films were investigated by FT- Raman spectroscopy. The resulted spectral line characters have been compared with that of Zn0.72Li0.28O/Glass thin films. Some vibrational motions of starting materials and final(candidate) thin films molecules were found in two substrates of glass and Si and vibrational frequencies were assigned by using molecular spectroscopy. Most of the frequencies of starting and final materials were found to be shifted in each of the films of two different substrates.

  20. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  1. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon

    Science.gov (United States)

    Ashok, Praveen C.; Praveen, Bavishna B.; Bellini, Nicola; Riches, Andrew; Dholakia, Kishan; Herrington, C. Simon

    2013-01-01

    We report a multimodal optical approach using both Raman spectroscopy and optical coherence tomography (OCT) in tandem to discriminate between colonic adenocarcinoma and normal colon. Although both of these non-invasive techniques are capable of discriminating between normal and tumour tissues, they are unable individually to provide both the high specificity and high sensitivity required for disease diagnosis. We combine the chemical information derived from Raman spectroscopy with the texture parameters extracted from OCT images. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These data demonstrate that multimodal optical analysis has the potential to achieve accurate non-invasive cancer diagnosis. PMID:24156073

  2. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly

    Directory of Open Access Journals (Sweden)

    Ben De Pauw

    2016-04-01

    Full Text Available Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  3. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-01-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms

  4. Side Chain and Flexibility Contributions to the Raman Optical Activity Spectra of a Model Cyclic Hexapeptide

    Czech Academy of Sciences Publication Activity Database

    Hudecová, J.; Kapitán, Josef; Baumruk, V.; Hammer, R. P.; Keiderling, T. A.; Bouř, Petr

    2010-01-01

    Roč. 114, č. 28 (2010), s. 7642-7651 ISSN 1089-5639 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Grant - others:GA UK(CZ) 126310 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * ab initio * side chain * flexibility * peptide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.732, year: 2010

  5. Storing, Retrieving, and Processing Optical Information by Raman Backscattering in Plasmas

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2002-01-01

    By employing stimulated Raman backscattering in a plasma, information carried by a laser pulse can be captured in the form of a very slowly propagating plasma wave that persists for a time large compared with the pulse duration. If the plasma is then probed with a short laser pulse, the information stored in the plasma wave can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals

  6. Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes

    Science.gov (United States)

    Bond, Tiziana C.; Letant, Sonia E.

    2014-09-09

    Cross-interrogating photonic detection systems and methods are shown. A flow through photonic crystal membrane with a surface enhanced Raman scattering (SERS) substrate is provided with pores which are distributed along multiple regions. The pores of one region have walls to which a first type of target specific anchor can be attached, while pores of another region have walls to which a second type of target specific anchor can be attached. An optical arrangement out-of-plane to the SERS substrate is also provided for enhanced sensitivity and identification of target organisms.

  7. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  8. Laterally Vibrating Resonator Based Elasto-Optic Modulation in Aluminum Nitride

    Science.gov (United States)

    2016-08-15

    the adjoining test setup used to probe the devices. Following the design of a laterally vibrating piezoelectric contour...licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4945356] The interaction of acoustic waves with light provides a useful resource to perform optical signal...recent years, several types of acousto-optic interactions have been demonstrated in a wide va- riety of devices, including the use of

  9. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    Science.gov (United States)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  10. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.; Pandey, Tribhuwan; Voiry, Damien; Liu, Jin; Moran, Samuel T.; Sharma, Ankit; Tan, Cheng; Chen, Changhsiao; Li, Lain-Jong; Chhowalla, Manish U.; Lin, Jungfu; Singh, Abhishek Kumar; Akinwande, Deji

    2015-01-01

    vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 e

  11. Imaging chemical interfaces perpendicular to the optical axis with focus-engineered coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Krishnamachari, Vishnu Vardhan; Potma, Eric Olaf

    2007-01-01

    In vibrational microscopy, it is often necessary to distinguish between chemically distinct microscopic objects and to highlight the 'chemical interfaces' present in the sample under investigation. Here we apply the concept of focus engineering to enhance the sensitivity of coherent anti-Stokes Raman scattering (CARS) microscopy to these interfaces. Based on detailed numerical simulations, we show that using a focused Stokes field with a sharp phase jump along the longitudinal direction leads to the suppression of the signal from bulk regions and improves the signal contrast from vibrational resonant interfaces oriented perpendicular to the axis of beam propagation. We also demonstrate that the CARS spectral response from chemical interfaces exhibits a clean, Raman-like band-shape with such a phase-shaped excitation. This phenomenon of interface highlighting is a consequence of the coherent nature of CARS signal generation and it involves a complex interplay of the spectral phase of the sample and the spatial phase of the excitation fields

  12. Vibrational and optical properties of amorphous metals: Progress report, July 1, 1987--June 30, 1988

    International Nuclear Information System (INIS)

    Lannin, J.S.

    1988-02-01

    Substantial progress has been achieved in the three areas of Raman scattering, inelastic neutron scattering and optical studies of amorphous metal alloys. In the Raman area, studies of amorphous disilicides of Ni and W, a-NiSi 2 and a-WSi 2 , were obtained that provide information on both the dynamics and short range order in the amorphous phase. Measurements of the Raman spectra have been compared to the neutron weighted densities of states of the corresponding crystalline systems. A detailed evaluation of the inelastic neutron spectra of the concentrated Ni alloy of a-Ni/sub .95/Tb/sub .05/ has recently been completed. Optical measurements of the real and imaginary parts of the dielectric function of a-Ni/sub .95/Tb/sub .05/ were also performed during this year using the technique of spectroscopic ellipsometry. Raman scattering measurements were performed on the amorphous state of the counterpart of the high temperature superconductor of crystalline YBa 2 Cu 3 O/sub x/

  13. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  14. Vibration Isolation Platform for Long Range Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical communication links provide higher data transfer rates with lower mass, power, and volume than conventional radio-frequency links. For deep space...

  15. Microwave, infrared and Raman spectra, adjusted r{sub 0} structural parameters, conformational stability, and vibrational assignment of cyclopropylfluorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Panikar, Savitha S. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Guirgis, Gamil A.; Eddens, Matthew T.; Dukes, Horace W. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Conrad, Andrew R.; Tubergen, Michael J. [Department of Chemistry, Kent State University, Kent, OH 44242 (United States); Gounev, Todor K. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Durig, James R., E-mail: durigj@umkc.edu [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2013-03-29

    Highlights: ► The most stable gauche conformer has been identified from microwave spectra. ► Enthalpy difference has been determined between the two forms. ► Adjusted r{sub 0} structures were obtained for the gauche form. ► Ab initio calculations were performed for the two conformers. - Abstract: FT-microwave, infrared spectra of gas and Raman spectra of liquid for cyclopropylfluorosilane, c-C{sub 3}H{sub 5}SiH{sub 2}F have been recorded. 51 transitions for the {sup 28}Si, {sup 29}Si, and {sup 30}Si isotopomers have been assigned for the gauche conformer. Enthalpy differences in xenon solution by variable temperature infrared spectra between the more stable gauche and lesser stable cis form gave 109 ± 9 cm{sup −1}. From the microwave rotational constants for the three isotopomers ({sup 28}Si, {sup 29}Si, {sup 30}Si) combined with structural parameters predicted from MP2(full)/6-311+G(d, p) calculations, adjusted r{sub 0} structural parameters were obtained for the gauche conformer. The heavy atom distances (Å): Si–C{sub 2} = 1.836(3); C{sub 2}–C{sub 4} = 1.525(3); C{sub 2}–C{sub 5} = 1.519(3); C{sub 4}–C{sub 5} = 1.494(3); Si–F = 1.594(3) and angles (°): ∠CSiF = 111.2(5); ∠SiC{sub 2}C{sub 4} = 117.5(5); ∠SiC{sub 2}C{sub 5} = 119.2(5). To support the vibrational assignments, MP2(full)/6-31G(d) calculations were carried out. Results are discussed and compared to the corresponding properties of some similar molecules.

  16. Structural and vibrational spectral investigations of melaminium glutarate monohydrate by FTIR, FT-Raman and DFT methods

    Science.gov (United States)

    Arjunan, V.; Marchewka, M. K.; Raj, Arushma; Yang, Haifeng; Mohan, S.

    2015-01-01

    Melaminium glutarate monohydrate has been synthesised and FTIR and FT-Raman spectral investigations are carried out. The molecular geometry and vibrational frequencies of melaminium glutarate monohydrate in the ground state have been determined by using B3LYP method with 6-31++G**, 6-31++G and cc-pVDZ basis sets. The stability of the system, inter molecular hydrogen bonding and the electron donor-acceptor interactions of the complex have been investigated by using natural bonding orbital analysis. It reveals that the Nsbnd H⋯O and Osbnd H⋯O intermolecular interactions significantly influence crystal packing of this molecular complex. The glutarate anion forms hydrogen bonds to the melaminium cation as the proton donor of the type Nsbnd H⋯O with a distance (N⋯O) = 2.51 Å. It is also linked by other hydrogen bonds to the water molecule of the type Osbnd H⋯O with (O⋯O) = 2.82 Å and to the amino (sbnd NH2) group of melaminium cation of the type Nsbnd H⋯O with (N⋯O) = 2.82 Å as the proton acceptor. The electrostatic potential of the complex is in the range +1.892e × 10-2 to -1.892e × 10-2. The limits of total electron density of the complex is +6.679e × 10-2 to -6.679e × 10-2.

  17. Structural and vibrational spectral investigations of melaminium glutarate monohydrate by FTIR, FT-Raman and DFT methods.

    Science.gov (United States)

    Arjunan, V; Marchewka, M K; Raj, Arushma; Yang, Haifeng; Mohan, S

    2015-01-25

    Melaminium glutarate monohydrate has been synthesised and FTIR and FT-Raman spectral investigations are carried out. The molecular geometry and vibrational frequencies of melaminium glutarate monohydrate in the ground state have been determined by using B3LYP method with 6-31++G(**), 6-31++G and cc-pVDZ basis sets. The stability of the system, inter molecular hydrogen bonding and the electron donor-acceptor interactions of the complex have been investigated by using natural bonding orbital analysis. It reveals that the N-H⋯O and O-H⋯O intermolecular interactions significantly influence crystal packing of this molecular complex. The glutarate anion forms hydrogen bonds to the melaminium cation as the proton donor of the type N-H⋯O with a distance (N⋯O)=2.51 Å. It is also linked by other hydrogen bonds to the water molecule of the type O-H⋯O with (O⋯O)=2.82 Å and to the amino (NH2) group of melaminium cation of the type N-H⋯O with (N⋯O)=2.82 Å as the proton acceptor. The electrostatic potential of the complex is in the range +1.892e×10(-2) to -1.892e×10(-2). The limits of total electron density of the complex is +6.679e×10(-2) to -6.679e×10(-2). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail: H.G.M.Edwards@bradford.ac.uk; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)

    2008-07-14

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  19. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.

    Science.gov (United States)

    Saariaho, Anna-Maija; Jääskeläinen, Anna-Stiina; Nuopponen, Mari; Vuorinen, Tapani

    2003-01-01

    Raman spectroscopy of wood and lignin samples is preferably carried out in the near-infrared region because lignin produces an intense laser-induced fluorescence background at visible excitation wavelengths. However, excitation of aromatic and conjugated lignin structures with deep ultra violet (UV) light gives resonance-enhanced Raman signals while the overlapping fluorescence is eliminated. In this study, ultra violet resonance Raman (UVRR) spectroscopy was used to define characteristic vibration bands of model compounds of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures at three excitation wavelengths (229, 244, and 257 nm). The intensities of each band, relative to the intensity of the aromatic vibration band at 1600 cm-1, were defined and the most suitable excitation wavelength was suggested for each structure. p-Hydroxyphenyl structures showed intensive characteristic bands at 1217-1214 and 1179-1167 cm-1 with excitation at 244 nm, whereas the bands of guaiacyl structures were more intensive with 257 nm excitation. Most intensive characteristic bands of guaiacyl structures were found at 1289-1279, 1187-1185, 1158-1155, and 791-704 cm-1. Syringyl structures had almost identical spectra with 244 and 257 nm excitations with characteristic bands at 1514-1506, 1333-1330, and 981-962 cm-1. The characteristic bands of the three structural units were also found from the compression wood, softwood, and hardwood samples, indicating that UVRR spectroscopy can be applied for the determination of chemical structures of lignin.

  20. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    International Nuclear Information System (INIS)

    Ali, Hassan Refat H.; Edwards, Howell G.M.; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J.

    2008-01-01

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting β-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control

  1. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach

    Science.gov (United States)

    Petersen, D.; Naveed, P.; Ragheb, A.; Niedieker, D.; El-Mashtoly, S. F.; Brechmann, T.; Kötting, C.; Schmiegel, W. H.; Freier, E.; Pox, C.; Gerwert, K.

    2017-06-01

    Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples.

  2. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach.

    Science.gov (United States)

    Petersen, D; Naveed, P; Ragheb, A; Niedieker, D; El-Mashtoly, S F; Brechmann, T; Kötting, C; Schmiegel, W H; Freier, E; Pox, C; Gerwert, K

    2017-06-15

    Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples. Copyright

  3. Vibrational collapse of boroxol rings in compacted B2O3 glasses: a study of Raman scattering and low temperature specific heat

    Science.gov (United States)

    Carini, Giovanni, Jr.; Carini, Giuseppe; D’Angelo, Giovanna; Federico, Mauro; Romano, Valentino

    2018-05-01

    Low and high frequency Raman scattering of B2O3 glasses, compacted under GPa pressures, has been performed to investigate structural changes due to increasing atomic packing. Compacted glasses, annealed at ambient temperature and pressure, experience a time-dependent decrease of the density to a smaller constant value over a period of few months, displaying a permanent plastic deformation. Increasing densification determines a parallel and progressive decrease of the intensity of the Boson peak and the main band at 808 cm‑1, both these modes arising from localized vibrations involving planar boroxol rings (B3O6), the glassy units formed from three basic BO3 triangles. The 808 cm‑1 mode preserves its frequency, while the BP evidences a well-defined frequency increase. The high-frequency multicomponent band between 1200 and 1600 cm‑1 also changes with increasing densification, disclosing a decreasing intensity of the 1260 cm‑1 mode due to oxygen vibrations of BO3 units bridging boroxol rings. This indicates the gradual vibrational collapse of groups formed from rings connected by more complex links than a single bridging oxygen. The observed behaviours suggest that glass compaction causes severe deformation of boroxol rings, determining a decrease of groups which preserve unaltered their vibrational activity. Growing glass densification stiffens the network and leads to a decrease of the excess heat capacity over the Debye prediction below 20 K, which is not accounted for by the hardening of the elastic continuum. By using the low-frequency Raman scattering to determine the temperature dependence of the heat capacity, it has been evaluated the density of low-frequency vibrational states which discloses a significant reduction of excess modes with increasing density.

  4. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  5. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride

    Directory of Open Access Journals (Sweden)

    Siddhartha Ghosh

    2016-06-01

    Full Text Available An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic (p coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

  6. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.

    Science.gov (United States)

    Hippler, Michael

    2015-08-04

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.

  7. Vibrational normal modes of diazo-dimedone: A comparative study by Fourier infrared/Raman spectroscopies and conformational analysis by MM/QM

    Science.gov (United States)

    Téllez Soto, C. A.; Ramos, J. M.; Rianelli, R. S.; de Souza, M. C. B. V.; Ferreira, V. F.

    2007-07-01

    The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione ( 3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -C dbnd N dbnd N oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm -1 in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled ν(N dbnd N) + ν(C dbnd N) vibrational mode with higher participation of the N dbnd N stretching. A 2188 cm -1 (IR) and at 2186 cm -1 (R) can be assigned as a overtone of one of ν(CC) normal mode or to a combination band of the fundamentals δ(CCH) found at 1169 cm -1 and the δ (CC dbnd N) found at 1017 cm -1 enhanced by Fermi resonance.

  8. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    Science.gov (United States)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  9. Thermal transport of carbon nanotubes and graphene under optical and electrical heating measured by Raman spectroscopy

    Science.gov (United States)

    Hsu, I.-Kai

    This thesis presents systematic studies of thermal transport in individual single walled carbon nanotubes (SWCNTs) and graphene by optical and electrical approaches using Raman spectroscopy. In the work presented from Chapter 2 to Chapter 6, individual suspended CNTs are preferentially measured in order to explore their intrinsic thermal properties. Moreover, the Raman thermometry is developed to detect the temperature of the carbon nanotube (CNT). A parabolic temperature profile is observed in the suspended region of the CNT while a heating laser scans across it, providing a direct evidence of diffusive thermal transport in an individual suspended CNT. Based on the curvature of the temperature profile, we can solve for the ratio of thermal contact resistance to the thermal resistance of the CNT, which spans the range from 0.02 to 17. The influence of thermal contact resistance on the thermal transport in an individual suspended CNT is also studied. The Raman thermometry is carried out in the center of a CNT, while its contact length is successively shortened by an atomic force microscope (AFM) tip cutting technique. By investigating the dependence of the CNT temperature on its thermal contact length, the temperature of a CNT is found to increase dramatically as the contact length is made shorter. This work reveals the importance of manipulating the CNT thermal contact length when adopting CNT as a thermal management material. In using a focused laser to induce heating in a suspended CNT, one open question that remains unanswered is how many of the incident photons are absorbed by the CNT of interest. To address this question, micro-fabricated platinum thermometers, together with micro-Raman spectroscopy are used to quantify the optical absorption of an individual CNT. The absorbed power in the CNT is equal to the power detected by two thermometers at the end of the CNT. Our result shows that the optical absorption lies in the range between 0.03 to 0.44%. In

  10. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  11. A novel liquid-filled microstructured polymer optical fiber as bio-sensing platform for Raman spectroscopy

    Science.gov (United States)

    Azkune, Mikel; Arrospide, Eneko; Berganza, Amaia; Bikandi, Iñaki; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba

    2018-02-01

    One approach to overcome the poor efficiency of the Raman scattering as a sensing platform is to use microstructured optical fibers. In this type of fibers with a longitudinal holey structure, light interacts with the target sample, which is confined in the core, giving rise to a light intensity increase of the obtained Raman spectra due to the large interaction distances and the guidance of the scattered light. In this work, we present an ad-hoc fabricated liquid-core microstructured polymer optical fiber (LC-mPOF) as a bio-sensing platform for Raman Spectroscopy. Arising from an initial simulation stage, we create the desired preform using the drilling technique and afterwards the LC-mPOF is drawn in our fiber drawing tower. The guiding mechanism of the light through the solution has a major importance, being a key factor to obtain appreciable enhancements in Raman scattering. In this case, in order to optimize the Raman scattering signal of dissolved glucose (target molecule), we have filled the core with an aqueous solution of the target molecule, enabling in this way the modified total internal reflection mechanism. Experimental Raman measurements are performed and results are discussed.

  12. Investigations on structural, vibrational, morphological and optical properties of CdS and CdS/Co films by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Aksay, S.; Polat, M.; Ozer, T.; Koese, S.; Guerbuez, G.

    2011-01-01

    CdS and CdS/Co films have been deposited on glass substrates by an ultrasonic spray pyrolysis method. The effects of Co incorporation on the structural, optical, morphological, elemental and vibrational properties of these films were investigated. XRD analysis confirmed the hexagonal wurtzite structure of all films and had no impurity phase. While CdS film has (0 0 2) as the preferred orientation, CdS/Co films have (1 1 0) as the preferred orientation. The direct optical band gap was found to decrease from 2.42 to 2.39 eV by Co incorporation. The decrease of the direct energy gaps by increasing Co contents is mainly due to the sp-d exchange interaction between the localized d-electrons of Co 2+ ions and band electrons of CdS. After the optical investigations, it was seen that the transmittance of CdS films decreased by Co content. The Raman measurements revealed two peaks corresponding to the 1LO and 2LO modes of hexagonal CdS. The vibrational modes of Cd-S were obtained in the wavenumber range (590-715 cm -1 ) using Fourier transform infrared spectroscopy (FTIR). The elemental analysis of the film was done by energy dispersive X-ray spectrometry.

  13. Investigations on structural, vibrational, morphological and optical properties of CdS and CdS/Co films by ultrasonic spray pyrolysis

    Science.gov (United States)

    Aksay, S.; Polat, M.; Özer, T.; Köse, S.; Gürbüz, G.

    2011-09-01

    CdS and CdS/Co films have been deposited on glass substrates by an ultrasonic spray pyrolysis method. The effects of Co incorporation on the structural, optical, morphological, elemental and vibrational properties of these films were investigated. XRD analysis confirmed the hexagonal wurtzite structure of all films and had no impurity phase. While CdS film has (0 0 2) as the preferred orientation, CdS/Co films have (1 1 0) as the preferred orientation. The direct optical band gap was found to decrease from 2.42 to 2.39 eV by Co incorporation. The decrease of the direct energy gaps by increasing Co contents is mainly due to the sp-d exchange interaction between the localized d-electrons of Co2+ ions and band electrons of CdS. After the optical investigations, it was seen that the transmittance of CdS films decreased by Co content. The Raman measurements revealed two peaks corresponding to the 1LO and 2LO modes of hexagonal CdS. The vibrational modes of Cd-S were obtained in the wavenumber range (590-715 cm-1) using Fourier transform infrared spectroscopy (FTIR). The elemental analysis of the film was done by energy dispersive X-ray spectrometry.

  14. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.

    2003-01-01

    The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  15. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6

    International Nuclear Information System (INIS)

    Dammak, T.; Elleuch, S.; Bougzhala, H.; Mlayah, A.; Chtourou, R.; Abid, Y.

    2009-01-01

    An organic-inorganic hybrid perovskite (C 4 H 9 NH 3 ) 4 Pb 3 I 4 Br 6 was synthesized and studied by X-ray diffraction, Raman and infrared spectroscopies, optical transmission and photoluminescence. The title compound, abbreviated (C 4 ) 4 Pb 3 I 4 Br 6 , crystallises in a periodic two-dimensional multilayer structure with P2 1 /a space group. The structure is built up from alternating inorganic and organic layers. Each inorganic layer consists of three sheets of PbX 6 (X=I, Br) octahedra. Raman and infrared spectra of the title compound were recorded in the 100-3500 and 400-4000 cm -1 frequency ranges, respectively. An assignment of the observed vibration modes is reported. Optical transmission measurements, performed on thin films of (C 4 ) 4 Pb 3 I 4 Br 6 , revealed two absorption bands at 474 and 508 nm. Photoluminescence measurements have shown a green emission peak at 519 nm.

  16. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  17. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  18. Raman tweezers spectroscopy of live, single red and white blood cells.

    Directory of Open Access Journals (Sweden)

    Aseefhali Bankapur

    Full Text Available An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC and white blood cells (WBC under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW. Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

  19. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    International Nuclear Information System (INIS)

    Chang Zeng-Guang; Zhang Jing-Tao; Niu Yue-Ping; Gong Shang-Qing

    2012-01-01

    We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type

  20. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    Science.gov (United States)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  1. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  2. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano

    2013-04-23

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna\\'s surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  3. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano; Bochterle, Jö rg; Toma, Andrea; Huck, Christian W.; Neubrech, Frank; Messina, Elena; Fazio, Barbara; Maragó , Onofrio M.; Di Fabrizio, Enzo M.; Lamy De La Chapelle, Marc L.; Gucciardi, Pietro Giuseppe; Pucci, Annemarie

    2013-01-01

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna's surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  4. A hydrostatic leak test for water pipeline by using distributed optical fiber vibration sensing system

    Science.gov (United States)

    Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang

    2015-07-01

    A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.

  5. Temperature monitoring of vehicle engine exhaust gases under vibration condition using optical fibre temperature sensor systems

    International Nuclear Information System (INIS)

    Zhao, W Z; Suna, T; Grattana, K T V; Shen, Y H; Wei, C L; Al-Shamma'a, A I

    2006-01-01

    Two optical approaches, comprising and contracting both the fluorescence decay lifetime and the fibre Bragg grating (FBG) methods, were developed and evaluated for temperature monitoring of exhaust gases for use on a vehicle engine. The FBGs used in the system were written into specially designed Bi-Ge co-doped photosensitive fibres, to enable them to sustain high temperatures to over 800 0 C, which is far beyond that of FBGs written into most commercial photosensitive fibres. The sensors were subjected to a range of vibration tests, as a part of an optical exhaust monitoring network under development, and results from the test carried out are reported

  6. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    Science.gov (United States)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  7. Vibrational Order, Structural Properties, and Optical Gap of ZnO Nanostructures Sintered through Thermal Decomposition

    Directory of Open Access Journals (Sweden)

    Alejandra Londono-Calderon

    2014-01-01

    Full Text Available The sintering of different ZnO nanostructures by the thermal decomposition of zinc acetate is reported. Morphological changes from nanorods to nanoparticles are exhibited with the increase of the decomposition temperature from 300 to 500°C. The material showed a loss in the crystalline order with the increase in the temperature, which is correlated to the loss of oxygen due to the low heating rate used. Nanoparticles have a greater vibrational freedom than nanorods which is demonstrated in the rise of the main Raman mode E 2(high during the transformation. The energy band gap of the nanostructured material is lower than the ZnO bulk material and decreases with the rise in the temperature.

  8. Ab initio study of structural, electronic, optical, and vibrational properties of Zn{sub x}S{sub y} (x + y = 2 to 5) nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. S.; Pandey, D. K., E-mail: pdhiraj2000@gmail.com; Agrawal, S.; Agrawal, B. K. [Allahabad University, Department of Physics (India)

    2010-03-15

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn{sub x}S{sub y} (x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS{sub 2}, ZnS{sub 3}, and ZnS{sub 4} nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  9. Ab initio study of structural, electronic, optical, and vibrational properties of Zn x S y ( x + y = 2 to 5) nanoclusters

    Science.gov (United States)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-03-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  10. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island: Implication for Mars

    Directory of Open Access Journals (Sweden)

    E.A. Lalla

    2016-07-01

    Full Text Available A detailed vibrational Raman-IR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island: (1 the Arenas Negras volcano which belongs to the historical eruption not showing visible alteration and (2 Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction caused by submarine alteration. These places have been extensively studied due to its similarity with the surface of Mars. The analysis is based on the mineral detection of selected samples by a Micro-Raman study of the materials. The complementary techniques have confirmed the mineralogy detected by the Raman measurement. The results show a volcanic environment behavior with primary phases like olivine, pyroxene, and feldspar/plagioclase. Moreover, the presence of accessory minerals or secondary mineralization like phosphate, iron oxides, zeolite or carbonates shows the alteration processes on each outcrop. The variation in the crystallinity and amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes and external weathering processes, which shows several analogies with the ancient volcanic activity from Mars.

  11. Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gucciardi, P G [CNR-Istituto per i Processi Chimico-Fisici, sezione Messina, Salita Sperone, Contrada Papardo, I-98158 Faro Superiore, Messina (Italy); Lopes, M; Deturche, R; Julien, C; Barchiesi, D; Chapelle, M Lamy de la [Institut Charles Delaunay-CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP2060, 10010 Troyes (France)

    2008-05-28

    We have investigated the depolarization effects of light scattered by sharp tips used for apertureless near-field optical microscopy. Dielectric and metal coated tips have been investigated and depolarization factors between 5 and 30% have been measured, changing as a function of the incident light polarization and of the tip shape. The experimental results are in good agreement with theoretical calculations performed by the finite element method, giving a near-field depolarization factor close to 10%. The effect of depolarization has been investigated in polarized tip-enhanced Raman spectroscopy (TERS) experiments; the depolarization gives rise to forbidden Raman modes in Si crystals.

  12. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    Science.gov (United States)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  13. Ag clustering investigation in laser irradiated ion-exchanged glasses by optical and vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trave, E., E-mail: enrico.trave@unive.it [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Cattaruzza, E.; Gonella, F.; Calvelli, P. [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Quaranta, A. [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38050 Povo (Italy); Rahman, A.; Mariotto, G. [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We modify the properties of Ag{sup +} exchanged glasses by thermal and laser treatment. Black-Right-Pointing-Pointer The induced microstructural changes are analyzed by optical and Raman spectroscopy. Black-Right-Pointing-Pointer Ag-based species in the glass show a peculiar PL activity in the UV-Vis range. Black-Right-Pointing-Pointer Raman and OA analysis allow for determining the Ag cluster size evolution. Black-Right-Pointing-Pointer Laser processing leads to different cluster formation and fragmentation mechanisms. - Abstract: Ion exchange process is widely used to dope silicate glass layers with silver for several applications, ranging from light waveguide to nanostructured composite glass fabrication. The silver-doped structure and its physical properties depend on the preparation parameters as well as on subsequent treatments. In particular, laser irradiation of the ion exchanged glasses has been demonstrated to be an effective tool to control cluster size and size distribution. Nevertheless, a complete comprehension of the basic phenomena and a systematic characterization of these systems are still lacking. In this paper, an extended optical characterization is presented for soda-lime glass slides, doped with silver by Ag{sup +}-Na{sup +} ion exchange, thermally treated and irradiated with a Nd:YAG laser beam at different wavelengths, and for different energy density. The samples were characterized by various spectroscopic techniques, namely, optical absorption, photoluminescence and micro-Raman analysis. The availability of all these characterization techniques allowed pointing out a suitable scenario for the Ag clustering evolution as a function of the ion exchange, annealing and laser irradiation parameters.

  14. Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu{sub 2}(Fe,Zn)SnS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Fontane, X.; Izquierdo-Roca, V.; Saucedo, E. [IREC: Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adria del Besos, Barcelona 08930 (Spain); Schorr, S. [Free University Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Berlin (Germany); Yukhymchuk, V.O.; Valakh, M.Ya. [V.E. Lahskaryov Institute of Semiconductor Physics, National Academy of Sciences, Prospekt Nauki 41, Kiev 03028 (Ukraine); Perez-Rodriguez, A., E-mail: aperezr@irec.cat [IREC: Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adria del Besos, Barcelona 08930 (Spain); IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Morante, J.R. [IREC: Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adria del Besos, Barcelona 08930 (Spain); IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Analysis of main and weaker Raman peaks from Cu{sub 2}FeZnS{sub 4} and Cu{sub 2}ZnSnS{sub 4} compounds. Black-Right-Pointing-Pointer Identification of a cation disorder induced Raman peak in Cu{sub 2}ZnSnS{sub 4}. Black-Right-Pointing-Pointer Analysis of spectral features of main Raman peaks from Cu{sub 2}(Fe,Zn)SnS{sub 4}. - Abstract: This work reports the analysis of the vibrational properties of stannite-kesterite Cu{sub 2}(Fe,Zn)SnS{sub 4} compounds that has been performed by Raman scattering measurements. The detailed analysis of the experimental spectra has allowed determining the frequency and symmetry assignment of the main and weaker peaks from both stannite Cu{sub 2}FeSnS{sub 4} (CFTS) and kesterite Cu{sub 2}ZnSnS{sub 4} (CZTS) phases. The measurements performed in the kesterite CZTS samples have also revealed the presence of local inhomogeneities that are characterised by an additional peak in the spectra at about 331 cm{sup -1}. This peak has been related to the presence in these local regions of a high degree of disorder in the cation sublattice, in agreement with previous neutron diffraction analysis in similar samples. Finally, the spectra from the solid solution alloys show a one-mode behaviour of the main A/A{sub 1} peak with the chemical composition.

  15. SIMULATION OF FORWARD AND BACKWARD WAVES EVOLUTION OF FEW-CYCLE PULSES PROPAGATING IN AN OPTICAL WAVEGUIDE WITH DISPERSION AND CUBIC NONLINEARITY OF ELECTRONIC AND ELECTRONIC-VIBRATION NATURE

    Directory of Open Access Journals (Sweden)

    L. S. Konev

    2015-09-01

    Full Text Available Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.

  16. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  17. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Huang, Zhiwei

    2015-08-01

    This work aims to evaluate clinical value of a fiber-optic Raman spectroscopy technique developed for in vivo diagnosis of esophageal squamous cell carcinoma (ESCC) during clinical endoscopy. We have developed a rapid fiber-optic Raman endoscopic system capable of simultaneously acquiring both fingerprint (FP)(800-1800 cm-1) and high-wavenumber (HW)(2800-3600 cm-1) Raman spectra from esophageal tissue in vivo. A total of 1172 in vivo FP/HW Raman spectra were acquired from 48 esophageal patients undergoing endoscopic examination. The total Raman dataset was split into two parts: 80% for training; while 20% for testing. Partial least squares-discriminant analysis (PLS-DA) and leave-one patient-out, cross validation (LOPCV) were implemented on training dataset to develop diagnostic algorithms for tissue classification. PLS-DA-LOPCV shows that simultaneous FP/HW Raman spectroscopy on training dataset provides a diagnostic sensitivity of 97.0% and specificity of 97.4% for ESCC classification. Further, the diagnostic algorithm applied to the independent testing dataset based on simultaneous FP/HW Raman technique gives a predictive diagnostic sensitivity of 92.7% and specificity of 93.6% for ESCC identification, which is superior to either FP or HW Raman technique alone. This work demonstrates that the simultaneous FP/HW fiber-optic Raman spectroscopy technique improves real-time in vivo diagnosis of esophageal neoplasia at endoscopy.

  18. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.

    2015-01-01

    on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3......LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated...

  19. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    Science.gov (United States)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  20. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    Science.gov (United States)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  1. Research and implementation of simulation for TDICCD remote sensing in vibration of optical axis

    Science.gov (United States)

    Liu, Zhi-hong; Kang, Xiao-jun; Lin, Zhe; Song, Li

    2013-12-01

    During the exposure time, the charge transfer speed in the push-broom direction and the line-by-lines canning speed of the sensor are required to match each other strictly for a space-borne TDICCD push-broom camera. However, as attitude disturbance of satellite and vibration of camera are inevitable, it is impossible to eliminate the speed mismatch, which will make the signal of different targets overlay each other and result in a decline of image resolution. The effects of velocity mismatch will be visually observed and analyzed by simulating the degradation of image quality caused by the vibration of the optical axis, and it is significant for the evaluation of image quality and design of the image restoration algorithm. How to give a model in time domain and space domain during the imaging time is the problem needed to be solved firstly. As vibration information for simulation is usually given by a continuous curve, the pixels of original image matrix and sensor matrix are discrete, as a result, they cannot always match each other well. The effect of simulation will also be influenced by the discrete sampling in integration time. In conclusion, it is quite significant for improving simulation accuracy and efficiency to give an appropriate discrete modeling and simulation method. The paper analyses discretization schemes in time domain and space domain and presents a method to simulate the quality of image of the optical system in the vibration of the line of sight, which is based on the principle of TDICCD sensor. The gray value of pixels in sensor matrix is obtained by a weighted arithmetic, which solves the problem of pixels dismatch. The result which compared with the experiment of hardware test indicate that this simulation system performances well in accuracy and reliability.

  2. Combined fluorescence-Raman spectroscopy measurements with an optical fiber probe for the diagnosis of melanocytic lesions

    Science.gov (United States)

    Cosci, Alessandro; Cicchi, Riccardo; Rossari, Susanna; De Giorgi, Vincenzo; Massi, Daniela; Pavone, Francesco S.

    2012-02-01

    We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.

  3. First-Principles Predictions of Vibrational Raman Optical Activity of Globular Proteins

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Kapitán, J.; Bouř, Petr

    2015-01-01

    Roč. 6, č. 16 (2015), s. 3314-3319 ISSN 1948-7185 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA15-09072S Grant - others:GA MŠk(CZ) LM2010005; GA MŠk(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : molecular property tensors * activity spectra * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.539, year: 2015 http://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b01500

  4. Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational spectroscopy

    DEFF Research Database (Denmark)

    Abdali, Salim

    2006-01-01

    exposure and higher concentration of the sample. With SEROA, these obstacles can be overcome, in that both studies on single molecule, i.e., very low concentration, and faster acquisition of the signal can be achieved. In the present work silver colloids were mixed with solution, in which a pentapeptide...

  5. Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity

    DEFF Research Database (Denmark)

    Barron, L.D.; Blanch, E.W.; McColl, I.H.

    2003-01-01

    stacking arrangement and the mutual orientation of the sugar and base rings around the C-N glycosidic link. The ROA spectra of intact viruses provide information on the folds of the coat proteins and the nucleic acid structure. The large number of structure-sensitive bands in protein ROA spectra...... is especially favourable for fold determination using pattern recognition techniques. This article gives a brief account of the ROA technique and presents the ROA spectra of a selection of proteins, nucleic acids and viruses that illustrate the applications of ROA spectroscopy in biomolecular research....

  6. Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2.

    Science.gov (United States)

    Zhang, Shishu; Mao, Nannan; Zhang, Na; Wu, Juanxia; Tong, Lianming; Zhang, Jin

    2017-10-24

    The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS 2 ) and show a large circular intensity differential (CID) of Raman scattering in ReS 2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.

  7. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  8. Electronic and vibrational Raman spectroscopy of Nd0.5Sr0.5MnO3 ...

    Indian Academy of Sciences (India)

    [25] of the surface Rayleigh wave frequency shows an anomaly at 200 K, which is attributed to the ... using a hydrostatic press at a pressure of 5 t. The rods thus ... is found that the electronic Raman background becomes flat below TC. This flat.

  9. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering

    International Nuclear Information System (INIS)

    Wang, Zefeng; Yu, Fei; Wadsworth, William J; Knight, Jonathan C

    2014-01-01

    We report here efficient 1.9 μm emission by pure stimulated vibrational Raman scattering in a hydrogen-filled anti-resonant hollow-core fiber pumped with a 1064 nm microchip laser. A maximum quantum conversion efficiency ∼48% was achieved by using a 6.5 m length of fiber filled with 23 bar hydrogen, with a maximum peak output power >2 kW. By properly designing the transmission bands of the fiber, selecting alternative pump sources and active gases, the emission wavelength could be extended into the mid-infrared. This provides a potential route for generating efficient, compact, broadly tunable, high power, and narrow linewidth mid-infrared fiber gas lasers with broad application in defense, environmental, and medical monitoring. (letter)

  10. Optical and vibrational properties of (ZnO){sub k} In{sub 2}O{sub 3} natural superlattice nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Margueron, Samuel [Laboratoire Matériaux Optiques, Photonique et Systèmes, Université de Lorraine et CentraleSupélec, 57070 Metz (France); John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Maryland 02138 (United States); Pokorny, Jan; Skiadopoulou, Stella; Kamba, Stanislav [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Liang, Xin [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu Province 213164 (China); Clarke, David R. [John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Maryland 02138 (United States)

    2016-05-21

    A thermodynamically stable series of superlattices, (ZnO){sub k}In{sub 2}O{sub 3}, form in the ZnO-In{sub 2}O{sub 3} binary oxide system for InO{sub 1.5} concentrations from about 13 up to about 33 mole percent (m/o). These natural superlattices, which consist of a periodic stacking of single, two-dimensional sheets of InO{sub 6} octahedra, are found to give rise to systematic changes in the optical and vibrational properties of the superlattices. Low-frequency Raman scattering provides the evidence for the activation of acoustic phonons due to the folding of Brillouin zone. New vibrational modes at 520 and 620 cm{sup −1}, not present in either ZnO or In{sub 2}O{sub 3}, become Raman active. These new modes are attributed to collective plasmon oscillations localized at the two-dimensional InO{sub 1.5} sheets. Infrared reflectivity experiments, and simulations taking into account a negative dielectric susceptibility due to electron carriers in ZnO and interface modes of the dielectric layer of InO{sub 2}, explain the occurrence of these new modes. We postulate that a localized electron gas forms at the ZnO/InO{sub 2} interface due to the electron band alignment and polarization effects. All our observations suggest that there are quantum contributions to the thermal and electrical conductivity in these natural superlattices.

  11. L-Alanyl-L-alanine Conformational Changes Induced by pH As Monitored by the Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Šebek, Jiří; Kapitán, Josef; Šebestík, Jaroslav; Baumruk, V.; Bouř, Petr

    2009-01-01

    Roč. 113, č. 27 (2009), s. 7760-7768 ISSN 1089-5639 R&D Projects: GA ČR GA202/07/0732; GA ČR GA203/07/1517; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * peptides * conformation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  12. Resonance Raman detection of iron-ligand vibrations in cyano(pyridine)(octaethylporphinato)iron(III): Effects of pyridine basicity on the Fe-CN bond strength

    International Nuclear Information System (INIS)

    Uno, Tadayuki; Hatano, Keiichiro; Nishimura, Yoshifumi; Arata, Yoji

    1988-01-01

    The influence of axial ligand basicity on the bonding of iron(III) in cyano adducts of octaethylporphyrin has been studied by resonance Raman spectroscopy. In a six-coordinate ferric low-spin complex, cyano(pyridine)(octaethylporphinato)iron(III), Fe(OEP)(CN)(py), Raman lines at 449 and 191 cm -1 were assigned to the ν(Fe-CN) and ν(Fe-py) stretching modes, respectively. When pyridine was displaced with its derivatives, py-X, where X = 4-cyano, 3-acetyl, 3-methyl, 4-methyl, 3,4-dimethyl, and 4-dimethylamino, the ν(Fe-CN) stretching frequency was found to decrease in the complex with a high pyridine basicity. It was concluded that the stronger the trans pyridine basicity, the weaker the iron-carbon (cyanide) bond. A clear frequency shift was observed in the ν 4 model, though most of the porphyrin vibrations were insensitive to the ligand substitution. The frequency of the ν 4 mode, which is the C a -N(pyrrole) breathing vibration of the porphyrin skeleton, was found to increase with an increase in pyridine basicity. This is contrary to what was found in ferrous low-spin hemes as CO complexes. The ν 4 shift in the CN complexes was explained in terms of forward π donation; donation of electrons from the porphyrin π orbital to the d π vacancy of the low-spin iron(III) weakened the C a -N(pyrrole) bonds and hence decreased the ν 4 frequency. 32 references, 8 figures

  13. Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan

    2016-10-01

    An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.

  14. Non-invasive optical detection of esophagus cancer based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong

    2014-09-01

    A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.

  15. LIBS, Raman spectroscopy, and optical microscopy analyses of superficial encrustations on ancient tesserae in Lebanon

    Science.gov (United States)

    Tomkowska, Anna; Chmielewski, Krzysztof; Skrzyczanowski, Wojciech; Mularczyk-Oliwa, Monika; Ostrowski, Roman; Strzelec, Marek

    2017-07-01

    The aim of research was determination of composition and nature of superficial deposits, cumulated at the selected mosaic's tesserae from Lebanon. Selected were three series of objects from different locations, namely from the seaside and mountain archaeological sites as well as from the mosaics exposed in the city center. Analyzed were stone and ceramic tesserae. The selection of objects was dictated by wide diversification of factors influencing the state of preservation and composition of deposits in given location. Investigations were performed including LIBS, FT-IR, Raman spectroscopy and optical 3D microscopy. The experimental results included composition and kind of deposit at the tesserae surfaces, and composition of tesserae itself. Compounds in the superficial deposits were identified. Confirmed was occurrence of different encrustations in dependence on geographic localization of a given sample. The interpretation of results was supported by multivariate statistical techniques, especially by the factor analysis. Performed analyses constitute the pioneer realization in terms of determination of deposits composition at the surface of mosaics from the Lebanon territory.

  16. New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer.

    Science.gov (United States)

    Kalanoor, Basanth S; Ronen, Maria; Oren, Ziv; Gerber, Doron; Tischler, Yaakov R

    2017-03-31

    The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.

  17. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    International Nuclear Information System (INIS)

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-01-01

    Resonance Raman and electronic absorption spectra are reported for the S 0 and T 1 states of the carotenoids β-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C 50 )-β-carotene, β-apo-8'-carotenal, and ethyl β-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S 0 and T 1 , regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S 0 and T 1 reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T 1 states of carotenoids and in the S 1 states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S 1 lifetime (of the 1 B/sub u/ and/or the 1 A/sub g/* states) of β-carotene in benzene is less than 1 ps

  18. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  19. Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.

  20. VELOCITY FIELD COMPUTATION IN VIBRATED GRANULAR MEDIA USING AN OPTICAL FLOW BASED MULTISCALE IMAGE ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    Johan Debayle

    2011-05-01

    Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.

  1. Structural, electronic and vibrational properties of LaF3 according to density functional theory and Raman spectroscopy

    Science.gov (United States)

    Oreshonkov, A. S.; Roginskii, E. M.; Krylov, A. S.; Ershov, A. A.; Voronov, V. N.

    2018-06-01

    Crystal structure of LaF3 single crystal is refined in tysonite-type trigonal unit cell P c1 using density functional theory calculations and Raman spectroscopy. It is shown that trigonal structure with P c1 space group is more energy-efficient than hexagonal structure with space group P63 cm. Simulated Raman spectra obtained using LDA approximation is in much better agreement with experimental data than that obtained with PBE and PBEsol functionals of GGA. The calculated frequency value of silent mode B 2 in case of hexagonal structure P63 cm was found to be imaginary (unstable mode), thus the energy surface obtains negative curvature with respect to the corresponding normal coordinates of the mode which leads to instability of the hexagonal structure in harmonic approximation. The A 1g line at 214 cm‑1 in Raman spectra of LaF3 related to the translation of F2 ions along c axis can be connected with F2 ionic conductivity.

  2. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    Science.gov (United States)

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-05

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge.

    Science.gov (United States)

    Yaraş, Yusuf Samet; Gündüz, Ali Bars; Sağlam, Gökhan; Ölçer, Selim; Civitçi, Fehmi; Baris, İbrahim; Yaralioğlu, Göksenin; Urey, Hakan

    2017-11-01

    In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    Science.gov (United States)

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  5. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    Science.gov (United States)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  6. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations

    Science.gov (United States)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.

    Melaminium bis(trifluoroacetate) trihydrate (MTFA), an organic material has been synthesized and single crystals of MTFA have been grown by the slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MTFA crystal belongs to the monoclinic system with space group P2/c. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets. The X-ray diffraction data have been compared with the data of optimized molecular structure. The theoretical results show that the crystal structure can be reproduced by optimized geometry and the vibrational frequencies show good agreement with the experimental values. The nuclear magnetic resonance (NMR) chemical shift of the molecule has been calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO, and other related molecular and electronic properties are calculated. The Mulliken and NBO charges have also been calculated and interpreted.

  7. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  8. Optical and vibrational spectroscopy of Ba0.85Ca0.15Zr0.1Ti0.9O3 modified lithium borate glass ceramics

    Science.gov (United States)

    Viswanath, Pamarti; Prashanth, Sadhu Sai Pavan; Molli, Muralikrishna; Wicram, Jaschin Prem; Sai Muthukumar, V.

    2018-04-01

    Glass ceramics are excellent replacement for single crystalline materials which are expensive and difficult to fabricate. In this context, we have attempted to fabricate glass nanocomposites comprising of Lithium Borate glass matrix embedded with lead free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). Both of these functional materials are known to exhibit excellent ferroelectric behavior and are currently explored for various device applications. We have prepared these novel glass nanocomposite using melt-quenching techniquein various chemical composition involving different molar ratio. x(Ba0.85Ca0.15Zr0.1Ti0.9O3)-(1-x)(Li2O.2B2O3) where (x=0.1,0.2,0.3,0.4). The as-quenched samples exhibited amorphous nature as revealed by X-ray Diffraction studies. With the increase in BCZT content we have observed significant alteration in optical bandgap and Urbach energy. The tailoring of optical properties by tuning the structure was probed by Raman vibrational spectroscopy which confirmed the dominant role played by BCZT as a network modifier in these borate glasses. Concomitantly, these glass nanocomposites were found to be excellent UV absorbers.

  9. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  10. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  11. Molecular structure, vibrational spectroscopic analysis (IR & Raman), HOMO-LUMO and NBO analysis of anti-cancer drug sunitinib using DFT method

    Science.gov (United States)

    Mıhçıokur, Özlem; Özpozan, Talat

    2017-12-01

    Oxindole and its derivatives have wide applications in different industries such as in synthetic & natural fibers, dyes for hair and plastic materials in addition to their biological importance. In the present study, one of the oxindole derivatives, N-(2-diethylaminoethyl)-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide (Sunitinib), which is used as an anti-cancer drug, was investigated in terms of structural, vibrational spectroscopic and theoretical analysis. The calculations have been performed for gaseous, aqueous and DMSO phases, respectively. Potential Energy Surface (PES) scan has been carrried out to obtain the most stable structures of all the phases of the title molecule using B3LYP/6-31G(d,p) level and the geometrical variations among them are discussed. The solvent effect for Sunitinib in aqueous and DMSO phases have been performed by means of the self-consistent recognition reaction field (SCRF) method as implemented in the integral equation formalism polarized continuum model (IEFPCM). On the other hand, NBO analysis has been carried out to understand probable hydrogen bonding sites and charge transfers. Additionally, the HOMO and the LUMO energies are calculated using B3LYP/6-31G(d,p) to determine the intra molecular charge transfers (ICT) within the molecule and the kinetic stabilities for each phases. The molecular electrostatic potential surface (MESP) has been plotted over the optimized structure to estimate the reactive sites of electrophilic and nucleophilic attacks regarding Sunitinib molecule. The potential energy distribution (PED) has been calculated using VEDA4 program and vibrational assignments of the experimental spectra (IR & Raman) have been elucidated by means of the calculated vibrational spectra. The observed vibrational spectra of Sunitinib is compared with the calculated spectra obtained by using B3LYP functional both with 6-31G(d,p) and 6-311++G(d,p) basis sets. Theoretical results

  12. Study of vibrational and magnetic excitations in NicMg1-cO solid solutions by Raman spectroscopy

    International Nuclear Information System (INIS)

    Cazzanelli, E; Kuzmin, A; Mariotto, G; Mironova-Ulmane, N

    2003-01-01

    The Raman scattering by phonons and magnons was studied for the first time in the polycrystalline solid solutions Ni c Mg 1-c O. The experimental Raman spectrum for c = 0.9 is similar to that of NiO and consists of six well resolved bands, whose origins are the disorder-induced one-phonon scattering (bands at 400 and 500 cm -1 ), two-phonon scattering (bands at 750, 900, and 1100 cm -1 ), and two-magnon scattering (the broad band at ∼ 1400 cm -1 ). We found that the dependence of the two-magnon band in solid solutions on the composition and temperature is consistent with their magnetic phase diagram. We also observed that the relative contribution of two-phonon scattering decreases strongly upon dilution with magnesium ions and disappears completely at c < 0.5. Such behaviour is explained in terms of a disorder-induced effect, which increases the probability of the one-phonon scattering processes

  13. Quantum and Raman Noise in a Depleted Fiber Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, Colin J.

    2013-01-01

    The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis....

  14. L-lysine-L-tartaric acid: New molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions

    International Nuclear Information System (INIS)

    Debrus, S.; Marchewka, M.K.; Baran, J.; Drozd, M.; Czopnik, R.; Pietraszko, A.; Ratajczak, H.

    2005-01-01

    The first X-ray diffraction and vibrational spectroscopic analysis of a novel complex between L-lysine and L-tartaric acid is reported. The structure was solved in two temperatures (320 and 260 K) showing incommensurate phase between them. Room-temperature powder infrared and Raman measurements for the L-lysine-L-tartaric acid molecular complex (1:1) were carried out. DSC measurements on powder samples indicate two phase transitions points at about 295, 300 and 293, 300 K, for heating and cooling, respectively, with noticeable temperature interval between them. Second harmonic generation efficiency d eff =0.35 d eff (KDP)

  15. Fiber optic probe enabled by surface-enhanced Raman scattering for early diagnosis of potential acute rejection of kidney transplant

    Science.gov (United States)

    Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry

    2014-06-01

    We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.

  16. The optical, vibrational, structural and elasto-optic properties of Zn_0_._2_5Cd_0_._7_5S_ySe_1_-_y quaternary alloys

    International Nuclear Information System (INIS)

    Paliwal, U.; Swarkar, C. B.; Sharma, M. D.; Joshi, K. B.

    2016-01-01

    The optical, vibrational, structural and elasto-optic properties of quaternary II-VI alloys Zn_0_._2_5Cd_0_._7_5S_0_._2_5Se_0_._7_5, Zn_0_._2_5Cd_0_._7_5S_0_._5_0Se_0_._5_0 and Zn_0_._2_5Cd_0_._7_5S_0_._7_5Se_0_._2_5 are presented. Within the empirical pseudopotential method (EPM) the disorder effects are modeled via modified virtual crystal approximation (MVCA). The computed bandgaps and the refined form factors are utilized to evaluate optical, vibrational, structural and elasto-optic properties. The refractive index (n), static (ε_0) and high frequency dielectric (ε_∞) constants are calculated to reveal optical behavior of alloys. The longitudinal ω_L_O(0) and transverse ω_T_O(0) optical frequencies are obtained to see vibrational characteristics. Moreover, the elastic constants (c_i_j) and bulk moduli (B) are computed by combining the EPM with Harrison bond orbital model. The elasto-optic nature of alloys is examined by computing the photo-elastic constants. These values are significant with regard to the opto-electronic applications especially when no experimental data are available on this system.

  17. Raman spectroscopy of single nanoparticles in a double-nanohole optical tweezer system

    International Nuclear Information System (INIS)

    Jones, Steven; Al Balushi, Ahmed A; Gordon, Reuven

    2015-01-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal was observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparticle isolation and manipulation with unique identification. (fast track communication)

  18. Raman Spectroscopy of Single Nanoparticles in a Double-Nanohole Optical Tweezer System

    OpenAIRE

    Jones, Steven; Balushi, Ahmed A. Al; Gordon, Reuven

    2015-01-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal is observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparti...

  19. An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC MAX compound

    International Nuclear Information System (INIS)

    Ali, M A; Nasir, M T; Khatun, M R; Naqib, S H; Islam, A K M A

    2016-01-01

    The structural vibrational, thermodynamical, and optical properties of potentially technologically important, weakly coupled MAX compound, Sc 2 AlC are calculated using density functional theory (DFT). The structural properties of Sc 2 AlC are compared with the results reported earlier. The vibrational, thermodynamical, and optical properties are theoretically estimated for the first time. The phonon dispersion curve is calculated and the dynamical stability of this compound is investigated. The optical and acoustic modes are observed clearly. We calculate the Helmholtz free energy ( F ), internal energy ( E ), entropy ( S ), and specific heat capacity ( C v ) from the phonon density of states. Various optical parameters are also calculated. The reflectance spectrum shows that this compound has the potential to be used as an efficient solar reflector. (paper)

  20. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu (India); Rekha, T. N. [PG & Research Department of Physics, Lady Doak College, Madurai 625002, Tamilnadu (India); Jawahar, A. [Department of Chemistry, N.M.S.S.V.N College, Madurai-625019, Tamilnadu (India)

    2016-05-23

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the π to π* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  1. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.

    2015-01-14

    Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structure-property relation due to the rich band structure of MoS2. Remarkably, the metastable 1T′-MoS2 metallic state remains invariant with pressure, with the J2, A1g, and E2g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.

  2. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    Science.gov (United States)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  3. Vibration monitoring of carbon fiber composites by multiple fiber optic sensors

    Science.gov (United States)

    Olivero, Massimo; Perrone, Guido; Vallan, Alberto; Chen, Wei; Tosi, Daniele

    2014-05-01

    This work presents the comparison between the fiber Bragg grating technology and a vibration-measurement technique based on the detection of polarization rotation (polarimetric sensor) in a standard optical fiber, applied to the dynamic structural monitoring of carbon reinforced composites for the automotive industry. A carbon reinforced composite test plate in a 4-layer configuration was equipped with fiber Bragg gratings and polarimetric fiber sensors, then it was mechanically stressed by static and dynamic loads while monitoring the sensors response. The fiber Bragg grating setup exhibited 1.15+/-0.0016 pm/kg static load response and reproduced dynamic excitation with 0.1% frequency uncertainty, while the polarimetric sensing system exhibited a sensitivity of 1.74+/-0.001 mV/kg and reproduced the dynamic excitation with 0.5% frequency uncertainty. It is shown that the polarimetric sensor technology represents a cheap yet efficient alternative to the fiber Bragg grating sensors in the case of vibration-monitoring of small structures at high frequency.

  4. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  5. Fast-adaptive fiber-optic sensor for ultra-small vibration and deformation measurement

    International Nuclear Information System (INIS)

    Romashko, R V; Girolamo, S Di; Kulchin, Y N; Launay, J C; Kamshilin, A A

    2007-01-01

    Adaptive fiber-optic interferometer measuring system based on a dynamic hologram recorded in photorefractive CdTe crystal without applying an external electric field is developed. Vectorial mixing of two waves with different polarizations in the anisotropic diffraction geometry allows for the realization of linear regime of phase demodulation at the diffusion hologram. High sensitivity of the interferometer is achieved due to recording of the hologram in reflection geometry at high spatial frequencies in a crystal with sufficient concentration of photorefractive centers. The sensitivity obtained makes possible a broadband detection of ultra-small vibrations with amplitude of less then 0.1 nm. High cut-off frequency of the interferometer achieved using low-power light sources due to fast response of CdTe crystal allows one to eliminate temperature fluctuations and other industrial noises

  6. Laser stimulating ST36 with optical fiber induce blood component changes in mice: a Raman spectroscopy study.

    Science.gov (United States)

    Zhang, Heng; Chen, Zhenyi; Wu, Jiping; Chen, Na; Xu, Wenjie; Li, Taihao; Liu, Shupeng

    2018-02-15

    ST36 is a commonly-used acupoint in traditional Chinese medicine (TCM) for treatment of inflammations, pains and gastrointestinal disturbs. For decades, the low power laser acupuncture has been widely applied as an alternative therapy to traditional metal needle acupuncture and achieved relatively fine therapeutic effect for ST36-related symptoms with reduction of uncomfortableness and infection risks. However its disadvantages of low penetrativity and lack of manipulation skills limit its potential performance. An optical fiber laser acupuncture introduced by the previous study combines traditional needling acupuncture and the laser stimulation together, making a stronger therapeutic effect and showing a potential value in clinical application. To evaluate its acupunctural effect on blood, mice are taken as experimental model and Raman spectroscopic technique is used to analysis the changes of blood components after stimulating on ST36. The results show that both the traditional needling acupuncture and optical fiber acupuncture could lead to some spectral changes of blood in mice. This study explores the optical fiber acupuncture's effect on blood in mice using Raman spectroscopy technique for mechanism of acupuncture therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crystal growth, vibrational, optical, thermal and theoretical studies of a nonlinear optical material: 2-Methyl 3,5-dinitrobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Department of Physics, Sri Sarada College for Women, Salem-16 (India); Guru Prasad, L. [Department of Science & Humanities, M. Kumarasamy College of Engineering, Karur (India); Mathammal, R. [Department of Physics, Sri Sarada College for Women, Salem-16 (India)

    2016-11-15

    Single crystals of 2-methyl 3,5-dinitro benzoic acid with reasonable size have been grown by slow evaporation solution growth method using ethanol as solvent. Quantum chemical calculation of 2-methyl 3,5-Dinitro benzoic acid was carried out by using DFT/B3LYP/6-31+G(d,p) method. The powder X-ray diffraction pattern was recorded and indexed. Both the experimental and theoretical vibrational spectrum validates the presence of functional groups. Polarizability, first order hyperpolarizability and the electric dipole moment values have been computed theoretically. The {sup 1}H and {sup 13}C NMR chemical shift of the molecule was calculated and compared with experimental results. TG/DSC analysis has been employed to understand the thermal and physio-chemical stability of the title compound. Frequency conversion property of the crystal was tested by Kurtz and Perry method. Optical absorption behavior of the grown crystal was examined by recording the optical spectrum and band gap energy was also estimated. The calculated HOMO and LUMO energy shows the charge transfer nature of the molecule.

  8. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    Science.gov (United States)

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2017-08-01

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for

  9. Density functional theory and Raman spectroscopy applied to structure and vibrational mode analysis of 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloro- benzimidazolocarbocyanine iodide and its aggregate.

    Science.gov (United States)

    Aydin, Metin; Dede, Özge; Akins, Daniel L

    2011-02-14

    We have measured electronic and Raman scattering spectra of 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloro-benzimidazolocarbocyanine iodide (TTBC) in various environments, and we have calculated the ground state geometric and spectroscopic properties of the TTBC cation in the gas and solution phases (e.g., bond distances, bond angles, charge distributions, and Raman vibrational frequencies) using density functional theory. Our structure calculations have shown that the ground state equilibrium structure of a cis-conformer lies ∼200 cm(-1) above that of a trans-conformer and both conformers have C(2) symmetry. Calculated electronic transitions indicate that the difference between the first transitions of the two conformers is about 130 cm(-1). Raman spectral assignments of monomeric- and aggregated-TTBC cations have been aided by density functional calculations at the same level of the theory. Vibrational mode analyses of the calculated Raman spectra reveal that the observed Raman bands above 700 cm(-1) are mainly associated with the in-plane deformation of the benzimidazolo moieties, while bands below 700 cm(-1) are associated with out-of-plane deformations of the benzimidazolo moieties. We have also found that for the nonresonance excited experimental Raman spectrum of aggregated-TTBC cation, the Raman bands in the higher-frequency region are enhanced compared with those in the nonresonance spectrum of the monomeric cation. For the experimental Raman spectrum of the aggregate under resonance excitation, however, we find new Raman features below 600 cm(-1), in addition to a significantly enhanced Raman peak at 671 cm(-1) that are associated with out-of-plane distortions. Also, time-dependent density functional theory calculations suggest that the experimentally observed electronic transition at ∼515 nm (i.e., 2.41 eV) in the absorption spectrum of the monomeric-TTBC cation predominantly results from the π → π∗ transition. Calculations are further interpreted

  10. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    International Nuclear Information System (INIS)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-01-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm −1 , while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm −1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases. (letter)

  11. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    Science.gov (United States)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-06-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm-1, while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm-1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases.

  12. Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots

    Science.gov (United States)

    Gil-Corrales, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-02-01

    The donor-impurity-related optical absorption, relative refractive index changes, and Raman scattering in GaAs cone-like quantum dots are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The study involves 1 s -like, 2px-like, and 2pz-like states. The conical structure is chosen in such a way that the cone height is large enough in comparison with the base radius thus allowing the use a quasi-analytic solution of the uncorrelated Schrödinger-like electron states.

  13. Laser-induced stimulated Raman scattering in the forward direction of a droplet - Comparison of Mie theory with geometrical optics

    Science.gov (United States)

    Srivastava, Vandana; Jarzembski, Maurice A.

    1991-01-01

    This paper uses Mie theory to treat electromagnetic scattering and to evaluate field enhancement in the forward direction of a small droplet irradiated by a high-energy beam and compares the results of calculations with the field-enhancement evaluation obtained via geometrical optics treatment. Results of this comparison suggest that the field enhancement located at the critical ring region encircling the axis in the forward direction of the droplet can support laser-induced Raman scattering. The results are supported by experimental observations of the interaction of a 120-micron-diam water droplet with a high-energy Nd:YAG laser beam.

  14. Practical in-situ determination of ortho-para hydrogen ratios via fiber-optic based Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Liese-Marie; Knudson, James N.; Mocko, Michal; Renneke, Richard M.

    2016-02-21

    An experiment was designed and developed to prototype a fiber-optic-based laser system, which measures the ratio of ortho-hydrogen to para-hydrogen in an operating neutron moderator system at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source. Preliminary measurements resulted in an ortho to para ratio of 3.06:1, which is within acceptable agreement with the previously published ratio. The successful demonstration of Raman Spectroscopy for this measurement is expected to lead to a practical method that can be applied for similar in-situ measurements at operating neutron spallation sources.

  15. Bose-Einstein condensate in an optical lattice with Raman-assisted two-dimensional spin-orbit coupling

    Science.gov (United States)

    Pan, Jian-Song; Zhang, Wei; Yi, Wei; Guo, Guang-Can

    2016-10-01

    In a recent experiment (Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, arXiv:1511.08170 [cond-mat.quant-gas]), a Raman-assisted two-dimensional spin-orbit coupling has been realized for a Bose-Einstein condensate in an optical lattice potential. In light of this exciting progress, we study in detail key properties of the system. As the Raman lasers inevitably couple atoms to high-lying bands, the behaviors of the system in both the single- and many-particle sectors are significantly affected. In particular, the high-band effects enhance the plane-wave phase and lead to the emergence of "roton" gaps at low Zeeman fields. Furthermore, we identify high-band-induced topological phase boundaries in both the single-particle and the quasiparticle spectra. We then derive an effective two-band model, which captures the high-band physics in the experimentally relevant regime. Our results not only offer valuable insights into the two-dimensional lattice spin-orbit coupling, but also provide a systematic formalism to model high-band effects in lattice systems with Raman-assisted spin-orbit couplings.

  16. Efficient {pi} electrons delocalization in prospective push-pull non-linear optical chromophore 4-[N,N-dimethylamino]-4'-nitro stilbene (DANS): A vibrational spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, T.; Hubert Joe, I. [Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram 695 015, Kerala (India); Reghunadhan Nair, C.P. [Polymers and Special Chemicals Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, Kerala (India); Jayakumar, V.S. [Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram 695 015, Kerala (India)], E-mail: vsjk@vsnl.net

    2008-01-22

    A comprehensive investigation on the intramolecular charge transfer (ICT) of an efficient {pi}-conjugated potential push-pull NLO chromophore, 4-[N,N-dimethylamino]-4'-nitro stilbene (DANS), from a strong electron-donor group (dimethylamino-N(CH{sub 3}){sub 2}) to a strong electron-acceptor group (nitro-NO{sub 2}) through the {pi}-conjugated bridge (trans-stilbene) has been carried out from their vibrational spectra. The NIR FT-Raman and FT-IR spectra supported by the density functional theory (DFT) quantum chemical computations have been employed to analyze the effects of intramolecular charge transfer on the geometries and the vibrational modes contributing to the linear electro-optic effect of the organic NLO material. It has been observed that the changes in the endocyclic and exocyclic angles result from the charge-transfer interaction of the phenyl ring and the amino group in the electron-donor side of the NLO chromophore. The strongest vibrational modes contributing to the electro-optic effect have been identified and examined from the concurrent IR and Raman activation of {nu}(C=C/C-C) mode, ring C=C stretching modes, in-plane deformation modes, nitro modes and the umbrella mode of methyl groups. Furthermore, the splitting of the vinyl stretching modes and the electronic effects such as hyperconjugation and backdonation on the methyl hydrogen atoms causing the decrease of stretching frequencies and infrared intensities have also been analyzed in detail. The effect of frontier orbitals transition of electron density transfer and the influence of planarity between the phenyl rings of the stilbene moiety on the first hyperpolarizability have also been discussed.

  17. Multiwavelength excitation Raman scattering of Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} (0 ≤ x ≤ 1) polycrystalline thin films: Vibrational properties of sulfoselenide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrievska, Mirjana; Xie, Haibing; Fairbrother, Andrew; Fontané, Xavier; Saucedo, Edgardo; Izquierdo-Roca, Victor, E-mail: vizquierdo@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Gurieva, Galina [Helmholtz Centre Berlin for Materials and Energy, Department Crystallography, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Pérez-Rodríguez, Alejandro [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN" 2UB, Departament d' Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain); Schorr, Susan [Helmholtz Centre Berlin for Materials and Energy, Department Crystallography, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institute of Geological Sciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin (Germany)

    2014-07-21

    In this work, Raman spectroscopy and X-ray diffraction were applied together to evaluate the crystal structure and the phonon modes of photovoltaic grade Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} thin films, leading to a complete characterization of their structural and vibrational properties. Vibrational characterization has been based on Raman scattering measurements performed with different excitation wavelengths and polarization configurations. Analysis of the experimental spectra has permitted identification of 19 peaks, which positions are in good accord with theoretical predictions. Besides, the observation of Cu{sub 2}ZnSnS{sub 4}-like A symmetry peaks related to S vibrations and Cu{sub 2}ZnSnSe{sub 4}-like A symmetry peaks related to Se vibrations, additional Raman peaks, characteristic of the solid solution and previously not reported, are observed, and are attributed to vibrations involving both S and Se anions.

  18. Resolving fine spectral features in lattice vibrational modes using femtosecond coherent spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Card

    2016-02-01

    Full Text Available We show resolution of fine spectral features within several Raman active vibrational modes in potassium titanyl phosphate (KTP crystal. Measurements are performed using a femtosecond time-domain coherent anti-Stokes Raman scattering spectroscopy technique that is capable of delivering equivalent spectral resolution of 0.1 cm−1. The Raman spectra retrieved from our measurements show several spectral components corresponding to vibrations of different symmetry with distinctly different damping rates. In particular, linewidths for unassigned optical phonon mode triplet centered at around 820 cm−1 are found to be 7.5 ± 0.2 cm−1, 9.1 ± 0.3 cm−1, and 11.2 ± 0.3 cm−1. Results of our experiments will ultimately help to design an all-solid-state source for sub-optical-wavelength waveform generation that is based on stimulated Raman scattering.

  19. Atomic substitution effects on the structural and vibrational properties of Ni{sub x}Pb{sub 1-x}TiO{sub 3}: X-ray diffraction and Raman scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Costa, R. C. da [Universidade Federal de São Carlos, Departamento de Física, São Carlos-SP, 13565-905 (Brazil); Universidade Federal de Campina Grande, Pombal-PB, 58840-000 (Brazil); Toledo, T. A. de; Pizani, P. S., E-mail: pizani@df.ufscar.br [Universidade Federal de São Carlos, Departamento de Física, São Carlos-SP, 13565-905 (Brazil); Espinosa, J. W. M. [Universidade Federal de Goiás, Engenharia de Produção, Catalão-GO, 75704-020 (Brazil)

    2015-07-15

    The effects of the atomic substitution of Pb by Ni in the PbTiO{sub 3} ferroelectric perovskite on the vibrational and structural properties was studied using x-ray diffraction and Raman scattering. It was observed that for Ni concentrations between 0.0 and 0.4, there is the formation of a solid solution with reduction of the Raman wavenumber of the E(TO1) soft mode and the tetragonallity factor, which influence directly the temperature of the tetragonal ferroelectric to cubic paraelectric phase transition, the Curie temperature. For concentrations greater than 0.4, it is observed the formation of a PbTiO{sub 3} and NiTiO{sub 3} composite, denounced by the recovering of the both, tetragonallity factor and the E(TO1) soft mode wavenumber. The values of the Curie temperatures were estimated by the Raman scattering measurements for temperatures ranging from 300 to 950 K.

  20. Raman spectrum, quantum mechanical calculations and vibrational assignments of (95% alpha-TeO2/5% Sm2O3) glass.

    Science.gov (United States)

    Shaltout, I; Mohamed, Tarek A

    2007-06-01

    Chozen system of tellurite glasses doped with rare earth oxides (95% alpha-TeO(2)+5% Sm2O3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm(-1)) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO4(4-) (triagonal bipyramid, C(2v)) and TeO(3+1); Te2O7(6-) (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO3(2-) (triagonal pyramidal, C(3v) and C(s)) and tp TeO3(2-) (triagonal planar, D(3h)) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% alpha-TeO2 +5% Sm2O3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO3 with minor features of short range distorted tbp TeO4 and bridged tetrahedral unit of TeO(3+1), leading to a structure of infinite chain. Therefore, alpha-TeO2/Sm2O3 (95/5%) glass experience structural changes from TeO4 (tbp); Te2O7 (TeO(3+1))-->TeO3 (tpy).

  1. Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Po-Chien Chou

    2011-05-01

    Full Text Available Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system.

  2. Time resolved Raman studies of laser induced damage in TiO2 optical coatings

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Morse, P.L.

    1984-10-01

    Molecular information available from Raman scattering measurements of sputter deposited TiO 2 on silica substrates has been used to characterize crystalline phases, thickness, and surface homogeneity. A two laser technique is described for investigating transient molecular changes in both coating and substrate which result from pulsed 532 nm laser irradiation. Single layer and multilayer coatings of both anatase and rutile phases of TiO 2 have been probed by Raman spectroscopy immediately following the damage pulse (nanoseconds) and at longer times. Transient measurements are designed to follow surface transformation/relaxation phenomena; measurements at longer times characterize the equilibrium damage state

  3. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Robert W. [Department of Biomedical Informatics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20815 (United States)], E-mail: bob@bob.usuhs.mil; Schluecker, Sebastian [Institute of Physical Chemistry, University of Wuerzburg, Wuerzburg (Germany); Hudson, Bruce S. [Department of Chemistry, Syracuse University, Syracuse, NY (United States)

    2008-01-22

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  4. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    International Nuclear Information System (INIS)

    Williams, Robert W.; Schluecker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes

  5. In vivo Raman measurement of levofloxacin lactate in blood using a nanoparticle-coated optical fiber probe

    Science.gov (United States)

    Liu, Shupeng; Rong, Ming; Zhang, Heng; Chen, Na; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun; Yan, Jianshe

    2016-01-01

    Monitoring drug concentrations in vivo is very useful for adjusting a drug dosage during treatment and for drug research. Specifically, cutting-edge “on-line” drug research relies on knowing how drugs are metabolized or how they interact with the blood in real-time. Thus, this study explored performing in vivo Raman measurements of the model drug levofloxacin lactate in the blood using a nanoparticle-coated optical fiber probe (optical fiber nano-probe). The results show that we were able to measure real-time changes in the blood concentration of levofloxacin lactate, suggesting that this technique could be helpful for performing drug analyses and drug monitoring in a clinical setting without repeatedly withdrawing blood from patients. PMID:27231590

  6. Optical properties of individual nano-sized gold particle pairs. Mie-scattering, fluorescence, and Raman-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Olk, Phillip

    2008-07-01

    This thesis examines and exploits the optical properties of pairs of MNPs. Pairs of MNPs offer two further parameters not existent at single MNPs, which both affect the local optical fields in their vicinity: the distance between them, and their relative orientation with respect to the polarisation of the excitation light. These properties are subject of three chapters: One section examines the distance-dependent and orientation-sensitive scattering cross section (SCS) of two equally sized MNPs. Both near- and far-field interactions affect the spectral position and spectral width of the SCS. Far-field coupling affects the SCS even in such a way that a two-particle system may show both a blue- and redshifted SCS, depending only on the distance between the two MNPs. The maximum distance for this effect is the coherence length of the illumination source - a fact of importance for SCS-based experiments using laser sources. Another part of this thesis examines the near-field between two MNPs and the dependence of the locally enhanced field on the relative particle orientation with respect to the polarisation of the excitation light. To attain a figure of merit, the intensity of fluorescence light from dye molecules in the surrounding medium was measured at various directions of polarisation. The field enhancement was turned into fluorescence enhancement, even providing a means for sensing the presence of very small MNPs of 12 nm in diameter. In order to quantify the near-field experimentally, a different technique is devised in a third section of this thesis - scanning particle-enhanced Raman microscopy (SPRM). This device comprises a scanning probe carrying an MNP which in turn is coated with a molecule of known Raman signature. By manoeuvring this outfit MNP into the vicinity of an illuminated second MNP and by measuring the Raman signal intensity, a spatial mapping of the field enhancement was possible. (orig.)

  7. Label-Free Raman Imaging to Monitor Breast Tumor Signatures

    Science.gov (United States)

    Ciubuc, John

    Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and modifications of DNA/RNA characteristics. Investigations by gel electrophoresis reveal EGF induction of phosphorylated Akt, agreeing with the Raman results. The analysis presented is a vital step toward Raman-based evaluation of EGF receptors in breast cancer cells. With the goal of clinically applying Raman-guided methods for diagnosis of breast tumors, the current results lay the basis for proving label-free optical alternatives in making prognosis of the disease.

  8. Performance Analysis of a Hybrid Raman Optical Parametric Amplifier in the O- and E-Bands for CWDM PONs

    Directory of Open Access Journals (Sweden)

    Sasanthi Peiris

    2014-12-01

    Full Text Available We describe a hybrid Raman-optical parametric amplifier (HROPA operating at the O- and E-bands and designed for coarse wavelength division multiplexed (CWDM passive optical networks (PONs. We present the mathematical model and simulation results for the optimization of this HROPA design. Our analysis shows that separating the two amplification processes allows for optimization of each one separately, e.g., proper selection of pump optical powers and wavelengths to achieve maximum gain bandwidth and low gain ripple. Furthermore, we show that the proper design of optical filters incorporated in the HROPA architecture can suppress idlers generated during the OPA process, as well as other crosstalk that leaks through the passive optical components. The design approach enables error free performance for all nine wavelengths within the low half of the CWDM band, assigned to upstream traffic in a CWDM PON architecture, for all possible transmitter wavelength misalignments (±6 nm from the center wavelength of the channel band. We show that the HROPA can achieve error-free performance with a 170-nm gain bandwidth (e.g., 1264 nm–1436 nm, a gain of >20 dB and a gain ripple of <4 dB.

  9. Application of Raman spectroscopy for cancer diagnosis

    International Nuclear Information System (INIS)

    Krishnakumar, N.

    2011-01-01

    Cancer is the second leading causes of death next to heart diseases, Half of all cancer cases occur in developing countries. The conventional histopathology is usually the most trustable gold standard for pre-cancer and cancer diagnosis. However, the applicability of this method is more or less restricted because of the requirement of removing human tissues and the difficulty of real time diagnosis. Recently, there has been increased interest in 'optical biopsy' system using tissue spectroscopy to establish the pathological changes. Among optical based methods, Raman spectroscopy is a unique vibrational spectroscopic technique capable of probing biomolecular structures and conformation of tissues, and has excelled in the early detection of pre-cancer and cancer in the number of organs with high diagnostic specificity. Raman spectroscopy offers certain distinct advantages over than other optical diagnostic techniques such as high spatial resolution, use of less harmful NIR radiation, less or no sample preparation, no influence of water bands which facilitates in vivo/in situ measurements. This makes Raman spectroscopy also very useful for biomedical applications. Several research groups have demonstrated the efficacy of this technique in biomedical applications. The background and principle of these techniques will be discussed with some examples and discussions on how Raman spectroscopy can act as a promising technique for rapid in vivo diagnosis and detection of various cancers at the molecular level. (author)

  10. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  11. RAMAN SPECTROSCOPY-BASED METABOLOMICS: EVALUATION OF SAMPLE PREPARATION AND OPTICAL ACCESSORIES

    Science.gov (United States)

    The field of metabonomics/metabolomics involves observing endogenous metabolites from organisms that change in response to exposure to a stressor or chemical of interest. Methods are being developed for measuring the Raman spectra of low-concentration metabolites in urine. The ...

  12. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    Science.gov (United States)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  13. Toward the first study of chemical reaction dynamics of Mu with vibrational-state-selected reactants in the gas phase: The Mu+H2*(v=1) reaction by stimulated Raman pumping

    International Nuclear Information System (INIS)

    Bakule, Pavel; Sukhorukov, Oleksandr; Matsuda, Yasuyuki; Pratt, Francis; Gumplinger, Peter; Momose, Takamasa; Torikai, Eiko; Fleming, Donald

    2009-01-01

    Stimulated Raman pumping (SRP) is used to produce H 2 in its first vibrational state, in order to measure, for the first time, the Mu+H 2 *(v=1)→MuH+H reaction rate at room temperature, as a prototypical example of new directions in gas-phase muonium chemistry, utilizing the pulsed muon beam and a new dedicated laser system at the RIKEN/RAL Laboratory. Reported here is a preliminary result but the final results are expected to provide definitive new tests of reaction rate theory on the highly accurate H 3 potential energy surface. The major difficulty in this experiment, compared to the standard SRP process, is to ensure a homogeneous excitation over a volume of several cm 3 and of sufficient intensity to ensure a measurable Mu relaxation rate. The techniques used to accomplish this are described. The experiment utilizes the 2nd harmonic output of a Nd:YAG laser (532 nm) with pulse energies up to 500 mJ at a repetition rate of 25 Hz. Different optical setups have been constructed and tested in order to optimize the number of laser-pumped H 2 molecules and their overlap with the stopping profile of the muon beam in the reaction cell (total volume ∼100x40x4mm 3 ). The first result of this experiment gives a measured relaxation rate due to laser excitation of λ*=0.085±0.051μs -1 , consistent with theory but limited by both low statistics and particularly a high background relaxation rate.

  14. Tip-enhanced near-field Raman spectroscopy with a scanning tunneling microscope and side-illumination optics.

    Science.gov (United States)

    Yi, K J; He, X N; Zhou, Y S; Xiong, W; Lu, Y F

    2008-07-01

    Conventional Raman spectroscopy (RS) suffers from low spatial resolution and low detection sensitivity due to the optical diffraction limit and small interaction cross sections. It has been reported that a highly localized and significantly enhanced electromagnetic field could be generated in the proximity of a metallic tip illuminated by a laser beam. In this study, a tip-enhanced RS system was developed to both improve the resolution and enhance the detection sensitivity using the tip-enhanced near-field effects. This instrument, by combining RS with a scanning tunneling microscope and side-illumination optics, demonstrated significant enhancement on both optical sensitivity and spatial resolution using either silver (Ag)-coated tungsten (W) tips or gold (Au) tips. The sensitivity improvement was verified by observing the enhancement effects on silicon (Si) substrates. Lateral resolution was verified to be below 100 nm by mapping Ag nanostructures. By deploying the depolarization technique, an apparent enhancement of 175% on Si substrates was achieved. Furthermore, the developed instrument features fast and reliable optical alignment, versatile sample adaptability, and effective suppression of far-field signals.

  15. Vibrational investigation on FT-IR and FT-Raman spectra, IR intensity, Raman activity, peak resemblance, ideal estimation, standard deviation of computed frequencies analyses and electronic structure on 3-methyl-1,2-butadiene using HF and DFT (LSDA/B3LYP/B3PW91) calculations.

    Science.gov (United States)

    Ramalingam, S; Jayaprakash, A; Mohan, S; Karabacak, M

    2011-11-01

    FT-IR and FT-Raman (4000-100 cm(-1)) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H). Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  16. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  17. APPLICATION OF THE SPECTRUM ANALYSIS WITH USING BERG METHOD TO DEVELOPED SPECIAL SOFTWARE TOOLS FOR OPTICAL VIBRATION DIAGNOSTICS SYSTEM

    Directory of Open Access Journals (Sweden)

    E. O. Zaitsev

    2016-01-01

    Full Text Available The objective of this paper is development and experimental verification special software of spectral analysis. Spectral analysis use of controlled vibrations objects. Spectral analysis of vibration based on use maximum-entropy autoregressive method of spectral analysis by the Berg algorithm. For measured signals use preliminary analysis based on regression analysis. This analysis of the signal enables to eliminate uninformative parameters such as – the noise and the trend. For preliminary analysis developed special software tools. Non-contact measurement of mechanical vibrations parameters rotating diffusely-reflecting surfaces used in circumstances where the use of contact sensors difficult or impossible for a number of reasons, including lack of access to the object, the small size of the controlled area controlled portion has a high temperature or is affected by strong electromagnetic fields. For control use offered laser measuring system. This measuring system overcomes the shortcomings interference or Doppler optical measuring systems. Such as measure the large amplitude and inharmonious vibration. On the basis of the proposed methods developed special software tools for use measuring laser system. LabVIEW using for developed special software. Experimental research of the proposed method of vibration signals processing is checked in the analysis of the diagnostic information obtained by measuring the vibration system grinding diamond wheel cold solid tungsten-containing alloy TK8. A result of work special software tools was complex spectrum obtained «purified» from non-informative parameters. Spectrum of the signal corresponding to the vibration process observed object. 

  18. Self-excited multi-scale skin vibrations probed by optical tracking micro-motions of tracers on arms

    Science.gov (United States)

    Chen, Wei-Chia; Chen, Hsiang-Ying; Chen, Yu-Sheng; Tian, Yong; I, Lin

    2017-07-01

    The self-excited multi-scale mechanical vibrations, their sources and their mutual coupling of different regions on the forearms of supine subjects, are experimentally investigated, using a simple noncontact method, optical video microscopy, which provides 1 μm and 25 ms spatiotemporal resolutions. It is found that, in proximal regions far from the radial artery, the vibrations are the global vibrations of the entire forearm excited by remote sources, propagating through the trunk and the limb. The spectrum is mainly composed of peaks of very low frequency motion (down to 0.05 Hz), low frequency respiration modes, and heartbeat induced modes (about 1 Hz and its harmonics), standing out of the spectrum floor exhibiting power law decay. The nonlinear mode-mode coupling leads to the cascaded modulations of higher frequency modes by lower frequency modes. The nearly identical waveforms without detectable phase delays for a pair of signals along or transverse to the meridian of regions far away from the artery rule out the detectable contribution from the propagation of Qi, some kind of collective excitation which more efficiently propagates along meridians, according to the Chinese medicine theory. Around the radial artery, in addition to the global vibration, the local vibration spectrum shows very slow breathing type vibration around 0.05 Hz, and the artery pulsation induced fundamental and higher harmonics with descending intensities up to the fifth harmonics, standing out of a flat spectrum floor. All the artery pulsation modes are also modulated by respiration and the very slow vibration.

  19. Nanogranular Au films deposited on carbon covered Si substrates for enhanced optical reflectivity and Raman scattering

    International Nuclear Information System (INIS)

    Bhuvana, T; Kumar, G V Pavan; Narayana, Chandrabhas; Kulkarni, G U

    2007-01-01

    Electroless deposition of gold has been carried out on Si(100) surfaces precoated with laser ablated carbon layers of different thicknesses, and the resulting substrates have been characterized by a host of techniques. We first established the porous nature of the amorphous carbon layer by Raman and profilometric measurements. The Au uptake from the plating solution was optimal at a carbon layer thickness of 90 nm, where we observed nanogranules of ∼60-70 nm, well separated from each other in the carbon matrix (mean interparticle spacing ∼7 nm). We believe that the observed nanostructure is a result of Au 3+ electroless reduction on the Si surface through porous channels present in the amorphous carbon matrix. Importantly, this nanostructured substrate exhibited high reflectivity in the near IR region besides being effective as a substrate for surface enhanced Raman scattering (SERS) measurements with enhancement factors up to 10 7

  20. Raman study of damage processes in Si+-implanted GaAs

    International Nuclear Information System (INIS)

    Ivanda, M.; Desnica, U.V.; Haynes, T.E.; Hartmann, I.; Kiefer, W.

    1994-09-01

    Ion-induced damage in GaAs as a function of ion dose following 100 keV Si + implants has been investigated by Raman spectroscopy. A new approach for decomposition of Raman scattering intensity on to the crystalline and amorphous phase components has been used in analysis of Raman spectra. With increasing ion dose the following was observed: (a) the widths of vibrational bands of a-phase significantly increase, while the width of the LO(Γ) phonon band of c-phase remains unchanged; (b) the longitudinal optical phonon band of c-phase completely dissappears, while the transverse optical phonon mode evolves in to a new band of a-phase; (c) the wavenumbers of all vibrational bands of a- and c-phase shift to lower values by ∼ 10--15 cm -1 . A number of mechanisms possibly accountable for these shifts were analysed and evaluated

  1. Potential energy profile, structural, vibrational and reactivity descriptors of trans-2-methoxycinnamic acid by FTIR, FT-Raman and quantum chemical studies

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Thenmozhi, S.; Marchewka, M. K.; Mohan, S.

    2016-06-01

    The stable conformers of trans-2-methoxycinnamic acid (trans-2MCA) are determined by potential energy profile analysis. The energies of the s-cis and s-trans conformers of trans-2MCA determined by B3LYP/cc-pVTZ method are -612.9788331 Hartrees and -612.9780953 Hartrees, respectively. The vibrational and electronic investigations of the stable s-cis and s-trans conformers of trans-2-methoxycinnamic acid have been carried out extensively with FTIR and FT-Raman spectral techniques. The s-cis conformer (I) with a (C16-C17-C18-O19) dihedral angle equal to 0° is found to be more favoured relative to the one s-trans (II) with (C16-C17-C18-O19) = 180°, possibly due to delocalization, hydrogen bonding and steric repulsion effects between the methoxy and acrylic acid groups. The DFT studies are performed with B3LYP method by utilizing 6-311++G** and cc-pVTZ basis sets to determine the structure, thermodynamic properties, vibrational characteristics and chemical shifts of the compound. The total dipole moments of the conformers determined by B3LYP/cc-pVTZ method are 3.35 D and 4.87 D for s-cis and s-trans, respectively. It reveals the higher polarity of s-trans conformer of trans-2MCA molecule. The electronic and steric influence of the methoxy group on the skeletal frequencies has been analysed. The energies of the frontier molecular orbitals and the LUMO-HOMO energy gap have been determined. The MEP of s-cis conformer lie in the range +1.374e × 10-2 to -1.374e × 10-2 while for s-trans it is +1.591e × 10-2 to -1.591e × 10-2. The total electron density of s-cis conformer lie in the range +5.273e × 10-2 to -5.273e × 10-2 while for s-trans it is +5.403e × 10-2 to -5.403e × 10-2. The MEP and total electron density shows that the s-cis conformer is less polar, less reactive and more stable than the s-trans conformer. All the reactivity descriptors of the molecule have been discussed. Intramolecular electronic interactions and their stabilisation energies have analysed

  2. Rheo-optical Raman study of microscopic deformation in high-density polyethylene under hot drawing

    OpenAIRE

    Kida, Takumitsu; Hiejima, Yusuke; Nitta, Koh-hei

    2015-01-01

    In situ observation of the microscopic structural changes in high-density polyethylene during hot drawing was performed by incorporating a temperature-controlled tensile machine into a Raman spectroscopy apparatus. It was found that the load sharing and molecular orientation during elongation drastically changed at 50°C. The microscopic stress of the crystalline chains decreased with increasing temperature and diminished around 50°C. Moreover, the orientation of the crystalline chains was gre...

  3. Structural, vibrational spectroscopic and nonlinear optical activity studies on 2-hydroxy- 3, 5-dinitropyridine: A DFT approach

    Science.gov (United States)

    Asath, R. Mohamed; Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.

  4. Absolute Configuration Determination of a Taxol Precursor Based on Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Profant, V.; Jegorov, A.; Bouř, Petr; Baumruk, V.

    2017-01-01

    Roč. 121, č. 7 (2017), s. 1544-1551 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA16-05935S Institutional support: RVO:61388963 Keywords : vibrational circular dichroism * polarized light * molecules Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  5. Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials.

    Science.gov (United States)

    Vandenabeele, Peter; Conti, Claudia; Rousaki, Anastasia; Moens, Luc; Realini, Marco; Matousek, Pavel

    2017-09-05

    Microspatially offset Raman spectroscopy (micro-SORS) has been proposed as a valuable approach to sample molecular information from layers that are covered by a turbid (nontransparent) layer. However, when large magnifications are involved, the approach is not straightforward, as spatial constraints exist to position the laser beam and the objective lens with the external beam delivery or, with internal beam delivery, the maximum spatial offset achievable is restricted. To overcome these limitations, we propose here a prototype of a new micro-SORS sensor, which uses bare glass fibers to transfer the laser radiation to the sample and to collect the Raman signal from a spatially offset zone to the Raman spectrometer. The concept also renders itself amenable to remote delivery and to the miniaturization of the probe head which could be beneficial for special applications, e.g., where access to sample areas is restricted. The basic applicability of this approach was demonstrated by studying several layered structure systems. Apart from proving the feasibility of the technique, also, practical aspects of the use of the prototype sensor are discussed.

  6. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy.

    Science.gov (United States)

    Vandenabeele, Peter; Tate, Jim; Moens, Luc

    2007-02-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland.

  7. EUCLID/NISP GRISM qualification model AIT/AIV campaign: optical, mechanical, thermal and vibration tests

    Science.gov (United States)

    Caillat, A.; Costille, A.; Pascal, S.; Rossin, C.; Vives, S.; Foulon, B.; Sanchez, P.

    2017-09-01

    Dark matter and dark energy mysteries will be explored by the Euclid ESA M-class space mission which will be launched in 2020. Millions of galaxies will be surveyed through visible imagery and NIR imagery and spectroscopy in order to map in three dimensions the Universe at different evolution stages over the past 10 billion years. The massive NIR spectroscopic survey will be done efficiently by the NISP instrument thanks to the use of grisms (for "Grating pRISMs") developed under the responsibility of the LAM. In this paper, we present the verification philosophy applied to test and validate each grism before the delivery to the project. The test sequence covers a large set of verifications: optical tests to validate efficiency and WFE of the component, mechanical tests to validate the robustness to vibration, thermal tests to validate its behavior in cryogenic environment and a complete metrology of the assembled component. We show the test results obtained on the first grism Engineering and Qualification Model (EQM) which will be delivered to the NISP project in fall 2016.

  8. Raman study of InAs/InP quantum wires

    Science.gov (United States)

    Angelova, T.; Cros, A.; Cantarero, A.; Fuster, D.; González, Y.; González, L.

    2007-04-01

    We present a Raman study of the vibrational modes in InAs/InP (001) quantum wires. The energy of the observed phonon modes evidences the confinement properties of the wires, their strain anisotropy and the effect of atomic intermixing. Resonance effects in confined and interface phonons are discussed for excitation in the vicinity of the E1 critical point. The observed vibrations and their variation with sample characteristics are in agreement with the conclusions of previous structural and optical characterization performed in the same samples.

  9. Molecular structure, chemical reactivity, nonlinear optical activity and vibrational spectroscopic studies on 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one: A combined density functional theory and experimental approach

    Science.gov (United States)

    Pegu, David; Deb, Jyotirmoy; Saha, Sandip Kumar; Paul, Manoj Kumar; Sarkar, Utpal

    2018-05-01

    In this work, we have synthesized new coumarin Schiff base molecule, viz., 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one and characterized its structural, electronic and spectroscopic properties experimentally and theoretically. The theoretical analysis of UV-visible absorption spectra reflects a red shift in the absorption maximum in comparison to the experimental results. Most of the vibrational assignments of infrared and Raman spectra predicted using density functional theory approach match well with the experimental findings. Further, the chemical reactivity analysis confirms that solvent highly affects the reactivity of the studied compound. The large hyperpolarizability value of the compound concludes that the system exhibits significant nonlinear optical features and thus, points out their possibility in designing material with high nonlinear activity.

  10. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  11. Raman and optical spectroscopic studies of small-to-large polaron crossover in the perovskite manganese oxides

    International Nuclear Information System (INIS)

    Yoon, S.; Liu, H.L.; Schollerer, G.; Cooper, S.L.; Han, P.D.; Payne, D.A.; Cheong, S.; Fisk, Z.

    1998-01-01

    We present an optical reflectance and Raman-scattering study of the A 1-x A ' x MnO 3 system as a function of temperature and doping (0.2≤x≤0.5). The metal-semiconductor transition in the A 1-x A ' x MnO 3 system is characterized by a change from a diffusive electronic Raman-scattering response in the high-temperature paramagnetic phase, to a flat continuum scattering response in the low-temperature ferromagnetic phase. We interpret this change in the scattering response as a crossover from a small-polaron-dominated regime at high temperatures to a large-polaron-dominated low-temperature regime. Interestingly, we observe evidence for the coexistence of large and small polarons in the low-temperature ferromagnetic phase. We contrast these results with those obtained for EuB 6 , which is a low-T c magnetic semiconductor with similar properties to the manganites, but with a substantially reduced carrier density and polaron energy. copyright 1998 The American Physical Society

  12. Optical band gap and Raman spectra in AxB0.2-x(TeO2)0.8 glasses

    Czech Academy of Sciences Publication Activity Database

    Ožďanová, J.; Tichá, H.; Tichý, Ladislav

    2010-01-01

    Roč. 12, č. 5 (2010), s. 1024-1029 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40500505 Keywords : telluride glasses * optical band gap * Raman scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 0.412, year: 2010 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=2453&catid=50

  13. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  14. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.

    Science.gov (United States)

    Cole, Milton W; Crespi, Vincent H; Dresselhaus, Mildred S; Dresselhaus, Gene; Fischer, John E; Gutierrez, Humberto R; Kojima, K; Mahan, Gerald D; Rao, Apparao M; Sofo, Jorge O; Tachibana, M; Wako, K; Xiong, Qihua

    2010-08-25

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  15. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review

    International Nuclear Information System (INIS)

    Cole, Milton W; Crespi, Vincent H; Dresselhaus, Mildred S; Dresselhaus, Gene; Fischer, John E; Gutierrez, Humberto R; Kojima, K; Wako, K; Mahan, Gerald D; Rao, Apparao M; Sofo, Jorge O; Tachibana, M; Xiong Qihua

    2010-01-01

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C 60 and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  16. Raman scattering, electrical and optical properties of fluorine-doped tin oxide thin films with (200) and (301) preferred orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Yeoul, E-mail: cykim15@kicet.re.kr [Nano-Convergence Intelligence Material Team, Korea Institute of Ceramic Eng. and Tech., Gasan-digtial-ro 10 Gil 77 Geumcheon-gu, 153-801 Seoul (Korea, Republic of); Riu, Doh-Hyung [Dept. of New Material Sci. and Eng., Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-12-15

    (200) and (301) preferred oriented fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added and water-based FTO precursor solutions, respectively. (200) oriented FTO thin film from ethanol-added solution shows the lower electrical resistivity and visible light transmission than (301) preferred thin film from water-based solution. It is due to the higher carrier concentration and electron mobility in (200) oriented crystals, that is, the lower ionized impurity scattering. The higher electron concentration is related to the higher optical band gap energy, the lower visible light transmission, and the higher IR reflection. For (301) preferred FTO thin films from water-based solution, the lower carrier concentration and electron mobility make the higher electrical resistivity and visible light transmission. Raman scattering analysis shows that IR active modes prominent in (200) oriented FTO thin film are related with the lower electrical resistivity. - Highlights: • We coated fluorine-doped tin oxide thin films with preferred orientation of (200) and (301). • We examine changes in the level of electrical and optical properties with the orientation. • (200) preferred orientation showed lower electrical resistivity and optical transmittance. • (200) oriented thin films have higher electron concentrations that are related with IR active modes.

  17. Establishing the link between fibril formation and Raman optical activity spectra of insulin

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Yamamoto, S.; Bouř, Petr

    2017-01-01

    Roč. 19, č. 21 (2017), s. 13614-13621 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA16-05935S; GA ČR GA15-09072S Grant - others:COST(XE) CA15214 Institutional support: RVO:61388963 Keywords : molecular dynamics clusters * absolute configuration * vibrational spectra Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  18. Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration

    International Nuclear Information System (INIS)

    Robertson, S.; Leonhardt, U.

    2010-01-01

    Pulses in fibers establish analogs of the event horizon [Philbin et al., Science 319, 1367 (2008)]. At a group-velocity horizon, the frequency of a probe wave is shifted. We present a theoretical model of this frequency shifting, taking into account the deceleration of the pulse caused by the Raman effect. The theory shows that the probe-wave spectrum is sensitive to details of the probe-pulse interaction. Our results indicate an additional loss mechanism in the experiment [Philbin et al., Science 319, 1367 (2008)] that has not been accounted for. Our analysis is also valid for more general cases of the interaction of dispersive waves with decelerated solitons.

  19. NIR–FT Raman, FT–IR and surface-enhanced Raman scattering ...

    Indian Academy of Sciences (India)

    Administrator

    Single crystals of (S)-phenylsuccinic acid (SPSA) were grown by the slow evaporation tech- nique and vibrational ... the shift of Raman frequencies, enhancing or weak- ening of .... Harmonic vibrational wave numbers were cal- culated using ...

  20. Channel addition/removal response in all-optical gain-clamped lumped Raman fiber amplifier

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří; Honzátko, Pavel; Radil, J.

    2004-01-01

    Roč. 16, č. 3 (2004), s. 771-773 ISSN 1041-1135 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical communication * optical fibre amplifiers * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.552, year: 2004

  1. Effect of foundation flexibility on the vibrational stability of the National Ignition Facility optical system support structures

    International Nuclear Information System (INIS)

    McCallen, D.

    1997-01-01

    Alignment requirements for the National Ignition Facility (NIF) optical components will require a number of support structures which minimize the system displacements and deformations. The stringent design requirements for this facility will result in a system in which vibrations due to ambient environmental loads (e.g. foundation motion due to typical traffic loads, microseisms or nearby equipment) will have a significant, and perhaps predominant, influence on the design of the supporting structures. When considering the total deformations and displacements of the structural systems, the contribution of the foundation to the overall system flexibility must be addressed. Classical fixed-base structural analyses, which are predicated on an assumption of an infinitely rigid foundation system, neglect the influence of foundation flexibility and for the vibration regime in which the NIF structures reside, may result in significant underestimation of the system ambient vibration displacements. In the work described herein, parametric studies were performed in order to understand the potential contributions of soil-structure- interaction (SSI) to optical system displacements. Time domain finite element analyses were employed to quantify the effect of wave scattering by the mat foundation and the effects of inertial SSI due to the rocking of the massive shear wall support structures. A simplified procedure is recommended for accounting for SSI effects in the design of the special equipment structures. The simplified approach consists of applying a scale factor to displacements obtained from fixed base analyses to approximately account for the effects of soil-structure interaction and variable support input motion

  2. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone

    Science.gov (United States)

    Renjith, R.; Sheena Mary, Y.; Tresa Varghese, Hema; Yohannan Panicker, C.; Thiemann, Thies; Shereef, Anas; Al-Saadi, Abdulaziz A.

    2015-12-01

    FT-IR and FT-Raman spectra of 1-hydroxy-4,5,8-tris(4-methoxyphenyl)anthraquinone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations were used to assign the vibrational bands obtained experimentally. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. From the MEP plot it is clear that the negative electrostatic potential regions are mainly localized over carbonyl group. There is some evidence of a region of negative electrostatic potential due to π-electron density of the benzo groups. Molecular docking study shows that methoxy groups attached to the phenyl rings and hydroxyl group are crucial for binding and the title compound might exhibit inhibitory activity against PI3K and may act as an anti-neoplastic agent.

  3. Realization of all-optical switch and diode via Raman gain process using a Kerr field

    Science.gov (United States)

    Abbas, Muqaddar; Qamar, Sajid; Qamar, Shahid

    2016-08-01

    The idea of optical photonic crystal, which is generated using two counter-propagating fields, is revisited to study gain-assisted all-optical switch and diode using Kerr field. Two counter-propagating fields with relative detuning Δ ν generate standing-wave field pattern which interacts with a four-level atomic system. The standing-wave field pattern acts like a static photonic crystal for Δ ν =0 , however, it behaves as a moving photonic crystal for Δ ν \

  4. FT-IR and Raman vibrational analysis, B3LYP and M06-2X simulations of 4-bromomethyl-6-tert-butyl-2H-chromen-2-one

    Science.gov (United States)

    Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih

    2015-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  5. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Thermal and vibration dynamic analysis of an induction motor using optical fiber Bragg gratings

    Science.gov (United States)

    Sousa, Kleiton d. M.; Dreyer, Uilian J.; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2015-09-01

    In this paper it is presented the results of temperature and vibration measurements in a Three-phase Induction Motor (TIM) running at no-load condition. Vibration and temperature analysis are the most successful techniques used for condition monitoring of induction motors. The vibration is measured using two FBGs installed inside of the motor between two subsequent stator teeth. The motor spectrum of vibration when power is at 60 Hz presents the frequencies 60 Hz, 120 Hz, 180 Hz, and 240 Hz as theoretically expected. For the temperature measurement two FBGs are encapsulated in an alumina tube fixed along the stator. The results show 0.9°C difference between the two FBG caused by the motor ventilation nearer of one FBG. These measurements can be used to determine TIM parameters and still be predictive maintenance tool.

  7. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection.

    Science.gov (United States)

    Kong, Kenny; Kendall, Catherine; Stone, Nicholas; Notingher, Ioan

    2015-07-15

    Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Raman spectroscopic analysis for gastric and colorectal cancer in surgical treatment toward molecular-guided surgery

    Science.gov (United States)

    Koga, Shigehiro; Watanabe, Yuji; Oshima, Yusuke

    2018-02-01

    Raman spectroscopy provides a wealth of diagnostic information to the surgeon with in situ cancer detection and label-free histopathology in intraoperative conditions. Raman spectroscopy is a promising optical technique which can analyze biological tissues with light scattering. The difference in frequencies between the incident light and the scattering light are called Raman shifts, which correspond to the vibrational energy of the molecular bonds. Raman spectrum gives information about the molecular structure and composition in biological specimens. We had been previously reported that Raman spectroscopy could distinguish various histological types of human lung cancer cells from normal cells in vitro, and also confirmed that Raman spectra obtained from cancer cells and their environment including other cells and extracellular matrix in xenograft models and spontaneous metastasis models were distinguishable using Raman spectroscopy combined with fluorescence microscopy and photoluminescence imaging. Malignancy can be characterized not only by the cancer cells but also by the environmental factors including immune cells, stroma cells, secretion vesicles and extracellular matrix, but to identify and detect cancer diagnostic biomarkers in vivo on Raman spectroscopy is still challenging. Here we investigate morphological and molecular dynamics in advanced cancer specimens obtained from patients. We are also constructing a customdesigned Raman spectral imaging system for both in vitro and in vivo assay of tumor tissues to reveal the metastasis process and to evaluate therapeutic effects of anti-cancer drugs and their drug delivery toward the clinical application of the technique.

  9. Optical image hiding based on chaotic vibration of deformable moiré grating

    Science.gov (United States)

    Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas

    2018-03-01

    Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.

  10. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  11. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  12. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires

    International Nuclear Information System (INIS)

    Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  13. Enhanced Light Scattering of the Forbidden longitudinal Optical Phonon Mode Studied by Micro-Raman Spectroscopy on Single InN nanowires

    International Nuclear Information System (INIS)

    Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  14. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    Science.gov (United States)

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  15. Study of optical phonon modes of CdS nanoparticles using Raman ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. The reduction in the grain size to nanometer range can bring about radical changes in almost all of the properties of semiconductors. CdS nanoparticles have attracted considerable scientific interest because they exhibit strongly size-dependent optical and electrical properties. In the case of nanostructured ...

  16. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers

    DEFF Research Database (Denmark)

    Dong, R.; Heersink, J.; Corney, J.

    2008-01-01

    We report new experiments on polarization squeezing using ultrashort photonic pulses in a single pass of a birefringent fiber. We measure what is to our knowledge a record squeezing of -6.8 +/- 0.3 dB in optical fibers which when corrected for linear losses is -10.4 +/- 0.8 dB. The measured polar...

  17. Combining fibre optic Raman spectroscopy and tactile resonance measurement for tissue characterization

    International Nuclear Information System (INIS)

    Candefjord, Stefan; Nyberg, Morgan; Ramser, Kerstin; Lindahl, Olof A; Jalkanen, Ville

    2010-01-01

    Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard-–histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization

  18. Synthesis, crystal structure, vibrational spectroscopy, optical properties and theoretical studies of a new organic-inorganic hybrid material: [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2.

    Science.gov (United States)

    Ben Ahmed, A; Feki, H; Abid, Y

    2014-12-10

    A new organic-inorganic hybrid material, [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1¯ with the following parameters: a=8.4749(6)(Å), b=17.1392(12)(Å), c=17.1392(12)(Å), α=117.339(0)°, β=99.487(0)°, γ=99.487(0)° and Z=2. The crystal lattice is composed of a two discrete (BiBr6)(3-) anions surrounded by six ((CH3)2NH2)(+) cations. Complex hydrogen bonding interactions between (BiBr6)(3-) and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Imaging vibration of the cochlear partition of an excised guinea pig cochlea using phase-sensitive Fourier domain optical coherence tomography

    Science.gov (United States)

    Choudhury, Niloy; Zeng, Yaguang; Fridberger, Anders; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.; Wang, Ruikang K.

    2011-03-01

    Studying the sound stimulated vibrations of various membranes that form the complex structure of the organ of Corti in the cochlea of the inner ear is essential for understanding how the travelling sound wave of the basilar membrane couples its energy to the organ structures. In this paper we report the feasibility of using phase-sensitive Fourier domain optical coherence tomography (FD-OCT) to image the vibration of various micro-structures of the cochlea at the same time. An excised cochlea of a guinea pig was stimulated using sounds at various frequencies and vibration image was obtained. When measuring the apex area, vibration signal from different turns, which have different best response frequencies are obtained in the same image. The method has the potential to measure the response from a much wider region of the cochlea than any other currently used method. The noise floor for vibration image for the system at 200 Hz was ~0.3nm.

  20. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  1. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques

    International Nuclear Information System (INIS)

    Yoon, Tai Hyun

    2007-01-01

    We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms

  2. A laser-optical sensor system for blade vibration detection of high-speed compressors

    Science.gov (United States)

    Neumann, Mathias; Dreier, Florian; Günther, Philipp; Wilke, Ulrich; Fischer, Andreas; Büttner, Lars; Holzinger, Felix; Schiffer, Heinz-Peter; Czarske, Jürgen

    2015-12-01

    Improved efficiency as well as increased lifetime of turbines and compressors are important goals in turbomachinery development. A significant enhancement to accomplish these aims can be seen in online monitoring of the operating parameters of the machines. During the operation of compressors it is of high interest to predict critical events like flutter or stall which can be achieved by observing blade deformations and vibrations. We have developed a laser Doppler distance sensor (LDDS), which is capable of simultaneously measuring the radial blade expansions, the circumferential blade deflections as well as the circumferential velocities of the rotor blade tips. As a result, an increase of blade vibrations is measured before stall at characteristic frequencies. While the detected vibration frequencies and the vibration increase are in agreement with the measurement results of a commercial capacitive blade tip timing system, the measured values of the vibration amplitudes differ by a factor of three. This difference can be mainly attributed to the different measurement locations and to the different measurement approaches. Since the LDDS is applicable to metal as well as ceramic, carbon-fiber and glass-fiber reinforced composite blades, a universally applicable sensor system for stall prediction and status monitoring is presented.

  3. Measurements of stimulated-Raman-scattering-induced tilt in spectral-amplitude-coding optical code-division multiple-access systems

    Science.gov (United States)

    Al-Qazwini, Zaineb A. T.; Abdullah, Mohamad K.; Mokhtar, Makhfudzah B.

    2009-01-01

    We measure the stimulated Raman scattering (SRS)-induced tilt in spectral-amplitude-coding optical code-division multiple-access (SAC-OCDMA) systems as a function of system main parameters (transmission distance, power per chip, and number of users) via computer simulations. The results show that SRS-induced tilt significantly increases as transmission distance, power per chip, or number of users grows.

  4. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  5. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  6. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Venkata Ananth [CaSTL Center, Department of Chemistry, University of California, Irvine, California 92697 (United States); Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu [Department of Electrical Engineering and Computer Science, 142 Engineering Tower, University of California, Irvine, California 92697 (United States); Nowak, Derek [Molecular Vista, Inc., 6840 Via Del Oro, San Jose, California 95119 (United States)

    2016-06-06

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  7. Vibrational, calorimetric and nonlinear optical studies of melaminium-bis(trichloroacetate) monohydrate molecular ionic crystal

    Science.gov (United States)

    Debrus, S.; Marchewka, M. K.; Drozd, M.; Ratajczak, H.

    2007-04-01

    The efficiency of second harmonic generation for melaminium bis(trichloroacetate) was estimated relatively to KDP: deff = 3.09 deff (KDP). Room temperature FT IR and FT Raman spectra were recorded. Some spectral features of this new crystal are referred to corresponding one for melamine crystal as well as for other trichloroacetates. Differential scanning calorimetric measurements performed on powder sample indicate the phase transition point at approximately 276 and 239 K for heating and cooling, respectively.

  8. Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas

    Czech Academy of Sciences Publication Activity Database

    Aouani, H.; Šípová, Hana; Rahmani, M.; Navarro-Cia, M.; Hegnerová, Kateřina; Homola, Jiří; Hong, M.; Maier, S. A.

    2013-01-01

    Roč. 7, č. 1 (2013), s. 669-675 ISSN 1936-0851 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : plasmonic * nanoantenna * vibrational spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 12.033, year: 2013

  9. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    Science.gov (United States)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  10. Optical spectroscopic studies of L-alanyl-L-alanine

    Czech Academy of Sciences Publication Activity Database

    Šebek, Jiří; Gyurcsik, B.; Kapitán, Josef; Šebestík, Jaroslav; Bouř, Petr

    2007-01-01

    Roč. 14, č. 1 (2007), s. 45-45 ISSN 1211-5894. [Discussions in Structural Molecular Biology /6./. 29.03.2007-31.03.2007, Nové Hrady] Institutional research plan: CEZ:AV0Z40550506 Keywords : Ala-Ala * vibrational circular dichroism * Raman optical activity * peptides Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Localized vibrations in superconducting YB a2C u3O7 revealed by ultrafast optical coherent spectroscopy

    Science.gov (United States)

    Novelli, Fabio; Giovannetti, Gianluca; Avella, Adolfo; Cilento, Federico; Patthey, Luc; Radovic, Milan; Capone, Massimo; Parmigiani, Fulvio; Fausti, Daniele

    2017-05-01

    The interaction between phonons and high-energy excitations of electronic origin in cuprates and their role in the superconducting mechanisms is still controversial. Here we use coherent vibrational time-domain spectroscopy together with density functional and dynamical mean-field theory calculations to establish a direct link between the c -axis phonon modes and the in-plane electronic charge excitations in optimally doped YB a2C u3O7 . The nonequilibrium Raman tensor is measured by means of the broadband "coherent-phonon" response in pump-probe experiments and is qualitatively described by our model using density functional theory in the frozen-phonon approximation plus single-band dynamical mean-field theory to account for the electronic correlations. The major outcome of our experimental and theoretical study is to establish the link between out-of-plane copper ion displacements and the in-plane electronic correlations, and to estimate at a few unit cells the correlation length of the associated phonon mode. The approach introduced here could help in revealing the complex interplay between fluctuations of different nature and spatial correlation in several strongly correlated materials.

  12. High-pressure Raman and optical absorption studies on lead pyroniobate (Pb2Nb2O7) and pressure-induced phase transitions

    International Nuclear Information System (INIS)

    Jayaraman, A.; Kourouklis, G.A.; Cooper, A.S.; Espinosa, G.P.

    1990-01-01

    High-pressure Raman scattering and optical absorption studies have been carried out on lead pyroniobate (Pb 2 Nb 2 O 7 ) up to 33 GPa, using a gasketed diamond anvil cell. The Raman study reveals the occurrence of two, possibly three, pressure-induced phase changes; a rather subtle change is indicated near 4.5 GPa. The transition near 13 GPa is attributed to a structural transition from the rhombohedral to the cubic pyrochlore structure. The third phase change occurs near 20 GPa. From the broad Raman feature that is observed at about 800 cm -1 , it is concluded that the system turns amorphous at pressures above 20 GPa. The amorphous phase recrystallizes to the original rhombohedral phase, on release of pressure. The broad Raman peaks of the recrystallized phase indicate a high degree of disorder in the material. Lead pyroniobate turns deep red near 30 GPa, from light yellow at ambient pressure. Semi quantitative absorption measurements show that the energy gap shifts red at a rate of 30 meV/GPa. This shift is attributed to the downward motion of the 5d (es) conduction band of Pb

  13. Structural, Spectroscopic (FT-IR, Raman and NMR, Non-linear Optical (NLO, HOMO-LUMO and Theoretical (DFT/CAM-B3LYP Analyses of N-Benzyloxycarbonyloxy-5-Norbornene-2,3-Dicarboximide Molecule

    Directory of Open Access Journals (Sweden)

    Nuri ÖZTÜRK

    2018-02-01

    Full Text Available The experimental spectroscopic investigation of N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarboximide (C17H15NO5 molecule has been done using 1H and 13C NMR chemical shifts, FT-IR and Raman spectroscopies. Conformational forms have been determined depending on orientation of N-benzyloxycarbonyloxy and 5-norbornene-2,3-dicarboximide (NDI groups of the title compound. The structural geometric optimizations, vibrational wavenumbers, NMR chemical shifts (in vacuum and chloroform and HOMO-LUMO analyses for all conformers of the title molecule have been done with DFT/CAM-B3LYP method at the 6-311++G(d,p basis set. Additionally, based on the calculated HOMO and LUMO energy values, some molecular properties such as ionization potential (I, electron affinity (A, electronegativity (χ, chemical hardness (h, chemical softness (z, chemical potential (μ and electrophilicity index (w parameters are determined for all conformers. The non-linear optical (NLO properties have been studied for the title molecule. We can say that the experimental spectral data are in accordance with calculated values.

  14. A novel fiber-optical vibration defending system with on-line intelligent identification function

    Science.gov (United States)

    Wu, Huijuan; Xie, Xin; Li, Hanyu; Li, Xiaoyu; Wu, Yu; Gong, Yuan; Rao, Yunjiang

    2013-09-01

    Capacity of the sensor network is always a bottleneck problem for the novel FBG-based quasi-distributed fiberoptical defending system. In this paper, a highly sensitive sensing network with FBG vibration sensors is presented to relieve stress of the capacity and the system cost. However, higher sensitivity may cause higher Nuisance Alarm Rates (NARs) in practical uses. It is necessary to further classify the intrusion pattern or threat level and determine the validity of an unexpected event. Then an intelligent identification method is proposed by extracting the statistical features of the vibration signals in the time domain, and inputting them into a 3-layer Back-Propagation(BP) Artificial Neural Network to classify the events of interest. Experiments of both simulation and field tests are carried out to validate its effectiveness. The results show the recognition rate can be achieved up to 100% for the simulation signals and as high as 96.03% in the real tests.

  15. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    Science.gov (United States)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  16. Quantum chemical studies on structural, vibrational, nonlinear optical properties and chemical reactivity of indigo carmine dye

    Science.gov (United States)

    El-Mansy, M. A. M.

    2017-08-01

    Structural and vibrational spectroscopic studies were performed on indigo carmine (IC) isomers using FT-IR spectral analysis along with DFT/B3LYP method utilizing Gaussian 09 software. GaussView 5 program has been employed to perform a detailed interpretation of vibrational spectra. Simulation of infrared spectra has led to an excellent overall agreement with the observed spectral patterns. Mulliken population analyses on atomic charges, MEP, HOMO-LUMO, NLO, first order hyperpolarizability and thermodynamic properties have been examined by (DFT/B3LYP) method with the SDD basis set level. Density of state spectra (DOS) were calculated using GaussSum 3 at the same level of theory. Molecular modeling approved that DOS Spectra are the most significant tools for differentiating between two IC isomers so far. Moreover, The IC isomers (cis-isomer) have shown an extended applicability for manufacturing both NLO and photovoltaic devices such as solar cells.

  17. Absolute Configuration of a Cyclic Dipeptide Reflected in Vibrational Optical Activity: Ab Initio and Experimental Investigation

    Czech Academy of Sciences Publication Activity Database

    Li, X.; Hopmann, K. H.; Hudecová, Jana; Stensen, W.; Novotná, J.; Urbanová, M.; Svendsen, J. S.; Bouř, Petr; Ruud, K.

    2012-01-01

    Roč. 116, č. 10 (2012), s. 2554-2563 ISSN 1089-5639 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclic dipeptide * vibrational otpical activity * density functional theory * dispersion * electronic circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  18. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  19. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  20. Synthesis, structural, optical and Raman studies of pure and lanthanum doped ZnSe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pushpendra, E-mail: push.nac@gmail.com [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Singh, Jai [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Pandey, Mukesh Kumar [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Jeyanthi, C.E. [Research and Development Centre, Bharathiar University, Coimbatore 641 046 (India); Siddheswaran, R. [Department of Materials Science and Engineering, University of Concepcion, Concepcion (Chile); Paulraj, M. [Department of Physics, Faculty of Physical sciences and Mathematics, University of Concepcion, Casilla 160, Concepcion (Chile); Hui, K.N. [Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2014-01-01

    Graphical abstract: - Highlights: • Template-free synthesis of ZnSe and ZnSe:La nanoparticles was developed at low temperature 100 °C. • Cubic ZnSe and ZnSe:La nanoparticles were obtained by chemical route. • As-synthesized ZnSe:La nanoparticles showed higher emission intensity than ZnSe nanoparticles. • Band gap (E{sub g}) of ZnSe nanoparticles was bigger than ZnSe nanoparticles due to nanosized effect. - Abstract: In this work, a simple, effective and reproducible chemical synthetic route for the production of high-quality, pure ZnSe nanoparticles (NPs), and lanthanum-doped ZnSe (ZnSe:La) NPs is presented. The wide bandgap, luminescent pure ZnSe and ZnSe:La NPs has been synthesized at a low temperature (100 °C) in a single template-free step. The size and optical bandgap of the NPs was analyzed from powder X-ray diffraction (XRD), UV–visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). A broad photoluminescence (PL) emission across the visible spectrum has been demonstrated by a systematic blue-shift in emission due to the formation of small nanoparticles. Here, contribution to emission intensity from surface states of NPs increases with La doping. TEM data revealed that the average size of ZnSe and ZnSe:La NPs is 14 and 8 nm, respectively. On the other hand, band gap energy E{sub g} of ZnSe and ZnSe:La NPs were found to be 3.59 eV and 3.65 eV, respectively. Results showed that hydrazine hydrate played multiple roles in the formation of ZnSe and ZnSe:La NPs. A possible reaction mechanism for the growth of NPs is also discussed.

  1. FTIR and FT-Raman spectra and density functional computations of the vibrational spectra, molecular geometry and atomic charges of the biomolecule: 5-bromouracil

    Czech Academy of Sciences Publication Activity Database

    Rastogi, V.K.; Palafox, M. A.; Mittal, L.; Peica, N.; Keifer, W.; Lang, Kamil; Ojha, S.P.

    2007-01-01

    Roč. 38, č. 10 (2007), s. 1227-1241 ISSN 0377-0486 Institutional research plan: CEZ:AV0Z40320502 Keywords : FTIR and FT-Raman spectra * density functional computations * molecular geometry Subject RIV: CA - Inorganic Chemistry Impact factor: 3.514, year: 2007

  2. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    Science.gov (United States)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.

  3. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  4. Elaboration, structural, vibrational and optical investigation of a two-dimensional self-assembled organic–inorganic hybrid compound

    International Nuclear Information System (INIS)

    Dammak, T.; Boughzala, H.; Mlayah, A.; Abid, Y.

    2016-01-01

    Single crystals of a hybrid organic/inorganic material with the formula (C 4 N 3 H 16 )Cl[CuCl 4 ] were elaborated and studied by X-ray diffraction, and photoluminescence. The crystals consist of a self-assembled multilayer structure with a Pnam space group. The structure is built up from the staking of infinite two-dimensional layers of CuCl 6 corner-sharing octahedra, separated by organic (C 4 N 3 H 16 ) 3+ chains. Such a structure may be regarded as a multi quantum well system, in which CuCl 6 layers act as semiconductor wells and the organic molecules act as insulator barriers Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed. For optical investigations, thin films have been prepared by spin-coating method from the ethanol solution of the material. Optical absorption spectra shows characteristic absorptions of CuCl-based layered perovskite centered at 300 and 380 nm, whereas the photoluminescence spectra shows a bleu intense emission around 420 nm, associated to radiative recombination of confined excitons in the CuCl 6 Quantum wells.

  5. Quantum-Chemical Calculation and Visualization of the Vibrational Modes of Graphene in Different Points of the Brillouin Zone.

    Science.gov (United States)

    Lebedieva, Tetiana; Gubanov, Victor; Dovbeshko, Galyna; Pidhirnyi, Denys

    2015-12-01

    Different notations of graphene irreducible representations and optical modes could be found in the literature. The goals of this paper are to identify the correspondence between available notations, to calculate the optical modes of graphene in different points of the Brillouin zone, and to compare them with experimental data obtained by Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy. The mechanism of the resonance enhancement of vibration modes of the molecules adsorbed on graphene in CARS experiments is proposed. The possibility of appearance of the discrete breathing modes is discussed.

  6. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  7. Vibrational modes and Structure of Niobium(V) Oxosulfato Complexes in the Molten Nb2O5-K2S2O7-K2SO4 System Studied by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Paulsen, Andreas L.; Borup, Flemming; Berg, Rolf W.

    2010-01-01

    The structural and vibrational properties of NbV oxosulfato complexes formed in Nb2O5-K2S2O7 and Nb2O5-K2S2O7-K2SO4 molten mixtures with 0 ... for the binary Nb2O5-K2S2O7 molten system indicate that the dissolution of Nb2O5 proceeds with consumption of S2O7 leading to the formation of a NbV oxosulfato complex according to Nb2O5 + nS2O7 --> C2n-; a simple formalism exploiting the relative Raman band intensities is used for determining the stoichiometric...... coefficient, n, pointing to n = 3 and to the following reaction: Nb2O5 + 3S2O7 --> 2NbO(SO4)3, which is consistent with the Raman spectra of the molten mixtures. Nb2O5 could be dissolved much easier when K2SO4 was present in an equimolar (1:1) SO4/Nb ratio; the incremental presence of K2SO4 in Nb2O5-K2S2O7...

  8. Temperature dependence of low-frequency polarized Raman scattering spectra in TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu; Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2017-06-15

    In this work, we examined phase transitions in the layered ternary thallium chalcogenide TlInS{sub 2} by studying the temperature dependence of polarized Raman spectra with the aid of the Raman confocal microscope system. The Raman spectra were measured over the temperature range of 77-320 K (which includes the range of successive phase transitions) in the low-frequency region of 35-180 cm{sup -1}. The optical phonons that showed strong temperature dependence were identified as interlayer vibrations related to phase transitions, while the phonons that showed weak temperature dependence were identified as intralayer vibrations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  10. Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Jürgensen, Vibeke Würtz; Claussen, Anetta

    2006-01-01

    and experimental approach. The systems we have studied systematically are the amino acids (L-alanine, L-tryptophan, and L-histidine), peptides (N-acetyl L-alanine N'-methyl amide, N-acetyl L-tryptophan N'-methyl amide, N-acetyl L-histidine N'-methyl amide, L-alanyl L-alanine, tri-L-serine, N-acetyl L-alanine L......+disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties......We report on our work with vibrational absorption, vibrational circular dichroism, Raman scattering, Raman optical activity, and surface-enhanced Raman spectroscopy to study protein and DNA structure, hydration, and the binding of ligands, drugs, pesticides, or herbicides via a combined theoretical...

  11. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    Science.gov (United States)

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  12. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  13. Calculation of the vibrational linewidth and line shape of Raman spectra using the relaxation function : I. method and application to nitrogen

    NARCIS (Netherlands)

    Kooi, M.E.; Smit, F.; Michels, J.P.J.; Schouten, J.A.

    2000-01-01

    The spectral line shape of the fundamental vibration of nitrogen is calculated from molecular dynamics simulations by determining the Fourier transform of the relaxation function. It has been applied to the fluid phase at various pressures and temperatures, and to solid d-N2. The validity of the

  14. Laser frequency stabilisation by the Pound - Drever - Hall method using an acousto-optic phase modulator operating in the pure Raman - Nath diffraction regime

    International Nuclear Information System (INIS)

    Baryshev, Vyacheslav N

    2012-01-01

    Frequency stabilisation of diode laser radiation has been implemented by the Pound - Drever - Hall method using a new acousto-optic phase modulator, operating in the pure Raman - Nath diffraction regime. It is experimentally shown that, as in the case of saturated-absorption spectroscopy in atomic vapour, the spatial divergence of the frequency-modulated output spectrum of this modulator does not interfere with obtaining error signals by means of heterodyne frequency-modulation spectroscopy with a frequency discriminator based on a high-Q Fabry - Perot cavity with finesse of several tens of thousands.

  15. Alignment characterization of single-wall carbon nanotubes by Raman scattering

    International Nuclear Information System (INIS)

    Liu Pijun; Liu Liyue; Zhang Yafei

    2003-01-01

    A novel method for identifying the Raman modes of single-wall carbon nanotubes (SWNT) based on the symmetry of the vibration modes has been studied. The Raman intensity of each vibration mode varies with polarization direction, and the relationship can be expressed as analytical functions. This method avoids troublesome numerical calculation and easily gives clear relations between Raman intensity and polarization direction. In this way, one can distinguish each Raman-active mode of SWNT through the polarized Raman spectrum

  16. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    Science.gov (United States)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and

  17. Raman spectroscopy an intensity approach

    CERN Document Server

    Guozhen, Wu

    2017-01-01

    This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a com...

  18. Polarized Raman spectroscopic characterization of normal and oral cancer blood plasma

    Science.gov (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    In India oral cancer ranks the top due to the habitual usage of tobacco in its various forms and remains the major burden. Hence priority is given for early diagnosis as it is the better solution for cure or to improve the survival rate. For the past three decades, optical spectroscopic techniques have shown its capacity in the discrimination of normal and malignant samples. Many research works have conventional Raman in the effective detection of cancer using the variations in bond vibrations of the molecules. However in addition polarized Raman provides the orientation and symmetry of biomolecules. If so can polarized Raman be the better choice than the conventional Raman in the detection of cancer? The present study aimed to found the answer for the above query. The conventional and polarized Raman spectra were acquired for the same set of blood plasma samples of normal subjects and oral malignant (OSCC) patients. Thus, obtained Raman spectral data were compared using linear discriminant analysis coupled with artificial neural network (LDA-ANN). The depolarization ratio of biomolecules such as antioxidant, amino acid, protein and nucleic acid bases present in blood plasma was proven to be the best attributes in the categorization of the groups. The polarized Raman results were promising in discriminating oral cancer blood plasma from that of normal blood plasma with improved efficiency. The results will be discussed in detail.

  19. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  20. The optical viscometer based on the vibrating fiber partially submerged in fluid

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Stachiv, Ivo; Wang, A.B.

    2009-01-01

    Roč. 142, č. 1 (2009), s. 111-117 ISSN 0925-4005 Institutional research plan: CEZ:AV0Z20760514 Keywords : optical viscometer * viscosity measurement * dimensionless analysis Subject RIV: BK - Fluid Dynamics Impact factor: 3.083, year: 2009 http://www.sciencedirect.com

  1. Determining the Absolute Configuration of Two Marine Compounds Using Vibrational Chiroptical Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hopmann, K. H.; Šebestík, Jaroslav; Novotná, J.; Stensen, W.; Urbanová, M.; Svenson, J.; Svendsen, J. S.; Bouř, Petr; Ruud, K.

    2012-01-01

    Roč. 77, č. 2 (2012), s. 858-869 ISSN 0022-3263 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational circular dichroism * Raman optical activity * absolute configuration * bioprospecting Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.564, year: 2012

  2. Optical phonon modes of wurtzite InP

    Science.gov (United States)

    Gadret, E. G.; de Lima, M. M.; Madureira, J. R.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F.; Cantarero, A.

    2013-03-01

    Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by using light linearly polarized along different directions in backscattering configuration. Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the wurtzite phase have been calculated, showing a good agreement with the Raman experimental data.

  3. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  4. Raman, FTIR, thermal and optical properties of TeO2-Nb2O5-B2O3-V2O5 quaternary glass system

    Directory of Open Access Journals (Sweden)

    Swapna

    2017-07-01

    Full Text Available A series of quaternary glass systems with the composition 79TeO2-(20−xNb2O5-xB2O3-1V2O5 was prepared using the melt quench technique. Such studies as optical absorption, Raman, FTIR spectroscopy, EPR and DSC were carried out on the glass system. The physical properties, such as density (ρ and molar volume (VM, were determined. The Urbach energy (ΔE, optical band gap (Eopt, optical basicity (Λ, refractive index (n and electron polarizability (α of the glasses were determined from optical absorption data. Spin-Hamiltonian parameters of VO2+ ions were calculated from the EPR data. With the gradual substitution of B2O3 at the expense of Nb2O5, the density and optical band gap of the glasses decreased, and the electronic polarizability increased. EPR spectra revealed that VO2+ occupies an octahedral site with tetrahedral compression. Spin-Hamiltonian parameters g|| and g⊥ increased as B2O3 content increased in the glass. The glass transition temperature (Tg also decreased as the B2O3 content in the glass increased.

  5. Determining the Effect of Calculus, Hypocalcification, and Stain on Using Optical Coherence Tomography and Polarized Raman Spectroscopy for Detecting White Spot Lesions

    Directory of Open Access Journals (Sweden)

    Amanda Huminicki

    2010-01-01

    Full Text Available Optical coherence tomography (OCT and polarized Raman spectroscopy (PRS have been shown as useful methods for distinguishing sound enamel from carious lesions ex vivo. However, factors in the oral environment such as calculus, hypocalcification, and stain could lead to false-positive results. OCT and PRS were used to investigate extracted human teeth clinically examined for sound enamel, white spot lesion (WSL, calculus, hypocalcification, and stain to determine whether these factors would confound WSL detection with these optical methods. Results indicate that OCT allowed differentiating caries from sound enamel, hypocalcification, and stain, with calculus deposits recognizable on OCT images. ANOVA and post-hoc unequal N HSD analyses to compare the mean Raman depolarization ratios from the various groups showed that the mean values were statistically significant at P<.05, except for several comparison pairs. With the current PRS analysis method, the mean depolarization ratios of stained enamel and caries are not significantly different due to the sloping background in the stained enamel spectra. Overall, calculus and hypocalcification are not confounding factors affecting WSL detection using OCT and PRS. Stain does not influence WSL detection with OCT. Improved PRS analysis methods are needed to differentiate carious from stained enamel.

  6. Study of vibrational and magnetic excitations in Ni sub c Mg sub 1 sub - sub c O solid solutions by Raman spectroscopy

    CERN Document Server

    Cazzanelli, E; Mariotto, G; Mironova-Ulmane, N

    2003-01-01

    The Raman scattering by phonons and magnons was studied for the first time in the polycrystalline solid solutions Ni sub c Mg sub 1 sub - sub c O. The experimental Raman spectrum for c = 0.9 is similar to that of NiO and consists of six well resolved bands, whose origins are the disorder-induced one-phonon scattering (bands at 400 and 500 cm sup - sup 1), two-phonon scattering (bands at 750, 900, and 1100 cm sup - sup 1), and two-magnon scattering (the broad band at approx 1400 cm sup - sup 1). We found that the dependence of the two-magnon band in solid solutions on the composition and temperature is consistent with their magnetic phase diagram. We also observed that the relative contribution of two-phonon scattering decreases strongly upon dilution with magnesium ions and disappears completely at c < 0.5. Such behaviour is explained in terms of a disorder-induced effect, which increases the probability of the one-phonon scattering processes.

  7. Two dimensional vibrations of the guinea pig apex organ of Corti measured in vivo using phase sensitive Fourier domain optical coherence tomography

    Science.gov (United States)

    Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.

    2015-02-01

    In this study, we measure the in vivo apical-turn vibrations of the guinea pig organ of Corti in both axial and radial directions using phase-sensitive Fourier domain optical coherence tomography. The apical turn in guinea pig cochlea has best frequencies around 100 - 500 Hz which are relevant for human speech. Prior measurements of vibrations in the guinea pig apex involved opening the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here this limitation is overcome by measuring the vibrations through bone without opening the otic capsule. Furthermore, we have significantly reduced the surgery needed to access the guinea pig apex in the axial direction by introducing a miniature mirror inside the bulla. The method and preliminary data are discussed in this article.

  8. In vivo confocal Raman spectroscopy of the human cornea.

    Science.gov (United States)

    Bauer, N J; Hendrikse, F; March, W F

    1999-07-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noninvasive assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea by using a microscope objective lens (x25 magnification, NA = 0.5, f = 10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array detector for rapid spectral data acquisition over a range from 2,890 to 3,590/cm(-1). Raman spectra were recorded from the anterior 100-150 microm of the cornea over a period before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400/cm(-1) (OH-vibrational mode of water) and 2,940/cm(-1) (CH-vibrational mode of proteins) was used as a measure for corneal hydration. High signal-to-noise ratio (SNR = 25) Raman spectra were obtained from the human corneas by using 15 mJ of laser light energy. Qualitative changes in the hydration of the anteriormost part of the corneas could be observed as a result of the dehydrating agent. With adequate improvements in system safety, confocal Raman spectroscopy could potentially be applied clinically as a noninvasive tool for the assessment of corneal hydration in vivo.

  9. Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications

    International Nuclear Information System (INIS)

    Djaker, Nadia; Lenne, Pierre-Francois; Marguet, Didier; Colonna, Anne; Hadjur, Christophe; Rigneault, Herve

    2007-01-01

    Recent advances in laser physics have permitted the development of a new kind of microscopy based on stimulated Raman scattering. This new technique known as Coherent anti-Stokes Raman scattering (CARS) microscopy allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capabilities. We review recent advances in CARS microscopy, with applications to chemical and biological systems. We also present an application of CARS microscopy with high optical resolution and spectral selectivity, in resolving structures in surface ex vivo stratum corneum by looking at the CH 2 stretching vibrational band. A strong CARS signal is backscattered from an intense forward generated CARS signal in thick samples. This makes noninvasive imaging of deep structures possible, without labeling or chemical treatments

  10. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    Science.gov (United States)

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2

  11. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    Science.gov (United States)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated

  12. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  13. Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs/InAs1-xSbx

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Henan [Univ. of North Carolina, Charlotte, NC (United States). Optical Science and Engineering Graduate Program and Dept. of Electrical and Computer Engineering; Zhang, Yong [Univ. of North Carolina, Charlotte, NC (United States). Optical Science and Engineering Graduate Program and Dept. of Electrical and Computer Engineering; Steenbergen, Elizabeth H. [Arizona State Univ., Tempe, AZ (United States). Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering; Liu, Shi [Arizona State Univ., Tempe, AZ (United States). Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering; Lin, Zhiyuan [Arizona State Univ., Tempe, AZ (United States). Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering; Zhang, Yong-Hang [Arizona State Univ., Tempe, AZ (United States). Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering; Kim, Jeomoh [Georgia Inst. of Technology, Atlanta, GA (United States). Center for Compound Semiconductors and School of Electrical and Computer Engineering; Ji, Mi-Hee [Georgia Inst. of Technology, Atlanta, GA (United States). Center for Compound Semiconductors and School of Electrical and Computer Engineering; Detchprohm, Theeradetch [Georgia Inst. of Technology, Atlanta, GA (United States). Center for Compound Semiconductors and School of Electrical and Computer Engineering; Dupuis, Russell D. [Georgia Inst. of Technology, Atlanta, GA (United States). Center for Compound Semiconductors and School of Electrical and Computer Engineering; Kim, Jin K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-26

    The InAs/InAs1-xSbx superlattice system distinctly differs from two well-studied superlattice systems GaAs / AlAs and InAs/GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs/InAs1-xSbx system when compared to the other two systems. Here, we report a polarized Raman study of the vibrational properties of the InAs/InAs1-xSbx superlattices (SLs) as well as selected InAs1-xSbx alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) from both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like “forbidden” LO mode is observed in two parallel-polarization configurations. The InAs1-xSbx alloys lattice matched to the substrate (xSb ~ 0.09) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (xSb ~ 0.35) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs/InAs1-xSbx and InAs/GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of

  14. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  15. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  16. Vibrational spectroscopy at very high pressures. Part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure

    DEFF Research Database (Denmark)

    Adams, David M.; Berg, Rolf W.; Williams, Alan D.

    1981-01-01

    Raman and far-IR mode frequency shifts with pressure have been observed under hydrostatic conditions in a gasketed diamond anvil cell (d.a.c.). Using compressibilities calculated from unit cell constants and lattice energies, Grüneisen parameters gammai have been obtained for all observed modes...... pressure curves for K2SnCl6 and [(CH3)4N]2MCl6 (M=Sn, Te, Pt) are discussed in relation to their structures. Shifts of nu-tilde i with temperature for K2ReCl6 and K2PtCl6 are analyzed into explicit and implicit anharmonic contributions. The Journal of Chemical Physics is copyrighted by The American...

  17. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C{sub 4}H{sub 9}NH{sub 3}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Dammak, T., E-mail: thameurlpa@yahoo.f [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia); Elleuch, S. [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia); Bougzhala, H. [Laboratoire de cristallochimie et des materiaux, Faculte des Sciences de Tunis (Tunisia); Mlayah, A. [Centre d' Elaboration de Materiaux et d' Etudes Structurales, CNRS-Universite Paul Sabatier, 29 rue Jeanne Marvig, 31055 Toulouse, Cedex 4 (France); Chtourou, R. [Centre de Recherche et des Technologies de l' Energie CRTEn BP. 95, Hammam-Lif 2050, Laboratoire de Photovoltaique et de Semiconducteur (Tunisia); Abid, Y. [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia)

    2009-09-15

    An organic-inorganic hybrid perovskite (C{sub 4}H{sub 9}NH{sub 3}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6} was synthesized and studied by X-ray diffraction, Raman and infrared spectroscopies, optical transmission and photoluminescence. The title compound, abbreviated (C{sub 4}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}, crystallises in a periodic two-dimensional multilayer structure with P2{sub 1}/a space group. The structure is built up from alternating inorganic and organic layers. Each inorganic layer consists of three sheets of PbX{sub 6} (X=I, Br) octahedra. Raman and infrared spectra of the title compound were recorded in the 100-3500 and 400-4000 cm{sup -1} frequency ranges, respectively. An assignment of the observed vibration modes is reported. Optical transmission measurements, performed on thin films of (C{sub 4}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}, revealed two absorption bands at 474 and 508 nm. Photoluminescence measurements have shown a green emission peak at 519 nm.

  18. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.

    Science.gov (United States)

    Demos, Stavros G; Raman, Rajesh N; Yang, Steven T; Negres, Raluca A; Schaffers, Kathleen I; Henesian, Mark A

    2011-10-10

    The spontaneous Raman scattering cross sections of the main peaks (related to the A1 vibrational mode) in rapid and conventional grown potassium dihydrogen phosphate and deuterated crystals are measured at 532 nm, 355 nm, and 266 nm. The measurement involves the use of the Raman line of water centered at 3400 cm-1 as a reference to obtain relative values of the cross sections which are subsequently normalized against the known absolute value for water as a function of excitation wavelength. This measurement enables the estimation of the transverse stimulated Raman scattering gain of these nonlinear optical materials in various configurations suitable for frequency conversion and beam control in high-power, large-aperture laser systems.

  19. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  20. Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland

    Science.gov (United States)

    Janicka, Lucja; Stachlewska, Iwona S.; Veselovskii, Igor; Baars, Holger

    2017-11-01

    In July 2013, favorable weather conditions caused a severe events of advection of biomass burning particles of Canadian forest fires to Europe. The smoke layers were widely observed, especially in Western Europe. An unusual atmospheric aerosol composition was measured at the EARLINET site in Warsaw, Central Poland, during a short event that occurred between 11 and 21 UTC on 10th July 2013. Additionally to the smoke layer, mineral dust was detected in a separate layer. The long-range dust transport pathway followed an uncommon way; originating in Western Sahara, passing above middle Atlantic, and circulating over British Islands, prior to its arrival to Poland. An effective radius of 560 nm was obtained for Saharan dust over Warsaw. This relatively small effective radius is likely due to the long time of the transport. The aerosol-polarization-Raman PollyXT-UW lidar was used for a successful daytime Raman retrieval of the aerosol optical properties at selected times during this short event. The aerosol vertical structure during the inflow over Warsaw in terms of optical properties and depolarization was analyzed, indicating clear distinction of the layers. The microphysical properties were inverted from the lidar derived optical data for selected ranges as representing the smoke and the mineral dust. For smoke, the effective radius was in the range of 0.29-0.36 μm and the complex refractive index 1.36 + 0.008i, on average. For dust, the values of 0.33-0.56 μm and 1.56 + 0.004i were obtained. An evolution of the aerosol composition over Warsaw during the day was analyzed.

  1. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  2. Raman scattering tensors of tyrosine.

    Science.gov (United States)

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  3. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  4. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  5. The 1989 progress report: quantum optics

    International Nuclear Information System (INIS)

    Flytzanis, C.

    1989-01-01

    The 1989 progress report of the laboratory of Quantum Optics of the Polytechnic School (France) is presented. The main research activity of the Laboratory is the study of processes controlling the behavior of matter under the action of high intensity light fields and under space-time constraints. The reported investigations were performed in the following fields: dynamics and vibrational relaxation modes in dense phases; nonlinear optical properties of composite materials; surface energy transfer and distribution in molecule surface interactions. Techniques relating to femtosecond impulsions, pulsating Raman and nonlinear optics were developed. The published papers, the conferences and the Laboratory staff are listed [fr

  6. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  7. Optical and vibrational properties of sulfur and selenium versus halogens in hydrogenated amorphous silicon matrix

    International Nuclear Information System (INIS)

    Al-Alawi, S.M.; Al-Dallal, S.

    1999-01-01

    The infrared spectra of a compositional variation series of alpha-Si,S:H; alpha-Si,Se:H, alpha-Si:Cl, H and alpha-Si:F,H thin films were deposited by r.f. glow discharge were compared. It was shown that S, Se, Cl and F can be bonded to the silicon matrix. The stretching mode bands at 2000 cm/sup -1/. and 2100 cm/sup -1/ in the infrared spectra of the above alloys shifts systematically to higher wave numbers when incorporated S,Se or halogen atoms are increases. This observation was attributed to the larger electronegativity of these atoms with respect to the host matrix. Optical transmission spectroscopy and photothermal deflection experiments reveal an increase in the band gap when the content of any of the above elements is increased. However, the highest band gap was obtained for sulfur alloys. This result was interpreted in terms of the S-Si bond strength as compared to other elements. It was found that alpha-Si, S:H was interpreted in terms of the S-Si alloys exhibit the highest structural stability among the four alloys for moderate amount of incorporated sulfur atoms. (author)

  8. Raman scattering of rare earth hexaborides

    International Nuclear Information System (INIS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-01-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB 6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B 6 vibrations were observed in the range 600 - 1400 cm -1 . Anomalous peaks were detected below 200 cm -1 , which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  9. Resonant Raman spectroscopy of PAH-Os self-assembled multilayers

    International Nuclear Information System (INIS)

    Tognalli, N.; Fainstein, A.; Bonazzola, C.; Calvo, E.

    2004-01-01

    We present a resonant Raman scattering study of (PAH-Os/PVS) n and (PAH-Os/GOx) m self-assembled multilayers (n=1-11 and m=1-3). These Os polymer multilayers can be used in electrodes as efficient molecular wires for biomolecular recognition. The Raman intensity dependence on the number of self-assembly cycles provides information on the deposition process. The spectra are identical to that observed for PAH-Os in aqueous solution, indicating that the PAH-Os metal complex structure is conserved in the multilayers. We observe at ∼500 nm incoming and outgoing Raman resonances of osmium and bipyridine vibrational modes. These resonances are associated to the metal-to-ligand charge transfer (MLCT) transition. We study the evolution of these Raman modes as a function of the Os oxidation state during in situ electrochemistry. During the oxidation process, Os(II)→Os(III), the Raman resonance related to the MLCT disappears and the bipyridine related modes harden by ∼10 cm-1. These results are correlated with optical transmission measurements which show the disappearance of the visible region absorption when the Os complex is oxidized. We also find partial quenching of the Raman mode intensity after in situ voltamperometric cycles which demonstrates the existence of photo-electro-chemical processes

  10. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    Science.gov (United States)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  11. Influence of the ordered structure of short-chain polymer molecule all-trans-β-carotene on Raman scattering cross section in liquid

    International Nuclear Information System (INIS)

    Qu Guan-Nan; Li Zuo-Wei; Sun Cheng-Lin; Ou Yang Shun-Li; Wang Wei-Wei; Men Zhi-Wei

    2011-01-01

    We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSCS) of short-chain polymer all-trans-β-carotene is extremely high in liquid. Resonance and strong coherent weakly damped CC bond vibrating properties play important roles under these conditions. Coherent weakly damped CC bond vibration strength is associated with molecular ordered structure. All-trans-β-carotene has highly ordered structure and strong coherent weakly damped CC bond vibrating properties, which lead to large RSCS in the solvent with large density and low concentration at low temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  13. Transverse stress induced LP 02-LP 21 modal interference of stimulated Raman scattered light in a few-mode optical fiber

    Science.gov (United States)

    Sharma, A.; Posey, R.

    1996-02-01

    Four-photon mixing followed by stimulated Raman scattering is observed in LP 02 mode in a 7.9 μm core diameter optical fiber. A localized transverse stress efficiency couples LP 02 to the LP 21 mode with a macroscopic beat length of 1.8 mm. LP 02-LP 21 modal interference is investigated by detecting the 550-590 nm SRS through a pinhole in the far field exit plane. Quantitative explanation of wavelength dependent intensity modulation results in a precise experimental determination of {∂[β 02(λ) - β 21(λ)] }/{∂λ}, for mode-propagation constants β02( λ) and β21( λ) of LP 02 and LP 21 modes respectively, as well as Δ, the relative core-cladding refractive index difference. The LP 02-LP 21 modal interference is used for sensing of temperature between 50-300°C.

  14. Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses.

    Science.gov (United States)

    Kamalaker, V; Upender, G; Ramesh, Ch; Mouli, V Chandra

    2012-04-01

    The glasses with composition 75TeO2-10ZnO-(15-x)Nb2O5-xNd2O3 (0≤x≤9 mol%) were prepared using melt quenching method and their physical properties such as density (ρ), molar volume (VM), average crosslink density (nc¯), oxygen packing density (OPD) and number of bonds per unit volume (nb) were determined. Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1, TeO3 and NbO6 units as basic structural units. The glass transition temperature (Tg), crystallization onset (To) and thermal stability (ΔT) were determined from DSC thermograms. The Raman and DSC results were found to be correlated with the physical properties. In the optical absorption spectra six absorption bands were observed with different relative intensities at around 464, 522, 576, 742, 801 and 871 nm which are assigned to the transition of electrons from (ground state) 4I9/2→G11/2; 4I9/2→2K3/2, 2G7/2; 4I9/2→4G5/2, 4G7/2; 4I9/2→4S3/2; 4F7/2→2H9/2, 4F5/2 and 4I9/2→2F3/2 respectively. From optical absorption data the energy band gap (Eopt) and Urbach energy (ΔE) were calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Michael [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Becker, Katja [Justus Liebig University Giessen, Biochemistry and Molecular Biology, 35392 Giessen (Germany); Popp, Jürgen [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany); Frosch, Torsten, E-mail: torsten.frosch@uni-jena.de [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany)

    2015-09-24

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  16. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    International Nuclear Information System (INIS)

    Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten

    2015-01-01

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  17. Quantitative Determination of Ala-Ala Conformer Ratios in Solution by Decomposition of Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Jakub; Šebestík, Jaroslav; Šafařík, Martin; Kapitán, J.; Bouř, Petr

    2017-01-01

    Roč. 121, č. 38 (2017), s. 8956-8964 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA16-05935S; GA MŠk(CZ) LTC17012 Grant - others:COST(XE) CA15214 Institutional support: RVO:61388963 Keywords : density functional theory * vibrational circular dichroism * ab initio calculation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  18. Raman study of ? crystals

    Science.gov (United States)

    Pimenta, M. A.; Oliveira, M. A. S.; Bourson, P.; Crettez, J. M.

    1997-09-01

    In this work we present a polarized Raman study of 0953-8984/9/37/020/img7 single crystals for several values of the concentration 0953-8984/9/37/020/img8 made using different scattering geometries. The Raman spectra, composed of broad bands, have been fitted in accordance with a symmetry analysis which allowed us to assign the vibrational modes, and determine their frequencies and damping constants. The results are compatible with an average hexagonal symmetry for the solid solutions with x in the range 0953-8984/9/37/020/img9. In each of the spectra we found two bands at about 590 and 0953-8984/9/37/020/img10, probably associated with the existence of 0953-8984/9/37/020/img11 structures in the solid solutions.

  19. Analysis of channel addition/removal response in all-optical gain-clamped cascade of lumped Raman fiber amplifiers

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří; Radil, J.

    2004-01-01

    Roč. 22, č. 10 (2004), s. 2271-2278 ISSN 0733-8724 R&D Projects: GA AV ČR IAA2067202 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical communication * optical fibre amplifiers * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.113, year: 2004

  20. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.

    Science.gov (United States)

    Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert

    2014-04-24

    Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic

  1. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  2. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  3. Infrared dispersion analysis and Raman scattering spectra of taurine single crystals

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson

    2018-01-01

    A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.

  4. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  5. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    Science.gov (United States)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  6. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations

    Science.gov (United States)

    Wang, X.; Chou, I-Ming; Hu, W.; Burruss, Robert; Sun, Q.; Song, Y.

    2011-01-01

    Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3(r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.

  7. Raman scattering mediated by neighboring molecules

    Science.gov (United States)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  8. Raman scattering mediated by neighboring molecules

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2016-05-07

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  9. Development of a phase-sensitive Fourier domain optical coherence tomography system to measure mouse organ of Corti vibrations in two cochlear turns

    Energy Technology Data Exchange (ETDEWEB)

    Ramamoorthy, Sripriya [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Zhang, Yuan; Jacques, Steven [Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon (United States); Petrie, Tracy; Wang, Ruikang [Department of Bioengineering, University of Washington, Seattle, Washington (United States); Nuttall, Alfred L. [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan (United States)

    2015-12-31

    In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.

  10. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy

    OpenAIRE

    Weidlich, O.; Ujj, L.; Jäger, F.; Atkinson, G.H.

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optical...

  11. Characterization of prepared In2O3 thin films: The FT-IR, FT-Raman, UV-Visible investigation and optical analysis.

    Science.gov (United States)

    Panneerdoss, I Joseph; Jeyakumar, S Johnson; Ramalingam, S; Jothibas, M

    2015-08-05

    In this original work, the Indium oxide (In2O3) thin film is deposited cleanly on microscope glass substrate at different temperatures by spray pyrolysis technique. The physical properties of the films are characterized by XRD, SEM, AFM and AFM measurements. The spectroscopic investigation has been carried out on the results of FT-IR, FT-Raman and UV-Visible. XRD analysis exposed that the structural transformation of films from stoichiometric to non-stoichiometric orientation of the plane vice versa and also found that, the film is polycrystalline in nature having cubic crystal structure with a preferred grain orientation along (222) plane. SEM and AFM studies revealed that, the film with 0.1M at 500°C has spherical grains with uniform dimension. The complete vibrational analysis has been carried out and the optimized parameters are calculated using HF and DFT (CAM-B3LYP, B3LYP and B3PW91) methods with 3-21G(d,p) basis set. Furthermore, NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) technique. The molecular electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, molecular electrostatic potential energy (MEP) analysis and Polarizability first order hyperpolarizability calculations are performed by time dependent DFT (TD-DFT) approach. The energy excitation on electronic structure is investigated and the assignment of the absorption bands in the electronic spectra of steady compound is discussed. The calculated HOMO and LUMO energies showed the enhancement of energy gap by the addition of substitutions with the base molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) at different temperatures are calculated and interpreted in gas phase. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  12. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2012-05-01

    Full Text Available A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients properties of aerosols in the troposphere. The aerosol optical depth (AOD values derived from the CIMEL ranged from 0.33–0.91 (355 nm to 0.18–0.60 (532 nm, while the lidar ratio (LR values retrieved from the Raman lidar ranged within 75–100 sr (355 nm and 45–75 sr (532 nm. Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532 and Ångström-extinction-related (AER355/532 were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively, indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10 + 0.007( ± 0.007i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide

  13. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    International Nuclear Information System (INIS)

    Wood, Sebastian; Hollis, Joseph Razzell; Kim, Ji-Seon

    2017-01-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π -electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices. (topical review)

  14. Vibrational and electronic spectra of 2-nitrobenzanthrone: An experimental and computational study

    Science.gov (United States)

    Onchoke, Kefa K.; Chaudhry, Saad N.; Ojeda, Jorge J.

    2016-01-01

    The environmental pollutant 2-nitrobenzanthrone (2-NBA) poses human health hazards, and is formed by atmospheric reactions of NOX gases with atmospheric particulates. Though its mutagenic effects have been studied in biological systems, its comprehensive spectroscopic experimental data are scarce. Thus, vibrational and optical spectroscopic analysis (UV-Vis, and fluorescence) of 2-NBA was studied using both experimental and density functional theory employing B3LYP method with 6-311 + G(d,p) basis set. The scaled theoretical vibrational frequencies show good agreement to experiment to within 5 cm- 1 and NBA, respectively. On the basis of normal coordinate analysis complete assignments of harmonic experimental infrared and Raman bands are made. The influence of the nitro group substitution upon the benzanthrone structure and symmetric CH vibrations, and electronic spectra is noted. This study is useful for the development of spectroscopy-mutagenicity relationships in nitrated polycyclic aromatic hydrocarbons.

  15. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  16. Raman spectroscopic study of some chalcopyrite-xanthate flotation products

    CSIR Research Space (South Africa)

    Andreev, GN

    2003-12-16

    Full Text Available of normal vibrations of the corresponding individual compounds. The latter facilitated the Raman spectroscopic elucidation of the reaction products formed on the chalcopyrite surface in real industrial flotation conditions with a sodium isopropyl xanthate...

  17. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    Science.gov (United States)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  18. Temperature and Vibration Dependence of the Faraday Effect of Gd₂O₃ NPs-Doped Alumino-Silicate Glass Optical Fiber.

    Science.gov (United States)

    Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek

    2018-03-27

    All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.

  19. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    Science.gov (United States)

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  20. Effect of Cr-N codoping on structural phase transition, Raman modes, and optical properties of TiO2 nanoparticles

    Science.gov (United States)

    Hassnain Jaffari, G.; Tahir, Adnan; Ali, Naveed Zafar; Ali, Awais; Qurashi, Umar S.

    2018-04-01

    Noncompensated cation-anion codoping in TiO2 nanoparticles has been achieved by a chemical synthesis route. Significant reduction in the optical bandgap and enhancement in the absorption of visible light have been observed. Structural phase transformation has been tracked in detail as a function of doping and heat treatment temperature. Anatase to rutile phase transition temperature for doped samples was higher in comparison to the pure TiO2 nanoparticles. Nitrogen and chromium addition increases the phase transformation barrier, where the effect of the former dopant is of more significance. The Raman results showed an increase in the oxygen content with higher post annealing temperatures. With Cr incorporation, the peak associated with the Eg mode has been found to shift towards a higher wave number, while with nitrogen incorporation, the shift was towards a lower wave number. A decrease in reflectance with N co-doping for all samples, irrespective of phase and annealing temperatures, has been observed. In compositions with nitrogen of the same content, bandgap reduction was higher in the rutile phase in comparison to the anatase phase. In general, overall results revealed that with a higher loading fraction of ammonia, the N content increases, while Cr addition prevents nitrogen loss even up to high post annealing temperatures, i.e., 850 °C.